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1.1 Quelques Proprietés fondamentales des
intervalles

Exercice 1

Démontrer que pour qu'une partie non vide I de R soit un
intervalle, il faut et il suffit qu'elle posseéde la propriété (caractéristi-
que) suivante:

Vabel asb = [ab] €L

Solution
La condition est nécessaire. En effet, si I est un intervalle alors 1l

devient clair que [a,b] C I chaque fois que a et b sont dans I .
Montrons que la condition est suffisante. Pour cela, on procede
par étape:
1. I'n'est ni majoré ni minoré.
Pour tout réel x il existe deux éléments a et b de I tels que

a<x<b.Comme [a,b] C I par hypothese, on déduit que xe 1.
Dot I=R = ]-oo,-{-oo[ .
2. 1 est majoré mais non minoré.

Dans ce cas, I admet une borne supérieure ¢ = Sup L. Il vient que

pour tout x de R tel que x < ¢ il existe deux éléments a et b de [ tels

quea<x<b<c Or [a.b C 1, donc xe€ L. Il en résulte que:
[=]ooc[ oul=]weoc].

3. Lest minoré et non majoré.
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y raisonne de la méme manidre quen (2). On aboutira y
4 b | = |Int oo OUT= [Inf L eaf ,

[nf 1 désignant la borne inféneure de |

4 1estborné. . . ,
Posons ¢ = Sup 1 et d = Inf 1 puis montrons que [ est l'inlcrvauc

o d ot dextrémité ¢. Pour chaque x de Jd.c[ il exise ”
ot ¢, deux éléments a et b de Iels:
d<a<x<bsc

Or [a.b] C 1. donc xe L On conclutque:
1=]dc[ oul=]dc]oul= [dc[ oul=[dc].

Exercice 2
Soit I un intervalle ouvert. Montrer que pout tout x de I, il existe

un réel r, > 0 tel que:

d'origin
définition de d

Jx-rss x+1,[ € L.

Solution
On distingue, suivant les différents types d'intervalles ouverts

quatre cas possibles.
L, J= ]a, b[
En observant les différentes positions que peut prendre X Suf

:a’\-%b_f\j’
" |

. “
pegt gfﬁm‘)er que le nombre r, = Inf {x-a, b-x} (ottant -
qui lui est inférieur) convient.

En effet, s a+b int ¢
Sixe = , . ol
3 alorsr, =x-a convient. Siyest un P

]x-rx, x+rx[, il vient:

I, on

D'ou: ly-x| < x-a.
Donc: a-X <y-X < X-a.

A4<y<2x-a<atb-a=Db,
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ce qui signifie que y estdans Ja,b[ etassure que |x-r x+r[c 1.

. . a+b ¢4 :
Par ailleurs, si < < x, on prend r.=h-x. Si y estun point de
2 P

Jy=r.x+r[, il vient:
ly-x|<b-x
D'ou:
x-b<y-x<b-ux.
Donc:
a+b-b<2x-b<y<b,
ce qui signifie que y est dans ]a,b[ et assure, encore une fois,

I'inclusion annoncée.
2.5i] = ]a,+o[, tout réel r < x-a convient.

3.5i/ =]-o,a[. toutréel r <a-x convient.

4.s1] = ]-c0,+oo[, toutréel r, >0 convient.

Exercice 3
1. Montrer que tout intervalle 7 de R contient un point rationnel.

2. Montrer que 1) subsiste si I'on remplace le mot " rationnel " par

“irrationnel".
3. En déduire que tout réel x admet, pour tout £ > 0, une valeur

rationnelle (respectivement irrationnelle) approchée » a & prés par
défaut (respectivement par e€xces).

Solution
" 1. Tout intervalle 7 de R renfermant un intervalle borné (a,5), il

suffit de mener la preuve pour ce type. Posons h =b-a > 0. D'apres
le principe d'Archiméde”, il existe un entier naturel n satisfaisant a:

n>—,

h

8. Archimeéde est né vers 287 av J-C a Syracuse et mort vers 212 av J-C. Il excelle
en géométrie, mais il est connu surtout pour ses travaux en statique et
hydrostatique. 11 est I’auteur du célébre principe de la poussée qui porte son

nom,
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|
donc, h > o

Le méme principe d'Archimede permet d'affirm

. €r qu'j] BXiSteu
entier [na] (dit partie entidre de na) tel que: N

[na] <na<[na] +1.

Par suite:
na<[na]+1£na+l.
Donc:
a< [na]+ : Sa+-l- <a+ (b-a),
n n
c'est-a-dire:
a< -Llla—:ll]i—l <b
Ainsi, nous obtenons:
na|+1
[ n] € [a,b] N Q.

2. Soit q un des rationnels de (a,b). Le principe d'Archimed.
€ncore une fois, assure I'existence d'un entier naturel n satisfaisant &

0<g—-<n.

D'ou:
a<q< q+—‘[ﬁ—2— <b.

A L@ 2 .
nsi, le nombre 1rrationne] q+—-\%_- convient.

, _ . ¢ id
Signalons en guige e conclusion que la démonstration M une
PeTMEL en fait, g'rapy; a

_ : , ti
Wiy . Par itération que tout intervalle I con
Infj : 1 "

l:llé de nombreg fationnels et de nombres jrrationnels. deu®
, r
- 11 suffit de fappeler cette définition. Soient € > 0, X !

réels. On git que r est une valeur approchée de x a € pres gi on &

|x-r| <e.

T est dj jx &k
dit valeur aPpI'OChée par défaut sir< X, par exces Sl x=
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Ainsi, les intervalles ]x —&,x[ et Jx,x+¢&[ contiennent, grace a (ii),

des rationnels et des irrationnels répondant a la question.

Remarque: Q et C,Q Vvérifiant cette propriété sont dits denses
dansR . Le chapitre suivant détaillera cette notion.

Exercice 4
I. Soit (1,),.x =([a,,b,]) une famille d'intervalles fermés

emboités. Démontrer que ﬂ I #¢.
neN

2. Montrer a I'aide d'un contre-exemple, que ce résultat peut-€tre
mis en défaut si les intervalles considérés étaient ouverts ou semi-
ouverts.

Solution
1. Considérons les deux ensembles

A<dagsd, 2, aniks
B= {bO’bI""’bn""}’

formés respectivement des extrémités gauches et droites des inter-
valles (7 ) . Comme les intervalles sont emboités, c-a-d, vérifiant:

I,,cl ,VneN

2 — - —— ol = u
o090 [ N N
ao al ik aﬂ b" bl bﬂ

on constate que chaque 4, de 4 minore B et chaque b, de B

majore A4 . On déduit que :
a,<supd<infB<b,, VneN.
On conclut alors que l'intervalle [sup 4,inf B] (lequel peut étre

dégénéré si inf B =sup A4) est contenu dans chaque intervalle 1 .

Donc, il est inclus dans n I, - Ce dernier est alors non vide.

neN
Signalons au passage que ce résultat est connu sous l'appellation de

théoréme des intervalles emboités de Cantor.
2. Si pour tout entier naturel » on prend, = ]1,| +e[ , alors:



N
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i) /, estouverl,
i/, = ]l.l + e '""'[ el ,VneN,

et pourtant
N = uint{l+e”ne N =]L1[=¢.
we N

Exercice 5
Démontrer que pour que l'intersection d'une famille d'intervale,
fermés emboités ¢ = (7)), = ([a”,b,, ]),, soit réduite A un singleton,

faut et il suffit qu'il existe, pour toute > 0, un élément [a»usbn.,}de

o dont la longueur ne dépasse pase .

Solution

La condition est nécessaire. )
En conservant les notations de l'exercice précédent, on peut, grace
aux propriétés caractéristiques des bornes inférieure et supérieur
affirmer, pour toute > 0, I'existence de deux intervalles [ar,.b,,]et

[aq.b'] dans o de telle sorte que:

SUpA—§-<a,,et b, < infB+§ ;
' . " ; Si Ona
L'un des deux intervalles [“wbp] ou [a,,, b,,] contient l'autre
| [a,86,]<[a,.5,]
(le contraire se traite de méme) alors:

b, <infB+§—AsupA—-§<aP<a,,'

Oronainfp= sup 4, donc:
£ £
bq—aq<inf'B—SUPA+§+§-’ ]dc
b
{ - H . " H i Gyt
cest-a-dire, b, =a, <g.Ainsi, on a exhibé un intervalle [ q

o dont la longyeyr ne dépasse pas ¢ .
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La condition est suffisante,
L'intersection des éléments de la famille ¢ coincide d'aprés I'exercice
précédent, avec l'intervalle [Sup A, Inf B]. Ainsi, tout intervalle
contenant ce dernier doit jouir d'une longueur au moins égale a
Inf B - Sup A =L Or o contient des intervalles dont la longueur est
aussi petite que 1'on veut, autrement dit:

Ve>0 3 [a,b, Jeo/[sup A InfB] < [a,.b, ],

avec [ag-b, | < €; donc son intersection coincide avec un singleton.

1.2 ouverts

Exercice 6

Montrer que :
1. 1) tout intervalle ouvert est un sous-ensemble ouvert,

ii) la réciproque est fausse.
2. 1) tout singleton de R n'est pas ouvert.

ii) c'est le cas de toute partie finie non vide de R en général.
3. N et Z ne sont pas ouverts.

4. les intervalles [a,b[ et Ja,b] ne sont pas ouverts.
5. l'intersection infinie d'ouverts n'est pas nécessairement ouverte

Solution
1. i) Il suffit de rappeler cette définition fondamentale d'un ouvert

pour la topologie usuelle de R:

Q=0

Qouvert de (R, . I) & {ou
Vv xe Q 31, (intervalle ouvert) / xe I, € Q

ii) On le constate aisément sur ces deux ouverts
]-7,-3[ U ]2,9[ = Qi et J-eo,4[ U J11,20[ = Q,

lesquels ne sont pas des intervalles.
2. i) et ii) Les parties finies en général et les singletons en parti-
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. suvent contenir d'intervalles ouverts, py; Co
culier ne peuvent f'( ng éqllem,
ne sont pas ouverts. i | |
3. N et Z ne sont pas ouverts pour la méme raiggp C
:1. [a,b[ ne peut pas étre ouvert, car:

]a-p ,a+p[ ¢ [a,b[, Vp>o0.

itée ang

a-pa a+p b
L | | |
r | | L

Clest le cas de Ja,b], puisque:
]b-p ,b+p[ ¢ Jab], Vp>o.

a b-p b b+p
| ]

5. En prenant les familles d'ouverts

1 1

Q, = 4, 44— ou Ag= | -1, 10+"'1—" , nel,
1+n 1+n 1+n

onobtient () Q, = {4 et N A, = ]-1,10 ], lesquels ne sont
ne N ne N
ouverts comme op vient de le voir.

Exercice 7

: , si, ¢
Démontrer qu'un Sous-ensemble non vide A de R est ouvert

seulement 81, il est réunion d'intervalles ouverts.
So[uti.on

§
: | - | urellee
eSt' clair que 15 condition est suffisante. Montrons d f
nécessaire, By effet, si A eg

s e
e
on vid
t un souys- mble ouvertn
on peut, gy us-ense

ace A l'exercice précédent, écrire:
VxeA3 [, /xe I,C A, alle Ouveﬂ
Me désormais convenu, un interv

Parcourt toyt A on arrive 2.

AC U1, cA.
Doy - xg '

“ontenan . Quang x
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A=U 1.
X€ A

11 est utile de remarquer que ce résultat présente une caractérisation
importante de la notion d'ouvert dans R.

Exercice 8
Soit U un ensemble non vide de R. On définit:

-U={erR/-er},
le{xelR/l'ler;lelR'],
U+a ={xelR/x-an;ae!R}.

Montrer que chacun de ces sous-ensembles est ouvert si, et seulement
si, U l'est.

Solution
1) Si U est ouvert alors:

xe-U = xeU = 3Ir>0/]x1,x+[CU

= 3Jr>0/]x-rx+ € -U.

Donc, -U est ouvert.
Réciproquement, si -U est ouvert, alors:

xeU = -xe(-U) = Ir>0/]xrx+f €-U

= 3Jr>0/Jxrx+ € U

Donc, U est ouvert.
ii) Supposons que U soit ouvert. Alors:

AU = A'xeU = E|r>O/]7L'1x-r,l'lx+r[C.U

3r>0/ [x-Ar, x+A AU si A >0,

31> 0/ Jx-(A), x+(AD[ €AU si A <0,

Donc, AU est ouvert.
Inversement, si AU est ouvert, on a:
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xeU = AxeAU = 3r>0/]?ux~r, lx+r[ClU
3r>0/]x-l'lr, x+?L'lr[CU si A>0,

3r>0/ (A", x+A D[ € U si A<,

Donc, U est ouvert.
111) Soit donné U ouvert. On a:

xeU+ta = x-aeU = 3Jr>0/]x-ar, xa+r[ CU
= 3r1>0/ |x-rx+1] € U+a.

Donc, U+a est ouvert.
Réciproquement, si U+a est ouvert, alors:

xeU = x+aeU+a = Ir>0/ Jx+ar, x+a+r[ € U+a
= 3Ir>0/ ]x—r,x+r[ (sl §

Donc, U est ouvert. L'exercice est achevé.

Exercice 9
Soientaetb (a > b) deux réels. Démontrer que:

Jap[ = U a+—;—, b[.

ne N’

Solution
Ona:

1 .
U ]a+-—, b[ A ]Infla+-l—, ne N ] b[.
ne N’ n n
Donc, 11 suffit de montrer que:
e .
Inf la+-n—, ne N ] =a. (*)

Pour cela, on utilise la proprité caractéristique de la borne inférieure.
On a trivialement:

1 .
a<at+—, VnelN .
n
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De plus, pour ¢ > 0, l'inégalité parki a+¢g, d'inconnue n de N°,
n

admet toujours une solution: [l} +1, par exemple. D'ou (*).
&

Exercice 10
Soit (J,),..., une famille de p intervalles ouverts, deux a deux

disjoints. Soit / un intervalle ouvert borné contenant lgprary:
k=1

Si tout intervalle J, posséde une longueur L, , montrer alors que
la longueur de I, notée L, vérifie:

P AL
k=i

Solution

Soit I =]a,s[ et J, =]c,,d,[. Pour tout k=1, on a ou bien
c, <d, <coubien d, <c, <d,,sinononaurait J nJ, #4.

Procédons par récurrence. la relation est triviale pour » =1, car
a<c <d, <b, parsuite d, —c,<b-c, c-a-d L < L.

Soient  J,,J, ,....J, les intervalles inclus dans Ja,c[ et

NITE b o les intervalles inclus dans]dl,b[. L'hypothése de

J'n-l-p
récurrence permet d'obtenir :

n r

i L, <b-d,

k=l

[}
YL sc-ac¢t
K =1

Par conséquent:

iL-‘ -_—Ll+i[,'.' +"i-lL_h <d -c¢ +c,—a+b-d <sb-a=L.

i=| k=1 k=1

Exercice 11 1 _
Soient 7 un intervalle de R et (7,),., une famille d'intervalles

ouverts, deux a deux disjoints, contenus dans 7,
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Démontrer qu'il existe une partie dénombrable D de Atelle que:
aeD = I,=0.

olution . o
) Remarquons, de prime abord, que dire quun intervalle non

dégénéré est vide signifie que sa longueur est nulle. Nous pouvons

maintenant réecrire le résultat de cet exercice comme Suit: )
" La famille des intervalles ouverts de longueurs non Nuies est au

plus dénombrable " .
Nous menons la démonstration en deux €tapes.

1) Iborné _
11 est alors loisible de poser I = Ja,b[ et L = b-a. Pour tout entier

naturel non nul n, l'ensemble E_ des éléments o de A tels que la
longueur de I, soit plus grande que L/n, est fini. Bien plus, il

contient n-1 éléments précisément. L'ensemble D des éléments o de

A tels que la longueur de I, est non nulle coincide avec la réunion

dénombrable des parties finies E_ . Il est donc lui-mé&me dénombrable
11) I non borné

Pour tout entier naturel non nul n, les intervalles I, N ]-n, n[ sont
deux a deux disjoints. Au vu du cas (1), I'ensemble D, des é1éments
o deAtelsquel, N |-n, n[ # ¢, est dénombrable. Comme

Io#¢0 < 3JneN/1,n Jn, o[ # ¢,

I'ensemble D des éléments o, de A tels

réunion des parties D,,c-ad

elles-mémes, dénombrab
Exercice 12

Démontrer que 1a fam

(R,].]), est dénombrable,
Solution
On procede Par 1'absurde.

que I, # ¢ est constitué de 12
» Une réunion dénombrable de parties.
les. On conclut donc que D est dénombrable

ille des ouverts, deux 3 deux disjoints, d¢

Soit (Q;),., une telle famille, Supposons quelle ne soit pas
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dénombrable. Le résultat porté par l'exercice précédent reste vrai si
l'on remplace le mot intervalle par partie, puisque tout ouvert est
réunion d'intervalles ouverts. De plus, Sion prend 4=Q, on écrit:

VieAQNQ#g.
Ceci conduit a la non dénombrabilité de I'ensemble U (QNQ). len

AeA
résulte que Q est non dénombrable du fait que les ouverts Q, sont

deux a deux disjoints. C'est la contradiction recherchée! Ainsi,
(€,);., estdénombrable.

1.3 Fermes
Exercice 13
Montrer que:

e

. les singletons de (R, ||) sont fermés.

2. toute partie finie non vide de (R,|) est fermée.

. tout intervalle fermé est une partie fermée.
. N et Z sont fermés.

3
4
5. les intervalles [a,b[ et ]a,b] ne sont pas fermés
6

. R et ¢ sont fermés.
7. une réunion infinie de fermés n'est pas nécessairement fermée.
Solution
I. Le complémentaire C, {a} =]-—oo,x[u]a,+oo[ de tout

singleton
{a} est ouvert. Celui-ci est alors fermé.
2. Considérons une partie finie F' = {a,,az,...,a,,} telle que
4<a,s..fa,,<a,.
Son complémentaire
CRF=]—oo,a,[u]a,,a,[u...u]a,,_,,a,,[u]ap,m[

¢st ouvert. Donc, elle est fermée.
3. En effet, les complémentaires:
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Cyla b] = ]-=. a[ U ]b, +o

Cylatod = J=. of

Colm 2] = Jaso]

des trois types d'intervalles fermés sont ouverts. Donc, ces inter-
valles sont des parties fermées.

4 Ona
C N =] -, 0[ U (Uﬂ]n, n+1[ ).
CexZ = U n, n+1[.
ne Z

Ces complémentaires sont ouverts. D'od le résultat.
5. Les complémentaires

Ce [0 =] -, a[ U [b,+ed],
Cpla. b] = J-w=, a] U Jb, o]

fic Sont pas ouverts, car le premier ne peut contenir aucun intervalle

ouvert centré en b, le second en a. Donc, [2.b[ et Ja,b] ne sont pas
fermés

6. R et ¢ sont fermés car I'un est le complémentaire de 'autre,
ouvert.

7. Tous les éléments de la famille {A 2 =[-1, 2-.1_” sont
n N
fermés alors que leur réunion -
1
U ['ll 2'_] = '1,2

e N’ n [ [
ne l'est pas.
Exercice 14

Montrer que Q et C_ Q ne sont ni ouverts ni fermés.

Solution
Les deux ensembles Q etC_Q étant tous les deux denses dans R,
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aucun d'eux ne peut contenir un intervalle ouvert. Ils ne peuvent donc
étre ouverts. Comme chacun est le complémentaire de l'autre, ils ne
peuvent étre fermés, non plus.

Exercice 15
Démontrer que les seules parties de (R,|.|), 2 1a fois ouvertes et
fermées, sont o et R.

Solution
On procede par I'absurde.

Supposons qu'une partie A de (IR,H) soit ouverte et fermée et ne soit
ni vide ni égale 2 R, puis considérons un point x de C_A. Il en

résulte que I'un des sous-ensembles A N [x,+eo[ et AN J-o0,x] est
non vide. Supposons, sans restriction de généralité, qu'il s'agit de

B=AN [x,+f. Il est évident que B est fermé. De plus, il est

minoré. Il jouit donc d'une borne inférieure que 1'on note b. En
réalité b est 1'élément minimal de B. Par ailleurs, B peut, du fait que

x ne lui appartient pas, s'écrire sous la forme B = AN |x,+e<[ ce qui
le rend ouvert. On déduit qu'il existe un réel € > O de telle sorte que
]b-e, b+a[ C B. Cela est en contradiction avec b = Inf B.

Remarque: (IR, ||) vérifiant cette propriété, est dit espace connexe.

1.4 Adhérence, points d'accumulation

Exercice 16
| Déterminer les adhérences des parties de (R,|.|) suivantes:
i) Z etN.
i) [a, b], [, b[. ] 2, b] et Ja, b[.
iii)]a,+oo[ et [a,+oo[.
iv)Q etC Q.

2. Déterminer tous les fermés de (R, |.|) contenant @.



e |

ie usuelle de la droite réelle
24 Topologie usue

Solution

1 2
L. Rappelons de prime abord quun point a est adhérent 3 un

¢nsemble A, ou a est un point de l'adhérencg A ?e'sf;\;ﬂ;t.{om
intervalle ouvert centré cn a rencontre A. Sur ce, il vient ai .

2. Il ressort de 1.iy) que le plus petit fermé contenant Q est R.
Donc, R est Ie sey] fermé contenant Q.

Exercice 17

1. Donner deg eéxemples de

Sous-ensembles A et B de R tels que

ANB ne soit pas contenu dans ANR
2. Donner deg €xemples de deyx ouverts A et B de
——
SOus-ensembles A

ﬂ-l-?»_, KnB, ANB gt Kn-ﬁ_
dlstmcts.__
Solution

1. Lapaire(Q, CRQ)

R tels que Iles

soient tous

Convient,

e ——

En effet, on a
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C'est aussi le cas pour la paire ([3,6,7} uJo,s], {0.4} U ]5,7[),
puisqu’on a:
(3,6,7}010.5] n ({0.4}u]5.7[) =
= ({3,6,7}u[0,5])n ({0.4}u]5.7[) = {0.4.6}.
({3.6,7}u]0,5]) n {0,4}u]5.7[ =
= ({3,6,7}u]0,5]) n ({0.4}u[5.7]) = {4.5.6.7}.
({3.6.7}u]0,5]) n {0,4}u]5.7] =
= ({3.6,7}u[0,5]) n ({0.4}u[5.7]) = {0.4.5.6,7}.
({3.6.7}v]0.5]) n ({0.4}u]5,7]) = {4.6} = {4.6}.
Exercice 18
1. Démontrer que pour tout ouvert Q de R on a:
Q=QNQ=QNC.Q.

2. Montrer, a l'aide d'un contre-exemple, que ce résultat est faux
si I'on considére €2 non ouvert.

Solution
1. Le résultat est évident si £ = ¢. Par ailleurs, On a clairement:

QNQ € QetQNC,Q C Q.

D'autre part, si xe €2, alors:
]x-e, x+e[ NQ#p, Ve>0.

Comme ]x—e, x+e[ N Q est ouvert, il en résulte que:

(]x-e, x+e[ N Q) NQ=#¢, Ve>0,
c-a-d
]x-a, x+£[ N QN Q) =#¢.
D'on it A0

xe QNQ .
Donc
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Qc onQ.
En remplagant Q par Cr Q, on obtient de méme:
Qc Q_ncﬁ
2. 11 suffit de prendre Q = N. On a:
N=NnQ=N=N# NnC,Q =¢.

Exercice 19
Déterminer les ensembles dérivés de:
1) {O, 1, 2} et A fini.

i) Q et CpQ.
i) [a,b], [a,b], ] ab]et Ja,b[.
iv)ll, . ]
2 n
Solution

Par définition, I'ensemble dérivé B' d'une partie B de (IRH) est

I'ensemble de ses points d'accumulation. Un point x de R est d'accu-
mulation d'une partie B ;i :

]x-r,x+r[ﬂ(B\{x}) 20, Vr>0.
Ainsi, on trouve:

i) {0, 1,2} = A" = ¢, car tout point x de R peut &tre centre d'un
intervalle ouvert ne rencontrant A qu'au plus en ce point lui-méme.

i) Q" = (CpQ)' = R, car tout point x de R est centre d'un
intervalle ouvert rencontrant Q et Cg Q en une infinité de points.

iii) [a,b]' = [a,b[' = ] a,b] = Ja.b[" = [a,b], grace 2 1a propriété
fondamentale des intervalles décrite dans l'exercice 2

. 1 1],
lV)[l, -5-, S7 F, ] = (O}

En effet, 0 est un point d'accumulation de cet ensemble. On peut

se référer a I'exercice ci-aprés. Tout autre point x de R ne peut étre
d'accumulation pour la méme raison invoquée dans le cas (1).
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Exercice 20
I. Démontrer que les bornes inf A et supA d'un ensemble 4 de

(IRH) quand elles existent et ne coincident pas avec Max A et

Min A respectivement, sont des points d'accumulation pour 4.
2. Montrer que ce n'est pas le cas sisup A = Max Aetinf A=Min A

3. Montrer que tout ouvert borné de (IR,H) ne peut contenir ses

bornes.
Solution
|. La propriété caractéristique de la borne supérieure permet
d'écrire:
Ve>0dx, e A/supAd-g<x, <sup4.
C'est-a-dire:
JsupA—-g,supA+£[N A4, Ve>0.

Donc, sup A est un point d'accumulation pour 4.

Le cas de la borne inférieure se traite de méme.

2. Il suffit de prendre A fini.
3. En effet, si Q est un ouvert contenant ses bornes il contiendrait

des intervalles ouverts centrés en ces bornes, ce serait en contra-
diction avec la définition de ces bornes.
Exercice 21

1. Démontrer qu'un point x de (R,||) est un point d'accumulation
d'une partie A4 si, et seulement si, tout voisinage de x rencontre 4
en une infinité de points.

2. Que dire d'une partie bornée de (R,||) ne possédant pas de
points d'accumulation?
Solution

1. La condition est évidemment suffisante. Montrons qu'elle est
nécessaire. Soit ¥ un voisinage dex. Nous pouvons poser, sans

restreindre de généralité, ¥ = Ja, b[ . Supposons que:

]a,b[n A= {ypyp---sy[,}
(c-a-d un ensemble fini de p éléments) et posons:
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a'=Maxiy,/y, <x}; b'=Min{y/y,>x}

I1Sisp Isisp
Il vient xe]a',b| et]a'\b'[NA=¢, ce qui contredit le fait que x o
d'accumulation. _ .
2. Elle est, au vu de ce qui précéde, nécessairement finie.

Attention: une partie infinie peut ne pas avoir de POing

d'accumulation comme on peut le constater, par exemple, sur le ca
de A=Nou Z.

Exercice 22

Démontrer que pour qu'un sous-ensemble 4 de R soit fermg, j

faut et il suffit qu'il contienne tous ses points d'accumulation.
Solution

La condition est nécessaire:
Soit 4 un sous-ensemble fermé et x& A. C, A étant ouvert, il est

voisinage de x et ne rencontre pasA4. Donc,x ne peut pas étre un
point d'accumulation de 4 .

La condition est suffisante:

Si A est tel qu'aucun de ses points ne lui est d'accumulation, il
existerait, pour tout point x de Ci4, un voisinage ne rencontrant

pas A. Ce voisinage serait alors inclus dans C, 4, lequel deviendrait
voisinage de tous ses points, donc un ouvert. Il en résulte que A est
fermé.

Exercice 23

Montrer que I'ensemble dérivé 4 d'une partic 4 de R est fermé.
Solution

Il suffit de montrer que C, 4" est ouvert. Pour cela on montre

queCzA' est voisinage de chacun de ses points. Soit a un de C€
points et p un réel strictement positif. On écrit:

¢
]a"Psa‘*'P[nA =<ou

a}
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On déduit que tout point b de |a—p,a+ p[ ne peut étre dans A'
puisqu’ un de ses voisinages ne rencontre 4 qu'en a au plus. Donc:
]a--p,a+p[c:CkA',

ce qui signifie que C, A" est un voisinage de a et achéve la preuve.

1.5 Intérieur, frontiere, extérieur

Exercice 24
1. Déterminer;

i) A, (4 fini),{~10,2U[3.5[,

0 o 0 0
———. — e, ——

ii) ]a,b[, [a,b], [a,b[, ]a,b],
iil)) I:J: %: éa C’j@'

2. Donner un sous-ensemble 4 de R tel que les parties 4, A4,

0

—— — 0
A, A et A soient toutes distinctes.
3. Déterminer:

i).7 (la,8]), 7 ([a.6]),- 7 (Jas6]),.7 ([, 8]).

i) 7(N).. 7(2), 7(C:Q) et 7(Q),

iii) E, ({~1,2}). E, ([a.8]), E, (]a.8[). E, (]a.b]) et E, ([a.5])- -
iv) E,(N),E,(Z),E,(Q) et £ (R-Q).

Solution
1. Rappelons que pour un sous-ensemble 4 de R on a:

:1={xe A/EIr>O/]x—r,x+r[cA},
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F(A)= A/ 4; E,(A)=C A
Une application directe de ces définitions donne immédiatement:

L4

i) A= (<1,0,2}U[3.5[=]3.5[.

i) Jaub] =[ab] = [b] = Jarb] = Jar ]
i) N=Z=0=C.Q=4¢.
2. La partie 4= |-1,0]U[0,1]U{2,3} convient, puisqu’ on a:
A=]-Lo[Uo.1[, Z:[—l.l]U{2,3}.i:]-l,l[j:[-m]
3.0na:

)7 (Jab)= 7 ({06 =7 (Ja6])= 7 (o 8]) = ).

) . Z(N)=N, .7(2)=2, 7(C,.Q)=. 7(Q)=R

i) EI(N)=]—oo,0[U(U]n,n+l[),Ex(Z) =UJlnn+1,

neN ne?.

V) E(Q=ER-Q)=¢.

1.6 Densité

Exercice 25

Démontrer qu'une partic 4 de R est
seulement si, elle rencontre tout
Solution

_ partout dense si, et
Intervalle ouvert,
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tous les points de I adhérent & A. Or I est voisinage de chacun de ses
points, donc I N A # ¢.
Inversement, Si 1'on suppose que tout intervalle ouvert I coupe A
et si x est un point de R , on obtient pour tout réel r > 0:
Jx-rx+ N A #¢.
Par conséquent:
A =R.

Exercice 26

Démontrer que 1'intersection dénombrable d'ouverts partout denses

dans R est, elle méme, partout dense.

Solution
Soit (Qﬂ)nem une famille dénombrable d'ouverts partout denses

dans R. Posons Q = () €, . On a 2 montrer que Q =R. Pour cela,

ne N
il suffit que tout intervalle ouvert I rencontre €.
Nous procédons par €tapes.
Q, étant un ouvert partout dense, l'intersection I N Q, constitue un

ouvert non vide. Soit X, un de ses points. Il existe alors un réel r, >
0 de sorte que:

]xo-ro, Xo+To[ € 1N Q.
Par suite:

r r
xO-TO-, xo+—io- C ]XO'TO ’ x0+r0[ C 1N Q. *)

Iy Io
Pour les mémes raisons, l'ensemble ouvert ]xo-—z—, Xo+—| N Q;

2

. 14 Lo : v g :
contient l'ouvert ]x ' .E.é_ X 1 +-5-2-[ , ce qui permet d'affirmer que:

) )
NESENS )
2 2

En poursuivant cette opération, on construit peu a peu une famille

I'o Iy

To To
xl—-i-z—-, xl+-2—2— C]XO'—Q—, X1+-—-—[ﬁ Ql'
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d'intervalles fermés emboités

r r
[xn_ﬁg_r’ Xat 211(11 ] )ntelle que

o Iy *
[xn-ﬁ;l_’ Xpt 22u+1 ] G Q“’ Vv nel. ( )

Il est aisé de constater qu'il existe, pour tout € > 0, un intervalle dont
la longueur ne dépasse pas €. Il suffit pour cela de choisir un indice n

r
tel que —2;_)—11 <g,c-a-d:

L i
Log—2

£
2| —|+1
. 2Log2_+

Gréce a I'exercice (5), on peut affirmer que l'intersection

Io rO
‘ I X com— X e
n 3
el 22n+l n 22n+l

est réduite A un seul point, que 'on note a.
Maintenant, si 'on observe les relations (*) et (**) simultanément il
ressort que a appartient a la fois a I et 3 Q. Donc:

INQ= .
Remarque: L'espace (R, 1) est dit de Baire”.

Exercice 27

1. Montrer que, dans (IRH) l'intérieur de toute réunion dénomb-
rable de fermés d'intérieurs vides est vide.

2. En déduire que R ne peut pas étre dénombrable.

Solution
1. C'est une écriture équivalente de l'exercice précédent. En clair,

9. René Baire est né le 21 janvier 1874 a Paris et mort le 5 juillet 1932 a

Chambéry. Il est, avec Emile Borel et Henrj Lebesgue un des mathématiciens
frangais du début du 202me siecle dont les idées nouvelles ont le plus influencé

le développement de I'analyse.
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si (F,) est une suite de fermés d'intérieurs vides de (IR||) alors
(CgF,) scrait une suite d'ouverts partout denses. Donc, d'apres

Baire:
0
R= () (C,F,) =C,[U F,,) =CRW.
ne N ne N ne N
D'oun
0
U F,| =¢.
ne N

2. En effet, si R était dénombrable il s'écrirait sous la forme:

R=U {x.}

ne N

Or les singletons sont fermés d'interieur vide, donc R serait, d'apres
le théoréme de Baire, d'intérieur vide, ce qui est absurde.

1.7 Quelques problemes de plus

Exercice 28
Soient a et b (a < b) deus réels et () une famille d'ouverts
telle que:

[a,b] . ).LeJA Q;L .

Démontrer qu'il existe une sous-famille finie (£21)5c A (L finie) telle
que
[&,b] C U Ql ;
el
Solution
Désignons par A I'ensemble des élément x de [a,b] tels que, pour
une partie convenable J de A on ait:

[a,b] C U Q;

Y3
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Il est clair que A n'est pas vide, puisquil rcnlcrmﬁ . ch Pléls_. ¢
majoré par b. On affirme ainsi que A admet un¢ bOME Supericure

. b At s ¢ soit dans Q. ¢
dans [a.h]. Soient Ao un indice de A tel que ¢ soit dans A el y

réel strictement positif tel que ]c-a, C+a[C Q,, - Si l'on prend y
pointx de AN ]c-a, c] et une partie finie J de A telle que
[a,x] - U Q).
A€l

on voit que ¢ appartient a A, car

a,c Q, .
[d, ]CXEJHKO} "

_ _ _ . | bc & .
Maintenant, si ¢ < b on obtient, en posant c+Min - 5| = g's
c<cetfa,cl € 1) Qy;
relu(n, }

ce qui montre 1'appartenance de ¢' 2 A. Or cela est en contradictio
avec ¢ = Sup A, donc seule reste 'éventualité ¢ = b.

Remarque: Ce résultat est du 2 Borel'*-Lebesgue'".
Exercice 29

Démontrer que toute partie infinie et bornée de R admet un poir
d'accumulation.

Solution

Soit A une partie infinie bornée de R. Elle est incluse dans un

10. Emile Borel, mathématicien frangais, est né le 7 janvier 1871 a Sain
Affrique et mort le 3 février 1956 a Paris. I est, avec Baire et Lebesgue, I
fondateur de la théorie de la mesure et de I'étude moderne des fonctions. 118

aussi grandement contribué au déveleppement du calcul des probabilités.

11. Henri Léon Lebesgue, mathématicien Frangais, est né le 28 juin 1875 @

Beauvais et mort le 26 juillet 1941 A Paris. 11 soutient sa these en 1902, SOU!
le titre Intégrale, longueur, aire. Dans cette these, Lebesgue présente la théori
d'une nouvelle intégrale, qui porte son nom de nos jours.
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intervalle fermé et borné [a.b]. Supposons maintenant qu'elle ne
contient aucun point d'accumulation. Il en ressort alors que tout point
x de [a.b] admet un voisinage ouvert ]x—pr.x+p_r[ ne rencontrant
A quau plus en un point. x lui-méme. La famille
(]x—pr.x+pr[)m[”] constitue un recouvrement ouvert pour [a,b].

On peut, grace a l'exercice précédent, affirmer qu'il existe une sous-
famille finie (]x, =0 X+ [) telle que :
7 ' Ii<p

0

[a.b] o Lpﬂx, =P %+ P, [
D'ou: A

A=Aﬂ(g:|x, — P, X, +p,[)=O(An]x,.—p, +x,+ ).

i=l

Or l'ensemble AN ]x, - p,,x,+ [ ne contient qu'un point au plus
(x, lui-méme) donc le nombre d'éléments de 4 ne peut, au plus,

dépasser p . C’est la contradiction recherchée!
Remarque: Ce résultat est dii 4 Bolzano’-Weierstrass®.

Exercice 30
Démontrer que toute suite réelle bornée admet (au moins) une
valeur d'adhérence.

Solution .
Rappelons, tout d'abord, que tout point d'accumulation de

I'ensemble des valeurs d'une suite est une valeur d'adhérence pour

5. Bernhard Bolzano, mathématicien et philosophe tchéque de langue allemande,
estné en 1781 et mort en 1848 a Prague. Ses travaux portent essentiellement sur

les fonctions, la logique et la théorie des nombres.

. Karl Théodore Weierstrass, mathématicien allemand, est né le 31 octobre 1815 &
Ostenfelde et mort le 19 février 1897 a Berlin. Son ceuvre mathématique
renferme la théorie des fonctions abéliennes et elliptiques et la théorie des
fonctions analytique. L’histoire retient qu’en 1877, il s’oppose a son collégue, et
pourtant ami, K ronecker au sujet des découvertes troublantes de Cantor.
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cette suite. |
Soit (u,) une suite réelle bornée. Posons:
U = {ug, Uys s Upy Unyrs b

Nous distinguons deux cas.
i) Si U est infinie, 'exercice précédent assure que U admet yp

point d'accumulation. Ce point est donc une valeur d'adhérence poyr

(u,). : |
i1) Si U est finie, il est plausible d'extraire de (u,) une sous-suite

constante dont la limite constitue une valeur d'adhérence pour (u, ).

Remarque: Ce résultat est dii & Bolzano-Weierstrass.
Exercice 31

Montrer que, dans (IR, ||) toute suite de Cauchy™ est convergente.
Solution

Soit (u,) une telle suite. Elle est bornée. Grice au théoréme de
Bolzano-Weierstrass, on peut, en extraire une sous-suite (u

cp(n))
(V,) convergente (qest l'application d'extraction). Posons lim v

n — oo
= L puis montrons que (u,) converge vers L. Soit ¢ > (. Il existe un
rang n, de N tel que:

n

—
.

V ne N n?_nl — |Vn‘L|< £

Par ailleurs, la suite (u,) étant de C

. auchy, on affirme qu'il existe un
entier naturel n, tel que 9

VPgelN p>g>n, o
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dosons Max (n,, n,) =n,. Il vient:
| 1 ()

voelN n2n, = |u,-L|= Jup-vo+v,-L| < |ua-va| + VoL
< lun-uw) + qu,(n)-Ll < % + —3— =g,

Ainsi, (u,) converge vers L.

Exercice 32
Démontrer que les deux assertions suivantes sont équivalentes.

i) Dans (R, |.|), tout point a admet un systéme fondamental de
voisinages fermés.

ii) Pour tout fermé F de (R,].|) et tout x de CF, il existe deux
ouverts disjoints Qp et €, telsque F C Qf et xe Q.
Solution

1 = @)

Soient F un fermé de R et x un €lément de I'ouvert C . F. Le point
X jouit, d'apres (i), d'un voisinage fermé W contenu dans CRF. Il en

o)
ressort que F est inclus dans C _W. Le choixde W =Q_ et CpW=

Q. termine (ii).

() = (1)
On peut, sans restreindre de généralité, se suffire du cas d'un
voisinage ouvert V de x. Appliquons alors la propriété (ii) aux deux

parties fermées {x} et C V. Si Q, et , sont deux ouverts disjoints

le premier contenant x et le second CRV, on obtient:
Comme "g£2, est fermé on peut aftirmer que:
Q CCQ,CV.
On déduit que le voisinage ouvert V contient un voisinage fermé

—

2, de x, ce avec quoi s'acheéve (i).

L
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Exercice 338 |
Soient (1), , 14 tamille des intervalles ouverts de (IRII) ctA
L I

une partic non vide. Montrer que la famille B = (1L,NA) e A CONStitYe
une base pour la topologie induite @ de A.

Solution
Soit O un ouvert de o, . 1l existe par définition un ouvert £ de ¢

el que QNA =0. Or Q est réunion d'intervalles ouverts kU\ [,=Q,
€
on &crit donc:

O= U Il n A=U (IlnA)

A€A AeA
Comme I NA estun élément de B, on conclut que celle-ci constitue
une base pour 0, .
Exercice 34
Soit F un sous-ensemble fermé d'intéricur vide et Q un ouvert non

vide dans (IR||) Démontrer I'existence d'un intervalle ouvert |
inclus dans Q et ne rencontrant pas F.

Solution

Soient F un fermé d'intérieur vide
€St un ouvert partout dense. Il renc

¢ffet, si tel n'était pas le cas, il existerait un ouvert U contenu dans F.

¢ qui conterdirait 1'inexistence de points intérieurs dans F. On en
déduit que ONQ egt

(IRH) lensemble C_F=0
ontre tout ouvert non vide Q. En

0NQ, donc dans
Exrcice 35

1. Démontrer que tout oy ,
dénombrable de fermés, vert non vide de (IR.H) est réunion

P '
En déduire que oy fermé non vide de (IR,H) st une intersec-
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tion dénombrable d'ouverts.

Solution
1. Soit Q un ouvert non vide de X . Pour tout entier naturel non

nul F on pose:

i -3 l ‘_
A =1x€Q/ x——.,x+— Cl2}.
4 n "

! - -

Les sous-ensembles 4, ne sont pas tous vides du fait que Q est

ouvert non vide. De plus. ils vérifient 4 < 4 _,. Par ailleurs. si v
. — l 1l _ .
est un élément de A_ | l'intervalle |y——,y+— contient un point x
” "

- -

1

i . 1 ab .

de A . Donc, y appartient & |x——,x+— . Par conscquent. il est
: n n

dans Q. On a ainsi obtenu:

A cQ VneN.

D'ou:
U I cQ. N
reN"

D'autre part, on remarque que pour tout x de Q. il existe un indice
n tel que x appartient a (Q ¢étant ouvert, il contient l'intervalle

Jx-l,x+l{). Donc:
n n :
Q=U¢cLH, (*%)

La conjonction de (*) et (**) donne I'égalité recherchée:
Q=\j4,
neN’

2. Si F est un fermé non vide de R son complémentaire est un
ouvert non vide. Celui-ci peut se mettre, grice a la question (1) sous

la forme:
UK. =CF
neN’

ou (K,) est une suite de fermés de R . D'ou:
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I\ .
3 :_:('\_ [ LJ. A"] = ﬂ ( '\ ,\.”.
ne nelN*

wvert, la question est achevée,
. n\‘l L]
doant U

Everck¢ Jon us-cnsemble dC(R.H) . Démontrer que.
it A UNSURE
Imé o (Ve (0)3p>0: A2 = ac V)
A
Solution
=)

§; 4 estun sous-ensemble borné, il existe par définition deu
re'clsa; et b tels que .4C[a'b]' il [a.b] o ik

[—f.(‘]. ol c--.l!ar{[a[,lbl} , donc:

.4:[—:.6].
Maintenant, soit ¥ un voisinage de zéro. Il existe un réel a>|

. c L] L] -
qe [-a,a]cV . Sil'on pose — = p il vient clairement:
a

H2p = csalt| = [~e.c]<[~al)a], 4]

Comme
s [-alll, « [ll] C A-a,a]

(e« 20 = Ac[-¢,c]c Al-a,a]c V.
s e 4 Salisfait 4 la contrajne posée. On sait que:
Done V'=[~L1)e » (0)

Or

3)0>0/A<:,o V.

dong, oV = [__ p,p],
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AC [ip.p].
Par suite, A est borné,
Exercice 87
. Soit a un nombre rationnel. Construire deux suites conver-
gentes vers a, I'une ratonnelle et 'autre irrationnelle.
2. Répondre a la m&me question en prenant a irrationnel,
3. En déduire que Q et € @ ne sont pas complets.

Solution
|. Si a est un nombre rationnel, on peut de diverses manicres le
rendre limite de plusieurs (infinité en réalité) suites rationnelles, dont

la plus simple est la constante u,= a. Ainsi, les suites u, = a+—,
n

9] 2
2 n
vV, =a- clw, =a+
I+n 1+n?
convergeant vers a.
De méme, tout rationnel a peut étre limite de suites irrationnelles.

V2

C'est le cas, par exemple, des suites t, = a+———, X, =a+e™,
n

T 1
~ et z, Fayl+t—1i
n- n

2 Si a est un nombre irrationnel, on peut, comme précédemment,
trouver une infinité de suites irrationnelles convergentes le prenant
comme limite. On peut, 2 titre indicatif, citer les suites q,, = a,

vz n*

]
[ =a+—. §. = a+—— ettt =a+ :
R n . n-n+10

sont, a titre d'exemples, rationnelles

y11=a+

_ _ nal +1
Enfin, si a est irrationnel, la suite rationnelle (_[—r]l_ converge

vers a. En effet, on sait que:
na < [na]+! < na+l, ¥V nel.

Dong
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na |+1 ] .

[ ] < a+—, VnelN .
n n

[ e théordme des gendarmes (de I'encadrement)
3. Q et C, Q ne peuvent pas étre complets,

dont les limites sont dans I'autre. Ces

dans le sous-espace considéré.

a <
permet de conclure.
puisque chacun d'eux

contient des suites de Cauchy
suites ne peuvent-étre convergentes
Exercice 38

En utilisant la caractérisation par les suites, montrer que les
ensembles N et Z sont fermEs.

Solution
L sa limite.

Soient (u,) une su
On écrit par définition:

Ve>03dn,eN:nz2ny = u €
s 2 [N alors deux cas possibles s€ pré

ite convergente d'entiers naturels et

]L—e, L+£[ , (*)
Si L n'appartient pa sentent:
i) L<O

L] !
¢ = -1  on constate qué l'intervalle

2N I £
]2’1‘* il WA

En prenant

2

ne contient aucun &lément de notre suite, ce qui conterdit (*).

ii) L>0

Il est clair que [L]+1[ contient L et ¢

lintervalle ouvert J[L],
sitif ¢ tel que

entier naturel. Si l'on choisit un réel po

g0 < Min (L-[L], [L]+1-L)

contenu dans J[L], [L)+1[. me
e de notre

renferme aucun

on voit que l'intervalle ]L—eo, L+eo[,
contient 2 son tour aucun entier naturel, donc aucun term

suite. C'est en contradiction avec (*).
Le cas de Z se traite de méme.

Exercice 39

Déterminer les valeurs d'adhérence des suites réelles guivantes:
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i |
ll\ = ( 1) (l"'""') v Y _I- 1(l+(])")
n n

1] n . - 4 Tc . 4 n
+ S1Nn (11—2 ) y X, =8In (n-—4 ) S1n (n-z )
solution

Les suites (u,) et(vy) admettent deux sous-suites convergentes

: n
W, = sin [0

chacune. En clair, on a

1
Uy, = H—ﬁ- convergeant vers 1,

, convergeant vers -1,

u2n+l - n+l1

1
V,y, = =— + 2, convergeant vers 2,
- n

—

Vs, , convergeant vers 0.

2n+l - ..n+l
On conclut que I'ensemble des valeurs d' adhérence de la suite(u,)

est {-1,1}, celui de la suite (v,) est {0,2}.

. .. n . T
Concernant la suite W, = §in nZ- + sin n—>-, on observe comme

précédemment, que ses seules sous-suites convergentes sont:

V2 V2
Wi =0, Wepyy = —— (14V2), Wgpa = 1, Wgo3 = —— (1-¥2),
2 2
V2 V2
“FSIH-S ="_2'—' (1‘V2),W8n+6='1 etW8n+7=-——2— (1+v2).

Ainsi, 'ensemble de ses valeurs d'ahérence est:

lO,i—l +-‘/—_—(1+V_) + . ‘/_ (1- \/—)l

Enfin, le méme traitement donne pour la derniére suite l'ensemble:

|_f.2_
Gt . |
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Exercice 40

. . . p ,
Montrer que si une suite de rationnels (q—" ,avec p,eZ ¢
n fnel

q,€ N converge vers un irrationnel a alors:
lim g, =+ccetlim p, = oo,
n— oo n— oo

Solution
On procede par I'absurde. Si la suite (q“)neIH était bornée dans I

elle admettrait une sous-suite (stationnaire) convergente (an )keIN

P
q

vers un entier naturel . Comme la suite [ - ) est bornée on
n [nel

Py

déduit que la sous-suite est, elle aussi bornée. Il en résulte

q“k kel
que la sous-suite (pnk )k . de Z est bornée. Celle-ci1 admet alors une
€

sous-suite (stationnaire) convergente (pnk_ )k‘ m vers un entier p. [l en
€

pnk, . p
converge vers le rationnel —.
an k'eN q
Cela est en contradiction avec l'unicité de la limite, puisque cette
sous-suite convergeait déja vers l'irrationnel a.

ressort que la sous-suite

Exercice 41

1. Démontrer que pour qu'une suite réelle soit convergente il faul
et 1l suffit que ses deux sous-suites (u,,) et (u,,,,) convergent vers
une méme limite.

2. En déduire que si les sous-suites (u,,), (u,,,;) et (uz,) oM
convergentes alors la suite (u,) 1'est aussi.
Solution

I. 1l s'agit bien entendu de démontrer que la condition es!
suffisante. Posons L la limite commune des deux sous-suites citées ¢
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montrons que la suite (u,) converge vers L. On a:

L=1lm u, & (VE>OEIn0e[H/n2n” = |u2n—L|S£)
n - oo

L=Ilim u,, & (V€>O dn,eN/nz2n, = |u2n+,—L|S£)
n-— oo

D'ou
JuzL <&,
V ne N, n 2 Max (ny,n,) =
luan-Ll = &,
En posant 2 Max (n,,n,) = n, il vient:
n>n, = n=n,+k ;kelN.
Si k est pair on peut écrire n =2 (Max (n,,n,)+k"), k' étant dans N.
On assure donc que:
un—L| = |u2n.—L| <e,
avec n' = Max (n,,n,;) + k' 2 Max (ny,n;)
Si k est impair, n prend la forme n =2 (Max (no,n1)+k")+1 , k"eN,

ce qui permet d'avoir

'u,,-Ll = |u2,,-.-L| <e
avec n" = Max (ny,n,) +k" 2 Max (ng,n,). Ainsi, la suite (u,)

converge vers L.
2. 11 suffit, eu égard a la premiere question, de démontrer que les

sous-suites (u,,) et (u,,,,) convergent vers la mé&me limite.

Posons
L, =lim u,,, ; Ly=1im u,; ; L, =1lim u,,
n-— oo n— oo n— oo

On remarque que la sous-suite (u4,) est extraite 2 la fois de (u,,) et

(us,). Par conséquent, on obtient:
L, =1lim us, =lim Ug = lim u,, =L,.
n — oo n — o n — oo

C'est le cas aussi pour la sous-suite (Ugy,3), extraite a la fois de
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. 0.0, f\id
) eL(uy,), qui permet davolr:

L, =lm uy,, =lIm U= lim| us;, =Ly .
[\ B R n — oo

taet 1! alité
Ainsi, on trouve L, = Ly =L, . C'est I'égalit¢ voulue.

u

n+

Exercice 42
Soit A une partie bornée de ([RH) On pose:
B'= I?. = [x-yleR, ; x,ye A].
a) Montrer que B est borné.

b) On pose Sup B = §(A).
1) Montrer que

O(A)< Sup A - Inf A.
1)) Montrer que:

Ve>0 Ix,,y.cA: |xs-y£| 2 Sup A - Inf A - 2¢.
1)  En déduire que:

(A) =Sup A - Inf A
Solution

a) Ona:

D'Ol:l V 7€ B Z = |x_.y| ¢ x,yE A

B est donc borng. i leyl =2 S8up A.
b-1) Ona:

D'od YEA XSSup A, y>nfa.

X-y <
De méme, on - YSSUpA-Infa

v
D'ou X,ye A X"}'Ian’yS-SLlp A

X-y =.
b (V=% 'S - (Sup A - Inf A)

o
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- i “11 8l - - ald ’
La conjonction de (*) et (**) entraine |x-y| < sup A -inf A, ce qui
assare

S(A) = Sup |x-y|< Sup A - Inf A.
ye A

n) Rappelons les propniétés caractéristiques des bornes supéricure
oL niéncure:

VE>O Ix.eA/SupA-e<x, <SupA,
Ve>0 dy.eA/InfA<y, <InfA+e.
Il vient:
SupA-InfA-2e<x.-y, <SupA-InfA.
Dod
Sup A -Inf A -2¢ <x,.-y, <|x.-y,|<Sup A-InfA.
m) C'est une conséquence immédiate des questions (i) et (ii).

Exercice 43
Montrer que l'intersection de chacune des suites d'intervalles

sunvantes est vide:

i) Jo.a] o ]0.%]3 i ]0,-2—]3 A% a5l

] a a
u)]u,a+ a]: a.o+—|> ... dla, a+—|> ...,
J 2 n
a

| [ a
m) [a-a,a[ > a'-z—,a[ ) st ud [a'-n—.a{ o7 sied

WoueRetax>0.

Solution

1) Posons:
. : a
A=, a]N ]n, _;.]n . N ]0, -;-]n =“rl ]0 -ﬁ-].

On 2 immédiatement’
a ——
A:}),E‘:. ‘;"]"'0

1) Posons:
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a

B=() |o, o+ —-].
nelN° L " .

Supposons que B ne soit pas vide. Il en découle qu'il existe un point

b de B tel que b-at soit un point de A. C'est absurde, car celui-cj est

vide. Conclusion: B est vide.
i) Raisonner comme en ii).

Exercice 44

Soit A une partie non vide de R telle que A et son complémentaire
C A soient ouverts.

1. Montrer que A n'est pas bornée.

2. On suppose que C z A # ¢ eton considere un point b de C g
On pose:

B = {teA/ t>b}.

Montrer que B n'est pas vide et qu'elle admet une borne inférieure m.

3. a) Montrer que m n'appartient ni 3 A ni 3 C oA

b) En déduire que A = R.

Solution

1. Si A était borné il admettrait une borne supérieure M = sup A.
Deux cas possibles se présentent.

1) Me A
Comme A est ouvert, on peut avoir:
Ir>0/ ]M—r,M+r[ C A,
Autrement dit, M n'est plus la borne supérieure de A. Absurde!

1) Mg A
M est alors dans C g A- Celui-ci étant ouvert, on

demment, affirmer que:
31>0/ MrMuf e C. A, *
Or la propriété caractéristique de la borne Sup€rieure stipule que:
Ve>0 ngeA/M-e<xeSM;

peut, comme précé-

donc, pour € =, le point x ¢ de A serait dans C[RA, Absurde!
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Ainsi, on conclut que A est non borné.
7 Si B était vide A serait majoré par b. comme A est non borné, il

ost donc non minoré. On déduit que A est de la forme J-eo, b[ ; ce qui
donne immédiatement C ;A = [b,+eo[ et conduit A une contradiction

avec C g A ouvert. Ainsi, B n'est pas vide.

Par ailleurs, B est par construction minoré par b. Par conséquent,
il admet une borne inférieure, notée m.
3.a) Supposons par l'absurde que m soit dans A. Celui-ci étant

ouvert, on écrit: .
3r>0/ Jm-r,m+ € A.

Il en résulte que tous les éléments de l'intervalle ]m-r,m[ sont dans

B. Cela est en contradiction avec la définitin de m.
Supposons maintenant que m soit dans C A. on peut, grice 2 la

propriété caractéristique de la borne inférieure, écrire:

Ve>0 Ix,eB/m<x, <m+e.
De plus, C g A €tant ouvert, on €crit:

3r>0/ Jm-r, m+1[ C CpA.

On déduit que pour € = r, il existe un point x, dans B (donc dans A)
lel que

xc€ |m-r, m+[C C A,
Absurde,

Conclusion: m n'est ni dans A ni dans son complémentaire.
b) Il ressort du raisonnement mené ci-dessus que I'hypothése

"CoA=¢" nest pas plausible. On conclut que C A = ¢ et donc A
=R.
Exercice 45

S0it G un sous-groupe additif de (lR,H)-
L. Montrer que:

xG = nxeG, VnelZ.
2. En déduire 1'équivalence des trois assertions:

-
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) G =R. i e _

iz) G admet au moins un point d accugulahon.

int d'accumulation de G.

11) O est un point d accumu . ‘

M)omrer que les trois assertions suivantes sont équlvaleme&
o) G discret.

B) 0est point isolé de G.

WG:aZ:[na,neZ;a>O]-

4. Déterminer alors les sous-groupes fermés de (IR, . |)

S. Préciser si les SOUS-groupes ci-apres sont discrets Ou denge,
dans R:

)G, =2Z.

B)G, =Q.

Y) G, ={a+bu;a,beZ,ueQ ]

0)G, =[2a+3b;a,bez}.
Solution

1. Rappelons que:

G estun SOus-groupe de R+) o |XYe G = (X+y)e G,

XeG = -Xxe G.
Soit n up enter natyre]. Sixet n-1

) X sont deyx €léments de G, alor
DX =(n-1) x +x appartient j G. D'ou:

nXeG = - (nx) = (-
Par suite: )= xeG,
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alors une infinit¢ de points de G. On a:

£ £
Ve>0 3x,yeG, x#y/ x, ye ]“‘7 . a+_2-[_
orx-y € G et |x-y| < &, donc:

Ve>0 3z20/z2eGN ]-s. e[:
ce qui signifie que O est un point d'accumulation de G.
m) = 1)
Soit ]a.B[ un intervalle ouvert de R. Supposons que 0 soit un

point d'accumulation de G. Il existe donc un élément non nul y de G
tel que:

s 3.
En verwu de la question (1), il apparait clairement que tous les points
ny (ne Z) appartiennent 3 G. Comme x vérifie la relation (*), on peut
affirmer qu'il existe un entier n, de Z tel que:

) n,ye ]a,B[.

GnN ]a,ﬁ[ # 0.

Conclusion: G = R.
3a) = B)

G é1ant discret, tous ses points sont isolés. En particulier, 0 est un
pont isolé.

By = Y)
n,‘” B€ pouvant pas étre un point d'accumulation, fait que G
4dmet, en fait, aucun point d'accumulation d'aprés la question

‘;fwflédenlc. Par conséquent, G est fermé. Supposons que G # {a} et
ns:

a=lnf[geG/g>Ol.

d exig . .
“Xiste et est strictement positif, car 0 est isolé¢ dans le fermé G. Il en
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.0 2 la question (1), quc-
dccala( ,Z C G.

si xe G il existe un élément unique n, de Z sat

résulte, gr

D'autre part,

faisant a:
x=nya+r, 0<r<a.

Comme r = X - ny2€ G on en déduit, conformément & la définitiop

a, que r est nul. Donc:
aZ =G.

Y = @)
Sia =0, alors G = {0} est évidemment discret.
Sia> 0, alors pour tout n de Z on a:
In-1) a, (n+1) a[ N G = {n a}.

On en conclut de méme que G est discret.

4. D'apres les qu_estions (2) et (3), il ressort que pour un groy
G quelconque, le point 0 est soit is0lé soit d'accumulation. Si de pl

G est fermé alors soit G = aZ oy G = {0} soit G =R, donc G

R. Les sous-groupes fermé :
aveca> (. pe S de (’R’H) sont donc {0} R et les &

5. On a facilement:
)G, =Z est discret.

B)G, = Q egt Partout dense dang R

G, ={a+bll'abez
. - ,ug Q n'est Z, caf
€st irrationnel. 11 g'ep gy;¢ que ] S

G, est partoyt dense dans R.

Z} = o
premiers entre eyx_ Conséquence. G Z’t‘;af les nombres 2 et 3
M4 €St discret,
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Espaces topologiques: Proprietes generales

—_____.---—_

2.1 Ouverts, fermes

Exercice 46
Un espace topologique est la donnée d'un couple formé d'un

ensemble non vide E et d'une sous-famille de ses parties T satisfaisant

aux trois conditions, connues SOus l'appellation d'axiomes de

Hausdorff:

0,: R et¢ appartiennent aT.

0,: T eststable par réunion (finie ou infinie), c'est-a-dire:

vV (Q)ie1 € T q Q.eT.

0,: T est stable par intersection finie, c'est-a-dire :

A4 (QJ)_}EJ cCT (J flnle) n (QjGT.
je]

(IR'H) en est un exemple fondamental.
Les éléments de T sont dits ensembles O

tout court
1} Dire s los familles 71 = {6.Eda}} €t 7 - {0.B.fo}} somt

des topologies sur E = {a,b} ou non.
ii) Donner toutes les autres topo

2. Montrer que les couples (E’{¢’E})

uverts de (E,7) ou ouverts

logies possibles sur E.

et (E.P (E)) sont des

53
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tSpaces topologiques pour tout ensemble non vide E.
3. Soit E un ensemble infinj et Tune famille constituée de 0 et do

toute partie de E dont Je complémentaire est fini. Montrer que T forme
une topologie sur E.

Solution

1. 1) Oui, elles le son
de Hausdorff

11) Les autres topologies possibles syr E sont;

L. Elles verifient trivialement les trojg axiomeg

=0 est finj, D'oy 0,.

-t-on (J Q;e1? Poyr
€]
i €St fini, dope
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1) testdiie topologie cofinie (oy de Zariski'").

b) En changeantle terme " fini " par le terme dénombrable * on
shuent une autre topologie sur E (non dénombrable) dite topologie
codénombrable.

f\ﬂ(’.we 47

1. Déterminer toutes les topologies possibles sur un ensemble de
rois éléments.

2. Que peut-on dire d'un ensemble sur lequel coincident les
topologies grossiére et discrete?

3. On considére dans Z la famille t = I(b, {n Zlne[ﬂ}' Est-elle

une topologie sur Z?
Solution
1. Soit E = {a,b,c}. On a comme précédemment:
T = [¢E] (grossiere),

©: = {0.Efa}}. 15 = {0.B.{o}}. © = {0.E.{c}}.
to = {0.Efab)}. 76 = {0.Efacl}. = {0.Efoc}}.
=0 fa). fa.b}}. 1 = {0.E fa}.fac}}. 7o = {0.Efa. (o]}
=0k fb}.{a.b)]. 112 = {0 E.(b}.facl}. 0 = [0.E.(o]. {oc}}
te= (0.6 {c). fab)]. 1is = {0.E-fe} fach]. 7 = (0..{c}{ocl}
1 = 0.6 fa} b} fa b)) 7 = [0.E-fal. e fach:
1, = [0, {b).{c}. {b.c}} . T20 = [o.E.{a}. {a.0).fac}).
T = {0.E. (b} {a.b). {bic}} 722 = {¢,E.lc}'la‘bl-lb«‘ll-
munm, mathématicien dorigine russe, est né le 24 avril I Apown

) I aux US A
‘Bﬂ""‘bbic) et mort le 4 juillet 1986 a Brookhine (US-A).. ] sm.sujl:l e
PIes des éwudes en ltalie. Son domaine de recherche est la géomern
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v = {0 ah o} a0) (el 5= [0.5.(a. . 0] fa)
Tys = {¢,E,{a],{c},{a,b},{a,c}], Ty = {¢,E,[a},{c},{a,c},{b,c}}
w = {0E.{b}. (e} {b.chfac)], s = (9E.{6}.{c}. {a,b}. {o.¢}

pdg {¢,E,[a},{b],{c},{a,b},{a,c},{b,c}} = P(E) (discrate)

2. 11 ne peut-étre qu'un :
Sa topologie discrate serait distincte de Ia grossiére.

3. Ce n'est pas une topologie sur Z. Elle n'est Pas stable par
rapport a la réunion. Ep effet, sin, et N, sont deux entiers Naturels
Premiers entre eux, on pe Pas trouver un entier nature] m tel que

DIZ U n22=m2.

singleton. S'il contenait un point de pjy;

Exercice 48

; (R, |1). Montrer
assertions suivantes:

est fermé dang E, V \e E
2 Y] 4 w))

€st ouvert dang E,V \e E
Solution

1 suffit de Passer aux Complémentajreg. On a:

Bl i A S N T

B S O

- On munit F d'une
rEla famille Suivante:

t={AcE/3p, 6, A=r(m)),
f étant une application de g dans F,
Montrer que T est une topologie sur E.
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2. On considere dans R la famille ¢ constituée de ¢. R et de toute

Jrtie dont le complémentaire est un intervalle fermé centré en ;
g - - en z&ro.
(On admet que l'intervalle dégénéré [0] est fermé centré en 0.)

Montrer que G ¢st une topologie sur R.
solution
|. Montrons que T satisfait aux trots axiomes de Hausdorff. On a
trivialement:
o=f"®E=f"(F)
D'od ¢ T et E€ . L'axiome O, est vénfié.

Soit (R;),, 4 une sous-famille de t© Pour tout A de A, 1l existe un

éément B, de 6 de sorte que:
Q,=1"(B,)
D'od:
U =Urfrsey=r{y ak)
Ag A

Ae A AE A

Comme ;EJ_\ B, apparuent A 6, 1l s'en suit que H 2, appartient 2 T
L'axiome O, est vénfic.

Enfin, si Q, et 2, sont deux éléments de T, il existe deux éléments
B, etB, de © tels que:

Q, =f'(B,) et Q, =0"(By).
On déduit que:
Q,NQ, = ' (B,) N By =1 (B,NBy).

Or, B,NB, est dans 8, donc £, €, appartient at. Clest ce qui
chéve 'axiome O, . On conclut que T est une topologie sur E.

2. On a A s'assurer de la stabilité de G par rapport 2 la réunion et
. une sous-famille de ©. (On

L

I ; . -
Nlersection finie. Soit (Q.).. LC R

. i, : 1
s?pm qu'elle ne renferme ni ¢ N R: 'le_ premier f”‘m Rewte pox .
‘“Union, le second méne A un résultat grivial). On a:
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W Qe (]-m,a[u]a,+oo[) = Jeo- inf L{U]- inf Lotoof e

ael, ael,

inf L pouvant étre nul. )
Enfin, si Q, et Q, sont deux éléments de o, on a de méme:
009, = (oo aUlasee]) 1 (o, -b[UJb, 424
= Jree-Min (a,b)[U]Min (a,b),+e[e o.
Exercice 50 .
L. Vérifier que toute partie d'un espace discret est fermée.
2. SiE={ab,c}ett= [¢,E,{a},{a,b]] montrer que les partjes

{c} et {b,c} sont fermées.

3. Montrer que toute partie finie (res
cofini (resp. codénombrable) est fermée et réciproquement.

4. Vérifier que E et ¢ sont deux parties a 1a fo
fermées pour toute topologie définie sur E.

5. Un espace topologique quelconque E Peut-il admettre, en gys

S €n méme temps ouvertes et fermées? des
Ni ouvertes pj fermées?

P. dénombrable) d'un espace

1S ouvertes et

parties lesquelles ne sont
Solution

1. On sait qu'un sous

-énsemble F d'yp ¢
SOn complémentaire C

eF est ouvert.

Ainsi, toute partie d'yp €Space discret egt ferm

P (E) est stable Par passage ay complémentaire, g
que dans J'espace disc :

ret (E,P(E)), toyt
ouverte.

Space (E,1) est fermé si

€e, puisque 1 =

en découle en fait
C partie est 3 |a fois fermée et

des éléments de 1.
3.0na clairemen;:
F fermée CiF ouvert

L CE(CEF) =
4. C'est biep le cas, car l'une egt le
ouverte,

et {a} sont

F finie (regp, dénombrable).

Complémentaire de 1'autre
5. Oui. Clest e €as de I'espace discret.
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Un espace peut contenir des parties ni
[ 1€S N1 ouvertes ni f
$ n1 fermées, comme

g et Cy@ dans (R, ).

gxercice 51
Montrer que dans un espace topologique E:
p,:Eect ¢ sont fermés.
P,:toute intersection (finie ou infinie) de parties fermées est

fermée.
P, toute réunion finie de parties fermées est fermée

solution
Ces propriétés, au demeurant simples mais fondamentales

sobtiennent des axiomes de Hausdorff O, O, et O; par passage aux

complémentaires.
P, étant rencontrée en haut, voyons en détails P, et P;.

Considérons une famille (F;);c; de fermés de E. On écrit alors:

ce[N Fi)= U C:F;.
iel iel
C:F, étant ouvert pour tout ie I, il en découle, en vertu de |'axiome
0, que UI C.F, est ouvert. Par conséquent, _ﬂl F, est fermé.
1 1€
Acquitton:—nous, enfin, de P. Si (F))¢iq ESLUNC famille finie de
fermés de E alors, pour tout i = 1%2,..., 1, CgF; est ouvett.

D'aprés I'axiome O, l'ensemble:

Cg UJF; )‘_‘,ml CgFi
i=1 €

est ouvert. D'ont |J F; est fermé.

ji=1

Em z
rcwe . . . .
- topologique, une réunion infinie de

Montrer que dans un espace. é
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Solution

En voici un contre-exemple. On considére dans (IR,HJ la syj,
d'intervalles fermés:

L G
1 R

lequel n'est pas fermé.

On a;

Exercice 53

Soient E un ensemble quelconque et 6 une sous-famille de P(E,
satisfaisant aux trois conditions suivantes:

O,': Eecetdeo.
O,": o est stable par réunion finie,
O;': oest stable par intersection (finie ou infinie).
Montrer qu'il existe sur E une et une seule topologie Tt pour

laquelle la famille des fermés coincide avec o.

Solution
Proposons:

={Ae 2E): C;ac o}.
Montrons tout d'abord que T constitue une topologie sur E.
E et ¢ sont bien entendu des éléments de 1, puisqu'ils apparti

ennent a © et que l'un est le complémentaire de l'autre.
On consideére, en vue de vérifier I'axiome O,, une sous-famille

(©;),; de T. A-t-on J Q;e1? La définition de 1 permet de voir qué:

1el

pour tout i de I, C; 2, € 6. En remarquant que:

CE(U Qi) = M(C)

i€l i€l
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on obtient, 2 la lumitre de O;', () CyQ.ec.Dou U Q. et

el i€l

Le méme raisonnement permet facilement de montrer que T satisfait
aussi & O5. C'est donc une topologie.

Montrons, A présent, que ¢ coincide avec la famille des fermés de
l'espace (E,t). Désignons cette famille par 6.
Si F est un élément de o alors CF appartient, par construction, a

7. Tl en résulte que C(CzF) =Fe 6. D'od ¢ C 6.
Inversement, si F est un élément de 6 alors CF apprtienta T. par
conséquent, C;(CzF) =F appartient a ©. L'inclusion 6 € o en

découle. Ainsi, on conclut que 8 = ©.
Terminons cette preuve par l'unicité de T. Supposons qu'il en

existe une autre T sur E vérifiant les conditions sus-citées. Suite a ce
qui précede, il s'avere que les familles de fermés de chacun des deux

espaces (E,1) et (E,T) coincident avec ©, donc coincident elles-

mémes.

2.2 Voisinages

Exercice 54
1. Notons V' (x) la famille de tous les voisinages d'un point x de

(E). Vérifier que si E est un espace grossier alors V' (x) = {E}.
2. Si (E,7) est un espace discret et x un de ses points, montrer que
toute partie de E contenant x en est un voisinage.

3. Soient E = {ab,c,d} et T= (.E.{a}. (). {a.d}}. Déterminer
V(a), V' (b) et V'(d).

SOLutiDn i
Rappelons tout d'abord cette définition:

V, voisinage dex & 3 Q.et/xeQy € Vi
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i ide de 7.

et 1o cas. car E est l'unique ouvert nop vi

l- (ifilullzltiznT :} étant ouvert, toute partie le contenant en gy "
voi?qfnagcl de x. En somme, On a

Vo=[VCE/xeVl

3. On remarque que {a} (resp.{d}) est le plus petit ouvert cop
nanl'a (resp.d). Il s'en suit que VY (a) (resp. ‘V'((?)) .sera constituée
tous les sous-ensembles contenant a (resp. d). D'ou:
V(@ = {{a}, {a.b}, {ac}. {a.d}, {a,b.c}, {a,b.d}, {a.c.d}, E},
V(@ = {{d}. {a.d}, {b.d}, {c.d}, {a,c.d}, {a,b.d}, {b,c.d}, E},
V) = {E}.
Exercice 55

Soient E ={1,2,3} et = {¢,E,{1},{2},{1,2},{1,3}}_

1. Vérfier que (E,t) est un espace topologique.

2. Les deux ensembles A ={3} et B = {1,3} sont-ils fermés
ouverts? ouverts et fermés? ni ouverts ni fermés?

3. Déterminer V(1) et V'(3).
Solution

1. T contient

¢ et E et elle stable par rapport A la réunion ¢
I'intersection finj

e. Donc, c'est une topologie.

2. A et B sont fermés car leurs complémentaires reSpéctifS{l’Z}
et B = {2} sont ouverts. A p'

V) ={vcE/ie vi={{), (1.2}, {1.3}, E},

V@) ={VcE/3e Vi= ({13}, B},
Exercice 56

Montrer que:
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2. toul voisinage de A est voisinage de chacun des points de A.
3. Ja réciproque de (2) est vraie,

solution
1. On sait quc:
V, voisinage dc A & 3 Qret/AC Q, CV,.
Ainsi, si Vi estun voisinage de B on écrit:
- IIBET/B - QB s VB'
comme A C B, donc:
o QBET/AC QB ot VB‘
Vp estalors un voisinage de A.

2. Evident!
3. Autrement dit, si W est voisinage de chacun des points de A, il

est voisinage de A.
Soit W un voisinage de tout point de A. On écrit alors:

VxeA JQe1/xeQ, T W.

D'ou:
AC U Q CW.
XEA
Comme |J €, est ouvertil vient que W est un voisinage de A.

XEA

Exercice 57
Montrer que pour qu'un sous-ensemble A non vide d'un espace

topologique (E,) soit ouvert, il faut et il suffit qu'il soit voisinage de
chacun de ses points.

Solution
II'est clair que la condition est nécessaire, car si A est ouvert, il
est, en vertu de la définition rapportée ci-dessus, voisinage de chacun

de ses points en prenant Qs =A Jui-méme.

Pour ce qui est de 1a condition suffisante, il suffit de poser W = A
dans 1a preuve de l'exercice précédent.
Exercice 58

Soient a un point d'un espace (E,T) et 9/ (a) 1a famille de tous ses



' énérales
: 1ues: Propri¢tes g
Espaces 0 logiques
54 ispa po

151 ue:
voisinages. Montrer 4 .
P - a appartient & tout ensemble V de V(a)

'I .

p.:si Ve Vi(a)el W une
; e V'(a) est absorbante.)
tion finie.
xiste un élément W de V'(a)

partic de E contenant V, alors We V(g

(On ditque la famill
P.: V(a) est stable par intersec

P, : pour tout élément Vde V(a),ile

de sorte que :
VG CV(Y)a V ye W

Solution h:
1. C'est par défintion méme du voisinage ¥

2. W renferme l'ouvert que renferme V par hypothese. Dong, il
est lui-méme voisinage de a.

3. C'est dfi 2 la stabilité de T par rapport 2 l'intersection finie.

4. Soit V un voisinage de a. Il existe un ouvert £ vérifiant ae {2 C
V. On en déduit que V est un voisinage de €. Il s'en suit que V est

un voisinage de chaque point y de Q. Il suffit pour conclure de
prendre W = Q).

Exercice 59
Spit E un ensemble non vide. Pour tout a de E, on considere la
famille R.(a) de parties de E satisfaisant aux quatre propriétés P, , P
P, etP, de I'exercice précédent. by
Démontrer qu'il existe alors une et un
laquelle R (a) coincide avec |3 famille d

Solution
Posons:

€ seule topologie sur E pouw
€ voisinages 9/ (a) de a.

1= [Qe E/V xeQ, Q¢ .‘R(x)}
€L montrons que 1 est 1 topologie cherchge

a) T est une topologie sur E.



e

65

Voisinages

jéléments de tet x un point de J €, . Il existe un indice Ao de A
Ae A

. Par conséquent, £, € 9’(x) par définition de T.

comme 23 & L Q, il en résulte, grice a P,, que U Qe R(X).
Ae A

Ae A

tel que X€ on

ponc U 2, €7, ce qui acheve O, .

reA
Considérons enfin deux éléments €2, et Q, de 7 et un point X de

Q,NQ,. Qet Q, sont alors des €léments de R (x). D'apres P;, on

voit que

Q,N Qe R(x).

Par suite, ;N 2, €T.

Conclusion: (E,t) est un espace topologique.
b) R(x) = V'(x) dans (E.7).

Montrons d'abord que V' (x) € R(X).
dans (E,1). Il existe alors un ouvert Qe 7 tel que Xe Q C V. Q étant

e fait 3 R(x). I en découle, d'apres P,, que

Soit V un voisinage de X

dans 7, il appartient de C

Ve R.(x). D'ot l'inclusion posée.
Inversement, montrons que

R(x) € V(x).
S0it V un élément de R (x). 11 s'agit de trouver un élément U de T tel
quexe UC V. La partie U = {ye E: Ve R(y)} convient. En effet:

xe U : car Ve R.(x) par hypotheses.
UCV: carye U signifie Ve R(x) et donc ye V d

Uet« age. s
€7 détaillons ce point. .
ut y de U. Par suite, et

D!
g iipres la définition de U, Ve R(y) oW to
o P,, il existe, pour tout y de U, un élément W de R(y) de
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e Ve R.(z) quel que soil Z€ Ww. Or de l'appartenance (e v,
i - W C U. Dapres P,, Ue R,
R.(z) découle celle de z a U, donc . '

1 que soit ye U. Donc Ue 1 d'aprés la définition de t. Ainsi, on,

que $ - Dol
bien la seconde inclusion.

2.3 Espaces separes

Exercice 60

On dit qu'un espace (E,T) est séparé (ou que la topologie 1 ¢
séparée), s'il satisfait a la condition (de Hausdorff) suivante:
Pour toutx ety de E (x #y), il existe un voisinage V de x et un auty
W de y tels que VAW = ¢.

Montrer que:

1. tout espace grossier de plus d'un élém
2. si E est discret alors il est séparé.

3. (IR,|.|) est séparé.

4. les topologies cofinie et codénombrable ne so

5. 1a topolo
f injective.
Solution

1. Cet espace ne compte qu'un seul voisi
( voisinage pour l'ensemble ¢
S¢S points. I ne peut conséquement Etre séparé.g i

2. Les singletons {x} et {y)
y. E est séparé.

ent n'est pas séparé.

nt pas séparées.

gie T définie dans l'exercice 49 egt séparée si 1'on donn

Sont deux voisinages disjoints de x ¢

3. Clest le cas [R,].I), car les interya]jeg

oyl xey ;
}X'T’ ”“‘E"‘[ - ]y_____|x2y| ye 2 [
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§.HOIOMY nJ deux éléments (g
élt‘n’ll‘ms 1.(“ et 1(y) sont alorg (Iisti;;'flcl.q de K
quite, 11 existe deux voisinages nllvv.l‘l,:(l"; ('lél‘lm I'espace séparé F. p;
rcsp{.ﬂivcn\cnl. Par conséquent, | V) :ll‘;lmﬁ Vet W de f(x) e ”;‘;

-1 étant injective, les

I
v w0 . (
Je Teontenantrespectuvement x et y. De p) W) sont deux ouverts
- 1€ plus;

1 v
VN W) =11 vNw) = 11(4)
ponc, (E,T) est séparé. ) = 0.
txercice 61
|. Démontrer que pour qu'
. " § quun espace E soit sép: ¢
sufﬁ.l. que l'intersection de tous les Vori)sinagc;ff)ll séParc, il faut et il
2 coincide avec {a}. ermés de chaque point
2. Montrer que ce n'est vae i "
bl pas le cas si 'on prend les voisinages non

Solution
1. Soit a un point d'un espace séparé E. On veut établir 1'égalité:

{a} = N v,

Ve VYV(a),V , fermé

3:pp(l)son§ que cette intersection contienne un autre point b distinct
a. Il existe par hypothese deux voisinages ouverts UdeaetWde

b de sorte que UNW = ¢. Il en résulte que CpzW est un voisinage

fBﬂIUé de a (il contient U) ne contenant pas b. Absurde!
nversement, considérons deux éléments distincts a et b de E.

L'égalité ci-dessus entraine I'existence d'un voisinage fermé V de a
Il s'en suit qu'il existe un ouvert Q) satisfaisant 2

aeQCﬁCV.

S" en déduit que b¢ Q. On conclut que QetC
uverts disjoints, 1'un contient a ['autre contient b. Ee

suivant.
ologie cofi
e E on a:

n¢ renfermant pas b.

E?l— sont deux
st alors séparé.

g' Examinons le contre-exemple
Pas s%l LE un espace muni de 1a tOP
paré. Cependant, pour tout & d

nie. On sait qu'il n'est
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(a}= N Va
V, 6 V()

En effet, le contrair

V, ¢tant un voisinage quelconque de a.
tinct de a, appartenant j

suppose l'existence d'un élément b de E, dis
M V,. Ceciestimpossible car E\(b} est un voisinage de anc

V. & Y(a)

contenant pas b.

Exercice 62

Montrer que
1. toute partie finie d'un espace séparé est fermée.

2. tout espace séparé et fini est discret.

Solution
1. Soit A = {a, 2z, - a,} une partie finie de p éléments d'un

espace séparé E. Montrons que CA estouvert.

E étant séparé, il existe pour tout x de CpAettouta; (1si=<p) de
A deux voisinages ouverts (il est plausible de les prendre comme tels)
\/ai de a, et W, de x tels que

vV, N W =6.
D'ol:
P p .
(LIJ vai) n (O W;) = 0.

P P
Comme L;J V,, renferme A et O W' est un voisinage ouvert de ¥

contenu dans CyA, on déduit que CgA est, lui méme, voisinage &
x. Dong, il est ouvert. Par suite, A est fermée.

2 'C‘est le cas. Tout singleton de E est fermé conformément Al
premiere queston. Il devient ouvert, puisqu'il est un complémentaif"
d'une partie finie, donc fermée. Ainsi, tout singleton de E est, al

fois, ouvert et fermé. La topologie de E est alors la discrete P (E)-

e N
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2.4 Points interieurs, Interieur d'un
ensemble

fxercice 63

Soit A un sous-ensemble d'un espace topologique (E,t). On note

a l'ensemble des points intérieurs de A-
0

xe A e A V(x).

1. Montrer que
1) si A est une partie d'un espace grossier (E,t) alors:
o
A=0si A#E,
o
A =E si A=E.

11) s1 A est une partie d'un espace discret alors R = A.
o o
N /\‘
2. Onmunit Z de la topologie cofinie. Déterminer {-1,0}, Z
o
a N
3. Soit E = {a,b,c.d) et 7 = |E.0.{a}. {b}.{a.b}} . Déterminer

o o 0

Solution

1.1) Ceci sexplique par le fait que dans la topqlogie grossiére T,
'out point ne peut jouir que d'un seul voisinage: E lu_x-.meme.
ii) A est ouverte et par conséquent, elle est voisinage de chacun
;CS points. Donc, chacun de ses points est intérieur.
-Ona:

(o]
=

i
¢e[Z=Z.

o —

[1.0] -

o 0
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Les deux premiers sous-ensembles ne sont voisinages d'aucup de
leurs points, le troisiéme l'est. D'ou le résultat.

3. On a pour les mémes raisons:

0 0
AN AN

.
{c} = {d} =0 et {ac.d} ={a}.
Exercice 64
Montrer que:

0
1. A est le plus grand ouvert contenu dans A, pour tout soys.
ensemble A d'un espace topologique E.

2. pour qu'un ensemble A de (E,t) soit ouvert, il faut et il suffj
qu'il coincide avec son intérieur.

Solution

0
1. On va montrer que A coincide avec la réunion de toutes les
parties ouvertes contenues dans A.

0
Si xe A alors Ae V'(x). Par suite, Il existe un ouvert Q_ satis
faisant a

xeQ, C A,
D'ol :

AcU Q. cUQ

XeA
XeA

Inversement, si xe | Q,, Q, étant une partie ouverte contenué
XeA

dans A, alors xe Q; C A. Donc, Ae V'(x); par suite xe fﬁ . D'ou

U Q. caA.
XeA
Conclusion:
A=U Q,.
XeA
Autre méthode
On pose par définition:



Poante IO Tanfrieur i cneemiie .

i—'!c*\-".ﬂct u:uc_;\l : U ‘

e o

]
v TuifrmManon
i

o (“pst wn¢ conséquence immédiate de (1)
()
qowemi A 01 B deux parties dun espace B Montrer (jue

 ACBatAouverie =5 ACRB
o o

1 ACB = ACB.

L J

‘;:A

®
——— L

ANB= ANB

-

¢ g A

" AUB C AUB.
¥ Doaner un exemple od 'inclusion est stricte.

LF

"%VY8B o BCA.
Shtign

- Comme A est ouverte, elle est voisinage de chacun de ses
;\

RCACB = ACBH

LY %
A C A par définition. Dastre part
® v

“A = AeVa) = xeA

A
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Donc:

AC A,
4. Ona: 0
,’0"\ 0 — o
ANBCA = ANB C Ae ANBCB = ANB C B
D'ou:

0

ANB C ANB .
D'autre part, on voit que:

ANBCACAet ANBC BC B.

Par suitte AN B C AN B et donc:

(o]
o (o] e ——

ANB C ANB.
5. 1) On a clairement:

0

ACAl 5 AUBcAUB o AUBC AUSB.
BCB
i) Si (E,7) = (IRII)A [22[etB ]-4.-2] alors il vient:

A = 2.2, B= ]-4.-2[, AU B = [4.-2[ U 2,7,

-—-""\
AUB=]42, AUB =4y B =1-4,2[.

0 4]
Il ressort que AU Bests . ——
6. Ona trictement inclus dans A U B
Ae V'(B) "
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1.5 Points adherents, adhérence d'un
ensemble

fxercice 66 WAt
Soit A une partic non vide d'un espace E. On dit qu'un point a de

£ ost adhérent A A, si tout voisinage de a rencontre A .
onnote A l'ensemble des points adhérents 8 A et on écrit:

ac A & VVeV(@) VNA=#¢.

] . Montrer que:
) si A # 0 est une partie d'un espace grossier E alors A = E.

ii) si A est une partie d'un espace discret E alors A =A.
2. Soit E un espace muni de sa topologie cofinie. Montrer que:

i) Afinie = A =A.

ii) A infinie = A =E.
3 Soient E = {a,b,c.d) et 7= {0.E.{b.c}{b.c.d}}. Determiner

&, BT . 1 o
Solution
.i) Tout x de E jouit de E comme unique voisinag

fenferme A, donc A =E.

ii) En effet pour tout x de A, {x}€ Vx)et
*€A. Par suite, A C A, ce qui achve 1'égalité.

2: ) Soit A une telle partie. Montrons que A CA
i serait dans son

est un point de A n'appartenant pas aAils ;
cor-“pléme"laire C:A, ouvert. l%%nc CpA estun voisinage de x qui

I .
fe“ncomrer A. Absurde. d'ot l'inclusion.

Vﬂisinn) Si X est un point de B n'appartenant pas a

a . o 8

ang 8¢ ouvert V te] que VNA =0. Donc, A infinie Ser

eV fini. Absurde!
3'0na; rde!

e. Or celui-ct

{x}n A#¢. D'od

A il jouirait d'un
ait contenue




[) . q le.

|

e —

) {af ={a). o) = {c
ii)) _}aTz{a,d}, {a,d} {a,d}.

ikl > ique E.
Exercice ue A est fermée dans tout espace topologiqu ;»
Montrer q

=E.
d

Solution 4

ALEIR ffet, on a:
[l suffit qu'on montre que C; A = C; A. Acete
xeCpkA & IVeVx)/VNA=¢
& IVeVx)/VC CiA.

0

N 3 .

On conclut que CgAe V'(x) et donc xe CgA. D'ou:
.
CpA C C,A.

N
Inversement, si xe Cg A alors C

A est un voisinage de x ne ren-
contrant pas A. Cela exclut x de A

- Autrement dit, xe CeA.Dob:
- -
CeA CC,A.

Exercice 68

Montrer que, dans yn eg

1. A estle Plus petit ferm¢ Contenant A

2. Afermé A=A

Pace (E,1),
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posons ﬂ F, = F. Fest appelé fermeture de A

AeA
Montrons que F & —zf\ Considérons un point x de F et supposons
quil ne soit pas de A Il existe alors un voisinage ouvert V de x tel
que vNA=0¢. Il en découle que A C CpV. Ainsi, C;V est un
fermé contenant A et ne contenant pas x. Ceci est en contradiction
avec le fait que xe F. Donc F C A .

Inversement, montrons que A C F. On procede par l'absurde.
Supposons qu'il existe un pbint x de A n'appartenant pas  F. Il en
résulte que X appartient a I'ouvert CzF. Or, on sait que A et CiF

sont disjoints, donc xg¢ A, ce qui est absurde.

Autre méthede
On a par définition:

A= CE{xe E/3 Qet: ANQ = ¢}
=Cg U Q| = N CgQ
Qet, QNA=¢ Qet, QNA=¢
En posant Cp§2 =F, on écrit encore:
A= N F,
ACF
F balayant toute la famille des fermés de E, contenant A. Ainsi, A en

es‘ée P}us petit d'entre eux.
- Cest une conséquence immédiate de (1).

Exercice g9
Soient A et B deux parties d'un espace (E,T). Montrer que:

LACB » ACE.
e ——

“AUB=ZAUE,
: T——

) ANBcANTE. |
) linclugion de (i) est généralement stricte.

4 P o
e R
}:A“CEA.
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5. A =A.

Solution
1.0n a:

xe A & VNAz0, V Ve V(x).

Comme A C B 1l vient:
VNB # ¢, V Ve <V(x).

Donc, xe B .

2. On a d'une part:

AC A s ALER 2o mnie
BC§] = AUBCAUB = AUBC AUTE.
D'autrepart,
AC AUB A C AUB i
- 5 T = AUB C AUB.
D'od 1'égalité.
31 Onacomme Précédemment:
AC A
= T — ——
BC B AnBCA”B=>AnBcKnB

a:11') Soient (E;1) = (IR||) Al

[2.4[ v {8} etB = [4,5].

“" ’ - ,S,A
. 4,5] HB-.q)-.q)etAllB (4
Dans le méme ordre d' dée on a
Q n C Q i "-- —
| | N et Qll ¢
. CRQ ¢ *
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xée CkA & VVeV(x) VNC A%
& PveV/vVe A

& XeA & xeCiA
5. On a par définition:
BETE
Par ailleurs, on écrit:
xe A & VVeVx VN A=#o
V étant considéré, sans risque de restriction de généralité, ouvert. Le
sous-ensemble non vide VN A renferme au moins un élément y
pour lequel V est un voisinage. Donc, VN A#¢. D'odl, X A et par
suite,
A C A
Exercice 70
On sait que dans un espace topologique (E,7), 'adhérence vérifie
(les axiomes de Kuratowski"):

A) (A)=A;

(Az) AUB = KUE,
(A;) AC K;

(Ay) ;=¢

Montrer que inversement si on se donne une application P (E) -
9’(E) vérifiant (A ) (A,) (A;) (A,), cela définit une topologie sur E.
(Indication; on pourra considérer comme ouverts les parties de E
Yerifiant C,0) = C,Q et montrer que (A ) (A;) (A3) (A,) entrainent

T -
6. Casimir (Kazimierz) Kuratowski est né le 2 février 1896 & Warsaw (Pologne)
aine de travail était 1a topologie

“lmort le 18 juin 1980 2 Warsaw. Son dom
€L 1a théorie des ensembles. 11 avait aussi une importante contribution dans la

héorie des espaces métriques.

L
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(0,)(0,) (O4) de Hausdorft.)

Solution
Posons comme indiqué:
1) On a grice A (Ay) et (Ay):

D'od (0,).

i) Soit (L2,),., une sous-famille de 6. On a d'apres (A,):

Ce(U Qi) c CE(U Q).
1€ i€l

Par ailleurs, signalons que selon (A,),on a:

ACB = KCE.

Par suite:
NCeQ, € CQ, Viel.
D'od: “
CEIEJIQi =QCEQi = Q “C‘F_?f=g CEQE=CE(E_IJQi.

Donc J Q.e6. D'od 0,).

€]
i) Soient Q, et Q, deux éléments de . On a d'apres (A,):
CE(an Qz) = CEQIU CEgz = CEQI U CEQ2

=CeU CQ, =Cc@,n Q,).

D'ou (0,).

Exercice 71

| i ts
Montrer que si A et B sont deyx sous-ensembles ouverts disjoi®
(o] 0

d'un espace (E.6) alors il en est de méme pour A et B.
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So[utiﬂn
Soient A et B deux ouverts disjoints de (E,0). On a:

e ——

ANB=0 = ACCiB = A CC,B=C.B

= A c CgB =C,B
= ANTB
Exercice 72

Soit A une partie non vide d'un espace (E,t). Un point x de E

est dit point d'accumulation de A, s'il est adhérent 2 A\{x}.
Autrement dit, x est d'accumulation pour A, si tout voisinage de x

rencontre A au moins en un point distinct de x.
On note A' l'ensemble des points d'accumulation de A et on

I'appelle ensemble dérivé de A. On écrit :
xeA' & VVeV(x) (V\{x}) N A#0.

L Soit E={1,2,3,4,5}, 1= {6,E,{1,2}.{3.4,5}} et A={1,2.3}.
Déterminer A'.
2.1) Si R est muni de sa topologie codénombrable que dire des

ensembles dérivés N', Q' et (Cp Q)'?
ii) En déduire qu'il n'y a pas d'ordre entre un ensemble et son

dérivé,

3. Décrire 'ensemble dérivé de toute partie d'un espace discret.
Solution

I. Chacun des voisinages des points X =1, X; =2, X3 =4 et
X4=35 rencontre A en des points autres que ceux-ci. Ils sont dgs
Points d'accumulation de A. Le point x5 =3 ne l'est pas, car il
POssede le voisinage {3.,4, 5} qui ne coupe A qu'en 3. D'ol:

Al = {1,2,4,5}

2.1) OnalN'=Q' =¢et(C,Q'=R.

En effet, tout x irrationnel ne peut adhérer ni

I
<
U
>| o
-
ool o
I
°

AN ni 2 Q, puisque
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0 :

isinages ncontrant pas. S;
C @ ecst un de ses voisinages ne les re pas. Si x &
R

1sinage de X ne ¢
rationnel, I'ensecmble CRQ U [X} est un voisinag OUpamQ
qu'en x. (On peut prendre Co N U {x} si x était dans N).
Concernant I' ensemble dérivé de C, Q, on constate que

\YA (CRQ\{x}) #0, VxeR, V Ve V'(x).
le contraire conduirait & une contradiction avec V non dénombrable
i) OnabienN' €N et C,Q C (C,Q)".
3. Il est vide, car les singletons dans un espace discret sont des
voisinages de leurs points.

Exercice 73

Soit A un sous-ensemble d'un espace s€paré E. Démontrer qu'un

point x de E est un point d'accumulation de A si, et seulement si, toul
voisinage de x rencontre A en une infinité de points.

Solution

'i)- Si xg [y,, Vs £ yp}, alors VN C
voisinage de x ne rencontrant Pas A.

) Si xe {y,, y,, .., Yo}, alors v CE({yI, i, 023 yp]\{x}]

€St un voisinage de x ne repc
. ' ontrant A qu'en x 1ui ma nclu!
ainsi que x n'est pas d'a ccumulation, A lgsurdel lui méme. On co

Exercice 74
1. Soit A un SOus-ensemble ('
) Alestforme, 3 UN €SPace sépars E, Montrer que:

i) A=AU A"

E[YI’yZ,..., yp} est uf
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iii) (A) & A
2. Exhiber un contre-exemple ol l'inclusion de (iii) est stricte.

solution

1.1) Soit x un point de C A", 11 existe d'apres l'exercice précé-

dent, un voisinage ouvert V, de X ne rencontrant A qu'en un nombre

iini de points. Il en résulte que tous les points y de V. ne peuvent
étre des points d’accumulation pour A. Autrement dit:

V,C CgA".
On conclut donc que C¢ A’ est un voisinage de tous ses points, c'est-

i-dire un ouvert; par suite, A' est fermé.
ii) On a:

AUA C A,
Par ailleurs, si x est un point adhérent A A, chacun de ses voisi-
nages rencontre A ou bien en x ou bien en des points autres que x.

Cest-3-dire x est dans A ou dans A', donc dans A U A'. Ainsi:

ACAUA" |
1) Soit x un point de (A")'. Pour tout voisinage ouvert V de x,

intersection A'NV est infinie. Soit y un point de cette intersection.

Vétant yn voisinage de y, l'intersection ANV est, a son tour, infinie.
Donc, x est dans A'.

. 1 1
2. Soit, dans (IR,|.|), le sous-ensemble A=11, = o = o
Ona

l

A'= {0} et (A) =0
Exerci,ce 75

' ; rmé si, et
E"‘ﬂlleomrer qu'un sous-ensemble A d'un espace E est fe

: Ment g, ] contient tous ses points d'accumulation.
O[u'ion

Dn ™ effet, si A est fermé alors A = A 11 résulte de l'exercice
écédent que
Lﬁme A'C A.

"€ exercice stipule que si A' € A alors
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A= A. Donc, A est fermé.

xercice 76 o] e e
P On dit qu'un point x d'un sous-ensemble A d'un espace E ¢

isolé. s'il existe un voisinage V de x ne rencontrant A qu'en P

clairement:

x estisolé dans A & EVe‘V'(x)/VﬂA:{x},

] ‘ SO“ E - {a,h,C,d,C}, T= [¢’E’{a}’{h}’ {a’b}} ct A . i {b,C,d}
Véntier que A n'admet qu'un seul point 1s0lé: x = b.

2. On considere dans (lR,l.l), les sous-ensembles suivants:
A={1,01}, B=[04]U {6}, C=[04],D=N,E=2Z,F=q
G=C,Q.

Ont-ils des points isolés?
3. Montrer que toute partie infinie A d'un espace cofini E n'adme

aucun point isolé et tous les points d'une partie finie B sont isolés.

4..Montrer que tous les points d'une partie d'un espace discre
sont isolés.

i) B~ [) 40 » lout point d'yne partie finie de R est isolé.
R {6} ne Possede qu'un sey] point isolé: x, = 6.
?u) C= [0,4] n'a pas de point isp]¢ -

1v) Tous les points de D = NetE .
WF=QelG=c

3.8i Aen ad |
mellal v ot -

- 'rcl(ﬁl;’i)celmfu POssederait yp voisinage ouve!

Conuendry; . , !

De méme, 1oy point a de g est iqoil:gl :\ Sauf ce point. Absurde:

nag40 (g: * € encontrant B e, a i CE(B\{a” est un vois'
- Cela est dg, comme o '

; fate ’ ) c C CSl d 17 1 v

€St voisinage dy Point qu'j] renfef:::lgn‘“é’ au fait que tout singlelﬂﬁ
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Ex@fcwe 77

Montrer qu'un ensemble A de E est fermé si, et seulement si, il
coincide avec la réunion de ses points d'accumulation et isolés.

solution
C'est une autre lecture du résultat porté par l'exercice 75.

gxercice 78

Un sous-ensemble A d'un espace E est dit parfait s'il coincide
avec son ensemble dérivé A'.

1. Vérifier que:
i). tout ensemble parfait est fermé,

ii) en déduire que I'ensemble des points isolés d'un ensemble
parfait A est vide,

iii)tout intervalle fermé dans (IR b ]) est parfait,

iv)Q n'est pas parfait dans (IR,||) ,
v) la réunion de deux ensembles parfaits de E est parfaite.

2. Soit (I,,)une suite d'intervalles ouverts de (IR, |.|) tels que:

I_nI, =¢ V(mnel
m+#n

Démontrer que C ( U I, ) est une partie parfaite.

ne N

SOEuI:i,on | |
] l.i) A coincide avec A', ce qui le rend fermé d'aprés I'exercice
5.

i) Cet ensemble est celui qui complete A'a A. Tl est vide car A

—
—

iii) Un intervalle de ce type coincide avec son ensemble dérivé.

V)Q ne peut pas étre parfait (méme s'il n'a pas de points

Solés), car @' = R.

V) C'est le cas. En effet si A et B sont

deux parties parfaites de
E, on 5;

A'UB'=AUB.

Par ailleurs, sj x est de AUB, on écrit, pour tout voisinage V de x:
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(W{x}) N AUB) % ¢ & ((Wx}) N AJU ((W{x}) N B) =0
& ((V\{x}) N A) #¢ ou ((V\{x}) N B) %
& (xe A' ou xeB') & xe A'UB'
D'ou
(AUB)' = A' U B'= AU B.
2. L'ensemble |J I, est un ouvert propre de R. II est éviden.

ne N

ment non vide et ne peut atteindre R du fait de la contrainte imposée.
On a a montrer:
( ne N )) ne IH

SiCp L{u In] possédait un point isolé x, il jouirait d'qn voisinage V

tel que:
VG ) [x}.
ne IH
C'est-a-dire:

n(N <, In)]= {x].
neN

Or, pour un indice n fixé, on a pour tout m # n:
I, €CCe I, €C I,
donc

N (Cp L) =0.

ne N
Par suite:

vn(N «, I.,))=

neN

Ainsi, CpU In) ne possede pas de points isolés. Comme il es
ne N

fermé non vide, il coincide avec son ensemble dérivé. Autrement ai

il est parfait.
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2.6 Frontiere et extérieur d'un ensemble

Exe,fCizCE 79
Soit A un ensemble d'un espace E. On appelle frontiére de A, le

sous-ensemble de E, noté & .(A), constitué des points adhérents A A
ot A son complémentaire C; A.

Montrer que:
1. F.(A) est un ensemble fermé,

2. F.(A) 7

3. Aestouvert & AN F.(A) =0,

4 Afermé & F.(A) C A

5. A est ouvert et fermé < F.(A) = ¢.

Solution
1. On a par définition:

F.(A) = AN CgA.
C'est une intersection de deux fermés, donc elle méme fermée.
2. On a clairement:

(o]
F.(A)=ANCgA =ANCgA=A\A.
3. SiAestouvert alors A= A . Dol ;
AN F.(A)= AN (ANCgA) = ANCeA=0.
Inversement si A N &, (A) = ¢ alors:

b=AN F.(A)=AN (ANCgA) = (ANA)N CeA

(o]
= A n CEA .
Par syjge

AC CB( CEA)’

b W Y rs ouvert.
“Stidire A C A, donc A= A Aestald
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4. Si A est fermé alors A = A. Donc:
F.(A)=ANCzA =ANCLA C A,
Inversement, si

A\ A=F.(A)C A,

alors A C A. Par conséquent A = A et donc, A est fermé.
3. Si A est ouvert et fermé, on a immédiatement:

F.A) =ANnCy A=ANC,A=¢

Inversement, si & (A) = ¢, alors:

gr(A) -‘—'Kﬂ CE R:- ¢
D'ol

Gk

>

Donc

A=
Ainsi, A est fermé et ouvert.

Exercice 80

1. Soit (E,7) = (R, ||). Déterminer # o
2. Que dire de 1a frontiere de toyte

2|
I
;1>o

[L.8]), F.(V) et . (0).

. a 1 '
grossier E? d'un espace discret 9 partie propre d'un espace
- SoitE espace muni de la topologie cofinje. Déterminer la
frontiére & . (A) quand:

1) A est une partie fermée de E,
11) A est une partie ouverte de E.

1ii) A est une partie nj ouverte ni fermée de E.
Solution

1. C'est une question déia renc
ontr : .
trouve aisément: ] €e au Prémier chapitre. On

F.(A) = [1,8]\]1,8[ ={1,8},

— D
F.(N)= N\ =MN\¢=NetF.(Q)= o
€Space grossier E, la frontiare d
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co‘incicha"ec E: .
gr(A) = A\A=E\¢=E.

pace discret, la frontiere de toute partie A est vide:

F.(A) =A\A=A\A=0¢.
3.i)Les parties fermées de E sont d'intérieurs vides. On a:

F.(A) =A\A=A\0=A
i) Les parties ouveries de E sont d'adhérences égales a E. Donc

SiEeSluneS

wai. i)
F (A = A\A=E\A
iii) Les parties ni ouvertes ni fermées de E sont d'intérieurs

s et d'adhérences égales a E. Ona:
_ O
F.(A) = A\A=E\¢=E

vid

txercice 81
Soient A et B deux parties d'un espac
].1) Montrer que
F.(AUB) C F.(A) U F.(B).
ii) Indiquer deux parties A, B de ([R,H) telles que:
F (AUB) # F.(A) U F.(B).
2. On suppose qu'il n'existe aucun point de E
Aeta B. Montrer alors que:
# (auB) = F.&) U F:®
q 3. On suppose que A €t B soient des parties ouvertes et denses
ans E. Montrer alors que:

F .(AUB) = F. (AN F.(B).

e topologique E.

3 1a fois adhérent a

SD[utwn

L) Ona:
g F.(AUB) = AUB N Cy(AUB)= ZUB N CeANCeB
Omme

CEAn CEB C CEA n CEB ?

1 viem
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#.(AUB) C (AN CgA n C.B) U (BN CeAN Cpj

c F.(A U F.(B).
- CRQ _on obtient:

_RUR=R#Z.(QUC,Q) = Z.(R)
De méme, si A=[-1,2] etB= [0,3], on obtient :
F.([-1.2]) Y F.([0.3]) ={-1.2} V {0,3} ={-1.0.2,3},
7 ([-1.2]u [0.3]) = F([-1:3]) = {13}
2. Supposons A N B =¢. Montrons que:
CcAN CgB = CzANCgB .

ii)SiA= QetB
F.(Q U F.(Cg®

11 suffit d'avoir:

C,ANCyB C C;ANCB .

Soitxe Cg;A N CgB. Sixég CzANCgB alors:
I Ve V(x)/ VN (CzAN CgB) =VN Cg(AUB) = 0.
D'ou:
V C AUB.
Or V ne doit pas rencontrer, par hypothese, A et B en méme (€1
donconaouV € AouV C B. Cela empeche V de rencon!
CA et C;Bala fois et crée la contradiction recherchée.
Ainsi, on peut poser:
F.(AUB) = (AN CL,A N CzB) U (BN CzA N CgB):
De I'hypothése A N B = ¢ on tire:
ECCEXC CEAC CEA,
A CCgB CCgBC CyB.

D'ou:
F.(AUB) = (AN CzA)U (BN C.B)= #,(A) U F.(B)
3. Supposons que A et B soient ouvertes et satisfont 2
A =B =E
On a aussitot:
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comme Cg AN CyB est fermé, il vient:
F.(AUB) = C,AN C,B.
De mémc, on a. e
F.A=ANCA=EnN CpA = CA,
F.B)=B N C;B=ENC,B =C,B.
D'ou:
F.(AUB) = F,(A) N F.(B).
Exercice 82 .
Soit A un sous-ensemble d'un espace E. On dit qu'un point x de E

est extérieur a A, sl appartient 2 l'intérieur du complémentaire de
A. Ceci se traduit par l'existence d'un voisinage de x ne rencontrant

pas A.
On désigne les points extérieurs de A par E, (A).

Montrer que E, (A) est ouvert.
Solution

I I'est par définition méme:

0
P

Exercice 83 . 47 = (R
On considere sur R la topologie o définie dans l'exercice 45.

0
B

Déterminer {0,1} , {0.1} . Eq N, F.(1). E.({1}). @ - [0.1]
O et @.

Solutj
o » ises de ue terme, on
En se remémorant les définitions requises de chaq

4ra sans peine:

0 : 0 2 2 Sy ;H=_=IR
m =|N=[/0:T[ =Q =¢; ‘O,]}.-: [O,l[ -[ 1,1] Q




1

L) ' - (S ) ] " l)r ) i q o l ¢
( AT B I ‘

0
— N

F.o) =y =[-t1]ve=[-1,1].

(1) = 1] = oAUt ]
Exercice 84

Soit A et B deux parties d'un espace topologique E. Montrer
1. E,(A) C C;A.

: Ex(CIEx(A)) = Ex(A)
-E,(AUB) =E,(A)N E_(B).
4 EA=¢ « A=E

que:

rJ

('Y ]

n

D F(A)C F (a), F.nC F (.

11) Donner up €xemple on toute

0
$ les frontidres F (A), F_.(A)
et F.(A) dun sous

-ensemble A sont distincteg.

6.E= A U F,(a) E, (A).
Solution

=C,A

3 E.(AUB) =B\ (aUp; =E\(AUF) =E\A)Nn E\B)
=E.(A)N E_(p)

4. E,(A) = C A=¢ o A=E

5.1)Ona
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CeA =CpA=ChA -

Do

AN CA C AN CeA
Dod la pn‘mu‘rt‘ inclusion.
De méme, On a:

]
—_—e

F.(A)= ANCyA =AN C,A € AN CgA.
D'od la deuxiéme inclusion.
i) Considérons dans (!Rl |) le sous-ensemble
A=[-2,1[ U ]1,3]U {4.5}.
Ona

.8 = [23]\ (F21[ U J13[) = {-2.1.3).

F. () =[-23]U {45\ (JF2.1[ U ]1.3[) = {-2.1.3.4.5}.
F. (A) =[-23]U {4,5}\]-2,3[ ={-2,3.4.5}.

6 AU F.(AUE.(A) = AU(A\A)UC;A =E.
2.7 Densite, separabilite

Exercice 85

Soient A et B deux parties d'un espace topologique (E,t). On dit
4ue A est dense dans B, si tout point de B est adhérent a A.

Autrement dit,

| Aestdense dansB < BC A.
‘ On dit que A est partout dense dans E si son adhérence coincide
avec E. On écrit:
Aestpartout dense dansE < A=E & CpA =E (A)=¢.
L. Verifier que:
1) siE est un espace grossier, toute partie A y est partout
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Q2

donsc._) | E ost un espace discret, alors une partie A est depg, dan,
1) St e D ‘
: C A.
» partic B vérifiant B |
mu‘;? E'ad:nct pas de sous-ensemble propre partout dense.
2. Soient (E,1) = (IRI[) A=[1,4] et B=]1,2[. Lequel de Ao,
de B est dense dans l'autre ?
3. SouE={abed), t={0.E.{a},{a,b}}, A={d} et B = {ae)
vVenfier que:
1) A n'est pas dense dans B.
u) B estdense dans A.

4. Caraciériser les parties partout denses dans un espace cofini,
Solution |
I.1) Clest vrai, car A= E.
i) OnaA = A. Donc
BCA = BCaA.
Par ailleurs, E n'admet pas de sous-ensemble partout dense, puisque
A= AzE
2. Aestdense dans B car:
B=]12[cA= [1.4].
3.1) Anlest pas dense dans B, car:

BE A={cd).
.. P e e . . - .
ol Au) arcontre, AC B =E, ce qui signifie que B est dense

4. Ce sont les partieg infinies (question 3 de I'exercice 80).

018 partieg non videg

d'un espace E. Montrer
SBetB dense dang & ]

» alors A est dense dans

AetCc B. La premiere

» €€ qui donpe grace i la deuxieme

» A est denge dans C.
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lﬁfx@fcwe o '

Montrer que pour qu'un sqg&enscmhlc A d'un espace (E,T) soit
rtout dense il faut et il suffit que tout ouvert non vide de E le
p~.ﬂc;_mll'C-
soluttor :

L.a condition est nécessaire.

Soient A un ensemble partout dense dans E et €2 un ouvert non

ide de E. Comme A=EalorsQC A.Dod ANQ# ¢ .

La condition ¢st suffisante.
Supposons que tout ouvert non vide de E rencontre A et consi-

4érons un point x de E. 11 apparait clairement que tout voisinage V de

A. Donc, Xe A . Par suite, A =E.

x coupe
fxercice 88
Soit Q une partie d'un espace topologique E. Montrer que pour
out sous-ensemble A de E on a:
Qouwvert & QNAC QNA.
Solution

Soient Q un ouvert de E, x un élément de QN A etV un voisinage

de x. T1 ressort que VNQ est un voisinage de x. Comme X€ A il vient

: AN (VNQ) # ¢;
cest-a-dire:

VN (ANQ) # ¢.
Doi xe AN Q.

Ré‘?ilJroquement, soit  une partie de E telle que :
. VAcPE) QN AC QNA.
Posant A = C,Q, il vient:

Qn‘é‘—-—- ——— 0 0
2 C ONC,Q & QNC@QC o & QC L.

Par '
suj 0
', Q=0 . Donc, Q est ouvert.

[
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Ex?crsi;l%?u?cgr que si A est une partie partout dense dans un espc, R

et Q un ouvert de E, alors:

—————

Q =ANQ.

2. Montrer que cette dernidre égalité peut-étre fausse si L n'egt Pag
ouvert.

Solution

1. Onaévidemment ANQ C Q. Montrons que:

QCANQ.
Soient x un élément de Q et U un voisinage ouvert de x. Comme
UNQ est ouvert et A partout dense dans E, il existe au moins un pojp

de A appartenant 2 UNQ (exercice 87). Ce point est a la fois dang
ANQ et dans U. I s'en suit que x est adhérent 3 ANQ. D'oir:

QCANQ.
2. Envoici deux exemples.

1) En prenant dans (IR,|.|), A=NetQ= CRQ,il vient;
N=N+NNC,Q-=o.

i) Soient E = {a,b,c,d}, 1= {q),E,{a,b}}, A
(_)_n constate que €2 n'est pas ouvert et

={a} et Q={c}.

que A =E. D'une part, on a
Q ={c.d}. D'autre part,
D'ou: ks {C}ﬂ{a} = 0.
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.\‘i?[“';w'v1 » nar l'absurde. Si A était d'intéri

on raisonne par Fabsurde. Si A était d'intérieur vide, son complé-

qentaire serait partout dense. A rencontrerait alors son complémen-
Absurde!

wir- - o
versement, si Aestnon vide et B partout dense, alors A coupe
B@xéﬂic" g7) et, a foruori.
ANB # ¢.

wacipe 91
Un cspace
s assertions

([R,H) est séparable.

Un espace discret est séparable.

Z muni de la topologie cofinie n'est pas séparable.

o de l'exercice 49 est séparé mais non

topologique (E,7) est dit séparable, s'il renferme un

énombrable et partout dense.
suivantes sont-elles vraies ou fausses:

l.
.
3.
4 R muni de 1a topologie

séparable.

Solution
| Vraie, car il contient Q lequelest dénombrable et partout dense.
2. vraie si E est dénombrable, fausse si E ne l'est pas. Dans un tel

espace, On a toujours A =A.

3. Fausse. En effet, on a N=Z.
4. Fausse. (R,o) n'est pas séparé car tous s

Par contre, il est séparable, car on @ Vi que N = Q= R.

s ouverts se coupent.

Exercice 92
le, la famille de tous les

o Démontrer que si E est un €space séparab
verls deux 4 deux disjoints de E est au plus dénombrable.

Solution
Soient (Q;)._, la famille de LOUS les ouverts deux & deuX disjoints

able parto

ut dense de E.
as dénombrable. Que

(eE
et A un sous-ensemble dénombr | que soit 1

Su
PPosons que cette famille ne soit p
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de I, Q; N A est non vide (exercice 87). Par suite, "LEJI (Q; N 4 e,
pas dénombrable du fait que les parties Q., (ie I) sont deux 3
disjointes. Il en résulte que A n'est pas dénombrable. Op ¢

E ne peut pas contenir un Sous-ensemble dénombrable
dense. Ceci est contraire aux hypotheses.

deux
onclyt que

et paf‘[Ou{

2.8 Espaces de Baire

Exercice 93

Un espace topologique E est dijt €space de Bai
si toute intersection dén

partout dense dans E.

1. 10 suffit de passer aux complémentajreg.
2. On sait

2.0 que le sey] ouvert dense dang E discret est E lui-méme.
Ainsi, sj (Qn)ne n St une famille dénombrap]e d'ouverts denses dans
E, ona aussitot:

-—-—.—_-- —
N&=F= E.
ne N
Donc, E et de Baire.
Exercice 94

On sait que (IR’H) €st de Baire gt

Pourtant:
1) les parties R\{x},

i) Qet C r Q sont partout denseg et

QnCRQ = ¢.
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o sont les failles?

sofutior
y La famille n'est pas dénombrable.
i Les deux parties ne sont pas ouvertes
1. Soit (Fy)__p UNe famille de fermés d'un espace de Baire E telle
que-
U F, =E. )
ne N

Montrer qu'il existe un indice ny tel que F soit d'intérieur non vide.
0

2. En déduire que (Q,|.|) n'est pas de Baire.

-

Solution
1. En passant aux complémentaires dans (*), on obtient:
n CEFn = ¢
ne N

s ouverts ne peuvent pas étre tous partout

Lespace E étant de Baire, le
tel que CEFno # E; c'est-a-dire:

denses. Ainsi, il existe un indice N,

(o]

A~
Cg Fno 2E ;
D'ol le résultat.
2. En effet, on a: ‘
Q= U {Xn}.
ne N

|) ils restent fermés dans

Comme les singletons sont fermés dans (IR,I.
s les

I ,
; Sous-espace (Q,|,|). Or celui-ci n'est pas discret, donc tou
Us-ensembles {x,} sont d'intérieurs vides.

ans un i mé d'intérieu
ensemple rarz,SPace topologique, un fer

L. Vérifier que toute partie finie A de (IR’ ||)

r vide est dit

est rare.
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2. Est-ce le cas pour une partie infinie?

3. A-t-on les mémes résultats si on remplace (IR||) par un eSpage
cofini?
Solution

1. On a trivialement:

0
A =¢.
2. Ce n'est pas toujours le cas. Ainsi, N et Z sont des Partieg
rares, par contre [0,1] ne l'est pas. En clair, on a:

(o]
N

N=2z-9, [0.1] =]0.1[.

3. On a le méme verdict pour les parties finies d'un tel espace. Les

parties infinies, elles, ne sont pas fermées. Elles ne sont donc pas
rares.

Exercice 97

On dit qu'une partie A d'un espace E est maigre, si elle est
contenue dans une réunion dénombrable de fermés d'intérieurs vides.

Autrement dit, on appelle ensemble maigre d'un espace E, toute
partie incluse dans une réunion dénombrable d'ensembles rares.

Montrer que

1. tout singleton est maigre dans (IR, ||)
2. cest le cas de toute partie dénombrable en général.
3.1) si AetB sont maigres alors AUB et ANB le sont.
i) Est-il de méme pour CpQ?
Solution

1. Tout singleton, dans (IRH)

¢tant fermé d'intérieur vide, il est
alors maigre.

2. Soit A une telle partie. Elle s'écrit sous Ia forme (J [ai}, A

AEA
étant dénombrable. On déduit de (1) qu'elle est maigre.

3.1) Ona:;
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Amagre < I (F) _/ACF,

el

B maigre < B(Kj)jEJ/BC U K;.

1€l
o (F),p et (Kj)., sont deux familles dénombrables de fermés
gintérieurs vides. Il vient immédiatement:

ANB C (| F)

L,el

U (Fi v Kj).

Gij)elx

AUBC (U Fi) u (U Kj) h

Lel jE]
La famille J (Fi U Kj) ¢tant dénombrable, son intérieur est alors
(i)e 1
vide. On conclut que ANB et AUB sont maigres.
ii) C Q n'est pas maigre, quoique son intérieur est vide.

En effet, s'il 1'était, R le serait de méme, puisqu'on a:
R =C.QUQ.

Comme R n'est pas maigre, C Q ne peut pas 1'@tre.

2.9 Comparaison des topologies

EWctcc 98

Soient 1, et 7, deux topologies définies sur un méme espace E.
On dit que T, est plus fine T, que (ou que T, est moins fine que
W) sit, ¢ T,

equ_AUUement dit, T, est plus fine que T, si l'une des trois conditions
Valentes suivantes est satisfaite:

) Tout Ouvert par rapport & T, est ouvert par rapporta T .
1) Tout ferme par rapport A T, est fermé par rapporta T, .

A
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1) Quel que soit x de E, tout voisinage de x par rapport i t, o, u
voisinage de x par rapport a T, .

Si T, est plus fine que T, et T, plus fine que T, on dit que Jog
deux espaces (E,ty) et (E,12) ont les mémes ouverts et les MEmgy
fermés. On dira, dans ce cas, que les deux topologies 1, et T2 o
€quivalentes.

1. Vérifier que la topologie grossiere est la moins fine

logies possibles sur un ensemble E. En revanche, la disc
Plus fine de toutes.

des Lopo.
rete est |,

2. SoientE=N, 1, Ia topologie cofinie et 1, = {q:,IH,(An)

neN]’
avec A, = {n, n+1,

..}, Vérifier que 1, est Plus fine que 1, g que

celle-ci n'est pas plus fine que T, .

topologie usuelle,
4. On considare E = R

T l'usuelle,
Montrer que:

et le munit des tro

18 topologies:
T2 la cofinie et T3

la codénombrape.

1) Tet 13 sont plus fineg que 1, .
1i) T, n'est Pas plus fine que 15,

iii) T; n'est pas, elle ayg

8i, plus fine que 1, .
Solution
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: e o. autre que ¢ et R, est réunion d'intervalles
verts. done appartient  la topologie usuelle. Celle-ci est alors plus

qpe QU o. Par contre, G esl moins fine que l'usuelle car elle ne
~ontient pas. Pt exemple, l'ouvert ]-1.1[ de l'usuelle.
4 i) Iest facile de voir que T, et T3 sont plus fines que T, pour la

pme raison que la question précédente.
) Par contre, T, n'est pas plus fine que T3 car ]-1. 1[ appartient

3 Toul ouvert d

mais pas a Ts.

it
iii) De méme, T3 n'est pas plus fine que T car Cp

Q appartient
3 7;, Mais pas A%
£xercice 99

| Montrer ge Si (G2.)2ea
m ensemble E, alors son intersec

ast une famille de topologies définies sur
tion () O constitue une topologie
AsA

ins fine que chacune des topologies G-

sur E, laquelle est mo
exemple, quune réunion de

7 Montrer, 2 l'aide d'un contre-
ipologies peut ne pas étre une topologie.
Solution

. Tl est évident que [ oxrenfe

AcA

opologies o, étant stable pa rapport 3 la réunion et 2 I'in
finie, il en résulte qu'il est de méme pour N o). Celleciest donc une
AsA

me E et ¢. De plus, chacune des

tersection

lopologie.

Enfin, on constate trivialement que () o est moins fine que
A€A

thacune des ;. D'ol le résultat.
2. 1l suffit pour étayer cette affirm
pologies 7, et 15 de l'exercice précédent. Ainsi,

A:CRQ etB = ]—1,1[ il vient:

ation, de considérer R muni des
si 1'on prend
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A.1[ = Be 11U 1s.
c,enliLif=AN 1V T3

Cependant, si deux topologies et G2 sont comparables, ley,
réunion forme une topologie.
Exercice 100

Soit @ une famille non vide de parties d'un ensemble E. Mony,

qu'il existe sur E une topologie contenant .
Solution

La famille des topologies contenant B n'est pas vide, car e,
renferme au moins la topologie discréte. Par cons€quent, 1'inter.

section de toutes ces topologies donne une topologie résolvant notra
probléme.

Cette topologie s'appelle topologie engendrée par 3.
Exercice 101

Soient 7, et T, deux topologies sur un méme ensemble E. Montrer
que si T, est plus fine que 1,, alors:

1. L'adhérence d'une partie A dans (E,z,) contient I'adhérence de
A dans (E,Tl ).

2. L'intérieur d'une partie A dans (E,t2) est contenu l'intérieur de
A dans (E;1;).
Solution

L. Notons A, I'adhérence de A, V', (x) la famille des voisinages

dun point x dans (E,T;) et A, et V,(x) celles dans (Ex,). Ona:
X A & VVeV,(x) VNA #¢.

Comme tout voisinage V par rapport a T, l'est par rapport a T,, 00
aura;

VVeVy(x) VNA =0,
¢c-a-d xe A, . Donc:
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g~
» De méme, 1 X€ A, alors Ae V';(x). Or V', (x) € V1 (%),

jonc A€ V'1(x), par suite xe A,.
210 Systemes fondamentaux de voisinages

gxercice 102

Soit x un point d'un espace E. On dit qu'une sous-famille WY (x)
de voisinages de x est un systéme fondamental de voisinages de
x, si elle satisfait & la condition suivante:

Pour tout voisinage V deV’ (x), il existe un voisinage W de T8(x)
de sorte que W C V.

1. Montrer que tout point d'un espace E admet un systeme fonda-
mental de voisinages ouverts.

2. Montrer que la famille W8 (x) = [(]X‘% ’ x""]l{[

forme
keN®

un systtme dénombrable de voisinages de x dans (IR, | I)-

3. On muinit R de sa topologie usuelle et on y considere les

familles:
(o) = I(]k’+°°])ke N] ’
(o) = {([-o0, K[) e}

o]

Mon ] .
v isi:;rer que ces familles constituent des systémes fondamentaux de
gg?s de +oo, -e0 et X respectivement.
- S01ent E un espace discret et x un point de E. Montrer que la

fam;
We VY (x) = {{x}} est un systeme fondamental de voisinages de x.

] (pour xe R).
ke N®

.
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Solution , . , o
1. En effet, tout voisinage d'un point x contient, par définition u

ouvert, lequel constitue un voisinage de x.
2. Notons de prime abord que W(x) est, par constructi,
dénombrable. Par ailleurs, on sait que:

V est voisinage de x dans ([R,|.|) & Jr>0/]xr, x+1[ Cy
Le lemme d'Archimde assure I'existence d'un entiet naturel k te] ¢

k> l Ainsi, le voisinage V contient un voisinage de la forme

-
o i
SRR ' |
3. Nous venons de voir que c'est le cas pour U8(x). Soit V un
voisinage de +oo dans R . On écrit par définition:

Ja>0/]a, +eo] C V.,
Or

Va>0 3keN'/k >a,
donc

]k,+00[ C V.
Le cas de -oo se traite de méme.

4. Dans cet espace, le singleton {x} est voisinage de x. Comme il

est contenu dans tout autre voisinage, la famille W(x) est alors un
systeme fondamental de voisinages de x.

Exercice 103
1. Montrer que tout espace discret est régulier.
2. Montrer que (IR,|.|) est régulier.

3. Montrer qu'un espace E muni de Ia ¢ . o et 028
régulier. opologie cofinie n'est P

Solution
On sait qu'un espace topologique est dit régulier, s'il est sépart
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o si tout voisinage V d'un point quelconque x de E contient un
yoisinage fermé W de X,

| 1l est sépar€ et {x} est un voisinage fermé de x, contenu dans
J( autre voisinage de x.
7. 11 suffit de rappeler que, pour tout réel x, on a;

I l 1 1 X
it ot | <l )

3. Tl est d'abord non séparé. De plus, I'unique voisinage fermé de
chaque point 'x.de E est E lui-méme. Il est, par conséquent, impos-
sible qu'un voisinage quelconque V de x contienne E.
txercice 104

Démontrer que les deux assertions suivantes sont équivalentes:

1. Tout voisinage V d'un point quelconque x de E contient un
voisinage fermé W de x.

2. Pour toute partie fermée A de E et pour tout x de C¢ A il existe

10

deux ouverts disjoints Q, et Q, tels que xe 2, et A < o

Solution
=2
Comme x appartient a l'ouvert CgA, il existe un voisinage fermé

W de x tel que W € C A (etce, conformément a (1)). D'ou A C

CyW. En prenant V(E)/ =Q_et CeW=Q,1a propriété (2) se trouve
satisfaite.
221

~ Sans restreindre de généralité, il nous suffit de montrer cette
implication dans le cas d'un voisinage ouvert V de x. appliquons la

condition (2) aux deux ensembles fermeés (x} et CgV. Si Qet Q,
sont deux ouverts disjoints tels que x€ £2, et C VC Q, onaura:

xe Q, C C&, C V.
Comme CQ, est fermé on obtient :
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Q,c CsC V.
Par suite, la condition (1) est vérifiée en prenant Qi=W.

Exercice 105 _ .
On dit qu'un espace topologique E est normal, s'il est s¢pype i

vérifie la condition : o _ |
Quels que soient A et B fermés disjoints de E, il existe dey,
ouverts disjoints € , et Qg de sorte que A.C Q,etBC Q.
Les assertions suivantes sont-elles vraies ou fausses.

1. Tout espace discret est norma!. e L
2. Un espace muni de la topologie cofinie n'est pas normal.

3. R muni de la topologie o de I'exercice 49 est régulier et normy

Solution
Elles sont toutes vraies.
1. Toute partie étant ouverte (et fermée) dans cet espace séparé, i

suffit de prendre Q , = A et Q; = B.
2. 11 n'est pas séparé. Bien plus, si un tel couple d'ouverts

existait, I'un serait inclus dans le complémentaire fini de 1'autre.
Absurde.

3. Fausse. Il n'est pas séparé. De plus, aucun de ses points (mis 2
part 0) ne possede de voisinage fermé,

Il n'est pas normal, non Plus, puisque ses ouverts sont concou-
rants

Exercice 106

_Soit (E,7) un espace topologique. Montrer que les deux propriétés
survantes sont équivalentes:

1) E est normal,

ii) Pour tout fermé F ett

out ouvert Q te] il existe un
ouvert O tel que: que F C Q, il existe

Solution

que FC Q. On a:
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FCgQ) =¢.
Fel C 2 €tant deux fermés disjoints de l'espace normal E, il existe
jeux ouverts disjoints O et W telsque FC Oet C,Q € W. Il en

ssulte que O & CgW. Comme C;W est fermé, on a aussi O C
c;W. Ainsi, on peut avoir:

FCOCO CC,WCQ.
i) = 1)
Soient F et G deux fermés disjoints de E. On a:
F C C;G.
Comme CG est ouvert, il existe par hypoth&se, un ouvert € tel que:
FCQC Q CC.G.

Le complémentaire O = C; Q est ouvert, contient G et ne rencontre
pas Q. On conclut donc que E est normal.

2.11 Bases

Exercice 107
Une famille B d'ouverts d'un espace (E,7) est dite base de la to-

pologie T de E, si chacun des ouverts de T s'écrit sous la forme d'une

"Cunion d'éléments de B.
L. Montrer que:

o= [(]a,b[)a'be R} est une base de la topologie usuelle de R.

i) o= {{x} ok E} est une base de tout espace discret E.
2. SOit E = {1,2,3,4}. On le munit de la topologie suivante:

v={0.8,{1}.{2).{a}{1.2).{1.4}{2.4).(1.2.4}}.
Montrer que ¢ = {{1}.{2}.{4}.E} est une base de .
Solution
Liyn suffit, conformément A l'exercice 7 du premier chapitre et 3
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& de la réunion, dé montrer que tout intervalle ouyey

J jativi
Tassoc uons quatre cas:

réunion d'éléments de C. Nous disting
] = ]a,b[ €0,
1= Jo[ = U Jatl.

a<h

[=]a,+o[ =U Jab[,

b>a

I= ]-oo,+w[ =R = U ]a,b[.

abeR

o est bien une base comme annoncé.
i1) Dans un tel espace les singletons sont ouverts.

2. Tl est évident que tout ouvert de T est réunion d'éléments de 6.

Exercice 108

Démontrer que toute base 6 d'un espace E jouit des deux prop-
riétés suivantes:

1. Tput point x de E appartient, au moins, 4 un élément € de o.

2. Si x est un point appartenant 4 I'intersection de deux éléments

Q,etQ,de o, il existe un élément Q; de 6 de sorte que:
X€; €O NQ,.

Solution

réféErr;negeg I(;ioi:tonedition (1) 'signific clairement que l'ensemble d¢
» O tant qu'ouvert, constityer une réunion d'él¢-

ments de .
eo L'a seconde résulte dy fait que QN €2, étant ouvert. i
est alors réunion d'éléments de 14 pyqe C. D'ols I'existence de £2
. i ?
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Sdutwﬂ ) .
soit V13 famille des parties de E s'écrivant sous la forme d
sous la forme de

cunions d'éiéments de ©. Montrons qu'elle satisfait aux trois

xjomes 0,.0; ¢t O, de Hausdorft.

Nous emarquons que I'ensemble vide peut s'écrire sous forme de

funion dune famille vide d'éléments de o. Il appartient donc A V.

pe méme, E appartient 2 6 en vertu de la propriété (1). D'ou O, .
p'autre part, I'opération de réunion étant associative, il alpparail

Jairement que QS est stable par réunion; ce qui achéve O,.
Enfin, si A et B sont deux éléments de VU, ona ) v, =Acet
oL

L{;J Wg =B ol V, et Wy sont deux éléments de ©, pour tout 0. et

. Par suite:
ANB= (LaJ va) N (LBJ wﬁ] =U (Va N Wy

parties Vo N W appartiennent 2 .

Daprés la propriété (2), les
est une topologie sur E.

Donc AN Be . Conclusion: Vv

Exercice 110
Soient (E,t) un espace topologique €t O une sous-famille de T.
Démontrer que & est une base de T si, et seulement si, elle satisfait

condition suivante:
Pour tout ouvert Q2 et tout point X de Q, il existe un ensemble K

de
Otelque xe K, C Q.
u{:w)n
; condition est nécessaire. ssenté
Test une base de 1, alors tout élément () de T peut dtre Fepreser
U)m
Me une réunion d'ensembles de o. Par consé

LQi oy :
lexiste un ensemble K , de 0 9¢ sorte que-

quent, pour tout ¥



110 Espaces topologiques: Propriétés gén€rales

xe K, C Q.
La condition est suffisante.
Si la condition posée est satisfaite, tout ensemble ouvert  peyt

étre mis sous la forme Q = U K,, ce qui signifie que G est une base
xe )

de T.
Exercice 111
Soient ¢, une base d'une topologie T et 6; une sous-famille de 1.
Démontrer que si tout ensemble de G s'écrit sous forme d'une
réunion d'éléments de 6, alors 6, constitue une base pour 7.
Solution
Soit €2 un ouvert de . Comme 6, est une base de 1, Q s'écrit:
Q=UJ Q;, Q,ec; Viel.

ie]

V Or chaque Q; est une réunion d'ensembles (K; ;) de 5,, donc :
Q'—'U Q; =U U Ki.j) = U Ki,j’ KiJEGZ-

1€l i€l \jel i,j)elx]
Exercice 112
Soit 6 une famille d'ouverts d'un
deux conditions suivantes sont €quival
1. o estune base de 1.
2. quel que soit x de E, la famille:

- W) ={Qeo/xe ol
consutue un systéme fondamenta] de voisinages de x
Solution |

espace (E,t). Montrer que les
entes:

| = -2
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xeQC U.

| sen suit que Qe m(x). Cette derniére est alors un systéme
fondamcmal de voisinages de x.

7 = 1
Soit V un voisinage d'un point quelconque x de E. En vertu de

(2), il existe un élément  de VY (x) vérifiant:

xeQ CV,
[l en découle, grice a l'exercice 111, que o forme une base pour 7.
Exercice 113

1. Monztrer que tout espace (E,7) jouissant d'une base dénomb-

rable est séparable.
2. Que dire de la réciproque?

Solution
1. Soit ¢ une base dénombrable de t. Choisissons, pour tout

ouvert Q de o, un élément xo de . L'ensemble A des élémentsXg
(Qe o) est dénombrable (comme o). 11 est aussi partout dense dans E

car & est une base de 7.
2 Elle est fausse. En voici un contre-exemple. On considere R
muni de la topologie cofinie. 11 est clair que cet espace est séparable.

Toutefois, il ne posseéde pas de base dénombrable.
2.12 Topologie induite, sous —espaces

Exercice 114
it Al , ; logique (E,D)- On
Soit A lun sous-ensemble dun espace topologiq ,
|

appelle trace d'un ouvert € deTSUf A . le sous-ensemble UdeE
défini par U=AN Q. On note Ta la famille des traces des ouverts
Qe E sur A.

Montrer que T, est une topologie sur A-
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Solution o N
En regardant de prds T, on constate que celle-ci renferme 0, car
= ANg avee ¢e T. De méme, T, contient A car A = ANE, Fe T o
conclut que T, vérifie le premier axiome O, des trois définissan une
topologie.
T satisfait aussi aux deux autres O, ¢t O;. En effet, soit Q)

71g]
unc sous-famille de t, . on a:

Qet, = IViet/Q,=V.NA,iel
D'ou:
UQ=Uwv na)-= UVi)ﬂA.
i€l i€ i€l
Comme | V,e1 il s'en suit qu: U Qet,,

1€ ] el
est vérifié.

C€ qui signifie queO,

Enfin, si Q, et 2, sont deux €lémen

el Q; =V,N A, o) V,V
QNQ, =(v
Comme V,N v

(sde 1y, alorsQ, =V,N A
2€7T. D'o:

N AN (v, N A =(V,NV,)N A.
2€T0n obtient Q,N Qret, .

I. Soit (E1) = (!R,H) et A =
1) Montrer que Q,

[0,1].

N =[(),][e[Q2 g

10.1] sont deux ouverts &

1) Montrer que la lopologie T™w=|| w induite sur N est P(N)
-CSpace ('
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so‘l“f:"'(‘)n a clairement :
Q =[0,1] =]-,1[n [0,1],
Q= ]0.1[=1o0,1[ n [0,1].
Remarquer que Q est ouvert dans A, mais ne l'est pas dans (ch,|_|))_
it). Pour tout n de N I'ensemble
Q= {n} = n-Ln+1[N N
stouvert dans N. Il en résulte que ty=| [ = P(N). Autrement dit,

(N'H“) est I'espace discret (N, P (N)).
On peut voir de méme que (ZI[ z) coincide avec (Z,P(Z)). Il

est discret.
2. C'est une conséquence immédiate de la définition da la

opologie trace.

Exercice 116
Soit E= {a,b,c,d,e}. On le munit de la topologie:

o=1{E4, (a}.fe.d}. fa.c.d). b.cdel}.
. On pose A = {a,b,c}. Donner A'.

2_' Montrer que l'ensemble D = {a,c
0 que F = {b,d} ne jouit pas de cette propriété.

} est partout dense dans E.

. On pose G = {b,c,d}. Déterminer (03 F.(0) et E,(O):

* Quelle est Ia topologie induite sur G par c?

%n i, |

voisinage
e ]re,il ®Staisé de constater que a et ¢ possedeni Ct;a;::?r:: o ¢
g, ONlrant A qu'en eux respectivement e

MU pas de cette aubaine. D'0d:
A'={b.de}.

2. Cl 2 .
3, oﬁs‘ Viai, car D <E et F = {bc.die} # 5
d.



4 Espaces topologiques: Propriétés générales
11-

o
= {C.d}.

F.(G) =G\ G= {b,c.d.e} \{c.d} = {b.e},

E,(G) = C;G = [ae] = {a}.

4. Notons cette topologie Tg. On a:
TG = {Q,{C,d}G]

Exercice 117
Montrer que si (A,T, ) est un sous-espace de (B,tp) et si celui

est un sous-espace de (E,1) alors (A,t, ) constitue un SOus-espace 4
E.
Solution

En effet, si Q est un ouvert de t A, 1l existe, par définition, un
ouvert Q'de 15 de sorte que Q = Q' N A. De méme, il existe un
ouvert Q" de 1 de sorte que Q' = Q"NB. Il en découle que:

Q=(Q"NB)NA = Q"N(BNA)= Q"NA.

Exercice 118

Soient A et B deux parties d'up espace (E,T) et C une partie &

AUB.
1. Montrer que:

Cet,p = CNAet, A CNBetp).
2. Que dire de I'implication inverse?
Solution
1. Ona:

- \CG IAUB = 3 QET/C =Qn(AUB) - (QﬂA) U (mB)
ou:

CNA=[@nayy @NB)| N A= ang,
donc, CNAe Ti.
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, méme cheminement mene 3 CNBe 1y,
4 e est fausse. Voici un contre-exemple, Si
B E= {1,2,3,4,5,6,7},
o= {0E(3.4.5){1.3.4,5,6).{2.3.4,5,7)),
A= {1,2,3,4}a B £ {4,5,6,7} etC = [2'3’4;5,6,7},

ylors.
CnB = Be TB el CnA = {2,3,4,5,6,7]”{1,2,3,4} = {2,3,4]E T

cmme AUB = E, alors T, ;5= 7. Enfin, Ce 1.

fxgrcice 119
|. Montrer que tout fermé d'un sous-espace (A,T, ) est une trace

ar A d'un fermé de (E,7).
2. Montrer que tout voisinage d'un point x de (A,T, ) est une trace

rA d'un voisinage de x dans (E,T).
3.1) si un sous-ensemble B de A est ouvert (resp. fermé) dans

E7), alors il I'est aussi dans (A, T, ).

1) Vérifier A 1'aide d'un contre-exemple que la réciproque est
laugge,

iii) A quelle condition celle-ci devient-elle vraie?
uuti,on
' S0it F un fermé de A. C A F appartient 2 5. D'ol:

P&ISUite; 3 QGT/CAF = QnA

F=C,(QNA)=C,Q=CsQNA.

EQ est ferm¢ dans (E,t), F est sa trace dans (ASTA)- |
d'un pomt X

[,
Miye

kA n fail.de méme. Soit V un voisinage dans (ATA)
Al par définition:
! JQet,/ xeQC V.

|

3 0et/ Q=0NA,
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donc, en prenant W =0 U V, il vient We V'(x) et W n 5 _ v

3.1) C'est immédiat, puisque B = BNA.
ii) On considére dans (IRH) le sous-espace A = [0,2[. (
constate que
B=[0,1[ =]-1,1[ N [0,2]
C=[1,2[ =[1,3] N [0,2[
sont respectivement ouvert et fermé dans A mais ne le sop; pas dy

R.
iii) La condition pour que tout ouvert (resp. fermé) dang A 5

ouvert (resp. fermé) dans E, est que A lui-méme le Soit.
En effet, si A est ouvert (resp. fermé) dans E et si B est un ouve
(resp. fermé) dans A alors:

Jd0e1/ B= ONA,
donc, B est ouvert dans E.

Exercice 120
Soient (E,t) un espace topologique, (A,1, ) un sous-espace de

E et B un Sous-ensemble de A. Op note —B_A- (resp. (1)3 4 ) ladher

ence de B par rapport A 1 a (resp. l'intérieur de B par rapport 4 T4 )-

Démontrer que:
1. B, =BNA.

2B, =B o A fermé dans (E,1).
0o

(0]
3. ANBCB, -

i) Donner un eéxemple oy I'égalité n'egt pas atteinte.
Solution
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mversemem’ si xe B NA, tout voisinage VNA de x dans T,

rencomre B:car vV rencontre B etque B C A. D'ou xe B,
) Agtant formé dans T , On voit que A = ANA = A. Donc, A
ol fermé dans (E0).

mversement, ona BC A =A;donc, B, = e 0, 173

0
3. 1) BNA est ouvert dans T et est contenu dans B. Donc:

0 0

ii) L'inclusion est généralement stricte. On le voit bien sur cet

exemple:
on prend (E,T) = (IRH) A = Z et B =N. On saitque (Z,Hz] est

discret, donc, ;‘z — N. Cependant, I(Iil = ¢. D'olt:
0 0
NNZ=0Nz= N.
Exercice 121
Soient (A,T5) un s
mental de voisinages dans (E.?) d'un point X de A.

ous-espace de (ET) orU9.(x) un systeme fonda-

Démontrer que la famille
T, (x) = [vn A, Ve ‘Iﬂ(x)}
“Onstitue un systéme fondamental de yoisinages de X dans (ATA)-
Solution,

S0it W un voisinage de x dans A. 11 existe alors un voisinage W

:e X dans E tel que W = W'NA. Par suite, il existe uft voisinage V

"Partenant 2 W(x) de sorte qué vCW. D'ou :

Expre VAA C WNAC w.
Cice 122

ouissant d'une

Si ;
1(Af,) est un sous-espace d'un espace (ED)]
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base d'ouverts o, montrer alors que la famille o A=
estune base de o, .
Solution T 2

Soit W un ouvert de A. Il existe par définition un ouve
que W=0NA.Or0=J Q., avec Qe o, donc:

1€

W= (UI Qi) NA=U @NA).

i€l

{QOA, Qe c]

I'lO(lEEte]

Exercice 123

Soient (A,T,) un SOus-espace d'un espace (E
non vide de A. Comparer 1a frontiere de

dans (E,1). Peuvent-elles coincider?
Solution
Notons & . (B) et B,

A la frontiere et l'adhérence de B dans Ie
Sous-espace (A,1, ). On a.

,T) et B une partie
B dans (A1 A ) 4 sa frontigre

7.® =B, NT,H, = BN AN (TC,B) n Al

=B NC.B NA=T & CeBNANA.

D'ou:
.?rA(B) C BN CeB NA=g, B)NAC &,
L'égalité peut avoir liey, Il suffit

E={ab.c}, 1= {.E {a}, b}, {a
On a;

(B).
pour le voir de considérer :
ab},{&,C}}, A= {a,c} etB = {a}

Ta = {¢,A,[a}} et :T'rA(B) B {a,c} \ {a}
On peut aussi prendre A etB d
discret E tels que B € A. Op aimm

= {C} = gr(B)

CUX sous-ensembles dun espace
édiatement:

F:(B)=B\B=¢= ¢, (B).
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(orCice 124
"Montrer que tout sous-espace fermé F d'un espace normal E est
m\[‘ma]-
olutior

F est séparé car E l'est. D'autre part, si A et B sont deux sous-
ssembles fermes disjoints de F, ils le restent dans E, puisque F est
-rmé. Comme E est normal, on peut affirmer I'existence de deux
ouverts disjoints V et W de E tels que:

ACVetBCW.
D'ou:
ACVNFetBCWNE

VN Fet W N F étant deux ouverts disjoints de F, on en conclut que
F est normal.

Exercice 125
Une propriété (P) d'un espace (E) est dite héréditaire, si
chacun de ses sous-espaces 'admet.

Montrer que " étre séparé " est une propriété héréditaire.

Solution

Soient A un sous-espace de (Ex) et X,y deux points distincts de
A. Comme E est séparé, il existe deux voisinages V dexetWdey

tels que VAW = ¢. Il en découle que VNA et WOA sont deux voisi-
nages disjoints (dans A) de x et y respectivement. Ainsi, A est séparé

Exercice 126

Montrer que: ; ;
1. tout sous-espace d'un espace régulier est régulier.

; ilité n' al, pas héréditaire.
Z. séparabilité nest, €n général, [
3; é?lé) igsféélﬁrgﬁuaﬁe sile sous-ensemble considéré est ouvert.

4. tout sous-espace fermé d'un espace normal E est normal.

Sofution otations de l'exercice précédent. Soient

s lesn {
. urll_tl}leslisé %Zn;ego: un point de A n'appartenant pas a B. Il existe

alors un fermé F de E de sort® que B =FNA. Comme x¢ B, x¢ F.
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Par conséquent, il existe deux ouverts disjoints Q, et Q, 4 E |
vérifiant F € Q, et xe Q,. Il s'en suit que £, NA et Q, Ny s
deux ouverts disjoints de A satisfaisant a :

xe (,NA)etB C (2, NA).

L'exercice précédent permet de conclure. .
2. 11 suffit d'exhiber un contre-exemple. En voici un!

Soit E un ensemble non dénombrable muni de la topologie +
constituée de I'ensemble vide et de toute partie contenant un €1ément
fix¢ a de E. Il évident que (E,t) est séparable (puisqu'il renferme
I'ensemble partout dense {a}). D'autre part, on considere A = Cefa).

Il en résulte que To= P(A). Le sous-espace A est alors discret non

dénombrable. Donc, il n'est pas séparable.
3. Soit B un ensemble dénombrable et partout dense dans E.

L'ensemble ANB est partout dense dans A, car si Q est un ouvert
non vide de A, il l'est aussi dans E. On obtient alors:

QN (ANB) = QNB # ¢.
4. Soit A un tel sous-espace. Si F et G sont deux fermés disjoints
de A ils restent fermés dans E, puisque A l'est. Il existe donc deux

ouverts disjoints U et V dans E tels queF C UetG C V. 1len
résulte que U; = UNAet V, = VNA sont deux ouverts disjoints de
A, I'un contenant F et l'autre G. Ainsi, le sous-espace A est normal.
Exercice 127

Soit £ un ouvert non vide d'un espace de Baire (E,t). Montref

que le sous-espace (2,7 ) est de Baire.

Solution
Soit (O,) . une suite d'ouverts partout denses dans (€2.7):

Montrons que tout ouvert non vide O de 1, rencontre N O,-
nelN

Ona:
VY ne N EIGHE‘c/Onann Q.
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L‘\"mme

on déduit:

0 =6, NaeEG6"
par ailleurs, considérons la suite d'ouverts (A,) . deE, définie par:

0

A.=G,U CQ . nel.

Chaque élément vérifie:
o o
_ N - =
A =G,UCQ =G UCQ =G, UCgQ =E.
Ainsi, les ouverts A, sont partout denses dans l'espace de Baire E. I1

rsection () A,l'est de méme.

ne N

en résulte que leur inte

Soit O un ouvert non vide de To. Il existe un ouvert non vide V

dans 7 tel que O = VNL. On a:
on|(N on).—.(vnn)n (ﬂ G ) (vnn)n(
ne N

neN ne N
Comme VNQ est un ouvert de 7, il vient:

vn) N r] A,
Par suite,
on [N O0.|#¢
ne N
213 7T opologie produit
Exercice 128
(B, %) D espaces topologiques non vides et

Soient (E,,T2) =~

K ﬁ E,.On appelle ,uvert élémentaire de E, tout sous-
=1
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ensemble Q de E ayant la forme:
Q=01 xQy;x..xQ,, Qer,1<i<n
Montrer que la famille de toutes les réunions d'ouverts Clémey,
tawres constitue une topologic sur E.
Solution
Notons t cette famille et vérifions quelle satisfait aux trojs axiomeg
0,.0, et O, de Hausdorff,
Premidrement, on a:
E=ExE, x..x E e,
O=0xdx.x e,
E et ¢ sont alors deux ouverts ¢lémentaires. Ils sont donc des
¢léments de t. D'od 0,.

Deuxiément, si (‘Qi)iel ¢St une famille d'éléments de T, alors:
UuQ =y ( U Qlx ... Q;:j)) = U @}x..xQqp).

1€l €] | ie) (i el
D'ou O,.
Enfin, si Q, et Q, sont de 1, alors Q=UVvetQ,= Wi,

i€l jE]
Vi et W; étant des ouverts €lémentaires pour tout je IetjeJ. D'on:
QNnQ, ={.U vj)n (U wj).—_ U (vin W)
1€l i€l i(iJ)eIxJ
Vérifions que pour tout 1,j fixés, v. N Wj €St un ouvert élémentaire.
V; et W, étant des ouverts €lémentaires, donc:

V]- =Ril>( v R:.I e[WJ :Sjlx s BB S{I’
OU Ry €T, et Sie T, pour tout k — L, 2, ..., n. 11 s'en suit que:
Vinw,=Rin s{)x...x(R;nsgl),

Comme les ensembles R, N Sk, k = 1,2, .., n, sont des parties
ouvertes dans E, , (1 <k < n), il s'en lrouve que O, est satisfait.

Conclusion: 7 est une topologie sur E. Elle est appelée topologie
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123
it Le couple (E,1) s'appelle espace produit.
Pl‘
pxaf O 129 :
ontrer que 12 famille des ouverts €lémentaires constitue une
hasel pour 12 topologie produit.

7. Montret que si |(E;,T j)) 1ep ESt UNE famille d'espaces grossiers
[espace produit (E,t) associé est, lui aussi, grossier.

solutior

Bl Lest PRSI E cette famille a permis, par construction de T, de
générer 1es éléments de celle-ci.

) En effet, si l'on suppose que Q= Q,xQ, x..xQ, est un

ouwvert élémentaire de E (autre que E), il existe alors un indice i, de
sorte que E; # Q, .0rv;, = \E-,D ,¢], donc Q; =¢. Par suite, {2 =
0. Cect signifie que la famille des ouverts &lémentaires coincide avec

lE ,¢‘ 1l en découle que la base de la topologie produit T ne contient
que E et ¢ . Autrement dit, (E,T) est grossier.

Exercice 130
Soient ((Ei,'cj)} 1<icp UNE famille d'espaces topologiques, (E.T)
l'espace produit associé et X = (X1> X2 -0 Xp) un point de E.
Montrer que les ensembles de 12 forme V=V xV,x..xV, ol
Vie V'(x,) dans E; constituent un SYyS
ges du point x de E.

Solution
Si V, est voisi

un ouvert Q; de E; tel que X; €
& Qix QX Q, < V xV,yx. xVo.
V,x V,X.. X Vpe Y (x) dans E.

teme fondamental de voisina-

nage de x; dans E, (=12 - p) alors il existe

Q.C V. D'ou:

Or Q,x Qpx.. % Q€T don¢
de x dans (E,7). 1l existe alors un ouvert Q de

Soit V un voisinag® :
y. Comme £2 est, par définition, une réunion

E de sorte qué xe Q&
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d'ouverts élémentaires, on peut affirmer qu'il existe un ouvert ¢ ‘.
mentaire noté Q,x Q,x..x £, satisfaisant a:

xe Qix Q,x..xQ, & &Y
Pour achever l'exercice, il suffit de remarquer que chaque Q, (i = |

2, ..., p) est un voisinage de x; dans E;.

Exercice 131

p . , )
Montrer que si A= J]J A, est une partiec d'un espace produit
Al

P
E =J]E,, alors
1=1
1. A= ][] A;
i=1
o P 5

3. En déduire que pour qu'un sous-ensemble A = [p]Ai d'un

i=1
P
espace E =j1_'[1E,- soit fermé il faut et il suffit que chaque A, le soit
dansE., 1Sisp
Solution

1. Soit (Xl X, X_) un poj -l
3 KXoy oo point de A. _ 3,
on obtient: S Pour tout V; de V'(x;)

| O#(V;x ... xV,)N A=(,N A)x .. x (V,NA).

D'ou :
V,ﬂAi¢¢,V1—12, )
Doncx-e-A-A'parsuite (x -
i 19 10 X3, Xp)€ K
Inversement, si (X1, X5, Xp)e ]E[ A alors
1>
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ParCO“Séquem‘ (VixVix .. x V)N A# ¢. Diod xe IP'[ A, .

i=1

O
) (kX o XpE A & Ae V((x,, X350e0s X))
& AeVx); i=1,..p
= xeA i=1,..,p

it

p 8]
<~ (xla x2’ . ,X H A

f= 1

3. En effet, on a:

R

Hi\,fermécb HA l'[A @HA 1'[

i=1
& A=A ,Vi=1,.,p & A fermé.
Exercice 132

Démontrer qu'un espace produit E = l'[E est séparé si, et

]—

“lement si, chaque E; Test.

Solutiog
4 condition est nécessaire.

e Jpfony que E soit séparé. Si x; ety; sont deux éléments dis-
1s
‘ de E, .» alors pour tout x' (x,, S ST SRR de
T E il o

<, 1l existe un voisinage Q pour (Xy,..»X; s «+-Xa) €0 UN

We

. | pou X1y, oo X,) tel que QNQ' = ¢. Comme Q et

el)’metre de la formeQ V,xV, et Q =V, 'xV,', avec

1§ t:
m),vze ‘U’(x ), Vl c t]j'(yiu) et VZ € ‘If(x ) on obtien

Qn
Ql= t
e = VNV x (VN V=0 = ViV

e OSUsEparg,

= 0.
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126 sl
: fisantc.
La condition st suffi QIO Ty y,) sont deux é]émang
Six=(pX ) B T=
1 x =% B30 0

T ..., n} tel que x,
distincts de E il existe un indice i, de {1, 2, } ) q WY
isuneie , 5
Or E, cst supposé séparé, on peut donc trouver deux voisinage,
r 1 C\. . L= . .
ts V W - osant:
disjoints V pour X;, et W pour y; - Enp
| Q =E1x...xE',in_1xVino+lx...xEn,
X

Q, =E; x ...ino_leinOHX voe X By

on obtient:
Q. V(x), Qe Y(y) et QN Q=0
E est donc séparé€.

Exercice 133 .
Démontrer qu'un espace topologique E est séparé si, et seulement
si, la diagonale de E x E est fermée.

Solution

Notons A = {(x,x)e EZ} la diagonale de E%. Supposons mainte-
nant que E soit séparé et montrons que C , A est ouvert dans E.
Considérons pour cela un point (x,y) de C.A.Onax=y. Il existe
donc un voisinage V. dexet =
e Y . N B 1 L

-2 A est voisinage

chacun de ses points. 11 est donc ouvert et A fermée.

Récipro
deux élg qUem.en't, SUpposons que A soit fermée et considéron
ments distincts x ety de . 11 g'en syit que (
' X

y)eC , A.
gomme.C- EZA €st ouvel’t, CE2A€ ‘v,(x ) P i ; iste
P voisinages ouverts V de x o W de jtel ar conséquent, il eX
$ que:
D'ol VxW < Cez A,

Conclusion: g est séparg VAW = 0.
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127

fx o E, F deux espaces topologiques, A © E of BC F Montrer
SO’ o,

e 5‘(,\\B)z(gr(}\)’<§)u (7\_ xgr(B)).

solution

On a par défimuon:
§ (AxB) = AxB N C g (AxB)

= AxB N CyAXC ;B U C,A<B U AxC B
= AxB N (CzAXC B U C,AxB U A<C;B)
=AxB N (CLAxC;B U C,AxB U AxC,B)
=((AxB)n(CAxC;B ) u ((Kx'ﬁ)n(E';Kx"B‘))
U ((A<B)n(A«T;B))
| - (('A'n‘c‘,;X)x(EnEJa‘)) U ((AnT;A)B)
U (Ax(BNnT;B))
=F.(A)xF.(B) U(F.(4)xB)U (A xF,B)

5 (f’z(A)xE) U (X ¥ .(B)).
Brercice 135

/ey une famille d'espaces topologiques, q E =Eett

ah"ﬂﬂ( ‘ 1€ | |

Ve H€ Produit de E. Pour tout indice i de I on considere une
A

e E o On désigne par T, la topologie induite sur q A, et
h‘ : L]

t la " .
logie Produit sur q A, . Démontrer que T, =Ty,
: 1
Usygpy
It d' , | : |
O T dldem'ﬁe" les bases d'ouverts. On a immédiatement:
1

%35 Qet/0= q QN q A.zﬂ (Q,NA)eT,

. e
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2.14 Convergence, valeurs d'adhérence

Exercice 136 |
On dit qu'une suite (x,) d'un espace topologique E converge

vers une limite a de E, si elle satisfait 2 la condition suivante:
VVeV@ In,(V)eN/VnelN, n2n, = x,€V.
Autrement dit, un point a de E est limite d'une suite (x,) si, pour

tout voisinage V de a, I'ensemble des indices n pour lesquelsx ¢V
est fini. C'est-a-dire V contient tous les éléments de la suite sauf un
nombre fini d'entre eux.

Montrer que:

L. toute suite constante est convergente (vers la constante la
définissant) dans tout espace topologique.

2. dans un espace grossier, toute suite est convergente vers tout
point.

3. dans un espace discret, une suite est convergente si, et seule-

ment si, elle est stationnaire. (On rappelle qu'une suite (x,) est
stationnaire, si elle est constante 3 partir d'un certain rang.)

4. la suite réelle de terme général x = -%- converge vers () dans

( R, l.]) et diverge dans I'espace discret (R, 2(R)).
Solutio

1. En effet, si a est cette
toute la suite.

2. Le seul voisinag
renferme toute la suite.

3. La condition est, bien ente

qu'elle est nécessaire. Supposons

© possible étant I'espace (oyt entier, celui-Ci

ndu, suffisante. Assurons-nous

V Ve V(a) 3 No(V)elN/ V ne N
Pour V = {a} on affirme que: 2 :
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£

remarque que la suite n'étant pas stationn
uestion (3).

‘ 1
4 11 suffit de prendre ng = [‘“‘“ dans le premier cas, Dapg le

ond, on
;1'3[11‘3‘3 lag
fxercice 137

Montrer que 8i (E,T) est séparé, toute suite convergente y admet
e seule limite.
Solution

Procédons par l'absurde. Soit (x,) une suite jouissant de deux

imites distinctes a et b dans un espace séparé E. Pour tous voisi-
lages V. de a et W de b, on peut trouver un rang m, a partir duquel
estermes de la suite appartiennent 2 la fois 2 V et 3 W. Il en découle
i Vet W ne peuvent pas &tre disjoints. Ceci est absurde, car E est
SIppos€ séparé. Donc, a = b

Exercice 138

aire, elle diverge

Soit (X,) une suite d'un espace (E,t). On dit qu'un point a de E
Stune valeyy d'adhérence de (x,), si pour tout voisinage V de a il

Exig : . .
' une infip;g d'indices n pour lesquels x, € V.
Ontrer que:

N 1 ule
il *Suite (x) définie dans (IR,H) par X, = — admet une se

Cu 1

rdad.hél‘ence; sa limite a=0.

: daﬂ .
dkgl o bs-z(li’ I'l)’ la suite (('1)")., posséde deux valeurs

~loy ) , .t d'adhérence
Vi tou:e Yaleur d'adhérence d'une suite en est un point

g p
80[%. 918, l'inverse est faux.
L on

d'adhérence

rence
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a ne peut-étre valeur d'adhérence, car o
trouver aisément un réel € > 0 tel que le voisinage ]a—e,a+g[ de

: o fini d'él¢ la sui
contient au plus qu'un nombre fini d'éléments de e (x,).

Aucun autre réel Peyy

> En effet, tout voisinage V de 1 (resp. -1) contient une infinjge
d'¢éléments de la suite, de valeur commune égale a 1(resp. -1). Aygy,

autre réel ne jouit de cette propriété.

3. 1 suffit de se rappeler les définitions de convergence et ¢
valeur d'adhérence.

: : 1 '

Pour l'inverse, il suffit de voir que les points — pour ne N dels
suite considérée dans (1) sont des points d'adhérence, mais ne sont
pas des valeurs d'adhérence.
Exercice 139

1. Soit (x,,) une suite de points d'un espace topologique E. Posons
A= {xeE /K> n}

etnotons A I'ensemble des valeurs d'adhérence de (X,)-
Montrer que:

A=) A,.
ne N

2. En déduire que I'ensemble - ; 1o
est fermé. q des valeurs d'adhérence d'une suit

Solution

L. Soient ac A et Ve V(a). 11 existe alors une infinité d'indices
ke N de sorte que X € V. Par suite:

VNA# ¢ Ve N, V ve V(a).
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lioﬂdusion: —
A=) A,.
neN

s Clestunc intersection de fermés, donc lui-méme fermé

| Démontrer que dans un espace s€paré, toute suite convergente
v admet qu'une seule valeur d'adhérence: sa limite.

"7 Une suite n'adme}tant qu'une valeur d'adhérence dans un
sspace sEpare est-elle toujours convergente?

solution :
| Soit a la limite d'une suite (x,) d'un espace sépar€ E. Suppo-
s que cette suite possede une autre valeur d'adhérence b, distincte

i Tl existe alors deux voisinages U deaet Vdeb tels que UNV =
o.0r. il existe un rang n, permettant d'avoir:

vneN n2n, = Xx,eU.

llen résulte que V ne peut pas contenir une infinité d'élémentsx,.
Donc, b ne peut pas étre une valeur d'adhérence comme annoncee.
Dot le résultat.

2. Non. Elle peut diverger comme 0n le constate sur ce contre-
txemple: .
Dans ('R,H) les trois suites divergentes (X,) g0 (Yudal (Zo)s
défmies par

ZEll:v"_"- P
Xy = "~
Xpo= 0 _ a2+l 3p+ .
5 y2P+1— € Z’Sp+2= 3+€ .

"Nt chg . h=2etc =13
fes h‘-icu“e une seule valeur d'adhérence a =0,

Uvemeny,
Xerci,CB 141

i ' ‘adhérence
Yune ?u_’"trer que pour qu'un point 2 soit plnil ;tz{atlzllzllrog o
1 ra .
e (x,), dans un espace E, il faut et 1

\4E
VVeda) vmeN 3nel/ (n?-m’\"nE )
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Solution :
essaire.

La condition est néc ; :
Elle est en effet évidente, car St d est une valeur d'adhérenc, de

(X,), alors on écrit:
Vv Ve V'(a) card {ne N/x,€ V] = 004

Par conséquent:
VvmeN IneN/n2m A x,€V.

La condition est suffisante.
Procédons par l'absurde. Supposons qu'il existe un voisinage y

de a tel que:

card {ne N/ x,e V] =P < +oo.
Cela entraine l'existence d'un indice m = p+1, par exemple, de sorte
que X, € V pour tout n 2 m. Absurde!

Exercice 142

dénSoubE un espace topologique satisfaisant le premier axiome de

menot:ﬁ 522:)1:;% agtrement dit, tout point x jouit d'un systéme fondz-

s damra le de voisinages. Montrer que x admet (un autre)
ndamental dénombrable de voisinages (V) vérifant :

Vs S Vo, 1
n+1 n* ne IN.
Solution

Soit X un point g'
nombrable de voisinages que 1'on note(Ws)
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Juttor A |
¥ soient x un point d'accumulation de A et (V) une suite de seq
- isinages vérifiant:

Vll+1 - Vni ne M.

' Lensemble V, 0 (A\{xn n'est pas vide. On y choisit un élément
(,.On construit ainsi une suite (x,) convergeant vers x. En effet, si

Uestun voisinage de x, il existe un indice p tel que V, € U. Dod

VnelN,n2p = x,eV, CU.
La réciproque est évidente.
2.81x est un point de A, il y est adhérent. Par conséquent, la
suite constante x , = X convient. Par contre, si x est un point adhérent

i A sans y appartenir, alors il en est d'accumulation. En vertu du
tsultat (1), il existe une suite de points de A convergeant vers X.
La réciproque est comme précédemment, évidente.

Exercice 144 : ite de
Soit (x a) ,Une suite d'un espace E. On appelle suite extraite

i : une application
X,),, toute sous-suite (xq,(,,))noﬂ ¢: N — N est )]

Slrictement croissante. Démontrer que:
' - nte
1.1) toute suite extraite d'une suite convergente est COnverge
(vers la méme limite).
ii) que dire: )
a) de la réciproque’ TP 9
b)) d'une SUiE’J golgmettant o so.us-sqlte dlv;l;iel(]:e ), est une
2. 1) la limite de toute suite extraite d'une s e

Valeur d'adhérence de (X,),-
ii) que dire de la réciproque”
Solution
1. 1) Eneffet, si (X,), ©8
¥ Ve V(a) 3n,(V)eN: ¥ g
Soit (X g(n) ) , une de ses sous-suiles:
@(n) 2 n, V ne "

t une suite convergente vers a, on écrit:
cN. n2n, = X,EV.
n sait que (simple récurrence):



Espaces topologiques: Propriétés générales
134

Donc: cV
vnelN, p(n)2n2n, = Xem€ V-

Clest la convergence souhaitée.

iiya) Elle est fausse. Une suite divergente peut adrpettre des SOUs.
suités convergentes. On le voit clairement en considérant 1 SUite

divergente (X,), = ((- 1)“)n dans (R,I.I). Celle-ci admet deux Sous.
suites convergentes de termes généraux X,, = letX,, , =-1.
b) Elle est divergente de méme grace a (1).

2. 1) Cest le cas, puisque tout voisinage de cette limite rencontre

1a suite en une infinit€ d'éléments.
i) Elle est, elle aussi, fausse en général. Cependant, elle egt

vraie dans les espaces satisfaisant au premier axiome de dénomp.-

Exercice 145
. ¢ . . p
Soit (z,) = ((z}l zg)) une suite d'un espace produit [T E, =E.

i=1

Démontrer que pour que (z,) soit convergente vers un point z =

1=1.2. ... p, soit convergente vers z' dans Epipeaing L p
Solution
La condition est nécessaire.

- 0 l .
Soit (z,)=(z,,...,2%) une suite convergente vers (z',....%")

dans E. Soit V. yp voisinage de z' dans E., i =1, 2, ..., p.- L8
£ : y eeed

sousensembleElx...in_,xVi xme,,_pr:W de E est uf

voisinage 'l exi
age de z. Tl en résulte qu'i] exjste unrang n, de sorte que:

n2n, =
D'ou: 0 Z,€W.

i %
% converge vers 2, = | S - s |
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n est suffisante.
Lﬂ“{mdmg que pour tout.1.=4, 2 p, la sui :
nm y Ly..ny Py dd S i
pr““ | : suite (z,), converge
1damsE posons (Zys---»Zy) =(2,) et (z',...,2°) = 7 puis

{‘\
i s un voisinage W de z dans E. On sait que W contient un
élémentam: V,x... xV, de z de sorte que V; soit un voisi-

nsln &
e / dans Ei’ i=1,2,.. p- Ainsi, pourtouti=1,2,..,p
JV, de 4/ (z'), il existe un entier naturel ni tel que:

By o= ZyE V.

fprenant Max ni =n, il vient:
1<i<p

AZf, = ZE V1% xV,.
(¢la entraine:

C.QFD

Exercice 146

I Montrer que si a = (a', a?, ...,aP) estune valeur d'adhérence

T P :
fune suite vectorielle (z,) d'un espace produit TTE; =E- alors 2’
i=1

CJ . o i 3 :
"Situe une valeur d'adhérence pour 1a Sulle composante (Z,)- !

2,

5 P
: - Momrer que la réciproque €St généralement fausse-
O[utwn
ge V; ¢ a'.

l.p
our tout i = 1, 2, ..., p, on consider un voisina

Ok un voisina
EedeadE - x By 1 xVj ><Ei+1x...><Ep=W est alors

ans E. Par conséquent:
o, card {ne N/ z,€ W} =

card {ne N/ z.e Vi} = +0°-
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N TR
Il en résulte que a’ est une valeur d'adhérence de(z).i=1,2__ -
2. Examinons le contre-exemple suivant. &
On munit E, = E, = R de la topologie usuelle et on définit dap,
1 =8

R’ lasuite (z,) = (X,,y,) comme suil:

=0 pr .
x" . yln n
n.

YZn+1=

Il est clair que 0 est une valeur d'adhérence pour (x,) et (y,). alors

que (0,0) n'en est pas une pour (z,).

2.15 Quelques problemes de plus

Exercice 147
Pour tout a de R, on pose E, = Ja,+oo[ et on considere la famille

T=[¢JR, (Ea)aenl'

1. Montrer que T est une topologie non séparée sur R.
Comparer-la A 1a topologie usuelle.

2. Les deux parties A = ]-1.1[ etB = J-==.6[ sont-elles ouvertes’
fermées?

3. Déterminer V'(5), F{5).N ey
Solution

1. On a juste 2 s'enquérir de 14 stabilj ort 2 12
réunion et l'intersection, labilité de T par rapp

Soit (E, )a _— une sous-famille de T On a:
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Jinf L,+eo si InfL>-eo

UE.=
R | Inf LL = -o0.

ael

nnc,

U E, el.
;E‘

deux éléments de T alors:
E,NE, = {Max (a,b), oeT.
conclut que T est une topologie sur R.

Cetie topologie n'est pas séparée, car ses Ouverts se coupent.

1 A=}-1,1[ a un intérieur vide et un complémentaire ]-e0,-1]U
nc, elle n'est ni ouverte ni fermée.
mme A, ni ouverte ni fermée. En clair, on a

GiE, et Ey, SON
On

1+ non ouvert. Do
B=]-o0.6[ n' est, co

(8]
B = Too6] =0, CgB=[6+[eT.

3.0na:
v ={ve R/|5e+= V. e>0}.

5 (5)) = %15 =TTV = T e=T=3]
‘ N -6 N=N

Exercice 148

On considere dans R? 1a famille
c= ‘IRZ, o, (B,)”O}, avec:

Br-.:\(x,y)ele/x2+y2-2x-2y+2<r2 }

1. Représenter dans un méme repere orthonormé B, et B

= Q)et comparcr-les.

une topologie non séparée.

7 Montrer que est
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h— PSS 0
: 2 2 2 2 .
3. Déterminer N°, N°, Q?, 02 R . RxR, ¢ fR/IR

En déduire que (R*, 6) est séparable.
4. Pour touta de R on pose

= {(x,y)e R*: y = ax + (I—a)}.
Montrer que R* :
5. La droite d' équanon Y =-x est-elle partout dense?

6. Si I'on suppose quere Q, , o demeure-t-elle une topologie sur
’R ?

7. Vérifier que B = { B« Q.} constitue une base dénombrable

de o.

Solution
1. Ona:

B, = [(x,y)e F-DP 4 (y-1)2 < }
C'est le disque ouvert de centre (1,1) et de fayonr. D'ou le schéma:

?

"‘*m

Il est clair que B, C B,
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par ailleurs, si B, et B, (r >1,> 0) sont

at o ¢! lR

\\’ \‘\\.l““ ‘
dements alors:
l.;‘.:L n Bf1 - BTIEG.

afin 1a St bilité de © par rapport A 1a réunion. Soit
o _une Sous- famille de ©. On a:
v :l‘l‘ R '

B apl. si sup L <ee,

R® si sup L=rc

)
ns. 0 est une 1opologie sur R-.
Cette topologie n'est pas séparée car Ses ouverts se coupent tous

wmoins en (1,1).

' Onremarque que tous les
anséquent:
2 v ' 2
N- =Q° = RxR, =R",
Q2 ne contiennent auc

. 2
ouverts non vides de o coupent N par

De méme, on constate que N et un ouvert non

Wide. Dong:
QO 0
a3y 51
: N =Q° =9
plus grand ouvert contenu dans R> etRxR. est B,. Dol
0o 0
/\'2\ /"'N-
R + = RXR % = B 1
| est partout dense.

(
R* 1) est séparable puisqu il ¢
4. A éant une droite passant P

1), elle coupe tous

|R"=A|.

onc,
e 1a rencontrent pas.

l(‘.b
ouverts non vides de 6. D
C'est le cas

deSB Non. 11 y a des ouverts qui n
1 » entre autres.

f:, Oui, car @, est dense dan
On sait que tout réel posit

sR.,.

f ¢ est limite d'un¢ suite rationnelle
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Bf "—:BSUPI',, - U Brn ;
ne N

posIIve croissante

hett ne base déno
Ainsi. @ = {(B,)r e } constitue u mbrable e ,

Exercice 149 2
Soit donnée dans R’ la famille T= {d), ol (C')‘30] telle

C,=A NB,, avec
A= [(x,y)e IR2/y >x? - rz},

B, = l(x,y)e R’/ y<-x2+ rz}.
I Représenter C, , r, >0, dans un repére orthonormé.
2 Représenter C, UC,_et C, NC, dans un méme repir

orthonormé, pourr, >r, > (.

3
3 Montrer que T est une topologie. Est-elle séparée ?

4. Montrer que toute droj .
. roite passant 'origi out dens
dans R? P par I'origine est part

Solution
I La pam ;
parue C, est représentée par la partie hachurée de 12 fig”

Ci-Contre

2 Sir >
‘ 2 £. > O, .
1 on vorut que:
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Crln C‘: :C‘z Bl CH J Cr: 1 Cr, -
J v '
[ ensemble est représenté par la partie hachyrge deux fois

| WP, ~ - . '

gl llgu[r?l ;; :}(I)Jifsé& Le second, plus grand, est cely; hachuré hori-
| i _

e

ylrs

.\aturellement, les lignes de contour n'appartiennent pas aux trois
“isembles représentés ici.

3. Vérifions que 1 est une topologie sur R.
2) R? et ¢ appartiennent a T par construction.
b) Soit (Ql)le A une sous-famille de t. S'il existe un incice Ao

de
Atel que on =R?, on a immédiatement:

U le RZET.
Deméme, $i; s
alors: =6 ¥ Aeh
U Ql= deT.
rEA

nfin o 5
' Stles deyx possibilités citées sont exclues, on obtient:
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U C. 5 CSupA si Sllp A< +oo
{3, = ) AT ) Si SU -
AEJ_\ y AeAC R, R P A Foo,
D'o:
U Q?«. cT.
AeA

On conclut que I'axiome O, est vérifié. |
¢) Soient 2, et€2; deux éléments de . On suppose quil g,

g 4 . .
non vides et différents de R® (le contraire conduirait 3 des ¢y
tnviaux). On a:

2N, =C, NC, =C,. . et

(R*.7) est donc un espace topologique.
Cet espace n'est de toute €évidence, pas sé€paré. Cela s'explique par |
le fait que les ouverts de 1 ne sont pas deux a deux disjoints.
4. Nous remarquons que T'origine (0,0) du plan R* appartient |
tous les ouverts non vides de 1. Par conséquent, tout ouvert C, det

Iencontre toutes Jeg droites passant par le point (0,0). Celles-ci son |
alors partoyt denses dans R A

Exercice 150
Soient ( EB)une

sur E. Montrer que |
1.8 cg

sPace topolog;

que infiniet 9 1a topologie cofin®
€S rois propr;

€t€s suivantes sont équivalentes:

P e E. le singleton {p) est fermé dans (E9)

- -
que: D distincts e existe G et H de 0 de
(ae G et be G
Solution ) el (ag H ¢y be H)
L = 9
ensemble Ce{p} est ouver dans g * ’

s
. I est aussi ouvert da?
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. g Donc. € singleton {p} est fermé dans (E9).
i

3

=
ot fermés dans (E.9). Posons:

jalb)
G=E\ {b} etH=E\ {a].
_ 4zr que G et H sont ouverls dans (E9) et vérifient les
r.;::utr:a r2guISEs.
; = |
e £ un ouvert non vide de © " et a un point de . Pour tout b
» 0.0 il exisie (par hypotheses) un ouvert H(b) de O de sorte que:

a= H(b) e1 b€ H(b).

vk
C.QC U CgH(b)
beCg 2
ti-a-due;
c.nccCg| M HD
beCgld
s
(| Hb) < Q.
peCy il

Lenemble V = () H(b) est un ouvert de 8, comme intersection
fimse (du fait que Cg L2 cst fini) d'éléments de 6. Et, comme il
Comtient 2. on conclut gue €2 est voisinage de a relativement & .
et done un ouvert de 6. Dol 8 Ceo

Eorexcice 151
Soit T ta famille constituée de R’ det(A,) - telsque
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2
A, = {xy)eR” /xl+]y] <n}.
1. Donner une représentation géométrique de A o, €l Anz (n, < i

dans un ménu, repere orthonormé, puis montrer que T egt une 4, s

lope sur R*.
2. (R*,T) est-il séparé?
3.0n pose A= [O}le Déterminer AN A, pour nep* B
déduire que R* =

Solution
1.On a:

A, = l(x,y)e R/ X+y <n, x 20, yEO] U
U {(x,y)e R’/ X-y<n,x20(, ys0]

U [(x,y)e R/ X+y <n,x<0,y 20]
U {(x,y)e R%/ X-y<n,x<0,y< 0}.

D'ot sa représentation graphique:

Ona immédiatement:
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2 ' y 5 + .
sont donnés dans T. Par ailleurs, si (A
A ct R ( n) ne LCN eSt unec

.0
,u.;.famﬂlc de T,ona
N AsupL Sl Sup L < 0o,
U A, =
2 .
nel R St sup L = 4oo.

DO“C! U Ane T.
pelL

£nfin, si B et B (m < n) sont deux éléments de T, on a:

B,NB,= B eT.
R*.T) ne peut pas atre séparé, car ses ouverts se rencontrent.
3.0Ona
ANA, = {0}x]-n.n[.

Dod, A = RZ.

Exercice 152
Déterminer 1'ensemb

des points ..L _1_. o *\2
p (m+n ,(m,n)e(lH) :

le dérivé A' du sous-ensemble A de R formé

Solution

Po 1 1 m+n ) ' i
SOMS Uy, = | — + — ~ On sait quun réel a est un point
n

d'accumulation de A s'il exis

te une suite (M) de couples

dentiers non nuls telle que la suite extraite (u ) converge Vers

5 myDy Jke N
-1l s'en suit que les couples (m,Ny) sont deux 2 deux distincts et
qu'un ensemble

ue . . \ 2
que la suite (m,+n,) 3 tend vers +o° (car il n existe
€

fing |
;\“;_ (c)ie couples (m,n) d'entiers naturels tels que la somme m-+n SO1t
jorée par un réel donné). D'apres la forme d€ Yma: on est amené 2

1 1
de .-r6-+-r-l- par rapport a 1.
> m. On considere donc A
(points tels que

distin
guer deux cas suivant la position

Sang

modif:

COmme(;:ﬁmr A on peut supposer I
réunion des enscmbles Al = {umn} pn2m22
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_1_+_l_ < 1) et A ={Unn, (points tels que ..]...+__[

immédiat que: _ |
A' = AI U Az '
Déterminons A, . Pour tout point u,,, de A, autre que u,, o,
| 1 1 5
it el W
IS | SR SRR R

Donc:

5 m+n.
"

ce qui montre que toute suite de points de A, distincts deux A deu
converge vers (). Ainsi:

| Al = {O}.
Pour déterminer A,, on remarque que les points de A, peuven
étre rangés en une suite de terme général:

I+n
Uy =(1+“1‘) ‘
n

Cette suite converge vers e. D'autre part, cette suite est strictemen!

e . 4 ) 1 }1+x
décroissante, car la fonction f : x — (1+.).(..) vérifie, pour tout X

deR.

f'(x) _ 1] 1
%) = L()g (]-I--x-) - .’_(_ <0;
ce qui montre que f est strictement décroiggg
seul point d'accumulation de A, . Finalemen

A'={0.e}.

nte sur R} . ponc e est ¢
L, On troyye:

Exercice 153

Soit @ un élément n'appartenant pas A R. On poga G _ IRU{O)} el
on note ¢ la famille de tous les ouverts de R par rapp, 2 la topologic
usuelle et des complémentaires (par rapport 3 5) de tous Jeg fermés
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G o) est un espace topologique.
.« ensembles dérivés de A =]1,+eof et B = Ja,b[,

\n.\hém

, péterminer tOULES les parties de & admettant » comme point

dmumulauon.
Solution

| Notons T = |.| 1a topologie usuelle de R.
1 est dans 6. De méme,  =Cg0 appartient

¢ appartient & T, donc
([RH) Ceci achéve le premier

16, car ¢ est un fermé borné de
miome de Hausdorff.

Examinons la stabilité de ¢ par rapport 3 1a réunion. Soit (£2,);

we sous-famille de 6. Nous distinguons trois cas.
) Si(Q;),,estincluse dans T, alors, celle-ci €tant une topologie,

ona immédiatement | Q; €T, donc U Q.eo.

i€l

ii) Si tous les éléments de (£2) ;D '‘appartiennent pas 3 1, alors

pour tout indice i il existe un fermé borné F, de (IR,H) de telle sorte
WeQ =C F .. Donc:
Jo -y e o)

i€l el

(IR,|.|) on déduit que U Q;est

i€l

(\

-Omme ﬂl F, est un fermé borné de
1€

dans o,

) Si (Q,), , est composée d'une SOUS- famille (£2)) _ d'élémerlts

de Tet d'une autre (Q) 1 d'éléments n'appartenant pas a T, on écrt,
€1y

e - -
n conservant les notations précédentes:
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Ya=(Y alyy a)=(y e v
ZC"“Q, CSQ se12 )) ((19.( Q Mz ))

iEIl iEl2

Comme (ﬂ CRQi) N ‘ﬂ Fi] est un fermé borné de (IR”] on

déduit que (J Q; est dans o. Celle-ci satisfait alors ay deuxigme
i€l
axiome de Hausdorff.
Terminons par regarder le troisiéme axiome. Soit Qpet Q, deuy

€léments de 6. On distingue comme précédemment trois cas,
1) SiQ,et Q, sontdans 1 alors QN Q, reste dans 1.

i) Si Q,et Q, ne sont pas dans 1 alors, il existe deux fermés
bomés F et F, de (R, |.|) tels que Q, = C sFiet Q,=C_F,.
Donc:

QN Q, =CeFNC_F,=C o(F1U F,).
Comme F\UF, est un ferme borné de ([R ||) on déduit que
Q,N Q, estdans g.

iii) Si Q, est dans 7 et £, ne I'est pas, alors il existe un fermé

bomé F, de (IR H) telque Q, =C sF'2. Donc:

YN =anc.F,=qnc F €T,
Conclusion: & est yne topologie sur G
2. A’ contient biep entendy [1,+oo[, Les autres points de R ¢

Nages ne rencontrant Pas A. La fami]le de voisinages de @ i
cOmposée de § et de toute partie V de renfermant un complémer”
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fu'mé horné de ([R | |) Donc we A'. D'ou:
..ﬁ"d A'=ll, +oo U {o}.
. mémes raisons, on obtient:
B' = [a,b].
 siAest une pame bornée de R, A est fermée bornée. Il en
Q=Ce “A est un voisinage ouvert de ®, ne rencontrant

pour les

ort Qe
wA Donc, (® ne peut pas étre un point d' accumulation pour A.

Cest le cas aussi de toute partie B de S telle que B = AU{m}, ol

s une partie bornée de R. En effet, on a:
c.AnB={o}

Les parties de & admettant ® cOmMme point d'accumulation sont les
nrties non bornées de R et les parties de 5, composées de parties
unbomées de R, auxquelles on adjoint le point . En effet, si A est
ine telle partie et € = CSF (F fermé borné de (IR,|.|)) un voisinage

ouvert de , on a:
QNA =CgF N (A\{m}) #0.
e contraire conduirait 2 1'absurdité:
Ao} € F.
Exercice 154

Soient E un espace muni de 1a to

deux 6léments distincts de E; on pose Cefx}=U
inage de a et que

pologie codénombrable c,xeta

X#£a
e intersection quelconque d'ouverts de E n'est

2. En déduire quun : . .
verte et qu'une intersection quelconque de

pas nécessaxremcm ou
voisinages d'un point de

Ce point.

(E,0) n'est pas, en général, un voisinage de
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de E, montrer alors que la famjj). de ..

’ - { >3 rﬁh’

plémentaires finis, ¢, ' &
By,

Iy

150

i ément
~Sibestun él e
de g—: contenant b et admettant des

e b
systeme fondamental de voisinages de

?O?J”z?un ouvert de E, contenant a. Donc, C'est yp YOtsing,
w;,n c;c 4. Par ailleurs, on sait que 2 appartient a tous g,
ou :

, d'oti:
nages, d'0 {a} .
=

Inversement, si () U, contenait un autre point b autre que z, 5,
ita
dans U,, qui ne contient pas b, ce qui est absurde. Donc,

N U, € {a}.

2. C'est une conséquence immédiate de (1). On voit ici que I'mi-
section d'ouverts (U, ), de surcroit voisinages de a, est un fermé {4
lequel n'est pas voisinage de a.

3. So'iem () une telle famille et V un voisinage quelconque &
b. 11 existe, par définition, un ouvert €2, de complémentaireC:2

dénombrable, te] que be Q C V.1l en ressort que pour tout ae C:{
Ua £ m(b) et

U, CQcC

Dol Je résultat. 4

Exercice 155
On muni¢ I'ensemble E=

o=[¢’ {a}’ {a,b}, {a, £, g}, [a’ b, f, g}, {a’ B P E]-
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(a, €, f}. Déterminer la topologie induite 5, sur
i

on pOSL‘ A=
+F (A
xh"“ o gr(

\-‘Jaliﬂ“'
qsuffitg

sl

"o o ). fa). o £ b o b2 o 1) )

jﬁCSl unc.
ntre. © décrite doit avoir un nombre d'éléments compris

ue T ait un nombre d'éléments compris entre 7 et 256.

Par CO
e 2et7. Clest le cas de 0= {tb, {a}, [a,b}, E] par exemple.
» W(f) doit contenir le plus petit ouvert contenant f. D'ol:

W = {{a. L 2}}
3.1 n'est pas séparé, car les points a et ¢, entre
wssédent pas de voisinages disjoints.
Par ailleurs, on remarque que {2, b, b g] =E. Donc, (E0) &
parable.
4 Ona:

autres, nc

Qeca © HOEO'/Q=OnA

Dong:
OA = {¢’ {a}, {a T} A}'

De méme, on a:

o
o

/‘“—
E.(A) = CgA = (o.c.d.gh} =@
F.(A)=A\A= {a,c,a,e,r,g,h}\{a} = {c,d,e,r,g.n].
Exercice 156

On munit R de la opologie
o= o.M, 2. € Co® ¢, QUN, C,QUZ. R|

ton pose A = (2, V2
| Déerminer la famille de vOisinages Y (A) de A, son ensemble



‘Q g ’r rﬂ' (_‘, ) - Y
l - -

jon extérieur £, (A)
o 1 A . “ b(,n ‘leLl lLll x .
dérive A', sa frontiere ¥F.(Ae

y verifier que A est partout densc dans (R,0); en déduiy, i
&, r't g Al
ot séparable.
(R,0) est s¢p o | L
3. Comparer la topologie induite 6z sur Z et Iy l”PUln}ur:

gm&\‘i(‘l‘t‘ 'l'z ;

Solution
1. Ona:
Y(A) =[vc R/ C,QUN C v},
A' = R\A,
gr(A) T [R;
E.(A) =¢.

2. Ona A = R. Comme A est fini, (R, o) est séparable.

3.0, = [¢,!N,Z}. Elle est plus fine que la grossiére 7.

Exercice 157
Soit a un réel. On pose:

Q, = [(x,y)e R* /ly=a(x-2)+ 2},

2, & [(x,y)e R%/x= 2}.
1. Représenter Q, et

2., sur un repere orthonormé.
2. Montrer que:

R°= U aq,.
aEfRU{m}

: : {ons
3. Soit ¢ la famille constituée de ¢ et de toutes les réufl

, elle
d'éléments de 1a famille (Q, ) RU{=) A quelle condition O est-¢
A€ K\ oo

une topologie sur R? 9 i
" SuPpOse dans toute la suite que cette condition est Prése” %
4. Avec quel SOus-ensemble A de R? faut-il renforcer 12 fam!
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pour obtenir une base de la topologie 67

) ol -
{ﬂ; “g:;énlinef 1a nature topologique des parties
' B={(O’O)}’ C= {(2,2)} etD= ‘(x,y)e R%/ y:tx].

A ' JR—
¢ Déterminer 4®),B,B, B', F.(B), E,(B), Y(),C,C,
C'.({) ,-6 et D' .
7. Montrer qué 'espace
3 Comparer la topologie G et la topologie cofinie T sur R:.
9. Représenter sur un repere orthonormé la partie

A= [(x,y)e R2 /x4yt <1, y2 0}.

(R*,0) est séparable, mais non séparé.

10. Déterminer, puis représenter sur le méme repere, A .

11. En déduire que A n'est pas partout dense.
12. Donner une autre raison de ce résultat.

13. Vérifier que O = \(x,x)e R*/0<x< —\/—2-7—] est un élément de

la topologie induite G
14. Montrer que le sous-espace (A.C
15. Caractériser les suites (W), = ((Um

A) n'est pas sépar€.
v,)), convergentes dans

(R*,5) vers:
i) le point (a,) = (2,2),
ii) le point (ot, @) # (2,2),
iii)le point (2,8), B # 2,

iv)le point (or,B), o # B # 2.
16. Déterminer les valeurs d'adhérence de 1a suite (W,) = ((n,m)),

Solution
1. Observons de prime abord que £2,

passant par le point (2,2). Q_, estla droite passant par le méme point
ot paraliele a l'axe des ordonnées v'OY.

est une droite de pente a et
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1. Q)

y
g

. 8

2 construcuon:
2. On a par cons 3 QaclRZ_
aeRu{eo}
Soit (x.y) un point de R*. Six =2 le point (2,y) est dans Q_: i
x = 2. le point (x.y) appartient 2 la droite Q y-2 - Donc:

x-2

3. La famille o est stable par rapport a I'union, renferme ¢ et
content R* comme on vient de le voir. Pour que le couple (IRZ’G)

;'_‘: un espace topologique il reste 3 g d'étre stable par rapport 2
: lersection ﬁm_e. Comme I'intersection de deux quelconques de ¢S
iéments est ou bien yp de ses €léments ou bien réduite au singleton

¢ de I'appartenance de ce singleton 3 9
pologie sur R?

. . .\ g S
« k() “ONStitue une base de la topologi¢ @

{i’Z.Z‘;;}. on déduit I'exigenc
pour gu'elle devienne une to
4 1a famille Q,)

5. B tegt s A={(2,2)} .
. m OUVCN.C ni fcrméc’ C&!‘ e“c dtidon Complémcﬂlalfb
D est fermge garal;:fs € qui précage.

6. En g report, " Comp lémemaire coincide avec l'ouvert £
ndnl a Chaque déﬁniﬁnn Sy kg o WA :
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y@)={Ve R /Q,C v},

B =0,
B =Q, {22},
B = Q,\ {00, 2.2)},

# B)=B\B =B =,\ {22},

0

— —_—
EK(B)'-'- szB =CIR2 B ‘-'-szgl U {(2,2)},

¥ = |ve R @2e V],

de (R?,0) se rencontrent en (2,2), donc il

7. Tous les ouverts
arable car il renferme la

N'est pas séparé. Par ailleurs, (R*,0) est s€p
partie dénombrable et partout dense C.
8. Les topologies © et T ne sont pas comparables: aucune n'est

plus fine que J'autre. . - .
9 C'est le demi disque supérieur ouvert. Voici sa représentation:

- §
A

O 1 X

10. 1 adhérence A est constituée, par définition, des points du
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renant 2 tout ouvert pa.ssanll par i) el eNContray,
plan appar s points compris strictement entre les drojfe Q'

: » de
Clest [ensemble st que Q = est la droj ~
st utile de remarquer q 8-y7 roite pagg

——

11
(3 VT ’
7 7) et tangeant 3 A au point & L représentant la Solutiop

par (

du systeme
y-2 _  -X
X-2 x>
y= Tax%s

1 )
L. A n'est pag dense dang R2
12. L'ouvert

dense dapg R2

{22 | ol

13. Le 50
us-ense
Onséq rsection de A avec 1'ouve

) am
“Nt21a topologie induite o, . Voici 52
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{ s.maliO“'-
«:pﬂs"

4. Silon considere les deux points (x,x) et (x',x") avec 0 <x <
<05, on constate que tous leurs voisinages contiennent 'ouvert
0.1ls ne peuvent pas jouir de deux voisinages disjoints. Le sous-
space (A, G,) n'est donc pas séparé.

15. On sait qu'une suite (W ) converge dans (R*,0) vers une
imite L, si elle vérifie:

Y VeV (@L) A n,V)elN/V nelN:n=n, = W,eV.
i) SiL =(2,2), on remarque que le singleton {(2,2)} estun de
% voisinages. On écrit donc:
In,eNVneN:n20o = W,=,Vye {22}

Onen déduit que la suite (Wn)q est stationnaire.
72, on remarque que la famille{Q.,}
al de voisinages de L. On écrit donc:

= W, = (u,,Va)E -

i) SiL = (0,0, avec &

‘Onstitye un systeme fondament

In,eN V ne N /n 2o
Cest-a-dire:

3 ny€ = W,= (UysU4)-
0

N ‘dneIHIan)

suite (W ), €8t de la forme

(UqrBp)g P & Po-
y, avec B # 2, on remarque que la famille {Q.,,}
fondamental de voisinages de L. On écrit donc:

On conclut que 1a

iy siL = 2P
constitue un sysme
3 nOE‘HIV nelN:n2n, = W, =W,,V,)E R,

l’"net-?{—difc.-
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3noelNVne|H/n2n0 W

Il s'en suit que 1a suite (W,)_ estdelaforme
(2,v,),

=(2v)

a partir d'un certain rang,

€crit donc

IneN/vy neN/n> o= W, =(un,vn)eQM :
c'est-a-dire i

I n,eN Vnelﬁln?_no vﬂ-.:-E:_%_(un_?_).;.z
On déduit que Ia sujte n), €st de la fo "3

-2
f, 4 (u,-2) +2J
-2
a partir d'un certajp rang.

16. Un point (3 p
W)

n

de R?

=((n ), si : ESF Une Valeyr d'adhérence de la suite
Infinité de Points. Qp déduit ge € qui prg " 1a suige en u
valeurs d'adhérence Cherchg eg;. Préceq

€ que l'ensemple des



Continuite

G
el
7 S

3.1 Generalites

Fxgrcice 158

Une fonction f: (E,T) — (F,0) est dite continue en un point a de E
.

VWe V(f(a)) IWe V(@)/f(V)C W.

Elle est dite continue sur E si elle l'est en tout point a de E.

L. On munit E = {a,b,c} et F={1,2} des topologiest = {q;,E,{a}}

Tl \CD,F {2“ respectivement et on considere la fonction

L (E7) - (F,0) définie par
f(a) = f(c) =2, f(b) = 1.
Etudier la continuité de f sur E.
2. Montrer qu'une fonction f: (E,x) = (F,0) est continue en un

Point acE, si Vimage réciproque de tout voisinage de f(a) est un
Voisinage de a.

Solution
1. Ona:
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Bl S0, V@ = ),
2) = {{ a}.{ ab}{ c}.E}. V'(b) |
qf(f(a)c)v_;( q)f(f([(f)) = (V(z) = {{ 2},F} et V(l(b)) = ‘V'(l) - {F]

: f est continue en a et b. Par Contre
i iatement que
1 ressort imméd

= » €o
, en ¢, puisque pour le voisinage W= {2} d? £(c) o p,
D uver, de voisinage de ¢ dont I'image par f SO0it cor!tenu@
geuts%%s t:r(r)l'a que E comme voisinage et f(E) = F n'est pag jp,
an .
danzs (\)Yx'déduit de la condition portée dans la définition rappelée que:
vV Cfiw). |
On a alors:
f'W)e V(a).

Exercice 159

I SoientE = {x,y,z,t} etF = {a,b,c,d} munis des topologies

T= {¢,E,{x},{y}a{x,y},{y,z,t}} et o= {¢,F,{a},{a,b},{a,b,c}]
respectivement. On définit f: E1)—>
f(x) =

(F,6) comme suit :
f(y) =a, f(z) = p et f(t) = d,

Montrer que f est continye ep t, mais pe 7'

Test pas en z
2. Soit I'identité idp: (IR,|.|) - ([R,l.l) donnge Parid (x) = x
Montrer qu'elle est continue en toyt point x de R % .

3. 1) Soit I'application identig idR-

Montrer qu'elle n' et continue en aucy

ii) Que dire si I'on interchang

(IR,I.I) - (IR,5°(IR)),
N point x {4 R
e les topo

logies gy départ et
4. On pose ¢ = [¢:R’(]a’+m[)aeR} ¢t on définijt |, fongy;
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[ (R,0) - (IR,|.|)

X~=28(x) =x2
cdier la continuité de f sur R

5. Montrer que la fonction, dite ge Dirichet"”,
E(RL) - (R
x—)f(X)z 0 S1 XEQ
1 si xgQ
iest continue en aucun point de R. On (it quelle est partout
fiscontinue.
Solution
[.Ona:
V(t®) = V(d) = { F} etf'(F) =Ee V().
Donc, f est continue en t. D'autre part, il nous suffit de trouver un
Hement W de V7 (b) tel que £ (W)e V'(z). Ona clairement:

‘v’(b) = [{a,b},{a,b,c},{a,b,d},F] et CV.(Z) = [{y’z’t’}’E}'
Orsi 'on prend W = {a,b} ona f'(W)= {x
"2 V'(z). D'od le résultat cherché.

2. Cest évident car, |

V(idgo0) = V(0 et (idg) 1V =V, ¥ Ve V(id, (o).

3.9) Bn effet, il suffit de voir que pour W = {x}e ‘V(idm(x))’

(idg) 1 (W) = {x}e V'(x).
ii) On peut voir facilement que la méme fonction identité
devient conti?lue sur R tout entier. Bien plus, toute fonction définie
de(E SP(E)) dans n'importe quel espace (F,0) est continye.

mr Gustav Lejeune-Dirichlet est né le 13 février 1805 4 Dyrep (Allemagne)
. i 1859 a Gotungen. Il enseigna A I'universits de Berlin pendant
et mort Ile 5 u,‘asles éleves on retiendra les noms de Kronecker et Riemann_ On
?7' E:lmf.t.lt)oa\lx-:lune classe d'€quations aux dérivées partielles qui porte le nom
ui doi

¥z} lequel n'appartient

blame de Dirichlet. Tl 2 aussi de nombreyses contributio ' '
u
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4 Donnons la représentation graphique de f. \ .Z‘

A regarder ce graphe, tout porte a " croire " que f est continye sur R
En fait, il n'en est rien. f est discontinue en tout point de R. Oy, peut
facilement le voir en remarquant que l'image réciproque de tout

voisinage borné de f(x,) dans (IR,H) ne peut contenir un Interva]je

ouvert de la forme Ja,+o<[ ; ce qui 'empeche d'étre un voisinage g
Xu-

5. Soit x,un point de R. On distingue deux cas.
1) x,€ Q

Ona f(x,) = 0. Pour tout réel € pris dans ]O, 1], f'l(]—e,e” =Q n'est
pas un ouvert de R. Donc, f n'est pas continue sur Q.
i) x,¢ Q

On a f(x,) = 1. Pour tout réel ¢ de ]0,1], f'l(]l-g,l+8[) - CRQ
n'est pas un ouvert de R. Donc, f n'est pas continue sur C_Q
g Q-
Conclusion: f est discontinue sur R

Remarque: Il apparait clairement de ce
continuité est " intimement " liée aux t

départ et d'arrivée. Tout changement
topologies peut rendre la fonction conti

Exercice 160

qui Précede que la notion de
Opologies des ensembles de

de T'une oy l'autre des deux
nue ou nop_

Si un ensemble E est muni de deux lopologieg T ot
e

que l'application identité idy, : (E,t) — (E ars:p

: . ' ,0) Soit Continue, ] faut et il
suffit que T soit plus fine que o.

Solution
La condition est nécessaire.
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g @ est un ouvert de o, la continuité de V'identité le reng
i Celle-ci est alors plus fine que o. ouvert
" scondition est suffisante.

it @ un ouvert de 6. Comme 7t est plus fine que o, il reste
wrert dans . Par ailleurs, on a:

idy Q) =id(Q) = Q,

Amsi, limage réciproque id; ! () de tout ouvert Q de ¢ est ouverte
ians 7. Donc, 1'application idg est continue.

Exercice 161

Montrer qu'une fonction f: (E,t) — (F,o) est continue en un point
, &e E, si limage réciproque de tout W de U3(f(x,)) est un voisi-
lage de x .
Solution

En effet, si Ve V7 (f(x,)) il existe par définition,We W(E(x,)) tel
{eWC V. D'od

£ W) € £ V)

llen résulte que si £ (W) estun voisinage de x,, £ (V) en est un

dussi
Ewcm 162 :

1. Soient E, F et G trois ©
fonctions f: E — Fet 8 F 7

composée gof:
ple ol la comp

spaces topologiques. Montrer que si les

G sont continues en X, de Eetf(x,) de

. E — G est continue en Xq .

F respectivement, lewt osée gof est continue san% ue f
o (4]

2. Donner un exem ¢ q

Ou g le soit.
Solution
sinage de (gof)(xo) dans G, alors g '(W) est,

| Si W estun Vol
du fait de 12 continuité de g, un voisinage de f(x,) dans F. De méme,



——
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f étant continue en Xq f (g (W)) est U.nl vmsmage de Xy . Comme
(g (W) = (o) ' (W),

le résultat est atteint. | |
) Reconduisons 1'énoncé de la question 1 de le’(ercice

auquel nous subordonnons la fonction g: (F,0) — (E,1) défip,
g@=y,gb) =z gc)=xetgd) =t.
Vénfier que g n'est pas continue en d = f(t). On a:

V(e(fw)) = V(e@) = V0 = {{y.z1).E},

1€ par.

) g ({y.z1}) = {a,b,d}e V(a).

Pourtant, gof est continue en t. En effet, on a:

©I0 =g =g@=t, V0 = {{y, 1), B}.
Dol :

(éoﬂ“({y,z,t}) =g (fyzt))) = £'({a,b.d}) =Eec V(.

gof est donc continue en t comme annoncée,
Exercice 163

1. f est continue sur E.
2.VACE, f(A)C T@A).

3. L'image réciproque de toyt fermé de g
4. L'image réciproque de tout Ouve o fermée dans E.

ftde Fegy ouvert
' - e dans E.
5. L'image réciproque de toyt €lément dune an
dans E. ase de ¢ est ouverte

0
6.VBCF, {'(B) C F®).
7. VACF, f'(A) C {(&),

Solution
1 = 2
Soitxg€ A et Ve V(f(x,)). La continuitg g Tl

0 !mplique

e . N




r

5 --"(\ﬂe ‘V(xo

®!
(A ¢. D'od
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). On en déduit que f1(V)NA # ¢. Par suite
f(Xo)€E f(A) . On conclut que: |
f(A) € f(A).

—

é dﬂontrons que f'(B) = £1(B) . 1l suffit
+en entend, d'avoi_r_:f_'i(_B) c £1(B). D'apres (2) on 2:

f(f"(B)) c T (B)c B=B.
que des deux membres de
us cherchons.

2 3
Soit B un ferm

silon prend '1mage récipro cette inclu-
5on, on obtient IB) € §1(B). C'est ce que no

1 4
Si A est un ouvert de E, alors Cg

quemment 2 (3), que £1(Cg A) est fermé dans E. OT:
F1(CpA =Ce (A,

A est fermé. 11 ressort, consé-

donc, 1 (A) est ouvert dans E.

4 = 5
Evident. ((5) est

5= 6
0
Soit B € F. ﬁ est un ouvert de F. Il sécrit B = .91 Q, od

un cas particuljer de (4).)

_famille d'une base deo. D'ol:

Diel représente une Sous
- - e f-l(u Ql) = U f'l(Qi) .

iel
jel. Il en résulte que

donc:
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0
—~

0
U fl(Q|)=fl(B) - fl(B) :
1€l
6 =7
Soit A € F. Posons dans (6) B = C A. 11 vient:

0 0

- A . ¥ 7§ ‘———-\
l"’(a) =f'(CrA)=Cyf Y(A) £4(CpA)

o

A —_—
Comme Cif'(A) =Cg f''(A) on aura -

| Cef'(A) c c f1a).
par suite

f'A) € 1(A).
71 =1

Soitac Eet Q un voisinage ouvert de f(a) dans F. (Q peut étre prié

riction de généralité, grace A I'exercice
. D'apres 1'assertion (7), on obtient:

f1(CQ) C £1(CL0).
Par conséquent, £! (CgL) est un fermé de E. O

CEf-l(Q) - f-l(CFQ):
donc f1(Q) et Ouvert dans E; et comme ae f Q) on en déduit que

f(Q) est un voisinage de a. La preuve est achevée
Exercice 164

Soit (E,1) un espace topologique. On dit qu'une foncgiop f- (E,7)

. (RH) est localement constante si, pour toy; point x de E, il
EXISte un voisinage V de x tel que f soit constante surv.

ontrer que toute fonction localement constante est continye.
Solution

Soit a un point de E et 2 un voisinage de f(a) =

= a1l existe par
hypotheses un voisinage V de a tel que f(V) = {a}. Do

LV ).
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ost un voisinage de a. f est ainsi continue en a, donc sur

i@
L
. 5
it 10
i (Aa) un sous-espace de (E7). Montrer que Vinjection
gique - A E, donnée par i(X) = X, est continue sur A.
glution

£ effet, 81 Q est un ouvert de E, alors i'(Q)=QNA est un
grert de A L'application i est donc continue.

sxercice 160
Montrer que la topologie trace d'un sous-ensemble A de (E,7) est
aiopologie 1a moins fine rendant l'injection canonique i continue.

Solution
| Les images réciproques, relativement 2 i, des ouverts de E recons-
iiment les €léments de 1a topologie trace (induite).

Exercice 167
Soient E et F deux espaces topologiques et A une partie non

d E. Montrer que si une fonction f: E — F est continue sur E, sa
restriction f/A 2 A est continue sur A.

vide

Solution e
En effet, il est facile de voir que £/ A = foi, 1 étant I'injection cano
AL pEL —®F
— e
f/lA=1{o

-nique précitée. Ainsi, /A, composée de deux fonctions continues (f

et 1) est, elle-méme, continue.
Exercice 168
Montrer que si f: (B0 = (F,
alors E est séparé.

o) est injective continue et F sépar€,

Solution o TR
éléments distincts de E. Comme f est injective

Soient x ety deux
on obtient £(x) # f(y) dans F séparé. 1l existe donc deux voisinages
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disioints V et W de f(x) et f()lf) respectivemen, Or |
i _ )
ouw?rts iljcn “dsults que £ Lv) et £'(W) sont deux VOising ey
contl_m:ae x et y respectivement. E est alors sépar, ge
disjoin
3.2 Homeomorphisme
Exercice 169

Une fonction £ (E,7) — (F,0) est un homéomorphisme, g elle eg
bijective bicontinue, c'est-2-dire continue ainsj que son inverge |,
en découle que I'inverse d'un homéomorphisme est un homéomg.

phisme. ) ——
Deux espaces E et F sont homéomorphes s'il existe up homé.

morphisme les reliant.

Montrer que
1. si (E;1) = (F,0) = (IR,H), alors pour tout acR " et beR Ia

fonction f: x — ax+b est un homéomorphisme.

2 (Ro) et (FLAL), ainsi que (R,}) e ”g .22.[| |) -

homéomorphes.
3.RetR. sont homéomorphes.

4. chacune des fonctions Suivantes est un homéomorphisme de R
sur [-1,1]:

. si xeR, [—Z—Arctgx si xelR,

X - | l+|x' o x—>{ T .
+1 si X =+ oo, +1 SI X =+ oo,
-1 $i X =- oo, -1 Si X =- oo

3. tout intervalle ouvert Ja,b[ est homéomorphe a Jo, 1[.
6. pour que deux espaces discrets soient homéomorphes, il faut et
11 suffit qu'ils aient un méme cardinal.
Solution
L. Elle est bijective bicontinue.
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ot € prcmier couple, la fonction x — X
) 1+ \x\

o de R sur ]—1,1[. On peut aussi prendre la fonction

perbolique) x = th x.
nd, il suffit de considérer la fonction x — Arctg X

est un homéo-

W

pour le 5¢€0
, 1is le sont, grace, par exemple, 2 I'application X — e*.

i. Elles sont bijectives bicontinues.
5. La fonction f. ]0,1[——)]a,b[ définie par f(x) = (b-a)x +2 justifie

e pfOpI'lété
¢ En effet, toute bijection d'un espace discret sur un espace

jiscret est un homéomorphisme.

txercice 170
1. Vérifier qu'une bijectio
srement un homéomorphisme.

2. Montrer que deux topologies
sont identiques St, €t seulement si, 11
un homémorhpisme.

n méme continue, n'est pas néces-

T et o sur un méme ensemble E
dentité idg: (E,T) — (E,0) est

Solution
1. En effet, lidentité idg: ([R,?(IR)) - (R,l.l) est bijective

continue, tandis que (id R)-l n'est continue en aucun point.
2.Si 1 et © sont identiques, J'application idg est picontinue,
puisque:
Vv Qeo s (Q) =QET (continuité de idg)»
v Qe idp () = Qe o (continuité deidg™)-
ntinue alors tout ouvert £ de

est bico
-1(Q). De méme

nue et Q= idg
-1 st continué et Q=

Inversement, Si lidentité idg
est conti

o, car idg
averts. Ell

G est un ouvert de T, car idg

tout ouvert 2 de T est un ouvert de

mémes O es sont identiques.

id  (S2)- Ainsi, T et oontles
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Exercice 171 | . ' |

Une propriété sera dite topologique Ou Invarigng t0DoLa..
si elle est conservée par tout homéomo.rphlsmc_ Ogiq,
‘ Montrer que les notions de séparation et de g¢
invariants topologiques.

Solution

Soit f: (E,7) = (F,0) un homéomorphisme. Supposon

Comme ™' est injective continue, F est alors sé

Supposons maintenant que E est séparab]
dénombrable partout dense A. Il en résy]
dénombrable de F et vérifie:

F=f(E)=f(A)C f(A) C F.

Parabiljg Son ¢

Uy

SE Séparé
par¢ (exercice 168) |
e. Il admet une py

Part
e que f(A) est upe pamz

Exercice 172

Vérifier sur des exem
une fonction continue

limage d'un fermé par

ples que l'image (directe) d'un ouvert par
n'est pas nécessairement ouverte, et que
une fonction continue n'est pas, en général,

fermée.
Solution
Sil'on considere la fonction continue f: (IR,|.|) - ([R,H) donnée
par f(x) =x?, on voit que l'ouvert L[ a pour image [0,1],
laguelle n'est pas ouverte.
Par ailleurs, si 1'on prend f: (IR,I.I) - ([R,I.I) avec f(x) = -1-—1)-[-5-
%

onaf(R) = ]0,1]. Ce n'est pas un fermé!
Exercice 173

Une fonction f: E — F est dite ouverte (resp. fermge) g; elle trans-

forme tout ouvert (resp. fermé) de E en un ouvert (resp. fermg) de F.
Montrer que:
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(injection canonique 11 (A,TA) = (Ef) est ouverte (resp.
NI
&) st A lest, , ‘
! es homéomorphismes sont ouverts et fermés,
;. i F est discret, toute fonction f: E — Fest 3 1a fois ouverte et
2mée.
plution . .
1. Soit O un ouvert de A. 1l existe un ouvert Q de E tel que i(0) =

2NA.comme A est ouvert, i(O) l'est aussi par la stabilité de 1 par
apport & 'intersection. 11 va de méme pour les fermés.
2. s le sont par définition.

3. Cest le cas, car chacune des parties de F est, 2 la fois ouverte,
¢ fermées.

Exercice 174

Vérifier sur des exemples qu'il existe des fonctions:
continues et non ouvertes,

continues et ouvertes,

continues et non fermées,

continues et fermées,

continues et non ouvertes ni fermées

ouvertes et non continues,

fermées et non continues,

oOuvertes et fermées mais non continues.
Solution

Nous nous contentons de citer pele-méle les situations suivantes.
1) Linjection canonique i: AC E — E est:

continue non ouverte si A n'est pas ouvert,
continue et ouverte si A est ouvert,

continue non fermée si A n'est pas fermé,
continue et fermée si A est fermé.

ii) La fonction (R,| |)— (R,1) définie par f(x) = X est continye
mais non ouverte comme cité si-dessus.
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yuverte ¢l fermée mais non continue,
l ]
iv) Soit fune fonction définie de (R, 1) dans (R, o)

-1 8i x< ),
[(X)={ 0 si x=0,
I si x>0,

par:

o ¢tant la topologie discrdte et 1 1a topologie grossidre.

fest A la fois ouverte et fermée, mais elle n'est continye €N aucyp
Exercice 175
Soit f: (E, 1) — (F,0). Montrer que:
I festouverte e VACE f(K)
2. fest fermée

0

f(A) € FA).
lnversemenl, Si A est un ouvert de E, alors R = A;.d'ou:
-
B f(A) = f(A) € f(A).

o

- f(A) = F(A).
(A) est alorg ouvert.

s . et ' nce t(A) =
1(A) € 8(ZA) il 'vient f(A) C f(a), Dong,
f(A) = f(A).

Par suite, o fermée.
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i (B0 = (F,0). Montrer que:

{continue et fermée & V ACE, f(A) = (A,

{

o

0

{ continue etouverte ¢ VB C F, f"(B)zﬁ(B_
ution
SotAC E.Ona:
fconinue = f(A) C f(A)
ffermée = T(A) C f(A)
La réaproque est évidente.

= f(X)z f(A) .

0 o~
I festouverte & VACE f(A)Cf(A).
La condition est nécessaire. En effet, si f est continue, la caracté-
“auon rencontrée dans l'exercice 163 permet d'écrire:

o

2 1
: vBCEF f('Bc'(B).
‘A-
M‘”H:‘mnm, si { est continue et ouverte alors f( f'(B)) est ouvert
“s F Doy
,-':"&-. $ . o
(f'®)c i{f'(B)) €B.
’hWMi
') (B € (B
L& conyoncuon des inclusions (%) et (**) donne 'égalué cherchée.

fisanie Elle assure daboed, grice A l'exercice

i ; a4 sul
4 condinon © Impligue telle que | est ouverte? Si A est un

163 la conununé de |
Suven de b abies

- k]

o g— N
f (KA} = ['(A)) @ A=A

v

-
Par suite, f(A) € 1(A) HA) est donc ouvert dans F,
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Exf{rfimillc des fonctions ouvertes (resp.fennées) est stabe
composition.

2. Soient f: (E,7) = (F,0) et g: (F,0) - (G,0) deux

i) Montrer que si gof est ouverte (resp. fermée) et f ey Continye
et surjective alors g est ouverte (resp. fermée).

i) Montrer que si gof est ouverte (resp. fermée) et g est
continue et injective alors f est ouverte (resp. fermée).

Solution
1. Conséquence immédiate de Ja définition,
2.1) Soit Q un ouvert (resp. fermé

on peut écrire QQ = f(f~1 (Q)). D'o:

foncﬁon&

) de F. Comme €St surjective,

fermé) Q de E, f(Q) = -1 (8(f); c-2-: (@) = 8" ((oD(Q).
(2oF)(Q) est, par hypothéses, ouvert (resp. fermé), donc f(Q) I'est de
méme, grace 3 g continuité de g.

Exercice 178

nepy UD€ Suite de fermés d'intérieurs vides de F. Confor-
Mement 3 | continuité de f, G s

=f'(K,) est fermg dans E, quel que
S0t I'indice p dans N. De plus,

f étant continue et Ouverte, op a-

G, = 'K, =1(¢) = ¢.

Ainsj, op a trouvé dans l'espace de Baire E une Suite @G,

fermeg d'intérieurs
'on:

) . de
: . " ne N
vides. Donc, leur intersection est g intériey

I vide. i




oncions vectorielles
0 0 1
0=fm=t nGn o n ( “) . " .
ne W ne N \ ne N |
peut encore écrire:

ue et ouverte, on

f est contin

s, { €ant surjective, on a.
o
'f_'—

0= f“m - N K,
ne N ne N

Donc. F est de Baire.

14 Continuite des fOncttons vwwrwuzs

Exercice 179

Son E = n E, l'espace Pr
Montrerqwlapropc
2p) ®x(X) = X,

oduit associé 3 une famille d'espaces

opologiques () g < don n,:E— E.°
x = (Xy, X20°°
£l continue.
Solution
Solent X =(x,‘,,

A, & ;
, = % (x,) dans E,.Ona
] -y
”, Q(l‘};‘l‘.‘x B, % l)'.l[}: | %
v

done m et CONINUE

. ;g) un élément de E et £2, un voisinage de

oo B !:'pe V(‘U) .

ane foncison de b dans v
‘[‘l‘ elle que
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r(x).-.-(r,(x). £,(x), ....i'l,(x)), xe E.
p

P e ide de TT F,. Montrer que:
1. Soit T A, une partie non vide de T

i=1

I\
P 1
l"'[rl A=A,
=1 i=1
2. Montrer que poni que f soit continue sur E, il faut et 1l suffit
que toutes ses composantes (f;) e, le soit.

Solution
1. Ona:

P : 4 A Y
Xef! I1 Ai) & 100 =(1X), ., (X A

P
e Xef'A) Vi=1,2..,p & Xe N1f'A).
i=l

2. Supposons que f soit continue sur E. Alors, pour touti =1, 2,
..., P, 1a fonction f; = m; o f est une composée de deux fonctions
continues. Elle est donc, elle-méme, continue.

Inversement, supposons que toutes les composantes soient continues

sur E et considérons un ouvert élémentaire Q = ﬁ Q. de ﬁ F.
. ‘l . l )

1=1 i=1

Conformément 2 la premilre question, on a:
.1 af+ :
Q) =1(IT Q=N £;1(Q.)
1=1 i=1 ! Rt
On déduit que f'(Q) est un ouvert de E; f est alors contin
ue.

Exercice 181

Soient E, et E, deux espaces et a,e E
2€ By (resp. a
1€E,). Montrer

)= (a;,x)) est un

2 Sur
Solution [al }sz )-

Il est évident que f est bijective continue (ses Compq
continues); son inverse = f ! est aussi continu,

que l'application x — f(x) = (x,a,) (resp. x — g(x
homéomorphisme de E, sur E;x{a, } (resp. de E

Santeg sont
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que si A est un sous-ensemble ouv
ert de E\xE, et a, e

yfontrer
f, lors l'ensemble:
|

A(a ):n Aﬂ E
quouvert de Eo. 1 2( ([31}>< z))

folution
On remarque que A N ({al} x Ez) est un ouvert de {a,} x E,.

E,

Ennotant f, 1a restriction de I'homoémorphisme f déja défini, ona:

. AGa,) =fo (AN @ x Ey))-
Cest un ouvert de E, , puisque fo est continue.

Exercice 185

Montrer que 1‘application de projection est ouverte mais non
fermée,
Solution

Nous considérons le cas E = E,xE,. AveC les mémes notations
que précédemment, ON obtient T2 (A) = UE A(a;), pour tout ouvert

a,€E,
By T .. ooeaaaassasacess
Aai)

A de E. C'est un ouvert!
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pour étayer la deuxieme assertion, on conduit I'exempe i

. g ut 2 H 3 l o

I = {(x,y)e R’ /xy= 1} son graphe . \
\ g

Si I'on considere la fonction g: R* — R donnée par g(x,y) = xy, on
constate que g est continue et ' = g* ({1}) Ce dernier est alors un
fermé de R*. Cependant, ., (T¢) = J-00,0[ U ] O,4eo[ n'est pas
fermé dans R.

Exercice 184
1.Soit f une application d'un espace E =E;x E, dans un espact
F. Montrer que si f est continue en un point (a;,a,) =a de E, alos

les fonctions partielles f;: E,— F définie par f,(x) = (x,3,) ¢

f,: E,— F définie par f,(x) = (a,,x) sont continues en a, eta, 1
pectivement.
2. Que dire de la réciproque?
Solution "
En effet, f, peut se mettre sous la forme f; = fog, OU & est [h07

inue. L¢
omorphisme introduit dans l'exercice 181. Elle est donc continué
cas de f, se traite de méme.

2. Elle est généralement fausse. Constatons-le sur ¢ cas.
Soit 1a fonction réelle:

f:R* 5 R

0 si. (x,y) = (0,0,
(x’Y) ooy 2xy
X +y

Si (x’y) # (0,0)




r

‘édcfl - {(.,y) en x =0 et de [2 = f(x,)eny= () est
.-oﬂ““uTﬂmlcfois. i est discontinue en (0,0), car:
e lim fx,x)=1#0.

x— 0

dnuité des fonctions vectorielles 179
Con

'1 Montrer de deux manieres que si f est une fonction continue
wespace B dans un espace séparé F, son graphe Ty, est alors
:mé dans ExF.

) Montrer que la réciproque est fausse.
Wlution

l.On peut démontrer que Cg, pI'¢ est ouvert dans ExF. Soit

wY)eTs. On a donc y, # f(x,) dans F séparé. Il existe par
nséquent deux voisinages V et W de y,, et f(x,) respectivement tels

VAW = ¢. D'autre part, la continuité de f en x, implique l'exis-
e d'up voisinage U de x, vérifiant f(U) € W. Il en résulte que

f
UNV=¢ pod T <N (UxV) = ¢. I en découle que UxV est un

Yo1g) .
‘,0}8?"&36 de (Xq,Y,), contenu dans Cg,pI'r. Ce dernier est alors
Sinage de tous ses points: C'est un ouvert!
Ne autre preuve peut tre conduite en ces termes: F étant séparé,

l;dia%‘)nale A de F? est alors fermée. Si l'on considere la fonction h:
‘F - B2 qonnée par h(x,y) = (f(x),y), on trouve 'y =h"'(A).

mme h est continue et A fermée on déduit que I’y est fermé.
2. 11 suffit de regarder ce contre-exemple. Soit la fonction réelle

g (R\) - (R.1)

Y~ |
x—»g(x)=\‘;{ 5 ek

2 si x<0.
Il est clair que g est discontinue en 0.

D'autre part, I'y = \(X.y)ele gasten
deux fermés. 1l est lui-méme fermé. 4 1\ U {(0'2)} est réunion de
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3.5 Topologie quotient -Espace quotiey, |

Exercice 186
Soit R une relation d'équivalence sur un espace (E,r). On gy,

topologie quotient sur I'ensemble quotient E/R., la plus fiy, s
topologies rendant continue la surjection canonique s: (E,1) — E/3,
définie par s(x) = X.
On désigne cette topologie par /R. Le couple (E/R,UR) s'appelle
espace topologique quotient ou espace quotient tout court.

Un sous-ensemble Q de E/R sera dit ouvert si, et seulement si,
s"/(Q) est ouvert dans (E, ).

Montrer que pour qu'un ensemble F soit fermé dans (R, YR) 1l
faut et il suffit que s*' (F) le soit dans (E,1).
Solution

Soit F un fermé de E/RR. s étant continue, on déduit que ™' (F) est
fermé dans E.

Réciproquement, soit F un sous-ensemble de E/R. tel queS'](F)
soit fermé dans E. Cps ™ (F) est alors un ouvert de E. Or:

Ces ' () =s ' ®/R)\s"/(F) = 5°( Con )

g/ F) est ouvert dans E. La conséquence précitée permet

d'affirmer que C

F soit ferme.

Exercice 187
Montrer que si G est un espace topologique et f: E/®, — G, alors

Pour que f soit continue il faut et il suffit que fos Ie sojt.

Solution
1l est évident que si f est continue, 1a composée fog I'est de meme.
Inversement, si Q est un ouvert de G, 'ensemble

donc s°1(C

pa F estun ouvert de E/R, ce qui conduit a ce qué
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(f05) (@) = 57 (£ (@)

-1
g ouvert de E. Donc, £'(Q) est ouvert d |
_-\;‘Iﬁce précédent). 1l en découle que f est COntjn:::s E/R (d aprés

. Montrer que si E/R est séparé, 'ensemble

L= ‘(X,Y)E R?/ xﬂy‘
5 fermé.
| Qg;gfzemer_lt, montrer que si L est fermé dans E* et si la
it anonique s est ouverte, alors I'espace quotient E/R est
Wlution
1. Dési : |
D'mmEéSIgn9ns par A la diagonale de E/R x E/R. Elle est fermée.
part, 1l est facile de voir que 1'application :
h: ExE > ERx ER
xy) = heuy) = (s059) = (%.Y)

aa .
;0“‘111116. Il en découleque L = h!(A) est fermé.
. iy Sflpposons que L soit ferm¢ dans ExE et que s soit ouverte.
dle"‘* y dans E/R alors (x,y) € L. On déduit que (x,y) est un point
Fouvert C gL 11 existe un ouvert élémentaire QxK vérifiant

Xy)e xKc C F}L' D'od LN(EXK) = . 11 s'en suit que tout point

de Q ne peut étre equivalent A aucun po
s(Q) N s(K) =90
sembles s(£2) et s(K) sont deux ouverts

ectivement. E/R est donc séparé.

int de K. On obtient:

Comme s est ouverte, 1es €N
disiﬁims. contenant X et y resp
Exercice 189 |

Montrer que si E est séparable, E/R 'est aussi.

Solution ' o .
La sépa.rabihté confere 4 E 1&5 jouissance d'un sous-ensemble
dénombrable et partout dense que I'on notera A. Nous allons montrer
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que S(A) a ces mémes propri€tés dans E/R.. 1] egt évident qQ

dénombrable, a fortiori, S(A) l'est de méme. €8iA »
D'autre part, Si €2 est un ouvert non vide de E/R, g1 Q)
dans E. D'ou : sty

AN s Q)= ¢.
Donc :

S(A)N Q= ¢.

3.6 Prolongement par continuitg
Continuite séquentieffe

Exercice 190
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- | .
T est continue en X, 1a relation précédente donne:

'\\ﬂ']mc P s
~ ~N ‘ N —
Txo)=lim f(X) = lim £(x) = £(x0), V x¢e A.
X = Xg, XEA X = Xg, XEA

D‘Oh hf‘ = f .

). Continuité de f -

Soient x,€ A et We V(f (x,)). Il suffit d'exhiber un voisinage
Vdex, dans E tel que:
xe VA = [XeW.

E‘espace F étant régulier, W contient alors un voisinage fermé W' de

[(xy). D'apres la relation (*) ci-dessus, il existe un voisinage V' de

1, el que f(x)e W' quel que soit x dans V'NA; l'ensemble fermé W'

tontient donc f(V'MA), et par conséquent aussi son adhérence.
Enfin, soit V un voisinage ouvert de X, , contenu dans V'. Toutes ces
considérations se résument dans les inclusions suivantes:

™) (VOA) N f(VNA) C W CW.

Il reste donc A montrer que ?(x‘) appartient a f(VNA) pour tout

X'e V'AA Par définition de 1,002 T(x) = lim f(x)  pour tout
x — X', XEA

X'e A.D'ou

T (x)e f(VNA).
C.QED

Exercice 191

Soient f: E —

continue en a, si el
en une suite (£ s convergeant vers f(a).
1. Montrer qué toute fonction continue sur E 'est séquentielle-

E et ac E. On dit que f est séquentiellement
le transforme toute suite (x,) convergeant vers a

ment. :
5. Montrer que 1a réciproque est généralement fausse.
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Solution

1. Soient a€ E et f une fonction de E dang

» COntinye en
(x,), une suite convergente vers a et V un vois
n’n

inage de g,

que £1(V) est voisinage de a. Il en découle qu'i] cXiSl,e) u':] fzssf;n
naturel n, tel que: iey
20y = x,efl(y),
D'ou:
n2n, = f(x,)eV,
C'est-a-dire:

lim f(x ) = f(a).
X — oo
2. Regarder I'exercice suivant!.

Exercice 192

able, muni de 13 topologie codé-
nombrable 1,

1. Montrer qu'une suite (x

n), est convergente dans (E,1) si, et |
Seulement si, e]le egt stationn

aire.

2. Soit 1d . I'application identité de (R,7) dans (IRH) Montrer

que pour toute syite (x,), de R on a:
imx =x o lim id_(x,) =1dp (x).
Nl = oo

N — oo
3. Vérifier que idn est discontinue en tout point x de R.

4. Que conclure?
Solution

1. =

Supposons que (x,)

limite.
: te et notons L sa

n SO1t convergen

Posons:

V={xn/xn¢L}-

I est Clair que V est dénombrable. Par conséquent, CgV estun



U

pmlOﬂgcmem par continuite, Continuité séquentielle

185

snagC ouvert de L. Donc, il existe un entier naturel n, tel que:

¥YnelN nz2
. Ny = X,€CgV,
Vneﬂ*\ n_>_n0 = xn=L.

nen déduit que (), est stationnaire.

|. &
Evident.

. WERPT
). La suite (x,), étant convergente dans (R,7), elle est alors

ationnaire. Ceci entraine qu'elle est convergente dans (IRH)
3.1 est clair que 1d - (R,7) = (lR,\n n'est continue en aucun

ot de R. 1 suffit, par exemple, de remarquer que l'intervalle
jrx+1 est un voisinage de X dans (IRH) alors qu'il ne l'est pas

dans (R, T).
4. Nous avons montré dans cet exercice (question 2) que l'ap-

Plication identité id (R,7) = (IR,H) est séquentiellement continue

sur R, alors qu'eue n'est continue en aucun point (question 3). .

Remarque: 11 est important de signaler que; dans les espaces satis-

faisant au premier axiome de dénombrab1hté (chaque point y joull
cette réciproque est vraie.

d'un syst2me fondamental de voisinages):

Exercice 193

1. Montrer que 12 fonction

e (R1) = (R.1)
0 si xeQ

""”f(x)=\1 si xe Q

est discontinu€ sur R.
2 . Monurer que 1a fonction g (R,\.\) — (IR,\.\)
. () si X€ Q

“1x si xeQ
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‘est continue qu'en un seul point que I'on déterminery
n'est

. ' Y
3. On écrit les rationnels sous 1a forme Q’ avec pe 7, qe

m"
p()SCq = ])

Y
et q premiers entre eux pour p # O (pour p =0 on im

Montrer que la fonction réelle définie par:

1 . p
f(x) = _SIX—EEQ

.

0 sinon
€st continue en tout point irrationnel et discontinue en toyt POint
rationnel.
Solution

1. C'est la fonction de Dj

richlet que nous avons déja rencontrée. )
suffit de montrer qu'elle n'e

St pas continue s€quentiellement.
Soit Xy un point de R. Op distingue deux cas.

SixpeQ, on a f(x,) =

0. Par ailleurs, on sait qu'il est limite
d'une suite irrationnelle (x

a)- Comme f(x,) = 1 pour tout n, la suite
(f(x,)) converge vers 1a limite 1, laquelle est différente de f(x,) = 0.

Donc, f n'est pas s€quentiellement continye sur Q.

Six,2Q, ona f(Xg) = 1. On sait de méme que X, est limite d'une
Suite rationnelle (¥,). Comme f(y,) = 0 pour tout n, la suite (f(y,))
converge vers la limite 0, laquelle est différente de f(xy) = 1. Donc, f
n'est pas Séquentiellement continye sur C Q.

Ainsi, f n'egt Pas continue syr R.

X, Si x &Q

Y - Vers 0 = £((). Dong, f egt séquentiellement continue en 0,
3 Continye d'apras 13 rémarque sus-citée.
S

+S0it X ¢ Q: op af(x,y) =

CDnverge ver

0. Si (x,) est une suite Convergente
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o Jasuite (f(x,)) donnée par:
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1 . L1 Py
f()(n)z E—n- S1 xn"_‘eQ

| O sinon
averge vers 0 = (X)), car q,; tend vers +eo avec n (résultat déja

). Done, f est séquentiellement continue sur C g Q.

. Po
Six,=—€Q;ona:

Qo
1 Si po - 0,
fx) ={ L ginon.
Jo
2
La suite irrationnelle de terme général X, = 20 + \/n— converge vers
0

X ; par contre la suite image (f(x ,)) converge vers 0 = {(x,). Donc,

fn'est pas continue sur Q.

3.7 Quelques problemes de plus

Exercice 194

Soit 1a fonction f: (R,0) = (R ||} donnée par:
0 si x<0,

f("):\xz+1 si x=0.

ogie cofinie sur R.
le graphe de f sur un repere orthonormé.

ntinuité de f sur R.

S désigne la topo}
1, Représentet

2. Etudier 1a €0
Solution

y
| 1e graphe de f a l'allure ci-contre. x.
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2. 8i xo< 0, alors f(xo) = 0. Pour tout & 2 1 Timage 1 . roque
. 0 4

SIEIE [ \/ET[ du voisinage de 0 dans (R, ) e Pas yy

oisinage de X, relativement a . Il ne contient aucun oyyery de ce.
v 1
ci. Donc, f n'est pas continue sur R .

2
De méme, Si xo 2 0, alors f(xq) = x§ + 1. Pour toy € <x2
l'image réciproque

r‘(]xf) +1-¢, x2 +1+e[) = ]ng -¢€, ng + s[
du voisinage de x} + 1dans (IRH) n'est pas un voisinage de %

relativement 3 6. Donc, f n'est pas continue sur R .
Conclusion: f est discontinue sur R.
Exercice 195

Soit A une partie non vide d'un espace E. On définit la fonction
caractéristique, f, : A — (IR,I. ), de A par:

[

1 si xe A
f,(x)= g
A (%) 0 si xg A,

1. Montrer que:

fs estcontinueenx ¢ xg F.(A.
2. Quand-est-ce que la relation:

" quel que soit A C E, f
est -elle vraie?

= 3. On dit que E estrésolvable, g'i] admet une partie A vérifiant
Aw

eA =E, Montrer, dang ce Cas, que f, est discontinue en tout
PoInt x de E, et que g4 restr

iction f, /A A A est continue sur le sous-
€space A
Solution

A €stcontinue sur E "

1. =

| On procede Par l'absurde. Supposons que f, soit continye en un

o

Ntx, et que Xo€ &, (A). llen découle que tout voisinage Vv de )




r

ontre,“a fois, A et CgA. Si l'on suppose f a(Xy) =0 et l'on

I 1
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A

|
st € tel que 0 < € <1, on €tablit que f,(V) n'est pas inclus

" ].g,s[. Cela s'explique par l'existence d'éléments y de V satis-
A = 1. Ainsi, on est conduit 2 une contradiction avec la
ontinuité de £, enXq. On conclut donc que:

Xo¢ F . (A).
Lecas f 5 (X,) = 1 mene, par analogie, 2 la méme conclusion.

=

Six, n'appartient pas 2 F (A), il est alors ou dans A ou dans

0

A & ‘ . .
C.A . Supposons qu'il soit dans A . Il s'en suit que f,(x,)=let

Ce<1,
Ve>0 fA"l( ]1-3,1+e[ ) = \ P;; S;i &;<>1

A et E sont deux voisinages de X OR conclut que f est continue en

Xg.

: ion
Avec un raisonnement analogue, On armve 2 la méme conclus

SR ient 2 dire que A doit
2.1 faut que F ((A) soit vide, ce qui revient 2 dire que

étre, en méme temps. ouvert et fermé.

3.0na: —
a. Q:r(A)SAnCEA =E#¢.

est discontinue en tout point de E.

D'aprés (1), fA de A par [‘app()ﬂ, ala top()logie

Si 1'on note Frepa(A) l.a frontiere
induite de A, oP a immédlatement,
g fpt(A) = ¢.

at (1), on voit que f, est continue sur le

sous-espace A.
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Exercice 196

. 2imna,
Démontrer que 1'adhérence de la suite (e )ne Z estle ¢

ICle de
C des nombres complexes de module 1.
Solution | |
Soit 8" le cercle décrit. Considérons la fonction
oR—S§!

X = ot) = g™

Elle est continue et surjective. On déduit immédiatement que:

9(A)C 9(A), VA CR.
Maintenant, si A = Z+0Z, on a A = R, donc ¢(A) =
| @ est surjective. Par ailleurs, on a

O(A) = [emm, ke Z].

$', puisque

Par suite

$' =¢(A) O(A) = [emm, ke Z].
L'adhérence de la suite (emna)

nez €stdonc le cercle 8! tout entier.
Exercice 197

On considere sur R la topologie o jouissant de la base:

B ={[a.b] ; a beR).

L. Montrer que 1 famille W (a) = {[a,b[ ; be R} forme un systeme
fondamenta] ge Voisinages

: du point a.
" Déterminer la nature deg deux suites (u,) et (v“)n , définies par
Ya=Unetv = 1

3. Etudier la continuitg gyr R de la fonction f: (R,0) — (IRH)
dOl’mée Par f(x) = . X,

Solution

que;
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e QCV.

un¢ base 4¢G> Q s'écrit donc:

Q= U [a,B[.

o,feR, o<

e

sulte quil existe 0o et Bo de R tels que:
g <Po et ae[ao,[}o[_

o = a, alors ‘a,B 0{ vérifie:

‘a,B()‘e W (a) et [a,ﬁo[ cV.

oc, V3(a) est un systeme fondamental de voisinages de a.

o

Siae ]ao,ﬁ(,[, on remarque que:

(00,80l = [er0a] U [a ol

On déduit comme précédemment que

[ao,ﬁo[ cV.

Conclusion: “U3(a) constitue un systeme fondamental de voisinages
dea.

2. La suite (u ) _converge vers 0. En effet, si Ve V°(0), on a:
n’n

v=[opl.8>0.

l est facile de voir qu'on peut trouver un rang n, a partir duquel tous

Nature) vérifiant:

15 B.
n
‘ 1 1,1 résoud le probléme ( 1 désigne la partie
L'entier ny = —'ﬁ' B

) 1
enticre de —)-

> e (Va)a O divergente. Le seul point susceptible d'tre 1a
as

linite de (V) est 0. Or, rien de tel n'est vrai. En effet, pour un 8
i oo
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¢ dans R, , il n'existe aucun entier naturel n Satisfaisant .
fixé dans R, ,
L e[0.[e 180
n

i) La fonction f: (R,0) - (R,||), définic
continue en tout point de R. En effet, si x,, est un réel quelcop
]xo-r.x0+r[ (r>0) un voisinage quelconque de x,,, op 5

f"(]xo-r,x0+r[) = ]-xo—r,-x0+r[ € m(f(;t));

par f(X) = -x, est

que et

car;
[-xo,-x0+r[ g ]-xo-r,-x0+r[.
Exercice 198
Soient f: (Ev) > (F C)etACE Montrer que s1 f est un homéo
morphisme alors
E=A o F-= f(A)
Solution
=)
On a:
F-.f(E)-f(A)C f(A) C F
Dod F = f(A)
<)
On a:
E=f‘(F)=f‘(?(_X)') C fli(fA) =AcE
Dovg=%
Ewci-ce 199
Soit f ype fonction coninye de (R, 1) dans un ®SPace topologique
(E1).

1. Montre, Que le sous-ensemble

G= {Te R/V xeR, f(x+T) = f(x)}
CStun Sous-groupe additif de (R,+).
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e peut-on dire de f lorsque E est séparé et G partout dense?
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glutso” il
- G est non vide puisqu'il contient 0. Par ailleurs, i T et T' sont

gléments de G, on a pour tout x de R:
f(x+T-T) = f(x-T") = f(x-T'+T") = f(x).
yuc, T-T' G. Ainsi, (G,+) est un sous-groupe de (R, +).
2. Pour tout T et T de G on a:
f[(T+T") = £(T) = £(T").

nonc, f est constante sur G.

Maintenant si G est dense dans R alors f(G) est dense dans f(R).
0rf(G) est un singleton et E est supposé séparé donc on déduit que

=f(R). f est alors constante.

Exercice 200
Soit (A l)le}\ une famille de parties d'un espace E telle que:

0
VXEA AAC Al+l et lLeJAAle.

Montrer que si les restrictions f A d'une fonction f: E — F a toute

P&nie Al est continue ; alors f l'est de méme.

8"L'M;i.om

RaPDellons tout d'abord que:
(@) =U f, @), QeF.
rEA

i Q est un ouvert de F, f" () est, par continuité de f, , un
Ouvery ddng A. . Il existe donc, pour tout A de A, un ouvert O, de E
A

! () =A,N 0,.
Ay

?_'?:;;) = U (ANO0 = (EAA‘)n(gAO") i Eﬂ(U 01) h (EAOJL)

AEA
re N
Comme |J O» €5t R ouvert de E, f est alors continue.
re A
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gxercice 201
Soient f ¢l £ i | 4
| Montrer que E ctle graphe 'y de f sont homéomorpheg,

 on definit L = {xe E/ 1(x) = (x| Monirer que L cst e

deux fonctions définics de E dans F, F sépare

3. On suppose que I = g sur toule partie partout dense A de
Montrer alors que f = g sur E.
Solution

1. On considere l'application h: E — I'y définie par:
h(x) = (x,f(x)).

Il est clair que h est bijective. De plus, h est continue, car se
composantes id et f le sont. Comme on a:

-1
h —nE/rf,

il s'en suit que h™" est continue et donc, h est un homéomorphisme.

2. Pour montrer que L est fermé, nous allons procéder de dew
maniéres.

a) On considere I'application ¢: E — FxF définie par:
¢(x) = (f(x),g(x))
€t on note A la diagonale de FxF. Celle-ci est fermée, car F es!

?éparéé. Comme ¢ est continue et L = (p'I(A), on déduit que L esl
ermé.

b) Montrons que CgL est ouvert.

Si xe CL, alors f(x) # g(x). Or F est séparé, donc f(x) et g(¥)

POSS§d§nl deux voisinages disjoints V et W respectivement. L4
~ontinuité de f et g fait que (V) et g ' (W) sont deux voisinages &
X- I en résulte que 1(v) N g ' (W) est un voisinage de x_ jnclus
dans CeL. CgL est alors voisinage de chacun de ses points. é'est un
Ouvert. Par suite, L, est fermé.

3. 11 suffit de poser A = L. Il s'en suit que A egt fermg. paf

—

conséquent, f et g coincident sur A = A =E.
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-wrﬂ'“’“ 202 . .
t:on i quune fonction définie d'un espace E dans (IR, ||) est semi-

4 SU éricurement, Si I'image réciproque de tout intervalle de la
ot ],oo,a[ est ouverte dans E. De méme, on dit que cette fonction
r . N e ik :

t, mi-continue inféricurement, si l'image réciproque de tout

oyalle de la forme ]b,+oo[ est ouverte dans E.

. Montrer qu'une fonction f: (E,7) = (IRII) est continue, si et
culement si, elle st semi-continue supérieurement et semi-continue
nféricurement.

) Si A est une partie non vide d'un espace (E,1), sa fonction
aractéristique est semi-continue supérieurement, si et seulement si, A
est fermée; et elle est semi-continue inférieurement si et seulement si

Aest ouverte.
3. Soit (f,) <pep UNC famille d'applications réelles semi-continues

inférieurement sur un espace E. Montrer que l'application réelle f
définie par f(x) = Min f.(x) est aussi semi-continue inférieurement.
1<i<p

Solution

.=
continue sur R. f & (]-oo,a[) est alors ouvert,

continue supérieurement. De méme,
semi-continue inférieure-ment.

Supposons que f soit
pour tout réel a. f est donc semi-

5 (]a,+°°[) est ouvert. f est alors

—
Soit © un ouvert non vide de R. On sait que:
Q - U Ii 5
i€l

e famille d'intervalles ouverts, donc:
i@ =U1'a).

i€l
possibles suivants:

(1), , étant un

Nous distinguons les cas

- |-00 -l
a)l-,=1a"] ’O"[ = (I) est ouvert.
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|
1 =1y~ _ll‘-"“" > L () est ouvery,

LTI 8" N RS ) L
= f l(ll\.y) ( I(] Y“ ni 1”5, r” CSLOuyey,

On conclut finalement que 1 est continue,
2. Montrons d'abord la premidre affirmation.

Supposons que [ soit semi-continue Supcrieurement, O .
" A = (]
CpA = IA(]“'“'[)'
Clestun ouvert. Donc, A est fermée.
[nversement, Si A est fermée

v Son complémentaire CLA e
ouvert. D'ou:

ey iah BRA0L
V ae R, 1';\‘(]-0.,.3[): CyA si 0<ac<],

E i el

Dans tous les cas, ) (]-c0,a
supérieurement.

On suppose maintenant que f
Comme précédemment, on a:

A = £, (]0,+o0[).
C'est un ouvert.

Réciproquement, si A est ouverte et a un réel donné, on a:

[) est ouvert. Donc, {, est semi-continue

A €St.semi-continue inférieurement.

o si a>1,
f:,\l(]a,-i-oo[): A si 0<ac<l,
E si a<O.
®, A et E étant des ouverts, on affirme que f3 (]a,+°o[} est ouvert

quel que soit le rée] 4. f A st alors semi-continue inférieurement.
3. fest semi-continye inférieurement car, pour tout réel a on a:

(Jasse]) = ) 17 (Jorl):

Comme f;l(]a,-{-oo[) est ouvert quel que soiti=1, 2, ..., p, alors
£ (]a’+°°[) I'est de méme.
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4.1 Generalites
ixercice 203

Soient (E,T) un espace topologique et (A}, une sous-famille de

P(E). On dit que (A;),cq S8t UD recouvrement de l'espace E, sielle

vénfie:

E=U A
leL

On dit que (A,),.q, €St un recouvrement ouv

thacun des €1éments A, 12 composant est ouvert.

Un espace (E,) est dit espace de Lindelof®, si de tout

tecouvrement ouvert de E, o0 peut extraire un recouvrement au plus
dénombrable.

ert de l'espace E, si

1. Montrer que:
1) (iR,\\) ost de Lindelof et (R, P (R)) ne l'est pas.

if) tout espace fini est de Lindelof.
iii)tout espace discret dénombrable est de Lindeldf.

2 Soient E un ensemble non dénombrable et a un point de E. On

18. Ernst Leonard Lindelof est né le 7 mars 1870 2 Helsinki et y mort le 4 juin
1946. De pere mau_lemmicien, il a travaillé sur l'existence de solutions d
équations différentielles, puis il a travaillé sur les fonctions analyti s
g'intéressant 2 Jeur comportement aux voisinages de points smgulinsques’ .

[~ T R e 197
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pose B\{a} = F. Montrer que la famille ¢ = .‘P(I‘)U{E} CONSify,

topologie pour laquelle E est de Lindelof. In,

Solution

1. 1) (RH) est de Lindelol conséquemment a I'exercice 1
(R,P(R)) n'est pas de Lindeldt, car du recouvremen, ouvery

({x}),_g On ne peut extraire aucun sous-recouvrement dénombrabje

i) Clest clair, car de tout recouvrement ouvert d'un te] espace op

peut extraire un sous-recouvrement fini.
u1) II suffit de remplacer dans (ii) le terme fini par dénombrable.

2. Pour cette topologie, tout recouvrement ouvert de E doit
renfermer E, lequel est le seul ouvert contenant a. Il est donc évident

qu'on peut en extraire un sous recouvrement dénombrable.

Exercice 204
1. Démontrer que tout espace satisfaisant au second axiome de

dénombrabilité est de Lindelof.
2. Que dire de la réciproque?

Solution
I. Soit (Q;);.,=© une base dénombrable d'un espace E. Soit

(0,),.; un recouvrement ouvert de E. Désignons par N(c) I'ensemble

de tous les indices Ae A pour lesquels Q; est inclus dans I'un des
€léments du recouvrement. N(c) est au plus dénombrable. Choisis-
sons, pour chaque ne N(o), un ensemble O,, du recouvrement tel
que Q, C O, .- La famille (O'n)ne/\ obtenue par ce procédé constitue

un recouvrement dénombrable pour E. ble O, du
En effet, si y est un élément de E, il existe un ensemoi lcéd
écede

X i pr
recouvrement tel que ye O,. Il en résulte, d'apres c€ ol

T p : dOHC.
quil existe un ensemble €2, de la base tel que y€ Q, & 0,

?

ndeld!

yeO, .

-es de Li
2. Elle est généralement fausse. Il existe des espaces

lesquels n'admettent pas de base dénombrable.
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e C'Spacc C(Ompact, tout espace (E,t) séparé et vérifiant
- son suivante (connue sous I on d'ax;
Jcondition S § appellation d'axiome
oesgue): e
, jout recouvrement ouvert (
x e (Al)leLde E, on peut en extraire un

Généralités
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qi Eséeritalors E= ) A, H étant une partie finie de L
le LcH '

1.1) Vérifie;r que tout espace compact est de Lindeldt.
ii) Que dire de la réciproque?
. Montrer que:

ro

) (|R||) n'est pas compact,
i) tout espace fini séparé est compact,

iii) (R, P (R)) n'est pas compact,
3. Soit E un espace topologique. On pose:
i) E est discret,
i) E est fini,
iii) E est compact.
M(_)nlrer que si E possede deu
roisieme.

8°[uti,on
I.1) C'est vrai, puisque toute p
ii) Elle est fausse comme on 1

x de ces propriétes, il en posséde la

artie finie est dénombrable.
e constate (juste apres!) a travers

R\
2. 1) (iR l l) n'est pas compact. Il est séparé mais ne vérifie pas
I'axiome d(; Eorcl-wbesgue. 1 est clair que la famille des intervalles
couvrement ouvert de R, duquel on

ouverts (]“"-“[)m. , forme un re

. .ouvrement fini.
ne xiraire aucun rece :
pcu:i)c“ vérifie (rivialement la propriété de Borel-Lebesgue.

iii)(lefP“R” n'est pas compact pour la méme raison que pour
(!R ‘ n gn effet, 1a famille des singletons ({x})xemest un recouvre-
e R n'admettant aucun sous-recouvrement fini.

ment ouvert d
On pourrail aussi objecter que (R, P(R)) n'est pas compact car il
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' Lindeldf. _ L
n e;l pEarS1 ggfet, si E est discret et fin1 1l est compacy d'aprag "
gl est discret et compact il doit €tre nécessairemen, fing p.u)
famille des singletons, entre autres, forme un feCouVremey, omsqlle l
Enfin, si E est fini et compact il serait fini et Sépare, gop Uve

C diSCl'el
£xercice 206 |
On dit qu'un espace (E,T) est compact, s'i] est S€paré oy Jouit 4
proprieté suivante: T

De toute famille de fermés (B,),_, d'intersectiop vide, op
extraire une sous-famille finie d'intersection vide. Clest-2-die. e

N Bi=0 = IHCA/ N B, =0 Hpy
A€A AeH

Montrer que cette définition est équivalente a celle de I'exercice
précédent.

Solution
I suffit de passer aux complémentaires.
Exercice 207

Soit A un sous-ensemble non vide d'un espace (E,t). On dit que A
€St compact, si le Sous-espace (A,1,) l'est.

~ Montrer qu'un sous-ensemble A d'un espace séparé E est compact
3L €l seulement si, la condition suivante est vérifiée:

De toute famille de fermgs (F),c; de E satisfaisant a:

NF, CC.A
i€l
O Peut en extraire ypa Sous-famille (F)ic; { finie) telle que:
NF, CCA .
€]
80[uti,on 5 jof
Le Passage 5 re la cont”
. UX complémenta; réecrire 12
DRCitde oy h PlCmentaires permet de
A - ﬁnie)'
La famjy) “(% el ik i CH CeFi- ¢ Jle 80
e . i€ : cOo 3
e Texercige 2EF') 1 €lant ouverte, | compacité de A d : e s
06. (Naturellement, A hérite de E 1a proprlé
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iil\‘“') 43 .
" condition est évidemment nécessaire.
exrcice 208
. Mon[]'el' que .

) tout ensemble fini d'un espace séparé est compact

i) .l'intervalle [a,b] n'est pas compact dans (R, P(R))
). Soit (x,,) , une suite convergente vers un point x dans un espace

gparé E. Montrer que le sous-ensemble A = {x} U {xn, ne H] est

;ompa(:t.
Solution
1. 1) 1 est discret et fini, donc compact.
ii) Il n'est pas fini!
). En effet, A est d'abord séparé. D'autre part, si (€;); est un

rcouvrement ouvert de A, il existe un indice ip€] tel que x& Q.

Or, d'aprés la définition de la limite x, son voisinage €;_ contient

ous les éléments de 1a suite (Xq), sauf, peut étre, un nombre fini X; .

tenus chacun dans un ouvert Qi,, ,

Koo X, . Ce8 points sont con
' P
0=1,2, .., p. Il en découle donc que
P
ac U Q-
a=0
exemples qu'un espace non compact

ort de s€$
sembl
_ensembles 0

es compacts. [nversement, un espace

Remarque: 11 ress
on compacts.

peut admettre des sous-€ e

compact peut admettre des $

Exercice 209 un espace sépar¢ E, 1a famille des parties
Montrer gue 987 i nion finie et par intersecuon quelconque.

compactes est stable par r
Solution .
, famille
Soit (_A.) 1% ups

i=1

finie de parties compacles de E. On pose

& De plus, si 1a famille (£22)2ea €St UN
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avert de A, elle I'est aussi pour chacup g ey
ment OUWL :

recouvIc
A.. Donc: '
o CAAC U Q, @ fip
Vie{l, 2, - B £y | MeL,CA v )
D'ou:
AC U Q,;
(U L)

ce qui acheve la premire partie.

Nous considérons, pour la seconde partie, une

famille quelcongy
(A)

«1 4 sous-ensembles compacts de E. Posons (N A =A. §

ompacts A;. Il existe
HonC une partie finie e yoy1¢ que () F, = ¢. D'od le résultat
jel,
Exercice 21
Montrer
emée, 1 1OUte partie cOmpacte d'un espace séparé (E;7) es!
So[uﬁ,on
Soit A ,
Oltrer qufzegé \ ue. Montropg qu'elle est fermée. Nous allon
Oint e ¢, o St VOiSinage g

. it x un
€ chacun de ses points. Soit X

, EA. E ¢ y
POty de A de tam SCparé, on Peut alors trouver, pour chad

. Ux vy

ety
_ e L disjoints V. (y) et W, dex e
S1gnifiq . Vn .a'démgné le voisinage d; X par vV, () pou
Constipyq *1Sinage dépend ge y.) La famille (Wy)yer
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P P

UW =QeNvy)-q
i=1 i=]

on voit que ' est un ouvert ne réncontrant aucun des ensembles
W, . Par conséquent, Q' ne rencontre Pas A. On vient d'etablir que:

Xe ST CgA.

Donc, Cz Ae V(). Clest le résultat recherché.
Exercice 211

Montrer qu'un sous-ensemble A d'un espace compact E est
compact si, et seulement si, il est fermé.
Solution

La condition est nécessaire d'apres l'exercice précédent. |

Inversement, soit (O;)._; un recouvrement ouvert de A. La famille
[(Oi)iep CEA} forme un recouvrement ouvert de E. Comme E est

Compact, on peut extraire un sous—recouv;i:ment fini
pour E (J étant fini). I en découle que (O;); ; est un sous-recouvre-

o i-ci est compact.
me t donc celui-Ci s i
r(l)trf melz dte gt’u?ellement mener la preuve autrement. Soit (F;);, une
peut n

famille de fermés de A (fermé par hypotheses) telle que
(M F j= ¢.

el

E. sont des fermés de E (compact). Donc:
S i

BJCLJﬁ“i/n F,=¢;

iel

[l s'en suit que le

d'affirmer, une fois encore, que A est compact.
- . a | L]

Ce qui permet

Exercice 212

espace topologique et K et A deux de ses parties
(E,x) un

Soient

telles que K icA K est compacte dans E si, et seulement si, elle 1'est
Montrer d

. : A-.TA ) )
dans le sous-espace (
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Soguuﬂ:ms que K soit compacte dans E. §j v, et €St up ecoy.
s

vrement ouvert de K dans (A,t, ), on a:
3 WiE'C/VI. = W,nA €],

[Ten ressort que (W), . est un recouvrement ouvert de K g E.
¢ 1 | t .
Comme K est compacte, on Peul en extraire un SOUS-recouvremen

HEi(W, ) Or K estincluse dans A, donc, la famije

Ylge
. NA =ilVie)
(le )lq‘ao U Lsp
constitue up SOUS-recouvrement fini extrait de V)

COmpacte dang (AT, ),

e1- Donc, K egt
1€ |

a famille d'ouvertg (Q;NA)

; » ON peut ep CXtraire un goyg

(QijnA)l .- On déduit que la fami]je (
q

feCouvremen, fini extraj de (Q)
COmpacte dans E_

EXerci,cz 213

Q) constitue un sous-
U e

ier- On conclut done que K est

= En effet, si A St un fermg d'un Space compacy E, il est compact
1Apres |, Proprig¢ Précédente. Si I
CXercice 210

» On lroy




Saniee 205

ghutio®
oient F et F, deux ensembles fermés disjoints d'un espace

ompact E. Pour tout xe F, etyeF,, il existe deux ouverts disjoints
.(y) et G, (x) tels que:

xe Q,(y) etye G (x).
(ette notation signifie que €, (y) est un voisinage de x dépencant de

yetG,(x) est un voisinage de y dépendant de x). F, étant compact

cest un fermé d'un compact), on peut alors, pour tout x fix& dans
F,, recouvrir F, d'un nombre fini d'ouverts G (x), By . (XN
mx

Posons:
n(x) n(x)

Gx)=U G, (x) et &= N Q,(y,)-

j::l J'-'l

Glx) et ©, sont deux ouverts disjoints vérifiant :
xe Q, et F, € G(x).
entraine qu'on peut recouvrir celui-

De méme, la compacité de F,
- QM. Il s'en suit que les

ci par un nombre fini d’ouverts Q-

k
k L
_Qet ) G(x;) =G sont disjoints contenant,

deux ouverts U ij 1oy
j=1

'un F, Jautre F-
Exercice 215 gparé de Lindeldf.

Soit E un espac Jeux assertions suivantes sont équivalentes:

Démontrer qué C:C t
. m . = .
i) E estcomp infinie (x,),de E admet, au moins, une valeur

ii) Toute suite
d'adhérence.
Solution

i) = ii)
Posons:

"
7 "

{xn, x“+l,--u,xn+p, -'-} n-
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oy pout \ > p. Cect est impossible, car la définition de a

\...1.‘1411: P‘“‘r rentier p+1 il existe un indice i tel que
3 i2ptletx;eQ .

e rdsuliat escompte.

it fu‘ﬂ 2 1 ﬁ

monter que toute partie infinie d'un espace compact E admet au

_psun point d accumulation.

plution
on utilise 1e raisonnement par I'absurde. Supposons que A soit un
semble infini de E n'admettant aucun point d'accumulation. Il en

salie que, pour tout X de E, il existe un voisinage ouvert V, de x ne

wacontrant A qu'au plus en un nombre fini de points. La famille
de E. On peut donc en

V) .. forme un recouvrement ouvert
xmaire un sous-recouvrement fini (in ) " o écrit alors:

T

UV, =E

D'ou:

A:An \O VM\-‘—' iLr;Jl (Anv"l).

pe réunion finic de parties finies.

contredit les hypotheses.

Il s'en suit que A cOin¢
-Weierstrass

Elle est donc elle-méme
Remarque: C¢ résultat

finie. Cecl
est d0 @ Bolzano

e des sous-ensembles A la fois fermés et

Exercice 217 camill
t dénomhrablc.

Démontrer que ki
ouverts d'un espact

Solutio N
d&,'cn:‘( y One pase d'ouver
§ 4 | |
: vc;n' e E.O &tant ouvert, on peut &erire:
fermé et oY "
G= U Q.
€l
qussi fermé, il est alors compact. Un nombre fini

pow le couvrir. On peut done écrire:

compact E es

ts de E et G un sous-ensemble

Comme i t‘"‘,“
d'ouverns sutll
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emble fermé et ouvert G corresponq un gyg
ngi, A tout € L i ). Comme Me finy
o(G) = 1o - Ip): LOMME 6(G) 4 g1,
R. la famille des sous-mscmblcs: fermés gt
mﬁé gal#au ’plus égal A celui des systemes finis d'entierg
cardi

est don¢ dénombrable.

—T
Jlentiers naturel Doy

uverts g, e

4.2 Compacite et continuitg

Exercice 218
. Soient f une fonction de (E,t) dans (F,0) et A C E. Monty
que Si:
1) A estcompact,
i) f est continue,
i)F est séparé,
alors f(A) est compact dans F.

2. En déduire que Ja compacité est un invariant topologique.

. . . W
3. Donner ype nouvelle justification de la non compacité de (Rl-h
Solution

L. Soient ()

. Ky L Ul recouvremen Tl existe wn
famille ¢'ouyerre v L ouvert de f(A)

(W) er, de Ftelle que:
D'oj: VkeL Q, =f(A) N W, .

Vkel ¢1
€tany connnuc, f'l(WL f
k

k:Aﬂf-l(w

(Qk) =AN f-I(Wk).
devient ouvert dans E. Donc, l'ense

k) est - dice ke
“kep, fo Un ouvert ge A, pour tout indic® A

| me : e
Mgy de toye ¢vidence, un recouvrementd ;

b

e uvrement fini (V) ek
o U J
Oﬂa . k< Vk =».f : '
AN =] (A) - - Qk
i rygg; A Obyan: kL-_-Jl ) L’"J‘ t 0¥
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et initial (Q)) ey - [(A) clsl alors compact dans F, séparé,
W ge: co resultat est dd & Weierstrass,
, 1 esulte de cette question que tout homéomorphisme conserve
sapacité. Celle-ciest donc un invariant topologique.
) R.||) esthoméomorphe A tout intervalle ouvert Jab[, lequel
s pas compact. Done (ER.H) ne peut pas 1'8tre aussi.
: (R .|.|] est homéomorphe A tout intervalle compact [a.b]. Il est
2 uss1I compact.
Exercice 219

Soent E et F deux espaces topologiques séparés. Une fonction

waunee £ de E dans F est dite propre si l'image réciproque de tout
“mpact K de F est compacte dans E.

Exhiber un €xemple de fonction continue non propre.
Solution
On peut envisager l'identité id o définie de l'espace discret

R-g’(R)) dans I'espace usuel ([RH)
Brercice 22
Soient E €L F deux es

E paces topologiques, f une fonction continue
dans F ey o E.

L . e
2 ([))Onner un exemple od on a f(A) # f(A) .
C“'ﬂbacn ".PPOSe que F est séparé et que A € B C E avec B

* Montrey que:
f(A) = f(A).
lutioy,
L,
Iy ET Prenant E = J0,+eo[ , F = R munis de la topologie usuelle et
75 alors:

2, é(nm) =f([1.+e) =]0.1] = f([1.+<]) =[0.1].
S que (exercice 163):
f(A) C f(A) C T(A).

Maj
| -
‘®hant, SLAC Balors A est fermé dans le compact B, done
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(. Par suite f(A) est compact (exercice 218), done fermé‘
meat le plus petit ferm¢ contenant £(A), donc: r r
l(A) estlep f(A) " t(A)

Cest la seconde inclusion recherchée.

221 s -
£xaf(;i;f:r que toute fonction réelle définie cont;

\ nue gyr un eSpage
compact E est bornée et atteint ses bornes.
Preuve
Dapres l'exercice 218, f(E) est compact dans (IR,H) 1 est dop
termé et borné. Posons:
M =Max f(x) et m = Inf f(x).

xeE

xeE
propriété caractéristique

En utilisant 1a

de la borne supérieure, o
obtient:

Ve>0 3 xer/f(xg)S_M<f(x0)+a.
D'od

Me Jecx,)-e, f(xo)+8[
4N point d'adhérence pour f(E). Comme

¢, il contient M Autrement dit, ] existe X, €E telqe
M=Knl
De méme, op utilisant 1 Propriét¢ caractéristique de la borne inf®
ﬂe 1 ]
ure, on étap); it ] EXistence (' un point x, € E tel que f(x,) =m: y
Ui achgye l'exercice
Weit’.‘rst(rlas " Tesultat eg “Onnu sous I'appelation de théord
X-Gﬂ':i,cg 222
Ontrer gye ¢ {E 0
N espac X Fue31 ? NCtion Continue d'un espace compac
Solugj,,

En effey
Ul Sengy °LSiK ¢

acl
Lun €nsemp) st alors comP
COnC]u loq e [‘(K) est cq e fel'mé de E,ile

“Ompac Ctdans F. Donc, f(K) est ferm®-
Slupe foncuon felTl‘lée
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.\f'l.wc 22\5

“le‘f L]l‘\‘( o " : T

foute bijection umlmuq [ d'un CSpace compact E sur un espace
o Festun homéomorphisme,

L g festune fonction réelle continue stricte

giecompact E, alors il existe un réel ¢ » () tel
fx)2 o, VxeE.

ment positive sur up
que:

lution

I suffit de montrer que f!
usque limage réciproque d'un fe
oquel est fermé dans F, d'aprds l'ex

.. Larelation demandée découl
“que dans R, 1a bor
nciement positifs es
Exercice 224

Soit (E,)

CSL continue. Ceci est évident,
rmé K C E est I'ensemble {(K),
ercice précédent.

¢ du fait que f(E) est fermé dans R:

ne inférieure d'un ensemble fermé d'éléments
L, elle méme, strictement positive.

15y UNE famille finie d'espaces compacts. Démontrer que

P
s H E, est compact si, et seulement si, chaque E, l'est.
=]

30[ut,i,on

La condition

nécessaire est évidente. En effet, si I'espace produit E
St Compact

» il en est de m&me pour chaque E, (1,
Pojection n,: E = E, est continue.
La condition suffisante nous I'établirons dans le ¢
Cux espaces. .
Soient E, et E, deux espaces cOmMPActs et ¢ un recouvremen
“uvert e l'espace produit E,xE, . 1l est clair que E xE,
9 fagg que E, et E, le sont.

-P) car la

as d'un produit

est séparé,

Par ailleurs, pour chaque point (WY)€ E, xE, , qn désigne par

2, 'un des ouverts de @ contenant (X.¥). 11 existe alors deyx
e 2 < \ .
‘)UVcns Atx y)dc hl ct A(I.Y) de hl tels Yue:
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2
(x,y)€ A(lx.v)XA(n.y) < Qh.y)-

‘ our tout x de E,, Ia famille (A2
Nous remarq " Y,

‘a 8o &
. souvrement ouvert pour I'espace COmpact g,
constitue un recouvrem B ]

e 2
donc en extraire un recouvrement fini (A(,l ))

vk, - llgen g,
i=l.2...,p

p .
- ert et contj -
que l'ensemble _n‘ A(x.yl)- CK st ouvert ent x, Alngl‘ la
i =

famille (C,)eE, €St un recouvrement ouvert de l'espace Compact E,
X 1

Donc, la sous-famille finie (C x‘,) s suf'fit pour recouvrir E . pe ¢,
qui précede, on déduit que la famille finie ( C, x A2

l

) (x;y)) 1<i<p; lsjs:es
un recouvrement fini de E, xE, . D'autre part, et par construction, on
a:

1 2 _

3 X AG 00 © Apyypx A gy S Qelss
Vi=1,2,.,p;Vij=1,2 vy

On conclut que (Q

inil
est extrait de ¢. Cela met fin
(®5y}) Isisp ; 1gj<r
notre recherche.

Remarque: ce résy]tat ogt df & Tychonoff*,

ts
4.3 Ensembles relativement compas
Exercice 225 relative

! S0us-engemble A d'un espace séparé E est dit
Compact, g S0n adhérence A €st compacte

Ontrer qu

0o
1906 2 Gzny ®

tska oy
T;O:li?' enalyse fonctionnelle et Ia théoric des équatio”
Ves par €S et leurg applications a la physique-




1 toute partie bornée de (R, 1) est relativement compacte,
3. loute partie compacte est re]

ativement Compacte,
4. toute partie d'un ensemb]e relativement compact I'est augs;j, (la
ampacité relative est une notiop héréditaire).

folution

tun fermé dang yp compact,
€ et bornée (caractérisation d'un compact de
Rl

) avec son adhérence
on adhérence S€rait un fermé dang yn compact

Exercice 226

Montrer que dans up €Space topologique, la famille deg parties
lativemeny Compactes est staple par réunion finje et intersection
(quelconque)_
sﬂtuti,on

Si F,etp

2 Sont deux parties relativement Ccompactes alors

ES‘C()rnpact.
¢ meme, g (F))..; est une famille de parties relativement
’ 1/ e
v =
Ompacms alors 1a relation

NF, C _l:-"'i-,ViEI
i€l
p

¢ g
et de i que

iel

() F, estun fermé dans chaque compact -E-:-:-
e tlle méme compacte.

4.4 Ensembles [ocalement Compacts

Ex""’ci.ce 227

B mae oo bact, 41F agt ggnam
: n i : ace E est Ioc . p et
| chaglttnq(;leus[::: ;%ints admet un voisinage compac.
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Montrer que
1. tout espace compact est localement compact,

- (R.].]) est localement compact,
. tout espace discret E est localement compact.

Solution :
1. 8i V est un voisinage d'un point x d'un €space compact gy

adhérence V constiute un voisinage compact de x.

2. En effet, (IRH) est sépar€ et chaque point x admet un Voisinage
compact: [X-r, x+1] (r > 0), par exemple.

3. On sait que E est séparé et que chaque point x admet {x}
comme voisinage compact .

Exercice 228

Montrer que toute partie fermée d'un espace localement compact
est localement compacte.

Solution

Soit A un sous-ensemble fermé d'un espace localement compact
E. Tout point x de A admet un voisinage compact V. Il en résulte que

VNA est fermé dans V. 1l est donc compact. De plus, VNA est un
voisinage de x dans A. Donc, ce dernier est localement compact.

Exercice 229

1: Montrer que pour qu'un sous-ensemble A d'un espace co;npatjl
E soit localement compact au point x,, il faut et il suffit qu'il sout

localement fermé ep ce point (c'est-3-dire qu'il existe un voisinage Al
de x, tel que VNA soit fermé).

2. Montrer que pour qu'un sous-ensemble A d'un espace compact
E soit localement compact au point x,,, il faut et il suffit qu'il sot
différence de deux ensembles fermés, ou encore, que l'ensemble
A\A s0it ferm¢.
Solution

op. Il
Admettons, en effey, que A soit localement compact au point pa;r
€Xiste donc un Vvoisinage compact V de x, dans A. En désignant P

- . 5 1 . [e
! fnténeur de V dans A, Jeg ensembles I et A\T sont disjoints. Il o
Par conséquent up €nsemble ouvert Q dans E tel que

to

LY
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lCQmﬁﬁAQI:
mble V étant compact, donc fermé, il vient
[_'L‘.HSC

L CENV T A,
! 1 =0NnA.
Lensemble € est done le voisinage demandé de Xa:
Réciproquement, si V est un voisinage de x, tel que VNA soit
tmé, VAA est un voisinage compact de x,, dans A.
Exercice 230

. Montrer que dans un cspace localement compact E, tout point
«met un systdme fondamental de voisinages compacts.

2. En déduire que tout espace localement compact est régulier.
Solutiop

L. On veyt rouver, pour chaque point x de E et chaque voisinage
W

y e % Un voisinage compact F tel que F € W. Sans restreindre de
ﬁn?érfﬂ“é, N peut prendre W ouvert (C'est loisible, puisque tout
M admey yp Systtme fondamental de voisinages ouverts).

parx\; d[')“c" Par hypothases, un voisinage compact que 1'on désigne

- POsong:

K o

St » F
I ferme gy compact V. 11 est alors, lui méme, compact.
Com P

Que- TexeK, i CXiste (voir l'exercice 210) deux ouverts U et W tels

xe U, (1)
KCcw, (2)
L UNW=¢. 3)
” ]UV
R PCut &tre pris inclus dans V. La relation (3) implique que
b'()h UC CEW.

CLuW egt fermé, done:
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U CVNCW.
D'autre part, de (2) on déduit que:

CgW C CyK = C,VU Q.

Finalement, on a:
UcvnE,vuQ)=vna.
Il en découle que U est un voisinage fermé de x, inclyg dang e

compact V. Donc U est compact; et comme U Q, 1a premiare

partie de I'exercice se trouve démontrée enprenantF= U .
&, Conséquence immédiate de ( 1).

Exercice 231

Montrer que, dans un €Space compact (E,1), toute suite décrois-
sante de fermés non vides, est d'intersection non vide.

Solution
Soit ( K.,)_ une suite telle que décrite. Supposons par l'absurde que

MK, = 6. Ilen résulte aussitot que:
ne N

CE n Kn = U CEKII:E'

ne N ne N
Ainsi, la famille d ouverts (CgK ) recouvre le compact E. On peut
donc en extraire un Sous-recouvrement finj (CEKn.) Clest-a-
dire : iy
P
1L=Jl CEK“i e
D'ou;
p
NK =
i=1 M
Mais notre suite est décrmssame, donc
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parques: - ' =9, E 6
Re t dire, plus directement, que sj MK, = ¢, E étant
1. On peu nelN
i -suite finj telle que
,mpict, On peut extraire une sous-suite finie (Kni)i _12. telleq
P
'Ol Kn-,= Kmaxn, 5 q)
= 1<i<p
Absurde. ‘ :
2. Ce résultat est connu soys | appellation de théoreme de Cantor,
Exercice 232

1. Montrer que tout €space localement compact est de Baire.
2. En déduire que toyt €Space compact est de Baire.

Solution

L. Soit E up €Space locale

ment compact. 1| est s¢
Upposons que Q)
ne

y SOIt une suite d'ouverts p

“{montrons qye N Q,=Q est partout dense. Pour cela, i suffit de
ne N

ontrer que tout ouve

T O+¢pdeE rencontre Q.
4 de prime abgyg.

par€. Par ailleurs,
artout denses de E

: ON Q) =0, (car Q, =E).
0
T tout xe ONQ) il existe un voisinage ouvert V, de x tel que

Draprés : VO C 0 n Qo.

lexercice 230, x

Mage admet un systame fondamental de voigi.
> Compagyg Il existe d

ONC un compact W, e V' (x) el que:
WS V,congq,.
tée, on a;

Py

(1)
la mme raison préci

Wo N Q, #¢.
Dy

fic 8 it o
lg) qué‘DOUr out xe Wo N Q, 1l existe un Voisinage ouvert V, de x



Compacité

QO
Vl C WU n Ql "
De méme, x jouit d'un voisinage compact W vérifian,.

0
W, cV,Cc w,NQ,.
Ainsi, on construit, de proche en proche, une suite ¢
compacts (W) telle que:

W, C Q , VneN.

écmissantc de

D'ou :

NW,cNQ, =
ne N ne N

La relation (1) permet d'affirmer que

N W, co.
neN
I en résulte que
NwW.cong
ne N
Il suffit, pour achever Ja démonstration, d'avoir N W, #¢. Cest

ne N
assur€ par l'exercice 231 ci-dessus.

Exercice 233

On dit qu'un Sous-ensemble d'up éspace topologique est locale-

Mment compact, sj Je Sous-espace que constitue ce sous-ensemble,
muni de J3 lopologie induite, ]'egt.

2. les parties ouvertes

- 1es partieg formées dintersections d'ouverts et de fermés.
Solution

I.SiF €Sl un eng , Ompacl E,
alors poyy tout x debgfni})le fermé d'un ¢space localement ¢ E

. 1¢ g
Cela engrap CXiste un voisinage compact V de X d
raine, de toye €vidence, que VNF est un voisinage de X
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Compactification

. [
Ny g ‘ @

J‘. gj Q est un ouvert de E, il est voisinage de chacun de ses
;m comme E est localement compact, £ contient un voisinage

‘-wmpacl de x. Q est alors localement compact.
) 1 Enfin, il apparait clairement que tout ensemble de la forme

ONF. ou Q est ouvert et F fermé dans un ensemble localement
compact, est localement compact. En effet, il suffit de remarquer, par
axemple, que QNF est fermé dans le sous-espace localement compact
Qet de conclure avec (1).

4.5 Compactification

Exercice 234

A
On appelle compactifié d'un espace E, tout espace compact E

dont un SOus-ensemble partout dense est homéomorphe a E.
A\

o
Le Couple (E ,f), formé de l'espace compact E et de 'homéo-
P

?0rphisme f de E sur un sous-ensemble partout dense de E,
“Ppelle compactification de E.
= Soient (E,t) un espace localement compact et @ un point
4Ppartenang pas A E.
P
L. Démontrer qu'il existe un espace compact E tel que E soit

hmnéomorphe ac, l al'
e point a s “ » al'infi iﬁ est dit compactifié
d'A) Sdppcll«. point a l'infinL s
€Xandroff” de E.
T —

| Alckw Sergeevich Alexsandroft, mathématicien Russe, est n¢ le 7 maj
1896 a Bogorodsk (Russie) et mort le 16 novembre 1982 &4 Moscow. Il a
Uravaill¢ sur divers domamnes notamment, les fonctions d'une vanable réelle, |,
l"pmogic et la théorie de Galois. Les notions d'espace compact et d'espy .

localement compact sont dies A lui et Urysohn.
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s P
2. Montrer que si E et E; sont deux compactifigg de E, jj o
o | A~ A~ > Hexigge
un homéomorphisme liant E; et E; en échangean; leur Doing

l'infini.
Solution
1. Posons:
/\
E'=FU [a].
A

N\
Nous allons munir I'ensemble E d'une famille 1 C fP(/F:)teue que
A

t=tU 7, ol 7' estla famille constituée de toute partie de E ayant
un complémentaire compact dans E.

Notre probléme consiste 2 montrer les points suivants:
A

\
1)) (E, T) est un espace topologique pour lequel (E,t) est un sous-
espace.
A

i) T estséparée (E,7) est localement compact.
A

s A
u)(E, 1) est compact.
WE =E.
A .
V) E est unique 3 un homéomorphisme pres.

A A

T.De méme, E e 1 car

) a) Ona ¢et, donc de E= Cyo¢
¢ est un Compact de E,
A

b) Montrons que 1 est stable par réunion. Soit (@)™

A

SOus-famsi :
amille de ¢ Noug dlstinguons trois cas:
| . Fa
l N
) si Qer pour tout le [ alors | Qetc T
Pk leL
1) si

1€ T pour toyt le L alors:
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Ua=U (Ci‘-f“‘k%(ﬂk,‘e/;;

leL lel. lel.
( ¢ant, pour chaque l€ L, un compact de E.
ii)Si 1a sous-famille (€2,),, est formée des éléments de T et

res de T,onpose V=) QetW= |J Q. Examinons
Qet Qe

WW.OnaW=C %\H, H €tant un compact de E. Donc:

UQ=VUW =VU C H=C.(C,VNH)=C .(C,VNH).
el E E E E

CeVN H est fermé dans le compact H, il est donc compact. 11
A

‘suitque |J Q, e .
lel
A

COﬂClusion: T vérifie le second axiome O, de Hausdorff.
A

) T est stable par intersection finie. En effet, soient A et B
A
::::ﬂémems de t. On distingue, comme dans (b), trois éventu-

A

) ABet = ANBetC t.

i) i ABe alors A=CoS et B=CyTodSetTsomt
deyy .. it -
X compacts de E. 1 vient: 3
- - . ] \ C t‘
ANB=CgS NCLT =(,€\5UT)et
c‘ISUTt?lilc.:ompxwldmuﬂ:‘..
e un compact K de E tel que

i)Si Aet et Bert, il exisl

AEC?K.DME
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e

A

= ,\Kn B:CKn BETC {40
ANB=C A I
A _ . i . . A
Ainsi. T satisfait aux trois axiomes définissant une topologie. (E

A

t) est un espace topologique admettant clairement (E r) Comme
sous-espace topologique. : =
2. Soit x un point de E. Il existe un voisinage W de x g un

voisinage C 2 K de o tel que C 8 K NW = ¢, K étant un compact de

E.Ona:
E

D'oa W C K. Donc, K est un voisinage de x. Ainsi, tout point de E
admet un voisinage compact. Si 1'on ajoute que E est séparé du fait

e
que E Test, on en déduit que E est localement compact.

Inversement, il suffit de trouver deux voisinages disjoints pour o
¢l un point quelconque x de E. E étant localement compact, x admet

un voisinage compact K. C%\K est alors un voisinage de o, ne

rencontrant pas K. On conclut donc que (E,T) est séparé.

_AITElons-nous un peu sur ce point pour remarquer que la con-
¢ition " E localement compact " n'est exigée que pour assurer la

i A
Séparation de E , condition nécessaire pour sa compacité.
A

M E
- Montrons que (E,T)est compact.

A

E est séparé car E est localement compact. D'autre part, SOil
Q,)

: A .
MaeA un recouvrement oyyert de E. I existe, par construction d¢

» Un indice Aoe A tel que Q, =C.K od K est un compact de E.
0 E ’

i rec F ‘
% 0DV o pomt o e résulte que la sous-famill

ul




r

- . - A A
nille (gk‘)(}g oSt un recouvrement fini de E. Donc, E est
A

Compactification 293

qapact : A
| Soit Q un ouvert non vide de E . Deux possibilités se présen-

ot

H QC E,alors QN E # ¢.
iy @ ¢ E, alors il existe un compact K de E tel que
Q:CgK D‘Oh..
Dans les deux cas (ils sont les seuls) on trouve que chaque ouvert de
A A\
E encontre E. Ceci entraine que E est partout dense dans E .
5. Supposons que E ne soit pas compact et que (Y,) et (Z,g)

wient deux compactifiés de E. Soient B ety les deux points 2 l'infini
Y et Z respectivement.

Lapplication ¢ définie de Y dans Z par:

o(y) = (2of ) ; B#Ys
o} =17,

d'un cOMPAct par une fonction
image
est . X _{ \ (imag . _
compact dans ¥ - 1P -1 y) est un voisinage de B.
“Ontinye), 11 s'en suit queé ¢ (
Conclusion:

 ©est un homéom
Vinfinj,
Ouf !

r Z., échangeant les points 3
' de Y surl
Orphlsme
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Exercice 235

Montrer que E:[-oo,+oo] et R= lRU{oo} CONStityen . |
compactifiés de (IR, | I)

Solution

On sait que ( R, II) n'est pas compact. Par contre, il est localemen,
compact. Il admet donc deg compactifiés.

L. La droite réelle achevée R = [-oo,+oo] en est un.
En effet, I est évident que:

1) E est séparé,
i) R est partout dense dans R .

Montrons que R est compact. Soit (€2)),., un recouvrement

ouvertde R . I] existe (Qil ) et (Qi2 )tels que:

Qil = [-oo,a[ et Qi2= ]b,+oo]; a,be R.

II'en résulte que 1a famille (Q,) t-{via) forme un recouvrement
1€l -

Ouvert pour l'interyalle compact [a,b]. On peut donc ep extraire un
ICCouvrement fipj (L. )

iy lR:IRU{oo} en est un 3
précédente. Suivons-1a pas a pas.

Tout d'aborg, Munissons R de |5 topologie T =1 U 7' o :
Testla topologie usuelle de R,

t donc compact.

utre. L'étude est similaire 2 la
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ntent.
¢ s

ety sont dans R ils jouissent de deyx voisinages disjoints car
i1 %
sl Séparéc.

qxeR ety = oo alors pour tout voisinage Jx-r, x+1[, 1> 0, de x
s sous-ensemble _
" ree, -Max{|x-1, x+el}] U ]Max“x-rl, |x+r|},+ooL U {e})
stun voisinage de y ne rencontrant pas celui de x.

ii) R est partout dense dans E Puisque tous les ouverts deE
encontrent R.

i) Montrons que R est compact. Soit (€;),_, un recouvrement

te un élément Qi1 de la forme:

%= o Max{Jal, 1o} U Tvtax{ oI}, -+

Il en résulte que la famille Q) . { } forme un recouvrement
1€1- 1,

uvert poyr l'intervalle Ccompact [a,b]. On peut donc en extraire un
“KOllvrement fini Q. 2<j<p L@ famille finie (Q )
i Jsp

i,)1 j<,CONStitue
I . g )
n recou\.rrement finide R . Celyi-

owvertde R . 11 exis

U {=}, abeR.

ci est donc compact.

4.6 Quelques problemes de plus

Ex“’.cice 236
nn: Ol.em B un espace séparé et (K,)  une suite de parties compactes
Vides ge g,
Montrer que
NK,#0¢
ne N

En d€duyire QueK = MK

R Momrer que si Q est un ouvert contenant K, alors il existe un
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indice n,, tel que:
Knc Q, V n_>_ nU.

fution - |
80i) Supposons que N K, soit vide. On déduit:
nelN
CE n Kn = U CEKn — 3 A
nel nelN

Il en découle que la famille (CEK“)nem constitue un LeCOuvremen

ouvert de E. Naturellement, cette famille recouvre

chaque partie
compacte K| (pe N) de E. Par conséquent, on

Peut en extraire un

recouvrement fini (CEKH) ey 3¢ Kp» T étant une partie finge ge
nelc
NE contenant pas p. Ainsi:
Ky cUCk,.
nel
D'od:
*
NK, c CpK ()
nel
Or:
n Kn = KMaxl =Km0’
nel
avec m() ==

cas
: MaxT; on St amené donc 3 distinguer les deux
suwams;

Y pm, .

n 1 ;
(.jédult, €n verty de Cette Condition JoeRl wsvincluss (T8 T
CClest ep contradiction avec |
b) p<

{ enco
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K=() K, est fermé dang chaque compact K,. 1l est
our Ail1eurS: ne N

.ongcqucm compact.
gf G

i) Soit Q un ouvert contenant (N K . gy
) ne N

<N, ilexiste ne N tel que n >, ¢ K.€ Q. 11en
fp<*"
wour tout ne N, il existe un élément X, deK_ a
L

(:Q. Comme la famille (Kn)n €St décroissan
suite (

PPOsons que pour toyt

découle que,
Ppartenant au fermg

te, il s'en suit que la

Xa), estincluse dans 1a partie compacte K. Elle admet alors

une valeur d'adhérence appartenant j:

MK, =Nk, cq o
ne N ne N

Or la suite (xn)n €St aussi inclyse dans C
Tadhérence ap

™). D'od la conclusign voulue.
Exercice 237

eQ, donc sa valeur
partient ay fermé CgQ. Ceci est en contradiction avec

S0it E yp €Space compact dont seuls
Més, A désigne 14

| Montrey que A

-Montyey

2. M
Que:

Eet ¢ sont 3 Ia fois ouverts et
fe

diagonale de 2

€St compacte.
que E egt infini.

Ontrer qy'jy existe un SOus-ensemble dénombrabje A de E? g}

ANA=¢ et ANA % ¢,
8"[“-l'-ifcm

1 :
HIOré OMpacité de E ep
Compac[e.enné d'un comp

2
J

La ¢ traine celle de g2 (exercice 224). A est
act. Elle est par conséquent, elle méme,
Sl était fip; g Serail discret et contredirait I'hypothase faite sur
3. 0n Peut affirmer que:
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C..ANA#0,
sinon on aurait
CE2 A C CE2 A

ce qui entrainerait que A est la fois ouverte et fermée.

Soit y un élément de CEZA NA. 11 existe une suite (x,) dang

'ouvert Cr32 A, laquelle converge vers y. L'ensemble

A= {xn, ne IH]U{y}
convient.

Exercice 238
Soit E un espace séparé. Montrer que si A et B sont deux parties

compactes disjointes de E, il existe deux ouverts disjoints QetQ,
vérifiant:
ACQ,et BC Q,.
Solution
Analogue 2 celle donnée dans l'exercice 214.

Exercice 239

Soient E un espace compact et f: E — E une application injective
continue.

L. Soit (A;),, , une famille de parties de E. Montrer que:
ila Ai) =N f(A)).
i€l i€l
2. Montrer qu'il existe un fermé non vide A de E tel que f(A) = A.
Solution

1. Soit y un élément de f N Ai). Il existe un point x dans Q A;

i€l

t;} ?llle Y = (x). 1l en ressort que f(x) est dans chaque f(A;) i €
ol
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[(ﬂ Ai) c N f(A).
i€l i€l
nent, si y est dans () f(A)), il existe, dans chaque A;, un
javerse ’ i€l
goent X; tel que:
| y =f(x,), 1€l

.ame { est injective les éléments x;, coincident. Notons z cet
:';émcnl commun 2 tous les A, . On écrit alors:

dze( A/y=1(2).

1€l

Done, ye f(ﬂ Ai‘. Par suite:

0 N f(A) € f(n fn)-

iel el

2. Sif(E) = E, E résoud notre probléme. Si f(E) # E, on pose:
Bo =E,
Bn+l = f(Bn) = fofe... of = f'”l(Bo), ne N,

50us-ensemble A = (B, = N{"(E) convient. En effet, A étant
ne N ne N

‘:m 1 [] . s . -
m;ifsecmn d'une suite décroissante de compacts non vides est lui-
on a.e Un compact non vide (exercice 236). De plus, f étant injective,

f(A) = f ma,) = N 1(B,) = A.
ne N ne N

xercice 240

| ‘ .
Con Soient E et F deux espaces, F séparé, et f: E — F une fonction
Unye Soit Iy e graphe de f.

0

¢ t_me' que la restriction de la projection ®; A I’y est un homéo-
"Dh;:m €de Ty surE.

F Com Ontrer que si E satisfait au premier axiome de dénombrabilité,

PaCLet Ty fermé dans ExF, alors f est continue sur E.
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Solution {1}
1 Cette restriction 7ty /I’y est définie par:

(x,f(x)) = x.
Elle est bijective continue. Sa réciproque est donnée par:
X = (idg (x), f(x)).
Elle est continue car idg et f le sont. Ainsi, on tient notre homéomoy.
pm;mg.oient X, un point de E et (x ) une suite convergeant vers %
De l'a suite (f%xn)), on peut, conformément 2 la compacité de F,

i i un point y,. Il en
extraire une sous-suite (f(xnk )) convergeant vers un point y,,

ressort que la suite {xnk, f(xnk )) de I’y converge vers (x,,y,). Or

['¢ est fermé, donc il contient la limite (X9,¥0). Autrement Qit, on a
Yo =1(x;). Ainsi, f est séquentiellement continue, donc continue.

Exercice 241

1. Soit (E,r) un espace localement compact. Montrer que l'inter-
section de deux sous

-ensembles localement compacts est localement
compacte.

2. Donner up exemple, dans (IR||), d'une réunion de deux
ensembles localement com

pacts laquelle n'est pas compacte.
Solution

L. Soit x un Point commup 3 deux sous-ensembles localen}:{c‘:
compacts A et B. Tl exigte, conformément  1a compacié locale de

B
Mpacts V, et V,, de x relativement 2 A €l
fit par définition:

3 RG‘C/XER”AC VAC A,
I8et/xesNB V.C B
i & i B . s
;?rbaéléium’ X jouit, par hypothses, d'un voisinage compact V d2

Il vient 3QetlerCV,

;



U

" géduit que VAV NV, estun voisinage de x dans ANB. Comme

oo compact (intersection de compacts) on conclut que ANB est
calement compact.

) 11 suffit de considérer deux intervalles ouverts. Ils sont locale-
Jent compacts et leur réunion est un ouvert, donc non compacte.

Quelques problemes de plus 23]

pxercice 242
Soit K une partie compacte d'un espace localement compact E.

Montrer que si Q est un ouvert tel que K € €, alors il existe un
cus-ensemble ouvert et relativement compact €' tel que

KCQcQ cQ.
Solution

Q est un voisinage de touit point x de K, car Q est suppos¢ ouvert
contenant K. E étant localement compact, i] existe alors un voisinage

compact W _ de xe K tel que:
W, C Q.

constitue un recouvrement ouvert

lest clair que la famille(Wx xeK rement fini

1 uv
du compact K. On peut alors en extraire un reco

(Wxi )ISJSn' En posant:

n
¥ iL—Jl “01"5 ,

On trouve: i : o

KCQ'C Q' C.-L=Jl Wi,

’ .

e & dans 1e compact ;91 W, ce qui rend
3 e oo -y ctet acheve ]a preuve.
@ relativement compa

Q' compactet &
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Exercice 243
Soit K une partie compacte d'un €space localement Compact E,
Soit F une partie fermée de E ne rencontrant pas K. Monrer

I'existence de deux ouverts disjoints U et V tels que:
FC VetKC U.

Solution

Pour tout xe F et yeK, il existe deux ouverts disjoints Q (y) et
Gy(x) tels que:

Xe Q,(y) etye G, (x).
(Cette notation signifie que Q_(y) estun voisinage de x dépendant de

y et Gy(x) €St un voisinage de y dépendant de X). K étant compact, '

On peut alors, pour tout x fixé dans F, recouvrir K d'un nombre fini
d'ouverts Gyl (X),. 13 G, ( )(x). Posons:
n(x

n(x) n(x)
Gx)=U Gy_(x) et Q, = Q,(y,).
j=1 7 j=1
G(x) et Q, sont deux ouverts disjoints vérifiant :

xe ), et KC G(x).

Par ailleurs, F est localement compacte, puisque fermée dans E.

On peut recouvrir celuj-ci par un nombre fini d'ouverts Qxl

LR

Q.1 s%en suit que les deux ouverts

k k
UQ =QetN Gkx) =6
i=1 j ji=1
sont disjoints contenant, 1'un K 1'autre F.
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Lt
5.1 Espaces connexes
ixercice 244

1. On dit qu'un espace topologique (E,7) n'est pas connexe, Si
n peut trouver deux sous-ensembles ouverts disjoints non vides
tsque leur réunion coincide avec E.

Aurement dit, un espace (E,7) est connexe s'il n'admet aucune
urition par deux ouverts non vides. Plus clairement, on a:

3 A,Be 1 tels que:
(% AUB = E,
) E n'est pas connexe < ANB = 6,

| A#¢etB#0.

De fagon équivalente, On écrit:
2.Un espace (E,7) est connexe,

= Q,=0.
ux ouverts Q, et Q, onaoy Q,=¢ouss |
(1)et (2) sont équivalentes.

si pour toute partition de E par

Montrer que les définitions
80[uti0n i deux propositions mathématiques sont

n S 1 elel' que t de méme.
il e

Exercice 245 pas {¢,E,(1},{z},{1,2},{1,2,3]].

4
1. Soient E = {12

exe.
Vél‘iﬁer que (E,’t) est conp
233
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2. Montrer qluc tout espace discret E (non réduit 4 un sey] Clémeny,
n‘est pas connexe. '

3. Montrer que tout espace grossier est connexe.

4. Montrer qu'un espace E muni de la topologie cofinje est
connexe.

5. Soit a un élément d'un ensemble E. On consideére la famille &
formée de toutes les partics de E contenant a. On munit E de |
opologic 6 = & U[¢]. Montrer que (E,o) est connexe,
Solution

1. Cest vrai, car aucun couple d'ouverts de E ne partitionne E.
2. En effet, pour tout a de E on a:

E={a} U Cg{a},
¢ ={a} N Cgfa}.
({a}et C.{a} étant tous deux ouverts dans E.)

3. I n'a qu'un seul ouvert non vide: E lui-méme.
4. En effet, s'il ne 1'était
A et B de E de sorte que:

AUB =Eect ANB = d.
[Ten découlerait que A € CgB. Or ceci est i
infini et C;B fini.

Pas, on trouverait deux ouverts non vides

mpossible puisque A est

5. (E,o) est connexe car tous ses ouverts non vides contiennent a.
Exercice 246

Soit (E,T) un espace topologi
suivantes sont équivalentes:

1. E est connexe

2. E n'admet pas de partition par deux fermés non vides.
3. Eet ¢ sont les seules parties de E, A la fois fermées et ouvertes.

4. Toute partie propre de E (distincte de E et de ¢) admet une
frontiére non vide.

5.11 n'existe pas de fonction surjective continue de E dans un
tSpace discret F ayant deux €léments.

6. Toute fonction continye de E dans F (F défini comme dans (5))

que. Montrer que les six assertions
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25

constante:
W

ﬁ 2 PR
1Supposons que E admette une partition

par deux fermés non vides
it alors:
setB. On éenl

AUB = Eet ANB = q)
par passage aux complémentaires, on obtient:

¢=CEAn CEB,

I sen suit que E admet une
CeAetCgB. Clest absurde,

2= 3

partition par deux ouverts non vides
car E est connexe. D'ou (2).

SUpPOsons que A soit une partie propre ouverte et fermée de E. 11
resulte que A et CgA sont deux fermés disjoints non vides de E,

tels que CitAU A=E C'est en contradiction avec (2).
34

Supposons que A soit une partie de E vérifiant:

A+9,A=EetF A=0¢.

Cela “Nlraine que A est 2 la fois ouverte et fermée et mene A une

“Ntradiction avec (3)

4 =N 5
! S“DDOS()ns qu'il existe une fonction continue surjective de E‘ dans
“Shace discrey F = {a,b}. L'ensemble {a} est alors ouvert et fermé
diﬂ’ls F Par ¢

onséquent, f! ({a}) est, lui aussi, ouvert et fermé dans

-En Plus, f*‘({a}) # ¢ et f"({a}) # E (puisque f est surjective). il
M décoyle que la frontidre de f! ({a}) est vide, ce qui est impossible.
S o 6

9 Fon suppose que f soit une fonction continue non constan;e de[
B dang I'espace discret F = {a,b}, alors cela entraine que I es
Suqec‘-i"e; ce qui mene 2 une contradiction avec (5).
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0 = 1

Supposons que E ne soit pas connexe. Il existe alors deyx Ouvertg
non vides A et B de E tels que:

AUB =Eet ANB = ¢,
On définit une fonction f de E dans F = {a,b} par:

. A,
x—f(x)=|2 Si Xxe

Exercice 247

Montrer que tout espace fini sé

paré n'est pas connexe (sauf s'il est
réduit A un sey] €lément).

5.2 Ensembles connexes

'un espace (E,7). On dit que A
“€Space (A,t4) l'est.
dit, A est connexe s'i] n'

: existe pas un couple d'ouverts
(resp. fermés) non vides Q, et Q, de

E de sorte que:
ACQ, U Q,,
ANQ, N Q, = ¢,
QN A% e Q,N Ax ¢,



[
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ot QU si A est un ensemble connexe ¢
Mioﬂl deux ouverts de E vérifiant:
W

ACVUW,
\ ANVAW= b,
ssAcst nécessairement contenu exclusivement dans 1'un des deux
:u\.cns Vet W5 autrement dit, on a soit VA A = ¢ soit WNA = o.
plution

Eneffet, si A &€ Vet A ¢ W alors VNA # g et WNA # ¢. Cela
araine, d'apres la définition sus-citée, que A n'est pas connexe.
Exercice 249

Soit (E,t) I'espace topologique défini par:

E = {ab,c,d} ett= {0 fa}{pc) fabel}.

I. Montrer que E est connexe. e
2. Déterminer tous les sous-ensembles propres connexes de E.

Solution -
1. 1l est visible qu'aucun couple d'ouverts de E ne partitionne

©lui-ci. E est donc conmexe. e B
2. Examinons toutes les parues r:lt connexes.
i) Tous les singletons de E S0

i) B { ‘ } 'est pas connexe, cartg = |¢, B,. {a}{h}}
1 = '
} n'est pas connexe, car tg, = {¢, B,. {a}.{c}}

connexe, car Ty, = {¢, B,. [a}}

un espace E, et si V

B2 = {a,C
B, = {b.c} o5t
4 =

B, = [b.d} st &
o

nexe, car tg, = {¢- 34}
nexe, car Ty = {tb, Bs. {b}]
xe, car tg = {Q, Bg. {c}}

_ c,d} est conne
o c}} pest pas connexe, calte, = lo.c. {a}’{b’c}}
c br
i C, =& nexe, car e, = {0, C,. (a).{b}.{a.b))

.4 con
o.p.d) o8 *
c, =1
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C,y= {a.c.d} est connexe, car T = I(b, C,. {d}{dL}}

C.= {h.c.d] est connexe, carte = |¢, (34.{h,c}}
Récapitulation: les sous-ensembles connexes non vi
A, ={a}, Ay ={b}, A, = e} Ay = {d},
B_q = {a,d}, B4 - {b,C}, BS e {b’d}’ 86 ™ {C’d}’
C, ={a,b,d}, C, ={a,c,d}, C, = {b,c.d}.
Exercice 250
Caractériser les parties connexes dans 1
1) E grossier,
i) E discret,
1) E muni de la topologie codénombrable.
Solution

1) L'espace E ne disposant que d'un seul ouvert non vide (lui -
méme) toutes ses parties sont connexes.

i) Dans cet espace, toute
singletons sont connexes.

11) Les parties non dénombrabl
A est une de ces parties et
ouverts B et C tels que:

des de E sont:

€S espaces suivants:

partie étant ouverte et fermée, seuls ses

es de E sont connexes. En effet, si
qu'elle n'est pas connexe, il existe deux

A C BUC,
ANBNC = ¢,

BNA# ¢ etCNA # ¢,

Il s'en suit que A est incluse dans le dénombrable C,(BNC).
Absurde!

Par contre, les parties déng
connexes. En effet, si F est

ensembles fermés F\(p)
Exercice 251
1. Montrer que dans

les singletons sont des ¢

mbrables, c-A-d. fermées, ne sont o
fermée et p un de ses points, les sous

et {p} partitionnent F.

. 1 i Cl
lout espace lopologique, 1'ensemble e
nsembles connexes.

2.1) Montrer que les sous-espaces(m*,|,|m_), (Q,HQ), (Nyl-lm]
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ne sont pas connexes.

1-[ -'|7; déduire que la connexité n'est pas une propriété hérédi-
i) En

I ontrer que dans un espace muni de 1a' topologie cofinie, tout
g ﬂﬂ infini est connexe et tout ensemble fini (non réduit a un seul
'.?émcnl) ne Test pas.
tion .
sollu Cest bien le cas, puisque ces types de Sous-ensembles ne sont
uspartitionnables par des couples d'ouverts non vides.

).1) L'espace (‘R* H[R) n'est pas connexe, car A = ]0,+oo[ et
B= ]-oo,O[ sont deux ouverts partitionnant R

L'espace (Q\\ Q) n'est pas connexe, puisqu'on peut ayoir:

Q=(}=y3[nQ)u (V3 .+ n q).
INH et Z,\. NE Sont pas connexes car ilg sont discrets.
RINEYC AT

1) On sait déja (exercice 15) que (IRH)
Enferme deg SOus-ensembles qui ne le

9 En effet, noug remarquons au s
e si A était up tel ensemble et nop
OUverts nop vides Vet W de l'espace

€St connexe alors qu'il
sont pas.

ujet de la premidre affirmation
connexe, alors il existerait deux

de référence E tels que:

AC VUW,

AN VAW = ¢,

| VOA # et WNA = 6.
0 .
m'i{ Ueduit que A CeVAW). Comme C,vAW) est fin ot A

131, On aboutit 3 upe contradiction,

fermOUr la dguxiéme assertion, on rappelle quun tel ensemble est
Videsé' Il devient alors facije de le partitionn

Cr par deux fermés non

fendre, par exemple, Fi={a} et F, =C,{a}, od A cwt

le Considéré et ae A)
Exercice 25,

"Qnscmb

» viontrer que toyte partie finie d'up CSpace séparé n'est pas

A
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.onnexe (sauf si elle est réduite A un point).
N nxmh\g ensembles suivants sont-1ls connexes:

i) La fronudre de tout intervalle de ([RH)’

i) La frontidre de tout _gqv.crl (resp. fermg) PTOpre dapg ;
espace muni de la topologie cofinie? n
Solution :

1. Elle forme un sous-espace discret, donc non connexe,

2. 1) Si l'intervalle considéré est borné sa frontidre contie
points. Celle-ci forme alors un Sous-espace discret, ¢
connexe.

Si l'intervalle est non borné
point. Dong, elle est connexe.

1) Non, car elle est finie.
Exercice 253

Montrer que si A est une

nt deuX
ne non

sa frontidre ne contient quau plus yp

partie connexe d'un €space E, toute autre
partie B de E vérifiant
ACBCA
€Sl aussi connexe.
Solution
Soit B une partie de E vérifiant la condition citée. Supposons que
B ne soit pas connexe. Il existe alors deux ouverts V et W de E tels
que:
B C vuw, (1)
BN VAW = ¢, (2)
VOB # ¢ et WAR 0. 3)
la conditigp (3) entras
et du fait ) entraine

— ent,
i que V et W rencontrent A . Par CO“S‘?qu
Auils soient ouverts, ils rencontrent A. On écrit donc:
VNA = getwn
De etWNA # ¢.
Plus, de (D et (2) on tire trivialement (5)
AC VUW.

©
Les rejqy ANVAW = 0. )
Absy; de!ﬂns @), (5) et (6) impliquen; que A nlest pas conne®
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fx0 Montrer que dans un espace topologique E, 'adhérence de
4 artic connexe est connexe,

"‘“2 Que dire de la réciproque?

3. En déduire que si E admet une partie connexe
Jors E est lui-méme connexe.

4. Montrer 2 l'aide de contre-
msemble connexe n'est pas néc
msemble non connexe peut avoir

Solution

1. En effet, il suffit de
On peut aussi mener |
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partout dense A,

exemples que l'intérieur d'un
essairement connexe et qu'un
un intérieur connexe.

poser B = A dans I'exercice précédent.
a preuve en ces termes. Soit f une fonction

continue de A dans le discret {0,1}. Comme A est connexe et f
‘ontinue sur A, on obtient soit A C {1 ({0}) soit A C f! ({1}) Or

f‘(!?_}] et f'l({l}) sont fermés, donc on déduit que ou K=f'1({0})

A ) Clest
alors Connexe.

2. Elle egt fausse. 11 exi
‘Onnexes sang qu'eux-mé

dire f est constante sur A . Celle-ci est

ste des ensembles ayant des adhérences
mes le soient. Clest le Cas, par exemple, de
Udans (‘RH) On sait Q n'est Pas connexe alors que E =R l'est.
3.1 suffit ge remarquer que A =E.
- L'exemple suivant illustre 1a premiere affirmation.

YNt E = {a,b,¢,d), 1 = (0.E (2}, {0}, a.b)] et A= {a.b,4).

On v 0
"VOit que A ggt coNNexe; par contre A = {a,b} ne I'est pas.
Sip

P considere maintenant, la partie A = N U 1-3-1[ dans

IR’H)’ On voit que A n'est pas connexe et 10\ = ]-3,-1[ l'est.
ercice 255

Olent A €L B deux fermés disjoints d'un espace E. Montrer que
L leurs frontitres A et B sont disjointes,
2 3,(AUB) =F AU Z B,



w

de retrouver la propri€t€ (4) de l'exercice 246. 11 suffit seule-
?;nﬂfl;c :cmpl'dccr B par I'espace E dans la preuve précédente. On
fl
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paent:
- ANE=A#0, CcANE#¢etF ANE=F%_ A # 0.

Signalons en dernier, que le résultat de cet exercice est connu sous
uppelation de théoreme de passage des douanes.

Exercice 257

. Vérifier A l'aide d'exemples simples que la réunion de deux
asembles connexes peut étre non connexe.

2. Faites de méme pour l'intersection.

Solution
1. On le voit facilement lorsque I'on considere la réunion de deux
singletons dans un espace séparé.

2. Voici un exemple:

WentE = fab.c,d), = {0.B.{b}. {c}.{b.c}}. A= fabic] et
B={b,c .d}. 11 est immédiat que A et B sont connexes, mais ANB =
b} ne et pas.

Exercice 253 .
! (A)ic; est une famille de parties connexes non vides d'un

e %
Sace E, alorg chacune des trois conditions suivantes entraine la
“Onnex i de|J A
1€ ;
(UC‘: 3 iOEI/A-loﬂ A;#0¢,Vijel
¢ partie fencontre chacun des autres ensembles.)
uﬁfAﬁ&¢QVELVﬁL
Sensembjeg (A;),.; sont deux a deux concourants.)
o ﬂl A, # ¢.
1€
80[‘4ti,on
Visageons le cas 1
Supposons que |J A, = RUS ol R et S sont ouverts et disjoints.

el
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Il s'agit de prouver que, soit R = ¢, soit S = ¢. Conformémen 3
I'exercice précédent, on peut poser Aio NR = ¢. D'on, Aio C 8

Il en résulte que S est un voisinage ouvert de AiO . Les ensembles
Aio et A; n'étant pas disjoints, il vient A;N S # ¢. On déduit, grice 3

la connexité de A;, que A; NR = ¢ quel que soit i. Donc, UAcCs
el

par suite, R = ¢.

Traitons le cas C, .

Supposons que | J A, ne soit pas connexe. Il existe alors, dans le

1€l
sous-espace | A;, deux ouverts non vides Q,etQ, tels que:
1€l
QU Q, = U Aj,
i€l

an92:¢.

Pour tout i€ I, les ensembles A; N Q, et A; N Q, sont ouverts dans
A, et partitionnent ce dernier. Comme A; est connexe, on a néces-

sairement ou AN Q, = ¢ ou AN Q, = ¢. Soit I, (resp. I,)

I'ensemble des indices ie T pour lesquels A, C Q, (resp.A; € Q,).

On en déduit que Q, (resp. Q,) coincide avec | A, (resp. U A))- 1l
iel, iel,

devient ainsi possible de trouver deux ensembles connexes disjoints
Ai, et A; de la famille considérée. Absurde!

Terminons par la condition C .

On munit I'ensemble {0, 1} de la topologie discrate. Si f: L{ A~
1€
{0,1} est une fonction continue, ses restrictions f, 2 chacun des

connexes A; sont continues. Elles sont alors constantes.

. . ; : : ut
Par ailleurs, pour Xo pris dans l'intersection non vide () A;» 0n P

ierl
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[()”f (x):fA(X0)=f(X0), VKEAI,VleI
X)= A i '
onstante sur {J A,. Ainsi, cet ensemble est connexe.
88t i€l
:nL! . N
; ue: il y a lieu d'insister sur le fajt que les conditions
marque:

¢dentes sont des conditions seulement suffisantes. On peut le
0 :
qistater sur cet:

fxercice 259
l.Si A et B sont deux ensembles conne

Eels que B (resp. A) rencontre A (res
AUB est aussi connexe.
2. Le résultat subsiste-t-

xes disjoints d'up espace
p.B), montrer alors que

il encore lorsque 1'on Suppose seulement
ANB # ¢?
Slution,
. Posons C = ANB #¢. O a-
ACAUCC A
pres |'

une intersectmn N0n vide, leyr réunion est
ait, Onnexe. Qp Obtient dong:

| U — —
Cegt & G (;‘\ C)UBRB AU (CUB) = AUB.

Autre Méthode

SiAUR ¢
tait

g o non Connexe,

* AUB c yy
’ (AUB) N vy _ o
(AUB) N v )
AC VUw
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Comme A est connexe, on affirme que ou A € V ou A ¢ W. Sup-
posons que A € V. On déduit de (*) que B € W. Or ANB # 0,
donc WNA # ¢. Absurde!

2. Non. Dans l'espace usuel (IR||) les intervalles A = ]-1,1[ et
B = ]1,2[ sont connexes (c'est le contenu du pragraphe suivant!)

alors que AUB = ]-1,1[ U]1,2[ est non connexe quoique

ANB =[-1,1]N [1,2] = {1} #¢.
Exercice 260

Soient Q un sous-ensemble connexe d'un espace connexe E et P et
Q deux sous-ensembles disjoints tels que I'un d'eux soit ouvert et

C:Q =PUQ.

1. Montrer que les sous-ensembles QUP et QUQ sont connexes.

2. En outre, si Q est fermé, FﬁQ =pet QNP = ¢, montrer que
QUP et QUQ sont fermés de méme.
Solution

1. Posons, en effet, QUP = AUB, ol A et B sont deux ouverts
disjoints. 11 s'agit de prouver que, soit A = ¢ soit B = ¢. Supposons
que Q soit ouvert. On peut, conformément A la connexité de Q, poser
QNA = ¢. 1 en résulte que A C P, puisque A C QUP. Les
ensembles P et Q étant disjoints, A est donc disjoint de Q et par

conséquent de BUQ, puisque A et B sont disjoints. L'identité
E=QUPUQ=AUBUQ "
représente ainsi une décomposition de I'espace connexe en deu

Sous-ensembles ouverts et disjoints A et BUQ. L'un d'eux est donc
vide, ce qui met fin A la question.
2. Si Q est fermé, on a:

QUP = QUP =QUP =(QUP)N (QUPUQ) = QUP.

QUQ = QUQ =QUQ = (QUQ)N (QUQUP) = QUQ;
D'ot le résultat.
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61 _
Exe,rvw"’l,zcl F, deux sous-ensembles fermés (ou ouverts) d'un
golamk 13t ¢t .
. E. Montrer que si By OF, et F, UF
apace B

2 SOnt connexes, alors il
(de méme pour Fy et F,

enes
olution l
S Nous allons procéder par 1'absurde. Sy

PPOsONs que F ne soit pas
connexe. 11 existe alors deux fermés Q)

161, de F, de sorte que:
Fl :‘Q[U Qz cL an Q?, :(D.

Remarquons que Q, et Q, sont en réa]

est fermé. Par ailleurs, on obtient:

Flan =(QIU Qz)nF

it€ deux fermés de E, carF,

La connexité de FINF, entraine que l'un des deux SOus-ensembles
Q,NF, LQ,NF, est vide Supposons QNF, =¢et Q,NF, #¢.
Dans ceg conditions, on g:

FIUF2=(QI UQ)UF

QN Q,UF,)) = Q, NQ,)uy Q, NF,) = ¢.
0 ; . ' .
hn aboutit aingj a la non connexité de F, U F,,ce qui COntredit leg
YDOthé§es. Donc, on conclut que F, estconnexe.
emna:msonnement analogue mang 3 1, connexité de F, .
; que: On PCut mener 13 py
lcxercice P . Preuve autremen;. Reportons-noyg a
E=f y FouB=F\F
US-ensembples

“Nembeg |
Sont

$ 50 2’Q=F2\F1 etQ:-Flan.

1\F, et F,\F 150Nt disjoints, donc les sous-
=(F,NF <
cotggn FIOF)U F\E,) o F, =(F,NF, U (F,\F,)

5.3 Connexitg, dans
Exefctce 262

Démongre que (lR, H)

(R, 1)

-

Cst connexe,
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Solution

Soit A une partie ouverte et fermée de R. Supposons que A et
CrA ne sont pas vides. Soit xe CpA. L'un des deux ensembleg

AN [x,+of et AN [-o=.x[ n'est pas vide. Supposons, par exemple,

que B = AN [x,+o[ # ¢. B est naturellement fermé. De plus, il est
minoré. Il admet donc un plus petit élément b. D'autre part, B s'écrit:

B=AN ]x,+oo[. C'est donc un ouvert. On en déduit qu'il existe un

intervalle ]b—s,b+e[ (€ > 0) contenu dans B. Ainsi, b ne peut pas étre
le plus petit élément de B. D'o la contradiction cherchée.

Le résultat ci-apres est plus général et présente une caractérisation
importante de la connexité dans (R, .|).

Exercice 263

Montrer que pour qu'une partie A de (IR, ||) soit connexe, il faut et
il suffit qu'elle soit un intervalle.

Solution
Soit A un ensemble connexe de R. Montrons que c'est un inter-

valle. Supposons le contraire. Cela se traduit, A la lumiere de la

propri€té caractéristique d'un intervalle (exercice 1), par l'existence
de trois nombres a,b et ¢ vérifiant:

a<c<b,ac A, be Aetcg A.

Il en découle que les deux ensembles A N Je,4eo et A N]-eoc]

sont des ouverts disjoints de A, formant une partition de A. Celui-c1
est donc non connexe, ce qui n'est pas vrai.

Signalons, avant d'entamer la réciproque, que le terme intervalle
n'est suivi d'aucun qualificatif. En fait, cet intervalle est quelconque
(qu'il soit fermé, ouvert, ni fermé ni ouvert, borné ou non, ... €L¢):

On voit ainsi que R, lui-méme, est concerné.

Supposons donc que A soit un intervalle et que A =BUC, ol Bue;
C sont deux ouverts disjoints non vides de A. Soient x et y de

points de B et C respectivement tels que x < y. L'ensemble borné BN

: se
[X.y] admet une borne supérieure que l'on note z. Deux €as
présentent:
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Connexité et continuité

B on aura z <y. Il s'en suit qu'il existe & > 0 de sorte que
| §iz€ . q
) il [,,z+8[ soit inclus dans B N [x’y.
ﬁnlt‘

. Ceci1 est en contradi-
. avee la définition de z.
il

i) Si ze C il existe de méme, un intervalle T';:-8,7,] (6 > 0) contenu

ans C N [x,y]. On aboutit, encore une fois, 4 une contradiction

vec la définition de z. On en déduit que N‘appartient ni 3 B ni & C,
mpossible, puisque l'ensemble ferme [x,y] est inclus dans A.
Conclusion: A est connexe,

5.4 Connexite et continuite

Exercice 264

1.Soient E et F deux e

dans F. Montrer que si
connexe.

2. En déduire que:
1) tout espace quotient associé A un e

11) la connexité est un Invariant topo
Solution

L. Supposons que f(E) ne soit pas connexe. _f(E) admet alorg une
Partie propre Q, ouverte et fermée. La continuj

t€ de f entrajne que
f 1(Q) €st ouvert et fermé dans E, avec ! (Q) #

Spaces topolo

giques et f une fonction de E
f est con

tinue et E connexe, alors f(E)

space connexe

. €St connexe.
logique.

Eet f-l(Q) #* 0. On
4mive ainsi A une contradiction avec la connexité de g,
®Marque: ce résultat est connu sous l'appelation de théorame de
Olzano-Weierstrass.
2.1) Clest clair,

puisque la surjection canonique s: g - E/R gy
COntinye,,

1)) La connexité est conservée par homéomorphisme: C'est
ONn¢ un invariant topologique.

I'-x.t?;r(:i,ce', 265

1. Montrer que l'image de tout intervalle de (m”) par ype
fonction réelle continue est un intervalle.

2. Soient £: E — (R,||) et ab deux éléments de (&), ppqp, b
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s1 E est connexe et f continue, alors pour tout ¢ de [a,b], I'équation
f(x) = ¢ admet une solution dans E.

Solution

I. SiTestun intervalle de R et f: (lRl[) - (IRII) continue, ajorsg
f(I) est connexe; et d'aprés I'exercice 263, f(I) est un intervalle.

2. f(E), dans ces conditions, est un intervalle. Donc, on a:

[a.b] € f(E).

II s'en suit que ce f(E). Par conséquent, il existe un élément x de E
vérifiant f(x) = ¢,

Remarquons, ici, que le résultat véhéc
plus connu sous l'appelation de théoréme
Exercice 266

ul€ par ce dernier point est
des valeurs intermédiaires.

Soient (E;);.;une famille d'espaces topologiques et E = IT1E,
1€ 1
I'espace produit associé. Montrer que pour que E soit connexe, il fayt
et il suffit que chaque E; le soit.

So[uttén

Si E est connexe E,=7n.(E) I'est aussi,
connexe (E) par la projection continue (1,).

Pour établir 1a réciproque, nous procédons comme suit:

comme image d'un
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};mcnlairc Q dans E de sorte que:
' <0 c (o).
grvons.

Q—__HijnEi,

jej 1€]
i Jest un ensemble fini d'indices et Qj un ouvert de E,, jeJ. Etant

jonné que xe €2, les composantes x;, pour je J, appartiennent 4 Q ;-
Cela permet d'affirmer que 1'é1ément:

Tt ((Xj)jeJ' (Yi)iEI)

ippartient également a Q. D'ot f(z) = a. On remarque que le passage

lezay s'effectue par un amenagement d'un nombre fini de compo-

santes (celles qui portent un indice de J). D'apres 'étape précédente,

;) conserve une méme valeur lors de chacun de ces changements.
one:

a = f(y) = £(2) = (x).

5.5 Connexite [locale

Exercice 267

Soient E un espace topologique et R la relation binaire définie sur
par:

xRy & xet y appartiennent 2 un méme ensemble connexe de E.

T est immédiat que R est une relation d'équivalence. La classe
d',QQUiva.lence d'un point x s'appelle composante connexe de x. Les
différentes classes d'équivalence s'appellent compos:anles connexes

¢ E. On constate qu'une composante CONNEXc d'un pm‘m X est
Constituée de la réunion de toutes les parties CONNEXEs de E, contenant
X. De 13, on pose cette définition: &
Soit E unpespace- topologique. On dit qu'un sous-cnsumt?lztzﬂikn(it:uli
St une composante connexe de E, si A est connexe et n'e s
dans aucun autre sous-ensemble connexe de E.

Vérifier que:

> ‘ sonnexe.
1. tout espace connexe admet une seule composante con
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2. (R",|.|) admet deux composantes connexes.

-—

3. les composantes connexes d'un ouvert non vide de (R][
les intervalles maximaux qu'il contient.

4. les composantes connexes d'un espace discret sont réduites 3
ses singletons.
Solution

I. C'est I'espace lui-méme.

2. Les deux composantes connexes sont

]0,4eo[ et J-e0,0[ .

3. Un ouvert non vide de (IRH) est réunion d'intervalles ouverts,
Ces intervalles étant connexes, les composantes connexes de cet
ouvert sont les intervalles maximaux qu'il renferme.

4. Dans un tel espace, tout ensemble ayant plus d'un élément ne
peut pas €tre connexe. Les composantes connexes d'un espace discret

sont réduites a ses singletons. Donc, tout singleton dans un espace
discret en est une composante connexe.

) sont

Exercice 268

I. Montrer que dans tout espace topologique, chaque ensemble
connexe est contenu dans une composante connexe.

2. En déduire que tout point d'un espace topologique est contenu
dans une composante connexe.,
Solution

I. Soit A un ensemble connexe d'un espace E. Désignons par
( A;_)}LEA la famille de toutes les parties connexes contenant A. on a

(M Ay # ¢. 11 en résulte que I'ensemble B = | A, est connexe et

contient A. C'est la composante connexe recherchée. En effet, si C

€St un ensemble connexe contenant B, alors C contient A, et donc B
=C. D'ou le résultat.

2. En effet, il suffit de remarquer que tout singleton {x} (x€ E) e
connexe, puis conclure avec Je point (1).

Exercice 269
Montrer que, dans un space E, toute composante connexe est
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'["m‘él“

glution |

 Qoit Aune composante connexe d'un espace E. D'aprés 'exercice
<1 A esteonnexe. Ilen résulte que A = A

wactce 270
1 Montrer que st (A)) , estla famille de toutes les composantes
connexes d'un espace E, alors:
) VijelG#) ANA =9,

i) \JA, =E.
€l .
2. En déduire que tout ensemble A d'un espace E est une réunion

(fime ou non) de parties connexes non vides et deux A deux
disjointes.

Solution
I. Signalons, tout d'abord, que le contenu de ce point sigmifie
que, dans un espace E, la famille des composantes tonnexes forment
une partition de cet espace.
1) SiA N A était non vide il en résulterait que A, U A, senait
connexe et contiendrait A, et A,. C'est impossible, puisque A, et

A, sont des composantes connexes.
ii) C'est une conséquence immédiate de lexercice 263.
2. Ces parties ne sont autres que les composanies ConnExes du
Sous-espace A.
Exercice 271

On dit qu'un espace E est localement connexe, si la famille e

_ . E—_— eme
Voisinages connexes de tout point X de E constitue un Syst

fondamental de voisinages pour X.

Autrement dit, on appelle espace local
dont chaque point admet un systeme |
connexes.

ement connexe, tout espace
ondamental de voiSInages

Vénfier que
L. (R\“ et R sont localement CONNEXES.
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. e ne sont pas localement connexeg.
20 (@llg) e RQ-I-L-RO)
i) 1a connexité locale n' est pas héréditaire.
3. tout espace discret est localement connexe.
Solution

1. Clest le cas, puisque tout voisinage de chaque point contient yp,
intervalle ouvert connexe.

2. 1) En fait, aucun voisinage de tout point p de (Q,HQ) ou de

‘C RQ,H . Q) n'est connexe. Explicitons la situation pour (Q,HQ)
R

.

Eneffet, si Vestun voisinage de p, il contient un ouvert de ], fo
]p-r. p+r[ N Q, avec re [R: . Soient a et b deux points de V. 1] ¢

conformément 2 la densité de C z Q dans R, un irrationne]
<¢<b. Ainsi, on peut écrire:

vVc (]-oo, [N Q) U (]c +oo[ N Q),
(= c[n@)nvn (e, +=o[ Q) =9,
(e [N Q)N v,
vn (]c, oo N Q) £ 0.

Donc, V egt non connexe.

ii) Cestune conséquence Immédiate de (1).
3. Les singletonsg g

. ont des voising €S co S points
quils renfermeny g nnexes pour les p

Ime
Xiste
Ctelquea
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A=AUp
B=10,y)eRr? Iyl < 1‘,
il s'en suit qu'aucun point de B ne

peu
ans le sous-espace A Ainsi, A qu
ment connexe,

lentésulte que A est conneye Or

, avec:

£>0, 1‘ensemble V= ]
Exercice 273

> COnnexe. En effet
—e,e[ A
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du sous-espace F, i eXiste .
so[ut,w"l_fct Q étant un ouvert .
1. En clict,

| que Q = ONF. 11 suffit de prendre Comme g 1,
tel que : ant O
ert O de B , O qui contient Q.
‘f::;:posamc conﬂexgi%ig étant ouvert, A est localemen COnney,
. ' A le S
2. L'ensemb

nt de A\B. 11 s'agit donc de prouver que A et localemgy,
en tout point -

‘haque point p de ANB.
connexe én thg?s“'if;ge (?uv ert de p. Par hypothdses, 13 COmMposane
Soit G un

C de I'ensemble ANBNG qui contient p est ouverte dans cey

“ONnexe o e
wnzxilble D'apres la question (1) (en y prenant G = Eeta-
S ; e
El::l;WBﬁG) il existe un ouvert connexe H tel que H € G ¢  _

ANBNH. La réunion et l'intersection des ensembles A

OH et BNY.
fermés dans H, étant connexes puisque:

(ANH) U (BNH) = (AUB)N H = H,

(ANH) N (BNH) = ANBN H = C,

ces ensembles sont connexeg (exercice 261). L'ensemble ANH étan
un voisina

et connexe de p relatif 3 A et contenu dans G, A est

connexe au point p,
Exercice 275 .
01t A une partie g'yp °Space localement connexe E. Montrer g
12 frontidre &, (a) ge A ®st localement connexe, alors 'adhérence
A Test de Mméme.
Solutioy
“® Immédiate de 1a question (2) e
Précédent, g, effet, on 5: 1
K U CE A = E,
ANTA -
Xeitigg 296 A = F.A)
ONtrer Que g; 0§ 3¢

toule
nn un espace localement connexe;
CXes sont Ouve fes,
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Solution

En effet, si A est une Composante conn

exe, chacun de ses points x
admet un voisinage connexe VCA. On déduit que A est un voisinage
de tous ses points,

Exercice 277
Montrer que toyt buvert non vide Q de

(IRH) est une réunion
dénombrable d'intervalleg ouverts deux a deyx disjoints.
Solution

del= [a,b C [R, .
Les points f(a) et f(b) S'appe] ( H]
€Xtrémitg g,

upant yp
» COupe néccssuiremcm la
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D'ou:

[xy]c1 = f([xy]) < fO.

Donc:

3 ze1/ f(z)e & (B).
On dit qu'un ensemble A d'un espace E est connexe par arcg_
pour tout couple de points (M,N) de A, il existe un chemin f dans A,
d'origine M et d'extrémité N.
Cette définition reste, bien évidemment, valable pour E lui-méme.

Vérifier que:
1. (R,|]) est connexe par arcs.

2. tout intervalle I de (IRH) est connexe par arcs.

. (Q,I.IQ) et (CRQ’I'ICRQ) ne sont pas connexes par arcs.

Solution

1. En effet, pour tout a,b de R 1a fonction f: [0,1] — R, donnée
gar f(x) = a + (b-a) x est un chemin dans R, d'origine a et d'extrémité

2. Pour tout 3

etbdel, on a conf oy
Wik ) ormément a la caractérisatio
d'un interva]le (exercice 1):

ey ta+(1-t)bel, V te [0,1]_
nction f: ;W :
chemin [0,1] = I, définie par f(x) = ta + (1-t) b constitue un




rs

|

| eofution Y sk it e
| Sowts‘git E un espace connexe par arcs. Supposons qu'il ne soit pas

l'exe E admet alors un sous-ensemble propre ouvert et ferm¢ £2.
clogf;n suit que CxQ posséde les mémes qualités. Choisissons un
;lément a dans Q et un autre b dans C€2. Il existe, par hypothese,

un chemin f tel que f(0) = b et f(1) = a. Posons:

f([0,1]) =F.
FNQ et FNCQ sont deux ouverts non vides de F. De plus, ils

forment une partition pour F. Or F est connexe, d'ol la contradiction
cherchée. E est alors connexe. . ‘

2. La réciproque est généralement fausse. Il suf.flt, pour s'en
convaincre, de réexaminer I'exemple cité dans l'exercice 272. On a

vuque A = AUB est connexe. Mais il n'est pas possible de joindre
un point de B A un autre de A par un chemin.

Ainsi, les espaces non connexes (Q,I.IQ) et (CIRQ’HCRQ) ne

Quelques problemes de plus 259

peuvent pas l'€tre par arcs.
Quelques problemes de plus

Exercice 280

1. Soit E un espace topologique compact. Montrer que toute suite
décroissante de sous-ensembles fermés et connexes de E admet une
intersection connexe.

23 ; ; ;
2. Donner un exemple dans R“ d'une suite décroissante de parties
connexes dont l'intersection n'est pas connexe.
L)

Solution
1) Notons (K ) une telle suite et posons K = () K, . En vertu de
n20

I'exercice (2) du chapitre précédent, K n'est pas vide. De plus, si Q
€St un ouvert contenant K, alors il existe un indice n, tel que

K, C Q.

Supposons maintenant que K ne soit pas connexe. Il existe deux
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E satisfaisant Q.

KC (Q,ULQ,),
K n 910 Ql e ¢.
KNQ, #0,

KN Q,#0.

Q.U Q,, on peut trouver un entier naturel n,
= 1 2

ouverts £, ¢l Q, de

En prenant £ . | o
: - c Q.U Q,. La suite (K,), €tant décroissante, o
sorte que Kg 1 2

buent:

| K. C(@QUQ,), Vp2n, -

La condition (%) pernset d'affirmer qu'il existe un indice p, 2 n, tel
a CC

que:
Kpon angz =¢.

Il en découle que:

| K, € (Q,UQ)),
K, NQNQ, =9,
K, NQ, =0,

| K,. N Q,#¢.

Ceci traduit la non connexité de Kpo . Absurde, car c'est contraire aux
hypothéses. Conclusion: K est connexe.

ii) Considerons dans R?, muni de sa topologie usuelle, la suite
(A,), o0 A, est la réunion des deux disques ouverts centrés en

y
(-10) et (0,1) et de méme ra on 1+1 F\L’\—P

n de deux convexes concourants):

1l est clair que:

4) A, est connexe (réunio
Pour tout ne N



r

h)ném = Au\ . An‘

Quelques problémes de plus 261

gant, on a bien:

A= ﬂ. A, =D ((-1,0), 1) U D,((0,1), 1)
ne N

2 Dy ((-1,0), 1) et D,((0,1), 1) sont les deux disques ouverts de

tme rayon 1 et de centres (-1,0) et (0,1) respectivement, lequel
fest pas connexe.

fxercice 281

Soit f:[0,1]— [0,1] une fonction continue. Montrer que f
idmet, au moins, un point fixe.

Solution

Observons d'abord que si f(0) = 0 ou f(1) = 1, le probleme est
solu. Dans le cas contraire, nous considérons la fonction:

h:[0,1] = (R.|)
x = h(x) = {(X) - x.

Il est clair que h est continue. De plus, h(l) # 0 et h(0) % 0. Il en
(écoule que :

h(0) = £f(0) >0 et h(1) =f(1)- 1 <0.
(Car £(0) et f(1) sont supposés &tre dans 10.1])
Par ailleurs, h([0,1]) est un connexe de (R,]|). Clest donc un
intervalle. 11 en résulte que 0 appartient & ([0, 1]). Par suite, il existe
un élément a de ]0,1[ annulant h. D'ou f(a) = a.
Exercice 282

: ¥ 2
1. Montrer que si un espace E est connexe, la diagonale A deE
l'est aussi et réciproquement.

. - - ace CONNEXe
2 Montrer que si f est une fonction continue d'un espace conne
E dans un espace F, le graphe de f est connexe et réciproquement.
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Solution . . .
| E et A sont homéomorphes. Pour le voir on peut Considérey la

fonction X = (x,X). la connexité étant un invariant tOpOlOgiqUE, i
( ) i
question est achevée.

2. On invoque la méme raison. En effet, E et I'y sont homéomy.

phes 2 l'aide de la fonction: X = (X,{(xX)).

Exercice 283 N
On munit I'ensemble E = {a,b,c,d} de la topologie:

v={0.E.{a}.{a.b}. {a,b.c}}.
Montrer que E est connexe et localement connexe.
Solution

La sous-famille des ouverts de E, distincts de E et ¢, est:

= [{a},{a,b},{a,b,c}}.

On voit ainsi que E ne jouit d'aucune partition par deux ouverts.
Donc, E est connexe.

Par ailleurs, soient V’(a), V" (b), V(c) et V'(d) les familles de
voisinages des points de E. On a immédiatement:

V@)= {{a},{a,b},{a,c},{a,d}, [a,b,c},{a,b,d},{a,c,d},E},
V(b) = {{a,b},{a,b,c},{a,b,d],E},'

V© ={{ab.c}.E},

V() = {E}.

Les familles W) = {{a}} W) = {{a,b}}, W) = [{a,b’C” el

m(f:l) = { E} Constituent clairement des systémes fondamentaux de
voisinages connexeg

: ' t
des points a, b, ¢ et d respectivement. B
donc localement connexe.,

Exercice 284

Soit A up SOus-ensembple

dun E. On désigne par C 1
cOmposante connexe de A S A ia

Montrer que:
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£ est localement connexe & % (C) € F(A).

so[,utwﬂ
=
goit E un espace localement connexe. Supposons que X soit un
point de & .(C) n'appartenant pas 3 & (A), c'est-a-dire:
xe C N C.C, (*)
et
lxe_ﬁ N C:A. (**)

De (*) on déduit que xe C, donc xe A . Comme X& F (A), on

conclut que x€ A (A = AU F (A)). La connexité locale de E assure
que X possede un voisinage connexe Q vérifiant:

xeQC A CA.
D'apres l'exercice 260, le sous-ensemble CUQ est connexe. Or C est
une composante connexe de A, il en résulte alors que CUQ = C.D'ou

xeQ C C,
ce qui entraine que:
Q n CEC = ¢.

Par conséquent, X n'appartient pas 2 CC. Ceci est en contradiction

avec (*). Conclusion:

F.OCF.®A.

=
En vertu de l'exercice 273, pour montrer que E est localement
connexe, il nous suffit de montrer que toute composante connexe
d'une partie ouverte est ouverte.
Soient Q un ouvert de E et B une de ses composantes connexes.
D'apres les hypotheses, on a-
. F @) AN FQ=20 QN Cothm QN b

=QﬁCEQ=¢_
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D'ou:
BN C,,.fa =BNB N CzB =BN ?r(B):q)_

Donc, B C B B est alors ouverte.

Exercice 285 | . .
L. Montrer que la connexité locale est un Invariant t0p010giqu3'
2. En déduire que si E est localement con
E/R T'est aussi.

Solution

nexe, I'espace quotient

Exercice 234
Soient (A,)._ e ®,)

jey deux familles de com
d'un espace E, telles q

iel el Montrer que ces deyx

ssi d e Ok 1f 2
i ans ,-Lg{ Bj, il existe yp indice j, dans J
Xe
€ point ¢
4 St alor
A s g A, N B i, - 1l en résulte que
9 Jo Connex 0
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Quelques problemes de plus

- MR
ig Jo lg Jo . édé
i . eten itérant le proc
gn éliminant les deux parties Aio et B]0 |
onclut que les familles considérées sont ide
onc

ntiques.
Exe"cwc 2 87

Soient A une partie connexe d'un espace topologique connexe E et
B une composante connexe de C A . Montrer que CgB est connexe.
solution

Supposons, en effet, que

CzB C RUS.

CeBN RNS = ¢,

de E. 1 s'agit de montrer que, soit

S = ¢. Comme

Ret S étant deux ouverts

CeBNAR = ¢, soit CgBN

® soit ANS =
ANR = ¢. D'oy A N (BUR) = ¢, donc BUR ¢ CeA.
L'ensemble BUR étant connexe (A 13 |

umilre de I'exercice 260), et
contient la composante connexe B, on affirme que B =BUR_ D'on
R C Betdonc CgBNR = d.
Exercice 288
ontrer que 13 COmposante connexe de toyt pomt p d'yp e
Space E
eStincluse dang tout ensembje ouvert et fermeg Contenant P. i
Solution
Soit Q up ouy

Point p de g Soit
evant Ia situatione:\; ‘?:n &:Sl A n'est pas Contenue dan Q, on s‘;al:lt
ANQ # o,
ANCLQ « ¢,
AC QNC.Q.
AﬂQﬂCEQ

:::¢_
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Cela contredit la connexité de A.

Exercice 289 : _
Montrer que Si un espace E n'est pc}s réunion de p ensembleg
connexes. il existe n+1 ensembles non vides, deux a deux dis;

Oints
A, A, ..., A, telsque

n+l
n+l

E=U A,.
1=1

Solution )
Le probleéme est évident pour n = 1. Supposons qu'il reste Vrai

jusqu'a I'ordre n-1. On a donc E = {J A;, les A; étant non vides g

i=1

deux a deux disjoints (pour i < n). Par hypothese, 1'un des A, soit

A, ., n'est pas connexeﬁ il existe donc deux ensembles disjoints A: et
A, . tels que:

Au= A: U An+1 )

d'ou le résultat.
Exercice 290

Soient E et F deux espaces topologiques, f une fonction ouverte
Surjective de E dans F. On suppose que F est connexe et que, pour

pour tout y de F, f'l({y}) €st connexe. Montrer alors que E est
connexe.

Solution

Supposons par l'absurde que E ne soit pas connexe. Il existe deux

ouverts disjoints A et B telg que E = AUB. f étant ouverte, les
ensembles f(A) et f(B) sont ouverts dans F. Bien plus, ils sont
d-113101nts. En effet, si un €lément y leur était commun, 1'ensemble
f ({Y}) Serait non Connexe, Puisqu' on aurait alors:

'{{y}) < aus,
T({y}) n anB = ¢,
) n Ay,
f-l({Y}) N B # ¢.
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Ainsi, ON conclut que

[(E) = f(AUB) = f(A) U f(B) = F
J'est pas connexe, ce qui est contraire aux hypotheses.
| )

gxercice 291

On munit R* de la topologie produit usuelle et on y considere les
(rois sous-ensembles:

A, = \Tl{‘ x [—1,1], avec neN”,

B = {0} x[-1,0[,
C = {0} x Jo.1].
Soit le sous-espace E de R? défini par:
E=BUCU \L{* An).

1. Montrer que E est localement compact.

2. Montrer que les composantes connexes de E sont B, C et
(A,)
ne

Solution
L. Soit (x,y) un point de E.

4

H.

PR,

R
n

Ql--s,

S'l est dang A, il s'écrit xy) = (-%,y}, avec \y\ < 1. 11 jouit, pour

un g convenable pris dans ]0,-—1-[, de
n
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U, = ([_nl--e,-é-w] X [y-e,y+e]) NE

—-€,—+E | X .y-e,y+e] siyte<lety-g>-1
n 5

y-e1] siyre>1

I
|
I
™
I
-
m
b

.l_-g,i+a X [-l,y+£] si y-€£<-1
n n |

| L

comme voisinage compact dans E,
S'l est dans B i] s'écrit (0,y),
nable pris dans 10.-y[, I'ensemble

Y, = ([ea] X [y-e,y+e]) NE

-€,€| x _y-e,y+e] 81 y-£2>-]

avec -1 <y < 0. Pour un ¢ conve-

W, = ([Ee] *[yeyse])n g

o

["8*3_ X _Y‘E,Yﬂ:] Si y+e< 1

k [‘E'EJ X Ey-e, 1]

)

Si y+e2 1

- Ainsi, on ¢op

Ct. Dop

Clut que tout point de
one, E est 19

Calement compact.
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2. Les sous-ensembles envisagés sont connexes

4 >
ol
n

-1

(produits de connexes) disjoints. Aucune réunion de deux d'entre eux

n'est connexe. Chacun, ne pouvant étre contenu dans aucun autre
connexe, €st une composante connexe.

Exercice 292
Laquelle des affirmations suivantes est correcte?
1. 1a connexité par arcs n'est pas héréditaire.

2. A connexe par arcs implique A connexe par arcs.
Solution

1. Correcte. L'espace usuel (IRH) est connexe par arcs, alors que
les sous-espaces (Q,HQ) et {CRQ,H - Q) ne le sont pas, puisque
R

non connexes. On peut aussi prendre A = ]-1,0[ U ]0,1[ qui est non

connexe par arcs (puisque non connexe) et A = [-1,1] lequel est
connexe par arcs (puisque c'est un intervalle).

2. Fausse. Le sous-espace (Q,|.| ] n'est pas connexe par arcs et
Q

pourtant son adhérence @ =R, 1'est.
Exercice 293 .

Soit g une fonction continue d'un espace connexe par arcs E dans
un espace F.

1. Montrer que g(E) est connexe par arcs.
2. En déduire que:

1) La connexité par arcs est une invariant topologique.
ii) L'espace quotient E/R est connexe par arcs dés que E 1'est.
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So[ufgo_“m p et q deux points distincts de g(E). II existe ggy,,
1. Soie

s que p = g(a) et q = g(b). Conformémeny 3 By
élémcn:féapcalr b a;ict‘slfjécés C(l,lll] p%ut %rouver une fonction continye f, o
connexit , |
[0,1] - Etelle quea=1f, (1) et b="f,,(0). Il en résulte que:
| p = (gof, ) (1) €t q = (ol 1) (0).
La fonction f, = gof, constitue un chemin de g(E), liant p ¢ 0

Donc, g(E) est connexe par arcs..
2. 1) C'est une conséquence directe de (1).

ii) Idem, car la surjection canonique E — E/®R. est continye.
Exercice 294

Soit E = In] E; l'espace produit associé a la famille d'espaces
i=1

topologiques (E;), .. . Montrer que pour que E soit connexe par
arcs, 1 faut et il suffit que chaque E; le soit.
Solution
La condition est nécessaire. En effet, si E est connexe par arcs,
Cchaque E; I'est de méme grace 2 la continuité de 1a projection
T:E—-E,.
La condition est suffisante. Soient P
q;, q,,..., q,) deux points distincts de E
ide {1,2, ;. n}, un chemin f.:
q; =f.(1). N en résulte que la fon

= (pl’ pz,..., pn) et Q =
. Il existe, pour tout indice

[0,1] — E; tels que p; =1,(0) et
Ction

fre=(f}, f,..., £,): [0,1] > E,
dont toutes Jeg composantes sont co
fpQ(0) = (£,(0), £,(0),..
foo(D) = (£, (1), £,(1), .
Cest un chemin de E. Celyi-

ntinues est continue et vérifie
» 5,0 =y, p,se., p,) =P
" fn(l)) - (ql, Qssedss qn) =Q.

Ci est alorg connexe par arcs.



