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Chapitre 1

TH ÉO R IE D ES EN SEM BLES





Sommaire

Ce chapitre expose la théorie axiomatique des ensembles de Zermelo-Fraenkel. 
Le système d’axiomes de Zermelo-Fraenkel comprend habituellement les cinq 
axiomes énoncés au paragraphe 1, l’axiome de l’infini énoncé au paragraphe 7 
et un schéma d’axiomes, appelé axiome de substitution, que nous n’avons pas 
énoncé, cet axiome n’étant pas utilisé dans la suite de cet ouvrage. Ce dernier 
axiome, qui implique l’axiome de compréhension (ZF2), est utile dans la théo­
rie des cardinaux par exemple : il permet de définir l’ensemble Card X  (remarque 
1.8.1 ), il permet la construction de très grands cardinaux, etc. Signalons par ailleurs 
que nous utiliserons l’axiome de choix énoncé au paragraphe 2 chaque fois que 
cela sera utile. Le lecteur qui souhaiterait en savoir plus sur l’axiomatisation de 
la théorie des ensembles pourra consulter le livre de A. Fraenkel, Y. Bar-Hillel 
et A. Levy [13] ; il y trouvera une analyse fort intéressante des divers systèmes 
d’axiomes proposés depuis Cantor.

Le plan de ce chapitre est le suivant. La partie A expose les principales notions 
qui se définissent dans la théorie de Zermelo-Fraenkel, l’objectif essentiel étant de 
fixer une fois pour toutes les notations utilisées dans la suite de cet ouvrage. La 
partie B est consacrée à l’étude des ensembles ordonnés ; après avoir rappelé le 
vocabulaire utilisé dans ce domaine, on établit le lemme de Zorn (théorème 1.5.1). 
Il s’agit d’un théorème fondamental dont la démonstration est difficile, mais dont 
l’utilisation ne présente pas en général de difficultés. L’existence d’une base dans 
tout espace vectoriel ^  {0} (théorème 1.6.1) est une première application intéres­
sante de ce théorème. La partie C est consacrée à l’étude des propriétés les plus 
simples des ensembles infinis. Après avoir établi que la relation Card X  < Card Y  
est une relation d’ordre total sur la collection des cardinaux, nous donnons les pro­
priétés constamment utilisées des ensembles dénombrables et des ensembles ayant 
la puissance du continu. Signalons enfin le théorème 1.9.9 dont la démonstration 
s’appuie sur le lemme de Zorn et qui permet de définir la dimension de tout espace 
vectoriel.





A -  Axiomes de la théorie 
des ensembles

1.1 Les axiomes de Zermelo-Fraenkel
Ce chapitre est un exposé élémentaire de la théorie axiomatique des ensembles ; 
la construction d’une théorie mathématique, telle que la théorie des ensembles, 
s’effectue selon des règles très précises ; un exposé systématique de ces règles 
ne saurait trouver leur place ici, vu les objectifs de ce cours. Nous allons nous 
contenter de quelques remarques assez naïves.

La construction d’une théorie mathématique T utilise des lettres et des signes. 
Les lettres représentent des objets ou des relations ; dans chaque théorie, les objets 
reçoivent des appellations particulières : par exemple, en théorie des ensembles 
les objets sont appelés ensembles, éléments, parties, applications, etc. Les signes 
comportent des signes logiques et des signes spécifiques à la théorie étudiée. Il y a 
trois signes logiques de base (non, ou, 3) et deux signes spécifiques à la théorie des 
ensembles (=, €). En écrivant les uns à la suite des autres des lettres et des signes, 
on construit des assemblages. Ces assemblages ne doivent pas être construits de 
façon quelconque ; on ne s’intéresse qu’aux assemblages qui, dans l’interprétation 
naïve de la théorie, représentent soit des objets, soit des relations. En d’autres 
termes, il faut décrire les constructions qui sont autorisées et il faut donner des 
règles permettant de reconnaître si un assemblage est un objet ou une relation. Ces 
règles ne sont que des règles de syntaxe, permettant de dire si ce que l’on écrit a, 
ou n’a pas, de sens ; vu nos objectifs, il ne nous semble pas utile d’expliciter ces 
règles, l’expérience et le bon sens étant en général suffisants.

Considérons en particulier les signes logiques de base. Si A est une relation, 
(non A) est une relation qu’on appelle la négation de A. Si A et B  sont des rela­
tions, (A ou B) est une relation qu’on appelle la disjonction de A et B. Enfin, si R 
est une relation, (3x)R. est une relation qui se lit «il existe x tel que R.» et le signe 
logique 3 s’appelle un quantificateur existentiel. En itérant ces règles, on conçoit 
qu’on puisse construire des relations de plus en plus complexes ; dans un but de 
simplification et de compréhension, il est indispensable d’introduire des abrévia­
tions. Par exemple, la relation (non((non A) ou (non B))) est notée (A et B) et 
s’appelle la conjonction de A et B  ; la relation ((non A) ou B) se note (A => B ),
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se lit «A implique B» et le signe logique => s’appelle l’implication. La relation 
((A => B) et (B => A)) se note (A o  B \  se lit «A équivaut à B» et le signe lo­
gique s’appelle l’équivalence. Enfin, la relation non(3x)(non R) se note (Vx)i?, 
se lit «quel que soit x, R» et le signe logique V s’appelle un quantificateur univer­
sel.

Nous n’avons parlé jusqu’à présent que de la formation des relations et des 
objets de la théorie. Il s’agit ensuite de définir la notion de relation vraie. Pour 
cela, on se donne une famille de relations qu’on appelle axiomes et on dit qu’une 
relation est vraie si elle peut se déduire des axiomes par une démonstration ; une 
relation est dite fausse si sa négation est vraie. Cette définition nécessite quelques 
commentaires et en particulier qu’entend-on par démonstration ? Une définition 
précise de ce terme nécessiterait de longs développements qui ne sauraient trouver 
leur place ici, le lecteur de cet ouvrage étant supposé familiarisé avec le raisonne­
ment mathématique.

Remarque 1.1.1 Une théorie mathématique J  est dite contradictoire si il existe 
une relation A telle que les relations A et (non A) soient toutes deux des théo­
rèmes ; si B  est une relation quelconque de 7, la relation (A => B) est vraie car la 
prémisse A est fausse et, la relation A étant vraie, B  est donc vraie d’après la règle 
du syllogisme. Ceci prouve que dans une théorie contradictoire toute relation est à 
la fois vraie et fausse ; une telle théorie est évidemment dénuée de tout intérêt et il 
est donc essentiel de savoir si une théorie est contradictoire ou non. Les résultats 
obtenus dans ce sens sont assez décevants : K. Gôdel a en effet montré en 1931 
qu’il ne saurait exister de démonstration de la non-contradiction de l’arithmétique, 
et plus généralement de toute théorie contenant cette dernière, comme la théorie 
des ensembles par exemple.

Parmi les axiomes de la théorie étudiée, on distingue d’abord les axiomes qui 
ne concernent que les signes logiques. La théorie obtenue en n’utilisant que les 
deux signes (non, ou) s’appelle le calcul des propositions ; l’utilisation des quanti­
ficateurs conduit au calcul des prédicats. On trouvera une présentation axiomatique 
de ces théories dans les ouvrages de N. Bourbaki [3], S.C. Kleene [16] et P.S. No- 
vikov [21].

Le signe = , appelé signe d’égalité, permet de construire de nouvelles rela­
tions ; si x et y sont deux ensembles (c’est-à-dire deux objets de la théorie des 
ensembles), l’assemblage x = y est une relation, dite relation d’égalité, qui se lit 
«x est égal à y». La négation de cette relation, c’est-à- dire la relation non(x =  y), 
se note x ^  y et se lit «x est différent de y». Le signe d’égalité est assujetti au 
système d’axiomes (1.1.1) et (1.1.2) qui suivent.

Quels que soient les ensembles x, y et z
x =  x,

< (x =  y) (y = x),

((x =  y) et (y = z)) =*> (x =  z).
( U . l )
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Si R(x) et T(x) sont respectivement une relation et un ensemble dépendant de 
l’ensemble x (ceci signifie simplement que la lettre x figure dans les assemblages 
R. et T), alors les relations suivantes sont des axiomes 

|  (x =  y) => (R(x) &  R(y))y

! ( *  =  »)=► iT(x) =  T(y)).
Les axiomes qui précèdent sont conformes à l’interprétation intuitive du signe 

égalité : dire que x est égal à y signifie intuitivement que les objets x et y sont les 
memes ; aucune propriété ne permet de les distinguer.

Venons-en maintenant au signe G, appelé signe d’appartenance. Soient x> X  
deux ensembles, l’assemblage x G X  est une relation, dite relation d’apparte­
nance, qui se lit “;r appartient à X ” ou “a; est un élément de l’ensemble X ”. La 
négation de cette relation sera notée x £ X.
Note Le lecteur observera que l’objet X  a été appelé ensemble et que l’objet x  a 
été appelé élément : ces appellations sont relatives à la relation x  G X.  Un même 
objet peut être à la fois élément et ensemble : par exemple, si x € X  et X  G X, 
l’objet X  est un ensemble contenant l’élément x et c’est un élément de l’ensemble 
X. La distinction entre élément et ensemble n’est qu’une commodité de langage 
qui est nécessaire pour faciliter l’interprétation intuitive des théorèmes.

Nous allons indiquer maintenant les axiomes auxquels est assujetti le signe 
d’appartenance ; ce système d’axiomes comprend les cinq axiomes figurant dans 
ce paragraphe et l’axiome de l’infini qui sera énoncé ultérieurement ; on obtient 
ainsi la théorie des ensembles de Zermelo-Fraenkel notée (Z F ) en abrégé. Indi­
quons dès maintenant que nous utiliserons un autre axiome ; il s’agit de l’axiome 
de choix qui, pour des raisons historiques, est étudié séparément ; on obtient alors 
la théorie des ensembles de Zermelo-Fraenkel avec axiome de choix notée 
(ZF) + (C).

Soient X  et Y  deux ensembles égaux ; en prenant pour relation R(X)  la re­
lation x G X,  l’axiome (1.1.2) montre que les relations x  G X  et x G Y  sont 
équivalentes ; autrement dit, on a le théorème
(1.1.3) (X = Y)=> (Vx)(z G X  & x G Y).

Si X  est égal à Y , ceci prouve que tout élément de X  est élément de Y  et 
tout élément de Y  est élément de X  : deux ensembles égaux ont donc les mêmes 
éléments. La réciproque nécessite un axiome, appelé axiome d’extensionalité, qui 
s’énonce comme suit.

(ZFi) (Va;)(.t G X  x G Y)  =* (X = Y).

Compte tenu de cet axiome, deux ensembles sont égaux si, et seulement si, ils 
ont les mêmes éléments.

La relation d’inclusion se définit à partir de la relation d’appartenance de la 
façon suivante. La relation (Va;)(a: G A => x  G X)  sera notée A C X. Si cette 
relation est vraie, on dit alors que A est une partie ou un sous-ensemble de X  ;
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on dit également que A est contenu dans X  ou que X  contient A. La négation de 
cette relation sera notée A (JL X.

Quels que soient les ensembles X , Y  et Z , on a évidemment
( X c X ,

(1.1.4) <
[ ( X c Y e t Y c Z ) ^ ( X c Z ) .

Le signe d’inclusion permet d’écrire (1.1.3) sous la forme 
(X = Y ) = ï ( X  C Y & Y  C X )  

et l’axiome d’extensionalité sous la forme
( X c Y & t Y  c X ) ^ ( X  = Y);

on a donc le théorème
(1.1.5) (X C Y  et Y  C X)  &  (X = Y).

Pour énoncer l’axiome suivant, il est commode d’introduire la notion suivante. 
Soit R(x) une relation, si la collection des ensembles x  ayant la propriété R 
constitue un ensemble, on dit que la relation R  est collectivisante en x. Dans ce 
cas, il existe un ensemble X  et un seul d’après l’axiome d’extensionalité tel que 
(Vx)(R(x) X)  ; cet ensemble sera noté X  = {x ; R}. S’il existe un seul
ensemble x  vérifiant la relation R , on dit que la relation R  est fonctionnelle en x  ; 
ceci signifie qu’il existe un ensemble a tel que (Vx)(R(x) x  =  a).

L’axiome de compréhension s’énonce alors comme suit.

. . /  Soient X  un ensemble, R  une relation et x  une lettre ne figurant pas dans
'  2' (X , alors la relation (x G X  et R) est collectivisante en x.

Il existe donc un ensemble A constitué des éléments de X  qui vérifient la 
relation R., soit x G A (x G X  et R) ; ce sous-ensemble de X  sera noté 
A = { x e X - R ) .
Remarque 1.1.2 Le paradoxe de Russel Dans l’axiome de compréhension, on 
astreint l’objet x  à appartenir à un ensemble X  donné, cette restriction est tout à 
fait essentielle. Il est en effet facile de donner des exemples de relation non collec­
tivisante. Montrons que la relation (x  ^  x) n’est pas collectivisante ; raisonnons 
par l’absurde, si cette relation était collectivisante, il existerait un ensemble A tel 
que (Væ)(x G A <=> x £ x) et, en substituant A à x, on obtiendrait alors le théo­
rème (A G A O  A £ A) y ce qui est absurde. Ceci prouve que la relation (x 0  x) 
n’est pas collectivisante. Autrement dit, la collection des ensembles qui ne sont 
pas éléments d’eux-mêmes n’est pas un ensemble : appliquer les théorèmes de la 
théorie des ensembles à cette collection conduit à une absurdité appelée paradoxe 
de Russel.
Remarque 1.1.3 Le paradoxe de Cantor Voici un autre exemple de relation non 
collectivisante : la relation (\/x)(x G X ) n’est pas collectivisante en X . Si elle 
l’était, elle serait en effet fonctionnelle en X  d’après l’axiome d’extensionalité ; il
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existerait donc un ensemble X  tel que tout ensemble x soit élément de X  et, vu 
l’axiome de compréhension, toute relation serait collectivisante ce qui est absurde 
d’après la remarque précédente. Ceci prouve que la relation (Vx)(x G X)  n’est 
pas collectivisante en X.  Autrement dit, la collection de tous les ensembles n’est 
pas un ensemble : affirmer le contraire conduit à une absurdité appelée paradoxe 
de Cantor.

Voici quelques conséquences de l’axiome de compréhension. Soient X  un en­
semble et A une partie de X  ; l’axiome (ZF<i) permet de définir le complémentaire 
de A par rapport à X

X - A  = { x e X ; x <£ A } .
Si R  est une relation, on a alors {x G X  ; non R}  =  X  — {x G X  ; i?.} et, en pre­
nant pour relation R la relation x g A,  on obtient le théorème A = X  — (X — A).

Voici un exemple important de relation fonctionnelle.
Proposition 1.1.1 La relation (Vx)(x X)  est fonctionnelle en X.
Preuve Notons d’abord que, pour tout ensemble Y , on a (Vx)(x & Y —Y),  puisque 
la relation (x G Y  — Y)  s ’écrit (x G Y  et x ÿ. Y ), relation qui est fausse. Par 
ailleurs, si X  et X 1 sont deux ensembles tels que (\/x)(x $ X)  et (Vx)(x & X'),  
la relation (Vx)(x G X  <=> x  G X 1) est vraie car les relations x  G X  et x G X 1 
sont fausses et, vu l’axiome d’extensionalité, on a donc X  =  X \  ce qui prouve le 
résultat voulu. Q.E.D.

Il existe donc un ensemble, et un seul, appelé ensemble vide, que l’on note 0, 
tel que (Va*)(x ^ 0). Intuitivement, l’ensemble vide est un ensemble n’admettant 
aucun élément.

La relation x  G 0 étant fausse, on a les théorèmes, R  désignant une relation
(1.1.6) (Vx)(x G 0 => R) et non(3æ)(;r G 0 et iî) .

En prenant pour relation R la relation x G X ,  le premier théorème prouve 
que 0 C X  ; on dit que 0 est la partie vide de X.  On notera en outre les deux 
propriétés évidentes X  — 0 =  X  et X  — X  = 0. On dit qu’un ensemble est 
non vide si X  ^  0 ; d’après la définition de l’ensemble vide cela signifie que 
non (Vx*)(x ^  X ), c ’est-à-dire (3æ)(.t  G X).

Nous avons précédemment dit ce qu’il fallait entendre par partie ou sous- 
ensemble d’un ensemble X.  On peut évidemment s’intéresser à la collection de 
toutes les parties de X  ; l’axiome de l’ensemble des parties dit que cette collection 
est un ensemble.

(ZFf) Pour tout ensemble X , la relation A c X  est collectivisante en A.

Il existe donc un ensemble noté V(X)9 appelé ensemble des parties de X , tel 
que (A C X  <=> A G Les propriétés de l’inclusion, à savoir X  C X  et
0 C X,  montrent que X  G y{X)  et 0 G ? (X ) ; d’après (1.1.4), on a d’autre part 
(X C Y) o  (y(X)  C 7(Y))  et par conséquent

(X = Y) (y(X) = ?(Y)).
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Étant donné deux ensembles a et 6, l’axiome de la paire affirme l’existence 
d’un ensemble dont les seuls éléments sont a et b.

f Soient a et 6 des ensembles, la relation {x = a ou x  =  b) est 
lcollectivisante en x.

(ZF4)

Il existe donc un unique ensemble tel que
(Vx)(x G X  (x = a ou x =  6)) ;

cet ensemble sera noté {a, b}. Si a ^  6, on dit que X  est un ensemble à deux 
éléments. Si a =  6, on a en fait (Vx)(x G X  (x = a)) ; on dit alors que X  
est un ensemble à un élément ou qu’il est réduit à l’élément a ; on note {a} un tel 
ensemble. On a donc, par définition, {a} =  {a, a}.

Donnons quelques exemples. La seule partie de l’ensemble vide étant la partie 
vide, !P(0) est un ensemble à un élément et ÎP(0) =  {0}. Soit X  un ensemble et 
a un élément de X  ; la relation (x G X  et x  =  a) définit une partie de X  dont 
a est le seul élément. Il faut évidemment soigneusement distinguer l’élément a de 
la partie de X  réduite à l’élément a : on a en particulier a G X, {a} G ? (X ) et 
ü G {& }.

L’axiome de compréhension permet de définir la réunion et l’intersection de 
deux parties A et B  d’un ensemble X  en posant

AU B = {x G X  ; x e A o u x  £ B}, A n B  = {x G X ;  x G A&tx G B}.
Considérons plus généralement un ensemble d’ensembles, c’est-à-dire un ensemble 
X dont les éléments sont eux-mêmes des ensembles (ceci signifie simplement que 
X  étant un élément de X, on va s’intéresser aux éléments de X). On peut d’abord 
s’intéresser à la collection de tous les éléments de tous les ensembles appartenant 
à X ; l’axiome de réunion affirme que cette collection est un ensemble.

{ZFb) (Pour tout X, la relation (3X)(X  G X et x  G X)  est collectivi- 
lsanté en x.

Cet axiome assure l’existence de l’ensemble, appelé réunion des ensembles de 
X,
(1.1.7) | J  X  = {x\  (3 X )(X G 3 C e tx e X )} .

x ex
On notera que tout ensemble de X est une partie de cet ensemble réunion ; 

l’axiome de réunion assure donc l’existence d’un ensemble Y  tel que tout en­
semble de X soit une partie de Y  ; en d’autres termes, tout ensemble d’ensembles 
peut être considéré comme un ensemble de parties d’un ensemble Y.

Voici des cas particuliers de cette notion de réunion.
Si X est l’ensemble vide, la relation (3X )(X  G X) est fausse et par suite

U * € 0 *  =  0-
Soient A et B  deux ensembles ; prenons pour X l’ensemble à deux éléments 

{A, B}. La relation (3X)(X G X et x  G X)  est alors équivalente à la relation 
(x G A ou x  G B). D’après l’axiome de réunion, il existe donc un ensemble,
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appelé réunion des ensembles A et B, qui sera noté A U B  tel que 
A u B =  Î J X  = {x; x £ A o u x  £ B}.

X e { A , B }

Cette définition est évidemment consistante avec celle donnée pour deux parties 
d’un ensemble.

On vérifie que la réunion est une loi commutative et associative : soient A, B 
et C des ensembles, on a alors

A U B = B  U A, A U (B U C) = (A U B) U C, 
ce qui permet d’écrire cet ensemble A u B u C .  Plus généralement, on peut définir 
la réunion de n ensembles A i , . . . ,  An par récurrence au moyen de la formule 

Al U . . .  U An =  (Al U . . .  U An_i) U An.
En particulier, étant donné n ensembles a\ , . . . ,  an , on peut considérer la réunion 

des n ensembles { a i} , .. .,{an} que nous noterons
{ a i , . . .  , a n } =  {ai} U . . .  U {an } ;

cet ensemble admet pour éléments les n ensembles a i , . . .,an ; on constate donc 
que, grâce à l’axiome de réunion, il existe un ensemble, et un seul, dont les élé­
ments sont les n ensembles a i , . . .,an et ceux-là seulement.

La définition de l’intersection ne nécessite pas d’axiome supplémentaire. On 
s’intéresse maintenant aux éléments qui appartiennent à tous les ensembles de X ; 
on s’intéresse donc à la relation (VX)(X £ X => x  C X),  Cette relation est 
collectivisante en x  si, et seulement si, X est non vide. En effet, si X est vide, cette 
relation est vraie quel que soit x  et, comme nous l’avons vu, la collection de tous 
les ensembles n’est pas un ensemble. Au contraire, si X est non vide, soit A un 
ensemble de X ; la relation précédente est alors équivalente à la relation 

{x C A et (VX)(X e X ^ x e X ) )
qui est collectivisante d’après l’axiome de compréhension. Si X est non vide, on 
peut donc définir l’intersection des ensembles de X par la formule
(1.1.8) P |  X  = { x  ; ( V X ) ( X € X = > a r e X ) } ,  X ?  0.

x e x
Soient A et B  deux ensembles et X =  {A, B}. La relation

(VX)(X £ X => x £ X)
est équivalente à la relation (x £ A et x £ B)  ; on pose alors

A n B  = P l X  = {x; x £ A e t x  £ B}  
x e { A , B }

et on constate que cette définition est celle que nous avons donnée lorsque A et B  
sont deux parties d’un ensemble. On dit que A rencontre B  si A fl B  ^  0 et que A 
et B  sont disjoints ou sans élément commun si A fl B = 0.

L’intersection est une loi commutative et associative : soient A, B  et C des 
ensembles, alors

A n B  = B n A ,  A n  (J3 n  C) =  (A n  Æ) n  C  ;
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on a d’autre part les formules de distributivité suivantes
A U  (B n C) = (A U  B) n (A U  C), A f l  (B U  C) = (A n  B) U  (A n C); 

en outre, si A et B  sont des parties d’un ensemble X , on vérifie que 
X  -  {A U  B) = {X -  A) n (X -  B), X  -  (A n B) = (X -  A) U (X -  B).

1.2 Produit de deux ensembles, applications, 
axiome de choix

Étant donné deux ensembles x  et y, on pose

(x,v) = { W ,{ x ,y } }
et on dit que (x , y) est le couple des ensembles x et y ; x (resp. y) est appelé la 
première (resp. seconde) projection ou coordonnée du couple. Si z = (x,y), on 
utilise les notations x  =  priz et y = yr^z.

On a la propriété essentielle qui suit

Proposition 1.2.1 Soient (x ,y), ( x \ y f) deux couples, alors (x ,y) =  (x\y' )  si, 
et seulement si, x = x' et y = y'.

Preuve Si x =  x ' et y =  y il est clair que (x,y) =  (x^y1). Réciproquement, 
supposons {{x},{x,t/}} =  {{x'}, {x^y'}}. On a alors, ou bien {x} =  {x'}, 
ou bien {x} =  {x ',y '} ; dans le premier cas x =  x' et dans le second cas 
x =  x ' =  y1. Dans tous les cas, on a donc x =  x ' et par conséquent

{{x},{x,y}} = {{x},{x,y'}}.
Notons alors que deux paires de la forme {a, b} et {a, 6'} ne peuvent être égales 
que si b = 6'. On a donc nécessairement {x, y} =  {x,y'}, d’où y =  y'. Ceci 
prouve que x =  x ' et y =  y'. Q.E.D.

Soient X  et Y  des ensembles, x  un élément de X  et y un élément de Y.  On a 
{ x }  C X  C X  U Y  et { x ,  y }  C X  U Y,  d’où ( x , y )  G ?(ÎP(X U Y))  ; d’après 
l’axiome de compréhension, la relation

(3x)(3y)(z = (x, y) et x  G X  et y € Y)
est collectivisante en z. On peut donc considérer l’ensemble des couples ( x , y )  
lorsque x  décrit X  et y décrit Y , soit

X  x  y  =  {z ; z =  (x, y) et x  G X  et y G y } .

Cet ensemble est appelé le produit de X  et y  ; l’ensemble X  (resp. Y)  est appelé 
le premier (resp. second) ensemble facteur du produit. Notons que cet ensemble 
produit est l’ensemble vide si, et seulement si, l’un des ensembles facteurs est vide, 
soit 
( 1.2.1) X x Y  = 0<^(X = 0ouy = 0).



1.2 PRODUIT DE DEUX ENSEMBLES 13

Remarque 1.2.1 Étant donné trois ensembles x i, X2 et £ 3 ,  on définit le triplet de 
ces ensembles par la formule (£1 , 0:2 , £3 ) =  (£1, (£2 , ^ 3)) et plus généralement, 
on définit par récurrence la notion de n-uple

( £ l , . . . , £ n) =  ( £ l , ( £ 2 , . . . ,Zn))*
La proposition 1.2.1 se généralise comme suit : deux ?i-uples ( £ i , . . . , £ n ) et 
(2/1, . . . ,  yn) sont égaux si, et seulement si, x\  =  yi pour tout i G { 1 , . . . ,  n}. 
Le produit de n  ensembles X i , . . .,Xn est alors par définition l’ensemble des ro­
upies (£1, . . . ,  £n) lorsque £* décrit X* ; cet ensemble sera noté Xi  x  . . .  x  X n. 
On a donc

X\  x . . .  x X n =  { £ ; £  =  (£ 1 , . . .  , £ n) et £1 G X i et . . .  et xn G X n}.

Soient X  et Y  des ensembles et R{x) y) une relation binaire. Considérons le 
sous-ensemble G du produit X  x Y  défini comme suit

G = { ( x , y ) e X x Y ; R ( x )y)};
l’ensemble G, appelé graphe de la relation R , est donc l’ensemble des couples 
(£, y) tels que R  soit vraie. La relation (R(x,y) et £ G X  et y e Y)  est alors 
équivalente à la relation (£, y) G G. Inversement, à toute partie G de X  x  y , 
on peut associer une relation binaire dont le graphe est G : il suffit en effet de 
considérer la relation (x , y) G G.

La relation R(x , y) est dite fonctionnelle en y G Y  dans l’ensemble X , si, 
pour tout £ G X, il existe un unique élément y G Y  tel que la relation R(pc, y) soit 
vraie, autrement dit si

(V£ G X)(3y  G Y)(Vz G Y){R{x,z) & (z = y)).
Le graphe f  C X  x Y  d’une relation fonctionnelle est dit fonctionnel en y ; 
on dit aussi que /  est une application de X  dans Y  ou que /  est une fonction 
définie sur X  et prenant ses valeurs dans Y.  Pour tout £ G X , on note alors f (x)  
l’unique élément y de Y  qui est tel que R(x,y)  soit vraie, c’est-à-dire qui est tel 
que (x,y) G /  ; par définition, la relation (x,y) G /  est donc équivalente à la 
relation y = f(x)  ; l’élément f (x)  est appelé l’image de x par l’application /  qui 
sera alors notée £ 1 f(x).  Dans la pratique, une application /  de X  dans Y  sera 
notée en abrégé /  : X  -» Y  ; l’ensemble X  sera appelé ensemble de départ ou de 
définition de l’application /  et Y  ensemble d’arrivée.
Note Conformément à un usage bien établi, il nous arrivera fréquemment de par­
ler du graphe d’une application bien qu’il n’y ait pas lieu de distinguer la notion 
de graphe fonctionnel et la notion d’application si on s’en tient aux définitions 
données.

D’après l’axiome de compréhension, la relation « /  est une application de X  
dans y  » est collectivisante en /  puisque cette relation implique /  G CP(X x Y)  ; 
on peut donc parler de l’ensemble de toutes les applications de X  dans Y  ; cet 
ensemble sera noté 7 (X  ; Y)  ou Y x .

Donnons quelques exemples.
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Exemple 1.2.1 Prenons pour ensemble X  l’ensemble vide, on a alors X  x Y  =  0 
et le seul graphe contenu dans X  x Y  est l’ensemble vide ; ce graphe est fonc­
tionnel en y £ Y  d’après (1.1.6). Il existe donc une application (et une seule) de 0 
dans Y  qu’on appelle l’application vide et qui est notée 0.

Exemple 1.2.2 Soit X  un ensemble ; la diagonale de X  x X  est par définition 
le graphe A x  =  {(x,x) ; x £ X }  ; ce graphe est un graphe fonctionnel qui 
définit une application de X  dans X  appelée application identique de X  que nous 
noterons /* .  Par définition, on a Ix(x)  =  x pour tout x £ X.

Afin de fixer les notations qui seront utilisées dans la suite de cet ouvrage, 
rappelons diverses notions concernant les applications.

Deux applications /  et g de X  dans Y  sont égales si les graphes fonction­
nels /  et g sont égaux, c’est-à-dire si les relations (x, y) £ /  et (x, y) £ g sont 
équivalentes. Ceci signifie simplement que /(x )  =  g(x) pour tout x £ X.

Étant donné deux applications /  : X  Y  et g : Y  -» Z, on définit le graphe 
go f  c X  x Z par la formule

g o f  = {(x , z ) E l x Z ;  (3 y){y € F  et (x,y) e  /  et (y,z) e g)};
il est clair que ce graphe est fonctionnel ; l’application go f  est appelée la compo­
sée des applications /  et g ; la relation z = (go /) (x )  est équivalente à la relation 
z =  g(f(x))  comme le montre la définition de g o / .

Une application /  : X  Y  est dite injective (on dit aussi que /  est une 
injection) si deux éléments quelconques mais distincts de X  ont des images par /  
distinctes, c’est-à-dire si

(Vx £ X)(Vx' £ X)( f (x)  = / ( x ')  => x =  x').

Exemple 1.2.3 Soit A  une partie d’un ensemble X , le graphe
{(x ,y ) € A x X;  x = y}

est un graphe fonctionnel ; il définit par conséquent une application de A  dans X  
qui est évidemment injective ; on l’appelle l’injection canonique de A dans X  ; 
notons la i : A —> X  ; on a i(x) =  x pour tout x  £ A, Si f  est une application de 
X  dans Y , l’application composée /  o i : A Y  est appelée la restriction de f  
à A ; nous la noterons / | a - Étant donné deux applications /  et g de X  dans Y , si 
les applications f\& et g\A sont égales, on dit que /  et g coïncident dans A. Enfin, 
étant donné une application f  de X  dans Y  et une application g de A dans Y , si 
les applications / \ a et g sont égales, on dit que /  est un prolongement de g ou que 
/  prolonge g.

Soient /  une application de X  dans Y  et A  une partie de X . On appelle image 
(directe) de A  par /  le sous-ensemble de Y  f ( A )  = { / ( x )  ; x  £ A}.  Si B  est une 
partie de Y , on définit l’image réciproque de B  par /  comme le sous-ensemble 
de X  f ~ x(B)  =  { x  £ X  ; / ( x )  £ B}.  Une application /  : X  ->  Y  est dite 
surjective si l’image de X  par /  est égale à Y , c’est-à-dire si f ( X )  =  Y.
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Exemple 1.2.4 Soient X  et Y  deux ensembles non vides. Les applications 
pTi : z i—> pri(z), i = 1,2, de X  x Y  dans X  et Y  respectivement sont des 
surjections appelées première et seconde projection.

Exemple 1.2.5 Soit R(x , y) une relation d’équivalence sur un ensemble X , c’est- 
à-dire une relation réflexive, symétrique et transitive, soit

' () /xeX)R.(x)x) i

< (Va: e X ) ( V y e X ) ( R ( x 1y ) ^ R ( y , x ) ) )

k (Va; E X)(Vy E X){Mz € X)((R{x,y) t lR(y,z))  i?(a;,2)).
Pour tout x E X,  on appelle classe d’équivalence de x l’ensemble 

Ax = { y e X \  R(x,y)}
et on appelle ensemble quotient de X  par la relation R  l’ensemble X / R  des parties 
Ax de X  lorsque x décrit X . L’application x Ax de X  dans X / R  est une 
surjection dite canonique.

Étant donné un graphe /  C X  x  Y , on définit le graphe réciproque 
r 1 =  {(y, x) <EY x X ;  (x,y) € f } ;

si /  est une application de X  dans Y , alors f ~ l est une application de Y  dans X  
si, et seulement si, /  est injective et surjective ; on dit alors que /  est bijective ou 
que /  est une bijection ; l’application f ~ l est appelée l’application réciproque ou 
inverse de /  ; il est clair que / -1 est une bijection de Y  sur X  et que f ~ l o f  = Ix ,
/  ° / -1 = IY -
Exercice 1.2.1 Soit /  : X  —> Y  une application, montrer que, pour tout A E P(X),  
A  C / - 1 ( / ( i4 ) )  et que, pour tout B  €  V(Y),  C B.

Exercice 1 .2 .2  Soit /  : X  —> Y  une application, montrer que
1. /  est injective ■<=>■ VA e 3>(X), / _1 (f(A))  =  A.
2. f  est surjective V B e 9 { Y ), / ( / “ 1 (B ))  =  B.

Exercice 1 .2 .3  Soit /  : X  ->• Y  une application, on note g : 1P(V) —> 'P(X) l ’application 

A  i-> Montrer que /  est injective (resp. surjective) si, et seulement si, g est surjective (resp.
injective).

Exercice 1.2 .4  Soient f  : X  Y, g : Y  ->  Z  des applications, h : X  —» Z  l’application 
composée h =  g o / .  Montrer que

1. k surjective ==>- g surjective.

2. h injective = >  /  injective.

Exercice 1.2.5 Soient X , Y  des ensembles non vides, montrer qu’une application /  : X  -»  Y  est 
injective si, et seulement si, il existe une application g : Y  —> X  telle que g o f  =  Ix .

Pour terminer ce paragraphe, énonçons l’axiome de choix.

{Soient X  et Y  des ensembles et soit /  une application de X  dans 
îP(y) -  {0}, il existe alors une application g : X  Y,  dite fonction 
de choix associée à / ,  telle que g(x) E f ( x )  pour tout x  E X.
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Considérons en particulier un ensemble X  non vide et l’application identique 
de ^ (X ) — {0} ; d’après l’axiome de choix, il existe une application

/  : 3>(X) -  {0} -> X
telle que f ( A ) G A pour toute partie non vide de X.  Il est donc possible de choisir 
un élément dans toute partie non vide de X , un tel choix étant fait simultanément 
pour toutes les parties non vides de X .

L’axiome de choix affirme l’existence d’une application vérifiant certaines pro­
priétés ; il s’agit donc d’un axiome permettant de démontrer l’existence de cer­
tains objets. Comme nous le verrons ultérieurement, l’axiome de choix, par l’in­
termédiaire du lemme de Zorn, permet effectivement de démontrer des théorèmes 
d’existence ; de tels théorèmes ne peuvent pas en général s’obtenir sans l’axiome 
de choix qui se trouve être pour cette raison un outil extrêmement puissant en 
analyse.

Exercice 1.2.6 Soient X , Y  des ensembles non vides, montrer qu’une application /  : X  -> Y  est 
surjective si, et seulement si, il existe une application g : Y -> X  telle que /  o g =  IY.
Exercice 1.2.7 Soient X , Y , Z  des ensembles non vides, /  : X  -> Y > h : X  Z  des applica­
tions, montrer qu’il existe une application g : Y Z  telle que h =  g o /  si, et seulement si,

pour tout x, x' G X , f (x)  =  / ( a / )  =>■ h(x) =  h(xf).

Si /  est surjective, montrer que g est unique.

Exercice 1.2.8 Soient X , Y  des ensembles non vides et /  : X  -*  Y  une application.
1. Montrer que la relation Æ : f(x)  =  f ( x f) est une relation d’équivalence sur X.
2. On note 7r : X  ->  X/Æ  la surjection canonique, montrer qu’il existe une application et une 

seule g : X /Æ  —> Y  telle que f  =  g o n  [utiliser l ’exercice précédent]. Montrer que g est injective.

1.3 Famille d’ensembles : réunion, intersection, produit
Soient I  et X  des ensembles ; une application /  : J  X  s’appelle également 

une famille d’éléments de X . On utilise alors des notations indicielles : I  s’appelle 
l’ensemble d’indices, l’image f(i)  de l’indice i G I  par /  se note Xi et la famille /  
est notée simplement Si J  est une partie de / ,  la restriction à J  de l’appli­
cation /  =  (Xi)iei est appelée la sous-famille ayant J  pour ensemble d’indices ; 
on la note {xi)iej.
Exemple 1.3.1 Si I  est l’ensemble N (l’ensemble des entiers naturels sera défini 
ultérieurement), une famille (xn)neN d’éléments de X  est appelée une suite (d’élé­
ments) de X  ; une telle suite sera notée plus simplement (xn) lorsqu’il ne sera pas 
utile de préciser l’ensemble d’indices N.

Exemple 1.3.2 L’application identique Ix  - X  -» X  définit une famille d’élé­
ments de X  indexés par X  que nous appelerons la famille de tous les éléments de 
X  ; étant donné que Ix(x)  = x  pour tout a: G X, cette famille doit être notée
(x)xex-
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Dans la définition générale des familles, substituons à X  un ensemble d’en­
sembles noté X. Une application /  : 7 -» X sera appelée une famille d’ensembles ; 
en posant f(i) = Xi  une telle famille sera notée (Xi)i£j. Lorsque X est l’en­
semble 7(X)  des parties d’un ensemble X,  nous parlerons de famille de parties 
de X.

Étant donné une famille d’ensembles (Xi)i£j, on définit la réunion de cette 
famille par la formule

(1.3.1) U X i ^ x i ^ W e / e t x É X * ) } ;
iE /

cette formule définit bien un ensemble : on notera en effet que la relation 
G I  et x  G Xi)  est collectivisante en x  car elle implique x  G U a' gx 

Notons que |J ie/ Xi  =  0 lorsque 7 =  0.
Lorsque l’ensemble d’indices est non vide, la relation

(Vî)(î G l ^ x G X i )
est collectivisante en x  ; on peut donc définir l’intersection de la famille d’en­
sembles (Xi)içi par la formule

(1.3.2)
iei

Note Prenons en particulier la famille (X ) x ex  de tous les ensembles appartenant 
à X, alors les définitions (1.1.7) et (1.3.1) d’une part, (1.1.8) et (1.3.2) d’autre part 
coïncident.
Remarque 1.3.1 Lorsque la famille {Xi)iej est une famille de parties d’un en­
semble X , la réunion et l’intersection (si 7 ^  0) de cette famille sont également 
des parties de X  ; on peut donc écrire

(1.3.3) (J Xi = {x G X; (3i)(i € / e t x  € X»)},
i€l

(1.3.4) p| Xi = {x € X ; (Vi)(i € J => x € Xi)}, si /   ̂0.
iE /

Lorsque l’ensemble 7 est l’ensemble vide, on constate que (1.3.4) conserve un sens 
(alors que (1.3.2) n’en a pas) et que n i€/ =  X  si I  = 0. Étant donné un en­
semble Y  contenant X , toute famille de parties de X  peut être considérée comme 
une famille de parties de Y. La réunion et l’intersection, si I  est non vide, d’une 
telle famille coïncident qu’elle soit considérée comme une famille de parties de X  
ou comme une famille de parties de Y. Mais si l’ensemble I  est vide, l’intersection 
de la famille sera égale soit à X , soit à Y.

Indiquons les propriétés les plus fréquemment utilisées en ce qui concerne ces 
notions de réunion et d’intersection ; les démonstrations sont aisées, le lecteur les 
fera à titre d’exercices.

Associativité de la réunion et de l’intersection Soit {Xi)iej une famille de 
parties d’un ensemble X  et soit (7a)aea une famille de parties de I  de réunion 7.
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On a alors

d.3.5) u*<=u(u*<)ein*<=n(nx<)-
i e i  aga i e i x  i e i  aga i e i x

Distributivité Soient (X i)iei une famille de parties de X  et (Yj)j€ J  une fa­
mille de parties de Y.  Les applications

(i,j) h» Xi  U Yj, (i , j ) i-)- Xi  D Yj et (i, j )  h* X t x Yj
définissent respectivement une famille de parties de X  U Y, X  fl Y et X  x Y . On 
a alors
(1.3.6) (U^)n(Uyi)= U (XinYj ) ,

j € J  ( i , j ) € l x jiGJ

(n**)u(n^)= n (Xi  U Yj) si /  et J  sont non vides,
*e/ j e  J (»,j)€/xj

(U^)x(Uyi)= U (*«xrç).
jeJ (i,j)eixj

(n ^ M n *)- n (Xi x Yj) si I  et J  sont non vides ;
*6 /  j € J  ( i j ) e i x J

la dernière formule se simplifie lorsque I  = J  en

( n  * < ) * ( ( > ) = r x * * * )  si I  est non vide.
iel iel i£l

Complémentaire d’une réunion ou d’une intersection
Soit (Xi)iei une famille de parties d’un ensemble X , alors

x  -  U  =  f | ( *  -  Xi) et X  -  p )  ^  =  ( J ( X  -  Xi).
*€/ iel iei iei

Image par une application Soient /  : X  -> Y  une application, (X<)i6j et 
(Y)iei  des familles de parties de X  et Y  respectivement. On a

/ ( U * « ) =  e t / ( f i x 0  c
i € l  i € l  "  'i e l  i e l

/■‘(U1'*) = U r1«)«r1(n*'.) = n r n
i e i  \ e i  i £ i

Exercice 1.3.1 Étant donné une application /  : X  —* Y,  montrer l’équivalence des propriétés 
suivantes

1. /  est injective,
2. pour toute famille (Ai ) i e I , 7 ^ 0 ,  de parties de X , f ( ( \ e T AA =  f r / (AA ,
3. pour tout A % B  G ? (* )>  f ( A  n  B) =  f (A)  n  f (B) ,
4. pour tout A , B e  ÎP(X), A n B  =  0 = >  f (A)  n  f (B )  =  0,
5. pour tout A , B e  0>(X), A c  B = >  f ( B  -  A) =  f (B)  -  f ( A ),
6. pour tout A G 3>(X ) , f ~ l ( f ( A)) =  A.

Exercice 1 .3 .2  Soit (^i , j ) ( i , j ) e i x j  une famille de parties d’un ensemble X , montrer que 

U i e l  H jg J c  H jg j U îg /  X i j  et que cette inclusion peut être stricte.
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Après avoir défini le produit de deux ensembles, nous sommes maintenant en 
mesure de définir le produit d’une famille d’ensembles (X *)^/. Une telle famille 
peut toujours être considérée comme une famille de parties d’un ensemble X. 
On considère alors l’ensemble des applications x =  (xi)ie/ de I  dans X  telle 
que x-i G Xi  pour tout i G I  ; cet ensemble s’appelle le produit de la famille 
(Xi)iei et se note YlieIXi. L’ensemble Xi  s’appelle l’ensemble facteur d’in­
dice i ; l’image Xi de i par l’application x  s’appelle la projection ou coordonnée 
d’indice i de x  et l’application pri : x  h-» Xi de Wi^ix i ^ans x % s’appelle la 
projection d’indice i. Si A est une partie de l’ensemble produit, son image pri(A) 
par l’application pri s’appelle évidemment la projection d’indice i de A. On notera 
que A C [L e / pour tout A C U ie iX <•
Remarque 1.3.2 Supposons qu’il existe un ensemble X  tel que Xi = X  pour 
tout i G J. On a alors Y\i£l Xi = X)  ; cette remarque est importante ; elle 
montre que l’ensemble de toutes les applications de I  dans X  est un produit d’en­
sembles ; or nous apprendrons ultérieurement à construire des structures produits, 
par exemple des produits de structure topologique ; ceci permettra de munir l’en­
semble 3(I \X)  d’une structure topologique à partir d’une topologie donnée sur 
X.
Remarque 1.3.3 La notion de produit d’une famille d’ensembles généralise celle 
de produit de deux ensembles. Considérons en effet deux ensembles X\  et X 2 ; 
posons I  = {1,2} et considérons la famille d’ensembles (X<)<G/. L’application 
qui, à tout x =  (Xi)i^j de Yli^i X*, associe le couple (x\y xf) de X\  x X 2 est une 
bijection, dite canonique, de Yli^i x i sur x i x ^ 2 -

Voici une propriété importante des ensembles produits.
Proposition 1.3.1 Dans la théorie des ensembles {ZF),  l'axiome de 
choix est équivalent à l'énoncé suivant

{pour toute famille d'ensembles (X*)^/, l'ensemble produit 
n <€/X; est non vide si, et seulement si, tous les espaces fac­
teurs sont non vides.

Preuve 1. Montrons que l’axiome de choix implique (1.3.7). On peut supposer que 
{Xi)i£j est une famille de parties d’un ensemble X . Supposons tous les ensembles 
Xi  non vides et notons /  : I  ^ (X ) -  {0} l’application telle que f(i) =  Xi 
pour tout i G I  ; d’après l’axiome de choix, il existe une application g : I  -» X  
telle que g(i) G Xi  pour tout i e I  ; il en résulte que g G Y\ieI X it ce qui prouve 
que cet ensemble est non vide. Réciproquement, supposons l’ensemble Yli£ix i 
non vide ; il existe donc (xi)iGj G Yliei x i et Par su*te x% ^ x î> ce prouve 
que Xi  est non vide.

2. Réciproquement, soit /  : I  -» T(X) -  {0} une application ; posons 
X-i = / ( ï ), Xi  est non vide ; d’après (1.3.7), l’ensemble produit J l ie /  x * est non 
vide, il existe donc un élément x = (xi)i€j dans cet ensemble produit ; l’appli­
cation x est alors une fonction de choix associée à /  et ceci prouve la réciproque.

Q.E.D.
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Exercice 1 .3 .3  Soit (X i , j ) ( i j ) £ ix j  une famille d’ensembles, si J  est non vide, montrer que

n < n x « > = n ( n * « > -j€J i€l »€/ j€J
Exercice 1 .3 .4  Soient I  un ensemble non vide, ( Ji) iei  une famille d’ensembles non vides et, pour 
tout i G / ,  (X i tj ) j e J . une famille d’ensembles. On pose A =  Yliei  démontrer les formules de 
distributivité

n * € / ( U j €  X i tj )  =  U a G A (r ii6 / ^t,a(<))»
X i tj )  =  D û 6 A (U ie /  ^Q,a(i))>

3* n » € / ( U j € J i  X i tj )  “  U a e A d l iG /  ^»,cr(t))» 
n iG /C r ij^ J i -Xij) =  f la G A d liG / <*(»))•

Soit (Xi)ieI une famille de parties d’un ensemble X.  Si J  est une partie de 
/ ,  on peut considérer la sous-famille (Xi)iej  et le produit Yli^j Xi  de cette sous- 
famille. On appelle alors projection d’indice J  l’application
prj  : !!*<=/ Xi  -» fliG j  Xi  qui à tout élément (&*)<€/ de Y[ieI Xi  associe l’élé­
ment {xi)içj de I I i e j Xi  (prj associe donc à l’application (a?i)<€/ de I  dans X  
sa restriction à J). On a alors la

Proposition 1.3.2 Si tous les ensembles X i sont non vides, Vapplication 
pr j  : n<€/ Xi  —» Yliç j  Xi est surjective.
Preuve En effet, soit /  : J -¥ X  une application telle que f(i) G Xi pour tout 
i e J. D’après l’axiome de choix, il existe une application

g : I  — J  -A X
telle que g(i) G Xi  pour tout i G I —J.  Considérons alors l’application h : I  —> X  
telle que h\j = f  et h\i - j  = g ; il est clair que h G YlieI Xi  et que prj{h) = / ,  
ce qui prouve le résultat désiré. Q.E.D.

En particulier, les projections pri : Xi  -> Xi  sont surjectives lorsque
tous les ensembles Xi sont non vides.

Terminons ce paragraphe par une remarque concernant les applications à va­
leurs dans un produit d’ensembles. Soit une famille d’ensembles et /
une application définie dans un ensemble X  et à valeurs dans l’ensemble produit 
Yliei Xi- L’application

f i = p r i o f : X - * X i
est appelée application composante d’indice i ; ces applications permettent de 
construire une famille (/<)<e/ d’applications de X  dans Xi. On définit ainsi une 
application /  h-> (/*)*£/ de £F(X; Y[ieI Xi) dans ^{X^Xi )  ; cette applica­
tion est une bijection, dite canonique, vu que

f (x)  =  (fi(x))iei pour tout x G X.
Dans la pratique, on identifie au moyen de cette bijection les ensembles 
W E U ,  x i) et r i te /  ?(x ',x i), ce qui permet d’écrire /  =  (/;),<=/.



B -  Ensembles ordonnés

1.4 Relation d’ordre
Sur un ensemble X , une relation R(x , y) est appelée une relation d’ordre si elle 
est réflexive, antisymétrique et transitive, soit

' (WxeX)R(x,x) ,

< (Va: G X)(Vy G X)((R(x,y)  et R(y,x)) =ï x = y), 
k (Vx G X)(Vy G X)(Vz G X)((R(xty) et R(y, z)) =» Æ(x,z)).

On dit alors que X  est un ensemble ordonné par la relation R  ; une telle relation 
sera notée simplement x < y ou y > x  et se lit «x est inférieur à y» ou «x 
est plus petit que y» ou «y est supérieur à x» ou encore «y est plus grand que 
x». Pour éviter d’éventuelles confusions, il est parfois nécessaire de préciser la 
relation d’ordre ; nous utiliserons alors des notations de la forme x < y (mod. R), 
etc. La relation (x < y et x ^  y) sera notée x < y ou y > x  et se lit «x est stricte­
ment inférieur à y», etc. Signalons la propriété évidente

(x <  y) <=ï (x < y ou x = y).
La relation x < y est appelée une relation d’ordre strict ; cette relation S(x,y)  
vérifie

f ( V x e X ) ( V y e X ) { ( S ( x , y ) = ï x ï y ) ,

\  (Vx G X)( i y  G X)<yz  G X)((S(x,y)  et S(y, z)) => S(x, z)).
Réciproquement, une relation S  possédant ces propriétés est la relation d’ordre 
strict associée à la relation d’ordre (S{x , y) ou x  =  y).

Soient x et y deux éléments de X,  si on a (x < y ou y < x), on dit que x  et y 
sont comparables. L’ensemble X  est alors dit totalement ordonné si deux éléments 
quelconques de X  sont comparables ; on dit aussi que la relation d’ordre est une 
relation d’ordre total. Lorsqu’il est utile de préciser que l’ordre n’est pas total, on 
parle de relation d’ordre partiel et d’ensemble partiellement ordonné.

Étant donné une partie A d’un ensemble ordonné X> la relation
(x G A et y G A  et x < y)
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est une relation d’ordre sur A ; l’ordre ainsi défini sur A est dit induit par l’ordre 
de X . Notons qu’un ordre total sur X  induit un ordre total sur toute partie de X.
Exemple 1.4.1 Sur l’ensemble vide X  =  0, il n’y a qu’un seul graphe, à savoir 
la partie vide de X  x X  =  0 ; ce graphe définit une relation d’ordre total ; bien 
entendu, on note 0 cette relation d’ordre.

Considérons une famille d’ensembles ordonnés ; alors la relation
(Vz)(î G I  => Xi < yi) entre deux éléments x = (xi)i^i et y = ( y i ) ^  de 
l’ensemble produit fiiez X* est une relation d’ordre sur cet ensemble, appelée 
produit des relations d’ordre des ensembles facteurs Xi.  En particulier, considé­
rons l’ensemble S^X; Y) de toutes les applications définies sur un ensemble X  et 
à valeurs dans un ensemble ordonné Y  ; étant donné que 3F(X; Y)  =  Ylx£X 
avec YX = Y  pour tout a: G X, on peut munir cet ensemble de la relation d’ordre 
produit correspondante : si /  et g sont deux applications de X  dans Y , cette rela­
tion /  <  g signifie simplement (Vx G X)(f (x)  < g(x)).

Exemple 1.4.2 Soit X  un ensemble. Sur l’ensemble T(X ), la relation A  C B  est 
une relation d’ordre (partiel dès que X  admet deux éléments distincts) ; on dit que 
7{X)  est ordonné par inclusion. Nous aurons fréquemment à utiliser cette relation 
d’ordre lorsque X  est lui-même un ensemble de parties. Plus précisément, on peut 
ordonner 7(y(X))  par inclusion : si X et y sont des parties de ÎP(X), c’est-à- 
dire des ensembles de parties de X , la relation X C y signifie par définition de 
l’inclusion que (WA G ?{X))(A G X => A G y).

Revenons à l’étude des ensembles ordonnés.

Définition 1.4.1 Soit X  un ensemble ordonné. Un élément a G X  est appelé un 
élément maximal (resp. minimal) de X  si, pour tout x  G X, x > a implique x  =  a 
(resp. x < a implique x =  a).

En d’autres termes, un élément a G X  est un élément maximal s’il n’existe 
pas d’élément strictement plus grand. On notera que deux éléments maximaux 
différents ne peuvent être comparables.

Un ensemble ordonné n’admet pas nécessairement d’élément maximal ou mi­
nimal et il peut également admettre plusieurs éléments maximaux ou minimaux. 
Considérons par exemple l’ensemble 1P(X) — {0} ordonné par inclusion ; les élé­
ments minimaux sont les parties de X  réduites à un seul élément et par suite, si 
X  est l’ensemble vide il n’y a pas d’élément minimal, si X  est un ensemble à un 
élément il y a un seul élément minimal à savoir X  et si X  admet au moins deux 
éléments distincts il y a plusieurs éléments minimaux.

Définition 1.4.2 Soit X  un ensemble ordonné. Un élément a G X  est appelé un 
plus grand élément de X  (resp. plus petit élément de X)  si, pour tout x £ X, on a 
x < a (resp. x >  a).

Si X  admet un plus grand élément a, ce plus grand élément est évidemment 
unique ; nous dirons donc que a est le plus grand élément de X  ; on le note max X.
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Le plus petit élément, s’il existe, sera noté m inX. Si A est une partie d’un en­
semble ordonné, on peut munir A de l’ordre induit et on peut donc parler du plus 
grand et du plus petit élément de A lorsqu’ils existent : on les note évidemment 
max A et min A.

Notons que si X  admet un plus grand (resp. plus petit) élément a, alors a est 
l’unique élément maximal (resp. minimal) de X. Remarquons également que dans 
un ensemble totalement ordonné, les notions de plus grand élément et d’élément 
maximal coïncident et il en est évidemment de même des notions de plus petit 
élément et d’élément minimal.
Définition 1.4.3 Soit A une partie d'un ensemble ordonné X. On dit qu'un élé­
ment a G X  est un majorant (resp. minorant) de A si, pour tout x G A, on a x  < a 
(resp. x > a). Si l'ensemble des majorants (resp. minorants) de A est non vide, on 
dit que A est majorée (resp. minorée) et si cet ensemble admet un plus petit (resp. 
plus grand) élément, cet élément est appelé la borne supérieure (resp. inférieure) 
de A et on dit que A est bornée supérieurement (resp. inférieurement).

La borne supérieure (resp. inférieure) de A lorsqu’elle existe est unique en tant 
que plus petit (resp. plus grand) élément ; nous la noterons supx  A (resp. infx  A). 
Par définition, la borne supérieure de A , lorsqu’elle existe, est le plus petit majo­
rant de A ; cette borne supérieure est donc un majorant de A ; elle n’appartient 
pas nécessairement à A et il est d’ailleurs immédiat de vérifier que A est bornée 
supérieurement et que sa borne supérieure appartient à A si, et seulement si, A 
admet un plus grand élément auquel cas on a supx  A = max A.

Si A est une partie non vide admettant une borne supérieure et une borne 
inférieure, étant donné que, pour tout x G A, infx .A < x  <  supx A, on a 
infx  A < supx  A. Cette propriété est en général fausse lorsque A =  0 : en effet, 
supx  0 (resp. infx 0) existe si, et seulement si, X  admet un plus petit élément 
(resp. plus grand élément) auquel cas on a supx  0 =  m inX  et infx 0 =  m axX .

Rappelons la caractérisation d’une borne supérieure dans un ensemble totale­
ment ordonné (cette caractérisation est constamment utilisée sur M par exemple). 
Proposition 1.4.1 Soit A une partie d'un ensemble totalement ordonné X, la 
borne supérieure de A, si elle existe, est l'unique élément a de X  tel que 
(14 1) [ a est un maJorant de A et pour tout x < a, il existe y G A tel

Considérons maintenant une application f  : X  -» Y  d’un ensemble X  dans 
un ensemble ordonné Y. Une telle application est dite majorée (resp. minorée) 
si / (X )  est majorée (resp. minorée) ; elle est dite bornée supérieurement (resp. 
inférieurement) si f (X)  est borné supérieurement (resp. inférieurement) et on pose 

sup / ( x) = sup f (X) ,  inf / (x )  =  inf f ( X )  ;
æ<EX Y * € *  Y

lorsque f {X)  admet un plus grand (resp. plus petit) élément, on dit que /  atteint 
sa borne supérieure (resp. inférieure) et on écrit

m ax /(x ) =  m a x /(X ) , min f(x) = minf (X) .
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Lorsque /  est une famille (xi)iei d’éléments d’un ensemble ordonné X , on utilise 
la même terminologie et les mêmes notations, soit supiG/ x^  inf*e j Xi, m ax^j Xi 
et miïiiçiXi.

Lorsqu’on doit itérer l’opération borne supérieure, le résultat suivant est très 
utile
Proposition 1.4.2 Soit (Ai)iei une famille de parties bornées supérieurement 
dans un ensemble ordonné X. Alors, l’ensemble A =  \Ji€l Ai est borné supé­
rieurement si, et seulement si, la famille (sup* Ai)iej est bornée supérieurement, 
auquel cas on a
( 1.4.2) sup A =  sup sup Ai.

X i€l x
Preuve Montrons que l’ensemble des majorants de A est égal à l’ensemble des 
majorants de la famille (sup* Ai)i£i. Or ce dernier ensemble est égal à l’ensemble 
des x G X  tels que x  >  sup* Ai pour tout i G J, c’est-à-dire à l’ensemble des 
x G X  qui majorent Ai pour tout i G I  et ceci signifie précisément que x  majore 
A. Q.E.D.
Corollaire 1.4.3 Soit f  : X  -» Y  une application définie dans un ensemble X  et 
à valeurs dans un ensemble ordonné Y  et soit (Ai)iej une famille de parties de X  
de réunion A. On suppose que la borne supérieure supæGA. f (x) existe pour tout 
i G I. Alors, supx.GA f (x) existe si, et seulement si, supiG/ supæGj4. f (x)  existe, 
auquel cas
(1.4.3) sup f (x) = sup sup f(x).

x£A iEl x€Ai
Preuve On applique la proposition 1.4.2 à la famille de parties (f (Ai))iGj en 
remarquant que f  (A) = |J iG/ f(Ai).  Q.E.D.
Corollaire 1.4.4 Soit f  : X  x Y  —> Z une application à valeurs dans 
un ensemble ordonné Z telle que supæG*  f{x,y) existe pour tout y G Y, Alors, 
suP(xty ) £XxY f(x>y) existe si, et seulement si, s u p ^ y s u p xeX f (x,y)  existe, 
auquel cas
(1.4.4) sup f (x,y)  = sup sup f(x,y).

(x,y)€XxY y e Y x e X

Preuve On remarque que X  x Y  =  ( J ^ y x {2/}) et on applique le corollaire
1.4.3 en substituant à X  l’ensemble X  x Y  et à la famille (Ai)iej la famille 
(X  x 0 /})yey . Q.E.D.

On a évidemment des résultats semblables pour les bornes inférieures.

1.5 Le lemme de Zorn
Un ensemble ordonné n’admet pas nécessairement d’élément maximal. Nous nous 
proposons de donner dans ce paragraphe une condition suffisante d’existence d’élé­
ments maximaux ; pour exprimer cette condition simplement introduisons la défi­
nition suivante.
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Définition 1.5.1 Un ensemble ordonné X  est dit inductif si toute partie totalement 
ordonnée de X  est majorée.

La partie vide de X  est une partie totalement ordonnée qui est majorée si, 
et seulement si, X  est non vide ; un ensemble inductif est donc non vide. Dans 
la pratique, pour démontrer qu’un ensemble ordonné est inductif, il est vivement 
conseillé de vérifier avant toutes choses que l’ensemble est non vide.

Tout ensemble ordonné admettant un plus grand élément est évidemment in­
ductif. On notera qu’un ensemble totalement ordonné est inductif si, et seulement 
si, il admet un plus grand élément.

Nous nous proposons de démontrer le
Théorème 1.5.1 Lemme de Zorn Tout ensemble ordonné inductif admet un élé­
ment maximal.

Dans la pratique, on utilise le lemme de Zorn sous la forme suivante 
Corollaire 1.5.2 Soit X  un ensemble inductif alors pour tout a £ X, il existe un 
élément maximal m  > a.
Preuve Considérons l’ensemble Y  =  {x £ X  ; x > a} ; muni de l’ordre induit 
par celui de X , Y  est alors un ensemble inductif : en effet, soit A une partie to­
talement ordonnée de Y , alors A est une partie totalement ordonnée de X , donc 
majorée dans X, donc majorée dans Y  d’après la définition de Y. Le lemme de 
Zorn montre que Y  admet un élément maximal m £ Y  ; la définition de Y  montre 
que m est également un élément maximal de X  et on a m  > a vu que m G Y.

Q.E.D.
Avant de donner la démonstration du lemme de Zorn, il est nécessaire d’intro­

duire les notions qui suivent.
Définition 1.5.2 Un ensemble ordonnné X  est dit bien ordonné si toute partie non 
vide de X  admet un plus petit élément ; on dit alors que la relation d'ordre est une 
relation de bon ordre.

On notera que tout ensemble bien ordonné est totalement ordonné, toute par­
tie à deux éléments admettant un plus petit élément. Notons également que toute 
partie d’un ensemble bien ordonné est bien ordonnée.
Exemple 1.5.1 Sur l’ensemble vide, la relation d’ordre 0 (exemple 1.4.1) est une 
relation de bon ordre.
Exercice 1.5.1 Principe de récurrence transfinie Soit R(x)  une relation sur un ensemble bien 
ordonné X  telle que, pour tout x G X ,  on ait

(Vy e  X ) ( y  <  x  = >  R(y))  =►  Æ(æ)(hypothèse de récurrence).

Montrer alors que la relation R(x)  est vraie quel que soit x £ X  [considérer l ’ensemble

A =  {x £ X\  nonR{x)}].

Définition 1.5.3 Dans un ensemble ordonné X, une partie S de X  est appelée un 
segment si

(Vx £ 5)(Vy e X)(y < x => y £ S).
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Dans un ensemble ordonné X,  tout intervalle de la forme 
]<-,»[ =  {y e  X; y < x)

est un segment que nous noterons Sx. Si X  est totalement ordonné, on observera 
que (Sx = SX' => x  =  x1). Réciproquement, on a le
Lemme 1,5.3 Dans un ensemble bien ordonné X, tout segment S  ^  X  s'écrit 
d'une manière unique Sx et on a x =  m in(X — S).
Preuve Notons que x  est bien défini, X  — S  étant non vide. Soit y G Sx, c’est- 
à-dire y < x, alors y G S  d’après la définition de x  et ceci prouve que Sx c  S. 
D’autre part, soit y G S, alors y < x, c ’est-à-dire y G Sx : en effet, on ne peut 
avoir y > x  car, S  étant un segment, ceci impliquerait x  G S. Ceci prouve que 
S  = Sx. Q.E.D.

Examinons ensuite comment on peut recoller des relations d’ordre.
Proposition 1.5.4 Soit (Xi)ieI une famille d'ensembles de réunion X  et soit Ri 
une relation d'ordre sur X^ On suppose que
n  - n  (pour tout i G I J  G / ,  on a (Xi C X j ou X j C Xi) et Ri = Rj 
1 } \ surXi Ci Xj .
Alors, il existe une unique relation d'ordre R sur X  telle que R = Ri sur Xi pour 
tout i G I. Si les Ri sont des relations d'ordre total, R est une relation d'ordre 
total Si les Ri sont des relations de bon ordre, R est une relation de bon ordre si 
on suppose en outre que, pour tout i G I, j  G I, Xi est un segment de X j ou X j 
est un segment de Xi ; Xi est alors un segment de X.
Preuve 1. Soient x et y deux éléments de X  ; d’après (1.5.1), il existe i G / te l  que 
x et y appartiennent tous deux à Xi ; s’il existe une relation d’ordre R  vérifiant 
les exigences voulues, on a nécessairement R(xyy) si, et seulement si, Ri(xyy). 
On définit bien ainsi une relation binaire R  sur X , car cette définition ne dépend 
pas du choix de l’indice i G I  tel que x yy G Xi  d’après l’hypothèse (1.5.1). Cette 
hypothèse prouve en outre que R  est une relation d’ordre (total si les Ri sont des 
relations d’ordre total), car un nombre fini d’éléments de X  appartiennent à un 
même Xi.

2. Supposons que les relations Ri soient des relations de bon ordre et soit A 
une partie non vide de X.  Il existe i G I  tel que A f l  Xi ^  0 ; soit a le plus petit 
élément de A f l  Xi  dans Xi. Montrons que a est le plus petit élément de A dans X.  
Raisonnons par l’absurde : soit x G A tel que x  < a (mod. R.) ; il existe j  G I  tel 
que x  G X j  et Xi  C X j  ; on a alors x  < a (mod. R j ), d’où a; G Xi  vu que Xi  est 
un segment de Xj  ; il en résulte que x  < a (mod. Ri) ce qui contredit la définition 
de a. Ceci prouve que R  est une relation de bon ordre. Vérifions enfin que Xi  est 
un segment de X.  Soit x  G Xi et y G X  tel que y < x  (mod. R) ; il existe j  G I  
tel que y G Xj  et Xi  C Xj  ; on a y < x  (mod. Rj) d’où y G Xi vu que Xi  est un 
segment de X j , ce qui prouve le résultat voulu. Q.E.D.
Preuve du théorème 1.5.1 Soit A une partie de X , un majorant m  de A est appelé 
un majorant strict si m £ A ; on note A l’ensemble des parties de X  admettant un
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majorant strict. D’après l’axiome de choix, il existe une fonction /  : A  -» X  tel 
que, pour tout A G A, f(A)  soit un majorant strict de A. On désigne alors par £ 
l’ensemble des couples (A, R) vérifiant

- J  A G ?(X ), R est un bon ordre sur A et tout segment S  de A,
' ' ' {S  ^  A, appartient à A  et 5  =  Sx où x  =  f{S).
Précisons que dans les conditions précédentes S  est un segment de A pour la rela­
tion de bon ordre R. ; d’après le lemme 1.5.3, on sait alors que S  est de la forme 
Sx ; les conditions (1.5.2) exigent que S G A  et que x  =  f(S).

Considérons alors deux éléments (Ai, Ri), i =  1,2, de £. Si x  G A notons 
S* le segment {y G Ai ; y < x  (mod. i?*)} et posons
(1.5.3) S  =  {i € A i (1A2 ; 5*  =  S% et Æi =  R2 su r.%}.

1. Montrons que S  est un segment de (Ai, Ri). Soit x G S, y G Ai, y < x 
(mod. i?i). On a y G S*, d’où y G S% ; ceci prouve que y G Ai fl A 2  et que 
S * C d’où Sy = Sy et Ri = R2 sur S*, soit y G S.

2. Montrons que R\ = R.2 sur S. Soit x , y  G S  tel que x  < y  (mod. Ri), alors 
x G Sy, d’où x  G Sy c’est-à-dire x < y  (mod. R.2). On vérifie de même que x < y 
(mod. R2) implique x < y (mod. Ri).

3. Montrons que S = Ai ou S = A2. Raisonnons par l’absurde, supposons 
S ^  Ai; d’après 1. et (1.5.2), S  =  S* avec x  =  f (S)  ; d’après 2. on en déduit 
que x  G S, d’où x  G S* ce qui est absurde.

Soit ((Ai, Ri))içi l’ensemble de tous les éléments de £ ; considérons l’en­
semble A = |J..€/ A.̂  D’après l.,2.,3. et la proposition 1.5.4, il existe une unique 
relation de bon ordre R sur A telle que R =  Rt sur Aim

4. Montrons que (A, R.) G £. Soit S  un segment de A, S  ^  A. D’après le 
lemme 1.5.3, S = Sx. Il existe i G I  tel que x  G Ai ; montrons que S  = 5* : ceci 
prouvera que S  est un segment de Ai tel que S  ^  Ai, donc S  G A et x  = f ( S ). 
Soit y G S, c’est-à-dire y < x  (mod. R), il existe j  G I  tel que y G Aj et 
Ai C Aj, d’où y G Ai vu que A.t est un segment de Aj et ceci prouve que y G S*, 
d’où S C S^ co qui permet de conclure, l’inclusion opposée étant triviale.

5. Montrons que A n’admet pas de majorant strict. Sinon A G A,  posons alors 
m  =  f (A) ; sur l’ensemble A! = A U {m},  on définit une relation de bon ordre 
R! en posant R.1 = R  sur A et x  < m  (mod. R!) pour tout x  G A. Il est alors clair 
que (A', R/) G £, ce qui est absurde d’après la définition de A vu que m 0  A.

6. L’ordre R, sur A coïncide avec l’ordre induit par l’ordre i?o de X. En effet, 
soit x , y  G A tel que y < x  (mod. R), c’est-à-dire y G Sx (segment de (A, R)) ; 
d’après (1.5.2), on a x  =  f ( S x), d’où y < x  (mod. i?o) d’après la définition de / .  
L’ordre R étant total, ceci suffit pour conclure.

7. L’ensemble X  étant inductif et A étant totalement ordonné, A est majoré ;
soit m un majorant de A. Montrons que m est un élément maximal de X. En effet, 
tout x > m  est un majorant strict de A ce qui est absurde d’après 5. ; ceci achève 
la démonstration du lemme de Zorn. Q.E.D.
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Remarque 1.5.1 Comme le montre le dernier point de la démonstration, on peut 
améliorer l’énoncé du lemme de Zorn : tout ensemble ordonné tel que toute par­
tie bien ordonnée soit majorée admet un élément maximal. Dans la pratique on 
n’utilise que l’énoncé 1.5.1.
Exercice 1.5.2 Théorème de Krull Soit A un anneau commutatif admettant un élément unité et soit 
M  l ’ensemble des idéaux de A différents de A. Un élément maximal de l’ensemble M  ordonné par 

inclusion est appelé un idéal maximal. Montrer que tout idéal différent de A est contenu dans un idéal 
maximal.

Notons (Z0) l’énoncé que constitue le lemme de Zorn ; nous avons en fait dé­
montré que dans la théorie des ensembles (Z F ), l’axiome de choix (C) implique 
(Z0). Nous allons démontrer que ces deux énoncés sont en fait équivalents. Plus 
précisément, notons (Ze) l’énoncé suivant, appelé théorème de Zermelo.
(Ze) Tout ensemble peut être bien ordonné.

On a alors le
Théorème 1.5.5 Dans la théorie des ensembles {ZF), les énoncés {C), {Z0) et 
{Ze) sont équivalents.
Preuve Comme indiqué ci-dessus, nous savons déjà que (C) => {Z0). Il est d’autre 
part facile de vérifier que (Ze) => (C) : en effet, considérons une application 
/  : X  -» y(Y) — {0} ; munissons Y  d’une relation de bon ordre et posons 
g{x) =  min f {x )  ; on obtient ainsi une fonction de choix associée à / .

Il s’agit donc de démontrer que {ZQ) => (Ze). A cet effet, considérons l’en­
semble £ des couples (A, R) où A G 7{X)  et R  est une relation de bon ordre sur 
A. Cet ensemble £ est non vide vu que (0,0) G £. On définit une relation d’ordre 
sur £ en notant (A, R) <  (B , S) la relation
(1.5.4) A c  B, R  =  S  sur A et A est un segment de B.
Il est clair qu’on définit ainsi une relation d’ordre sur £.

1. Montrons que £ est inductif. Soit { { A ^ R i ) ) ^  une famille totalement or­
donnée de £ ; la proposition 1.5.4 montre que, sur A = \JieIAit il existe une 
unique relation de bon ordre R. telle que R  =  Ri sur Ai ; on obtient ainsi un 
majorant (A , R.) de la famille, car Ai est un segment de A  toujours d’après la 
proposition 1.5.4. Ceci prouve que £ est inductif.

2. Considérons alors un élément maximal {A, R) de £. On a nécessairement
A = X,  ce qui prouve (Ze) : en effet, si A ± X  soit a G X  — A ; on construit une 
relation de bon ordre R! sur A' = A U {a} en posant Rf = R  sur A et x  < a pour 
tout x  G A ; A est un segment de A! d’où (A, R) < (A', i?'), ce qui contredit le 
fait que (A, R.) est un élément maximal. Q.E.D.
Exercice 1.5.3 On dit que deux ensembles ordonnés X  et Y  sont isomorphes s’il existe une bijection 
f  : X  Y,  croissante ainsi que la bijection réciproque, c ’est-à-dire telle que

Vx G X , Vy e  ^  x  <  y  <=> f(x)  <  / ( y ) .

1. Soit X  un ensemble ordonné ; pour tout x G X,  on pose Tx =  {y  G X \ y  <  x}  et on 
note Y  c  *P(X) l’ensemble L’ensemble Y  étant ordonné par inclusion, montrer que
l’application x t-y Tx est un isomorphisme de X  sur Y.
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2. En déduire que, dans la théorie des ensembles (ZF),  le lemme de Zorn est équivalent à 
( A/A /  Pour tout ensemble X, tout ensemble X de parties de X  ordonné par inclusion 
' ' \q u i est inductif admet un élément maximal.

Exercice 1.5.4 Lemme de Tlikey Soit X un ensemble non vide de parties d’un ensemble X  vérifiant 
la propriété suivante :

une partie A de X  appartient à X si, et seulement si, toute partie finie de A appartient à X.

Montrer que l’ensemble X ordonné par inclusion admet un élément maximal [utiliser le lemme de 
Zorn].

Exercice 1.5.5 Dans la théorie des ensembles (Z F ), montrer que le lemme de Tukey (exercice 
précédent) implique l ’axiome de choix en procédant de la façon suivante.

Soient X , Y  des ensembles et f  : X  —> 9 (Y)  — {0 }  une application. On considère l’ensemble 
X des parties F C 1P(X x  Y)  vérifiant la propriété

{il existe A 6  ÎP(X) tel que T soit le graphe d’une application g : A Y  telle 
que g(x) €  f (x)  pour tout x e  A.

L’ensemble X étant ordonné par inclusion, montrer que tout élément maximal de X est le graphe 

d’une fonction de choix associée à /  et conclure avec le lemme de Tukey.

1.6 Applications aux espaces vectoriels
Nous considérons dans ce paragraphe des espaces vectoriels sur un corps K  sur 
lequel aucune hypothèse particulière n’est nécessaire pour ce qui va suivre. Les 
propriétés élémentaires des espaces vectoriels sont supposées connues.

Si (#i)iej est une famille finie d’éléments d’un espace vectoriel E , la somme 
des éléments de cette famille est notée ^2ieI X{. On convient que x% =  0
afin d’avoir la formule Ylieh Xi +  ^ ie h  Xi = ^ i z h u h  Xi dès Que et sont 
des ensembles finis disjoints.

Si est une famille finie d’un espace vectoriel E  et si (A*).^/ est une
famille de scalaires (À* € K), l’élément de E x — J2iei^ix i est appelé une 
combinaison linéaire (finie) de la famille (x j i e / .

Si M  est une partie de E , l’ensemble de toutes les combinaisons linéaires 
d’éléments de M, c’est-à-dire l’ensemble des AiX-i où I  est fini, À* e  K et 
Xi G M,  est un sous-espace vectoriel F  de E  contenant M  ; il est clair que F  est le 
plus petit (pour l’inclusion) sous-espace vectoriel contenant M  ; on l’appelle pour 
cette raison le sous-espace vectoriel engendré par M  et on dit que M  engendre F.

On dit qu’une partie L d’un espace vectoriel est une partie libre si, pour toute 
famille finie (a;*)^/ d’éléments distincts de L et toute famille de scalaires (Ai)i£/, 
la relation Y^iei =  ® implique À* = 0 pour tout i  e I .  On dit que les éléments 
d’une partie libre sont linéairement indépendants.

Une partie L d’un espace vectoriel, qui n’est pas une partie libre, est dite liée ; 
ceci signifie qu’il existe une famille finie (xi)iej d’éléments distincts de L et 
une famille (At)»€/ de scalaires non tous nuis (ceci implique /  ^  0) tels que 

AiXi = 0 ; une telle relation est appelée une relation de liaison et on dit que 
les éléments de la famille (Xi)iej sont linéairement dépendants.
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Nous pouvons poser la définition suivante.

Définition 1.6.1 On appelle base d'un espace vectoriel E  toute partie libre qui 
engendre E .

Si B  est une base de E , tout élément x de E  s’écrit comme une combinaison 
linéaire d’éléments de B  ; cette écriture est unique au sens suivant : soit (Xj)iei 
la famille de tous les éléments de B , il existe alors une partie finie et une seule J  
de I  et une famille de scalaires et une seule (A*)^ j  tous différents de 0 tels que 
x = Y liej A%xi. La vérification de cette propriété est immédiate, une base étant 
une partie libre.

Nous nous proposons de démontrer que tout espace vectoriel non réduit à 0 
admet une base. Plus précisément, on a le

Théorème 1.6.1 Soient E  un espace vectoriel non réduit à 0 et L une partie libre 
de E. Alors, il existe une base de E  qui contient L.

Ce théorème résulte très facilement du lemme de Zorn, compte tenu de la pro­
position suivante.

Proposition 1.6.2 Soient E  un espace vectoriel, JL Vensemble des parties libres 
de E ordonné par inclusion et soit B une partie de E . Les propriétés suivantes 
sont équivalentes

L B est une base de E.
2. B est une partie libre maximale, c'est-à-dire un élément maximal de JL.

Preuve Soit B  une base de E , alors B  est une partie libre de E  et, pour tout 
x  G E — B, B  U {x} n’est pas une partie libre ; il en résulte que B  est une partie 
libre maximale.

Réciproquement, soit B  une partie libre maximale ; montrons que B  engendre 
E. Soit x e E — B, alors B  U {x} n’est pas une partie libre ; il existe donc une 
famille finie (xî)*gj d’éléments distincts de B , une famille de scalaires (A*)^/ 
et un scalaire A tels que Ax +  J2iei x* =  0 ; de plus, on peut supposer que A 
et les Ai ne sont pas tous nuis. Il en résulte que A n’est pas nul (sinon on aurait 
une relation de liaison dans B) et on en déduit que X = - E i€i A 1A^Xi, ce qui 
prouve le résultat désiré. Q.E.D.
Preuve du théorème 1.6.1 Montrons que l’ensemble JL des parties libres de E  
ordonné par inclusion est inductif : la proposition qui précède et le corollaire 
1.5.2 permettent de conclure. Notons d’abord que JL est non vide car, pour tout 
x G E — {0}, la partie {x} est une partie libre de E. Considérons une famille 
(La)a£A totalement ordonnée de parties libres, posons L = \JaeA La et mon­
trons que L est une partie libre ; ceci prouvera que L est un majorant de la famille 
(La)aeA. Supposons qu’il existe une relation de liaison dans L, c’est à dire une 
famille finie (Xi)iej d’éléments distincts de L et une famille (A*)^/ de scalaires 
non tous nuis tels que Ylier =  0- Or /  étant fini et la famille (La)aeA étant 
totalement ordonnée par inclusion, il existe a  G A tel que x* G La pour tout
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i G I  ; il en résulte que la relation Kx-i =  0 est une relation de liaison dans 
La, ce qui est absurde vu que c’est une partie libre. Q.E.D.

Remarque 1.6.1 Soit E  un espace vectoriel non réduit à 0, alors toute partie M  de 
E  qui engendre E  contient une base de E. Grâce à des raisonnements analogues 
à ceux qui précèdent, on vérifie en effet que l’ensemble £ ' des parties libres de E  
contenues dans M  est inductif et que tout élément maximal de £ ' est une base de 
E.

Donnons une application du théorème 1.6.1 concernant la notion de supplé­
mentaire. Étant donné un espace vectoriel E  et deux sous-espaces vectoriels E\ et 
E2 de E , on dit que E  est somme directe de E\ et E2, et on écrit E = Ei 0  E2 si 
tout x  s’écrit d’une manière et d’une seule sous la forme
(1.6.1) x  = X\ +  x 2y où Xi e Ei.
On dit alors que E\ et E2 sont des supplémentaires algébriques. On notera que 
cette définition est équivalente à la suivante : E\ fl E2 = {0} et E\ U E2 en­
gendre E . L’unicité de la décomposition (1.6.1) permet de définir des applications 
Pi : E  Eu ( i  =  1,2), telles que P i ( x )  =  Xi  ; il est clair que Pi  est une ap­
plication linéaire surjective ; on l’appelle le projecteur de E  sur Ei associé à la 
décomposition de E  en somme directe E = E\ 0  E2.

Nous allons prouver la

Proposition 1.6.3 Dans un espace vectoriel E, tout sous-espace vectoriel E\ de 
E admet un supplémentaire algébrique.
Preuve On peut supposer E\ ^  {0}, vu que E  est un supplémentaire du sous- 
espace vectoriel {0}. D’après le théorème 1.6.1, l’espace vectoriel E\ admet une 
base B\ qui constitue une partie libre de E  ; d’après le théorème 1.6.1, il existe 
donc une base B  de E  telle que B D B\. Si B = alors E = E\ et le sous- 
espace vectoriel {0} est un supplémentaire de E\. Si B  ^  B\, posons 
B2 = B -  B\ et soit E2 le sous-espace vectoriel engendré par B2. Il est clair 
que E2 est un supplémentaire de E\. Q.E.D.



C -  Ensembles infinis

1.7 L’axiome de l’infini

Pour construire l’ensemble des entiers naturels, il est nécessaire d’introduire un 
nouvel axiome dans la théorie des ensembles, appelé axiome de l’infini qui s’énonce 
de la façon suivante.

(7T?\ /  Il existe un ensemble A tel que 0 G A et
 ̂ j ( V X ) ( X  g A => X  U {X}  G A).

Si X  est un élément de A> X f =  X  U {X}  est un élément de A  appelé le 
successeur de X  ; on notera que X  G X f et X  C X ' : X  est à la fois un élément 
et une partie de X \  Notons également que l’ensemble A admet pour éléments 0,
V  = 0 U {0 }  =  {0 } ,  { 0 } '  =  {0 }  U { { 0 } }  =  {0 , { 0 } } ,  etc.

L’axiome de l’infini permet de définir l’ensemble des entiers naturels.

Théorème 1.7.1 II existe un ensemble et un seul N tel que 
7. 0 G N.
2. (VX)(X G N => X  U {X}  G N).
3. Tout ensemble vérifiant 1. et 2. contient N.

Preuve D’après l’axiome de l’infini, il existe un ensemble A vérifiant les condi­
tions 1. et 2. Considérons alors l’ensemble !B des parties B  de A vérifiant 1. et 2. ; 
posons N =  PIbg® Cet ensemble possède manifestement les propriétés 1. et
2. ; de plus, si Y est un ensemble vérifiant l.et 2., alors Y fl A vérifie 1. et 2., d’où
Y C\A G 2$ et par conséquent N C Y fl A ce qui prouve que N c 7 :  l’ensemble N
possède donc la propriété 3. Quant à la propriété d’unicité, elle résulte évidemment 
de 3. Q.E.D.

Les éléments de N sont appelés des entiers naturels et N s’appelle l’ensemble 
des entiers naturels. On utilise les notations 0 =  0, {0} =  1, etc ; si n est un entier 
naturel, le successeur n ' de n est noté n +  1.

La définition de N implique immédiatement la
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Proposition 1.7.2 Principe de démonstration par récurrence Soit R(n) une re­
lation telle que R(0) et (Vn G N)(i?(n) =̂> R(n +  1)), alors (Vn G N)-R(n). 
Preuve Posons A = {n G N ; i?.(n)} ; les hypothèses signifient que A vérifie les 
propriétés 1. et 2. du théorème 1.7.1, donc contient N et par conséquent A = N.

Q.E.D.
Ce principe de démonstration est à la base d’un très grand nombre de démonstra­

tions en arithmétique ; dans la pratique, on démontre d’abord R(0), puis R(n + 1 ) 
en supposant R(n) vrai (hypothèse de récurrence). En particulier, on peut faire un 
exposé systématique des propriétés élémentaires de l’ensemble des entiers natu­
rels ; on peut par exemple démontrer que la relation (m  G n ou m = n) est une 
relation de bon ordre sur N, bien entendu il s’agit de la relation d’ordre usuelle !

Un ensemble X  est dit fini s’il existe un entier n  G N et une bijection de X  
sur l’intervalle ]0, n] ; cet entier n, qui est unique, est appelé le cardinal de X  : on 
écrit Card X  = n. Par exemple, Card X  =  0 signifie X  =  0. Les propriétés des 
ensembles finis s’établissent aisément en utilisant le principe de démonstration 
par récurrence ; nous ne reviendrons pas sur ces questions, que nous supposons 
acquises.

1.8 Ensembles équipotents
Comme nous venons de le dire l’étude des ensembles finis est élémentaire. La 
situation est bien différente quand on étudie des ensembles infinis ; certains théo­
rèmes de base sont difficiles à obtenir et leurs démonstrations nécessitent parfois 
le lemme de Zorn.

Étant donné deux ensembles X  et Y , nous dirons que X  est équipotent à Y  
s’il existe une bijection de X  sur Y.  Cette relation sera notée
(1.8.1) Card X  = Card Y.
La relation «X est équipotent à F»  étant évidemment une relation d’équivalence 
dans la collection de tous les ensembles, on a les propriétés

Card X  = Card X,
(Card X  =  Card Y  et Card Y  = Card Z) => (Card X  =  Card Z),

(Card X  =  Card Y) &  (Card Y  = Card X ).
La relation «il existe une injection de X  dans Y  » sera notée

(1.8.2) Card X  < Card Y  ou Card Y  >  Card X.
Remarque 1.8.1 Lorsque X  est un ensemble fini, nous avons défini le terme 
Card X  ; les définitions qui ont été données sont conformes à (1.8.1) et (1.8.2). 

Lorsque X  est un ensemble infini, nous ne définirons pas le cardinal de X  en tant 
qu’ensemble bien que ce soit possible (modulo un axiome supplémentaire) ; pour 
la suite cela ne nous serait d’aucune utilité. Nous ne nous intéresserons qu’aux 
deux seules relations (1.8.1) et (1.8.2) et on ne cherchera pas à donner une signifi­
cation aux termes Card X  et Card Y  pris isolément.
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Nous allons donner les propriétés essentielles de la relation (1.8.2) ; montrons 
que cette relation jouit de toutes les propriétés d’une relation d’ordre total. En 
considérant l’application identique de X , on constate que Card X  < Card X  ; la 
composée de deux injections étant une injection, on a évidemment

(Card X  < Card Y  et Card Y  <  Card Z) => (Card X  <  Card Z).
Pour démontrer l’antisymétrie, c’est-à-dire

(Card X  <  Card Y  et Card Y  <  Card X)  => (Card X  =  Card Y ), 
nous utiliserons le lemme suivant
Lemme 1.8.1 Soit X  un ensemble ordonné tel que toute partie non vide admette 
une borne inférieure. Soit f  : X  —> X  une application telle que

1. il existe x G X  tel que f{x)  <  x,
2. f  est croissante, c'est-à-dire

(Vx G X)(Vy G X)(x <y=> f(x)  <  f(y)).
Alors, f  admet un point fixe : il existe a G X  tel que f(a) = a.
Preuve L’ensemble A = {x G X  ; f ( x )  < x}  est non vide d’après 1., donc A 
admet une borne inférieure a. Pour tout x  G A, on a donc a <  x  d’où 
f {o)  < f ( x )  <  x  d’après 2. et la définition de A ; il en résulte que f (a)  <  a. On 
en déduit / ( / ( a ) )  < / ( a )  d’après 2. et par suite f (a)  G A , d’où a < f (a).  Ceci 
prouve que f (a)  = a. Q.E.D.

Théorème 1.8.2 Bernstein Soient X  et Y  deux ensembles. S'il existe une injec­
tion f  de X  dans Y  et une injection g de Y  dans X, alors il existe une bijection 
de X  sur Y.
Preuve Nous allons démontrer qu’il existe une partie A  de X  telle que, en posant 
B = f(A ), on ait g(Y — B) =  X  — A : ceci permet de construire une bijection de 
X  sur Y  et démontre le théorème. Or la condition précédente s’écrit F(Â) = A 
où F  : y(X)  -» 1P(X ) est l’application

A \-ï X  — g(Y — f(A)).
On peut alors appliquer le lemme 1.8.1 en prenant pour ensemble X  l’ensemble 
T(X ) ordonné par inclusion et pour application /  l’application F  qui est effective­
ment croissante ; l’hypothèse 1. est vérifiée car 7{X)  admet un plus grand élément.

Q.E.D.
Exercice 1.8.1 Voici une autre démonstration du théorème de Bernstein. On peut se ramener à la 
situation suivante : X  est un ensemble, Y  est une partie de X  et /  : X  —► Y  une injection. On pose 
A — Y  — f (X)  et B =  U n = o  f n(A) où f°(A) =  A et f n+1(A) =  f ( f n(A)) pour n  >  0. 
Montrer que l'application g : X  ->  Y  définie par

g(x) =  x si x G B et g(x) =  f(x)  si x G X  — B

est une bijection [noter que B = A U f(B)]  et conclure.

Le théorème de Bernstein est non seulement un résultat théorique important, 
mais également un outil extrêmement utile pour démontrer que deux ensembles
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sont équipotents ; dans la pratique, il est évidemment plus facile de construire des 
injections que des bijections : nous en verrons des exemples ultérieurement. Dans 
le même ordre d’idées, voici un résultat utile.
Proposition 1.8.3 Soient X  et Y  deux ensembles non vides. Les propriétés sui­
vantes sont équivalentes.

1. Il existe une injection de X  dans Y.
2. Il existe une surjection de Y  sur X.

Preuve Montrons que 1. implique 2. Soit /  une injection de X  dans Y  ; cette ap­
plication est une bijection de X  sur f ( X )  ; notons g : f ( X )  —> X  la bijection 
réciproque ; on construit alors une surjection h de Y  sur X  en choisissant un élé­
ment a de X  et en posant h(y) =  g(y) si y G f {X)  et h(y) =  a si y G Y  — f (X).

Réciproquement, soit /  : Y  —» X  une surjection de Y  sur X.  Pour tout x  G X , 
l’ensemble est non vide. D’après l’axiome de choix, il existe donc une
application g : X  Y  telle que g(x) G / " 1( { x } ) ,  pour tout x G X  ; cette 
application est injective vu que f ~ 1({x}) et f ~ 1({x/}) sont disjoints si x  et x ' 
sont deux éléments distincts de X.  Q.E.D.

Montrons enfin que la relation (1.8.2) est une relation d’ordre total.
Théorème 1.8.4 Étant donné deux ensembles X  et Y, il existe soit une injection 
de X  dans Y, soit une injection de Y  dans X.
Preuve Considérons l’ensemble £ des triplets (A , J3, / )  où A est une partie de X , 
B  une partie de Y  et /  une bijection de A sur B. Munissons cet ensemble £ de la 
relation d’ordre suivante : soient (A, B , / )  et (A'y B ' y f )  deux éléments de £ ; la 
relation (A, B y f )  < (A ', B',  / ' )  signifiera par définition que A C A', B  C B'  et 
/ '  prolonge / .  Cette relation est bien une relation d’ordre sur £ ; montrons que £ 
est inductif. Notons d’abord que £ est non vide vu que (0,0,0) G £. En outre, soit 
((AiyBiyfi))iei une famille totalement ordonnée de £ ; posons A =  |J iG /A*, 
B = |J iG/ Bi et définissons une bijection de A sur B  de la façon suivante. Pour 
tout x e A, il existe i G I  tel que x  G Aiy posons alors f (x)  =  fi(x). On définit 
bien ainsi une application de A dans B  ; en effet, fi(x) est indépendant du choix 
de l’indice i G I  vérifiant x  G Ai : si x  G Ai fl Aj y on a ou bien Ai C Aj , ou bien 
Aj  C Ai et, vu la définition de la relation d’ordre, on a donc fi(x) = fj(x).  On 
vérifie aisément que /  est une bijection ; on obtient ainsi un majorant de la famille 
((A.iy Biy fi))i€l. Ceci prouve que £ est inductif. D’après le lemme de Zorn, £ 
admet un élément maximal, soit (Ay B y f).

Montrons que A = X  ou B = Y.  Raisonnons par l’absurde ; supposons 
A X  et B  ^  Y.  Alors, il existe a G A -  X  et b G Y  — B \ considé­
rons le triplet (A U {a}yB  U {b}yg) où g\A = f  et g(a) = b ; il est clair que 
g : A U {a }  —> B  U {b} est une bijection et que le triplet construit est un majorant 
strict de l’élément maximal, ce qui est absurde.

Nous avons donc A = X  ou B = Y.  Si A = X,  f  définit une injection de X  
dans Y  ; si B = Y y f ~ l définit une injection de Y  dans X.  Q.E.D.

Indiquons un dernier résultat dans la théorie des cardinaux.
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Théorème 1.8.5 Cantor Pour tout ensemble X, on a
Cardy(X) > CardX.

Preuve L’application x •-»> {#} de X  dans (J)( X ) étant une injection, on a 
Card X  <  Card ^(X ). Supposons qu’il existe une surjection f  de X  sur P(X ). 
Posons A =  {x G X  ; x ^  f (x)}  ; d’après la surjectivité de / ,  il existe a G X  tel 
que A =  /(a ) . On a alors, soit a e  A, soit a & A. Si a G A, on a donc a 0  /(a ) , 
c’est-à-dire a ^  Ace  qui est contradictoire. Si a 0  A, on a donc a G /(a ) ,  c’est- 
à-dire a G Ace  qui est également contradictoire. Ceci prouve qu’il n’existe pas de 
surjection de X  sur T(X ) ; le théorème est donc démontré. Q.E.D.

Lorsque X  est fini, 3>(X) est fini et, si Card X  =  n, on a Card 7(X) = 2n ; 
le théorème de Cantor signifie donc dans ce cas particulier que 2n > n pour tout 
entier n.

Remarque 1.8.2 L’ensemble X ) est équipotent à l’ensemble de toutes les ap­
plications de X  dans {0,1} : on établit en effet une bijection entre V(X)  et 
J (X ; {0,1}) en associant à toute partie A la fonction, dite fonction caractéristique 
de A, IL a : X  -)> {0,1} définie par

a  =  1 et 1| x - a  =  0.

Exercice 1 .8 .2  Soit X  un ensemble, montrer qu’il existe une partie A C X  tel que A 0  X  [raison­
ner par l’absurde et utiliser le théorème de Cantor].

Exercice 1.8 .3  Montrer qu’il n’existe pas d’ensemble X tel que tout ensemble X  soit équipotent à 

un ensemble A e  X (cette propriété signifie que la collection des cardinaux n’est pas un ensemble) 

[raisonner par l’absurde et considérer l’ensemble X  =  L U e x  ^1-

1.9 Ensembles infinis
On dit qu’un ensemble est infini s’il n’est pas fini. Il existe effectivement des en­
sembles infinis grâce à l’axiome de l’infini : l’ensemble N est en effet infini (si N 
était fini, soit Card N =  n, l’inclusion [0,n] C N conduirait à n +  1 <  n  !).

Voici une caractérisation très simple des ensembles infinis.

Proposition 1.9.1 Un ensemble X  est infini sit et seulement si, il existe une injec­
tion de N dans X, soit Card N <  Card X.
Preuve 1. Montrons que X  est infini si Card N <  CardX . En effet, N étant 
équipotent à une partie de X , si X  était un ensemble fini, N serait un ensemble 
fini.

2. Réciproquement, supposons X  infini. D’après l’axiome de choix, il existe 
une fonction /  : T(X ) -  {0} -> X  telle que f (A)  G A pour tout A  C X, 
A ^  0. L’ensemble X  étant infini, il est non vide : soit ao un élément de X  ; 
posons Ao = {ao} et

an = f ( X  -  An - 1), An = An- 1  U {an} pour n > 1.
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Un raisonnement par récurrence montre que les ensembles An sont finis et que les 
an sont bien définis. On construit ainsi une application n »-)• an de N dans X  qui 
est évidemment une injection. Q.E.D.

Le cardinal de N est donc le plus petit cardinal infini. Un ensemble X  est dit 
dénombrable si Card X  <  Card N. Si Card X  <  Card N, X  est fini d’après ce 
qui précède, sinon Card X  =  Card N, auquel cas on dit que X  est un ensemble 
infini dénombrable.
Exercice 1.9.1 Montrer qu’ un ensemble X  est infini si, et seulement si, X  est équipotent à une partie 

de X  distincte de X  [condition nécessaire : si D =  U ÎÏL ofa” } est une dénombrable de X ,
construire une bijection de X  sur X  — {a o }  ; condition suffisante : si /  : X  A est une bijection 

où A G P(X),  A ±  X , et si ao E X  -  A, utiliser la suite a n + i  =  f (an)y n > 0].

Exercice 1.9 .2  Montrer qu’un ensemble X  est infini si, et seulement sï, pour toute application 

/  : X  —> X , il existe une partie A de X  non vide et différente de X  telle que f(A)  C A 
[condition nécessaire : soit ao E X , on pose an+ \ =  f {an) pour n  >  0, montrer que l’ensemble 

A =  U n = i {a ra} possède les propriétés voulues ; condition suffisante : si X  est fini, construire une 
application /  : X  —> X  telle que f(A) <£ A pour tout A G 0>(X), A ^  0 et A ^  X ].

Les ensembles dénombrables sont importants en analyse ; en voici les proprié­
tés essentielles.
Proposition 1.9.2 Pour tout entier n > 1, Nn est équipotent à N.
Preuve II suffit de vérifier que N2 est équipotent à N, on raisonne ensuite par 
récurrence. En effet, l’application /(p , q) = (p +  g)(p +  </ +  l ) /2  +  g, (p,q) G N2, 
est une bijection de N2 sur N. Q.E.D.
Exercice 1.9 .3  Montrer que Q est infini dénombrable.

D’autres propriétés des ensembles dénombrables se déduiront des lemmes sui­
vants.
Lemme 1.9.3 Soient (Xi)iej et (Y-i)iei deux familles d'ensembles telles que 
Card Xi < Card Yi pour tout i E I. Alors

Card ]^[ Xi < Card
iel i£l

Preuve II existe des injections fi : Xi —> Yi ; l’application

est alors une injection de Xi dans Yli£l Y , Q.E.D. 
Lemme 1.9.4 Soient X  un ensemble et {Xj)ieI une famille d'ensembles telles 
que Card I  <  Card X  et Card Xi < Card X  pour tout i e l .  Alors

Card | J  Xi < Card (X  x X).
i&I

Preuve II existe des surjections fi : X  ; considérons l’application
/  : I  x X  -> (Jie / Xi définie par f ( i ,x)  = f ^x )  ; cette application est sur­
jective, d’où Card (Ji6/ À", <  Card (J x X)  et on conclut avec le lemme 1.9.3.

Q.E.D.
Compte tenu de la proposition 1.9.2, on en déduit les propositions suivantes.
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Proposition 1.9.5 Le produit d ’une famille finie d ’ensembles dénombrables est un 
ensemble dénombrable.
Proposition 1.9.6 La réunion d’une famille dénombrable d’ensembles dénom­
brables est un ensemble dénombrable.
Le théorème de Cantor 1.8.5 montre que le cardinal de y(N) est strictement supé­
rieur au cardinal de N. D’un ensemble équipotent à ^(N), nous dirons qu’il a la 
puissance du continu.

Proposition 1.9.7 Le produit d ’une famille dénombrable non vide d’ensembles 
ayant la puissance du continu est un ensemble ayant la puissance du continu.
Preuve Soit (Xi)iej une telle famille ; les ensembles Xi  sont équipotents à ?(N) 
et on peut supposer I  équipotent à N. L’ensemble Yli£j X i  est donc équipotent 
à 9r(N;?(N)). Étant donné que 3>(N) est équipotent à ^(N; {0,1}) d’après la 
remarque 1.8.2, il s’agit de montrer que 7(N; 7(N; {0,1})) a la puissance du 
continu. Or, on établit une bijection entre cet ensemble et l’ensemble J (N 2; {0,1}) 
en associant à toute fonction f  : n f n de N dans 5F(N; {0,1}) l’application 
(n,p) f n(p) de N2 dans {0,1}. On conclut avec la proposition 1.9.2. Q.E.D. 

Compte tenu du lemme 1.9.4, on en déduit la

Proposition 1.9.8 La réunion d’une famille ayant la puissance du continu d’en­
sembles ayant la puissance du continu est un ensemble ayant la puissance du 
continu.
Remarque 1.9.1 Hypothèse du continu On peut se demander s’il existe des en­
sembles X  tels que Card N <  Card X  <  Card T(N). L’hypothèse du continu 
consiste à affirmer qu’il n’existe pas de tel ensemble, autrement dit que tout en­
semble infini non dénombrable a au moins la puissance du continu. Depuis les 
travaux de K. Gôdel (1938) et P. Cohen (1963), on sait que l’hypothèse du continu 
est indécidable : il ne peut exister de démonstration de cette relation, ni de sa né­
gation dans la théorie des ensembles (Z F ). On peut donc adjoindre l’hypothèse 
du continu ou sa négation aux axiomes de la théorie des ensembles, si la théorie 
des ensembles est non contradictoire, la théorie obtenue ne l’est pas non plus.

On peut se demander ce que deviennent les propositions 1.9.2 et 1.9.7 pour des 
ensembles infinis quelconques ; dans cette direction nous avons le résultat suivant.

Théorème 1.9.9 Soit X  un ensemble infini, alors
Card X  = Card (X  x X).

Preuve II est clair que Card X  < Card (X  x X). Pour vérifier l’inégalité opposée, 
nous utiliserons le lemme de Zorn. Soit D un ensemble infini dénombrable contenu 
dans X  (proposition 1.9.1) et soit £ l’ensemble des couples (A , / )  où A e ?(X ), 
D c  A et /  est une bijection de A sur A x A. Cet ensemble est non vide d’après 
la proposition 1.9.2. Notons (A , / )  < (A', / ' )  la relation (A c  Af et f \ A =  / )  ; 
il est clair qu’il s’agit d’une relation d’ordre sur £.
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1. Montrons que £ est inductif. Soit ((A *,/*))^/ une famille totalement or­
donnée de £. Posons A =  \Ji£l Ai et f (x) = fi(x) si x G Ai ; on définit bien 
ainsi une application de A dans A x A car fi(x) ne dépend pas du choix de l’indice 
i G I  tel que x G Ai ; on vérifie de suite que /  : A —>• A x A est une bijection. 
On construit ainsi un majorant (A, / )  G £ de la famille donnée et ceci prouve que 
£ est inductif.

2. Soit (A, / )  un élément maximal de £, nous allons vérifier que 
Card A = CardX (ceci prouvera le théorème). Raisonnons par l’absurde, sup­
posons Card A < Card X.  On a alors Card A < Card (X -  A) : en effet, si on 
avait Card (X -  A) < Card A, on aurait

Card A < Card X  =  Card (A U (X -  A)) <  Card (A x A), 
ce qui est absurde vu que (A, / )  G £. Ceci montre qu’il existe une partie 
B  C X  — A telle que Card A =  Card B.  On peut alors écrire 

( A ü 5 ) x ( A u 5 )  =  ( A x A ) u C  
où

C = (A x B) U (B x A) U (B x B)
est équipotent à B  d’après le lemme 1.9.4 ; soit g une bijection de B  sur C ; 
l’application h : A u B  (A U B) x (AuB)  définie par H\a = / ,  h\s = g (A et 
B  sont disjoints) est une bijection car A x A et C sont disjoints. Il en résulte que 
(A, / )  < (Al) B, h) ce qui est absurde. Q.E.D.
Exercice 1.9.4 Soient X  un ensemble infini, A et B  deux parties de X  telles que X  =  A  U B  et 
Card B  <  Card A , montrer que Card A  =  Card X.
Exercice 1.9.5 Soient X  un ensemble infini, fJ n (X)  l’ensemble des parties d e X à n  éléments 
(n  >  1) et y ( X )  l’ensemble des parties finies de X.  Montrer que

Card 'J(X) =  Card fJ n (X) =  Card X.

Pour illustrer les résultats précédents, nous allons montrer comment on peut 
définir la dimension d’un espace vectoriel.
Proposition 1.9.10 Soit E un espace vectoriel sur un corps K et soient B \f B2 

deux bases de E, alors Card B 1 =  Card B 2 ; ce cardinal est appelé la dimension 
de E et se note dim^E.
Preuve Pour tout x G E, il existe une partie finie B 2 (x) de B 2  telle que x  s’écrive 
comme une combinaison linéaire d’éléments de B 2 (x).

1. Montrons que B 2 = U xéBi ^ ( x). Raisonnons par l’absurde ; supposons 
qu’il existe y G B 2 tel que tout x G B\  s’écrive comme une combinaison linéaire 
finie d’éléments de B2 -  {y} ; alors, Bi  engendrant E , J52 -  {i/} engendrerait E  
et ceci est absurde.

2. Si B\  est fini, il en résulte que B 2 est fini et on sait alors que 
Card B\  =  Card Si B\  est infini, on a d’après le lemme 1.9.4 et le théorème 
1.9.9, Card B2 < Card (Bi  x Bi)  =  Card ; étant donné que B2 est infini 
(sinon B\  serait fini d’après ce qui précède), on a également Card B\ < Card 1?2, 
d’où le résultat voulu. Q.E.D.



D -  Corrigés des exercices

1.10 Exercices du chapitre 1 .A

EXERCICE 1.1.1

1. Démontrons l ’ inclusion A C f ~ 1(f(A)).  Soit x e A, il s’agit de vérifier que 
x  G f ~ 1(f(A))  ; or x  appartient à A, donc son image f (x)  par /  appartient à l ’ image 
f (A)  de A et ceci signifie précisément que x  appartient à f ~ 1(f (A))y ce qui prouve le 
résultat voulu.

2. Vérifions de même l ’ inclusion f ( f ~ l (B)) C B.  Soit y G f ( f ~ 1(B))t il s’agit de 
vérifier que y G B.  Il existe x  G f ~ 1(B) tel que y =  f (x)  ; dire que x  appartient à 
f ~ 1(B) signifie que f (x)  appartient à B  et ceci prouve que y = f (x)  G B.
EXERCICE 1.2.2

1. Supposons /  injective et soit A  G ÎP(X ). D ’après l ’exercice 1.2.1, on sait que 
A  C f ~ 1(f(A)).  Montrons que f ~ 1(f(A))  c  A. Soit x  G / -1 ( / ( j4)), c’est-à-dire 
f (x)  G f (A),  il existe donc y G A  tel que f (x)  =  / ( y )  ; d’après l ’ injectivité de / ,  on a 
nécessairement x = y, d’où x  G A  et ceci prouve le résultat voulu.

Réciproquement, supposons, que pour tout A G <̂{X)y A =  f ~ 1(f(A))  et montrons 
que /  est injective. Soient x ty G X  tels que f (x)  =  f(y).  Prenons A =  {x}> puis 
A = {y} ; on obtient

{*} = / ’ 1(/({*}))ct{y} = r 1(/({y}))
où f ({x})  = {f (x)} = {f(y)} = f({y})> d’où {x} =  {y } ,  c’est-à-dire x  =  y et /  est 
donc injective.

2. Supposons /  surjective et soit B  G D’après l ’exercice 1.2.1, on a
f ( f ~ l (B)) C B.  Montrons l ’ inclusion opposée B  C / ( / -1 (B )). Soit y G B y/é tan t sur­
jective il existe x  G X  telquey =  f (x)  ;a lorsx G / “ 1(B ),d ’oùy =  f (x)  G f ( f ~ 1(B)) 
et le résultat voulu.

Réciproquement, supposons que, pour tout B G y(Y), f ( f ~ 1(B)) =  B ; soit y € Y, 
prenons B = {y } , alors / ( / -1 ( {y } ) )  =  {y} et ceci prouve que f ~ 1({y}) est non vide, 
donc /  est surjective.

EXERCICE 1.2.3

1. Supposons /  injective et soit A G y ( X) y alors f ~ l (f(A)) = A  (exercice 1.2.2), d’où 
g(B) = A en posant B  =  f ( A ), ce qui prouve que g est surjective.
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Réciproquement, supposons g surjective et soient x ,y  G X  tels que / ( x )  = /( y ) .  Il 
existe B  G y  {Y) tel que g(B) = {x } ,  soit / _1(B ) =  { x }  ; on a alors / ( y )  = f(x)  G B , 
d’où y G f ~ l (B) = { x }  et par conséquent x = y, ce qui prouve que /  est injective.

2. Supposons /  surjective et soient A, B G y(Y) tels que g(A) = g(B)y c’est-à-dire 
/ -1 04) =  f ~ 1(B). D’après l ’exercice 1.2.2, on a A  =  / ( / _1(A )) et B = f ( f ~1(B)) et 
par conséquent A = By donc g est injective.

Réciproquement, supposons g injective ; posons B = f ( X ) y alors 
x  = r l (Y) = r l (B))

soit g(Y) = g(B)t d’où Y  = B  d’après l ’ injectivité de g et ceci signifie que /  est surjec­
tive.

EXERCICE 1.2.4

1. Soit 2 G Z y d’après la surjectivité de h il existe x G X  tel que 2 =  /i(x ), d’où z = g(y) 
où y = / ( x ) ,  ce qui prouve la surjectivité de g.

2. Soient x ,y  G X  tels que / ( x )  =  / ( y ) ,  d’où h(x) =  h(y) ; si h est injective, on en 
déduit que x =  y ce qui montre que /  est injective.

EXERCICE 1.2.5

La condition est suffisante : s’ il existe une application g : Y  X  telle que go f  = IXy 
l ’application I x  étant injective, l ’application /  est injective d’après l ’exercice 1.2.4.

Réciproquement, supposons l ’application /  injective. Alors /  induit une bijection de 
X  sur f ( X ) ;  notons y? : f ( X )  -» X  la bijection réciproque. Choisissons un point a de X  
(X est non vide) et définissons une fonction g : Y  X  prolongeant ip en posant 

9(y) = si y € f ( X )  et g(y) =  a si y e Y -  f (X) .
Pour tout x  6 X,  on a f (x)  e f ( X )  d’où g(f(x))  =  <p{f(x)) =  x, soit g o /  =  Ix . 
EXERCICE 1.2.6

La condition est suffisante : s’ il existe une application g : Y  X  telle que /  o g = IYy 
l ’application Iy  étant surjective, /  est surjective d’après l ’exercice 1.2.4.

Réciproquement, supposons /  surjective. Alors, / -1 ( {y } )  est non vide quel que soit 
y e Y.  D ’après l ’axiome de choix, il existe donc une application g : Y  X  telle que 
9(y) € f ~ l ({y}) pour tout y  G K , c’est-à-dire telle que f(g(y)) = y, soit /  o g = IY , ce 
qui prouve le résultat voulu.

EXERCICE 1.2.7

1. La condition est nécessaire. En effet, s’ il existe une application g : Y  Z telle que 
h =  g o f  et si x> x'  G X  sont tels que f (x)  =  /(x*'), alors

h(x) =  g(f(x))  =  g(f(x'))  =  h(x) .
2. Réciproquement, /  induit une surjection de X  sur f ( X )  ; d’après l ’exercice 1.2.6, 

il existe une application ip : f ( X )  -» X  telle que /  o ip =  / / ( x ) .  Choisissons un point a 
dans Z {Z est non vide) et définissons une application g : Y  ->• Z en posant 

g(y) = (h o p)(y) si y G f ( X )  et y(y) =  a si y G Y -  f(x).
Vérifions que h = g o f .  Soit x  G X,  on a g(f(x)) = (h o p)(f(x)) = h(xf) où 
xf = p(f(x))  ; vu la définition de <py il en résulte que f(x*) =  / ( x ) ,  d’où x  =  x ' compte 
tenu de l ’hypothèse et ceci prouve y ( / ( x ) )  =  /i(x ), c’est-à-dire g o f  = h.
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3. Lorsque /  est surjective, l ’application g est unique. En effet, tout y G Y  peut s’écrire 
y = f ( x ) où x  G X  et par conséquent on a nécessairement g(y) = g(f(x))  =  h(x). 
L’hypothèse

f (x)  = f ( x )  => h(x) = h(x)
dit précisément que la valeur h(x) de g(y) ne dépend pas du choix de x tel que f (x)  = y. 
EXERCICE 1.2.8

1. La relation Æ : f(x) =  f(x') est trivialement réflexive et symétrique ; en outre, si 
f(x) = / (a /)  et f(x') =  / ( x " ) ,  alors f(x) =  / ( x " ) ,  ce qui montre qu’elle est transitive. 
Il s’agit donc bien d’une relation d’équivalence.

2. D’après l ’exercice 1.2.7, il existe une application g : X / R  —> Y  telle que f  = g on  
si, et seulement si, tt(x) = tt(x') => f (x)  = f(x')> condition effectivement vérifiée 
d’après la définition même de la relation d’équivalence Æ. Quant à l ’unicité de g, elle résulte 
aussi de l ’exercice 1.2.7, l ’ application n étant surjective.

Vérifions enfin que g  est injective. Soient 2, z'  G X /Æ tels que g(z )  = g(z ' )  ; il existe 
x,x'  G X  tels que 2: =  7r(x) et z f =  7r(æ'), d’où g(tt(x)) = g(^(æ ')), c’est-à-dire 
f (x)  =  f(x' )  et par conséquent x = x'( mod. Æ), soit 2; =  2;', ce qui prouve le résultat 
voulu.
Note Posons Z = X / %  l ’application g induit une bijection h : Z  —» g(Z) ; notons 
i : g(Z) - *  Y  l ’ injection canonique de g(Z) dans Y.  On peut alors écrire /  sous la forme 
/  =  i o h o 7r où i est une injection, n une surjection et h une bijection : cette écriture de /  
est appelée la décomposition canonique de / .

EXERCICE 1.3.1

1 => 2 Pour tout i  G / ,  H ig /  Ai  C Au d’où Ai) C f(Ai)  et par conséquent
m  iei Ai) C C\iei f(Ai).  Lorsque /  est injective, montrons l ’ inclusion opposée. Soit 
y € H ig /  f (Ai)  : pour tout i 6 / ,  il existe Xi e Ai tel que y =  /(»<). Choisissons un 
indice i0 e  / ,  on a y =  f(xi)  = f (xi0) quel que soit i e I  ; d’après l ’ injectivité de / ,  
Xi =  xio et par conséquent xio e  f | ie /  Ai  et ceci prouve que y e f(C\iei Ai)-

2 => 3 en prenant pour famille (Ai)ieI la famille réduite aux deux éléments A  et B.
3 => 4 Si A D B  est vide, f (A)  f l  f (B)  =  /(0 )  =  0.
4 => 5 Soit A C B. Notons d’abord que f(B) -  f(A) C f (B -  A). En effet, soit 

V € f(B) ~~ f (A), alors il existe x e B tel que y = f(x) et x n’appartient pas à A vu 
que y n’appartient pas à /(A), autrement dit x e B -  A, d’où y = f(x) G f (B -  A) 
ce qui prouve le résultat annoncé. Montrons ensuite l’inclusion opposée avec l’hypothèse
4. On a A n  (B -  A) = 0, d’où /(A) n  f (B -  A) = 0 d’après 4. et par conséquent 
f (B — A) c  f(B) — /(A), ce qui prouve le résultat voulu.

5 =► 6 Notons d’abord que, pour tout A  G 9(X)  et tout B  G P (y ) , on a toujours 
(exercice 1.2.1)

A c f
De la première relation, on déduit f (A)  c  / ( / -1 ( / ( 4 ) ) )  et en prenant B = f (A)  dans

la seconde on obtient l ’ inclusion opposée : ceci prouve que 
tout A  e 3>(X).

f (A)  =  / ( / “ ‘ ( / ( A ) ) ) pour

Utilisons 5., d’après l ’ inclusion A  c  f ~ 1(f(A))  on a donc

/ ( / -1 ( /(> l))  -  a )  = / ( / - 1 (/(y 4 )) j -  f(A) =  f(A) -  f(A) =  0
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et ceci montre que f  -  A = 0, d’où f  1(f(A)) = A, ce qui prouve le résultat
voulu.

6 => 1 Prenons A = {a;}, x G X . Alors, f ~ 1(f({x}))  =  {# }  et de même 
Z " 1 ( / ( { ! / } ) )  =  {'*/}• si f ( x ) = f(v)> on en déduit que x = y, c’est-à-dire que f  est 
injective.

EXERCICE 1.3.2

Soit x un point de X , notons Rij(x)  la relation x G X i j .  L’ inclusion proposée équivaut 
alors à l ’ implication

(3* G J)(V j G J)RiAx)  => (V j G J)(3i  G J ) f t j ( * ) >  
implication vérifiée quelle que soit la relation Ri,j(x).

Montrons par un exemple que l ’ inclusion peut être stricte. Prenons
X  = R, /  =  J  =  Z  et X i j  = [ij] si i <  j ,  X i j  =  [j , i] si j  < i.

On a alors yflXM=Zet PKJxm=M.
i e i j e J  j S J i e i

EXERCICE 1.3.3

On peut supposer que ( X i j ) ( i j )G/ x j  est une famille de parties d’un ensemble X . Soit 
x =  (Xi)i£i, Xi G / .  Alors, dire que x appartient à f l j e j d l i e /  signée Que, Pour 
tout j  G J,a; G c’est-à-dire que, pour tout j  G J e tto u ti G I,Xi  G X ij.D e u x
quantificateurs de même nature peuvent être commutés, la relation précédente signifie donc 
que, pour tout i G J, Xi G r w  **,;#. sou x  e n î€/ ( n j€ j  Xi j ) ,  ce qui prouve le résultat 
voulu.

EXERCICE 1.3.4

D’une façon générale, notons Xi  le terme de gauche et X 2 le terme de droite de chacune 
des égalités à démontrer.

1. Soit x  G Xi,  alors (Vz G I)(3j  G Ji)(x G Xi j ) .  Pour tout i G / ,  l ’ensemble 
{ j  G J*; a: G X i j  } est non vide ; d’après l ’axiome de choix, il existe donc une application 
a  G A telle que x  G X i t Cc pour tout i G / ,  ce qui prouve que x  appartient à X 2.

Réciproquement, soit x  G X'2, alors (3a G A )(V i G / ) (#  G X if0(<)) et par consé­
quent, pour tout i  G / ,  il existe un j  G J*, à savoir a ( i) , tel que x  G X i j  ce qui prouve que 
a: G Xi.

2. résulte de 1. en passant au complémentaire.
3. Soit a; =  (xi)iei G X\ ,  alors (Vi G / ) ( 3 j  G Ji)(xi G X i j )  ; d’après l ’axiome de 

choix, il existe donc a  G A  tel que Xi G X pour tout i G / ,  soit a: G l i ie z  ^*,« (0  el 
a: G X 2.

Réciproquement, soit a; =  (Xi)iei G X 2, alors il existe a  G A  tel que Xi G X it0ĉ ) 
pour tout i G / ,  d’où x< ^  et a: G X\.

4. Soit a: =  (xi) i€i e  X \ , alors pour tout i  G /  et tout j  G J i, a?i G X i j  et par
conséquent, pour tout a  G A, a?i G X i>£k(i), d’où a; G a(i) et x  G X 2.

Réciproquement, soit x = (Xi)iei G X 2, alors pour tout a  G A  et tout i G J, 
G X i,a(i) ; étant donné un i  G /  et un j  G J i, il existe a  G A  tel que a (î) =  j ,  d’où 

Xi G X i j  pour tout i  G I  et tout j  G J i ce qui prouve que x  G X i.
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1.11 Exercices du chapitre 1 .B

EXERCICE 1.5.1 PRINCIPE DE RÉCURRENCE TRANSFINIE
Il s’agit de démontrer que l ’ensemble A = {x e X  ; non J?(æ)} est vide. Raisonnons par 
l ’absurde. Si A est non vide, A admet un plus petit élément a, alors R(y) est vrai quel que 
soit y < a et par conséquent R(a) est vrai d’après l ’hypothèse, ce qui est absurde et ce qui 
prouve que R(x) est vrai quel que soit x.
Note En prenant N pour ensemble bien ordonné, on obtient le résultat suivant : soit R(n) 
une relation telle que, pour tout entier n e  N, R(n) soit vrai dès que R(p) est vrai pour 
tout p < n, alors R(n) est vrai pour tout n. On pourra comparer ce résultat à celui de la 
proposition 1.7.2.

EXERCICE 1.5.2 THÉORÈME DE KRULL

Rappelons qu’une partie m  de A est appelée un idéal si m  est un sous-groupe additif (on 
note additivement la loi de groupe pour l ’anneau) et si x m  C m  pour tout x e A, c’est-à- 
dire si

(x e A et y e m) => x y e m.
Ceci revient à dire que m  est une partie non vide de A telle que

(u, v e A et æ, y e m) => ux + vy e m.
Si e désigne l ’élément unité de l ’anneau, dire qu’un idéal m  est différent de A signifie 
simplement que e £ m. Montrons que l ’ensemble M des idéaux de A différents de A t 
ordonné par inclusion, est inductif lorsque M  est non vide, c’est-à-dire lorsque A n’est 
pas réduit à l ’élément neutre {0 } pour la loi de groupe, l ’ensemble {0 } étant évidem­
ment un idéal. Soit (mi)iej une famille de M  totalement ordonnée par inclusion, alors 
m  =  (J ie / mi est un idéal ; en effet, soient u, v e A et € m, alors la famille (nu) 
étant totalement ordonnée, il existe i  e I  tel que æ, y e mi d’où ux -h vy e mi  C m . Cet 
idéal est différent de A vu qu’ il ne contient pas e ; ceci montre que m est un majorant de 
la famille L’ensemble M  est donc inductif et d’après le lemme de Zom tout idéal
est contenu dans un idéal maximal.

EXERCICE 1.5.3

1. Notons f  : X  -¥ Y  l ’application x  h-> Tx. Cette application surjective par définition est 
injective : en effet, soient a;, x* e X  tels que Tx = TX’> alors y <  x équivaut à y < x'  et il 
en résulte que x = x'. Montrons que /  est un isomorphisme d’ensembles ordonnés, c’est- 
à-dire que /  et / -1 sont des applications croissantes. Il s’agit de démontrer que x < x' 
équivaut à Tx C Tx> ; supposons x < x'  et soit y e Tx, alors y < x, d’où y < x \  soit 
y e Txt ; réciproquement, supposons Tx C Tx/> alors x e Tx C Tx>y soit x < x Ceci 
prouve que /  est un isomorphisme.

2. La propriété (M) n’étant qu’un cas particulier du lemme de Zorn (théorème 1.5.1 ), il 
s’agit de démontrer que (M) => (Z0). Soit X  un ensemble inductif, d’après 1. 
/  : X  —» Y  est un isomorphisme. Toutes les notions définies uniquement à l ’aide de la 
structure d’ensemble ordonné sont évidemment invariantes par /  ; en particulier, Y  est un 
ensemble inductif et /  induit une bijection de l ’ensemble des éléments maximaux de X  sur 
l ’ensemble des éléments maximaux de Y.  L’ensemble Y  étant un ensemble de parties or­
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donné par inclusion, la propriété (M)  montre que Y  admet au moins un élément maximal, 
il en est donc de même de X , ce qui prouve le résultat voulu.

EXERCICE 1.5.4 LEMME DE TUKEY

Montrons que X est inductif, la conclusion résultera alors du lemme de Zorn. Soit (Ai)iei 
une famille totalement ordonnée de X. Montrons que A = (JiG/ Ai appartient à X, A  sera 
alors un majorant de la famille (Ai). Il s’agit de démontrer que toute partie finie M  de A 
appartient à X. La famille (Ai) étant totalement ordonnée par inclusion et M  étant fini, il 
existe i G I  tel que M  c  Ai ; Ai appartenant à X et M  étant une partie finie de Au on en 
déduit que M  appartient à X, ce qui prouve le résultat voulu.

EXERCICE 1.5.5

1. Soit F un élément maximal de X. Alors, il existe une partie A  de X  telle que Y soit le 
graphe d’une application g : A — Y  vérifiant g(x) E f (x)  pour tout x  G A. Montrons 
que A = X , ceci prouvera que g est une fonction de choix associée à / .  Raisonnons par 
l ’absurde. Supposons A ^  X , choisissons un point a e X - A  ci un y e  f(a) ; posons 
T ' =  T U {(a,£/)}, alors T' appartient à X et est strictement plus grand que T, ce qui 
contredit le fait que Y est un élément maximal.

2. Montrons que X vérifie les hypothèses du lemme de T\ikey, c’est-à-dire qu’une partie 
T de ÎP(X x Y)  appartient à X si, et seulement si, toute partie finie de Y appartient à X. On 
observe d’abord que, si Y appartient à X, alors toute partie de Y appartient encore à X.

Réciproquement, supposons que toute partie finie de Y appartient à X et montrons que 
T appartient à X. Posons

A = pr\(Y) oùpri : X  x  Y  -> X
désigne la première projection et montrons que Y est le graphe d’une application 
g : A y ,  c’est-à-dire que

((x,y) E Y et ( x , y)  G T) => y = y ;
or l ’ensemble {(a?,y), (x,y')} est une partie finie de T, donc appartient à X et par consé­
quent y =  y* et y G /(&•), ce qui prouve que T G X.

3. D’après le lemme de T\ikey, X admet un élément maximal et, d’après 1., tout élément 
maximal définit une fonction de choix associée à / .  Ceci prouve que dans la théorie des 
ensembles (ZF),  le lemme de T\ikey implique l ’axiome de choix ; le lemme de T\ikey et 
l ’axiome de choix sont donc équivalents.

1.12 Exercices du chapitre 1 .C

EXERCICE 1.8.1 UNE AUTRE DÉMONSTRATION DU THÉORÈME DE BERNSTEIN

1. On peut effectivement se ramener à la situation indiquée dans l ’énoncé. En effet, si 
f  : X  Y  et g : Y  —» X  sont des injections, posons Z  =  g(Y),  alors g définit une 
bijection de Y  sur Z  et g o f  est une injection de X  sur Z , c’est-à-dire sur une partie de X . 
Si dans ces conditions on sait construire une bijection h:  X  Z , g~1 o h : X  Y  sera 
une bijection et le théorème de Bernstein sera démontré.

2. Reprenons les notations de l ’énoncé et vérifions que l ’application g est bijective.
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Montrons que g est surjective. On a, d’après la définition de g, g{X) =  B U f (X  — B) 
où B = A U f(B) vu que f(B) = f n(A) ; on en déduit que

g(X) =  A U f(B)  U f (X  -  B) =  A U f (X) = (Y -  f(X))  U f (X)  =  Y, 
ce qui prouve le résultat voulu.

Montrons ensuite que g est injective. Étant donné que les restrictions de g à B et à 
X — B sont injectives, il s’agit de démontrer que, si x G X  — B et x' G B, alors x1 ^  f (x ), 
c’est-à-dire (Væ G X)(x £ B => f(x) B ), soit

(Væ G X)(f(x) G B ^  x G B).
Supposons donc f(x) G B , il existe un entier n tel que f(x) G f n(A) et cet entier n ne 
peut être nul, car on aurait f(x) e A = Y -  f(X).  Ceci montre que f(x) G f ( f p(A)) où 
P G N ; il existe donc y G f p{A) tel que f(x) = f(y) et, /  étant injective, x — y, ce qui 
prouve que x G f p(A) c  B.
Note Cette démonstration présente l ’ inconvénient (aux yeux de certains) d’utiliser l ’en­
semble N des entiers.

EXERCICE 1.8.2

Raisonnons par l ’absurde. Supposons que toute partie de X  soit un élément de X> alors 
‘P(X) C X , d’où Card P(X ) < Card X , ce qui est absurde vu le théorème de Cantor 
(théorème 1.8.5).

EXERCICE 1.8.3

On raisonne par l ’absurde, supposons qu’ il existe un ensemble X tel que tout ensemble X  
soit équipotent à un ensemble appartenant à X. Prenons en particulier X  =  \JAeX A, il 
existe B G X tel que Card X = Card B . L’ensemble y(B) est équipotent à un ensemble 
C g X. D’après le théorème de Cantor, on a

Card X  =  Card B < Card y{B) =  Card Cy 
d’où Card X  < Card C, ce qui est absurde vu que C C X.
Note Cet exercice montre qu’on ne peut pas parler de l ’ensemble des cardinaux. On notera 
que ce résultat est plus fin que le paradoxe de Cantor (remarque 1.1.3).

EXERCICE 1.9.1

Si X  est un ensemble infini, il existe une injection /  : N X  ; posons an = f(n) et 
D =  /(N )  =  ( X U W ) -  construiï al° rs une bijection g : X  -» X  — {ao} en posant 
g{x) =  x si x G X  — D et g(an) =  an+1 pour tout entier n  >  0. Ceci prouve que X  est 
équipotent à X — {ao}.

Réciproquement, supposons que X  soit équipotent à une partie A de X  distincte de X  ; 
notons /  : X  A une bijection de X  sur A. Choisissons un point ao G X -  A et posons 
an+1 =  / ( a n) pour tout entier n > 0. On définit ainsi par récurrence une suite (an) de X. 
Montrons que l ’application an est injective, c’est-à-dire que ap = aq implique p = q, 
ceci prouvera qu’ il existe une injection de N dans X y donc que X  est infini. Raisonnons par 
l ’absurde, supposons ap = aq où 0 < p < q. On a alors

/ p(o0) =  f q(ao) = f p( f - p(aoj),
d’où /  étant injective ao =  f q~p(ao) G A et ceci est absurde vu que ao appartient à
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X -  A.
EXERCICE 1.9.2

Supposons l ’ensemble X  infini et soit /  : X  —> X  une application. Choisissons un 
point ao G X (X est infini, donc non vide) et posons an+ i =  f(an) pour n >  0, 
A =  U ^ L i(an}- H est clair que A est non vide et que f(A) C A. Montrons que A 
est différent de X.  Si ao n’appartient pas à A , le résultat est acquis et si ao 6 A, il existe un 
entier n > 1 tel que ao =  an et il en résulte que A = Up=o(ap} * l ’ensemble A est donc 
fini et par conséquent différent de X.

Réciproquement, si X  est fini, construisons une application /  : X  X  telle que, pour 
toute partie A de X  non vide et différente de A , f(A) (£_ A. Si Card X  <  1, la propriété 
est vérifiée quelle que soit l ’application / ,  vu qu’ il n’existe pas de partie A non vide et 
distincte de X.  On peut donc écrire X  sous la forme

n
X  =  I^J {ap} où n  >  1 et ap ± aq si p ^  q.

p =o

On définit /  en posant
f(ap) =  ap+i si 0 <  p < n et f(an) =  ao.

Soit A G ? (X ), A ± 0 et A ^  A , alors il existe un entier 0 < p < n tel que ap G A et 
ap+1 ^  A en convenant que an+i =  ao et ceci montre que f(A) <£. A , ce qui prouve le 
résultat voulu.

EXERCICE 1.9.3

On a N C Q, d’où Card N <  Card Q. Inversement, l ’application
(p,q) e Z x N *  ^ p / q € Q

est surjective, d’où Card Q <  Card (Z  x N *). Les ensembles Z  et N* étant équipotents à N, 
l ’ensemble Z x N* est équipotent à N2, donc à N d’après la proposition 1.9.2. Ceci prouve 
que Card Q <  Card N et on a donc l ’égalité : Q est un ensemble infini dénombrable. 
EXERCICE 1.9.4
L’ensemble A est nécessairement infini, donc d’après le lemme 1.9.4 et le théorème 1.9.9, 
on a

CardX  = Card (Au B) < Card (A x  A) =  Card A> 
soit Card X  <  Card A, d’où l ’égalité vu que A C X.
EXERCICE 1.9.5
1. Soit n  un entier > 1, dire que A e y(X)  admet n  éléments signifie qu’ il existe une bi- 
jection de [1, n] sur A ; à tout A 6 ^ ( A " ) ,  on peut donc associer une injection J a de [1, n] 
dans X  ; on définit ainsi une application A / a de J n(X)  dans
5 ( [ l , n ] ;X )  =  X n telle que / / i ( [ l , n ] )  =  A ; cette application est donc injective ce qui 
prouve que Card 5Fn(X) < Card A n, d’où Card J n (A ) <  Card X  d’après le théorème 
1.9.9.

Montrons qu’on a en fait l ’égalité. D ’après l ’axiome de choix, il existe une application 
/  : J n(X) -> A  telle que f(A) g A pour tout A G Tn (X). Posons M = X  - / ( J W(X )) , 
alors M admet au plus n — l éléments, sinon M contiendrait un ensemble A à n  éléments 
et on aurait alors f(A) G A C M , ce qui est absurde. Il en résulte que 

Card 2 n (X ) >  Card (A: -  M) = Card X  
d’après l ’exercice 1.9.4. Ceci prouve que Card J n (A ) =  Card X.
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2. Notons d’abord que l ’application x  »-* {# }  est une injection de X  dans J(X)  et 
par conséquent Card X < Card 5(X). Étant donné que J (X ) c  U ^L i 5n(X),  le lemme
1.9.4 et le théorème 1.9.9 prouvent que

Card J (X )  <  Card (X  x X)  = Card X  
et ceci prouve que Card 5(X) = Card X.



Chapitre 2

TO PO LO G IE





Sommaire

Ce chapitre présente la théorie des espaces topologiques. Il s’agit essentiellement 
de construire une théorie permettant de traiter les problèmes de convergence qu’on 
rencontre en Analyse. La construction même de l’ensemble des nombres réels, en 
tant que complété de Q, repose sur des notions de convergence ; il nous a semblé 
utile de rappeler cette construction, d’établir les propriétés fondamentales de R 
et d’introduire dans ce cadre les premières notions de la topologie (paragraphe 
2.5). Il est utile d’étudier avec soin ces notions et de réfléchir aux démonstrations ; 
l’espace R est en effet l’espace topologique le plus simple et constitue donc un 
modèle fondamental : la démonstration de certains théorèmes généraux s’inspire 
directement de ce qui peut être lait sur R, modulo un langage plus sophistiqué.

Une structure topologique est avant tout une structure de convergence et seule 
la notion de filtre (définition 2.8.1) introduite par H. Cartan permet d’obtenir une 
théorie satisfaisante. Une structure topologique est donc définie en se donnant les 
filtres des voisinages de chaque point (définition 2.8.2), c’est-à-dire en se donnant 
(remarque 2.11.1) les filtres qui convergent. Un ensemble ouvert est alors par défi­
nition un ensemble qui est un voisinage de chacun de ses points et ceci permet de 
donner une définition équivalente des structures topologiques (proposition 2.9.3). 
Dans le même esprit, une fonction continue sera par définition une fonction trans­
formant un filtre convergent en un filtre convergent (définition 2.13.1) ; un espace 
séparé sera un espace sur lequel la limite d’un filtre convergent est unique (défini­
tion 2.17.1).

La seule considération des suites ne suffit pas en général pour caractériser cer­
taines propriétés topologiques et des hypothèses de dénombrabilité sont néces­
saires si on veut éviter l’usage des filtres. Le paragraphe 2.12 étudie une classe 
d’espaces topologiques de cette nature et qui est importante dans la pratique car 
elle contient la classe des espaces métriques (paragraphe 2.7).

Après avoir introduit les espaces métriques, les paragraphes 2.8 à 2.17 pré­
sentent les notions de base de la topologie ; toutes ces notions sont importantes et 
d’un usage constant.

Les espaces métriques complets sont introduits au paragraphe 2.18 : dans un
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tel espace, on dispose d’un critère (le critère de Cauchy) permettant d’affirmer 
qu’un filtre converge sans connaître a priori la limite. Ces espaces jouent un rôle 
important en analyse ; parmi les applications, signalons le théorème de prolonge­
ment des applications uniformément continues (théorème 2.25.2) dont la version 
linéaire étudiée ultérieurement est d’un usage constant, le théorème du point fixe 
(théorème 2.26.1) et une version locale (proposition 2.26.4) qui nous permettra de 
démontrer très simplement le théorème des fonctions implicites.

Les paragraphes 2.19 à 2.24 sont consacrés aux topologies initiales ou finales. 
En particulier, on étudiera avec soin les topologies produits (paragraphe 2.21) ; ces 
topologies sont très importantes. Il est par exemple essentiel de comprendre que la 
topologie de la convergence simple étudiée au paragraphe 2.23 est une topologie 
produit ; comme nous le verrons, on en déduira des propriétés fondamentales des 
topologies faibles.

Le paragraphe 2.28 étudie le théorème de Baire (théorème 2.28.1) ; il s’agit 
sans aucun doute d’un théorème plus difficile à comprendre. Ce théorème est in­
dispensable pour établir par exemple que la limite simple d’une suite de formes 
linéaires continues sur un espace de Banach est toujours continue.

La partie C est consacrée à l’étude des espaces compacts. Ces espaces sont 
très importants dans la pratique car des techniques de compacité conduisent à des 
théorèmes d’existence en l’absence d’unicité (un exemple élémentaire est explicité 
à la remarque 2.33.1).

La notion d’ultrafiltre est introduite au paragraphe 2.30. Le lemme de Zorn 
permet d’obtenir de suite le théorème fondamental 2.30.2 affirmant l’existence 
d’ultrafiltre plus fin que tout filtre donné a priori ; on en déduit une caractérisation 
(théorème 2.30.4) des espaces compacts qui est la clef de la démonstration du 
théorème 2.32.5 de Tychonoff.

Toutes les propriétés étudiées au paragraphe 2.31 sont importantes. Signalons 
en particulier le corollaire 2.31.12 qui est le seul théorème de ce chapitre permet­
tant d’affirmer qu’une bijection continue est un homéomorphisme.

Le théorème de Tychonoff est démontré au paragraphe 2.32 ; on en déduit 
(théorème 2.32.7) la caractérisation des parties compactes pour la topologie de la 
convergence simple.

La caractérisation des espaces métriques compacts (théorème 2.33.4) est fon­
damentale. Elle utilise la notion d’espace précompact ; il s’agit d’une notion très 
utile dans la pratique pour vérifier que des espaces métriques complets sont com­
pacts.

Le paragraphe 2.34 est consacré à la démonstration du théorème 2.34.5 d’As- 
coli caractérisant les parties compactes pour la topologie de la convergence uni­
forme ; la démonstration repose d’une part sur le théorème de Tychonoff, d’autre 
part sur le fait que la topologie de la convergence simple et la topologie de la 
convergence uniforme coïncident sur une partie équicontinue (proposition 2.34.3). 
Il est important de comprendre quelles sont les grandes étapes qui conduisent au
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théorème d’Ascoli
Zorn => Tychonoff => Ascoli.

Il s’agit en effet d’un théorème fondamental à l’origine de la caractérisation des 
parties compactes de nombreux espaces fonctionnels.

Les espaces localement compacts (paragraphe 2.35) seront utilisés lors de l’étude 
des mesures de Radon, en particulier le théorème 2.36.7 de partition de l’unité.

Les espaces projectifs présentés au paragraphe 2.38 constituent des exemples 
excellents d’espaces compacts et permettent de tester l’efficacité des outils mis en 
place.

La partie D présente la théorie élémentaire des espaces connexes ; les proprié­
tés de ces espaces (paragraphes 2.39 à 2.41 ) s’obtiennent aisément et ne nécessitent 
aucun commentaire. Le paragraphe 2.42 s’intéresse à des propriétés plus subtiles 
concernant les espaces connexes compacts ; elles nous permettront de caractériser 
les ouverts simplement connexes de C, c’est-à-dire les ouverts sans trou (exemple 
2.42.1).





A -  Nombres réels

2.1 Construction des nombres réels
Rappelons que Q désigne le corps des nombres rationnels, que ce corps est com­
mutatif et que la relation d’ordre usuelle sur ce corps est une relation d’ordre total. 
Ces deux structures sur Q, à savoir la structure de corps et la structure d’ensemble 
ordonné, sont reliées par les propriétés suivantes : pour tout x> y, z de Q, on a
(2.1.1) x  < y  =ï x  + z < y  + Z,
(2.1.2) 0 <  a:, 0 <  y => 0 <  x y .

On exprime ces propriétés en disant que Q est un corps totalement ordonné. 
Toutes les règles élémentaires de calcul sur Q se déduisent de ces propriétés. D’une 
façon générale, si K est un corps totalement ordonné, on définit la valeur absolue 
de tout a: G K en  posant |x| =  m ax(xî — x),  c’est-à-dire \x\ =  x  si x  > 0 et 
|x| =  — x  si x  <  0 ; pour tout x, y  G K, on a alors
(2.1.3) \x +  y\ < \x\ +  |y| (inégalité triangulaire),
(2.1.4) \xy\ =  |x| x \y\.

E xercice  2 .1 .1  Vérifier ces propriétés.

E xercice  2 .1 .2  Soit K un corps totalement ordonné, montrer que pour tout x , y  € K

|l*l -  l!/l| < l®-3/l-
La construction de Q est purement algébrique : si Z désigne l’anneau des en­

tiers relatifs, Q est par définition le corps des fractions de cet anneau Z qui est 
intègre. Cette remarque est importante du point de vue des idées car la construc­
tion de R. qui va suivre est d’une nature complètement différente.

Introduisons maintenant la notion de suite convergente.

Définition 2.1.1 On dit qu’une suite (xn) de Q converge vers x G Q  si
(2.1.5) (Ve g Q , £ >  0)(3n e  N )(Vp G N )(p > n  => \x — x p\ <  e).

On dit alors que x  est la limite de la suite (xn) et on écrit x  =  lim n_>oo x n-



56 CHAPITRE 2 TOPOLOGIE

Si une suite (xn) est convergente, sa limite est déterminée de façon unique. 
Supposons en effet qu’une telle suite converge vers x  G Q et y G Q. Soit e G Q, 
e >  0, il existe n i G N et G N tel que \x — xn\ < e/2  pour tout n  >  n i et 
\y — xn\ < e/ 2  pour tout n  > n 2 , d’où (inégalité triangulaire)

\ x - y \  = \ x - x n - ( y -  xn)| <  |x -  xn | +  \y -  xn \ < e 
pour n =  m ax(ni, n 2), soit \x -  y | <  e et on a donc nécessairement x = y.

Exemple 2.1.1 La suite xn =  1 /n  (n  > 1) converge vers 0. En effet, soit e e Q, 
e > 0, alors e =  p/q où p et q sont des entiers >  0 et on a 0 < 1 /n  < p/q dès que 
n > ç, ce qui prouve le résultat voulu.

Les suites convergentes de Q possèdent une propriété très importante dont 
voici la définition.

Définition 2.1.2 On dit qu'une suite (xn) de Q est une suite de Cauchy si 
2 16 f (Ve G Q , e >  0)(3n € N)(Vp G N)(V« G N)

[ (p> n et q > n => \xp — xq\ < e).
Proposition 2.1.1 Toute suite de Q qui converge est une suite de Cauchy.

Preuve Soit (xn) une suite de Q qui converge vers x. Soit e G Q, e > 0, il existe 
n  G N tel que \x — xp\ <  e/2 pour p > n, d’où

\xp -  XQ| =  |X -  Xp -  (X  -  Xq )\ <  \x ~  Xp \ +  \x ~  Xq \ <  £

pour p > n et q > n. Q.E.D.
Pour vérifier qu’une suite est convergente, la connaissance de la limite est abso­

lument indispensable si l’on s’en tient à la définition 2.1.1. Par contre, pour vérifier 
qu’une suite est de Cauchy, il suffit de connaître les divers termes xn de la suite ; 
ceci explique pour quelles raisons on porte un intérêt tout particulier aux suites 
de Cauchy. Il est évidemment assez naturel de se demander si la réciproque de la 
proposition 2.1.1 est vraie, c’est-à-dire si toute suite de Cauchy de Q est conver­
gente. En fait, cette réciproque est fausse : il existe des suites de Cauchy qui ne 
convergent pas.

Voici un exemple de telle suite (la suite que nous allons construire converge en 
fait vers le nombre irrationnel y/2 ). Pour tout entier n > 1, soit l = l(n) le plus 
grand entier tel que l2 < 2n 2 ; considérons la suite de terme général xn = l(n)/n , 
n > 1. La suite (x„) converge vers 2 : on a en effet Z2/ n 2 < 2 < (l +  1 )2/n 2 et 
n <  l < 2n, d’où

0 - 2  *2 ^ (* +  1)2 12 -  2 1  + 1  < 4 n _ 4
n 2 n 2 n 2 n 2 n 2 n

et ceci prouve que lim n_+oo x \  =  2. La suite (x 2 ) est donc de Cauchy et, vu que 
xn > 1, on en déduit que

|xp X„ = K -
Xn H" X{

Xq\ 1 1 2 2|
—  ^  ô K ~ Xq\
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et ceci montre que la suite (xn) est de Cauchy. Supposons la suite (xn) convergente 
de limite x ; vu que 1 <  xn <  2, on a alors

\x2  -  x 2n\ = \x + xn\ x \ x -  xn\ < (|x| +  2) x \x -  xn\ 
et il en résulte que la suite (x2) converge vers x 2, d’où x 2  = 2  ce qui est absurde, 
étant donné qu’il n’existe pas de nombre rationnel dont le carré est égal à 2. Ceci 
prouve que la suite (xn), qui est une suite de Cauchy, ne converge pas.

Les considérations précédentes conduisent à considérer l’ensemble X  de toutes 
les suites de Cauchy de Q. Sur cet ensemble X , on peut définir une structure 
d’anneau commutatif de la façon suivante. Soient x =  (xn) G X  et y — (yn) G X  
deux suites de Cauchy de Q, on pose x +  y =  (xn +  yn) ; on vérifie aisément que 
x  -h y est une suite de Cauchy vu que

I ( *p +  yp) -  (xg +  yq) | <  |xp -  Xg\  + \yp -  yq\.
Cette loi de composition définit une structure de groupe abélien sur X  : l’élément 
neutre est la suite dont tous les termes sont nuis, l’opposé de la suite x =  (xn) étant 
la suite — x = (—xn). On définit ensuite le produit des suites x  et y par la formule 
xy = (xnyn). Pour vérifier que xy est une suite de Cauchy, nous utiliserons le
Lemme 2.1.2 Toute suite de Cauchy x = (xn) est bornée : il existe M  G Q tel 
que \xn\ < M  pour tout n G N.
Preuve Soit x =  (xn) G X. D’après (2.1.6), il existe no G N tel que

|xP -  xni) | <  1 pour p >  ?i0,
d’où \xn\ < m ax(l +  |xno|, |x0| , . . . ,  |xno_ i|). Q.E.D.

Si x = (xn) et y = (yn) sont deux suites de Cauchy, il existe donc M  G Q tel 
que \xn\ < M  et \yn\ <  M  pour tout n G N, d’où

Ixpyp -  xqyq| =  \xp(yp -  yq) +  yq{xp -  xq)\ < M ( \xp -  xq\ + \yp -  yq|) 
et il en résulte que la suite xy est de Cauchy. Il est alors immédiat de vérifier qu’on 
définit ainsi une structure d’anneau commutatif sur X  ; cet anneau possède un 
élément unité, à savoir la suite dont tous les termes sont égaux à 1.

On définit ensuite une relation d’équivalence R  sur X  : si x  =  (x n) G X  et 
suites de Cauchy, on note x  =  y (mod. R) la relation 
(2.1.7) (Ve G Q, e > 0 )(9n G N)(Vp G N)(p > n ^  \xp — yp\ <  e).

Cette relation est trivialement réflexive et symétrique ; quant à la transitivité, 
si x = y (mod. R) et y = z (mod. R.) où z = (zn) G X, pour tout e G Q, e > 0, il 
existe des entiers n i et 112 tels que \xp -  yp\ < e/ 2  pour p > n i et \yp — zp\ < e/ 2  

pour p > n 2 , d’où \xp -  zp\ < e pour p > m ax(?ii,n2), ce qui prouve le résultat 
voulu.
Exemple 2.1.2 Soit x = (xn) G X  et soit ! G N, on considère la suite y =  (pn), 
yn =  xi+n. Les suites x et y sont équivalentes. En effet, soit £ G Q, e > 0, il existe 
n  G Ntelque |xp -Xg| <  epourp > n e tç  > n ,d ’où \yp- x p\ = |x/+p- x p| <  e 
et |yp -  yq | =  |x/+p — x/+fy | < e pour p > n et q > n, ce qui prouve que y est 
une suite de Cauchy équivalente à la suite x. Ceci montre qu’on ne modifie pas la 
classe d’équivalence d’une suite en supprimant ses l premiers termes.
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On notera que deux suites convergentes (xn) et (yn) sont congrues modulo R 
si, et seulement si, leurs limites x = limn-n» xn et y =  limn_>oo yn sont égales : 
en effet, supposons x = y et soit e G Q, e >  0, alors il existe n € N tel que 
\x -  xp\ < e/ 2  et |y -  yp\ < e/ 2  pour p > n, d’où \xp — yp\ <  e, ce qui 
prouve que les suites (xn) et (yn) sont équivalentes ; réciproquement, supposons 
(xn) = (yn) (mod. R), alors il existe n  € N tel que \x — xp\ <  e/3 , \y — yp\ <  e /3  
(convergence des suites) et \xp -  yp\ < e/3 (congruence des suites) pour p >  n, 
d’où \x — y\ < € et ceci étant vrai quel que soit e >  0, on a nécessairement x = y. 
Ceci montre qu’il est naturel d’introduire l’espace quotient X/R,  toutes les suites 
de Q qui convergent vers le même nombre rationnel ayant dans l’espace quotient 
la même image par la surjection canonique ; en d’autres termes, lorsqu’on passe à 
l’espace quotient X / R  la seule information qui est conservée est la valeur limite 
des suites convergentes, mais cet espace quotient va être beaucoup plus riche que 
Q, car une suite de Cauchy de Q non convergente n’est congrue à aucune suite 
convergente de Q.

L’ensemble quotient X / R  noté R est appelé l’ensemble des nombres réels ; 
on dit aussi que R est la droite réelle. On notera n : X  -> R la surjection cano­
nique et, si x  G X  est une suite de Cauchy de Q, on notera [x] =  n(x) sa classe 
d’équivalence.

2.2 Structure de corps totalement ordonné
Notre premier objectif est de munir R d’une structure de corps commutatif.

Voici un premier lemme.
Lemme 2.2.1 La relation d’équivalence R est compatible avec la structure d ’an­
neau de X  : soient x, x't y et y' des suites de Cauchy de Q telles que x = x* et 
y = yf (mod. R), alors x +  y =  xf -h y' (mod. R) et xy =  x'y' (mod. R).
Preuve Soit e € Q, e > 0, il existe n  € N tel que

| z P -  Xpl < e/2 et Iyp -  y 'p| < e/2 pour p >  n, 
d’où \(xp +  yp) — (x'p + yp)\ <  e, soit x +  y =  x' +  y' (mod. R). On a d’autre 
part xpyp -  x'pyp = xp(yp -  y'p) +  yp{xp -  xp) et il existe (lemme 2.1.2) M  G Q 
tel que \xp\ < M  et \yp\ < M  pour toutp, d’où

\xPyP ~ x'pVp| <  M(\yp -  y'p\ + \xp -  x'p\) < Me pour p > n, 
ce qui prouve que xy =  xfy' (mod. R). Q.E.D.

On peut alors définir la somme et le produit de deux nombres réels £, q G R en 
posant
(2.2.1) £ +  rç= [æ +  tf], = [xy], o ù x e ^ y G r j ,
la classe d’équivalence de x +  y et xy ne dépendant pas du choix des représentants
x et y d ’après le lemme 2.2.1.

On vérifie aisément qu’on définit ainsi sur R une structure d’anneau commuta­
tif ; l’élément neutre (noté 0) pour l’addition est la classe d’équivalence de la suite
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(xn) où xn =  0 pour tout n e  N, l’opposé - £  d’un nombre réel £ est la classe 
d’équivalence de la suite —x =  (—xn) si x = (xn) £ £ et l’élément unité (noté 
1) de l’anneau est la classe d’équivalence de la suite (xn) où xn = 1 pour tout 
n e  N. Vérifions à titre d’exemple l’associativité de l’addition : soient £, 77, £ des 
nombres réels, si x e £, y e 77, 2 e £, on a d’après les définitions

£ +  (v + C) =  M +  ([y] +  [z]) = [x] +  [y +  z]
= [x + (y + z)] =  [(as +  y) +  z]

= [* +  y] +  [*] =  ([*] +  M) +  [*]

= (£ + v) + Ci
ce qui prouve le résultat voulu. Toutes les autres vérifications sont de même nature 
et sont laissées au soin du lecteur.

Nous allons ensuite vérifier que cette structure d’anneau sur R est en fait une 
structure de corps, c’est-à-dire que tout nombre réel ^  0 admet un inverse.
Lemme 2.2.2 Soit £ £ R, £ 7̂  0 etx =  (xn) e £. Il existe £ e Q, e > 0, et n e N 
tel que l'on ait soit xp > £ pour tout p > n ,  soit xp < — e pour tout p > n .
Preuve Étant donné que £ est non nul, la suite x n’est pas congrue à la suite 
identiquement nulle, soit
(2.2.2) (3e e Q, £ > 0)(Wn e N)(3p e N)(p > n et \xp\ > 2e).
La suite (xn) étant de Cauchy, il existe no € N tel que \xp — xq\ < e pour p > no 
et q > no. D’après (2.2.2), il existe n\ > no tel que \xni | >  2e ; supposons par 
exemple xni > 0 donc xni > 2e, on a alors pour n > n \

%n =  %n Œni 3” |*̂ n | — 2e £  — £ ,
lorsque xni < 0, on vérifie de même que xn < - e  pour n > n \ .  Q.E.D.

Considérons alors un nombre réel £ ^  0, vu le lemme précédent et l’exemple 
2.1.2, on peut trouver une suite x = (xn) e £ tel que \xn\ > e pour tout n e N. 
Posons yn = x ~ l 9 y =  (yn ). on a

| X p Xq  |
I Vp Vq\ XvjXi <£ Z\xp - x q\

p u,q

et par conséquent la suite y est de Cauchy. Étant donné que xnyn = 1 pour tout 
71, on a [x][y] = 1 d’après la définition du produit de deux nombres réels et ceci 
prouve que £ =  [x] admet pour inverse le nombre réel [y]. On a donc bien une 
structure de corps sur R.

Plongeons Q dans R de la façon suivante. Si r est un nombre rationnel, soit 
x =  (xn) la suite constante définie par xn =  r ; on définit alors une application
i : Q -»> R en posant i(r) = [x].
Lemme 2.2.3 L’application i : Q —> R est un homomorphisme injectif de corps, 
c'est-à-dire

i(r +  s) = i(r) +  i(s), i(rs) = i(r) i(s) pour tout r, s £ Q.
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Preuve Soient r, s E Q, notons x =  (xn) et y = (yn) les suites telles que xn = r ,
Vn =

1. L’application z est injective : supposons r ^  s, les suites a; et y convergent 
vers des nombres rationnels différents, donc ne sont pas équivalentes, ce qui prouve 
que z(r) ^  z(s).

2. On a d’autre part d’après (2.2.1)
i(r + s) = [x + y] = [x] +  [y] = i(r) +  z(s),

i(rs) = [xy] = [x] [y] = i(r)i(s). Q.E.D.
L’homomorphisme injectif z permet d’identifier Q à un sous-corps de R, à sa­

voir z(Q) ; autrement dit, on ne distinguera pas le nombre rationnel r et le nombre 
réel i(r). Ceci revient en fait à identifier le nombre r et la classe d’équivalence de 
n’importe quelle suite de Q qui converge vers r.

La relation d’ordre sur Q peut être prolongée à R de la façon suivante. Si £ et 
77 sont deux nombres réels, on note £ <  77 la relation

(2 2 3) / pour t0Ut X =  X̂n) € & V = (Vn) e  il existe e G Q, e > 0 et 
 ̂ ‘ G N tel que yp - x p > e  pour tout p > n.

Remarque 2.2.1 La propriété (2.2.3) est vérifiée dès qu’elle l’est pour un repré­
sentant
x =  (xn) E £ et un représentant y =  (yn) E r?. En effet, supposons yp — xp > 3e 
pour p > n et soit x' =  (x^) € f , yf =  (y'n) E p ; les suites x et x 7, y et yf étant 
équivalentes, il existe n i E N tel que \xp — x'p\ < e, \yp — yfp | <  e pour p >  n i, 
d’où

yP -  x'p = yp - y P + yP- x p + xp -  x'p

> yP~ x p ~ \xp -  x'p\ -  |yp -  yp\

> 3e -  2e =  e
pour p > max(n, n i), ce qui prouve le résultat voulu.
Proposition 2.2.4 La relation (Ç < p ou £ =  rj) est une relation d'ordre total 
sur R qui prolonge la relation d'ordre sur Q. Le corps R est un corps totalement 
ordonné.
Preuve Soient £, 77 et Ç trois nombres réels, x =  (xn) E £, y =  (yn) E 77 et 
z = (zn) E C représentants des classes £, rj et £•

1. Montrons que la relation £ <  rj est une relation d’ordre strict. Si £ <  77, on a 
bien £ ^  77 : en effet, d’après (2.2.3) les suites x et y ne peuvent être équivalentes. 
Quant à la transitivité, supposons £ <  77 et 77 <  £ ; d’après (2.2.3), il existe £\ E Q, 
£1 >  0, n i E N tels que yp — xp > £\ pour p > ni et de même, il existe 
£2 G Q, £2 > 0, n 2 E N tels que zp — yp > £2 pour p >  n 2 . On a alors 
zp - x p = zp — yp -\~ yp -  xp > £ 1 +  £2 pour p > m a x (n i, ^2)» ce qui prouve que 
£ <  77.

2. Montrons que l’ordre £ <  77 ainsi défini sur R est total. Si £, 77 sont deux 
nombres réels distincts, il s’agit de vérifier que £ < 77 ou rj < £. Étant donné que
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£ — p ^  0, il existe, d’après le lemme 2.2.2, £ G Q, e > 0 et n G N tel que l’on 
ait soit yp -  xp > £ pour tout p > n, soit xp -  yp > e pour tout p >  n. Dans le 
premier cas, on a £ < p et dans le second cas p <  £.

3. Soient r et s deux nombres rationnels tels que r < s ; posons

x = (xn) et y = (yn) avec xn =  r, yn = s pour tout n.

Étant donné que yn —xn = s — r >  0, on a (remarque 2.2.1) [x] < [y], c’est-à-dire 
i(r) < i (s), ce qui prouve que l’ordre sur R prolonge celui de Q.

4. Vérifions enfin les propriétés (2.1.1) et (2.1.2). Supposons f  <  p, c’est- 
à-dire (2.2.3). Alors, yp +  zp -  (xp +  zp) = yp -  xp > e pour tout p > n , 
d’où £ +  Ç < p +  £. Supposons 0 < £, 0 < p ; le nombre réel 0 étant la classe 
d’équivalence de la suite identiquement nulle, il existe e G Q, e > 0 et n G N tel 
que xp > £,yp > £ pour p > n, d’où xpyp > £ 2 pour p > n> ce qui prouve que

> 0. Q.E.D.
Comme sur Q, les règles usuelles de calcul sur R résultent du fait que R est un 

corps totalement ordonné : définition de la valeur absolue, inégalité triangulaire, 
etc.

Si a et b sont deux nombres réels tels que a < 6, on définit l’intervalle ouvert 
]a,6[ en posant ]a ,b[ = {x G R ; a < x < b} ; un tel intervalle est évidemment 
non vide : il contient par exemple le réel (a +  b)/2. Nous allons montrer que 
l’intervalle ]a, b[ contient en fait un nombre rationnel : l’interprétation de cette 
propriété sera donnée ultérieurement.

Proposition 2.2.5 Soit a, b G R tel que a < b, alors ]a, b[ fl Q est non vide.

Preuve Soit x =  (xn) G a, y =  (yn) G 6, il existe e G Q, e > 0, et n0 G N tel 
que yp — xp >£  pour p > no. Par ailleurs, il existe ni > no tel que

|xp -  xq\ < e/S et |yp -  yq\ <  e/3  pour p > n\ et q > n\. 
Considérons alors le nombre rationnel c =  xni -I- e/2. On a pour p > n i 

c - x p = xni -  x p + e/2  > e/ 2  -  \xni -  xp\ > e/ 2  -  e/3 = e/6, 

d’où a < c ; de même,

2/p -  c =  ÿp -  yni +  yni -  xni -  e/2  > e -  \yp - y ni | -  e/2 > e/2 -  e /3  =  e/6, 

d’où c <  6 et ceci prouve que c e  ]a, 6[ fl Q. Q.E.D.

Exercice 2.2 .1  La relation d’ordre sur K n’est pas une relation de bon ordre, M n’admettant pas de 
plus petit élément. On considère une partie bien ordonnée A de M et on se propose de démontrer que 
A est dénombrable.

1. Construire d’abord une application f  : A E  telle que, pour tout a E A, a < f(a)  et 
]a, f(a)[C\A =  0 [si A admet un plus grand élément a, prendre / ( a )  =  a +  1 par exemple et, si a 
n’est pas l’éventuel plus grand élément de A, poser / ( a )  =  m in M  où M  — {x  E A\ x >  a}].

2. Soit a, b E A, a  ^  6, montrer que ]a, / ( a ) [ n ] 6 ,  f(b)[=  0.

3. Conclure en utilisant la proposition 2.2.5 et le fait que Q est dénombrable.
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2.3 Suites convergentes de R
Nous allons effectuer sur R la même analyse que celle faite sur Q et nous consta­
terons qu’une suite est convergente si, et seulement si, elle est de Cauchy ; c’est 
ce résultat qui justifie a posteriori la construction précédente de R.
Définition 2.3.1 On dit qu'une suite (xn) de R converge vers x  G R si
(2.3.1) (Ve > 0)(3n G N)(Vp G N)(p > n => \x -  xp\ < e).
On dit alors que x est la limite de la suite (xn) et on écrit x = lim n_*oo xn.

Dans cette définition, e est un nombre réel >  0 ; on peut se contenter d’un 
e rationnel : en effet tout intervalle ]0, e[ où e G R, £ > 0, contient un nombre 
rationnel d’après la proposition 2.2.5. Ceci montre que les suites convergentes de 
Q convergent sur R vers la même limite.

Si une suite (xn) est convergente, sa limite est déterminée de façon unique. La 
démonstration de cette propriété sur Q ne repose que sur l’inégalité triangulaire et 
vaut donc sur R.
Définition 2.3.2 On dit qu'une suite (xn) de R est une suite de Cauchy si

f  (Vc > 0)(3n G N)(Vp G N)(Vq G N)
(2.3.2) {

[ (p > n et q > n  => \xp — xq\ < £).

Dans cette définition, £ est un nombre réel >  0, mais comme ci-dessus on peut 
se contenter d’un £ rationnel ; les suites de Cauchy de Q le sont encore sur R. On 
vérifie comme sur Q la
Proposition 2.3.1 Toute suite convergente de R est de Cauchy:

Pour démontrer la réciproque, nous utiliserons les résultats suivants.
Lemme 2.3.2 Soit x =  (xn) G X  une suite de Cauchy de Q. S'il existe un entier 
n G N et des rationnels a, 6 G Q tels que a < x p < b pour tout p > n ,  on a alors
a <  [x] < b.
Preuve Vérifions par exemple que a < [x]. Raisonnons par l’absurde. Supposons 
[x] < a, il existe alors e G Q, £ >  0, et n  G N tel que a — xp > £ pour tout 
p >  n, d’où xp < a -  £ < a ce qui contredit l’hypothèse. On vérifie de même que 
[x] < b. Q.E.D.

Lemme 2.3.3 Soit x = (xn) G X  une suite de Cauchy de Q, alors la suite (xn) 
converge vers le nombre réel [x].
Preuve Soit £ G Q, £ > 0, il existe n  G N tel que \xp — xq\ <  £ pour p > n et 
q > n, c’est-à-dire xq—£ < x p < xq+£, d’où (lemme 2.3.2) xq—£ < [x] < xq+£y 
soit \ [x] -  xq\ <£  pour q > n , ce qui prouve le résultat voulu. Q.E.D.

Corollaire 2.3.4 Tout nombre réel est la limite d'une suite de rationnels : on ex­
prime cette propriété en disant que Q est dense dans R.
Théorème 2.3.5 Toute suite de Cauchy de R converge : on dit que R est complet.
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Preuve Soit (xn) une suite de Cauchy de R ; d’après le corollaire précédent, il 
existe des rationnels rn G Q tels que \xn — rn \ <  l / ( n  + 1). La suite r  =  ( r n ) est
de Cauchy : en effet, soit e >  0, il existe un entier n  G N tel que l / (p  + 1 )  <  e /3
pour p > n e x \ x v — x q\ < e/3  pour p et q > n, d’où

\rp -  rq| <  |x p -  rp\ +  \xp -  x q\ H- \xq -  rq\

< l/(p + 1) + l/(̂ f + 1) + |Xp — Xg|

^  £/3~\-£/3~\-£/3 = £
pour p et q > n. D’après le lemme 2.3.3, la suite (rn) converge donc vers le 
nombre réel x  = [r]. Montrons alors que la suite (x n ) converge vers x  : soit £ > 0, 
il existe n G N tel que l/(p +  1) <  e/2 et \x -  rp\ < e/2  pour p > n, d’où

\x -  xp\ < \ x -  rp | +  \xp -  rp\ < \ x -  rp\ +  1 /(p +  1) <  e /2  + £ / 2  = £
pour p > n, ce qui prouve le résultat voulu. Q.E.D.

Ce théorème fondamental étant établi, il est utile de revenir à la notion de 
convergence des suites afin d’examiner les relations existant entre cette structure 
de convergence d’une part et la structure de corps ordonné d’autre part.

Notons d’abord que le lemme 2.1.2 vaut sur R avec la même démonstration.
Lemme 2.3.6 Toute suite (xn) de R convergente est bornée : il existe M  € R tel 
que \xn \ < M  pour tout n G N.

Proposition 2.3.7 Principe du prolongement des inégalités Soient (xn) et (yn) 
deux suites convergentes telles que xn < yn pour tout n  G N, alors

lim xn < lim yn.n-¥ oo n—>oo
Preuve Posons x = limn-^ooXn, y = linin^oo^n et raisonnons par l’absurde. 
Supposons y < x ; soit 0 < £ < (x -  y)/2, il existe n G N  tel que \x -  xp\ < £ et 
\y - y P | <£  pour p > n, c’est-à-dire x -  £ < xp < x + £ et y — £ < y p < y  + £. 
D’après le choix de e, y +  £ < x -  e, d’où yp < y +  £ < x -  £ <  xp pour p > n, 
soit yp < xp, ce qui est absurde. Q.E.D.

Proposition 2.3.8 Soient (xn) et (yn) deux suites de R convergentes. Alors les 
suites
(xn +  yn)> fanl/n) sont convergentes ainsi que la suite (x~l ) si xn ^  0 pour 
tout n G N et limn-*» xn ^ 0  ; on a en outre
(2.3.3) lim (xn + yn) =  lim xn +  lim yn ,n—>oo n—» oo n—*oo
(2.3.4) lim (xnyn) = lim xn x lim yn,n—ï oo n—ïoo n—»oo

(2.3.5) lim x
n—>oo

-1
n =  ( lim xn) 1.

n->oo

Note Ces propriétés signifient, comme nous le verrons ultérieurement, que R est 
un corps topologique.
Preuve Posons x  =  lim ^ o o  xnt y =  lim ^ o o  yn et soit £ > 0.
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1. Il existe n0 G N tel que \x -  x n \ < e/2  et \y -  yn \ < e/2  pour n  > no, 
d’où |(x + y) -  (xn + yn)\ < \x - x n \ +  \ y - y n \ < ep o u rn  > n 0,cequi prouve
(2.3.3).

2. Il existe M  > 0 tel que \yn \ < M  pour tout n  G N et \x\ <  M  ; posons 
6 = e/2  M, il existe no G N tel que \x — x n \ < ô et | y — yn \ < 5 pour n >  no, 
d’où

\xy -  x nyn | =  |x(y  -  yn) +  yn (x -  x„)|

< \ x \ \ y - y n\ + \ y n \ \ x - x n\<2M 5 = e 
pour n > no, ce qui prouve (2.3.4).

3. Il existe no € N tel que \x -  xn\ <  \x\/2 pour n >  no, d’où 
|xn | =  \x -  (x -  xn)\ > |x| -  |x -  xn\ > \x\/2 , 

d’où |xxn | > |x |2/2  pour n > no ; il existe n i > no tel que |x — xn\ < e |x |2/2  
pour n > ni, d’où

1 _  J _
X  Xf i

ce qui prouve (2.3.5).

|x -  xn 
|xx„|

.  1*12 <  e-4r" x _  2 |x |2/2
: ep o u rn  >  n i,

Q.E.D.

2.4 Le théorème de Bolzano-Weierstrass
Voici un premier résultat important.
Théorème 2.4.1 Toute partie de E  non vide et majorée (resp. minorée) admet une 
borne supérieure (resp. inférieure).
Preuve Soit A une partie non vide de R, supposons A majorée par exemple et 
notons M  l’ensemble (non vide) des majorants de A. Nous allons faire un raison­
nement par dichotomie. Soit a G A ,m  G M  ; pour tout entier n G N, on pose

£n,k =  a + où 0 < k < 2n .

L’application k h* est évidemment croissante :
a =  £n ,0 <  £n, 1 <  • • • <  £n ,2» =  TU]

par conséquent, si Çntk est un majorant de A, il en est de même de Çn>i pour l > k \  
étant donné que £n>2» est un majorant, il existe un entier k(n) G [0,2n] tel que 
£n,k & m  pour k < k(n) et G M  pour k > k(n) ; posons xn = £njfc(n) : on 
construit ainsi une suite (xn) de majorants.

Nous allons montrer que cette suite converge, c’est-à-dire qu’elle est de Cau­
chy. Soit p un entier >  n ; notons que tout réel (0 < k <  2n) peut s’écrire ÇPii 
(0 <  l < 2P) : on a en effet si l =  2p~nk ; étant donné que xn G M  et
que xn — 2 ~n ^  M , on a nécessairement xn — 2 ~n < xp < x n pour p >  n et par 
conséquent \xp — xq\ < 2 ~n pour p et q >  n, ce qui prouve que la suite (xn) est 
de Cauchy.
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Notons l la limite de cette suite (xn) ; Z est un majorant de A car, si x G A, 
on a x < xn pour tout n, donc x < l d’après le principe du prolongement des 
inégalités. Notons également que l < xn pour tout n vu que xp < xn pour p > n .

Montrons enfin que l est la borne supérieure de A. Raisonnons par l’absurde. 
Supposons qu’il existe un majorant x  de A tel que x < L Étant donné que xn—2~n 
n’est pas un majorant, on a xn -  2 ~n < x < l < xn, d ’où 0 <  l — x < 2 ~n pour 
tout n, ce qui est absurde. Q.E.D.
Note Cette démonstration utilise de façon essentielle le fait que R est complet ; le 
théorème est d’ailleurs faux sur Q.
Remarque 2.4.1 La droite achevée Une partie de R n’est pas nécessairement ma­
jorée ou minorée, car R n’admet ni plus grand élément, ni plus petit élément. Il est 
alors commode d’adjoindre à R deux ensembles distincts et n’appartenant pas à R 
(de tels ensembles existent d’après le paradoxe de Cantor) que nous noterons +oo 
et —oo ; on obtient ainsi la droite achevée R =  RU {+oo} U {—oo}. On prolonge à 
R la relation d’ordre^de R en posant -o o  <  x  <  +oo pour tout x  G R. On obtient 
ainsi un ensemble R totalement ordonné dont toute partie est bornée supérieure­
ment et inférieurement ; de plus, une partie A de R est bornée supérieurement 
dans R si, et seulement si, sup^A  appartient à R, auquel cas supK A = supjj A  
Ces remarquent sont très utiles dans la pratique : par exemple, dans R la formule
(1.4.2) est vraie sans hypothèse ; si l’application de cette formule à une partie de 
R conduit à une borne supérieure supjjgA finie, alors A est bornée supérieurement 
dans R et supK A = sup^- A. Cette remarque s’applique également aux formules
(1.4.3) et (1.4.4) lorsque /  est à valeurs réelles.
Corollaire 2.4.2 Une suite (xn) croissante (resp. décroissante) de R converge si, 
et seulement si, elle est majorée (resp.minorée) auquel cas 

lim xn =  su p xn(resp. inf xn).n—ïoo n€N
Preuve Vu le lemme 2.3.6, il s’agit de vérifier par exemple qu’une suite crois­
sante majorée est convergente. D’après le théorème précédent une telle suite admet 
une borne supérieure l =  supneNxn. Pour tout e > 0, il existe n G N tel que 
l — e < xn < /, d’où l — £ <  xp < l pour p > n, ce qui prouve que la suite (xn) 
converge vers L Q.E.D.

Voici une autre conséquence du théorème 2.4.1. Rappelons ce qu’on entend 
par intervalle : si a et b sont deux nombres réels tels que a <  6, il peut s’agir de 
l’intervalle ouvert ]a,6[, de l’intervalle fermé [a, b], des intervalles semi-ouverts 
]a, b], [a, b[ ou bien encore des intervalles illimités ] -  oo, a], ] — oo, a [ , ]a, +oo[, 
[a, +oo[ et ] -  oo, +oo[.

On a alors la caractérisation suivante.
Corollaire 2.4.3 Pour qu’une partie I  de R soit un intervalle, il faut et il suffit 
que, pour tout x, y G I, l ’intervalle [;x , y] soit contenu dans L 
Preuve La condition est évidemment nécessaire. Pour démontrer la réciproque, 
il faut distinguer différents cas selon que I  est majoré ou minoré. Si I  n’est ni
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majoré, ni minoré, pour tout réel m  G R il existe x , y  G I  tel que x  < m  < y, 
d’où m  G [x,y] C /  ce qui prouve que I  = R. Supposons ensuite I  non vide, à 
la fois majoré et minoré ; posons a = inf I  et b = sup I  ; si m  G ]a, b[, il existe 
x yy G I  tel que a < x < r n < y <  b, d’où m  G [x, y\ C I  et ceci prouve que 
]a, b[ C 7 ; étant donné que 7 est contenu dans [a, 6], 7 est un intervalle d’extrémité 
a et b. On traite d’une façon analogue tous les autres cas. Q.E.D.
Note On observera que ce corollaire est faux sur Q. Par exemple, l’ensemble

{x  G Q; x 2 < 2}
n’est pas un intervalle de Q bien que le critère du corollaire soit vérifié.

Avant d’énoncer le théorème suivant, indiquons les notations utilisées pour les 
sous-suites. Si (xn) est une suite d’éléments d’un ensemble X  et si k est une 
application strictement croissante de N dans N, la suite (xnk)keN est appelée une 
sous-suite (extraite) de la suite (xn) et elle sera notée simplement (xnA;). Si (xn) 
est une suite de R  qui converge vers x, toute sous-suite converge vers x . Si la suite 
(xn) ne converge pas, il n’existe pas nécessairement de sous-suite convergente (par 
exemple x n =  n). Par contre, on a le
Théorème 2.4.4 Bolzano-Weierstrass De toute suite bornée de nombres réels, 
on peut extraire une sous-suite convergente.
Preuve Soit (xn) une suite bornée ; posons yn =  supp>nxp, on construit ainsi 
une suite (yn) décroissante et minorée, donc convergente, notons l sa limite. Cons­
truisons alors une sous-suite (xnk) telle que |Z — xnk\ < 1 /k  pour k > 0. On 
effectue cette construction par récurrence sur k. Prenons par exemple no =  0 et 
supposons défini n i , . . . ,  Uk-i- Alors, il existe n > rik-i tel que \l — yn \ < 1 /2k 
et, d’après la définition de yn , il existe n^ > n tel que |yn — xnk | < 1/2k, d’où 
|Z -  Xnk | <  1 /k. La sous-suite (xnk ) ainsi construite converge vers L Q.E.D.

2.5 Ouverts, fermés et compacts de R

Introduisons sur R les premières notions de topologie afin d’interpréter certaines 
propriétés de R et en particulier le théorème de Bolzano-Weierstrass.

Étant donné une partie A de R, soit (xn) une suite de A ; si une telle suite 
converge, sa limite n’appartient pas nécessairement à A et on est donc conduit à la 
définition suivante.
Définition 2.5.1 Une partie A de R est dite fermée si la limite de toute suite 
convergente de A appartient à A.

Dire que A est fermé signifie donc que, pour toute suite convergente (xn) de 
R, alors lim ^ o o  x n G A dès que x n G A pour tout n G N. D’après le principe du 
prolongement des inégalités tout intervalle fermé [a, b] est effectivement fermé, il 
en est de même des intervalles illimités ] — oo, a], [a, +oo[ et R =  ] — oo, +oo[ ;
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en particulier, les ensembles réduits à un élément {a} =  [a, a] sont fermés : on dit 
que les points sont fermés.

Voici une première utilisation de cette notion d’ensemble fermé.
Proposition 2.5.1 Une partie de R non vide, fermée et majorée (resp. minorée) 
admet un plus grand (resp. petit) élément.
Preuve Soit A une partie non vide, fermée et majorée ; A admet une borne 
supérieure m (théorème 2.4.1). Pour tout n  £ N, il existe xn £ A  tel que 
m — l/(n  -|-1) <  xn <  m ; on construit ainsi une suite (xn) de A  qui converge 
vers m et, A étant fermé, on a m £ A , ce qui prouve que m est le plus grand 
élément de A. Q.E.D.

Nous noterons 0 ' l’ensemble de toutes les parties fermées de R ; cet ensemble 
0 ' possède les propriétés que voici.
Proposition 2.5.2 Soit 0' V ensemble des parties fermées de R, on a alors 
(P[) Toute intersection d'ensembles de 0 ' est un ensemble de 0 f.
(O'f) La réunion de deux ensembles de 0 ' est un ensemble de 0 '.
(0 '3) 0  6  0 ' e t R e O ' .
Preuve 1. Soient une famille de parties fermées, F  =  Plie/ et (xn) une
suite de F  qui converge vers x. Alors, pour tout i £ / ,  xn appartient à F.*, donc 
x £ Fi vu que Fi est fermé et il en résulte que x £ F, ce qui prouve (0[).

2. Soient i* i ,f 2 £ 0 ', F  =  F\ U F2 et (xn) une suite de F  qui converge 
vers x ; l’un des deux ensembles Ni = {n £ N; xn £ F*}, i = 1,2, est infini ; 
supposons par exemple Ni infini, alors si désigne le k 4- 1-ième élément de Nu  
la sous-suite (xUk ) converge vers x  et, F\ étant fermé, x £ F\ C F , ce qui prouve
m .

3. L’ensemble vide est fermé d’après (1.1.6) et R est trivialement fermé. Q.E.D. 
On notera qu’une intersection quelconque de fermés est fermée, mais que 0 '

est stable seulement par réunion finie.
Si A est une partie quelconque de R, l’intersection A de tous les fermés conte­

nant A est une partie fermée d’après (Oi) qui contient A ; A s’appelle l’adhérence 
de A et un point de A est dit adhérent à A ; l’adhérence de A est donc le plus petit 
fermé contenant A et il en résulte que A est fermé si, et seulement si, A = A.

On peut caractériser les points adhérents comme suit.
Proposition 2.5.3 Soit A une partie de R et x £ R. Les propriétés suivantes sont 
équivalentes

1. x £ A.
2. Pour tout e > 0, l’intervalle ouvert )x — e, x  +  e[ rencontre A.
3. Il existe une suite (xn) de A qui converge vers x.

Preuve 1 => 2 Soit x £ A  ; supposons 2. en défaut. Il existe e >  0 tel que
]x -  e ,x  + e[C\A =  0,

soit A c  ] -  0 0 , x -  e] U [x+ e, + 0 0  [ ; ce dernier ensemble étant fermé et contenant 
A , il contient A et par conséquent x A, ce qui est absurde.
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2 => 3 D’après 2., pour tout n G N, il existe
€]x — l /(n + l) ,x  l / (n  1)[C\A ;

on construit ainsi une suite de A qui converge vers x .
3 => 1 On a xn G A, d’où xn G A et, A étant fermé, x G A. Q.E.D.
On dit qu’une partie A de R est dense dans R si A = R : le corollaire 2.3.4

signifie bien que Q est dense dans R. La proposition 2.2.5 a également la même 
signification, vu la
Proposition 2.5.4 Une partie A de R est dense dans R si, et seulement si, pour 
tout a, b G R, a < b, l ’intervalle ouvert ]a, b[ rencontre A.
Preuve La condition est nécessaire. Si A est dense dans R, le point x = (a +  b)/2 
appartient à A , donc )x -  e, x  +  e[, e =  (b — a)/2 , c’est-à-dire ]a, 6[ rencontre A. 
La condition est suffisante, tout point x étant adhérent à A d’après la proposition 
précédente. Q.E.D.

Venons-en à la notion importante de partie compacte.

Définition 2.5.2 Une partie A de R est dite compacte si toute suite de A admet 
une sous-suite qui converge vers un point de A.

Le théorème de Bolzano-Weierstrass peut alors s’énoncer comme suit.

Théorème 2.5.5 Une partie A de R est compacte si, et seulement si, A est une 
partie fermée et bornée.
Preuve 1. Toute partie compacte est fermée. En effet, soit (xn) une suite de A qui 
converge vers a ; montrons que a G A ; il existe une sous-suite (xnk ) qui converge 
vers un point b G A  ; or, la sous-suite (xUk ) converge vers a, donc a = b (unicité 
de la limite) et ceci prouve que a G A.

2. Toute partie compacte est bornée. Raisonnons par l’absurde, supposons par 
exemple A non majorée ; alors pour tout entier n  G N, il existe xn G A, xn > n  ; 
on construit ainsi une suite de A qui n’admet aucune sous-suite convergente, car 
aucune sous-suite n’est bornée vu que xUk > n k > k .

3. Réciproquement, soit A une partie fermée et bornée et soit (xn) une suite de
A. Cette suite est bornée, donc (théorème 2.4.4) elle admet une sous-suite (xUk) 
qui converge et sa limite appartient à A  vu que A  est fermé et ceci prouve que A 
est compact. Q.E.D.

Exemple 2.5.1 Les intervalles fermés [a, b], a, b G R, sont compacts.

De la proposition 2.5.1, on obtient le
Corollaire 2.5.6 Toute partie compacte non vide A de R admet un plus grand et 
un plus petit élément : il existe a, b G A tel que a < x  < b  pour tout x G A.

Après avoir défini la notion de partie fermée, on définit les parties ouvertes : 
une partie A de R est dite ouverte si son complémentaire est fermé. Le complé­
mentaire d’un ouvert est donc fermé et le complémentaire d’un fermé est une partie 
ouverte.
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Exemple 2.5.2 Tout intervalle ouvert }ayb[ est ouvert, son complémentaire étant 
fermé en tant que réunion de deux intervalles fermés ; de même, les intervalles 
illimités ] — oo, a[ et ]a, +oo[ sont ouverts.

On note 0  l’ensemble de toutes les parties ouvertes de R ; la proposition 2.5.2 
s’écrit alors
Proposition 2.5.7 Soit 0 l'ensemble des parties ouvertes de R, on a alors
(01) Toute réunion d'ensembles de 0  est un ensemble de 0.
(0 2 ) L'intersection de deux ensembles de 0  est un ensemble de 0.
( 0 3 ) 0  G 0  et R e 0.
On notera que 0  est stable par réunion quelconque et intersection finie.
Note Comme nous le verrons ultérieurement, une structure topologique peut être 
définie en se donnant une famille 0  de parties, dites ouvertes, vérifiant les proprié- 
tés (Oj), ( 0 2) et (0 3).

La description des ouverts est assez simple.

Proposition 2.5.8 Une partie O de R est ouverte si, et seulement si, pour tout 
x £ O, il existe £ > 0 tel que ]x — e,x + e[c O.
Preuve Si O est ouvert et si x e O, x n’appartient pas au fermé R — O, donc 
x n’est pas adhérent à R -  O et il existe donc (proposition 2.5.3) e > 0 tel que 
]x -  £, x +  e[ ne rencontre pas R — O, c’est-à-dire tel que ]x — £, x + e[ soit contenu 
dans O.

Réciproquement, s’il existe € >  0 tel que }x -  e, x +  e[ soit contenu dans O, 
donc ne rencontre pas R — O, la proposition 2.5.3 montre que x n’est pas adhérent 
à R -  O et ceci prouve que R -  O coïncide avec son adhérence, donc est fermé et 
par conséquent O est ouvert. Q.E.D.

Corollaire 2.5.9 Une partie O de R est ouverte si, et seulement si, O est une 
réunion d'intervalles ouverts.
Preuve La condition est suffisante d’après (Oi), tout intervalle ouvert étant ou­
vert. Réciproquement, si O est ouvert, pour tout x £ O il existe ex > 0 tel que
] x - e x,x + ex[c O, d’où O = \Jx€0]x -  £x,x + ex[. Q.E.D.

2.6 Développement par rapport à une base
Nous allons rappeler très brièvement ce qu’on entend par développement décimal 
et plus généralement par développement par rapport à une base b. Ces développe­
ments utilisent la notion de série, notion qui sera étudiée ultérieurement dans le 
cadre des espaces de Banach ; nous n’avons besoin ici que de considérations très 
élémentaires.

A toute suite (æn) de nombres réels, on associe la suite (sn) des sommes par­
tielles définies par sn = X)p=o xv et on dit que la série de terme général xn
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est convergente et de somme s si la suite (sn) converge vers s ; on écrit alors 
s =  Y^Lo xn et on dit encore que la série Y^Lo xn est convergente. Lorsque les 
xn sont positifs, la suite (sn) étant croissante, la série Y^Lo x n  converge si, et 
seulement si, la suite (sn) est majorée.

Par exemple, si x est un nombre réel tel que \x\ <  1, on a

sn
1 -  xn + 1

1 -  X

d’où lim n_>0o sn = 1/(1 — x) ce qui prouve que la série Y^Lo xU est convergente 
de somme 1/(1—x). Donnons-nous alors un entier b >  2 (appelé base) et une suite 
(an) de nombres entiers tels que 0 < an < b — 1. On peut écrire

n  n  , - n — 1 , - oo

£  v > - p < £(*>  -  l )b~p = ^ r E b~p ^ ^ - E b~p = 1
p =  1 p = l  p = 0  p = 0

et ceci prouve que la série Y™=i anb n est convergente et que sa somme est un 
nombre réel x G [0,1]. Réciproquement, on a le

Théorème 2.6.1 Soit b un entier > 2, tout nombre réel x de l'intervalle [0,1 [peut 
s'écrire sous la forme

oo
(2.6.1) x =  anb~n, où On G N, 0 < a n <  b -  1 ;

71=1

cette écriture de x, appelée développement de x en base 6, est unique sauf pour 
les x de la forme Y n=ianb~n où N  > 1, a #  ^  0, qui admettent un second 
développement en base b, à savoir

N - 1 oo
Y i anb~n +  (aN - l ) b - N +  £  (6 - 1)6- " .
71=1 7 l= iV + l

Preuve 1. Montrons d’abord que tout x G [0,1[ admet un développement de la 
forme (2.6.1). On construit les an par récurrence de telle sorte que

N

(2.6.2) x = ^  anb~n +  xwb~N, où 0 <  xn  <  1.
71=1

Pour N  =  1, on a 0 <  bx < b ; notons a\ =  [bx] la partie entière de bx et posons 
Xl = bx — au soit x = axb~l +  x \6_1 où 0 < x\ < 1  ; ceci prouve (2.6.2) pour 
N  = 1. De la même façon, posons a^+i =  [^iv]> # iv+ i = bx^ — ün+i , on a 
alors xN =  aN+ib~l +  xw+i d’où (2.6.2) pour N -1-1. Étant donné que

\x ~  £ an6~n | <  b ~ N  

71=1

et que b~N tend vers 0 quand N  tend vers l’infini, la série cbnb~n est conver­
gente de somme x.
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2. Supposons que x  admette deux développements différents
OO oo

X = anb~n = ^ 2  anb~n>
n = 1 n = 1

notons N  le plus petit entier tel que aN /  a'N et pour fixer les idées, supposons 
a'N < cln- On peut écrire

N N
X = ^ 2  anb~n + fN = ^ 2  a'nb~n +  rN>

71=1 71=1

0ù oo

0 <r'N = J 2  a'nb-n < ( b - l ) b-(N+l)J 2 b- p = b~N’
n=N+1 P=0

soit 0 <  r'N < b~N ; en outre r'N = b~N si, et seulement si, tous les a'n sont 
égaux à b — 1 pour n  >  N  + 1. On a alors a^b^N + tn — a'Nb~N + r'N, d’où 

0 <  aN -  a'N =  bN{r'N -  rN) < 1
et il en résulte que aN -  a'N =  1, r'N =  b~N et ryv =  0. Ceci prouve d’une part 
que x = J2 n=i anb~n où a n  ^  0, d’autre part que

N -1

x = J 2  anb~n + (^n ~ l)b~N + r'N
71=1

où r'N = b~N, donc a'n = b -  1 pour n > N  +  1, ce qui prouve le résultat désiré.
Q.E.D.

On notera que de toute façon un nombre réel x  G [0 ,1[ admet un unique déve­
loppement (2.6.1) où les an € { 0 , . . . ,  b - 1} ne sont pas tous égaux à b - 1 à partir 
d’un certain rang. Quant au nombre 1, il ne peut s’écrire que ~
Note Un développement en base 2 est appelé développement dyadique, en base 3 
développement triadique, en base 10 développement décimal.

Voici une conséquence importante du théorème précédent
Proposition 2.6.2 Uensemble R a la puissance du continu.
Preuve Étant donné que R  =  U n € z ln >n  +  1[ et Que tout intervalle [n,n +  1[ 
est équipotent à [0,1[, il suffit de démontrer que [0,1[ a la puissance du continu 
d’après la proposition 1.9.8. A toute application (an)nen de N dans {0,1} 
associons le nombre réel Yl™=o ûn3“ n̂+1  ̂ ; on obtient ainsi une injection de 
5F(N; {0,1}) dans [0,1[ ; il en résulte que

Card[0,l[>Card3>(N).
Inversement, tout nombre réel x G [0,1[ admet un développement dyadique et 

un seul o cin2~(n+1\  où les an G {0,1} ne sont pas tous égaux à 1 à partir 
d’un certain rang ; on définit ainsi une injection de [0,1[ dans îF(N; {0,1}), d’où 
Card [0,1 [ <  Card 3>(N). Q.E.D.

On en déduit que Rn, n > 1, a la puissance du continu, que l’ensemble 
!F(N; M) de toutes les suites (xn) de nombres réels a la puissance du continu.
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Remarque 2.6.1 On peut considérer R comme un espace vectoriel sur le corps 
<Q>, soit B  une base de R sur Q. Que peut-on dire du cardinal de B  ? D’une façon 
générale, soit E  un espace vectoriel sur un corps K  et soit B  une base de E  ; on 
définit une surjection /  de L £ L i(^ n x B n) sur E  en posant

n
/ ( A ,x )  =  ^   ̂ A jXj OU A =  (A *)i< .;< n E  UC , X =  {Xi)\<i<n £  B  .

i= l
Ici, K  = Q est un ensemble dénombrable ; par suite, si on avait Card B  < Card N, 
on aurait Card R < Card N d’après les propositions 1.9.5 et 1.9.6. Ceci montre que

Card B  > Card N
et par conséquent, Card N <  Card B  < Card R ; modulo l’hypothèse du continu 
(remarque 1.9.1), on a donc dim^R =  Card R.
Exercice 2.6.1 Montrer que l'ensemble E — Q des nombres irrationnels a la puissance du continu 
[utiliser l'exercice 1.9.4].

Exercice 2.6.2 Ensemble triadique de Cantor De l’intervalle fermé [0,1], on enlève le tiers cen­
tral ouvert Ei =  E n  = ]^ ,  | [ .  L'ensemble [0,1] — E\ est la réunion des deux intervalles fermés 
[0, et [ | ,  1] dont on enlève les tiers centraux ouverts E^\ =  ]§ , §[ et E22 = ] | ,  | [ .  On pose 
E2 =  E21 U È22 et on procède de même avec [0,1] — E\ U £ 2- Par récurrence, on définit ainsi, pour
tout n >  1, 2n_1 intervalles (Eni) i< i < 2» - i  ; <>n pose En =  U*=i Eni et

00
C =  [0,1] -  ( J  En( ensemble de Cantor.)

71=1
1. Montrer que l’ensemble de Cantor est compact.
2. Tout nombre réel x G [0,1] admet au moins un développement triadique Y ^ L i a n3~n où 

ocn E {0 ,1 ,2 } , qu’on écrira x =  O . a i . . .  an •. . .  Si x admet un développement triadique ne conte­
nant pas le chiffre 1, alors ce développement est unique. Montrer que l’intervalle Eni est de la forme 
] 0 . a i . . .  an- i  1 , 0 . a i . . .  a n_ i 2 [  avec aj  G ( 0,2}  et qu’inversement tout intervalle de cette forme 
est un intervalle Eni• En déduire que x G [0,1] appartient à C  si, et seulement si, x admet un déve­
loppement triadique ne contenant pas le chiffre 1.

3. En déduire une bijection de l’ensemble { 0 ,2 }N* sur C  et que C a la puissance du continu.
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2.7 Topologie définie par une distance
La définition 2.3.1 d’une suite convergente sur R fait intervenir essentiellement la 
distance usuelle d(x,y) = \x — y\ de deux nombres réels. Cette distance possède 
des propriétés qui ont été constamment utilisées précédemment telles que l’inéga­
lité triangulaire ; nous allons prendre ces propriétés comme axiomes d’une dis­
tance sur un ensemble quelconque X,  ce qui nous permettra de définir une notion 
de convergence sur X.  On obtient ainsi la notion d’espaces métriques.
Définition 2.7.1 Sur un ensemble X , on appelle distance une application
d : X  x X  -> R+ vérifiant
(D i) Pour tout x^y G X, d(x,y) = d(y,x).
(Z>2 ) Pour tout x, y G X , d(x, y) = 0 si, et seulement si, x = y.
(Ds) Pour tout x , y , z  G X,  d(x, z) < d(x, y) +  d(y, z).

L’inégalité (D3 ) s’appelle l’inégalité triangulaire.
Un ensemble X  muni d’une distance est appelé un espace métrique ; le nombre 

d(x, y) est appelé la distance de x et y.
On appelle boule ouverte (resp. boule fermée, sphère) de centre 

a G X  et de rayon r > 0, l’ensemble B(a;r) = {x G X  ; d(ayx) < 7’} 
(resp. B\a\r )  =  {x G X  ; d(a,x) <  r}, S(a;r) = {x G X  ; d(a,x) = r}).
Définition 2.7.2 On dit qu'une suite (xn) de X  converge vers x G X  si
(2.7.1) (Ve > 0)(3tï G N)(Vp G N)(p > n => d(xyxp) < e).
On dit alors que x est la limite de la suite (xn) et on écrit x = linin-^oo xn.

Si une suite (xn) est convergente, sa limite est déterminée de façon unique. En 
effet, si la suite (xn) converge à la fois vers x et y , pour tout e > 0, il existe n G N 
tel que d(x, xv) < e/ 2  et d(y, xp) < e/ 2  pour p > n , d’où (inégalité triangulaire) 
d(x, y) < e et, ceci étant vrai quel que soit € > 0 , d(.x, y) = 0  d’où x =  y d’après 
(0a).
Exemple 2.7.1 On définit sur M une distance en posant d(x, y) =  |x —t/| ; la droite 
réelle sera toujours, sauf mention expresse du contraire, munie de celte distance.
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La définition 2.7.2 des suites convergentes sur R pour cette distance coïncide avec 
la définition antérieure 2.3.1. On notera par ailleurs que

B(a\ r) = ]a — r, a +  r[ et B 1 {a; r) =  [a — r, a +  r].

Exemple 2.7.2 Espace discret Étant donné un ensemble X> on définit une dis­
tance sur X , appelée métrique discrète, en posant d(x,y)  =  1 si x  ^  y  et 
d(x,x)  =  0. Muni de cette distance, X  est appelé un espace discret. Il n’est 
pas difficile de caractériser les suites convergentes d’un tel espace. En prenant 
0 < e <  1, on constate qu’une suite (x n ) converge vers x  si, et seulement si, il 
existe n  G N tel que x p = x  pour p > n  ; les suites convergentes sont donc les 
suites stationnaires à partir d’un certain rang.

Comme nous l’avons fait sur R, on peut définir les notions de parties fermées, 
puis de parties ouvertes.

Définition 2.7.3 Une partie A de X  est dite fermée si la limite de toute suite 
convergente de A appartient à A. Une partie A de X  est dite ouverte si son com­
plémentaire X  — A est fermé.

Notons O' l’ensemble des parties fermées de X  ; la proposition 2.5.2 vaut en­
core : la démonstration de cette proposition n’utilise en effet qu’une seule propriété 
des suites convergentes, à savoir que toute sous-suite d’une suite convergente vers 
x converge aussi vers x. L’ensemble O des parties ouvertes de X  possède donc les 
propriétés (Oi), (Of) et (O3 ) de la proposition 2.5.7.

Voici des exemples importants de parties ouvertes et de parties fermées.

Proposition 2.7.1 Dans un espace métrique, toute boule ouverte est ouverte et 
toute boule fermée est fermée ainsi que toute sphère.

Preuve 1. Soit B'(a; r), r > 0, une boule fermée. Soit (xn) une suite convergente 
vers x telle que d(a,xn) < r pour tout n G N ; montrons que d(a,x) < r , 
ceci prouvera qu’une telle boule est fermée. Soit e >  0, il existe n  G N tel que
d(x, xp) < e pour p > n , d’où

d(a, x) <  d(a, xp) +  d(xp, x) < r +  £,
soit d(a, x) <  r +  e pour tout e >  0, ce qui prouve que d(a) x) < r.

2. Montrons que toute boule ouverte B(a\r)yr >  0, est ouverte. Il s’agit de vé­
rifier que X  — B(a , r) est fermé, c’est-à-dire que pour toute suite (xn) convergente 
vers x  telle que d(a, xn) > r alors d(a, x) >  r. Avec les notations précédentes, on 
a en effet

r <  d(a, xp) < d(a, x) +  d(x, xp) < d(ay x) +  £ pour p > n,
d’où d(a,x) > r -  £ pour tout e > 0, soit d(a, x) > r, ce qui prouve le résultat 
voulu.

3. On en déduit que toute sphère est fermée vu que
S(a; r) = B'(a; r ) n ( X -  B (a; r)). Q.E.D.
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Exemple 2.7.3 Si X  est un espace discret, on a
B(a\ r) = {a} lorsque 0 < r <  1 ;

il en résulte que {a} est ouvert ; en utilisant (Oi), toute partie de X  est donc 
ouverte. Autrement dit, O =  <J>(X ) et par suite O' =  V{X)  : toute partie est à la 
fois ouverte et fermée.

On peut alors donner une description des ouverts d’un espace métrique ana­
logue à celle des ouverts de R.
Proposition 2.7.2 Soit O une partie d'un espace métrique X, les propriétés sui­
vantes sont équivalentes.

1 . O est une partie ouverte.
2. Pour tout x G O, il existe rx > 0 tel que B(x\ rx) C  O.
3. O est une réunion de boules ouvertes.

Preuve 1 => 2 Soit O un ouvert de X  et soit x G O, montrons que O contient 
une boule ouverte (non vide) centrée au point x  en raisonnant par l’absurde. Sup­
posons que, pour tout e >  0, B(x;e) rencontre X  -  O ; en prenant e = 1 /n  
(n > 1), B(x\ 1/n) fl (X  — O) est non vide et il existe donc xn G X  — O tel que 
d(x, xn) < 1/n ; on construit ainsi une suite (xn) de X  — O qui converge vers x 
et, X  -  O étant fermé, on a donc x G X  -  O, ce qui est contraire à l’hypothèse.

2 => 3 On a en effet O =  Uæeo rx).
3 => 1 vu la proposition précédente et (Oi). Q.E.D.
Notons 0(x) l’ensemble (non vide) des ouverts de X  qui contiennent un point

x. La définition 2.7.2 d’une suite convergente vers x  est alors équivalente à
(2.7.2) (VO G 0(x))(3n  G N)(Vp >n=>xp GO).
En effet, si la suite (xn) converge vers a; et si O G 0(x)> il existe rx > 0 tel que 
B(x\rx) C  O d’où B'(x]e) C B(x\rx) C  O si e = rx/2 ; d’après (2.7.1), on a 
d(x,xp) < e pour p > n, c’est-à-dire xp G B 'fa e ),  d’où xp G O pourp >  n. 
Réciproquement, supposons (2.7.2) vérifié, en prenant O =  B(x;e ) 9 on obtient 
xp G B{x\e) pourp > n , d’où d(x,xp) < e, ce qui prouve (2.7.1).

Ceci montre que la définition d’une suite convergente vers x  n’utilise que les 
ouverts qui contiennent x.  En outre, on constate que la propriété (2.7.2) est encore 
vraie si on substitue à l’ouvert O G 0 (x) toute partie de X  contenant un tel ouvert. 
Ceci nous amène à la définition suivante.
Définition 2.7.4 Soit X  un espace métrique et soit x un point de X. Une partie V 
de X  est appelée un voisinage de x si V contient un ouvert O qui contient x.

Dire que V  est un voisinage de x  signifie donc que V  contient une boule ou­
verte non vide centrée au point x. On notera V(x) l’ensemble de tous les voisinages 
de x. La définition d’une suite convergente vers x  peut alors s’écrire
(2.7.3) ( W  G V(a:))(3n G N)(Vp > n = > x p G V).

La notion de voisinage permet de caractériser les ouverts de X  ; on a en effet
la
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Proposition 2.7.3 Une partie O de X  est ouverte si, et seulement si, pour tout x 
de O, O est un voisinage de x.
Preuve La condition est nécessaire d’après la définition même d’un voisinage du 
point x. Réciproquement, supposons O G V(x) pour tout x G O ; alors il existe 
un ouvert Ux tel que x G Ux C O, d’où O =  L beo  ^  et, vu (Oi), ceci prouve 
que O est ouvert. Q.E.D.

Exemple 2.7.4 Si X  est un espace discret, on a V(x) = {A c  X  ; x e A} 
puisque {x} est ouvert.

A ce stade de l’exposé, il est utile de marquer une pause pour analyser la 
construction que nous venons de faire. La donnée d’une distance nous a permis 
de définir une notion de suite convergente ; bien entendu, il ne saurait être ques­
tion de reconstruire la distance à partir de la seule donnée des suites convergentes : 
deux distances différentes (par exemple d et 2d) peuvent conduire aux mêmes 
suites convergentes. En d’autres termes, un espace métrique possède une structure 
plus fine que la structure définie par la seule donnée des suites convergentes. C’est 
pourtant cette dernière structure qui nous intéresse et qui a permis de définir les 
parties fermées et, ce qui est équivalent par passage au complémentaire, les par­
ties ouvertes ; enfin, nous avons exprimé la convergence d’une suite uniquement 
en termes d’ouverts : c’est la définition (2.7.2). Par conséquent, dans un espace 
métrique la donnée des suites convergentes détermine la famille 0  des ouverts et 
réciproquement ; dans des espaces plus généraux, il n’est plus possible de définir 
les parties fermées d’une façon aussi simple. Par contre, les définitions (2.7.2) et
(2.7.3) pourront toujours être utilisées pour définir la notion de suite convergente. 
Ceci conduit à porter une attention spéciale à l’ensemble V(x) des voisinages de x 
et il est en fait naturel, pour définir la convergence d’une suite vers x , de s’adresser 
à un objet attaché au point x. La définition (2.7.3) n’est cependant guère satisfai­
sante du point de vue structural, car elle établit une relation entre deux objets d’une 
nature différente, à savoir la suite (xn), c’est-à-dire une application de N dans X , 
et l’ensemble V(x), c’est-à-dire une partie de V(X).  En fait, l’objet de référence 
V(rr) devrait par excellence converger vers x  ; nous verrons qu’il est possible en 
effet de développer un formalisme pour lequel les objets susceptibles de converger 
et les objets de référence sont de même nature ; ces objets, appelés filtres, seront 
des ensembles de parties : la notion de convergence d’une suite apparaîtra alors 
comme un cas particulier d’une notion plus générale, celle de convergence des 
filtres.

2.8 Le filtre des voisinages
Définition 2.8.1 Un filtre sur un ensemble X  est un ensemble J  de parties de X
vérifiant les propriétés suivantes
(Fi) Pour tout A G J  et tout B  D A, on a B  G 7.
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(F2 ) Pour tout A G 7  et B G 7, on a A fl B G 7.
(Fs) $ £ 7 e t X G 7 .

Il résulte de (Fs) qu’un filtre est un ensemble non vide de parties non vides 
de X  ; il n’existe donc pas de filtre sur l’ensemble vide. La propriété (F2 ) montre 
que toute intersection finie d’ensembles appartenant à 7  appartient encore à 7  ; 
une telle intersection est donc non vide d’après (Fs).

Exemple 2.8.1 Si A est une partie non vide d’un ensemble X , l’ensemble des 
parties de X  qui contiennent A constitue un filtre sur X  ; en particulier, si X  est 
non vide, 7  =  {X}  est un filtre.

Exemple 2.8.2 Le filtre de Fréchet Si X  est un ensemble infini, l’ensemble des 
complémentaires des parties finies de X  est un filtre sur X.  Lorsque X  = N, ce 
filtre est appelé filtre de Fréchet ; cet exemple est important car il permettra de 
faire le lien entre la notion de suite et la notion de filtre.

Exemple 2.8.3 Soit X  un espace métrique et soit x G X,  alors l’ensemble V(x) 
des voisinages de x  est un filtre sur X.  En effet, soit V G V(x) et W  D V  ; il 
existe un ouvert O tel que x G O C V, d’où x G O C W,  ce qui prouve que W  
est un voisinage de x ; (Fi) est donc vérifié. Quant à (F 2), soit Vi, V2 G V(x), il 
existe des ouverts O* tels que x G O* C V*, i = 1,2, d’où x  G 0 \  f l  O2 C VJ. f l  V2  

et, 0 \  fl O2 étant ouvert d’après (O2 ), V\ fl V2 est un voisinage de x, ce qui 
prouve (F2). Enfin, il est clair que 0 0  V(x) car tout voisinage de x  contient x  et 
X  G V(x) car X  est ouvert d’après (O3 ).

Exercice 2.8.1 Construire tous les filtres sur un ensemble fini [si 3  est un tel filtre, remarquer que

CIm& m  e n
Nous sommes maintenant en mesure de donner la définition générale d’une 

structure topologique.

Définition 2.8.2 Une structure topologique 7  sur un ensemble X  est définie par 
la donnée, pour tout x G X, d'un filtre V(x), appelé filtre des voisinages du point 
x, vérifiant les propriétés suivantes 
(Vi) Pour tout V G V(x), on a x G V.
(V2) Pour tout V G V(x), il existe W  G V(x) tel que, pour tout y G W, on ait 
V G V(y).

Si X  est muni d’une structure topologique 7, on dit aussi que X  est muni d’une 
topologie 7  et X  est appelé un espace topologique ; les ensembles de V(.t ) sont 
appelés les voisinages du point x.

Voici quelques commentaires sur cette définition. L’axiome (Fi) montre que 
toute partie contenant un voisinage de x est encore un voisinage de x ; (F2) montre 
que toute intersection finie de voisinages de x est un voisinage de x ; (Fs) montre 
que l’espace X  lui-même est un voisinage de tout point ; l’axiome (Vi) lie le filtre 
V(x) et le point x.



78 CHAPITRE 2 TOPOLOGIE

Quant à l’axiome (V2), il établit un lien entre les filtres des voisinages de points 
différents ; cet axiome est évidemment esentiel pour l’obtention d’une structure lo­
cale intéressante. Pour mieux comprendre cet axiome (V2 ), introduisons la termi­
nologie suivante. Donnons-nous sur un espace topologique X  une relation R(x) ; 
nous dirons que la relation R(x) est vraie lorsque x  est suffisamment voisin d’un 
point a G X  s’il existe un voisinage F  de a  tel que R(x) soit vraie pour tout 
x  G V. L’axiome (V2) peut alors s’exprimer de la façon suivante : soit V  un voi­
sinage de x, alors V  est encore un voisinage de tout point suffisamment voisin du 
point x.
Exemple 2.8.4 Une structure topologique est donc définie par la donnée d’une 
application V : X  -> ? ( ? (X )) vérifiant des axiomes de la forme

(Vx)(x G X  = > ...).
Si X  est l’ensemble vide, la seule application de X  dans ^(IPpf)), à savoir la 
fonction vide (exemple 1 .2 .1), satisfait à ces axiomes ; il existe donc une topologie, 
et une seule, sur l’ensemble vide.
Exemple 2.8.5 Topologie grossière On définit une topologie sur un ensemble X  
en posant V(x) =  {X}  ; cette topologie est appelée topologie grossière ou topolo­
gie chaotique. Pour cette topologie le seul voisinage d’un point x  est donc l’espace 
X  tout entier.
Exemple 2.8.6 Soit X  un espace métrique, montrons que l’application x  V(x) 
définit une topologie sur X.  Nous savons déjà (exemple 2.8.3) que V(x) est un 
filtre. La propriété (VI) est trivialement vérifiée. Quant à (V2 ), soit V  G V(x) ; 
alors il existe € > 0 tel que B(x\e) C  V  ; on peut prendre W  = B{x\é) vu 
que cette boule est ouverte. On définit ainsi une structure topologique sur X  ; un 
espace métrique sera toujours muni de cette topologie, dite associée à la distance. 
Par exemple, la droite réelle K sera toujours munie, sauf mention expresse du 
contraire, de la topologie associée à la distance d(x, y) =  \x — y\ ; muni de cette 
topologie, R est parfois appelé la droite numérique. On notera que deux distances 
différentes (par exemple d et 2d comme nous l’avons déjà indiqué) sur un même 
ensemble peuvent définir la même topologie, on dit alors que ces distances sont 
topologiquement équivalentes, mais tant qu’on ne s’intéresse qu’aux propriétés 
topologiques de l’espace, le choix particulier de la distance compatible avec la 
topologie (c’est-à-dire définissant la topologie de l’espace) importe peu.
Exemple 2.8.7 Topologie discrète Soit X  un espace discret (exemple 2.7.2). La 
topologie associée à la métrique discrète est appelée topologie discrète.
Remarque 2.8.1 Dans un espace topologique, il n’existe pas en général d’outil 
pour mesurer la proximité de deux points de l’espace : dire qu’un point y est plus 
voisin ou plus près d’un point x  qu’un autre point z n’a a priori aucune signifi­
cation. La notion de distance permet de remédier à ce défaut, mais nécessite de 
restreindre la catégorie des espaces étudiés : une topologie donnée ne pourra pas 
toujours être définie par une distance. Par exemple, si Card X  >  2, la topologie
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grossière sur X  ne peut être définie par une distance ; en effet, s’il existait une 
telle distance d, prenons deux points x ,y  G X , x ^  y, alors r = d(x,y) > 0 et 
la boule ouverte B{x\ r) est un voisinage de x distinct de X , ce qui est absurde, 
X  étant le seul voisinage de x. Ceci conduit à la définition suivante : un espace 
topologique sera dit métrisable, si sa topologie peut être définie par une distance. 
Comme nous le verrons à diverses reprises, les espaces métrisables possèdent des 
propriétés topologiques particulières.

La notion de voisinage d’un point se généralise aisément de la façon suivante.
Définition 2.8.3 Soit A une partie non vide dyun espace topologique X, une partie 
V de X  est appelée un voisinage de A si V est un voisinage de tout point de A.
Nous noterons V(A) l’ensemble des voisinages de A. On a alors la
Proposition 2.8.1 Vensemble V(A) des voisinages d'une partie non vide A d'un 
espace topologique X  est un filtre.
Preuve Vérifions ( F i ) .  Soient V G V(A) et W D  V, V  est un voisinage de 
tout point a G A et il en est donc de même de W  vu que V(a) vérifie ( F i ) ,  ceci 
prouve que W  G V(A) et il en résulte que V ( j4) vérifie (F i) .  Vérifions (F 2 ). 
Soient V i, V2 G V(A), alors pour tout a G A> V\ et V2 sont des voisinages de 
a, donc V\ fl V2 est un voisinage de a car V(a) vérifie (F2 ) ; ceci prouve que 
V\ fl V2 €  V(A) et il en résulte que V(A) vérifie (F 2 ). Enfin, on a 0 #  V ( j4) car 
tout voisinage de A contient A d’après (Vi) et X  G V(A) car X  est un voisinage 
de chacun de ses points d’après (F 3 ). Q.E.D.

Dans l’utilisation pratique des filtres, on peut très souvent se restreindre à la 
considération de sous-ensembles convenables, appelés bases de filtre, dont voici la 
définition.
Définition 2.8.4 Soit J  un filtre, on dit qu'un sous-ensemble 23 de J  est une base 
du filtre J  si tout ensemble de 7  contient un ensemble de 23.

La connaissance d’une base $  d’un filtre 7  permet de reconstruire le filtre ; on 
a en effet d’après (F i )

(2.8.1) J  =  {M  c  X  ; (3B)(B G $  et B  C M )}.
Si 23 est une base du filtre J ,  on dit que 23 engendre Deux bases de filtre diffé­
rentes 23 et 23' peuvent évidemment engendrer le même filtre ; on dit alors que ces 
bases de filtre sont équivalentes. Pour qu’il en soit ainsi, il faut et il suffit que tout 
ensemble de 23 contienne un ensemble de 23' et que tout ensemble de 23' contienne 
un ensemble de 23.

Le filtre défini à l’exemple 2.8.1 admet pour base l’ensemble {A }. Une base 
du filtre de Fréchet est constituée par l’ensemble (5(n ))ne^ où
(2.8.2) S(n) = { p e N ; p > n } .
Dans un espace topologique, une base du filtre V(x) est appelée un système fon­
damental de voisinages de x ; par exemple, pour la topologie discrète, l’ensemble 
{x} est un système fondamental de voisinages de x.
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Dans un espace métrique, l’ensemble (B(x\r))r>o des boules ouvertes cen­
trées au point x  constitue un système fondamental de voisinages du point x  ; il en 
est de même de l’ensemble des boules fermées (B' (x\r))r>o, vu les inclusions 
B(x;r) C J5 '(x;r) et B'(x;r/2) C B(x\r).  On peut préciser ceci de la façon 
suivante.
Proposition 2.8.2 Dans un espace métrique, lyensemble dénombrable des 
boules ouvertes (B (x ; l /n ) )n>i et l'ensemble dénombrable des boules fermées 
(B'(x\ l /n))n>i constituent des systèmes fondamentaux de voisinages du point x. 
Preuve En effet, pour tout e >  0, il existe un entier n  >  1 tel que 0 < 1 /n  < e, 
d’où B (x ; 1/n) C B(x\ e) et B'(x\ 1 /n )  C B'(x; e) ; tout voisinage de x  contient 
donc une boule ouverte de la forme B(x ; 1 /n )  et une boule fermée de la forme 
B'(x;l /n).  Q.E.D.

Il est évidemment utile d’avoir une caractérisation des bases de filtre. 
Proposition 2.8.3 Soit ® un ensemble non vide de parties non vides d'un en­
semble X. Pour qu'il existe un filtre (il est alors unique) sur X  dont !B en soit 
une base, il faut et il suffit que
(2.8.3) l'intersection de deux ensembles de 3  contienne un ensemble de *B.
Preuve Observons d’abord qu’une base de filtre est nécessairement un ensemble 
non vide de parties non vides d’après (Fs). Notons ensuite que la condition (2.8.3) 
est nécessaire d’après (F2 ). Réciproquement, supposons cette condition réalisée ; 
s’il existe un filtre 7  tel que *B en soit une base, ce filtre est nécessairement donné 
par la formule (2.8.1). Vérifions que cette formule définit bien un filtre 7  : (F\) 
est vérifié d’après la définition même de 7 , (F2) résulte de la condition (2.8.3) et 
7  est un ensemble non vide de parties non vides, car il en est ainsi de $ , ce qui 
prouve (Fs). Il est clair enfin que $  est une base de ce filtre 7 . Q.E.D.
Exemple 2.8.8 Filtre des sections Soit I  un ensemble ordonné filtrant, c’est-à- 
dire tel que toute partie à deux éléments soit majorée ; supposons en outre /  non 
vide. Considérons alors l’ensemble des sections

S(i) = [i, -» [ =  {j € I  ; j  > %} où i décrit I.
Vérifions que cet ensemble est une base de filtre sur I  : cet ensemble est un en­
semble non vide (car I  est non vide) de parties non vides (car i G S(i)) et, étant 
donné î , j  G / ,  il existe k G I  tel que i < k et j  < k, d’où S(i) fl S(j)  D S(k) 
ce qui prouve (2.8.3). L’ensemble (S(i))içi est donc une base de filtre engendrant 
un filtre appelé filtre des sections associé à l’ensemble filtrant I. On notera que le 
filtre de Fréchet est exactement le filtre des sections associé à l’ensemble filtrant N 
muni de l’ordre usuel.

2.9 Parties ouvertes, parties fermées
Nous avons défini la notion d’espace topologique en introduisant les filtres des voi­
sinages des points ; nous allons introduire maintenant la notion d’ensemble ouvert
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et montrer comment cette notion permet de donner une définition équivalente des 
structures topologiques. Nous prendrons comme définition la caractérisation des 
ouverts d’un espace métrique de la proposition 2.7.3 ; dans un espace métrique, 
cette définition sera donc cohérente avec la définition antérieure.

Définition 2.9.1 Dans un espace topologique X , une partie O est dite ouverte si 
elle est un voisinage de chacun de ses points.

Ceci s’écrit simplement
(2.9.1) (Vx)(x G O = > 0  6 V(x)).

Nous noterons 0  l’ensemble de tous les ouverts de X  ; cette famille de parties 
possède les mêmes propriétés (Oi), (O2 ) et (0 3) que l’ensemble des ouverts d’un 
espace métrique.

Proposition 2.9.1 Soit 0 l'ensemble des ouverts d'un espace topologique X , on 
a alors
(01) Toute réunion d'ensembles de 0 est un ensemble de 0.
(0 2) L'intersection de deux ensembles de 0  est un ensemble de 0.
(0 3) 0 G 0  et X  GO.
Preuve Notons d’abord que 0 G 0  d’après (1.1.6) et que X  G 0  d’après (Fs) : 
ceci prouve (O3 ). Vérifions (Oi) : soit (O i)iej une famille d’ouverts de réunion
0  et soit x  G O, alors il existe i G I  tel que x G Oi, d’où Oi G V(x) car Oi 
est ouvert et, vu que O D Oiy (F i) montre que O est encore un voisinage de x  ; 
ceci prouve que O est un voisinage de chacun de ses points, donc est un ensemble 
ouvert. Vérifions enfin (O2 ) : soient Oi, O2 deux ouverts et soit x  G 0\C\02> alors
01 et O2 sont des voisinages de x , donc Oi fl O2  est un voisinage de x  d’après
(F2 ) et ceci prouve que 0 1 fl O2 est un voisinage de chacun de ses points, donc 
est un ensemble ouvert. Q.E.D.

On notera qu’une réunion quelconque d’ensembles ouverts est un ensemble 
ouvert, alors qu’une intersection quelconque d’ensembles ouverts n’est pas en gé­
néral un ensemble ouvert : (O2 ) affirme seulement la stabilité de 0  par intersection 
finie.

Nous avons défini la notion d’ensemble ouvert à partir de celle de voisinages ; 
la proposition suivante permet de reconstruire le filtre des voisinages d’un point, 
et plus généralement d’une partie non vide, connaissant l’ensemble des ouverts.

Proposition 2.9.2 Soit A une partie non vide d'un espace topologique X. Une 
partie V de X  est un voisinage de A si, et seulement si, V contient un ouvert 
contenant A. Autrement dit, l'ensemble des voisinages ouverts de A est une base 
du filtre V(A).
Preuve 1. Considérons d’abord un voisinage V  d’un point a et montrons qu’il 
existe un ouvert contenant le point a et contenu dans V. Nous poserons a priori 
(en fait O est l’intérieur de V) O = {x G X  ; V G V(x)}. Alors, a G O car 
V G V(a). Si x G O, on a par définition V G V(x), d’où x G V  d’après (Vi), ce
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qui prouve que O C  V. Montrons enfin que O est ouvert, c’est-à-dire que O est 
un voisinage de chacun de ses points. Considérons donc un point x  de O ; d’après 
la définition de O, on a V  G V(x) ; utilisons alors (V2 ), il existe un voisinage 
W  G V(x) tel que, pour tout y G W, on ait V  G V(y), c’est-à-dire y G O vu la 
définition de O ; autrement dit, il existe un voisinage W  G V(a;) tel que W  C O et, 
d’après (F i), il en résulte que O est un voisinage de x , ce qu’il fallait démontrer.

2. Considérons ensuite un voisinage V  d’une partie A non vide. D’après 1. 
il existe, pour tout a £ A, un ouvert Oa tel que a G Oa C  V. Posons alors 
O = (JaeA O* î cet ensemble est ouvert d’après (0\) z i A c O d V .

3. Réciproquement, soit V  une partie de X  contenant un ouvert O contenant
A ; alors O étant un voisinage de chacun de ses points, O est en particulier un 
voisinage de A et il en est donc de même de V  qui contient O, car V(A) est un 
filtre. Q.E.D.

Nous sommes maintenant en mesure de prouver la

Proposition 2.9.3 Soit 0 une famille de parties d'un ensemble X  vérifiant les 
axiomes (Oi), (O2) et (O3 ). Alors, il existe une unique topologie sur X  telle que 
0  soit l'ensemble des ouverts pour cette topologie.
Preuve S’il existe une topologie répondant aux exigences voulues, le filtre V(x) 
des voisinages d’un point x ne peut être que le filtre engendré par l’ensemble

0(x) = {O G 0 ;  x  G O}.
Ceci prouve donc l’unicité d’une telle topologie.

1. Vérifions avant toutes choses que 0(a:) est une base de filtre. Or, 0(x) est 
un ensemble non vide (car X  G 0(x) d’après (O3 )) de parties non vides (car 
tout ensemble de 0 (x) contient x) qui est évidemment stable par intersection finie 
d’après (0 2 )- La proposition 2.8.3 montre que 0(x) est une base de filtre.

2. Notons V(x) le filtre engendré par 0(x) et montrons qu’on définit ainsi une 
topologie J  sur X.  L’axiome (V\ ) est trivialement vérifié. Quant à l’axiome (V2)» 
soit V  G V(x) ; il existe donc un ensemble O G 0  tel que x G O c  V  ; prenons 
W  = O et soit y G W  ; d’après la définition de 0(y), on a O G 0 (y), d’où 
V  G V(y) d’après la définition de V(y). Ceci prouve (V^).

3. Montrons que tout O G 0  est ouvert pour cette topologie 7. Il faut mon­
trer que O est un voisinage de chacun de ses points. Soit a: G O, on a alors 
O G 0(x) C  ^(z)* ce permet de conclure.

4. Montrons que tout ensemble U ouvert pour la topologie 7  appartient à 0. 
Soit x £ U, U est un voisinage de x , donc il existe, d’après la définition de V(ar), 
un ensemble Ox G 0  tel que x G Ox C  U et il en résulte que U = (Jx^u Ox 
appartient à 0  d’après (Oi).

Les points 3. et 4. prouvent que 0  est l’ensemble de tous les ouverts pour la 
topologie 7. Q.E.D.

Ceci prouve qu’il est équivalent, pour définir une structure topologique, de se 
donner, ou bien le filtre des voisinages de chaque point, ou bien l’ensemble de tous



2.9 PARTIES OUVERTES, PARTIES FERMÉES 83

les ouverts, le lien entre la notion de voisinage et celle d’ouvert étant assuré par la 
définition 2.9.1 et la proposition 2.9.2.

Pour définir une topologie il n’est pas nécessaire de se donner la famille de 
tous les ouverts, il suffit de se donner une sous-famille convenable dont voici la 
définition.
Définition 2.9.2 Dans un espace topologique X, un ensemble B de parties ou- 
vertes est appelé une base de la topologie de X  si tout ouvert est une réunion 
d’ensembles de B.

Vu la propriété (Oi), l’ensemble 0  est alors l’ensemble de toutes les réunions 
d’ensembles de B. Il en résulte ceci : sur un ensemble X , soit B un ensemble de 
parties ; s’il existe sur X  une topologie telle que B en soit une base, alors cette 
topologie est parfaitement déterminée, un ensemble sera ouvert si, et seulement 
si, c’est une réunion d’ensembles de B ; nous dirons alors que B est une base de 
topologie. On a le critère suivant.
Proposition 2.9.4 Soit B un ensemble de parties d’un ensemble X , pour que B 
soit une base de topologie il faut et il suffit que
(Bi) l’intersection de deux ensembles de B soit une réunion d ’ensembles de B . 
(B2) X  = \JB€v B.
Preuve Ces conditions sont nécessaires d’après (0 2) et (O3 ). Montrons qu’elles 
sont suffisantes. Soit 0  l’ensemble des réunions d’ensembles de B et soit (Oi)i€/ 
une famille d’ensembles de 0  ; on a donc O* =  (JjeJi Bô °ù Bj G B , d’où 
(Ji€/ ° i  = L U  J Bô e °» avec J  =  Ut €/ d’après 0-3.5) et ceci prouve (Oi). 
Soient O i, 0 2 € 0 , on a donc 0 \  =  (Jie/ Biy O2  = Uj e j  B j , où Biy Bj  G B, 
d’où Oi fl 0 2 =  U(ij)eixJB* n  Bv  d’après (1.3.6) ; en utilisant (Æi), puis 
l’associativité (1.3.5) de la réunion, on en déduit que 0 \  fl 0 2 € 0 , ce qui prouve 
(O2). Enfin, on a 0 =  (J ..G0 Bi G 0  et X  G 0  d’après (# 2 )» ce qui prouve (O3 ).

Q.E.D.
Voici quelques exemples de ces notions.
Si X  est un ensemble muni de la topologie grossière, on a 0  =  {0, X}.  Si X  

est muni de la topologie discrète, on a 0  =  7{X)  et une base de la topologie est 
donnée par la famille ({#})x€X* La proposition 2.7.2 montre que, dans un espace 
métrique, l’ensemble des boules ouvertes constitue une base de la topologie ; en 
particulier, sur M l’ensemble des intervalles ouverts ]a, 6 [, où a et b décrivent M, 
est une base de la topologie de R.

Indiquons enfin une dernière notion importante.
Définition 2.9.3 Dans un espace topologique, un ensemble est dit fermé si son 
complémentaire est ouvert.

Nous noterons 0 ' l’ensemble des parties fermées de X. On notera que dans 
un espace topologique, la partie vide et la partie pleine sont des parties à la fois 
ouvertes et fermées ; il peut y en avoir d’autres : par exemple, pour la topologie 
discrète toutes les parties sont à la fois ouvertes et fermées.
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D’après la proposition 2.9.1, l’ensemble 0 ' possède les propriétés suivantes. 
Proposition 2.9.5 Soit 0 ' V ensemble des parties fermées d'un espace topologique 
X, on a alors
(OJ) Toute intersection d'ensembles de 0 ' est un ensemble de 0 '.
(0'2) La réunion de deux ensembles de 0 ' est un ensemble de 0 '.
(Of3) 0 e O ' e t X e  0 '.

D’après la proposition 2.9.3, on a le résultat suivant.

Proposition 2.9.6 Soit 0' un ensemble de parties d'un ensemble X  vérifiant les 
propriétés (OJ ), (O2 ) et (O3), alors il existe sur X  une unique topologie telle que 
0 ' soit l'ensemble de tous les fermés pour cette topologie.
Exercice 2.9.1 Montrer que la topologie d’un espace métrique fini est la topologie discrète.

Exercice 2.9.2 Construire toutes les topologies sur un ensemble à deux ou trois éléments [on doit en 
trouver 4 et 29 respectivement].

Exercice 2.9.3 Topologie de l’ordre Soit X  un ensemble totalement ordonné, montrer que l’en- 
semble des intervalles ouverts (limités ou non), c’est-à-dire l’ensemble des intervalles ]a, b[ , ] , a [ ,
]a, —► [ et X t est une base de topologie sur X , dite topologie de l’ordre. Montrer que tout intervalle 
fermé est fermé pour cette topologie. La topologie de l’ordre sur E ou E (exemple 2.13.5) est la topo­
logie usuelle.

Exercice 2 .9 .4  Soit X  un espace topologique, montrer qu’un ensemble !B de parties ouvertes est une 

base de la topologie de X  si, et seulement si, pour tout x G X  l ’ensemble Sx =  {O e  ; x G O }  
est un système fondamental de voisinages de x.
Exercice 2.9.5 Soit X  un espace topologique, on dit qu’une application f  : X  E présente un 
minimum local en un point a E X  s’il existe un voisinage V de a tel que / ( a )  <  f(x)  pour tout 
x E V ; un minimum local est dit strict si f(a) < f(x)  pour tout x G V — {a}.

On suppose que X  admet une base de topologie dénombrable.
1. Montrer que l’ensemble A des points a €  X  où /  présente un minimum local strict est dénom­

brable [soit (Bn) une base de la topologie, pour tout a E A il existe n tel que a G Bn et / ( a )  <  f(x)  
pour x e Bn, x ^ a , en déduire une injection de A dans N].

2. Soit B l’ensemble des points a e X  où /  présente un minimum local, montrer que f (B)  est 
dénombrable.

2.10 Intérieur, adhérence
Définition 2.10.1 Soit X  un espace topologique et soit A une partie de X.

7. Un point x  de X  est dit intérieur à A si A est un voisinage de x  ; l'ensemble 
A des points intérieurs à A s'appelle l'intérieur de A.

2. Un point x  de X  est_ appelé un point adhérent à A si tout voisinage de x  
rencontre A ; l'ensemble A des points adhérents à A s'appelle l'adhérence de A.

L’intérieur de A sera également noté Int A.
Étudions d’abord la notion de point intérieur. Dire que le point x  est intérieur 

à A signifie qu’il existe un ouvert O tel que x  e O C A ; un ouvert étant un
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voisinage de chacun de ses points, tout point de O est intérieur à A et, par suite, 
l’intérieur de A est la réunion de tous les ouverts contenus dans A. D’après (0 1), 
l’intérieur de A est un ensemble ouvert et c’est le plus grand ouvert contenu dans 
A.

On en déduit de suite les propriétés suivantes.
(2.10.1) A c  B  => À c  B, pour tout A, B  G 7{X).

o

(2.10.2) Une partie A est ouverte si, et seulement si, A = A.
Proposition 2.10.1 Soit (Ai)iej une famille de parties, on a
(2.10.3) Int p |  Ai c p |  Int A< et [ J  Int c Int | J  Au

iei iei ici ici
En outre, la première inclusion devient une égalité lorsque I  est un ensemble fini.
Preuve Ces inclusions résultent de (2.10.1) car tout Ai contient l’intersection de 
la famille et est contenu dans sa réunion. Montrons ensuite que

Int A fl Int B  C Int (A fl B )y
ceci prouvera la dernière assertion. Or, A  D B  est un ouvert contenu dans A fl B, 
donc contenu dans l’intérieur de A Pi B, ce qui permet de conclure. Q.E.D.

Exercice 2 .10.1  Donner un exemple (sur K) où l'inclusion À U B c  Int (A U B)  est stricte.

Nous obtiendrons les premières propriétés de l’adhérence grâce à la proposi­
tion suivante.
Proposition 2.10.2 Pour toute partie A, on a
(2.10.4) X  -  Â  = Int (X  -  A) et X  -  Int A = T ^ Â .
Preuve II suffit de démontrer la première égalité, la seconde s’en déduisant en 
substituant X  — A à A. Or, dire qu’un point x n’est pas adhérent à A signifie qu’il 
existe un voisinage V  de x ne rencontrant pas A , soit V  fl A = 0 ou bien encore 
V  C X  -  A, ce qui signifie que X  — A est un voisinage de x et ceci veut dire 
précisément que x est un point intérieur à X  — A. Q.E.D.

On en déduit les propriétés suivantes. L’adhérence de A est l’intersection de 
tous les fermés contenant A (sur M, l’adhérence de A avait été définie ainsi) et 
c’est le plus petit fermé contenant A. On a, en outre
(2.10.5) A C B => A C B, pour tout A, B  G 7(X).
(2.10.6) Une partie A est fermée si, et seulement si, A = A.

(2.10.7) ( J ^ c l J ^ e t p ^ c p l ^ ,
i€l iel iÇ.1 i£l

la première inclusion devenant une égalité si I  est fini.

Définition 2.10.2 Soit A une partie d fun espace topologique X, un point x est 
appelé un point frontière de A si tout voisinage de x rencontre à la fois A et son 
complémentaire ; V ensemble Fr A des points frontières s'appelle la frontière de 
A.
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Un point frontière est donc un point adhérent à A et à son complémentaire et 
par conséquent Fr A =  A fl X  -  A = A -  A ; la frontière de A est donc un 
ensemble fermé. La relation précédente peut s’écrire d’après (2.10.4)

X  -  Fr A = Int A U Int (X -  A) ;
les ensembles Int A et Int (X-A) étant disjoints, on en déduit la proposition sui­
vante.
Proposition 2.10.3 Soit A une partie d’un espace topologique X , alors la fron­
tière de A, l ’intérieur de A et l’intérieur de son complémentaire constituent une 
partition de X.
Note L’intérieur de X  -  A est appelé l’extérieur de A.

D’après la relation Fr A =  A -  A, on notera également que
A = À U Fr A

où les ensembles A et Fr A sont disjoints : un point adhérent est soit un point 
intérieur, soit un point frontière.
Proposition 2.10.4 Soit A une partie d ’un espace topologique X, alors A — A 
est d ’intérieur vide. Si A est un ensemble ouvert ou fermé, la frontière de A est 
d’intérieur vide.
Preuve Soit O l’intérieur de A — A. Supposons cet ouvert O non vide : soit 
a G O, alors a est un point adhérent à A et O est un voisinage de ce point, donc O 
rencontre A, ce qui est absurde. Ceci prouve que l’intérieur de A -  A est vide.

Si A est ouvert, la frontière de A, Fr A =  A — A, est donc d’intérieur vide et 
il en est de même lorsque A est fermé, vu que Fr A =  Fr (X-A). Q.E.D.
Exercice 2 .1 0 .2  Soient A et B deux parties d’un espace topologique telles que A nB  =  Â n B  =  0, 
montrer que A U B =  Int (A U B).
Exercice 2.10.3 Soient A et B deux parties d’un espace topologique, si A est ouvert montrer que 
A n B c A n B e t  donner un exemple sur R où l’inclusion est stricte. En déduire que

A n B =  A n  B.

Exercice 2.10.4 Famille localement finie de fermés Une famille {Ai)i^j de parties d’un espace 
topologique X  est dite localement finie si, pour tout x G X , il existe un voisinage de x ne rencontrant 
qu’un nombre fini de Ai.

1. Montrer alors que (Ji€l Ai =  \JieI Ai.
2. En déduire qu’une réunion localement finie de fermés est fermée.

Exercice 2.10.5 Soit A une partie d’un espace topologique, montrer que

Fr (Â) C Fr (A) et Fr (À) C Fr (A)

et donner un exemple sur M où ces inclusions sont strictes.

Exercice 2 .1 0 .6  Soient A et B  deux parties d’un espace topologique.
1. Montrer que

Fr (A) U Fr (B) =  Fr (A U B) U Fr (A H B) U (Fr (A) n Fr (B)) 

et en déduire que Fr (A U B) =  Fr (A) U Fr (B) si A n B =  0.
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2. En utilisant l’exercice 2.10.2, montrer que

Fr (A U B) =  Fr (A) U Fr (B)

dès que A n  B =  A n  B =

Exercice_2.10.7 Axiomes de fermeture de Kuratowski Soit X  un espace topologique, on pose 
a(A) =  A , montrer que l’application a  : CP(X) —► T (X ) vérifie les propriétés suivantes

1. a(0) = 0,
2. pour tout A G 0>(X), A  C ck(j4),
3. pour tout A G 0>(X), a ( a (A ) )  =  a (A ) ,
4. pour tout A ,B  e  CP(X), a(A  U B)  =  a(A)  U a(B).
Réciproquement, soient X  un ensemble et a  : ÎP(X) ->• 1P(X) une application vérifiant les 

propriétés précédentes, montrer alors qu’il existe une unique topologie sur X  telle que a(A)  =  A 
pour tout A G P(X).

Sur un espace métrique la notion de distance permet de donner une caractéri­
sation très simple des notions de point intérieur, point adhérent et point frontière. 
Étant donné une partie non vide A d’un espace métrique X  et un point a de X , on 
définit la distance de a à A  par la formule
(2 .10 .8 ) cl(a,A) = inf d(a,x).

æGA

Proposition 2.10.5 Soit A une partie non vide d'un espace métrique X  et soit a 
un point de X. Alors

1. Le point a est intérieur à A si, et seulement si, d(ai X  — A) >  0 .
2. Le point a est adhérent à A si, et seulement si, d(a, A) = 0.
3. Le point a est un point frontière de A si, et seulement si,

d(a,A) = d ( a , X - A ) = 0 .
Preuve Dire que a est un point intérieur à A signifie que A est un voisinage de a, 
c’est-à-dire qu’il existe r > 0 tel que B{a\r) C A  et cette condition équivaut à 
d(a) X  -  A) > r, ce qui prouve 1. Dire que a est un point adhérent à A signifie 
que a n’est pas intérieur au complémentaire de A d’après (2.10.4) donc que 
d(a, A) = 0 d’après 1. Enfin 3. résulte de 2. d’après la définition 2.10.2 des points
frontières. ______  Q.E.D.
Note On a évidemment B(a\ r) C  B '(a,] r) mais l’inclusion peut être stricte : pour 
la métrique discrète, on a par exemple B(a\ 1) =  {a} et B'(a; 1) =  X . De même, 
l’inclusion B(a\ r )  C  Int B'(a\ r) peut être stricte, etc.

Définition 2.10.3 Une partie A d'un espace topo logique X  est dite dense dans X  
ou partout dense si A = X. L'espace X  est dit séparable s'il existe une partie 
dénombrable partout dense.

On vérifie de suite la proposition suivante.

Proposition 2.10.6 Une partie A de X  est partout dense si, et seulement si, tout 
ouvert non vide rencontre A.
Exemple 2.10.1 L’espace R est séparable car Q est dense dans R.
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Voici une condition suffisante pour qu’un espace soit séparable, cette condition 
étant nécessaire et suffisante dans le cas des espaces métrisables.
Proposition 2.10.7 Un espace topologique X  admettant une base de topologie 
dénombrable est séparable. La réciproque est vraie si X  est métrisable.
Preuve Soit (Bn)neN une base dénombrable de la topologie de X  ; on peut sup­
poser ces Bn non vides ; en prenant un point xn dans chaque Bn, on construit une 
suite (xn) partout dense d’après la proposition 2.10.6. Réciproquement, supposons 
X  métrisable et séparable ; soit d une distance sur X  définissant la topologie de 
X  et soit (an) une suite partout dense. Vérifions alors que l’ensemble des boules 
ouvertes B(an; 1 /m ), où n G N, m  G N *, est une base de la topologie. Soit O un 
ouvert de X, x G O ; il existe une boule ouverte B(x\r) (r > 0) contenu dans 
O. Montrons qu’il existe n G N, m  G N * tels que x e  B(an; 1 /m ) C B(x\r)  : 
choisissons d’abord m  G N * tel que 1 /m  <  r / 2 , puis n  tel que g?(x , an) < 1 /m  ; 
si d(an , y) < 1 /m , on a alors

d(x,y) < d(x,an) +d(an,y) <  2 /m  < r, 
ce qui prouve le résultat annoncé. Il en résulte que l’ouvert O est une réunion de 
boules B(an; 1/m ) ce qui prouve l’assertion. Q.E.D.

Pour un exemple d’espace séparable n’admettant pas de base de topologie dé­
nombrable, voir l’exercice 2.17.6.
Définition 2.10.4 Soit A une partie d'un espace topo logique X , un point x  G A 
est appelé un point isolé de A s'il existe un voisinage de x ne rencontrant A qu'au 
point x. Un point d'accumulation de A est un point adhérent à A qui n'est pas un 
point isolé de A.
En particulier, en prenant A =  X, dire qu’un point x  est isolé dans X  signifie que 
{x} est un voisinage de x , c’est-à-dire que {x} est un ensemble ouvert.
Exercice 2 .1 0 .8  Soit X  un espace topologique, on considère les propriétés suivantes 
(Di) X  admet une base de topologie dénombrable.
(D2) X  est séparable.
(£>3 ) Toute partie A de X , dont tous les points sont isolés dans Ay est dénombrable.
(D a) Toute famille d’ouverts non vides disjoints deux à deux est dénombrable.

Montrer que ( D i)  => (£>2 ) =>■ (Da) et (£>1 ) => (£>3 ) => (A O - 
Exercice 2 .1 0 .9  Soit X  un espace métrique, pour tout n e N* on note An l’ensemble des parties 
A de X  vérifiant la propriété

pour tout x , y  6  A>x ±  y> on a cl(x, y) >  1 /n .

1. Montrer que An ordonné par inclusion est inductif.
2. Soit An un élément maximal de An, montrer que U ^ L i An est partout dense.
3. En déduire que (£>4 ) => (£>2 ) (exercice 2.10.8) et que dans un espace métrique les propriétés 

(£ )j)  à (£>4 ) sont équivalentes.
Exercice 2 .1 0 .1 0  1. Soit A une partie d’un espace topologique X , montrer que tout point isolé de 
A est un point isolé de A.

2. Soit X i  la réunion de tous les sous-espaces de X  sans point isolé, montrer que X\ est un 

sous-espace fermé sans point isolé et que toute partie non vide de X  — X\ admet au moins un point 

isolé.
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Exercice 2.10.11 Ensemble dérivé Soit A une partie d’un espace topologique X,  l’ensemble A' 
des points d’accumulation de A est appelé l’ensemble dérivé de A. Montrer que A C B => A' C B', 
~Â =  A U A', (i4 U B)' =  Af U Bf et A' =  (^4)'. En outre, si tout point de X  est fermé, A" c  A1 
et A' = Â F= (À)'.

Exercice 2.10.12 Théorème de Cantor-Bendixon Soit A une partie d’un espace topologique X , 
on dit qu’un point x € X  est un point de condensation de A si, pour tout voisinage V  G V(æ), Vf)  A 
est non dénombrable. On note A* l ’ensemble des points de condensation de A.

1. Montrer que A C B  =» Æ* C B*, A* C A' (exercice 2.10.11), A* =  A*,

(A U B)* =  A* U B* et A** C A*.

2. Si X  admet une base de topologie dénombrable, montrer que A — A* est dénombrable ; en 
déduire que (A — A*)* =  0 et que A* =  A**.

3. En déduire que tout espace à base de topologie dénombrable s ’écrit comme la réunion disjointe 
de deux sous-espaces X\ et X 2 où X\ est fermé sans point isolé et X 2 est dénombrable (théorème de 
Cantor-Bendixon).

2.11 Limites
Nous nous proposons de définir une notion de convergence pour un filtre sur un 
espace topologique ; les filtres de référence seront les filtres des voisinages des 
points et il s’agit donc de comparer des filtres entre eux. Or, un filtre sur un en­
semble X  est une partie de T(X ) ; on peut donc munir l’ensemble des filtres sur X  
de l’ordre induit par l’inclusion entre parties de 7(X),  Ceci conduit à la définition 
suivante.

Définition 2.11.1 Soient J  et J '  deux filtres sur un ensemble X, on dit que J  est 
moins fin que y 7 si î  C c ’est-à-dire si
(2.11.1) ( W 1 ) ( A £ J = >  A  G 9').

Si J  C y ', on dit que y ' est plus fin que y  ; en outre, si y  ^  y ', on dit que y  est 
strictement moins fin que y 7 ou que y ' est strictement plus fin que y.

Exercice 2.11.1 Soit fJ  un filtre sur un ensemble X  tel que flA/ey ^  montl‘er 9ue X  est 
infini et que fJ  est plus fin que le filtre des complémentaires des parties finies de X.

Pour comparer des filtres engendrés par des bases de filtre, on utilisera la pro­
position suivante.

Proposition 2.11.1 Soient T> et T>' deux bases de filtre engendrant des filtres y  et 
y 7, alors y  est moins fin que y ' si, et seulement si, tout ensemble de 3  contient un 
ensemble de !B'.

Preuve Si y  est moins fin que y ', tout ensemble de !B appartient à y 7, donc contient 
un ensemble de 23'. Réciproquement, si tout ensemble de 3  contient un ensemble 
de Ü37, tout ensemble de !B, et par conséquent tout ensemble de y, appartient à y 7.

Q.E.D.
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Exemple 2*11.1 Soit y  un filtre sur un espace topologique X , alors l’ensemble 
(M )m g j  est une base de filtre sur X  (car M  fl N  z> M  fl N  d’après (2.10.7)) qui 
engendre un filtre moins fin que J.

Les filtres convergeant vers un point x seront alors les filtres plus fins que le 
filtre V(x) des voisinages du point x. Ecrivons explicitement la définition.
Définition 2.11.2 Soit J  un filtre sur un espace topologique X. On dit que J  
converge vers un point x G X, ou que x est un point limite du filtre 3r, si J  est plus 
fin que le filtre V(x) des voisinages du point x . On écrit alors x  =  lim y.
Dire que le filtre y  converge vers x  signifie donc que tout voisinage V de x  appar­
tient à y.
Remarque 2.11.1 Définir une topologie sur un ensemble X  équivaut donc à dé­
finir l’ensemble de tous les filtres qui convergent. La définition 2.11.2 signifie en 
effet que le filtre V(x) est le plus petit élément de l’ensemble de tous les filtres qui 
convergent vers x.

Si ÏB est une base du filtre y , on dira bien sûr que 3  converge vers x, ou que x 
est un point limite de $ , si J  converge vers x. D’après la proposition 2.11.1, on a 
évidemment la proposition suivante.
Proposition 2.11.2 Soit $  une base de filtre sur un espace topologique X. Alors 
*£> converge vers un point x e X  si, et seulement si, tout voisinage V de x ap­
partenant à un système fondamental de voisinages de x contient un ensemble de 
B.

Donnons quelques propriétés et exemples de ces notions. Observons d’abord 
que le filtre V(x) lui-même converge vers x  et que tout filtre plus fin qu’un filtre 
convergeant vers x converge aussi vers x. Précisons qu’un filtre n’a pas nécessai­
rement de point limite ; par exemple, sur un espace discret les seuls filtres conver­
gents sont les filtres des voisinages des points : en effet, si y  est un filtre plus 
fin que le filtre V(x), étant donné que {x} appartient à V(x) donc à y , tout en­
semble de y  doit rencontrer {x} d’après (F2 ), c’est-à-dire contenir le point x, ce 
qui prouve que y  =  V(x).

Précisons également qu’un filtre peut avoir plusieurs points limites ; par exem­
ple, sur un ensemble X  muni de la topologie grossière, tout filtre converge vers 
tout point puisque V(x) =  {X}. Il faut donc prendre garde à la signification de 
x =  lim y  qui dit simplement que x est “un” point limite de y. Lorsque X  est un 
espace métrisable, de telles pathologies ne se produisent pas ; on a en effet la
Proposition 2.11.3 Soit X  un espace métrisable et soit y  un filtre sur X, alors y  
admet au plus un point limite : on exprime cette propriété en disant que X  est un 
espace séparé.
Preuve Soit d une distance sur X  définissant la topologie de X. Supposons qu’il 
existe un filtre y  sur X  convergeant à la fois vers x et y, x ^  y. Posons 
r = d(xiy) >  0 ; les boules ouvertes B{x\r / 2 ) et B(y;r / 2 ) sont des voisinages
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de x  et y respectivement, donc appartiennent à 3F. Ceci est absurde car l’intersec­
tion de ces boules est vide : s’il existait 2  e B(x;r / 2 ) fl B{y\r/2 ), on aurait 
d(x, z) < r / 2  et cl(y, z) <  r / 2 , d’où d(x, y) <  r, ce qui contredit la définition de 
r. Q.E.D.

Pour écrire qu’une base de filtre 33 converge vers x  dans un espace métrique, 
on peut utiliser comme système fondamental de voisinages du point x  l’ensemble 
des boules fermées centrées en ce point ; cette convergence s’écrit donc
(2.11.2) (Ve > 0)(3B G B )(B  C  B'(x;e))

Nous venons de définir une notion de convergence pour ce qui concerne les 
filtres. Ceci permet d’en déduire une notion de convergence pour des suites. Le 
procédé est très simple ; observons qu’une suite est une application de N dans X  
et que sur N nous avons défini un filtre, le filtre de Fréchet ; si nous apprenons 
à prendre l’image (directe) d’un filtre par une application, il suffira d’examiner si 
l’image du filtre de Fréchet par la suite converge.

Considérons donc deux ensembles non vides X  et Y et une application 
/  : X  -»* Y. Si 3F est un filtre sur X , l’image de 3F par / ,  c’est-à-dire l’ensemble 
de parties / ( 3F) =  { /(M ) ; M  G J} , n’est pas en général un filtre sur Y ; si /  
n’est pas surjective, Y  n’appartient pas à /(3F) ; nous allons montrer que /(3F) est 
une base de filtre. Plus généralement, on a la proposition suivante.

Proposition 2 .1 1 .4  Soit 33 une base de filtre sur X  engendrant un filtre 3F, alors 
/(23) est une base de filtre sur Y  engendrant un filtre 3F' qui ne dépend que de 3F ; 
on a en outre
(2.11.3) J '  =  {M ' C  Y  ; G 3F}.
Le filtre 3F7 est appelé le filtre image du filtre 3F par Vapplication / .

Preuve En effet, /(33) est un ensemble non vide (car 33 est non vide) de parties 
non vides (car Y  est non vide et tout ensemble de 33 est non vide) ; en outre, soit 
M, iV G 33, alors il existe P  G 33 tel que M n N  D  P , d’où f ( M ) n f ( N )  D  / (P ) ,  
ce qui prouve que /(33) est une base de filtre. Une partie M'  de Y  appartient au 
filtre engendré T  si, et seulement si, il existe M  G 33 tel que /(M )  C  M ', c’est- 
à-dire tel que M  C  f ~ l (M')y ce qui signifie simplement que / _ 1(M ') appartient 
au filtre Ceci prouve la formule (2.1 1.3) et la proposition. Q.E.D.

Exercice 2.11.2 Soient X  et Y  des ensembles et /  : X  —> Y  une application surjective, montrer 
que l’image par /  de tout filtre sur X  est un filtre sur Y.

Remarque 2 .1 1 .2  Si 33i et ® 2  sont deux bases de filtre sur X  et si 33i engendre 
un filtre moins fin que 332, il est clair que /(® i)  engendre un filtre moins fin que 
/ ( ® 2).

Exemple 2 .1 1 .2  Soient X  un ensemble, A une partie de X  et i : A -» X  l’injec­
tion canonique de A dans X.  Si 33 est une base de filtre sur A, i(33) est une base 
de filtre sur X  ; le filtre engendré par î (33) n’est autre que le filtre engendré par 33 
considéré comme base de filtre sur X.
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Exemple 2.11.3 Filtre élémentaire associé à une suite Soit (xn) une suite d’élé­
ments d’un ensemble X  et soit /  : N X  l’application définie par f(n)  =  xn. 
L’image du filtre de Fréchet par cette application est appelée filtre élémentaire 
associé à la suite (xn). Une base de ce filtre est donc donnée par la famille d’en­
sembles
(2.11.4) Bn = I^J {xp}, où n décrit N,

p>n
et une partie M  de X  appartient à ce filtre si, et seulement si,
(2.11.5) (3n G N)(Vp G N)(p >n=>xp G M ),
ce qu’on exprime en disant que M  contient tous les termes xn de la suite sauf 
peut-être un nombre fini d’entre eux. Si X  est un espace topologique, on dit que la 
suite (xn) converge vers x, si le filtre élémentaire associé à la suite (xn) converge 
vers x  ; on dit aussi que la suite (xn) tend vers x  quand n tend vers l’infini et on 
écrit x = lim ^ o o  xn. Si S(x) est un système fondamental de voisinages de x, 
ceci signifie donc que
(2.11.6) (VV G S(x))(3n G N)(Vp G N)(p > n => xp G V).
Lorsque X  est un espace métrique, on notera que cette définition coïncide bien 
avec la définition 2.7.2.

Considérons une sous-suite (xnk) de la suite (xn), alors le filtre élémentaire 
associé à cette sous-suite est plus fin que le filtre élémentaire associé à la suite 
(xn) comme le montre (2.11.5). Il en résulte que toute sous-suite extraite d’une 
suite convergente vers x converge aussi vers x.
Exercice 2 .1 1 .3  Filtre intersection 1. Montrer que toute famille non vide (iTO ie/ de filtres sur un 
ensemble X  admet une borne inférieure J  =  in fi e /  ‘J , appelée filtre intersection de la famille [prendre 
fJ  =  D i e /  =  {A f C X \ M  e'Ji  pour tout i e  / } ] .

2. Si X  est un espace topologique, montrer que a =  lim (infi€ /  ITi) si, et seulement si,

a =  lim J i  pour tout i e  I.

Donnons maintenant la définition générale de valeur limite d’une application 
suivant un filtre.
Définition 2.11.3 Soit f  : X  —> Y  une application définie sur un ensemble X  et à 
valeurs dans un espace topologique Y  et soit 7  un filtre sur X. On dit qu'un point 
y G Y  est une valeur limite ou simplement une limite de f  suivant le filtre & si la 
base de filtre / ( J )  converge vers y.

On écrit alors y =  lim^ / .  Ceci signifie que la base de filtre f{3r) est plus fine 
que le filtre V(y) ; si $  est une base du filtre J  et S (y) un système fondamental de 
voisinages du point y , ceci s’écrit donc
(2.11.7) (VV G 8(y))(3M G B )(/(M ) C V).
L’ inclusion f (M)  C V  étant équivalente à M  C  / -1 (^)> il est équivalent de dire 
que l’image réciproque par /  de tout voisinage V  G S (y) appartient à 7.

Voici trois exemples particulièrement importants de cette notion.
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Exemple 2.11.4 Si X  est un espace topologique, dire qu’une suite (xn) converge 
vers x  signifie donc que x  est une valeur limite de l’application xn suivant le 
filtre de Fréchet.
Exemple 2.11.5 Suite généralisée Dans un ensemble X , une famille d’éléments 
(xi)i€i indexée par un ensemble filtrant (exemple 2 .8 .8 ) est appelée une suite gé­
néralisée. Si X  est un espace topologique, on dit qu’une suite généralisée converge 
vers x si x  est une valeur limite de l’application i Xi suivant le filtre des sections 
associé à l’ensemble filtrant I. Si S(x) est un système fondamental de voisinages 
de x , ceci signifie vu la définition du filtre des sections 
(2.11.8) ( W  G S(x))(3i G J)(Vj G I){j > i => Xj £ V).
Cette notion de convergence généralise celle de convergence des suites ordinaires. 
Nous allons montrer que la connaissance de toutes les suites généralisées conver­
gentes détermine parfaitement la topologie de l’espace. A cet effet, montrons qu’un 
point x est adhérent à une partie A si, et seulement si, il existe une suite gé­
néralisée de A qui converge vers x. D’après (2.11.8), il est clair que la condi­
tion est suffisante. Réciproquement, soit x  G A ; pour tout V  G V(æ), V Ci A 
est non vide ; choisissons un point x y  G V  f l  A. On construit ainsi une suite 
généralisée (xy)yey(x) de A en prenant pour relation d’ordre sur V(x) l’oppo­
sée de l’inclusion, autrement dit V < W  signifie V D  W  ; l’ensemble V(x) 
est alors un ensemble filtrant d’après (F2) et il est évident que cette suite gé­
néralisée converge vers x, ce qui prouve le résultat annoncé. Ce résultat montre 
qu’une partie A est fermée si, et seulement si, elle contient les limites de ses suites 
généralisées qui convergent. Il en résulte que la donnée des suites généralisées 
convergentes détermine O', donc 0, c’est-à-dire la topologie de l’espace. Ce ré­
sultat devient en général faux si l’on se restreint à des suites ordinaires. On ob­
tient un exemple en construisant sur un ensemble deux topologies différentes pour 
lesquelles les suites convergentes sont les mêmes. Prenons un ensemble X  infini 
non dénombrable. On peut définir sur X  la topologie discrète Ti : une suite (xn) 
converge vers x pour cette topologie si, et seulement si, il existe n G N tel que 
xp = x pour p > n. On construit une autre topologie 72  sur X  en prenant pour 
ensemble 0  l’ensemble vide et l’ensemble des complémentaires des parties dé­
nombrables de X  ; on vérifie de suite les axiomes des ouverts ; les topologies Ti 
et T2 sont différentes car X  n’est pas dénombrable. Soit (xn) une suite conver­
gente vers x pour la la topologie T2 ; posons /  =  {n G N ; xn ^  x }, l’ensemble 
A =  Unei{xn} est dénombrable, donc X  -  A est un ouvert et, contenant x, c’est 
un voisinage de x  ; il en résulte qu’il existe n G N  tel que xp G X  -  A pour p > n , 
c’est-à-dire xp = x pour p > n et ceci prouve bien que les suites convergentes 
pour cette topologie J 2 sont, comme pour la topologie T l, les suites stationnaires 
à partir d’un certain rang.
Exemple 2.11.6 Soient X,  Y  des espaces topologiques et une application 
/  : X  Y.  Si /  admet une limite y suivant le filtre V(a) des voisinages 
d’un point a G X , on dit que f (x)  tend vers y quand x  tend vers a et on écrit
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y =  limx-+af(x). En notant S(a) et S(y) des systèmes fondamentaux de voisi­
nages de a et y respectivement, ceci signifie donc
(2.11.9) (VF G S(y))(3lF G S(a))(f(W)  C F ).
On peut aussi exprimer cette convergence en disant que l’image réciproque par /  
de tout voisinage de y est un voisinage de a.

Si f (x)  tend vers y quand x  tend vers a, alors, pour toute suite (xn) de X  
convergeant vers a, la suite ( f ( x n)) converge vers y : en effet, le filtre élémentaire 
7  associé à la suite (xn) est plus fin que le filtre V(a), donc le filtre engendré par 
/ ( J ) ,  qui n’est autre que le filtre élémentaire associé à la suite (f ( x n)) est plus fin 
que /(V (a)), donc converge a fortiori vers y.
Exercice 2 .1 1 .4  1. Soient Bi  et B2 des bases de filtre sur des ensembles X \  et X 2 , notons 3i  le 
filtre engendré par B*, montrer que B\  x  B 2 =  {B\  x  Bi  E Bi}  est une base de filtre sur 
X \  x  X 2 engendrant un filtre 3  qui ne dépend que de 3\  et 32.

2. On prend X \  =  X 2 =  N et, pour filtres 3\  et 32, les filtres de Fréchet ; montrer que 
([n, + o o [2)n € N est une base du filtre 3  et que ce filtre est strictement plus fin que le filtre 3'  des 
complémentaires des parties finies de N2.

3. Soit /  : N2 -> X  une application à valeurs dans un espace topologique X , on pose 
/ ( m ,  n) =  Xmtn et /  =  (x m , n ) ( m j n ) € N 2  est appelée une suite double. Montrer qu’un point x G X  
est une valeur limite de /  suivant 3  (resp. 3')  si, et seulement si,

( W  G V (æ ))(3n  G N)(V(p, q) G N2)(p  >  n et q >  n => xPiq G V)

et respectivement

(VV G V (æ ))(3n  G N)(V(p, q) G N2)(p > n o u q > n = >  xPtQ G V)

Exercice 2 .1 1 .5  Soit 3  un filtre sur un ensemble X , on définit une relation d’ordre sur 3  en posant 
M < N  si M D N.

1. Montrer que 3  est un ensemble filtrant.
2. Pour tout M  G 3,  soit x m  un élément de M  ; montrer que le filtre associé à la suite généralisée 

(xM )M ex est plus fin 9ue ^

2.12 Espaces à base dénombrable de voisinages
Venons-en à une remarque tout à fait fondamentale qui montrera que pour certains 
espaces topologiques la considération des suites est suffisante.

Considérons d’abord sur un ensemble X  un filtre J  admettant une base dénom­
brable (£ n)nGN et posons Co =  B q et Cn =  Cn- 1 fl B n pour n > 1 ; on obtient 
ainsi une base dénombrable décroissante (CnJnçN du filtre J  dont l’intérêt est le 
suivant ; choisissons un point xn dans chaque ensemble Cn, on construit ainsi une 
suite (xn) dont le filtre élémentaire est plus fin que J,  vu que xp G Cp C Cn pour 
tout p > n, c’est-à-dire Up>nixp} c  Cn-

En particulier, dans un espace topologique X , si un point a admet un système 
fondamental dénombrable de voisinages (Fn)n€N, qu’on peut supposer décrois­
sant d ’après ce qui précède, en prenant un point xn dans chaque Vn> on construit 
une suite qui converge vers a.



2.12 ESPACES À BASE DÉNOMBRABLE DE VOISINAGES 95

Exercice 2 .12.1  1. Montrer qu’un filtre à base dénombrable est l’intersection (exercice 2.11.3) de 
tous les filtres élémentaires plus fins que lui [si CT' est cette intersection, noter que rJ  < fJ f et pour 
démontrer l ’égalité raisonner par l ’absurde].

2. En déduire qu’un filtre ‘J  à base dénombrable sur un espace topologique converge vers un point 
a si, et seulement si, toutes les suites, dont les filtres élémentaires sont plus fins que 'J, convergent vers 

a.

Dans un espace topologique X,  considérons alors une suite (xn) convergeant 
vers un point a ; si A est une partie de X  qui contient tous les points xn, le point 
a est un point adhérent à A : en effet, tout voisinage de a rencontre A puisqu’il 
contient tous les xn sauf peut-être un nombre fini d’entre eux. Inversement, étant 
donné un point a adhérent à A , existe-t-il une suite de A  qui converge vers a ? 
La réponse est en général négative ; comme nous l’avons vu (exemple 2.11.5), 
on obtient une réponse positive en acceptant des suites généralisées. Nous allons 
nous intéresser à une classe d’espaces topologiques pour lesquels la réciproque est 
exacte.
Définition 2.12.1 Un espace topologique est dit à base dénombrable de voisi­
nages si, pour tout point a, le filtre V(a) admet une base dénombrable.

Tout espace métrisable est à base dénombrable de voisinages d’après la propo­
sition 2 .8 .2 .
Proposition 2.12.1 Soit X  un espace topologique à base dénombrable de voisi­
nages, alors un point a de X  est adhérent à A si, et seulement si, il existe une suite 
de A qui converge vers a.
Preuve Soit a un point adhérent à A et soit (Ki)neN une base dénombrable dé­
croissante du filtre V(a). Tout voisinage de a rencontrant A , on peut choisir un 
point xn dans Vn fl A et on construit ainsi une suite de A qui converge vers a.

Q.E.D.
La définition 2.7.3 des parties fermées dans un espace métrique vaut encore 

dans un espace à base dénombrable de voisinages, soit
Corollaire 2.12.2 Dans un espace à base dénombrable de voisinages, une partie 
est fermée si, et seulement si, elle contient les limites de ses suites convergentes.

Ce corollaire montre que, dans les espaces à base dénombrable de voisinages, 
la notion de suite convergente détermine la topologie de l’espace. Plus précisé­
ment, considérons une partie G de J(N; X) x X , c’est-à-dire un ensemble de 
couples ((xn),x) constitués d’une suite de X  et d’un point de X.  On peut alors 
se demander s’il existe sur X  une topologie telle qu’une suite (xn) converge vers 
x si, et seulement si, ((xn), x) G G. Le corollaire précédent montre que s’il existe 
une topologie à base dénombrable de voisinages solution de ce problème, alors 
elle est unique : une partie A est fermée pour cette topologie si, et seulement si, 

(V((xn),x ) G e)((Vn G N)(xn G A) => x £ A).
Rien ne permet d’affirmer qu’il n’existe pas d’autres topologies solutions du pro­
blème ; on peut simplement dire que ces autres solutions éventuelles ne sont pas à 
base dénombrable de voisinages.
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Exercice 2 .1 2 .2  Soit A  une partie d’un espace X  à base dénombrable de voisinages, montrer qu’un 

point x G A n’est pas isolé dans A si, et seulement si, il existe une suite (xn) de A  convergente vers 
x  telle que xn ^  x  pour tout n.

Exercice 2 .1 2 .3  Montrer que l’ensemble de Cantor C  (exercice 2.6.2) est un ensemble d’intérieur 

vide sans point isolé [utiliser le développement triadique d ex  e C  pour construire une suite de C — {x }  

qui converge vers x].

Exercice 2 .1 2 .4  Montrer que tout espace séparable à base dénombrable de voisinages a au plus la 

puissance du continu [soit D  un ensemble dénombrable partout dense, construire une injection de X  
dans D n].

En ce qui concerne la notion générale de valeur limite, on a la caractérisation 
suivante lorsque le filtre est à base dénombrable.

Proposition 2.12.3 Soit f  : X  Y  une application définie sur un ensemble 
X  et à valeurs dans un espace topologique Y  et soit £F un filtre sur X  à base 
dénombrable. Alors, un point y de Y  est une valeur limite de f  suivant le filtre 3r 
si, et seulement si, pour toute suite (xn) dont le filtre élémentaire est plus fin que 
J, la suite ( f ( x n)) converge vers y.
Preuve La condition est nécessaire, sans hypothèse sur le filtre y , car le filtre 
élémentaire associé à la suite ( f ( xn)) est plus fin que la base de filtre / ( ? ) .  Pour 
démontrer la réciproque, raisonnons par l’absurde. Soit (-Bn)nEN une base décrois­
sante du filtre J  ; alors, si y n’est pas une valeur limite de /  suivant îF, il existe un 
voisinage V  de y tel que f ( B n) <£_ V , pour tout n € N ; choisissons alors un point 
xn dans chaque Bn tel que f ( xn) & V ; on  construit ainsi une suite (xn) dont le 
filtre élémentaire est plus fin que 3F et telle que la suite f ( xn) ne converge pas vers 
y. Q.E.D.

Corollaire 2.12.4 Soient X, Y  deux espaces topologiques et f  : X  -» Y  une 
application. Si X  est à base dénombrable de voisinages, f (x) tend vers y quand 
x tend vers a si, et seulement si, pour toute suite (xn) qui converge vers a, la suite 
(f{xn)) converge vers y.

2.13 Applications continues
En termes de convergence une application continue sera simplement une applica­
tion transformant les filtres convergents en des filtres convergents.

Définition 2.13.1 Soient X, Y  des espaces topologiques. Une application 
f  : X  —» Y  est dite continue en un point a G X, si lyimage de tout filtre conver­
geant vers a converge vers f(a).

En particulier, la base de filtre /(V (a)) converge vers f(a) et réciproquement, 
si cette condition est réalisée, /  est continue au point a : en effet, si 7  est un 
filtre sur X  convergeant vers a, il est plus fin que le filtre V(a) et par suite la base
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de filtre /(üF) est plus fine que /(V (a)), donc converge a fortiori vers f(a).  En 
d’autres termes, /  est continue au point a si, et seulement si, on a (exemple 2 .11 .6 ) 
f(a) =  limæ_>a f ( x ) y c’est-à-dire
(2.13.1) (VF G V(f(a))){3W e V(a))(f(W)  C V).
Pour exprimer la continuité de /  au point a, il suffit d’écrire (2.13.1) pour tout 
voisinage V  de / ( a )  appartenant à un système fondamental de voisinages de /(a ) . 
En outre, /  est continue au point a si, et seulement si, l’image réciproque par /  
de tout voisinage de f(a)  appartenant à un système fondamental de voisinages de 
f(a) est un voisinage de a.

Enfin le corollaire 2.12.4 prouve ceci : si /  est continue au point a, l’image 
par /  de toute suite convergeant vers a est une suite qui converge vers f(a) ; 
réciproquement, si cette condition est réalisée et si X  est à base dénombrable de 
voisinages (par exemple, si X  est métrisable), alors /  est continue au point a.
Exercice 2.13.1 Soient X  et Y  des espaces topologiques, montrer qu’une application 

/  : X  —► Y  est continue en un point a G X  si, et seulement si, pour toute suite généralisée (a:*)*€/ 
qui converge vers a, la suite généralisée (f(xi))iei converge vers / ( a ) .

Exercice 2 .1 3 .2  Soient X  un espace à base dénombrable de voisinages et Y  un espace tel que tout 
point soit fermé, montrer qu’une application /  : X  —> Y  est continue en un point a de X  si, et 
seulement si, pour toute suite (xn) de X  convergeant vers a, la suite (f(xn)) admet une limite.

Nous dirons bien sûr qu’une application /  : X  ->• Y  est continue dans X  ou 
simplement que /  est continue, si /  est continue en tout point de X.  Nous noterons 
alors G(X\Y)  l’ensemble de toutes les fonctions continues de X  dans Y.

Donnons quelques exemples triviaux d’applications continues. Si X  est un es­
pace topologique, l’application identique I x  : X  -» X  est continue. Si X  et Y  
sont deux espaces topologiques, toute application constante de X  dans Y  est conti­
nue. Notons enfin que C(X; Y)  =  jF(X; Y)  si X  est un espace discret ou si Y  est 
muni de la topologie grossière.

Vu la définition 2.13.1, on a évidemment le
Théorème 2.13.1 Soient X , Y, Z des espaces topologiques, f  : X  -» Y  et 
g : Y  -> Z deux applications. Si f  est continue en un point a G X  et si g est 
continue au point f(a), Vapplication g o f  : X  -»  Z est continue au point a. Si 
f  est continue dans X  et si g est continue en tout point de f (X),  alors g o f  est 
continue dans X.

Lorsque X  et Y  sont des espaces métriques dont les distances sont notées d 
(toutes les distances seront notées d lorsqu’aucune confusion ne peut en résulter), 
pour écrire la continuité d’une application /  : X  Y  en un point a G X , on peut 
utiliser comme base des filtres V(a) et V(f(a)) l’ensemble des boules fermées 
centrées en ces points ; la continuité au point a s’écrit alors
(2.13.2) (\fe > 0)(3S > 0)(Vx € X)(d{x,a) < ô => d(f{x)J{a)) < e). 
L’application /  est donc continue dans X  si, et seulement si, pour tout a G X  
et tout € > 0 , il existe un ô > 0  tel que ... ; dans cette définition le nombre ô
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dépend de e et du point a G X  ; on peut donc introduire une notion plus forte que 
la continuité.
Définition 2.13.2 Soient X, Y  des espaces métriques, une application f  : X  - ï  Y  
est dite uniformément continue si

f (Ve > 0)(3S >  0)(Vx G X)(Vy G X)
(2.13.3) <

\  (d(x,y) <S=ï  d(f(x), f(y)) < e).
Toute application uniformément continue est évidemment continue, mais la 

réciproque est en général fausse.
On a un théorème des fonctions composées.

Proposition 2.13.2 La composée de deux applications uniformément continues 
est uniformément continue.

Voici un exemple d’application uniformément continue.
Exemple 2.13.1 Soit A une partie non vide d’un espace métrique X , l’application

x h-» d(xy A)
de X  dans R est uniformément continue d’après l’inégalité
(2.13.4) \d(xyA) - d ( y yA)\ < d(x,y), pour tout x, y G X.
En effet, on a

d(xy A) =  inf d(xyz) <  inf (d(xyy) + d(yyz)) < d(xyy) +  inf d(yyz)y
z 6 A  z G A '  7 z Ç A

d’où d(xy A) < d(xy y) +  d(yy A)y c’est-à-dire
d(xy A) -  d(yy A) < d(xy y) ;

de même, on a d(yy A) — d(xy A) < d(xy y), ce qui permet de conclure. Lorsque 
A = {a}, a  G X , on a d{xyA) = d(xya) ; ce qui précède prouve donc que 
l’application x  ^  d{xy a) de X  dans M est uniformément continue.

Les fonctions continues ont été définies en utilisant les filtres des voisinages 
des points ; nous allons maintenant caractériser la continuité en utilisant la famille 
des ouverts ou des fermés. Nous nous appuierons sur la proposition suivante.
Proposition 2.13.3 Soit f  : X  -> Y  une application continue en un point a  G X. 
Si ce point a est adhérent à une partie A de X, le point f(a) est adhérent à f(A).
Preuve Soit V  un voisinage de /(a )  ; /  étant continue au point a, / _ 1(Vr) est un 
voisinage de a qui rencontre donc A ; il existe donc un point x  de A dont l’image 
par /  appartient à V , ce qui prouve que V  rencontre f(A).  Tout voisinage de f(a) 
rencontre donc f(A).  Q.E.D.
Théorème 2.13.4 Soient X, Y  deux espaces topologiques et f  : X  -» Y  une 
application. Les propriétés suivantes sont équivalentes.

1. f  est continue dans X. ____
2. Pour tout A c X ,  f(A)  C  f(A).
3. L'image réciproque par f  de tout fermé de Y  est un fermé de X.
4. L'image réciproque par f  de tout ouvert de Y  est un ouvert de X.
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Preuve 1 => 2 d’après la proposition 2.13.3.
2 => 3 Soit F ' un fermé de Y  ; posons F = f ~ x(F'). D’après 2., on a 

f ( F ) c  f ( F ), d’où / ( F )  c F , o r F  =  F  car F ' est fermé, donc / ( F )  c  F ',  
soit F  c  Z" 1 (F ') =  F , ce qui prouve que F  est fermé.

3 => 4 Soit O ' un ouvert de y ; on a / _1(0/) =  X  — / _1(y — O') ce qui 
permet de conclure, le complémentaire d’un ouvert étant fermé et réciproquement.

4 => 1 Soit a un point de X  et soit Of un ouvert contenant /(a ) ,  alors f ~ l (0')
est un ouvert contenant /(a ) ,  donc un voisinage de ce point, ce qui prouve la 
continuité de /  au point a, car les ouverts contenant f(a) constituent un système 
fondamental de voisinages de ce point. Q.E.D.
Exercice 2 .1 3 .3  Soient X  et Y  des espaces topologiques et f  : X  Y  une application, montrer 
l’équivalence des propriétés suivantes

1. fest continue.
2. Pour tout A € CP(K), f ~ l (Â) C Int ( / “ ^ A )).
3. Pour tout A  €  V(Y), f ~ l (A) C

Exercice 2 .1 3 .4  Une partie A  d’un espace topologique est appelée un S s (resp. un 3 > ) si A  est 

une intersection dénombrable d’ouverts (resp. une réunion dénombrable de fermés). Soient X , Y  des 
espaces topologiques et /  : X  —> Y  une application continue, montrer que l’image réciproque par /  

d’un Sa (resp. d’un fSa) est un S s (resp. un fJ a ).
Exercice 2 .13 .5  Soient X  et Y  des espaces topologiques et f  : X  Y  une application.

1. Si /  est continue et sujective et si A est dense dans X , alors f (A)  est dense dans Y.
2. Si /  est ouverte, c ’est-à-dire si l’image directe de tout ouvert de X  est un ouvert de Y , et si B  

est dense dans Y y alors f ~ 1(B)  est dense dans X .

Exemple 2.13.2 La continuité de l’application x  d(x, A) montre que 
Vr(A) = {x € X  ; d(x, A) < r}, (r >  0 ), 

est un voisinage ouvert de A  ; on dit que Vr (^4) est le voisinage ouvert de A d’ordre 
r ; de même, l’ensemble

V;(A) = { x e X ; d ( x , A ) < r }
est un voisinage fermé de A , appelé voisinage fermé de A d’ordre r. Lorsque 
A = {a}, on a

yr ({a}) =  B(a;r) et ^ '({a} ) =  B ’(a;r), 
on retrouve donc le fait que les boules ouvertes sont ouvertes et que les boules 
fermées sont fermées.
Exercice 2 .13 .6  Soient A et B  deux parties d’un espace métrique telles que A n B  =  AC\B =  Qy 
montrer que A et B  admettent des voisinages disjoints.

Note L’image directe par une application continue d’un ensemble ouvert (resp. 
fermé) n’est pas en général un ensemble ouvert (resp. fermé) : considérons par 
exemple sur un ensemble X  la topologie discrète Ti et la topologie grossière ^ 2 , 
l’application identique de (X , Ti) sur (X, O2 ) est continue, toute partie A de X  est 
à la fois ouverte et fermée pour Ti, son image A  par l’application identique n’est 
ni ouverte, ni fermée si A {0,X}.
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Dans l’exemple précédent, nous avons une bijection continue dont l’applica­
tion réciproque n’est pas continue ; nous poserons donc la

Définition 2.13.3 Soient X , Y  des espaces topologiquesyune bijection f  :X  ->Y 
continue, ainsi que la bijection réciproque, est appelée un homéomorphisme.

S’il existe un homéomorphisme de X  sur Y , on dit que X  et Y  sont homéo- 
morphes ; on définit ainsi une relation d’équivalence sur la collection des espaces 
topologiques. Une propriété d’un espace topologique invariante par homéomor­
phisme est appelée une propriété topologique : l’objet essentiel de la topologie est 
d’étudier de telles propriétés.
Note Si h est un homéomorphisme de X  sur Y , la continuité de h~l montre, vu 
le théorème 2.13.4, que l’image par h de tout ensemble ouvert (resp. fermé) de X  
est un ensemble ouvert (resp. fermé) de Y.
Exemple 2.13.3 Transport de structure Soient X  et Y  deux ensembles et 
f  : X  -+ Y  une bijection. Une telle bijection permet de transporter sur Y  toute 
structure topologique donnée sur X. En effet, soit 7  une topologie sur X  et soit 
0  la famille des ouverts de X , alors /(O ) définit une topologie sur Y  d’après la 
proposition 2.9.3 ; Y  étant muni de cette topologie, /  est évidemment un homéo­
morphisme de X  sur Y.

Soient X  et Y  des espaces métriques, une application f  : X  Y  conservant 
les distances, c’est-à-dire telle que d(f(x)yf(y)) = d(xyy) pour tout x,y  de X y 
est évidemment uniformément continue. Une telle application est injective ; si elle 
est surjective, on dit que c’est une isométrie de X  sur Y  ; l’application f ~ l est 
alors uniformément continue. Toute isométrie est donc un homéomorphisme.

Exemple 2.13.4 Considérons une bijection /  : X  ->> Y  d’un ensemble X  
sur un espace métrique Y  ; on définit alors une distance sur X  en posant 
d(xyy) = d(f(x), f(y))  pour tout x,y  G X  ; /  est alors une isométrie de X  
sur Y.
Exemple 2.13.5 La droite achevée On peut définir une distance sur R en utili­
sant le procédé décrit à l’exemple précédent. Munissons l’intervalle [—1 , 1] de la 
distance induite par celle de R, soit d(x, y) = \x -  y\y x, y G [-1 ,1]. On définit 
une bijection /  : R -» [ - 1 , 1] en posant

f{x)  =  x / ( l  +  \x\) si x  G R et f ( ± oo) =  ±1,
d’où une distance sur R, à savoir d(x, y) = \f(x) -  f ( y )|, x , y G_R ; l’application 
/  est alors une isométrie. Décrivons la topologie ainsi définie sur R. Les boules ou­
vertes (resp. fermées) de R sont les images réciproques par /  des boules ouvertes 
(resp. fermées) de l’espace [-1,1]. Or, l’ensemble des boules ouvertes de [-1,1] 
est constitué des intervalles [ - 1 , 1], ]a ,6 [, [—1 , 6 [ et ]a, 1] où - 1  <  a < b < 1 et 
l’ensemble des boules fermées des intervalles [a, 6] où - 1  < a < b < 1 ; la bi­
jection /  étant strictement croissante ainsi que la bijection réciproque, l’ensemble 
des boules ouvertes de R est constitué des intervalles [-oo, +oo], ]a, 6 [, [—oo, b[ et
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]a, +oo] où —oo < a < b < +oo et l’ensemble des boules fermées des intervalles 
[a, b] où —oo <  a < b < +oo. L’ensemble des boules ouvertes contenant un point 
æ de R constituant une base du filtre V(x), on en déduit, si x  appartient à R, que 
l’ensemble (]x -  e, x  +  e[)e>o est une base du filtre V(x) et il en est donc de même 
de l’ensemble ([x — e^x +  e])e>o ; on vérifie de même que le filtre V (+ o o ) est 
engendré par (]o, + o o ])a€K et par ([a, + o o ])aejR et que le filtre V ( -o o )  est en­
gendré par ([—oo,a[)a€R et par ([—oo,a])û€R. Ceci permet de décrire les suites 
convergentes de R. Soit x G R, en utilisant le système fondamental de voisinages 
([x -  e,x +  e])e>o> on constate qu’une suite (xn) de R converge vers x si, et 
seulement si, il existe uq G N tel que xn G R pour n > no et la suite (xn)n>ni) 
converge vers x pour la topologie de R. De même, on vérifie qu’une suite (xn) 
converge vers + 0 0  (resp. —0 0 ) si, et seulement si, pour tout a G R, il existe n G N 
tel que xp >a  (resp. xp < a) pour tout p > n .

Le principe du prolongement des inégalités (proposition 2.3.7) se généralise 
alors comme suit.
Proposition 2.13.5 Principe du prolongement des inégalités Soient *5 un filtre 
sur un ensemble X  et deux applications f ,g  : X  -» R telles que f(x)  <  g(x) 
pour tout x G X. Si f  et g admettent des limites suivant le filtre 3r, on a

lim /  <  lim g.

Preuve Posons y = lim^ /  et z =  lim^ g et supposons z < y \ il existe alors 
a G R tel que z < a < y. D’après la définition d’une valeur limite d’une appli­
cation, les ensembles / _ 1([—0 0 , a[) et / - 1(]a, + 0 0 ]) appartiennent à 5F, il en est 
donc de même de leur intersection ; cette intersection étant vide, on obtient une 
contradiction. Q.E.D.

En prenant pour filtre J  le filtre de Fréchet sur N, on en déduit le résultat 
suivant qui étend à R la proposition 2.3.7.
Corollaire 2.13.6 Soient (xn) et (yn) deux suites convergentes de R telles que 
Xn yn pour tout n G N, on a alors h m ^ o o  xn <  l im n -^  yn•

2.14 Fonctions semi-continues
Les fonctions semi-continues jouent un rôle important dans les problèmes de mini­
misation de fonctionnelles ; nous allons indiquer ici les propriétés les plus simples 
de ces fonctions.
Définition 2.14.1 Soit X  un espace topologique, une fonction f  : X  —> R est dite 
semi-continue inférieurement (en abrégé s.c.L) en un point a G X  si 
(SCI i ) Pour tout a G R, a < f(a), P ensemble f ~ l (]a> + 0 0 ]) est un voisinage 
de a.

Il est équivalent de dire que, pour tout a G R, a < / (a ) ,  il existe un voisinage 
V  de a tel que f (V)  c ]a ,  + 0 0 ].
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La fonction /  : X  R est dite s.c.i. si elle est s.c.i. en tout point de X.  
Si la fonction - /  est s.c.i. en un point a G X,  on dit que /  est semi-continue 
supérieurement (en abrégé s.c.s.) au point a G X  ; nous étudierons les fonctions 
s.c.i., les propriétés des fonctions s.c.s. s’en déduisant aisément.

Remarque 2.14.1 On dit que /  : X  -» R admet un minimum relatif au point a 
s’il existe un voisinage V  de a tel que f (x)  >  f(a)  pour tout x G V. Une telle 
fonction est s.c.i. au point a, vu que f (V)  c  [/(a), +oo]. Cette remarque montre 
que dans des problèmes de minimisation des hypothèses de semi-continuité sont 
naturelles.

Proposition 2.14.1 Soit X  un espace topologique et soit a G X.
1. Soit f  : X  —> M une fonction s.c.i. au point a et soit À >  0 (resp. A <  0j, 

alors la fonction Xf est s.c.i. (resp. s.c.s.) au point a.
2. Soient / ,  g : X  R deux fonctions s.c.i. au point a, alors la fonction f  + g 

est s.c.i. au point a.
3. Toute enveloppe supérieure de fonctions s.c.i. au point a est s.c.i. au point a.
4. Toute enveloppe inférieure finie de fonctions s.c.i. au point a est s.c.i. au 

point a.
Preuve 1. Il suffit de vérifier l’assertion lorsque À >  0. Soit a  <  A /(a), c’est- 
à-dire aA-1 < f(a)  ; il existe un voisinage V  de a tel que f (V)  c]aA_1, +oo], 
d’où (Af )(V)  c]a, +oo] et ceci prouve que Xf  est s.c.i. au point a.

2. Soit a < f(a) +  g(a), posons 2 e =  f(a) +  g(a) -  a  >  0 et /? =  f(a) -  e,
7  =  9 (a) -  e î °n a alors a = f) +  7 , /? <  /(a ) ,  7  <  g(a). Il existe donc 
des voisinages V  et W  de a tels que f (V)  c ]/?, +oo[ et g(W) c ]7 , +oo[, d’où 
( /  +  9 ){V n  +oo[, ce qui prouve le résultat voulu.

3. Soient (fi)iei une famille de fonctions s.c.i. au point a, /  =  supiG/ fi et 
a < / (a ) , il existe i G I  tel que a < fi(a) ; soit V  un voisinage de a tel que 
fi(V)  c ]a , + 0 0 ] ; on a alors f (V)  c ]a , + 0 0 ], ce qui permet de conclure.

4. On suppose l’ensemble I  fini et on pose g =  i n f ^ j / j .  Soit a < g(a),
c’est-à-dire a < gi(à) pour tout i G I  ; il existe des voisinages V* de a tels que 
fi(Vi) c ]a ,  + 0 0 ] d’où g(V) c ]a ,  + 0 0 ] où V  =  ^  est un voisinage de a car
I  est fini, ce qui prouve le résultat voulu. Q.E.D.

Le lien avec les fonctions continues est assez simple à établir.

Proposition 2.14.2 Une fonction f  : X  —> R est continue au point a si, et seule­
ment si, elle est s.c.i. et s.c.s. au point a.
Preuve Les conditions sont évidemment nécessaires. Réciproquement, supposons 
/  s.c.i. et s.c.s. au point a. Si f(a)  est fini, pour tout a,/3 € R tels que 
a < f(a) < P, / _ 1( ]a ,+ 0 0 ]) et / —1([—°°, /3[) sont des voisinages de a, il 
en est donc de même de l’intersection qui n’est autre que / - 1(]c*,/3[) ce qui 
prouve la continuité de /  au point a, car l’ensemble des intervalles considérés 
]a,/3[ constitue un système fondamental de voisinages de f(a).  Si f(a) = + 0 0 , 
pour tout a G M, / _ 1(]a, + 0 0 ]) est un voisinage de a, ce qui permet de conclure,
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l’ensemble (]a, +oo])a çiR étant un système fondamental de voisinages de +oo 
(exemple 2.13.5). On raisonne de même lorsque f(a) =  —oo. Q.E.D.

Les fonctions s.c.i. en tout point admettent des caractérisations utiles. 
Proposition 2.14.3 Une fonction f  : X  —» R est s.c.i. si, et seulement si, elle 
satisfait à l'une des propriétés suivantes 
(SCI2 ) Pour tout a  G R, / _1(]a,+ 0 0 ]) est ouvert.
(SCI3 ) Pour tout a  G R, f~ 1 ([-oo)ûi]) est fermé.
Preuve L’équivalence de ces deux propriétés est évidente d’après la définition des 
parties fermées. Si /  est s.c.i., soient a  G R et a G / - 1(]a,+oo]) ; la condi­
tion (SCI i ) au point a signifie que + 0 0 ]) est un voisinage de a ; cet
ensemble est donc ouvert en tant que voisinage de chacun de ses points. Récipro­
quement, supposons la condition (SCI 2 ) vérifiée ; soit a G X  et a  <  / (a ) ,  alors 
/ - 1(]a, + 0 0 ]) est un ouvert contenant a, donc un voisinage de a. Q.E.D.
Exemple 2.14.1 Soit A une partie d’un espace topologique et soit JLa la fonction 
caractéristique (remarque 1.8.2) de A. On a

X  , si a  <  0,
+°°[) =  { A , s i 0 < a < l ,

0  , si 1 < a.
Il en résulte que la fonction est s.c.i. si, et seulement si, A  est ouvert et qu’elle 
est s.c.s. si, et seulement si, A est fermé.
Exercice 2.14.1 Soient X  un espace topologique, f>g : X  R + des fonctions s.c.i., montrer que 

la fonction /  g est s.c.i..

Exercice 2 .14 .2  Soient X  un espace topologique, /  : X  —> R ^ une fonction s.c.i., montrer que la 

fonction 1 / f  est s.c.s..
Exercice 2 .14 .3  1. Soiem X  et Y  des espaces topologiques, ip : X  Y  une fonction continue en 
un point a  G X ,  f  : Y  —>• K une fonction s.c.i. au point y?(a), montrer que la fonction f o ( p  : X  
est s.c.i. au point a.

2. Soient X  un espace topologique, /  : X  R une fonction s.c.i. en un point a  G X ,  

y  : f ( X )  ->  R une fonction continue et croissante, montrer que ip o /  : X  —y R est s.c.i. au 

point a.
Exercice 2 .1 4 .4  1. Soit X  un espace métrique et soit O  un ouvert de X , on pose 

f n ( x )  =  m in (n  d(x , X  — O ), 1) pour x e  X  et n  entier >  1.
Montrer que les fonctions f n : X  —> [0,1] sont continues et que la suite ( / n ) est une suite croissante 
telle que U o =  supn f n .

2. Soit /  : X  [0,1] une fonction s.c.i., montrer qu’il existe une suite croissante de fonctions
continues f n : X  [ 0 ,1[ telle que /  =  supn / n [soientOn>fc =  f ~ 1( ]k / n,  + o o [), n  >  1,
l < k < n - l ,  gn =  ( 1 A 0 ]C £ = Î  l o 7t k> vérifier que /  =  supn pn ; d’après 1., il existe, 
pour tout n  >  1, une suite croissante (/in m )m > i de fonctions continues de X  dans [0,1] telle que 
gn =  supm h n m  ; prendre alors f n =  su p 1< i < n> i < j < n tu j l

3. Soit /  : X  —y R une fonction s.c.i. telle que /  > g où g : X  R est une fonc­
tion continue, montrer que f  est l ’enveloppe supérieure d’une suite croissante de fonctions continues 

f n  : X  -»  R [on peut d’abord supposer g =  0, puis se ramener à 2. en considérant la fonction y>o f  où 

<p : R + [0,1] est défini par (p(t) =  t / (  1 +  t )  si t  G R + et v>(+oo) =  1 (exercice 2.14.3)].
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2.15 Comparaison de topologies
Étant donné un ensemble X , nous nous proposons de définir une relation d’ordre 
sur l’ensemble des topologies sur X  ; considérons donc deux topologies Ti ,T2 sur 
X  ; nous noterons alors Xi  et X 2 les espaces topologiques correspondants, Vi(x) 
et V2 (x) les filtres des voisinages d’un point x pour les topologies Ti et *J2i etc. 
En termes de convergence, il est évidemment intéressant de pouvoir affirmer que 
tout filtre convergeant pour l’une des topologies converge a fortiori pour l’autre 
topologie. Nous sommes donc conduits à poser la définition suivante.

Définition 2.15.1 Soient Ti, T2 deux topologies sur un ensemble X. On dit que la 
topologie Ti est moins fine que la topologie (J2 si, pour tout x de X, tout filtre qui 
converge vers x pour la topologie 72, converge vers x pour la topologie 7\.

On définit ainsi une relation d’ordre sur l’ensemble des topologies sur X  : la 
relation est évidemment réflexive et transitive ; quant à l’antisymétrie, supposons 
Ti moins fine que T2 et T2 moins fine que Ti, alors le filtre V2 (x) convergeant 
vers x pour la topologie T2 , converge vers x  pour la topologie Ti, donc est plus fin 
que le filtre V\(x) ; de même, on montre que le filtre V\ (x) est plus fin que V2 (x) 
et par conséquent V\(x) = V2 (x) pour tout x  € X , ce qui prouve que Ti =  T2 . 
Cette relation d’ordre sera notée Ti <  T2 ; nous dirons aussi que T2 est plus fine 
que Ti ; si, en outre Ti ^  T2 , nous dirons que 72  est strictement plus fine que Ti.

L’ensemble ordonné des topologies sur un ensemble X  admet un plus petit 
et un plus grand élément : la topologie grossière est la moins fine, la topologie 
discrète est la plus fine.

Théorème 2.15.1 Soient Ti, T2 deux topologies sur un ensemble X . Les proprié­
tés qui suivent sont équivalentes.

1. La topologie Ti est moins fine que la topologie 7%
2. Pour tout x e X, tout voisinage de x pour la topologie 7\ est un voisinage 

de x pour la topologie 72> soit Vi(x) C  V2 (x).
3. Toute partie de X  ouverte pour la topologie 7\ est ouverte pour 72, soit 

Oi C  0 2.
4. Toute partie de X  fermée pour la topologie Ti est fermée pour 72f soit 

O i C  0 '2.
5. Uapplication identique de X 2  dans X \ est continue.
6 . Pour toute partie A de X , lyadhérence de A pour 7\ contient Vadhérence 

de A pour 72.
7. Pour toute partie A de X , l'intérieur de A pour 7\ est contenu dans l'inté­

rieur de A pour 72.
Preuve Nous avons vérifié ci-dessus que 1 => 2. L’implication 2 => 3 résulte du 
fait qu’un ouvert est un voisinage de chacun de ses points. Montrons que 3 => 1 : 
soit T  un filtre sur X  convergeant vers x  pour la topologie T2 , c ’est-à-dire plus 
fin que V2 {x) ; l’ensemble 0 2 (z) (resp. 0 i(x )) des ouverts pour T2 (resp. Ti)
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qui contiennent x  constitue une base du filtre V2(x)  (resp. Vi(x))  ; l’hypothèse 3. 
implique O i(z ) C  0 2 (æ), d’où V\(x)  c V 2(æ), ce qui prouve que 5F est plus fin 
que Vi(x), donc converge vers x  pour 9V Les propriétés 3., 4. et 5. sont équiva­
lentes d’après le théorème 2.13.4 ; les propriétés 6 . et 7. sont équivalentes d’après
(2.10.4). Enfin, on a 3 => 7 car l’intérieur de A est le plus grand ouvert contenu 
dans A et on a 7 => 3 d’après (2.10.2). Q.E.D.
Note D’après le théorème précédent la relation < 9 2  est donc équivalente à 
V\(x)  C  V2(z), à O i C  O2 et à 0 i  C  0 2 : plus une topologie est fine, plus 
les filtres des voisinages sont fins, plus il y a d’ensembles ouverts et plus il y a 
d’ensembles fermés.

Remarque 2.15.1 Soit /  : X  —>• Y  une application définie sur un ensemble X  à 
valeurs dans un espace topologique Y  et soit 5F un filtre sur X . Alors, si /  admet 
une limite y suivant le filtre 5F, cela reste vrai lorsqu’on substitue à la topologie de 
Y  une topologie moins fine. En particulier, si X  est un espace topologique et si /  
est continue en un point a e X , f  reste continue lorsqu’on remplace la topologie 
de Y  par une topologie moins fine ; en outre /  reste continue lorsqu’on remplace la 
topologie de X  par une topologie plus fine. L’ensemble Q(X;Y)  est donc d’autant 
plus grand que la topologie de X  est plus fine et celle de Y  moins fine.

Examinons le cas particulier des espaces métriques. Soient d\ et d2 deux dis­
tances sur un ensemble X,  notons X\  et X 2  les espaces métriques correspon­
dants. Comme nous l’avons déjà indiqué, ces distances sont dites topologiquement 
équivalentes si elles définissent la même topologie, autrement dit si l’application 
identique de X \ dans X 2  est un homéomorphisme. Cet homéomorphisme et l’ho­
méomorphisme réciproque ne sont pas en général uniformément continus ; ceci 
conduit à la définition suivante.

Définition 2.15.2 On dit que deux distances d\ et d  ̂ sur un ensemble X  sont 
uniformément équivalentes, ou qu 'elles définissent la même structure uniforme, si 
l'application identique de X \ sur X 2 est uniformément continue ainsi que l'appli­
cation réciproque.

L’intérêt de cette notion apparaît déjà dans la remarque suivante : soit Y  un 
autre espace métrique, une application f  : X \ Y  (resp. /  : Y  -> X{) 
est uniformément continue si, et seulement si, l’application /  : X 2  -» Y  (resp. 
/  : Y  X 2 ) est uniformément continue. Autrement dit, on ne modifie pas l’en­
semble des applications uniformément continues en substituant aux distances ini­
tiales des distances uniformément équivalentes.

Bien entendu, des distances uniformément équivalentes sont topologiquement 
équivalentes.

Exemple 2.15.1 S’il existe des constantes a > 0  et P > 0  telles que
ad2 < d i <  pd2,

les distances d\ et c/2 sont uniformément équivalentes.
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Exemple 2.15.2 Soit d\ une distance sur un ensemble X , alors d2 = m in(di, 1 ) 
est une distance uniformément équivalente à d\. En effet, d2 est bien une distance : 
l’inégalité triangulaire résulte de l’inégalité
(2.15.1) min(u +  v, 1) < min(w, 1) +  min(t;, 1), % v e R + .
On a ensuite cfe <  d\ ce qui prouve la continuité uniforme de l’application iden­
tique de X \  dans X 2  ; en outre, soit 0  <  e <  1 , alors d ^ < e  implique d\ <  e, ce 
qui prouve la continuité uniforme de l’application réciproque. Cet exemple montre 
qu’on peut toujours remplacer une distance par une distance uniformément équi­
valente bornée.
Exercice 2.15.1 Soit ip : K+ -► R+ une application croissante telle que <p(u) = 0 u = 0 et 
<p(u +  v) <  ip(u) +  <p(v) pour tout u, v  E M+.

1. Si d\  est une distance sur un ensemble X,  montrer que cfo =  0  d\  est une distance sur X.
2. Si ip est continue à l ’origine, montrer que ces distances sont uniformément équivalentes.

3. Exemples : ip(u) =  m in ( l, u ), (p(u) =  u/ (  1 +  u).

2.16 Point adhérent à une base de filtre

Définition 2.16.1 Dans un espace topologiquet un point x est dit adhérent à un 
filtre J  si x est adhérent à tout ensemble M  G J.

L’ensemble des points adhérents f]M€3r M  est donc un ensemble fermé. Soit 
3  une base du filtre J ,  on a alors PlseE =  Omcx M  : en effet, vu que B c ï ,  
le premier membre contient le second ; d’autre part, si x € H bg© Pour tout 
M  € J,  il existe B  G 3  tel que B  C M  d’où x e B  C M , ce qui prouve que 
x est un point adhérent au filtre J .  Pour vérifier que x  est un point adhérent au 
filtre 5“, il suffit donc de vérifier que x  est adhérent à tout ensemble appartenant à 
une base 3  du filtre J  ; nous pourrons donc parler de point adhérent à une base de 
filtre. Explicitons cette définition.

Proposition 2.16.1 Pour que x soit un point adhérent à une base de filtre 3, il faut 
et il suffit que, pour tout voisinage V de x appartenant à un système fondamental 
de voisinages de x et tout B e 3, on ait V  fl B  ^  0 .

On notera qu’un filtre sur un espace topologique n’admet pas nécessairement 
de point adhérent : par exemple, sur N  muni de la topologie discrète, le filtre de 
Fréchet n’admet pas de point adhérent. Les espaces topologiques sur lesquels tout 
filtre admet un point adhérent sont particulièrement importants et seront étudiés 
ultérieurement.

Si x est adhérent à un filtre J, il est clair d’une part que x est adhérent à tout 
filtre moins fin que J ,  d’autre part que x reste adhérent à J  si l’on remplace la 
topologie par une topologie moins fine.

Notons par ailleurs la
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Proposition 2.16.2 Soient X  et Y  des espaces topologiques et soit f  : X  Y  
une application continue en un point x  G X, alors si x est adhérent à une base de 
filtre sur X, le point f (x) est adhérent à la base de filtre /(23).
Preuve Soit V  un voisinage de / ( x ), alors f ~ 1 (V) est un voisinage de x, d’où 
f ~ l (V) D B  ^  0 pour tout B  G i  et par suite V  fl f (B)  ^  0, ce qui prouve le 
résultat voulu. Q.E.D.

Nous utiliserons constamment les deux propositions qui suivent.
Proposition 2.16.3 Tout point limite d'un filtre est un point adhérent à 3\
Preuve Si le filtre 3r converge vers x, tout voisinage de x appartient à J, donc tout 
voisinage de x rencontre tout ensemble de J  (un filtre étant stable par intersection 
finie et constitué de parties non vides). Q.E.D.

Pour démontrer la seconde proposition, nous utiliserons le

Lemme 2.16.4 Soient 3^ et 3 2  deux filtres sur un ensemble X , alors il existe 
un filtre plus fin que 3^ et 3^ si, et seulement si, M\ fl M 2 est non vide pour 
tout Mi G 3*, i =  1,2. Lorsque cette condition est vérifiée, l'ensemble {3^,3^} 
admet une borne supérieure 3r dans l'ensemble ordonné des filtres sur X  et on a
3  = {Ml fl M2 ; Mi e 3 ri( i  = 1 ,2 )}.

Preuve S’il existe un filtre T  tel que T  > 3^, i = 1 ,2, tout Mi  de 9^ appartient à 
T  et par conséquent MiHM 2 appartient à 3r/ et est donc non vide. Ceci pouve que 
la condition est nécessaire et que, si J  est un filtre, ce filtre est la borne supérieure 
de {3^,3^}- Or, si M  D M\ fl M2 avec Mi G 9*, on a M  =  Ni fl N 2  avec 
Ni = Mi U M  G S1*, ce qui prouve (Fi) ; (F2) est trivialement vérifié et (F,3) 
résulte de l’hypothèse. Q.E.D.
Proposition 2.16.5 Un point x est adhérent à un filtre 3si, et seulement si, il existe 
un filtre plus fin que J  qui converge vers x.

Preuve La condition est nécessaire : si x est adhérent à 3r, pour tout M  G J  et tout 
V  G V(x), M  C\V est non vide ; d’après le lemme 2.16.4, le filtre sup{3r,'V(x)} 
est un filtre plus fin que J  qui converge vers x. La condition est suffisante : s’il 
existe un filtre 3r/ plus fin que 3r qui converge vers x, la proposition 2.16.3 montre 
que x est un point adhérent à T  et, J  étant moins fin que 3r/, le point x est a fortiori 
adhérent à 3r. Q.E.D.
Définition 2.16.2 Soit f  : X  Y  une application définie sur un ensemble X  et 
à valeurs dans un espace topologique Y. Un point y  G Y  est appelé une valeur 
d'adhérence de l'application f  suivant un filtre J  sur X  si y est un point adhérent 
à la base de filtre / (3 r).

Ceci signifie que, pour tout voisinage V  de y appartenant à un système fonda­
mental de voisinages de y et tout M  G 3r, on a f (M)  fl V  ^  0.

Considérons, en particulier, une suite (xn) dans un espace topologique X.  Une 
valeur d’adhérence de l’application n\-+ xn suivant le filtre de Fréchet est appelée 
une valeur d’adhérence de la suite (xn) ; ce n’est pas autre chose qu’un point
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adhérent au filtre élémentaire associé à la suite (xn). Dire qu’un point x G X  
est une valeur d’adhérence d’une suite (xn) signifie donc que tout voisinage de x 
rencontre tout ensemble Bn défini en (2.11.4), soit 
(2.16.1) (W  G V(x))(Vn G N)(3p G N)(p >  n e tx p G V)
On exprime cette propriété en disant que V  contient une infinité de termes de la 
suite.
Note On ne confondra pas cette notion avec celle de point adhérent à l’ensemble 
\ J Z o M  : toute valeur d’adhérence est évidemment adhérente à cet ensemble, 
mais la réciproque est en général fausse.

Nous savons que le filtre élémentaire associé à une sous-suite extraite d’une 
suite (xn) est plus fin que le filtre élémentaire associé à la suite ; d’après la propo­
sition 2.16.5 il en résulte ceci : s’il existe une sous-suite qui converge vers x, alors 
x est une valeur d’adhérence de la suite (xn). Toujours d’après la même propo­
sition, si x est une valeur d’adhérence de la suite (xn), il existe un filtre plus fin 
que le filtre élémentaire associé à la suite (xn) et qui converge vers x, mais rien ne 
permet d’affirmer que ce filtre est le filtre élémentaire associé à une sous-suite et 
ce résultat peut être en défaut. On a cependant la
Proposition 2.16.6 Dans un espace topo logique à base dénombrable de voisi­
nages , un point x est une valeur d'adhérence d'une suite si, et seulement si, il 
existe une sous-suite qui converge vers x.

Preuve II s’agit de montrer que la condition est nécessaire. Soient x une valeur 
d’adhérence de la suite (xn) et (Vn) une base dénombrable décroissante du filtre 
V(x). En utilisant (2.16.1) il est immédiat de construire par récurrence une sous- 
suite (x nk ) telle que x nk G 14 pour tout A; G N  ; cette sous-suite converge alors 
vers x. Q.E.D.

Plus généralement, on a la caractérisation suivante.
Proposition 2.16.7 Soit f  : X  -» Y  une application définie sur un ensemble 
X  à valeurs dans un espace Y  à base dénombrable de voisinages et soit 7  un 
filtre sur X  admettant une base dénombrable. Un point y G Y  est une valeur 
d'adhérence de f  suivant 7  si, et seulement si, il existe une suite (xn) de X  dont 
le filtre élémentaire est plus fin que 7  et telle que la suite (f ( x n)) converge vers y.
Preuve La condition est suffisante sans hypothèse sur 7  et Y. Montrons qu’elle 
est nécessaire. Soit (Bn) une base décroissante de 7  et soit (Vn) un système fon- 
damental décroissant de voisinages du point y. Alors, pour tout n G N, y G f ( B n) 
d’où Vn fl f ( B n) ^  0 ; soit xn G Bn tel que f ( xn) G Vn. On construit ainsi une 
suite (xn) de X  ayant les propriétés voulues. Q.E.D.

2.17 Espaces séparés
Comme nous l’avons indiqué, un filtre sur un espace espace topologique peut ad­
mettre plusieurs points limites. Nous allons étudier dans ce paragraphe les espaces
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topologiques sur lesquels un filtre ne peut admettre plus d’un point limite.

Définition 2.17.1 Un espace topologique X  est dit séparé si 
(H \ ) Tout filtre sur X  admet au plus un point limite.

On dit aussi que X  est un espace de Hausdorff. Dans un tel espace, une suite 
a donc au plus un point limite, mais cette propriété ne caractérise pas les espaces 
séparés. On notera que tout espace métrisable est séparé d’après la proposition 
2.11.3. La topologie discrète est donc séparée ; la topologie grossière ne l’est pas 
si Card (X) > 2.

Nous allons donner d’autres caractérisations des espaces séparés, en particulier 
en termes de voisinages.

Proposition 2.17.1 Uaxiome (H\) est équivalent à chacun des axiomes suivants. 
(H2 ) (Axiome de Hausdorff) Pour tout x, y G X, x  ^  y, il existe un voisinage de 
x et un voisinage de y disjoints.
(H3 ) Pour tout x  G X, P intersection des voisinages fermés de x est réduite au 
point x.
(H4) Pour tout x G X  et tout filtre jF qui converge vers x , alors x est le seul point 
adhérent à (3f.
Preuve (H\) => (H2 ) Raisonnons par l’absurde. On suppose donc qu’il existe 
deux points distincts x et y tels que tout voisinage de x  rencontre tout voisinage 
de y ; d’après le lemme 2.16.4, le filtre sup{V(x),V(t/)} converge à la fois vers x 
et y , ce qui est absurde d’après (H\).

(H2 ) => (Hz) Soit y un point distinct de x ; d’après (H2 ), il existe des voisi­
nages disjoints V  G V(x) et W  G V(y) ; il en résulte que y n’appartient pas à V, 
qui est un voisinage fermé de x.

(Hz) => (H4 ) L’axiome (Hz) signifie que fVeV(æ) ^  =  i x }> c’est-à-dire que 
x est le seul point adhérent au filtre V(x). Si 5F est un filtre qui converge vers x , 
tout point adhérent à jF est adhérent à V(x), ce qui prouve que x  est le seul point 
adhérent à 3r.

(H4 ) => (Hi) car tout point limite est un point adhérent. Q.E.D.
L’axiome de Hausdorff est appelé un axiome de séparation : on peut séparer 

deux points distincts par des voisinages disjoints.
Dans un espace séparé toute partie réduite à un élément est fermée d’après 

(IÏ3), une intersection de fermés étant fermée ; nous dirons que les points sont 
fermés ; il en résulte que toute partie finie est fermée ; cette propriété n’est pas 
caractéristique des espaces séparés (exercice 2.17.2).

Observons que toute topologie plus fine qu’une topologie séparée est séparée 
d’après (H2 ) par exemple.
Exercice 2.17 .1  1 . Montrer qu’un espace topologique est séparé si, et seulement si, toute suite gé­
néralisée admet au plus un point limite [si X  n’est pas séparé, il existe a , b G X y a  ^  6 , tel que 
V n  W  7  ̂ 0 pour tout V G V (a), W  G V (6 ) ; en prenant un point Xv w dans chacun de ces 
ensembles V  D W,  construire une suite généralisée qui converge à la fois vers a  et vers b].
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2. Montrer qu'un espace topologique à base dénombrable de voisinages est séparé si, et seulement 
si, toute suite admet au plus un point limite.

Exercice 2.17.2 1. Soit X  un ensemble, montrer que l'ensemble des complémentaires des parties 
finies de X  et la partie vide de X  vérifie les axiomes des ouverts et par conséquent définit une topologie 
sur X.

2. Montrer que tout point est fermé, mais que la topologie est séparée si, et seulement si, X  est 
fini.

3. Caractériser les suites convergentes et en déduire en particulier qu’une suite dont tous les termes 

sont distincts converge vers tout point.

Exercice 2.17.3 Soit X  un ensemble muni d’une topologie 7\  et soit 3  l'ensemble des parties de 
X  de la forme O — D  où O est un ouvert de X  et D  une partie dénombrable de X.

1. Montrer que 3  est une base d’une topologie T2  plus fine que 7 \ .
2. Montrer que les seules suites convergentes pour la topologie T2  sont les suites stationnaires à 

partir d’un certain rang.
3. Montrer que la topologie T2  est métrisable si, et seulement si, tout point admet pour la topologie 

Ti un voisinage dénombrable.

4. En déduire un exemple d’espace séparé non métrisable où les seules suites convergentes sont 
les suites stationnaires (on notera que la topologie T2  de l’exemple 2.11.5 n’est pas séparée).

Par définition, une fonction /  : X  —> Y  est continue en un point a £ X  si
f(a) = lim / (x )  ;

x —y cl

lorsque Y  est un espace séparé, on peut préciser cette propriété comme suit.

Proposition 2.17.2 Soient X, Y  des espaces topologiques, si Y  est séparé, une 
application f  : X  Y  est continue en un point a £ X  si, et seulement si, la 
limite limx^ a f (x) existe.

Preuve II s’agit de démontrer que la condition est suffisante. Posons
y = lim /(x ) ,

X —¥Q,

d’après (H4 ) y est le seul point adhérent au filtre de base f(V(a)) ; or le point 
f(a) est adhérent à cette base de filtre donc y =  /( a ) ,  ce qui permet de conclure.

Q.E.D.
Indiquons une propriété fondamentale des espaces séparés.

Proposition 2.17.3 Soient f , g : X —ï Y  deux applications continues définies sur 
un espace topologique X  et à valeurs dans un espace séparé Y. Alors l*ensemble

{ x £ X ; f ( x ) = g ( x ) }
est fermé.

Preuve Montrons que l’ensemble A =  {x £ X  ; f (x)  ^  g(x)} est ouvert. Soit 
x £ A, donc f{x)  7̂  g{x), d’après ( # 2) il existe des voisinages disjoints 
V £ V( f ( x ) ) t tW £ V(g(x)). D’après la continuité de /  et g, f ~ l {V) et g~l (W) 
sont des voisinages de x et par suite f ~ l (V) fl g~l (W)  est aussi un voisinage de 
x. Montrons que ce voisinage de x est contenu dans A , ce qui prouvera que A  est 
un voisinage de x, donc un voisinage de chacun de ses points : or, si y appartient à
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/ - 1(V )n ( /- 1W >o n a /(y )  G V,g(y)  G W 9 d’où f(y) ^  g(y) ca rF D  W = Q.
Q.E.D.

On en déduit le résultat suivant, appelé principe du prolongement des identités.

Corollaire 2.17.4 Soient X  et Y  des espaces topologiques et soient f yg : X —>Y 
deux applications continues égales sur une partie de X  partout dense ; alors, si
Y  est séparé, /  et g coïncident partout.

Autrement dit, une fonction continue à valeurs dans un espace séparé est par­
faitement déterminée par ses valeurs sur un ensemble partout dense. Ceci conduit 
évidemment à la propriété suivante : donnons-nous une application /  : A —> Y, où 
A est dense dans X y et supposons Y  séparé, alors s’il existe une application conti­
nue /  : X  -> Y  qui prolonge / ,  cette application est unique. Quant à l’existence 
d’un prolongement continu, il est nécessaire de faire des hypothèses supplémen­
taires et ce problème sera étudié ultérieurement.

Certains espaces (les espaces métrisables par exemple) vérifient des axiomes 
de séparation plus forts que l’axiome de Hausdorff. Mentionnons ici la classe des 
espaces réguliers.

Proposition 2.17.5 Si X  est un espace topologique, les propriétés suivantes sont 
équivalentes.
( i? i)  Pour tout x G X, P ensemble des voisinages fermés de x est un système 
fondamental de voisinages de x.
(i?2) Pour tout fermé F  C  X  et tout x # F, il existe des voisinages de x et F  
disjoints.
(i?3) Pour tout fermé F  C  X, Vintersection des voisinages fermés de F est 
identique à F.
(Rf) Pour tout filtre J  sur X  qui converge vers x , le filtre de base 
converge vers x.
Preuve (i?i) => (F 2 ) Soit F  un fermé de X  et x G X —F  ; X - F  est un voisinage 
ouvert de x, il existe donc d’après ( F i )  un voisinage fermé V  de x  contenu dans 
X  -  F  ; alors X  -  V  est un voisinage ouvert de F , V  est un voisinage de x  et ces 
voisinages sont disjoints, ce qui prouve (# 2 ).

(R2 ) => (Rs) Soit x G X  -  F  ; il existe V  G V(x), W  G V(F) tels que
V  fl W  =  0 et, par conséquent, x  0  W  ; W  étant un voisinage fermé de F , ceci 
prouve (F 3).

(Rs) => (F 4 ) Soit 7  un filtre qui converge vers x et soit £F' le filtre de base 
(M)Me5  (exemple 2 .1 1 .1). Montrons que tout voisinage ouvert V  de x  contient 
un voisinage fermé de x  ; ceci prouvera que le filtre de base (W)wzv{x) converge 
vers x et il en sera de même a fortiori du filtre 3* qui est plus fin. D’après (F 3 ), 
X  -  V  étant fermé, il existe un voisinage ouvert W  de x  tel que X  -  W  soit un 
voisinage de X  — V  ; on a alors W  c V : en effet, un point y de X  — V  ne peut 
être adhérent à W  vu que X  — W  est un voisinage de y ne rencontrant pas W.  
Ceci prouve le résultat voulu, W  étant un voisinage fermé de x  contenu dans V.
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(J?4) => (Jf^) Prenons J  =  V(x), alors T  converge vers x, ce qui signifie que, 
pour tout V £ V(x), il existe W  € V(x) tel que W  C  K et ceci prouve (i?i).

Q.E.D.

Définition 2.17.2 Un espace topologique est dit régulier s'il est séparé et s'il vé­
rifie les propriétés équivalentes de la proposition 2.17.5.

Tout espace métrisable est régulier d’après la proposition 2.8.2.
Dans un espace topologique, tout point admet un système fondamental de voi­

sinages ouverts (proposition 2.9.2) ; dans un espace régulier, tout point admet un 
système fondamental de voisinages fermés. Comme nous le verrons, cette pro­
priété est utile pour effectuer des passages à la limite dans des inclusions.

Exercice 2.17.4 Montrer que, sur un ensemble totalement ordonné, la topologie de l ’ordre (exercice 

2.9.3) est régulière.

Exercice 2 .1 7 .5  Double limite 1. Soient 7 \  et J 2 des filtres sur des ensembles X \  et X 2 , Y  un 
espace régulier et /  : X \  x X 2 -»  y  une application telle que la limite l im ^  x3r2 /  (exercice 
2.11.4) existe ainsi que, pour tout x\  G A i ,  la limite g(x 1 ) =  lim y2 f {x  1 , •). Montrer alors que la 
limite l im ^  g existe et que l im ^  g =  lim yj x y 2 / .

2. Expliciter ce résultat pour une suite double (æm>n)(min)€ N2  d’un espace régulier.

Exercice 2 .1 7 .6  1. Montrer que sur K l’ensemble des intervalles de la forme [o, 6[, a <  6, est une 
base d’une topologie 7  plus fine que la topologie usuelle.

2. Montrer que cette topologie est séparée et que tout point admet un système fondamental dénom­
brable de voisinages fermés.

3. Montrer que IR, muni de la topologie 7 , est séparable.
4. Montrer que la topologie 7  n’admet pas de base de topologie dénombrable [si (Æ * )^ / est une 

base de la topologie, montrer que, pour tout a: G K, il existe i G I  tel que x =  m in jB*] et en déduire 
que cette topologie n’est pas métrisable.

On obtient ainsi un exemple d’espace régulier, séparable et à base dénombrable de voisinages qui 
n’est pas métrisable.

2.18 Espaces métriques com plets
La définition (2.11.2) fait apparaître une propriété intéressante des bases de filtre 
convergentes sur un espace métrique. Pour cela, introduisons la notion suivante : 
on appelle diamètre d’une partie non vide A d’un espace métrique le nombre réel 
(éventuellement infini)
(2.18.1) diam A = sup d(x, y) G R+.

.tGA,3/G A

Exercice 2.18.1 Soient A et B  des parties non vides d’un espace métrique, montrer que
1. diam A  =  diam A,
2. diam (AU B) <  diam A +  diam B si A H B ^  0 ouÂ D B ^  0.

La condition (2.1 1 .2) implique évidemment que le diamètre de B  est plus petit 
que 2 e ; en d’autres termes, si une base de filtre !B converge, il existe des ensembles 
de ÏB dont le diamètre est arbitrairement petit. Ceci conduit à la définition suivante.



2.18 ESPACES MÉTRIQUES COMPLETS 113

Définition 2.18*1 Dans un espace métrique, une base de filtre $  est appelée une 
base de filtre de Cauchy si, pour tout e > 0, il existe un ensemble de dont le 
diamètre est inférieur à e.

Si T> et !B' sont deux bases de filtre équivalentes, 3  est une base de filtre de 
Cauchy si, et seulement si, !B' est une base de filtre de Cauchy : en effet, tout 
ensemble de !B contient un ensemble de *Bf et inversement. La propriété pour une 
base de filtre d’être une base de filtre de Cauchy est donc une propriété du filtre 
engendré ; le choix particulier de la base du filtre importe peu.

Une suite (xn) sera appelée une suite de Cauchy si le filtre élémentaire associé 
est un filtre de Cauchy. D’après (2.11.4), ceci signifie donc 

f (Vs > 0)(3n G N)(Vp € N)(V# G N)

[ {(p > n et q > n) => d(xpyxq) < e).
Sur R, cette définition coïncide bien avec la définition 2.3.2.
D’après ce qui a été dit ci-dessus, tout filtre convergent est un filtre de Cauchy, 

donc toute suite convergente est une suite de Cauchy. Vu la définition 2.18.1, il 
est clair d’autre part que tout filtre plus fin qu’un filtre de Cauchy est un filtre de 
Cauchy. En particulier, si (xn) est une suite de Cauchy, toute sous-suite extraite 
est une suite de Cauchy.

Voici une propriété utile des filtres de Cauchy.
Proposition 2.18.1 Un filtre de Cauchy converge vers un point x si, et seulement 
si, x est un point adhérent à ce filtre.
Preuve La condition est nécessaire d’après la proposition 2.16.3. Réciproquement, 
soit x un point adhérent à un filtre de Cauchy *S ; pour tout e >  0, il existe M  G J  
tel que diam M  < e, c’est-à-dire tel que d(y) z) < e pour tout y,z  G M  ; 
le point x  étant adhérent à y , la boule B'(x\e)  est un voisinage de x  qui ren­
contre M  ; il existe donc un point y G M  tel que d(x,y) <  e ; il en résulte que 
d(x, z) < 2e pour tout z G M , c’est-à-dire M  C B'(x; 2e) ce qui prouve que le 
filtre J  converge vers x. Q.E.D.

Un espace métrique étant séparé, on peut énoncer la proposition précédente 
comme suit.
Corollaire 2.18.2 Soit 7  un filtre de Cauchy, alors ou bien 7  n ’admet pas de point 
adhérent, ou bien J  admet un unique point adhérent x auquel cas J  converge vers 
x.

Dire qu’un point x  est adhérent à un filtre équivaut à l’existence d’un filtre plus 
fin qui converge vers x (proposition 2.16.5) ; on peut donc énoncer la proposition 
2.18.1 de la façon suivante.
Corollaire 2.18.3 Tout filtre de Cauchy moins fin qu%un filtre qui converge vers x, 
converge vers x.

Un espace métrique étant à base dénombrable de voisinages, la proposition 
2.16.6 prouve le



114 CHAPITRE 2 TOPOLOGIE

Corollaire 2.18.4 Une suite de Cauchy converge vers x si, et seulement si, il existe 
une sous-suite qui converge vers x.

Voici une application intéressante des notions précédentes. Considérons une 
fonction /  : X  Y  définie sur un espace topologique X  et à valeurs dans un 
espace métrique Y. On définit alors l’oscillation de /  en un point a e X  par la 
formule suivante
(2.18.3) w (/;x ) =  inf diam f (V)  G I + .vev(x)
Bien entendu, on peut se contenter de prendre la borne inférieure sur un système 
fondamental de voisinages du point x. Cette notion permet de caractériser la conti­
nuité de / ,  on a en effet le résultat suivant.

Proposition 2.18.5 1. La fonction x  i-)> oj(f; x) de X  dans R+ est s.c.s.
2. La fonction f  est continue au point x si, et seulement si, cj( / ;  x) =  0.

Preuve 1. Soit a > cu(f;x), il existe un voisinage V  de x, qu’on peut supposer 
ouvert, tel que diam f (V)  < a. Pour tout y G V, V est un voisinage de y> donc 
cu(/; y) < a , soit a;(/; V)  C [—oo, a[ ce qui prouve que cu(/;.) est s.c.s. au point 
x.

2. La condition cj( / ;  x) =  0 signifie que (f(V))vev(x) est une base de filtre 
de Cauchy. Si /  est continue au point x, cette base de filtre convergeant vers f (x)  
est de Cauchy, donc u;( /; x) = 0. Réciproquement, si cj( / ;  x ) =  0 la base de filtre 
(f(V))veV{x) est de Cauchy et, admettant le point f (x)  comme point adhérent, 
elle converge vers f (x)  d’après la proposition 2.18.1, ce qui prouve la continuité 
de /  au point x. Q.E.D.

Exercice 2.18.2 Soient X  un espace topologique, Y  un espace métrique et /  : X  -» Y  une appli­
cation. Montrer que l’ensemble des points de continuité de /  est un 3s (exercice 2.13.4).

Nous avons défini la notion de filtre de Cauchy en utilisant explicitement la 
distance ; il est évidemment essentiel de savoir comment cette notion dépend du 
choix de la distance. Le résultat qui suit permettra de répondre à cette question.

Proposition 2.18.6 Soient X, Y  des espaces métriques et f  : X  —► Y  une appli­
cation uniformément continue. L'image par f  de toute base de filtre de Cauchy sur 
X  est une base de filtre de Cauchy sur Y.
Preuve Soit !B une base de filtre de Cauchy sur X  et soit e > 0 ; d’après la 
continuité uniforme de / ,  on peut trouver un S > 0 tel que , pour tout x, y G X, 
d(x, y) < ô implique d (/(x ) , f(y)) < €, autrement dit tel que, pour tout ensemble 
M  de X , diam M  < S implique diam f (M)  <  e ; alors, 3  étant une base de filtre 
de Cauchy sur X 9 on peut trouver un ensemble M  de 3  tel que diam M  < ô, d ’où 
diam /(M )  <  e. Q.E.D.

Il en résulte que deux distances uniformément équivalentes définissent les 
mêmes filtres de Cauchy ; la notion de filtre de Cauchy ne dépend donc que de 
la structure uniforme sous-jacente.
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Remarque 2.18.1 II n’en est pas du tout de même pour des distances topologique- 
ment équivalentes. Par exemple, considérons sur R la distance usuelle 
di(x, y) = \x — y | et la distance induite par celle de R (exemple 2.13.5)

d2 {x,y) =  |/(x )  - / ( y ) | .
Ces distances sont topologiquement équivalentes : en effet, une suite (xn) de 
R converge vers x  pour la distance d\ si, et seulement si, elle converge vers x 
pour la distance d<i d’après la continuité de /  et f ~ l :] -  l ,l[ ->  M, vu que 
f ~ l (y) =  2/ / ( l  — |y|). Alors, la suite xn =  n n’est pas de Cauchy pour la distance 
d\ alors qu’elle l’est pour la distance cfe vu que la suite (n / 1  +  n) converge vers 
1 . Ceci montre que les distances d\ et d<i ne sont pas uniformément équivalentes.

Dans un espace métrique, nous avons vu que tout filtre convergent est un filtre 
de Cauchy ; la réciproque est en général fausse. Par exemple, sur R muni de la 
distance cfe ci-dessus, la suite de Cauchy xn = n ne converge pas. Ceci conduit à 
la définition suivante.

Définition 2.18.2 Un espace métrique est dit complet si tout filtre de Cauchy 
converge.

Dans un espace métrique complet les filtres convergents sont donc les filtres de 
Cauchy ; pour démontrer qu’un filtre converge, il suffit donc de vérifier qu’il est 
de Cauchy et il n’est pas utile de connaître a priori la limite. Ceci explique l’inté­
rêt fondamental des espaces métriques complets. Énonçons plus généralement le 
critère de Cauchy.

Théorème 2.18.7 Critère de Cauchy Soit f  : X  ->> Y  une application définie 
sur un ensemble X  et à valeurs dans un espace métrique complet Y. Pour que f  
admette une valeur limite suivant un filtre jF sur X , il faut et il suffit que la base 
de filtre /(5F) soit une base de filtre de Cauchy.

Dans un espace métrique complet, une suite converge si, et seulement si, elle 
est de Cauchy. Réciproquement, on a le

Théorème 2.18.8 Un espace métrique est complet si, et seulement si, toute suite 
de Cauchy converge.

Preuve II s’agit de démontrer que la condition est suffisante. Considérons donc un 
filtre de Cauchy 5F ; pour tout entier n > 1 , il existe un ensemble An G J  tel que 
diam An < 1 /n  ; posons M\ =  A\ et Mn = Mn- \  fl An pour n > 1 ; 
on construit ainsi une suite décroissante (Mn)n>i d’ensembles de 5F tels que 
diam Mn < 1/n. Cette suite (Mn) est évidemment une base d’un filtre de Cau­
chy T  moins fin que 5F ; choisissons un point xn dans chaque Mn ; on construit 
ainsi une suite (xn) dont le filtre élémentaire est plus fin que 5F' comme nous 
l’avons démontré au paragraphe 2.12 ; le filtre 5Fy étant de Cauchy, la suite (xn) 
est donc une suite de Cauchy qui converge vers un point x  par hypothèse. Le filtre 
J '  étant moins fin que le filtre élémentaire associé à la suite (xn), le corollaire
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2.18.3 prouve que 7 f converge vers x , donc 7, qui est plus fin que 7 \  converge a 
fortiori vers x. Q.E.D.

Vu le théorème 2.3.5, la droite réelle M munie de la distance usuelle 
d(x, y) =  \x — y | est un espace métrique complet.
Proposition 2.18.9 Cantor Dans un espace métrique complet, soit (Fn) une suite 
décroissante de fermés non vides dont le diamètre tend vers 0 lorsque n tend vers 
Vinfini. Alors, l'intersection fl^Lo Fn est réduite à un point 
Preuve La suite (Fn) est une base de filtre de Cauchy dans un espace complet ; 
elle est donc convergente vers un point a qui est d’après (H4 ) le seul point adhérent 
à cette base de filtre, d’où {a} =  H^=o Fn> les Fn étant fermés. Q.E.D.
Exemple 2.18.1 Tout espace métrique discret est complet. En effet, si 7  est un 
filtre de Cauchy, il existe M  € 7  tel que diam M  <  1/2 ; il en résulte que M  
est nécessairement réduit à un point x  et par conséquent 7  est plus fin que le filtre 
V(x).
Exercice 2 .1 8 .3  Montrer qu’un espace métrique est complet si, pour toute suite décroissante (Fn) 
de fermés non vides dont le diamètre tend vers 0, l ’intersection D ^ = o  ^>n est réduite à un point.
Exercice 2 .1 8 .4  Dans un espace métrique, une suite généralisée (æ * )^ / (exemple 2.11.5) est dite 
de Cauchy si l’image du filtre des sections sur l’ensemble filtrant I  par l ’application i t-> Xi est une 
base de filtre de Cauchy. Montrer qu’une suite généralisée (æ * )^ / est de Cauchy si, et seulement si,

(Ve: >  0 ) (3 i G I)(Vj, k G I)(j,  k > i = ï  d(xjy <  e:).

Montrer que toute suite généralisée convergente est de Cauchy et qu’un espace métrique est complet 
si, et seulement si, toute suite généralisée de Cauchy converge.

2.19 Topologies initiales
On se propose de décrire un procédé très général permettant de construire de nou­
veaux espaces topologiques ; deux exemples fondamentaux seront traités dans les 
deux paragraphes suivants.

La situation générale envisagée est la suivante. Nous nous donnons une fa­
mille (Xi).i£j d’espaces topologiques, un ensemble X  et une famille d’applica­
tions fi : X  - ï  Xi. On désire munir l’ensemble X  d’une topologie ; les topo­
logies intéressantes sont celles qui rendent continues toutes les applications fi. Si 
une topologie sur X  rend continues toutes les applications /*, il en est évidemment 
de même de toute topologie plus fine ; ceci montre qu’il est intéressant de savoir 
si l’ensemble £ des topologies sur X  rendant continues toutes les applications fi 
admet un plus petit élément. La réponse à cette question est positive ; on a très 
précisément le théorème suivant.
Théorème 2.19.1 Soient (Xi)iej une famille d'espaces topologiques, X  un en­
semble et fi : X  - ï  Xi une famille d'applications. Il existe sur X  une topologie, 
dite topologie initiale, rendant continues toutes les applications fi et moins fine 
que toute topologie sur X  rendant continues toutes les applications fi.
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Preuve Notons 0* la famille des ouverts de Si T est une topologie sur X  
appartenant à £, pour tout i G I  et tout O* G 0* les ensembles f f l (Oi) doivent 
être ouverts, donc l’ensemble des intersections finies de tels ensembles, c’est-à- 
dire l’ensemble des
(2.19.1) f |  où O i G 0 it J  G y (J),

ieJ
où J(I)  désigne l’ensemble des parties finies de I. Si nous montrons que les en­
sembles (2.19.1) constituent une base de topologie, le théorème sera démontré : la 
topologie cherchée sera définie par cette base de topologie. Vérifions les propriétés 
(J3i) et (B2 ) de la proposition 2.9.4 : (B 1) est vérifié car l’intersection de deux 
ensembles de la forme (2.19.1) est encore de cette forme et (B 2 ) est vérifié car 
X  = f r \ X i). Q.E.D.
Exemple 2.19.1 Borne supérieure d’une famille de topologies Sur un ensemble 
X , soit (T*)*e / une famille de topologies ; notons Xi  l’espace X  muni de la to­
pologie 7i et fi : X  -» Xi  l’application identique. La topologie initiale sur X  
associée à ces fonctions fi est donc plus fine que chaque topologie T* et c’est la 
topologie la moins fine ayant cette propriété ; autrement dit, la famille de topolo­
gies (T*)i6/ admet une borne supérieure, à savoir la topologie initiale précédente.

Sur chaque espace X iy donnons-nous une base de topologie Biy alors l’en­
semble des
(2.19.2) f |  où B i G B*. J  G ?(/),

iÇ. J
constitue une base de la topologie initiale. En effet, ces ensembles sont ouverts et, 
par conséquent, il suffit de vérifier que tout ensemble de la forme (2.19.1) est une 
réunion d’ensembles de la forme (2.19.2), c’est-à-dire que pour tout 
x G Plie J U ' m ,  il existe des Bi e B  iyi e  J ,  tels que

x e  f l  /<-1 (B*) c  f l  f r Ho i )  ;
i€J i£J

cette dernière propriété est immédiate à vérifier, car fi(x) G Oi donc, étant une 
base de la topologie de X it i l  existe Bi G 'Bi tel que fi(x) G Bi C Oiy d ’où le 
résultat désiré.

Décrivons le filtre des voisinages d’un point x de X  ; soit Si un système fon­
damental de voisinages du point /*(x)y alors l’ensemble des
(2.19.3) f |  / - ' (VJ ,  où Vi G Si, J e  ? ( /) ,

i£j
constitue un système fondamental de voisinages du point x. Notons d’abord que 
ces ensembles sont des voisinages de x d’après la continuité des applications fi 
et le fait que J  est fini. Montrons ensuite que tout voisinage V  de x contient un 
ensemble de la forme (2.19.3) ; en effet, V  contient un ouvert qui contient x y donc 
V contient un ensemble de la forme (2.19.1) qui contient x , soit

* € f |  f r \O i )  C V, où Oi G Oi, J  € J (J ) ;
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les ouverts O* sont alors des voisinages de f i ( x ), donc il existe des Vi G S* tels 
que f i (x)  G Vi c Où d ’ où x  G f l ie j  c  ce 9ui prouve le résultat
voulu.

En ce qui concerne la convergence des filtres, le résultat de base est le suivant.

Proposition 2.19.2 Les hypothèses étant celles du théorème 2. J 9. 1, un filtre 5F sur 
X, muni de la topologie initiale, converge vers un point x si, et seulement si, pour 
tout i G I, la base de filtre /*(5F) converge vers fi(x).
Preuve Si le filtre 5F converge vers un point x G X,  la continuité des applica­
tions fi prouve que les bases de filtre /i(5F) convergent vers fi(x).  Réciproque­
ment, supposons que les bases de filtre /i(5F) convergent vers fi(x) et considérons 
un voisinage du point x de la forme V  =  ( \ Gj  où vi G V(/*(x)),
J  G 5F(J) ; alors f ~ x(Vi) G J  et J  étant fini, on en déduit que V  g 5F, ce qui 
prouve que le filtre 5F converge vers x. Q.E.D.

Cette proposition a des conséquence importantes que voici.

Corollaire 2.19.3 Soit 5F un filtre sur un ensemble Y, alors une application 
f  : Y  —> X, où X  est muni de la topologie initiale, admet une valeur limite 
x G X  suivant le filtre 5F si, et seulement si, pour tout i G I, fi(x) est une valeur 
limite de V application fi o f  : Y  Xi suivant le filtre 5F.

En particulier, en prenant Y  = N et pour filtre 5F le filtre de Fréchet, on constate 
qu’une suite (xn) de X  converge vers un point x G X  si, et seulement si, pour tout 
i G I  la suite (f i(xn)) converge vers fi(x).

En prenant pour J  le filtre des voisinages d’un point a d’un espace topologique 
y ,  on constate que x  =  l im ^ a  f ( y)  si, et seulement si, pour tout i G / ,

fi(x) = lim (fi o  f)(y). 
y—>a

En particulier, on obtient le corollaire qui suit.

Corollaire 2.19.4 Soit Y  un espace topologique, une application f  : Y  -> X  est 
continue en un point a G Y  si, et seulement si, pour tout i G I, les applications 
f i o f : Y  —> Xi sont continues au point a. U application f  est donc continue dans 
Y  si, et seulement si, toutes les applications f%o f  sont continues dans Y .
Exercice 2 .19 .1  Montrer que la topologie initiale sur X  est la seule topologie vériüant la propriété

{quels que soient l ’espace topologique Y  et l’application f  : Y  ->  X % f  est continu si, et 
seulement si, pour tout i G / ,  les applications fi o f  : Y  X i  sont continues.

Exercice 2.19.2 Topologie engendrée par une famille de parties 1. Soit ( A i ) i e I  une famille de 
parties d’un ensemble X , montrer qu’il existe sur X  une topologie 7  et une seule telle que A i  soit 
ouvert pour tout i et moins fine que toute autre topologie possédant cette propriété [utiliser sur X  les 
topologies définies par O  i  =  { 0 ,  A i , X }] .

2. Soit Y  un espace topologique, montrer qu’une application /  : Y  X  est continue (X  étant 
muni de la topologie 7) si, et seulement si, f ~ l (Ai) est ouvert pour tout i.

Enfin la proposition 2.19.2 permet de donner un critère très simple pour que la 
topologie initiale soit séparée.
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Corollaire 2.19.5 On suppose les espaces Xi séparés, alors la topologie initiale 
sur X  est séparée si, et seulement si,
(2.19.4) Çrfx G X){\/y G X)((Vi G /)(/<(*) =  fi(y)) =* s  =  y).
On dit alors que les fonctions fi séparent les points de X.

Preuve La condition est suffisante. En effet, soit 5F un filtre sur X  convergeant vers 
x et y ; l’espace Xi étant séparé, la proposition 2.19.2 montre que fi(x) =  fi(y) 
pour tout i  G I, d’où x = y , ce qui prouve que X  est séparé. Réciproquement, 
s’il existe x, y G X,  x ± y , tel que fi(x) = fi(y) pour tout i G / ,  le filtre V(x) 
converge à la fois vers x  et y. Q.E.D.
Note Lorsque les espaces Xi  sont métrisables, la topologie initiale sur X  n’est 
pas en général métrisable, ni même à base dénombrable de voisinages comme le 
montre, par exemple, la proposition 2.21.17 concernant les topologies produits.

2.20 Topologie induite

Soit f  : X  - ï  Y  une application définie sur un ensemble X  et à valeurs dans 
un espace topologique Y  ; on peut alors munir X  de la topologie initiale associée 
à cette application / ,  c’est-à-dire de la topologie la moins fine rendant continue 
l’application /  ; cette topologie est appelée topologie image réciproque par /  de 
la topologie de Y .

Nous nous proposons d’étudier dans ce paragraphe un cas particulier de cette 
notion. Soit A une partie d’un espace topologique X.  La topologie image réci­
proque par l’injection canonique i : A X  de la topologie de X  est appelée 
topologie induite sur A par celle de X . Muni de cette topologie, A est appelé un 
sous-espace de X.  Tous les résultats du paragraphe précédent s’appliquent à cette 
situation particulière.

La topologie induite est la topologie la moins fine rendant continue l’injection 
canonique i : A —> X.

La base de topologie (2.19.1), c’est-à-dire l’ensemble des

r 1(0) = onA
où O décrit l’ensemble des ouverts de X , vérifie dans ce cas les axiomes des 
ouverts et constitue donc l’ensemble de tous les ouverts de la topologie induite. 
Un ouvert de la topologie induite sera dit ouvert dans A et, par conséquent, une 
partie de A est ouverte dans A si, et seulement si, elle est la trace sur A d’un ouvert 
de X.  Il en résulte évidemment qu’une partie de A est fermée dans At c’est-à-dire 
est fermée pour la topologie induite, si, et seulement si, elle est la trace sur A d’un 
fermé de X.

Si 3  est une base de la topologie de X , les traces sur A des ensembles de 3  
est une base de la topologie induite d’après (2.19.2).
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On prendra garde au fait qu’un ensemble ouvert (resp. fermé) dans A  n’a au­
cune raison d’être ouvert (resp. fermé) dans X  ; plus précisément, on a le résultat 
suivant.
Proposition 2.20.1 Pour que tout ensemble ouvert (resp. fermé) dans A soit ou­
vert (resp. fermé) dans X, il faut et il suffit que A soit ouvert (resp. fermé) dans 
X.
Preuve Si tout ensemble ouvert dans A est ouvert dans X , A étant ouvert dans A 
(d’après (O3 )) est ouvert dans X. La réciproque est immédiate, car un ouvert de 
A est de la forme O fl A où O est ouvert dans X  et on utilise (0 2 )- On fait un 
raisonnement analogue pour des fermés. Q.E.D.
Exercice 2.20.1 Soient X  un espace topologique, A et B des parties de X  et M  C A n B,  si M  
est ouvert (resp. fermé) dans A et dans B , montrer que M  est ouvert (resp. fermé) dans AU B.
Exercice 2.20.2 Sous-espace localement fermé Soient X  un espace topologique, A une partie de 
X , montrer que les propriétés suivantes sont équivalentes (on dit alors que A est localement fermé)

1. pour tout x E i4, il existe unvoisinage Vx de x tel que Vx fl A soit fermé dans Vx,
2. A est une partie ouverte de A ,
3. A peut s’écrire comme l’intersection d’un ouvert et d’un fermé de X ,
4. il existe un ouvert O contenant A tel que A soit fermé dans O
[pour vérifier que 1 => 2, soit Ox un ouvert tel que x E Ox C VXt noter que

A n vx = A n Vx n vx 3  A n o x n o x,

montrer que A 3  A fl Ox en utilisant l’exercice 2.10.3 et en déduire que A =  A n \JxeA Ox].
Exercice 2.20.3 Recollement d’espaces topologiques Soit X  un ensemble tel que X  =  (JiG7 Xi  
où chaque Xi  est muni d’une topologie Ti vérifiant, pour tout i , j  E / ,

a. Xi  n Xj  est ouvert dans Xi  et dans Xj,
b. les topologies T* et 7j  coïncident sur Xi  fl X j .
Montrer alors qu’il existe une unique topologie 7  sur X  telle que 7  induise sur Xi  la topologie 7i 

et que Xi  soit un sous-espace ouvert de X  [montrer d’abord que, si une telle topologie existe, elle est 
unique : l’ensemble O des ouverts est nécessairement donné par la formule

O =  {O € V(X)  ; O =  IJ  Ou Oi  e  O*},
i e i

Oi désignant l’ensemble des ouverts de (Xi, 7i) ; montrer ensuite que O vérifie les axiomes des ou­
verts (on sera conduit à vérifier que Xi  n  Oj  E Oi pour tout Oj  E Oj) et définit une topologie sur X  
vérifiant les propriétés voulues].

En ce qui concerne la notion de voisinage, on a d’après (2.19.3) le résultat 
suivant : soit a un point de A et soit S un système fondamental de voisinages de a 
dans X , alors l’ensemble des traces sur A des ensembles de S constitue un système 
fondamental de voisinages de a dans A (c’est-à-dire pour la topologie induite).

Pour préciser ce résultat, introduisons la notion de filtre induit. Soit 7  un filtre 
sur X  et soit l’ensemble des traces sur A des ensembles de *5 ; 3 ^  n’est pas 
en général un filtre sur A , pour que 3ra soit un filtre, il est nécessaire que
(2.20.1) (VM E 5)(M
et cette condition est évidemment suffisante ; on dit alors que J  admet une trace 
sur A et le filtre J  a est appelé le filtre induit sur A par J .  Si *B est une base du
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filtre 7, l’ensemble 3  a des traces sur A des ensembles de 3  est évidemment une 
base du filtre 7 a -

Voici deux remarques très simples concernant cette notion.

Remarque 2.20.1 Soient 7  et 7 1 deux filtres sur X , 7  étant moins fin que 7 f. 
Alors, si 7 ' admet une trace sur A, le filtre 7  admet une trace sur A et le filtre 7 a 
est moins fin que 7'A-
Remarque 2.20.2 Soit 7  un filtre sur X  admettant une trace 7 a sur A. Alors, 7 a 
est une base de filtre sur X  qui engendre un filtre plus fin que 7.
Exemple 2.20.1 Soit A  une partie d’un espace topologique X . Alors, un point a 
de X  est adhérent à A si, et seulement si, le filtre V(a) admet une trace sur A. Si 
7  est ce filtre induit, 7  est une base de filtre sur X  qui converge vers a d’après la 
remarque 2 .2 0 .2 .

Exercice 2.20.4 Image réciproque d’un filtre Soient X , Y  des ensembles, /  : X  —» Y  une 
application et 25' une base de filtre sur Y.  Montrer que / - 1 (237) =  { / - 1 (M 7) ; M 7 G 23'} est une 
base de filtre sur X  si, et seulement si, f ~ 1(M') est non vide pour tout M 7 G 23'. Cette condition 
étant vérifiée, montrer que le filtre engendré par / _ 1 (23/ ) ne dépend que du filtre engendré par 23' et 
que / ( / - 1 (237)) engendre un filtre plus fin que 23'.

Revenons à la notion de sous-espace. Avec la terminologie qui précède, le filtre 
des voisinages dans A d’un point a G A est simplement la trace sur A du filtre des 
voisinages dans X  du point a. Un voisinage de a dans A n’est pas en général un 
voisinage de a dans X  et on a la

Proposition 2.20.2 Soit A un sous-espace d'un espace topo logique et soit a € A. 
Pour que tout voisinage de a dans A soit un voisinage de a dans X , il faut et il 
suffit que A soit un voisinage de a dans X.
Preuve La condition est nécessaire car A est un voisinage de a dans A. Elle est 
suffisante : si V  est un voisinage de a dans A, il existe un voisinage W  de a dans 
X  tel que V = W  fl A et par suite V  est un voisinage de a dans X  d’après (F2).

Q.E.D.
La proposition 2.19.2 montre qu’un filtre 7  sur A converge dans A vers un 

point a G A si, et seulement si, 7  en tant que base de filtre sur X  converge vers 
a dans X. En particulier, il est équivalent de dire d’une suite (xn) de A qu’elle 
converge dans A ou dans X  vers un point a de A. Enfin, d’après le corollaire 
2.19.4, une application /  : Y  ->* A définie sur un espace topologique Y  est conti­
nue en un point a G y  si, et seulement si, l’application i o f : Y  X  est continue 
en ce point.

Remarque 2.20.3 Soient Y  un espace topologique et /  : X  —> Y  une application 
continue en un point a G A. L’application f o i  : A Y,  c’est-à-dire la restriction 
de /  à A est continue au point a, d’après la continuité de l’injection canonique i. La 
réciproque est évidemment fausse en général ; elle est vraie si A est un voisinage 
de a : en effet, si V  est un voisinage du point / ( a ) ,  ( /  o =  f ~ x(V) f l  A
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est un voisinage de a dans A, donc dans X  d’après la proposition 2 .2 0 .2  et il en 
résulte que f ~ l {V) est un voisinage de a dans X  d’après (F\).
Remarque 2.20.4 Soient X  un espace topologique et A, B  des parties de X  telles 
que B  C A C X.  On peut considérer B  comme un sous-espace de X  ou comme 
un sous-espace du sous-espace A ; il est évident que les deux topologies ainsi 
induites sur B  coïncident.
Remarque 2.20.5 Soit A un sous-espace d’un espace topologique X  et soit B  
une partie de A. Alors l’adhérence de B  dans A est égale à la trace sur A de 
l’adhérence de B  dans X.  En effet, les fermés de A sont de la forme A fl F , où 
F  est fermé dans X , et on obtient donc le plus petit fermé de A contenant B  en 
prenant pour F  le plus petit fermé de X  contenant B , c’est-à-dire l’adhérence de 
B  dans X.  On en déduit que B  est dense dans A si, et seulement si, A C B  ; par 
conséquent, si A est dense dans X  et si B  est dense dans A, alors B  est dense 
dans X.  Plus généralement, supposons A muni d’une topologie 7  plus fine que 
la topologie induite (autrement dit, on suppose seulement l’injection canonique 
i : A —► X  continue), alors si A est dense dans X  et si B  est dense dans A muni 
de la topologie 7, B  est dense dans X  d’après ce qui précède et le point 6 . du 
théorème 2.15.1.

Venons-en enfin à la notion de limite relative à un sous-espace.
Définition 2.20.1 Soit a un point adhérent à une partie A d'un espace topologique 
X  et soit f  : A Y  une application à valeurs dans un espace topologique Y . On 
dit que f(x) tend vers un point y de Y  quand x tend vers a en restant dans A, si 
y est une valeur limite de l'application f  suivant le filtre induit sur A par le filtre 
V(a). On écrit alors y =  ]imx^ atx€A /(z)-

Si S (y) est un système fondamental de voisinages de y, ceci signifie simple­
ment
(2.20.2) ( W  G S(y))(3W G V(a)){f(W H A) C V ).

Toute valeur limite étant un point adhérent, on notera que y G /(A ).
Si l’espace X  est à base dénombrable de voisinages, on peut caractériser cette 

notion de limite en termes de suite.
Proposition 2.20.3 Les notations étant celles de la définition 2.20.1, on suppose 
X  à base dénombrable de voisinages, alors y =  l i m ^ a ^ / i  f (x) si, et seulement 
si, pour toute suite (xn) de A qui converge vers a, la suite ( f ( x n)) converge vers
y•
Preuve D’après la proposition 2.12.3, il s’agit de vérifier qu’une suite (xn) de A 
converge vers a si, et seulement si, le filtre élémentaire sur A associé à cette suite 
est plus fin que le filtre V(ü)\a , ce qui est immédiat. Q.E.D.
Remarque 2.20.6 Soient A et B  deux parties d’un espace topologique X  telles 
que B  C A c  X.  Si a est un point adhérent à B, a est a fortiori adhérent à A. Soit 
/  : A -> Y  une application à valeurs dans un espace topologique Y  et supposons 
y =  limæ_*0)a:(Ei4 f ( x ) y d’après (2 .2 0 .2 ) on a alors y =  ]imx->atX£B f(x).
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Exemple 2.20.2 Soit a un point non isolé dans un espace topologique X , alors a 
est adhérent à X  -  {a}. Si une application /  : X  -  {a} -* Y  admet une limite y 
quand x tend vers a par valeurs différentes, c’est-à-dire en restant dans X  — {a}, 
on écrit y = \imx^ ayx^a /(x ) .

Signalons enfin que le critère de séparation 2.19.5 s’applique. Tout sous-espace 
d’un espace séparé est séparé. Notons également que tout sous-espace d’un espace 
régulier est régulier.

Exercice 2.20.5 Les notations étant celles de l’exemple 2.20.2, montrer que y =  limx_>a x^a f(x)  
si, et seulement si, la fonction /  : X  Y  prolongeant /  telle que f(a) =  y  est continue au point a.

Exercice 2.20.6 Limite à gauche et à droite Soient A une partie de R, Y  un espace topologique et 
/  : A —► Y  une application. Soit a £ R un point adhérent à B =  A n ]a , + oo[, le filtre V(a) admet 
alors une trace J  sur B ; si f\ b admet une limite y £ Y  suivant ce filtre, on dit que /  admet une 
limite à droite au point a et on note cette limite f (a  H- 0) =  limx_».a, x>a f(x).  On définit de même 
la notion de limite à gauche f (a  — 0) si a est adhérent à An ] — oo, a [ .

1. Montrer que y =  f (a  +  0) équivaut à chacune des propriétés suivantes
a. pour tout voisinage V £ V(y), il existe <5 > 0 tel que f(An]a, a +  ô[ ) C V.
b. pour toute suite (x n ) de B  qui converge vers a, la suite ( f ( x n )) converge vers y .
c. pour toute suite strictement décroissante (æn ) de B qui converge vers a, la suite (f(xn)) 

converge vers y.
2. Supposons a £ Ay on dit alors que /  est continu à droite au point a si f (a  +  0) existe et 

f(a  +  0) =  f(a)  (lorsque a n’est pas adhérent à By c’est-à-dire lorsqu’il existe ô >  0 tel que 
An]ay a +  ô[ =  0, on convient que f {a  +  0) =  f(a)  et que /  est continu à droite au point a). On 
définit de même la continuité à gauche. Montrer que /  est continu au point a si, et seulement si, /  est 
continu à gauche et à droite au point a, c ’est-à-dire f  (à) =  f (a  +  0) =  / ( a  — 0).

3. Soient Y  un espace régulier et /  : [a, b[—> Y  une application telle que f (x  H- 0) existe pour 
tout x £ [a, b[. Montrer que la fonction x h-» f (x  +  0) est continue à droite en tout point de [a, 6[.

Exercice 2.20.7 Discontinuité d’une fonction monotone Soit /  : [a, b] —>• M une application 
monotone, croissante pour fixer les idées.

1. Montrer que /  admet une limite à gauche et à droite en tout point de [a, 6] (on convient que 
/ ( a  -  0) =  / ( a )  et f(b +  0) =  f(b)) et que, pour a < x  < y  < 6 ,

f {x -  0) <  f(x) < f (x  +  0) <  f (y  -  0) <  / (y ) .

2. Montrer que la fonction x i-> f (x +  0) est croissante, continue à droite et la fonction 
x i-* f (x — 0) croissante, continue à gauche.

3. On définit le saut de /  au point x par s(æ) =  f {x  +  0) — f (x — 0). Montrer que /  est continu 
au point x si, et seulement si, s(x) =  0. Montrer que l’ensemble des points de discontinuité de /  est 
dénombrable [noter que les intervalles ]f(x -  0)yf (x  +  0)[ sont disjoints deux à deux et en déduire 
que l’ensemble des x tels que s(æ) >  1 /n  est fini].

Exercice 2.20.8 Fonction réglée Soient X  un espace topologique et /  : [a, b] X  une applica­
tion. On dit qu’un point x £ [a, 6] est un point de discontinuité de première espèce si f (x  +  0) et 
f(x — 0) existent et sont différents. Si /  n’admet que des discontinuités de première espèce, on dit que 
/  est réglé.

On suppose que X  est un espace métrique, montrer que l’ensemble des points de discontinuité 
d’une fonction réglée /  : [a, 6] X  est dénombrable [montrer que, pour tout e > 0, l’ensemble 
{x £ [ay b] ; d(f(x +  0), f (x — 0)) >  e} est un ensemble de points isolés].
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Exercice 2.20.9 Discontinuité artificielleindexdiscontinuité artificielle Soient X  un espace séparé, 
Y  un espace régulier et
/  : X  Y  une application. On note A l ’ensemble des points de discontinuité artificielle, c ’est-à-dire 
l’ensemble des points x de X  non isolés tels que la limite lim î/_>;Cj y^x f (y)  existe et est différente 
de f(x).  On pose alors

v ix ) =  J  / ( * )  - s ix & A,
’  \  limy_,XlV̂ x /(y) , s i æ e A

1. Montrer que y? : X  —> Y  est continue en tout de A  et en tout point de continuité de / .
2. Si Y  est un espace métrique, on pose An =  { x  € A; d((p(x)> f ( x ) )  >  1 /n } ,  n  E N*, 

montrer que tout point de An est isolé dans An.
3. Si X  admet une base de topologie dénombrable, en déduire que A  est dénombrable [utiliser 

l ’exercice 2.10.8].

Exercice 2.20.10 Soient D et D'  deux parties de R dénombrables et partout denses, l’objet de cet 
exercice est de prouver que D et D ' sont homéomorphes. On peut écrire D et D' sous la forme 
D  =  U,?=0{an}. D> =  U n = 0{°n }  où ap a , ,  a'p #  a'q si p ^  q.

1. Construire par récurrence une suite de bijections croissantes f n : An —ï A!n où An et Afn sont 
des parties finies de D  et D ' telles que

n n
U  i ap}  C AUi ( J  {a^ } C A'n , An C An+ 1 , A!n C et f n =  / n + iU „ -
p=0 p=0

2. En déduire l’existence de bijection croissante f  : D  —> D' .
3. Montrer que toute bijection croissante /  : D  -> D ' est un homéomorphisme.
En particulier, toute partie dénombrable dense dans E est homéomorphe à Q.

Étudions les sous-espaces des espaces métriques. Soit A une partie d’un es­
pace métrique X . La restriction à A  x A  de la distance d est une distance sur A 
définissant une structure d’espace métrique sur A t donc une topologie Ti sur A. 
On peut d’autre part munir A de la topologie T 2  induite par celle de X. Ces deux 
topologies Ti et 7 2 coïncident. En effet, si a est un point de A , on obtient une base 
du filtre des voisinages de a pour la topologie T2 en prenant les traces sur A  des 
boules fermées {x € X  ; d(a, x) < r}, (r >  0), et ces traces sont précisément les 
boules fermées dans A centrées au point a.

Ceci montre qu’un sous-espace d’un espace métrisable est métrisable.
Voici une propriété particulière aux espaces métrisables.

Proposition 2.20.4 Tout sous-espace d'un espace métrisable séparable est sépa­
rable.
Preuve En effet, si un espace admet une base de topologie dénombrable, il en est 
de même de tout sous-espace et on conclut grâce à la proposition 2.10.7. Q.E.D.

En ce qui concerne les sous-espaces métriques complets d’un espace métrique, 
on a d’abord la

Proposition 2.20.5 1. Tout sous-espace fermé d'un espace métrique complet est 
complet.

2. Tout sous-espace complet d'un espace métrique est fermé.
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Preuve 1 . Soit A une partie fermée d’un espace métrique complet X  et soit (xn) 
une suite de Cauchy de A ; c’est a fortiori une suite de Cauchy dans X  qui 
converge donc dans X  vers un point x  ; mais A étant fermé, le point x appartient 
à A et la suite (xn) converge vers x  dans A.

2. Soit A un sous-espace complet d’un espace métrique X  et soit a G A ; 
d’après la proposition 2 .1 2 .1, il existe une suite (xn) de A qui converge vers a 
dans X  ; cette suite est donc de Cauchy dans X , donc dans A ; le sous-espace A 
étant complet, cette suite converge donc vers un point b G A dans A , donc dans 
X  ; un espace métrique étant séparé, on a nécessairement a = 6 , d’où a G A, ce 
qui prouve que A est fermé. Q.E.D.

Corollaire 2.20.6 Dans un espace métrique complet, l'ensemble des parties fer­
mées est égal à l'ensemble des parties complètes.

Proposition 2.20.7 Soit (Ai).iej une famille de parties complètes dans un espace 
métrique X.

1. Si I  est non vide, l'intersection de la famille est une partie complète.
2. Si I  est fini, la réunion de la famille est une partie complète.

Preuve 1. Chaque Ai est fermé dans X  (proposition 2.20.5), l’intersection est 
fermée dans X , donc dans tout Ai et on conclut avec la proposition 2.20.5.

2. Soit A  la réunion de la famille et soit (xn) une suite de Cauchy de A.  L’en­
semble I  étant fini, il existe i G I  et une sous-suite (xUk) tels que xnk G A*. 
L’ensemble Ai  étant une partie complète de X , cette sous-suite converge dans A iy 
donc dans A et on conclut avec le corollaire 2.18.4. Q.E.D.

Exemple 2.20.3 La droite achevée R (exemple 2.13.5) est isométrique à l’inter­
valle [-1 , +1], qui est un sous-espace métrique complet de R d’après la propo­
sition 2.20.5 ; il en résulte que R est un espace métrique complet. En effet, étant 
donné deux espaces métriques X  et Y , s’il existe un homéomorphisme de X  sur 
Y  uniformément continu ainsi que l’homéomorphisme réciproque, X  est complet 
si, et seulement si, Y  est complet.

Remarque 2.20.7 La topologie induite sur R par celle de R est la topologie usuelle 
de R : la distance ^ ( x ,  y) =  | f (x)  — f(y)\  induite sur R par celle de R est topolo- 
giquement équivalente à la distance usuelle di(x9y) =  \x — y\ (remarque 2.18.1). 
Les distances d\ et d<i sur R ne peuvent être uniformément équivalentes car R est 
complet pour la distance d\ et ne l’est pas pour la distance d<i : en effet, R muni 
de cette distance d<i est isométrique à l’intervalle ] -  1 , 1 [ muni de la distance d\ 9 

intervalle qui n’est pas un sous-espace complet de (R, di), n’étant pas fermé.

Exercice 2.20.11 Soit X  un espace métrique, on suppose qu’il existe r > 0 tel que toute boule 
fermée B ' (x \  r )  soit complète, montrer alors que l’espace X  est complet.
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2.21 Topologie produit
Donnons-nous une famille (Xi)iej d’espaces topologiques. Nous nous proposons 
de définir sur l’ensemble produit X  = ^  une structure topologique. Nous
noterons 0 * l’ensemble des ouverts de Xi, Vi(xi) le filtre des voisinages d’un 
point Xi de X iy etc.

Le théorème 2.19.1 permet de donner la définition suivante.
Définition 2.21.1 Soit (Xi)ie/ une famille d'espaces topologiques, sur l'ensemble 
X  = ï l ^ i  X it la topologie la moins fine rendant continues toutes les projections 
pri : X  ->* Xi est appelée la topologie produit.

La topologie produit étant une topologie initiale, nous obtenons de suite les 
propriétés essentielles de cette topologie. Auparavant, faisons une remarque préli­
minaire : soit Ai une partie de Xi, on a

prT'iAi) = At x JJ Xj

et, si J  est une partie de I, on a donc
Ç \ w ï l {Ai) =  Y [ A i X  JJ X i]
îG J %Ç:J i £ l —J

si J  est une partie finie de I, de tels ensembles seront appelés des ensembles élé­
mentaires.

Considérons alors sur chaque espace facteur Xi une base de la topologie ; 
d’après (2.19.2), une base de la topologie produit est constituée par l’ensemble des 
ouverts élémentaires
(2 .2 1 .1) n** n X i, où B i G %i, J  G 3r(I).

i £ j  i £ l —J

Soit x = (xi)iej un point de l’espace produit et soit Si un système fondamen­
tal de voisinages du point Xi ; d’après (2.19.3), l’ensemble des voisinages élémen­
taires
(2 .2 1 .2 ) n Xi,  Où Vi eSi ,  Je  J ( / ) ,

i e J  i € l - J

est un système fondamental de voisinages du point x pour la topologie produit.
Les projections pu  sont continues d’après la définition même de la topologie 

produit ; ce sont en outre des applications ouvertes ; voici la définition de cette 
notion.
Définition 2.21.2 Soient Y  et Z  deux espaces topologiques, une application 
f  : Y  Z est dite ouverte si l'image par f  de tout ouvert de Y  est un ouvert de 
Z .
Proposition 2.21.1 Les projections pri : X  -» Xi sont des applications ouvertes.
Preuve Si O =  ]Ji€l Oi est un ouvert élémentaire, on a pri(0) = Oi ou 0 ; 
un ouvert U de X  est une réunion d’ouverts élémentaires, U =  U aga et 
pn(U) = U àga ce qui permet de conclure. Q.E.D.
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Remarque 2.21.1 Lorsque l’ensemble d’indices I  est fini, on peut dans (2.21.1) 
et (2.21.2) prendre J  = I  ; une base de la topologie produit est constituée de l’en­
semble des produits [1 ^  / °ù € ®i ; en particulier, tout produit d’ensembles
ouverts est un ensemble ouvert pour la topologie produit. Par exemple, l’espace 
Rn, n > 1 , sera muni de la topologie produit de n droites réelles ; une base de 
cette topologie est constituée de l’ensemble des ouverts élémentaires flIL i]at> M> 
où a*, bi G R ; ces ensembles sont appelés des pavés ouverts. L’ensemble C des 
nombres complexes étant muni de la topologie de R2, on munira l’espace Cn de la 
topologie produit de n droites complexes, ou ce qui revient au même de la topolo­
gie de R2n.
Proposition 2.21.2 Pour tout i G I, soit Ai une partie de On a

(2.21.3) n * = n * .
iel iel

et, si I  est fini,
(2.21.4) Int n * - n  Int Ai.

iel iel
Preuve Prouvons d’abord (2.21.3). D’après la continuité des projections et le théo­
rème 2.13.4, on a, en notant A le produit des ensembles A*,

_  _  pn(Â) C  pri(A) c  Tu
d’où A c  JliG/ Ai ; pour démontrer l’inclusion opposée, soit a =  (a.i)i€/ un 
point de Y\ieI A* et soit Y\ieI Oi un ouvert élémentaire contenant ce point ; on a 
alors

(JJo<)nX = JJ(Oin i4i)
iei iei

et cet ensemble est non vide car Oi est un ouvert contenant le point ai G Au ce 
qui prouve que le point a est adhérent à A.

Quant à (2.21.4), I  étant fini, on notera d’abord que ü i e /  *nt Ai est un ouvert 
contenu dans A , donc dans Int A ; pour démontrer l’inclusion opposée,
a = (üi)i£i un point de Int A ; il existe donc un ouvert Ylizi ®i contenant ce 
point et contenu dans A, d’où ai G Oi C Aif ce qui prouve que ai G Int Ai et par 
conséquent a G r w in t^ -  Q.E.D.
Corollaire 2.21.3 Un produit d}ensembles fermés est fermé pour la topologie pro­
duit.

Une telle propriété est en général fausse pour des ensembles ouverts ; un pro­
duit d’ensembles ouverts riiez  ^  n est un ensemble ouvert que dans les deux cas 
suivants : ou bien ce produit est vide, ou bien Oi =  Xi sauf pour un nombre fini 
d’indices i. En effet, dans les autres cas un tel ensemble est non vide et ne contient 
aucun ouvert élémentaire non vide, il ne peut donc être une réunion d’ouverts élé­
mentaires.
Exercice 2.21.1 Soient X , Y  des espaces topologiques, A C  X  et B C Y,  montrer que 

Fr (A X B) =  (Fr (A ) x  B)  U (Â x  Fr (B )).
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Supposons les espaces facteurs Xi non vides et soit A une partie dense dans 
X  ; d’après la continuité des projections, on a pri(A) C  pr^A), et par conséquent 
pri(A) est dense dans Xi. Il en résulte que, si un produit d’espaces topologiques 
non vides est séparable, chaque espace facteur est séparable. Réciproquement, on 
a la
Proposition 2.21.4 Le produit d'une famille dénombrable d'espaces séparables 
est séparable.
Preuve Notons X n, n e  N, les espaces facteurs qu’on peut supposer non vides, 
Dn une partie dénombrable dense dans X n et X  =  Yl™= 0  X n l’espace produit. 
Soit a =  (an) un point de X , posons

p  oo

Ap =  II Dn x II {an } p o u rp e N .
71=0 n = p + l

L’ensemble A = U£Lo ^ p est al°rs dénombrable d’après les propositions 1.9.5 et 
1.9.6 et il est dense dans X , car tout ouvert élémentaire non vide s’écrit

p  oo

n  On x [ J  x n, 0 n ouvert de X n,
71=0 7 l= p + 1

et rencontre donc A. Q.E.D.
En particulier, les espaces Mn et Cn sont séparables.

Exercice 2.21.2 On considère l ’espace R muni de la topologie définie à l ’exercice 2.17.6 et l ’espace 
produit R2, espace séparable d’après la proposition 2.21.4. Montrer que le sous-espace

X  =  {(a:, y) e  R2 ; x +  y =  1}

n’est pas séparable [vérifier que la topologie de ce sous-espace est la topologie discrète].

Les espaces produits permettent d’énoncer un critère utile de séparation que 
voici.
Proposition 2.21.5 Un espace topologique X  est séparé si, et seulement si, la 
diagonale de X  x X, A =  {z e X  x X  ; pr\z = pr2 z}, est fermée.
Preuve Si X  est séparé, A est fermé dans X  x X  d’après la continuité des 
projections et la proposition 2.17.3. Réciproquement, supposons A fermé et soit 
x, y G X , x ± y ; on a (x, y) # A et X  x X  — A est un voisinage ouvert de 
(x, y) ; il existe donc V e V(x), W e V(y) tel que (V x W)  fl A =  0, ce qui 
signifie V  fl W = 0 et ceci prouve (H2). Q.E.D.

Ceci peut se généraliser de la façon suivante. Étant donné deux ensembles X  et 
/ ,  I  7̂  0, on note S : X  -¥ X 1  l’application x (xi)iej où Xi = x pour tout 
i  e I  ; cette application, appelée application diagonale, est évidemment injective 
et son image A =  S(X) est appelée la diagonale de X 1. La bijection réciproque 
S- 1  : A —> X  est simplement la restriction à A de l’une quelconque des projec­
tions pri. On a alors la
Proposition 2.21.6 Soient X  un espace topologique et I  un ensemble non vide.
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7. Uapplication diagonale ô est un homéomorphisme de X  sur la diagonale 
A d e X 1.

2. Si X  est séparé, la diagonale A est fermée.
Preuve 1. L’application S est continue vu que pri o S est l’application identique de 
X  ; l’application <5_1  est continue vu que £ _1  =  pr^A .

2. On a A =  C]{itj)eIxJ Fitj où Fitj = {x 6  X 1 ; pr^x) = prj(x)} ; si X  
est séparé, A est donc fermé d’après la proposition 2.17.3. Q.E.D.

Corollaire 2,21.7 Soit (Ai)iej une famille non vide de parties d'un espace séparé 
X. Alors A  =  O ie/ Ai est homéomorphe à un sous-espace fermé de l'espace 
produit [ l ie /  Ai.
Preuve L’application diagonale S est un homéomorphisme de X  sur la diagonale 
de X 1, donc induit un homéomorphisme de A sur Æ(Â) ;or£(A) =  (P[ie/ ^ i ) n A  
et, A étant fermé, S (A) est un sous-espace fermé de A+. Q.E.D.

En ce qui concerne la convergence des filtres sur un espace produit, on a 
d’après la proposition 2.19.2 la caractérisation suivante.

Proposition 2.21.8 Un filtre J  sur un espace produit fiiez  ^  converge vers un 
point x = (£i)ie/ si, et seulement si, les filtres prifë) convergent vers a^.

Soit /  : Y  -> X  — liie z  X% une application définie sur un ensemble Y , 
notons fi = p u o  f  : Y  Xi les applications composantes. Alors, si J  est un 
filtre sur Y , le corollaire 2.19.3 montre que x =  (£i)ie/ =  limgr /  si, et seulement 
si, Xi = limgr ^  pour tout i € I. En particulier, une suite (xn) de X  converge vers 
un point x si, et seulement si, pour tout i G / ,  la suite (pri(xn)) converge vers 
le point pri(x). En prenant pour filtre 7  le filtre des voisinages d’un point a d’un 
espace topologique Y , on a donc x =  l im ^ a  f(y)  si, et seulement si, pour tout 
i e I, Xi = limy->a fi(y).
Exercice 2.21.3 Soient X , Y  des espaces topologiques et J  un filtre sur X  x Y . S i x e X  est un 

point adhérent au filtre pr\(üf) et y € T  un point limite du filtre jrr2 (fJ), où pri : X  x  Y  X  et 
pr 2  : X  x  Y  —> Y  désignent la première et la seconde projection, montrer que (æ, y) est un point 
adhérent au filtre fJ.

Enfin d’après le corollaire 2.19.4, on a la

Proposition 2.21.9 Soit Y  un espace topologique, une application f  : Y  —► X  est 
continue en un point a e Y  si, et seulement si, toutes les applications fi : Y  —» Xi 
sont continues au point a. Par suite, f  est continue dans Y  si, et seulement si, toutes 
les applications fi sont continues dans Y.
Exercice 2.21.4 Soient X  et Y  des espaces topologiques, f  : X  —> Y  une application et 
G =  {{x,y)  G X  x  Y  ; y =  f (x) }  le graphe de f .  Montrer que f  est continu si, et seulement 
si, pi’i |g est un homéomorphisme de G sur X , pn  : X  x  Y  —> X  désignant la première projection.

Pour étudier les fonctions de plusieurs variables, c’est-à-dire définies sur un 
espace produit, nous utiliserons la proposition suivante.
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Proposition 2.21.10 Soit X  = Yiiei Xi un produit d'espaces topologiques non 
vides et soit a G I  ; pour tout i  E / ,  i /  a , choisissons un point ai de X{. Alors, 
l'application h : xa h* (Xi)iei , où x  ̂ = ai, pour tout i ^  a, est un homéomor­
phisme de l'espace X a sur le sous-espace liie z  i-éa {a i} x X a de l'espace produit 
X.
Preuve II est évident que h est une bijection. Une base de la topologie du sous- 
espace F i i e z , x Xa s’obtient en prenant les traces sur ce sous-espace des 
ouverts élémentaires liie z  O** O* € 0 * ; on obtient ainsi comme base de la topo­
logie l’ensemble des ü ie z .i^ a i0»} x °ù décrit 0 a ; il est clair qu’on a 
ainsi tous les ouverts du sous-espace et que l’image directe et réciproque par h de 
tout ouvert est un ouvert. Q.E.D.

Un produit d’ensembles fermés étant fermé, on en déduit le
Corollaire 2.21.11 Soit X  = liie z  Xi un produit d'espaces topologiques non 
vides. Chaque espace facteur Xi est homéomorphe à un sous-espace de l'espace 
produit X. Si dans chaque espace Xi les points sont fermés (en particulier lorsque 
les espaces Xi sont séparés), les espaces facteurs Xi sont homéomorphes à des 
sous-espaces fermés de l'espace produit X.

Du critère de séparation 2.19.5, on déduit le
Corollaire 2.21.12 Un produit d'espaces topologiques non vides est séparé si, et 
seulement si, tous les espaces facteurs sont séparés.
Exercice 2.21.5 Montrer que tout produit d’espaces réguliers est régulier.

Considérons maintenant une application /  : X  -» Y  définie sur l’espace pro- 
duit liiez  Xi et à valeurs dans un espace topologique Y. Les notations étant celles 
de la proposition 2.21.10, considérons l’application f  oh : X a —> Y , c’est-à-dire 
l’application xa h* f ( x ), où x = (xi)iei et Xi = ai pour tout i a  ; si /  est 
continue en un point a =  (a*)^/, le théorème des fonctions composées prouve 
que /  o h est continue au point aa. On exprime cette propriété en disant qu’une 
fonction de plusieurs variables continue par rapport à l’ensemble des variables est 
séparément continue par rapport à chacune des variables. La réciproque est en gé­
néral fausse : par exemple, la fonction /  : R2 R définie par

/(*»j/) = " r l ,l2 si (x>y) ï  (°>°) et/(°.°) = (o,o)
X  ~r y

n’est pas continue à l’origine de R2, bien qu’elle soit séparément continue.
Voici enfin une dernière conséquence de la proposition 2.21.10. Considérons 

une partie A de l’espace produit YlieI Xi ; l’ensemble h~l (A), c ’est-à-dire 
{ a } )  =  ^  J (X i ) i ç j  £  A OU X i  =  Ü i  pour i ^  ûj} ,

est appelé la coupe ou section de A relative au point (ai)i£j_[ay  D’après la conti­
nuité de h, si A est ouvert (resp. fermé), cet ensemble est ouvert (resp. fermé). 
Note Dans ce qui précède nous avons fixé toutes les coordonnées sauf une, celle 
d’indice a  ; une généralisation évidente consiste à fixer les coordonnées d’indice 
z € J  où J  est une partie quelconque de I.
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Examinons enfin les propriétés de commutativité et d’associativité des topolo­
gies produits.
Proposition 2.21.13 Soit (Xj)j^j  une famille d'espaces topologiques et soit 
f  : I  -> J une bijection, alors l'application ip : (xj)jej  h* (x/(i))iez est un 
homéomorphisme de l \ j£j  Xj  sur t l i eIX f ^y
Preuve II est clair que p  est une bijection. Pour tout Aj  C  X j t on a d’autre part 
v d l j e j A j )  = n ^ /  Afÿ)  ; cette formule montre que l’image par y> de tout ou­
vert élémentaire de Y\j e J Xj  est un ouvert élémentaire de Yli€j X f ^  et il en 
résulte que <p est une application ouverte ; de même, (p~l est une application ou­
verte, ce qui prouve que <p est un homéomorphisme. Q.E.D.

Corollaire 2.21.14 Soient X  un espace topologique, I  et J  des ensembles équi- 
potentsy alors X 1 et X J sont homéomorphes.
Proposition 2.21.15 Soit (Xi)iej une famille d'espaces topologiques et soit 
(^à)aça une partition de I. Considérons les espaces produits

x = n ^ ,  y = n  y x où yx = n
t e l  A€A i € l \

L'application p : (x^)^/ i-> (î/a)aga> où y \ = (xi)i€jx, est un homéomorphisme 
de X  sur Y.

Preuve On peut supposer tous les espaces facteurs Xi non vides. Il est clair que 
(p est une bijection de X  sur Y. Soit O =  fiiez  ^  un ouvert élémentaire de X  : 
Oi  =  Xi si i  e  I  -  J  où J  G y ( /) .  On a i p (0 )  =  U XeA u \  où ux = U i e i x ° i  
est un ouvert élémentaire de Y\ car 1\ fl J  est fini ; en outre, l’ensemble

Af = {Ae A; JAn J ^ 0 }
est fini et U\ = Y\ si À G A -  M , ce qui signifie que cp(0) est un ouvert élé­
mentaire de y .  L’application ip est donc ouverte. Inversement, l’ensemble des 
ouverts élémentaires U =  [ I aça *̂ a de Y t où U\ =  YlieIx Oi est un ouvert 
élémentaire de Y\, constitue une base de la topologie de Y  d’après (2 .2 1 .1) et 
<p~1 (U) =  11^ / Ou où Oi = Xi  sauf pour un nombre fini d’indices i : en ef­
fet, l’ensemble J\  = {i G I\  ; Oi ^  Xf)  est fini (U\ est un ouvert élémentaire) 
ainsi que l’ensemble M  = {À € A ; J\  ^  0} (U est un ouvert élémentaire). Ceci 
prouve que ip~l est une application ouverte et /  est donc un homéomorphisme.

Q.E.D.

Corollaire 2.21.16 Soit X  un espace topologique, les espaces produits ( XI)J et 
X l x j  sont homéomorphes.
Preuve On applique la proposition précédente à la famille (Xij)^itj)e l x j  où 
Xi j  =  X  et à la partition I  x J  =  x {j})- Q.E.D.

Lorsque les espaces facteurs Xi  sont à base dénombrable de voisinages, on 
peut se demander si l’espace produit est à base dénombrable de voisinages. On a 
en fait le critère suivant.
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Proposition 2.21.17 Soit (Xi)iej une famille d'espaces topologiques non vides et 
soit X  l'espace produit. Alors, l'espace X  est à base dénombrable de voisinages 
si, et seulement si, les espaces Xi sont à base dénombrable de voisinages et tous 
les Xi, sauf au plus une infinité dénombrable, sont munis de la topologie gros­
sière. En particulier, un produit dénombrable d'espaces topologiques est à base 
dénombrable de voisinages si, et seulement si, tous les espaces facteurs sont à 
base dénombrable de voisinages.
Preuve 1. Montrons que les conditions sont suffisantes. Soit a =  ( a ^ e / un point 
de X  et soit (K,n )nGN un système fondamental dénombrable de voisinages de ai. 
L’ensemble des Vi y T l x YlieI_ j  Xi  où J  décrit l’ensemble des parties fi­
nies de I  et i n(i) l’ensemble des applications de J  dans N est un système 
fondamental de voisinages de a. D’après les hypothèses, il existe une partie dé­
nombrable Jo de I  telle que ViiTl =  Xi pour tout i  G /  -  /o ; il en résulte qu’on 
peut supposer J  c Io et que cet ensemble de voisinages est dénombrable d’après 
l’exercice 1.9.5 et les propositions 1.9.5 et 1.9.6.

2. Montrons que les conditions sont nécessaires. Si X  est à base dénombrable 
de voisinages, il en est de même des X *, vu qu’ils sont homéomorphes à des sous- 
espaces de X. Raisonnons ensuite par l’absurde. Supposons que la topologie d’une 
infinité non dénombrable de Xi ne soit pas la topologie grossière. Il existe alors 
un point a = (a*)iG/ de X  tel que, pour une infinité non dénombrable d’indices 
i, ai admette un voisinage ^  X it Soit (Fn)n€^ un système fondamental dénom­
brable de voisinages du point a, chaque Vn contient un voisinage de la forme 
[ I iç.jH V%,n x Yliei-J» Xi où Jn est une partie finie de I et V^n est un voisinage 
de a^ L’ensemble Io =  U^Lo est dénombrable ; il existe donc i G I  — Io tel 
que ai admette un voisinage V  ^  X.t. Alors, V  x n ^ z - f i }  X j est un voisinage 
de a qui ne contient aucun Vn, ce qui est absurde. Q.E.D.

2.22 Produit dénombrable d’espaces métriques
Soit (Xi)iei une famille d’espaces métriques, notons di la distance sur Xi  et soit 
X  =  UieiXi  l’espace produit. D’après la proposition 2.21.17, si CardJQ > 2 
la topologie produit sur X  ne peut être métrisable que si I  est dénombrable. Nous 
allons donc nous intéresser uniquement à des produits dénombrables.

Considérons d’abord le cas le plus simple d’un produit fini. On peut alors munir 
l’espace X  de diverses distances ; voici les plus utilisées
(2 .2 2 .1) d(x,y) = maxdi(xiyyi)y

i e i

(2 .2 2 .2 ) d (x, y) = ^   ̂dj(xj , y j \
i e i

d"(x,y) = (%2 di(xi,yi)2) 1/2,
i e i

(2.22.3)
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où x = (Xi)içi, y =  (Vi)iei• Toutes ces distances sont en fait uniformément 
équivalentes : on a en effet d < d" < à! < nd où n = Card I  ; il est d’autre 
part aisé de vérifier que, si on substitue aux distances d* des distances uniformé­
ment équivalentes, on substitue aux distances d, d', d" des distances uniformément 
équivalentes. Par conséquent, les distances d, d', d" définissent sur X  une structure 
uniforme qui ne dépend que des structures uniformes des espaces facteurs Xi  ; 
nous l’appellerons la structure uniforme produit. La topologie correspondante sur 
X  est la topologie produit : en effet, pour la distance d par exemple, une base 
du filtre des voisinages d’un point x = {xi)i£j est consituée par l’ensemble des 
boules fermées B'(x; r) = n ^ /  B i(x i î t), où B[(xi\r) désigne la boule fermée 
centrée au point Xi et de rayon r, alors que, pour la topologie produit, nous sa­
vons qu’une base du filtre V(æ) est constituée par l’ensemble des voisinages élé­
mentaires UieiB' iixiin),  ri >  0  ; ces deux bases de filtre sont manifestement 
équivalentes.

Considérons plus généralement une famille dénombrable (Xn)neN d’espaces 
métriques. On peut alors définir sur l’espace produit diverses distances. Pour toute 
suite a = (an ) de nombres > 0  telle que la série an converge et pour toute 
suite /} =  (Pn) de nombres > 0  telle que limn_>oo /3n =  0 , on pose

oo
(2.22.4) da{x,y) = ^ a n m in(l ,dn(xn,yn)),

n —0

(2.22.5) dp(x,y) = sup pn mm(l ,dn(xn,yn)),
ri G N

où x =  (xn) G X,  y = (yn) € X.  On obtient ainsi des distances da et dp sur X , 
l’inégalité triangulaire se vérifiant en utilisant (2.15.1).

Lemme 2.22.1 Les distances da et dp sont uniformément équivalentes et sont 
remplacées par des distances uniformément équivalentes lorsqu ’on substitue aux 
distances dn des distances uniformément équivalentes.

Preuve Notons dp la distance (2.22.5) associée à des distances d'n uniformément 
équivalentes aux distances dn. Il suffit de vérifier alors que dQ et d'p sont unifor­
mément équivalentes.

1. Soit s ^  0, montrons qu il existe ô ^  0 tel que ^  ô implique d'p < e. Il 
existe no G N  tel que /3n < e pour n > no ; les distances m in(l, dn) et m in(l, d'n) 
étant uniformément équivalentes (exemple 2.15.2), il existe S > 0  tel que, pour tout 
0 < n < ?2o, m in (l,d n) < 5a~l implique m in(l,d^) <  Supposons alors 
da < ô9 d’où m in (l,d n) <  8 a~l et par conséquent m in (l,dfn) < pour 
0  < n < tiQ et il en résulte que d'p < e vu le choix de no.

2. Soit e > 0, montrons qu’il existe S > 0 tel que d'p < 5 implique 
dQ <  e. Il existe no G N tel que X ^ L n 0+ i a n  <  e/2  ; les distances m in(l, dn) et 
m in(l,d^) étant uniformément équivalentes, il existe 5 > 0  tel que

m in(l,c4) < 5P~l => m in(l,d n) < (e/2)(n0 +  l ) -1^ " 1 pour 0  < n < no-
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Supposons alors d!p < S, c’est-à-dire m in(l, d!n) < Sfin \  d’où

m in (l,d n) <  (e /2 )(n0 + l ) " 1* * ” 1 pourO <  n <  n 0

et par conséquent ^ n L o a « m in(1» ^ )  <  e / 2 , d’où < e vu le choix de n 0.
Q.E.D.

Les distances et d/3 définissent sur l’espace produit une structure uniforme 
qui ne dépend que de la structure uniforme des espaces facteurs et que nous appel­
lerons la structure uniforme produit. Nous allons vérifier que la topologie associée 
est bien la topologie produit.

Proposition 2.22.2 La topologie associée aux distances da et dp est la topologie 
produit. En outre, les projections prn : X  -» X n sont uniformément continues.

Preuve On peut supposer 0 < dn <  1 d’après le lemme 2.22.1.
Les projections sont uniformément continues car

dn(prnx,prny) < a~lda{x,y).
Ceci prouve que la topologie associée aux distances da et dp est plus fine que la 
topologie produit.

Montrons que ces deux topologies coïncident ; il s’agit de vérifier que toute 
boule ouverte B(x\e), e > 0 , pour la distance dp (par exemple) est ouverte 
pour la topologie produit. Or B(x;e) =  n î ï L o ^ O ^ î ^ n 1) où x = (xn)y 
Bn fanî zfin1) désignant la boule centrée au point xn et de rayon ep~l . Dès que 

> 1, on a Bn(xn ; e f a 1) = X n et il en résulte que B(x ; e) est tout simple­
ment un ouvert élémentaire. Q.E.D.

Corollaire 2.22.3 Un produit dénombrable d'espaces métrisables est métrisable.

Nous pouvons alors préciser la proposition 2.21.9.

Proposition 2.22.4 Soit X  = n^Lo tin produit dénombrable d'espaces 
métriques et soit Y  un espace métrique. Une application f  : Y  —» X  est 
uniformément continue si, et seulement si, les applications composantes 
fn =  Prn 0  f  : Y  —> X n sont uniformément continues.
Preuve La condition est nécessaire d’après la proposition 2.22.2. Réciproquement, 
supposons les fonctions f n uniformément continues ; notons d la distance sur Y. 
On peut supposer 0 < dn < 1. Soit e > 0, il existe no G N tel que pn < £ pour 
n > no ; pour tout n G N, il existe ôn > 0  tel que dn(fn(x), f n(y)) <  epn1 dès 
qued(x,y)  <  Æn,d ’où

sup pndn(fn(x), fn(y)) < e dès que d(x, y) < S = min Sn,
0<n<no 0<n<no

et par conséquent dp(f(x), f(y)) < £ dès que d(x, y) < ô vu le choix de no, ce 
qui prouve la continuité uniforme de / .  Q.E.D.

Soit X  =  Un=oX n un produit dénombrable d’espaces métriques non vides 
et soit a = (an) un point de X.  D’après la proposition 2.21.10, l’application
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h : xn (Xp)pçN, où xp =  ap pour p ^  n, est un homéomorphisme de X n sur le 
sous-espace

oo
} |  {^p} ^ Xn.
p = 0 
p ^ n

Cet homéomorphisme est uniformément continu ainsi que l’homéomorphisme ré­
ciproque : on a en effet da(h(xn), /i(pn)) =  OLndn(xn, yn) pour tout xn , yn G X n 
en supposant 0 < dn < 1 . Ceci prouve qu’il existe un homéomorphisme uniformé­
ment continu ainsi que l’homéomorphisme réciproque, de chaque espace facteur 
sur un sous-espace fermé de l’espace produit. En outre, si /  : X  ->• Y  est une 
application à valeurs dans un espace métrique Y  uniformément continue, alors /  
est séparément uniformément continue par rapport à chacune des variables.
Exemple 2.22.1 Soit X  un espace métrique, alors la distance d: X  x X  R est 
uniformément continue. On a en effet, d’après l’inégalité triangulaire, pour tout
(x,y) G X  x X  et (x\  y') G X  x X

d(x\  y1) < d(x', x) +  d{x, y) + d(y, y1), 
d’où d(x\ yf) -  d(x, y) < d(xy x;) +  d(y, y1) d’après (Di) ; on vérifie de même 
que d(x, y) -  d ( x y ') < d(x, x') +  d(y, y'), d’où 
(2 .2 2 .6 ) |d(x\y' )  -  d(x,y)\ < d(x,x’) + d(y,y‘),
ce qui prouve le résultat voulu.

Indiquons enfin un résultat important concernant les produits d’espaces mé­
triques complets.
Théorème 2.22.5 Un produit dénombrable d 'espaces métriques non vides est com­
plet si, et seulement si, tous les espaces facteurs sont complets.
Preuve La condition est nécessaire d’après la propriété des espaces facteurs indi­
quée ci-dessus et les propositions 2.18.6 et 2.20.5.

La condition est suffisante ; en effet, si £F est un filtre de Cauchy sur l’espace 
produit, les filtres prn{7) sont des filtres de Cauchy d’après les propositions 2.22.2 
et 2.18.6 ; ces filtres sont donc convergents, ce qui prouve que J  converge d’après 
la proposition 2.21.8 . Q.E.D.
Exemple 2.22.2 Les espaces Rn et Cn seront toujours munis de la structure uni­
forme produit de n droites réelles ou complexes. Le théorème 2.22.5 montre que 
ces espaces sont complets.
Exemple 2.22.3 Le cube de Hilbert L’espace [0,1]N, c’est-à-dire l’ensemble de 
toutes les suites (xn) avec 0 <  xn <  1, est appelé le cube de Hilbert. La topologie 
produit sur cet espace est métrisable : on peut prendre comme distance par exemple

»/ \ |xn ~ Un\d(x,y) = s u p — — — . 
neN n +  1

On obtient ainsi un espace métrique, complet et séparable d’après la proposition
2.21.4.
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Exercice 2 .22 .1  Soit O un ouvert d’un espace métrique X , O ^  X.  On considère la fonction 
f(x)  =  1 /d(x,  F)  pour x e O  où F =  X  — O.

1. Montrer que le graphe de / ,  G =  {(x,y)  e O x  R ;y  =  / (æ )}  est fermé dans X  x  R.
2. En déduire que O est homéomorphe à un sous espace fermé de X  x  R [utiliser l ’exercice 2.21.4] 

et, si X  est complet, que O est homéomorphe à un espace métrique complet.
3. En déduire que tout S<5 (exercice 2.13.4) d’un espace métrique complet est homéomorphe à un 

espace métrique complet [utiliser le corollaire 2.21.7].

4. Application : montrer que l’ensemble des irrationnels est homéomorphe à un espace métrique 
complet.

Exercice 2 .2 2 .2  Soient X  un espace métrique, d la distance sur X  et O un ouvert de X ,  O  ^  X .  
Pour tout x , y e  O, on pose

df(x,y) =  d(x,y)  +
1

d(x,F)
1

<Kv,F) où F =  X  -  O.

Montrer que d1 est une distance sur O topologiquement équivalente à la distance d et, si X  est 
complet, que (O , d') est un espace métrique complet (comparer avec l ’exercice 2.22.1).

Exercice 2.22.3 Soit X  un ensemble, on définit une distance sur l’espace Y  =  X N* de la façon 

suivante. Soient x =  (xn) et y =  (yn ) deux éléments de cet espace, si x =  y  on pose d (x , y)  =  0 
et, si x ÿè y, d(x,y)  =  l / n ( x ,y )  où n (x ,y )  est le plus petit entier n >  1 tel que xn ^  yn . 
Montrer alors que Y  est un espace métrique complet [munir X  de la métrique discrète et observer que 

la distance d est de la forme dp].

Exercice 2.22.4 Fraction continue illimitée 1. Soit ( a n )n > i  une suite de nombres entiers >  1, 
on considère la suite de rationnels (rn )n > i  définie de la façon suivante : rn =  r n ( a i , . . .  , a n ), 
r i  ( a i )  =  1 / a i  et, pourn >  1,

^ n + i ( a i , . • • , a n+1) =  rn ( a i , . . .  , a n_ i , a n +  (l/ a n+i)).

Montrer que rn =  Pn/qn où p i =  l t q\  =  a i ,  P2 =  c*2,92 =  <*2 qi +  1 et

P n  =  O t n P n - 1 +  P n - 2 , tfn =  OLnqn- 1 +  qn- 2  p O U rn  >  3.

En déduire que pn+i(7n — P n Q n + i  =  (—l ) n pour n >  1 et que la suite (rn ) converge vers un 

nombre irrationnel x € ] 0 ,1 [ . On écrira alors x =  H------- h r - ^  H----- et on dit qu’on a développéa l | Qn
x en fraction continue illimitée.

2. Réciproquement, montrer que, pour tout irrationnel x de ]0 ,1 [ , il existe une unique fraction 
continue illimitée égale à x. En déduire une bijection /  de l’ensemble Y  =  'J{N* ; N*) sur l’ensemble 
/  des irrationnels de ] 0 ,1 [ .

3. On munit N* de la topologie discrète et l’espace Y  de la topologie produit, montrer que /  

est alors un homéomorphisme de Y  sur I. En déduire que l’ensemble des irrationnels de ]0 ,1 [  est 
homéomorphe à un espace métrique complet (comparer avec l ’exercice 2.22.1).

Exercice 2.22.5 1. Montrer que l ’ensemble de Cantor C  (exercice 2.6.2) est homéomorphe à l ’es­
pace produit {0, 2}n* où l’espace à deux éléments {0,2} est muni de la topologie discrète [utili­
ser la bijection construite dans l ’exercice 2.6.2 et, si x =  O .a i . . .  a n . . . ,  y =  O.Pi
ctjyfij e  { 0 ,2 } ,  x  ^  y, remarquer que 3 - p  <  |x  -  y | <  3 “ p+1 où p  est le plus petit entier >  1
tel que a p ±  et en déduire qu’une suite (xk) de l’ensemble de Cantor, xk =  O .af . . .  a £  . . . ,
converge vers x  si, et seulement si, (aj?) converge vers a j  pour tout j e  N*].

2. En déduire que les espaces C n, n >  1, et C N sont homéomorphes à l’ensemble de Cantor.
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Exercice 2.22.6 Soient X  un espace métrique complet et (An)n>i une suite décroissante 
de fermés. On suppose que chaque An peut s ’écrire An =  (Je ^ n,e où e décrit l’ensemble 
£ n =  5 ([1 , n]; { 0 ,1 } )  avec les propriétés suivantes

a. les An,e sont fermés non vides et disjoints deux à deux pour n  fixé,
b. m axe e £ n diam AUt£ tend vers 0 lorsque n  tend vers l’infini,
c. An%e D An+ i >e/ U An+l en où s1 ,e "  : [1 , n  +  1] —> { 0 ,1 }  sont les deux applications qui 

prolongent e.
Montrer que A =  HJÏLi An est homéomorphe à l ’espace produit { 0 , 1 }N*, l’ensemble { 0 ,1 }  

étant muni de la topologie discrète [pour a G A, montrer qu’il existe une unique application 
e : N* { 0 ,1 }  telle que a G An,e1t pour tout n >  1 où en =  e |[ i jn] i en déduire une bijec- 
tion de A sur { 0 , 1 }N* et vérifier qu’il s ’agit d ’un homéomorphisme].

Tous les espaces A construits par la méthode précédente sont donc homéomorphes à l’ensemble 

de Cantor (exercices 2.6.2 et 2.22.5) ; ce sont des espaces compacts sans point isolé ayant la puissance 

du continu.

Exercice 2.22.7 Montrer que tout espace métrique complet non vide et sans point isolé contient 
un sous-espace homéomorphe à l ’ensemble de Cantor [utiliser la construction de l’exercice 2.22.6 en 

prenant pour An,e des boules fermées].

2.23 Topologie de la convergence simple
Soient X  un ensemble et Y  un espace topologique ; l’ensemble 7{X\Y) ,  noté 
également Y x , de toutes les applications de X  dans Y  est simplement l’espace 
produit Y\x€X Yx, oùYx = Y  pour tout x  € X,  On peut donc munir cet ensemble 
de la topologie produit, qu’on appelle topologie de la convergence simple ; muni 
de cette topologie, l’espace ^(X^Y)  sera noté 3rs(X;Y).  Tous les résultats du 
paragraphe 2 .21  s’appliquent donc à cette situation particulière.

La topologie de la convergence simple est la topologie la moins fine rendant 
continues toutes les projections, c’est-à-dire les applications prx : /  i-> f (x)  de 
^(X] Y)  dans Y t où x décrit X.

Un ouvert élémentaire est d’après (2.21.1) de la forme

n*.x n
x e A  x e x - A

où A est une partie finie de X  et Ox un ouvert de Y  ; cet ouvert élémentaire s’écrit 
donc
(2.23.1) { /  g  Ï ( X ; Y )  ; (V* G A)(f(x)  G Ox)}
et on obtient une base de la topologie de la convergence simple en faisant décrire 
à A l’ensemble des parties finies de X  et à Ox l’ensemble des ouverts de Y.

On obtient un système fondamental de voisinages d’une application 
/  : X  -» Y  en considérant l’ensemble des voisinages élémentaires de ce point 
/ ,  c’est-à-dire l’ensemble des
(2.23.2) V{f- A , (Vx)xeA) = { g £  T(X; Y)  ; (Væ G A)(g(x) G Vx)}
où A décrit l’ensemble des parties finies de X  et Vx le filtre des voisinages du 
point f(x)  ou une base de ce filtre.
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Si un filtre J  sur l’espace Y)  converge vers une application / ,  nous di­
rons que ce filtre converge simplement. D’après la proposition 2.21.8 , ceci signifie 
que, pour tout x G X,  le filtre prx(3) converge vers f  (x) dans Y.  Étant donné que

prx(3) = {prx{M) ; M  G J}  oùpr*(M ) =  {g(x) ; g G M}, 
ceci signifie donc que
(2.23.3) (Vx G X ) ( W  G V (/(x )))(3M  G ?){Vg){g G M =► <?(x) G F ).

Si une suite ( /n) de J S(X; Y)  converge vers une application /  pour la topo­
logie de la convergence simple, nous dirons qu’elle converge simplement ; ceci 
signifie que, pour tout x G X,  la suite (fn{x)) converge vers f (x)  dans l’espace 
Y.  Bien entendu, c’est cette propriété qui est à l’origine du nom de la topologie de 
la convergence simple.

D’après le corollaire 2.21.12, on a la
Proposition 2.23.1 La topologie de la convergence simple sur l'espace J ( X ; Y ), 
où X  est non vide, est séparée si, et seulement si, l'espace Y  est séparé.

Si Y  est à base dénombrable de voisinages, la topologie de la convergence 
simple n’est pas en général à base dénombrable de voisinages. D’après la proposi­
tion 2.21.17, on a en effet le critère suivant.
Proposition 2.23.2 7. Si X  est dénombrable, l'espace 3rs(X;Y)  est à base dé­
nombrable de voisinages si, et seulement si, Y  est à base dénombrable de voisi­
nages.

2. Si X  n'est pas dénombrable, l'espace $S(X;Y)  est à base dénombrable 
de voisinages si, et seulement si, la topologie de Y  est la topologie grossière ; la 
topologie de l'espace 3rs(X;Y)  est alors la topologie grossière.
Exercice 2.23.1 Soient X,  Y  des ensembles et Z  un espace topologique, montrer que la bijection 

canonique de fJ ( X ; ‘S { Y ; Z))  sur J ( X  x Y; Z)  qui à une application x  i-> f x de X  dans ïF(Y;Z) 
associe l’application (x , y) f x (y) de X  x Y  dans Z  est un homéomorphisme de (X;&a(Y;Z))  
sur fSs (X  x Y) Z)  [utiliser le corollaire 2.21.16].

2.24 Topologies finales, topologie quotient
Considérons comme au paragraphe 2.19 une famille (Xi)iej d’espaces topolo­
giques, un ensemble X  et une famille d’applications fi : Xi - ï  X  (au lieu d’ap­
plications de X  dans Xi). On désire munir l’ensemble X  d’une topologie qui rend 
continues toutes les applications fi  ; si 7  est une telle topologie, toute topologie 
moins fine rend a fortiori continues toutes les applications fi. On a alors le théo­
rème suivant.

Théorème 2.24.1 Soient (Xi)iei une famille d'espaces topologiques, X  un en­
semble et fi \ Xi X  une famille d'applications. Il existe sur X  une topologie, 
dite topologie finale, rendant continues toutes les applications fi et plus fine que 
toute topologie sur X  rendant continues les applications fi.
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Preuve Si 7  est une topologie rendant continues les fi et si O est un ouvert pour 
7, on a nécessairement f ~ l (0) G O* pour tout i G I. Le théorème résulte simple­
ment du fait que
(2.24.1) O =  {O G ?(X);  f r 1 (O) G 0* pour tout i G 1}
vérifie les axiomes des ouverts et par suite définit la topologie la plus fine rendant 
continues les fi. Q.E.D.

Bien entendu, on a la

Proposition 2.24.2 Pour la topologie finale, une partie F de X  est fermée si, et 
seulement si, f ~ 1 {F) est fermé dans Xi pour tout i £ I.

Pour les topologies finales, il n’existe pas de caractérisation des filtres conver­
gents. Il n’y a pas non plus de critère simple de séparation. On a cependant le 
résultat important que voici.

Proposition 2.24.3 Soit Y  un espace topologique, une application f  : X  Y  
est continue si, et seulement si, les applications f  o  fi : X.t —> Y  sont continues 
pour tout i G I.
Preuve La condition est nécessaire d’après la continuité des fi. Réciproquement, 
supposons les applications f o  fi continues et soit O un ouvert de Y , alors / _ 1(0 ) 
est un ouvert de X  car f/~1 {f~ 1 (0)) =  ( f  o  / i ) - 1(0 ) G 0* pour tout i G I  et 
ceci prouve la continuité de / .  Q.E.D.

Exemple 2.24.1 Borne inférieure d’une famille de topologies Soit une
famille de topologies sur un ensemble X.  Notons Xi  l’ensemble X  muni de la 
topologie Ji et fi : X.t —> X  l’application identique. La topologie finale sur X  
associée à ces données est donc moins fine que chaque topologie 7i et c’est la 
topologie la plus fine ayant cette propriété ; autrement dit, cette topologie finale est 
simplement la borne inférieure des topologies (7i)iej. Compte-tenu de l’exemple
2.19.1, ceci montre que toute famille de topologies sur un ensemble X  admet une 
borne supérieure et une borne inférieure.

Dans la suite, les seules topologies finales que nous utiliserons seront des to­
pologies quotients ; elles sont définies de la façon suivante.

Soient R  une relation d’équivalence sur un espace topologique X , X / R  l’es­
pace quotient et 7t : X  —» X / R ! la surjection canonique. La topologie finale sur 
X/R.  associée à cette seule application 7r est appelée la topologie quotient. La 
topologie quotient est donc la topologie la plus fine sur X/R.  rendant continue 
l’application 7r ; un ensemble O de X / R  est ouvert (resp. fermé) pour la topologie 
quotient si, et seulement si, 7r_ 1(0 ) est ouvert (resp. fermé) dans X.  Voici un cri­
tère simple de séparation que nous utiliserons dans l’étude des espaces vectoriels 
topologiques.

Proposition 2.24.4 Si l'espace quotient X/R. est séparé, le graphe de R est fermé 
dans X  x X  ; la réciproque est vraie lorsque l'application 7r est ouverte.
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Preuve Soit G le graphe de R , on a
G = {(x , y ) e X  x X  ; n{x) = ir(y)},

c’est-à-dire G = {z € X  x X  ; (ir o  pri)(z) = (7r o  p r2)(2 )}. Si l’espace X / R  
est séparé, G est donc fermé d’après la proposition 2.17.3. Réciproquement, sup­
posons G fermé et n ouverte. Soient £ =  tt(x) et rj = tt(y) deux points distincts 
de X / R y alors (x,y) £ G \ G étant fermé, il existe donc des voisinages ouverts 
U et V  de x  et y tels que (U x V) fl G =  0 ; l’application n étant ouverte, il en 
résulte que n(U) et Tr(V) sont des voisinages ouverts disjoints de £ et rj. Q.E.D.

Des exemples d’espaces quotients seront donnés dans l’étude des espaces com­
pacts.
Exercice 2 .24 .1  Soient X  un espace topologique, R  une relation d’équivalence sur X , X / R  l ’es­
pace quotient, n  : X  ->  X / R  la surjection canonique. Si A  est une partie de X t l’ensemble 
7T_ 1 (7r(i4)) =  {x € X;  (3y  e  A)(x  =  y  mod. R)}  est appelé le saturé de A. Montrer l ’équi­
valence de

1. l ’application 7r est ouverte (resp. fermée),

2. le saturé de tout ouvert (resp. fermé) est ouvert (resp. fermé).

Exercice 2 .2 4 .2  On reprend la situation de l’exercice 1.2.8 et on suppose que X  et Y  sont des 
espaces topologiques ; on munit l ’espace X/Ji  de la topologie quotient.

1. Montrer que /  est continu si, et seulement si, g est continu.
2. Si /  est une application ouverte, g est une application ouverte.

3. On suppose l’application 7r : X/% —> Y  ouverte et /  continue surjective, montrer que /  est 
ouverte si, et seulement si, g est un homéomorphisme de X / R  sur Y.

2.25 Prolongement des applications uniformément 
continues
Voici une première application importante de la notion d’espace métrique complet 
concernant le problème de prolongement évoqué après le corollaire 2.17.4. Voici 
d’abord une proposition préliminaire.

Proposition 2.25.1 Soient A une partie dense dans un espace topologique X t Y  
un espace régulier et f  : A Y  une application. Pour qu}il existe une application 
continue f  : X  -» Y  qui prolonge f , il faut et il suffit que, pour tout x de X, la 
limite

lim
2/-»æ,2/GAf(y)

existe. Le prolongement est alors unique : il est donné par la formule 
(2.25.1) / > ) =  üm f ( y ) , x & X .

y->x,y€A

Note L’hypothèse faite, à savoir que la limite l i m ^ * ^ ^  f(y)  existe, implique 
que /  est continue d’après la proposition 2.17.2.
Preuve La condition est nécessaire : s’il existe un prolongement continu 
/  : X  —>■ Y,  on a / > )  =  limy-+x f(y),  d’où d’après la remarque 2.20.6
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f (x) = liiny^ XiyeA f(y) ; le filtre qui intervient dans cette dernière limite est 
la trace sur A du filtre V(x*) ; /  étant un prolongement de / ,  ceci prouve que la li­
mite limy ^ XiyeA f(y) doit exister et que /  est nécessairement donné par (2.25.1).

La condition est suffisante. Il s’agit de vérifier que l’application /  définie par
(2.25.1) est un prolongement continu de / .  Notons d’abord que /  est un pro­
longement de /  : en effet, lorsque x G A , la proposition 2.17.2 montre que 
f (x) = limy-+Xyyç.A f(y) = f(x).  Montrons ensuite que /  est continu en un point 
x £ X .  L’espace Y  étant régulier (définition 2.17.2), soit V  un voisinage fermé de 
f(x).  D’après la définition (2.25.1) de /(x ) , il existe un voisinage ouvert W de x 
tel que f ( W  fl A) c  V. Pour tout z G W, f(z)  est un point limite de la base de 
filtre /(V (z)|^ ), donc un point adhérent à cette base de filtre ; W  ayant été choisi 
ouvert, on a donc f (z)  G f ( W  D A) et ceci prouve que f (W)  C f ( W  fl A). Il en 
résulte, V  étant fermé, que f (W)  C V  et ceci démontre la continuité de / .  Q.E.D.

Nous allons en déduire le
Théorème 2,25.2 Prolongement des applications uniformément continues
Soient A une partie dense dans un espace métrique X  et f  : A  -» Y  une appli­
cation uniformément continue à valeurs dans un espace métrique complet. Alors, 
il existe une unique application continue f  : X  Y  qui prolonge f.  En outre, /  
est uniformément continue.
Preuve On peut utiliser la proposition 2.25.1, car tout espace métrique est ré­
gulier. D’autre part, le filtre des voisinages d’un point x  G X  est un filtre de 
Cauchy ; sa trace sur A est a fortiori de Cauchy et l’image de cette trace par l’ap­
plication uniformément continue /  est donc une base de filtre de Cauchy sur Y. 
L’espace Y  étant complet, cette base de filtre converge ce qui signifie que la limite 
limy ^ XtyeA f(y)  existe. D’après la proposition 2.25.1, l’application /  se prolonge 
en une application continue /  : X  -» Y.

Montrons que /  est uniformément continue. Soit e >  0, il existe S > 0 tel que 
(x G A et y G A et d(x, y) < S) => d(f (x), f(y)) < e; 

autrement dit, on a d(f (x ), f(y)) < € lorsque (x , y) appartient à l’ensemble 
{(xyy) G A x A; d(xyy) < 5}

qui est dense dans l’ensemble {{xyy) G X  x X  ; d(xyy) < 6 } car ce dernier 
ensemble est ouvert et A x A est dense dans X  x X.  Le principe du prolonge­
ment des inégalités prouve que d(f(x)yf(y)) < e, pour tout x yy G X  tel que 
d(xy y) < S. Q.E.D.
Exercice 2.25.1 Soient X  un espace topologique, Y_un espace métrique et /  : A —» Y  une ap­
plication définie sur une partie A de X.  Pour tout x  G Ay on définit l'oscillation de /  au point x  par 
v(f-,x) =  in fv Gv(x) diam f ( V  fl A).

1. Montrer que la fonction w ( / ,  •) : A —► M+ est s.c.s.
2. On pose Aq =  {x € A \ w( f \ x)  =  0}. Montrer que j4 o est un Sa (exercice 2.13.4) du 

sous-espace A et, si X  est un espace métrique, que j4o est un Sa de X  [utiliser le lemme 2.29.7].
3. On suppose l’application /  continue et Y  complet, montrer que A C A q C ~Â et que /  se 

prolonge en une fonction continue fo : Ao Y  [utiliser la proposition 2.25.1].
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Exercice 2.25.2 Soient X,  Y  des espaces métriques complets, A c X , B c Y e t f : A - > B  
un homéomorphisme. D ’après l’exercice 2.25.1, il existe un S$ Aq D A  et une application continue 
f o . A o —ï Y  qui prolonge /  et de même il existe un $$ Bq D B  et une application continue 
g0 : B0 - + X  qui prolonge g =  / - 1 . On pose

Ai =  {x e A0 ; f 0(x) e B0 et go(fo(x)) =  x },

Bi =  { y e B 0 ; g0(y) e A0 et fo(go(y)) =  y}.
1. Montrer que A\  et B\  sont des Sa [si F  : Ao -»  X  x  Y  désigne l’application x  »->* (x , fo(x)), 

remarquer que A\  =  F - 1  (G o) où Go C X  x  Bq est le graphe de go, montrer que Go est un Sa 
dans X  x  Y  et utiliser l ’exercice 2.13.4].

2. Montrer que / i  =  / o U i  : A\ B\  est un homéomorphisme qui prolonge / .
3. En déduire que tout sous-espace d’un espace métrique complet homéomorphe à un espace mé­

trique complet est nécessairement un Sa*
D ’après l ’exercice 2.22.1, ceci prouve que dans un espace métrique complet un sous-espace est 

homéomorphe à un espace métrique complet si, et seulement si, ce sous-espace est un Sa*

2.26 Le théorème du point fixe
Voici une seconde application de la notion d’espace métrique complet. Il s’agit de 
la méthode des approximations successives, méthode générale d’étude d’équations 
fonctionnelles que nous aurons l’occasion d’appliquer plusieurs fois.

Soient X  et Y  des espaces métriques, une application /  : X  —> Y  est appelée 
une contraction stricte s’il existe une constante 0  <  k <  1 telle que 

d(f(x)yf(y)) < kd(x,y ), pour tout x,y  € X  ; 
le nombre k sera appelé la constante de contraction. Une telle application est évi­
demment continue, et même uniformément continue.
Théorème 2.26.1 Théorème du point fixe Soient X  un espace métrique complet 
et f  : X  -»> X  une contraction stricte. Alors f  admet un unique point fixe, c ’est- 
à-dire il existe un unique point a de X  tel que f(a) = a.
Preuve Démontrons d’abord l’unicité du point fixe. Soient a et 6 deux points fixes 
de /  ; on a / ( a )  =  a, f(b) = 6 , d’où

d(a,b) = d(f(a)J(b))  < kd(a,b), 
ce qui implique a =  b vu que 0  <  k < 1 .

Pour démontrer l’existence du point fixe, soit xq un point quelconque de X  ; 
posons xn+\ =  f ( xn) pour n e  N. On construit ainsi une suite (xn) de X  et on a 

d(xn+i ,x n) =  d(f(xn) J ( x n- 1)) <  kd{xn,xn- 1), 
d’où d(xn+ \ , xn) < knd(xi,xo). Pour 0  < p < q, on en déduit que

9 - 1  kp
d(xp,xq) < Ç̂ 2 , kn)d{xi ,x 0) <  i ,x 0)

n=p
et, k étant <  1 , ceci montre que la suite (xn) est une suite de Cauchy ; X  étant 
complet, cette suite converge vers un point a. En passant à la limite dans la relation 
xn+i = f( x n), ce qui est loisible car /  est continu, on obtient a = / (a ) .  Q.E.D.
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Dans les applications, il est fréquent que /  ne soit pas une contraction, mais 
qu’une itérée de /  le soit : si /  : X  X  est une application d’un ensemble X  
dans lui-même nous poserons f °  =  Ix> f n+1 = f n ° /  pour tout n G N. On a 
alors
Proposition 2.26.2 Soient X  un espace métrique complet et f  : X  X  une 
application. S'il existe un entier n > 1 tel que f n soit une contraction stricte, /  
admet un point fixe et un seul.
Preuve Notons d’abord que tout point fixe de /  est un point fixe de f n ; ceci 
prouve le théorème d’unicité. D’autre part, f n admet un point fixe a d’après le 
théorème précédent ; on a donc f n(a) = a, d’où / n+1(a) =  / ( a )  ce qui prouve 
que /(a )  est aussi un point fixe de f n ; vu que f n n’admet qu’un seul point fixe, 
on a f(a) = a ce qui prouve que a est un point fixe de / .  Q.E.D.

Nous avons étudié jusqu’à présent une équation de la forme /(x )  = x ; lorsque 
/  dépend d’un paramètre, il est essentiel d’étudier la dépendance du point fixe par 
rapport au paramètre. Dans cette direction, voici deux résultats le premier global, 
le second local.
Proposition 2.26.3 Soient X  un espace topologique, Y  un espace métrique com­
plet, /  : X  x Y  —> Y  une application continue. On suppose qu'il existe une 
constante 0 <  k < 1 telle que, pour tout x  G X  et tout 3/1, 3/2 €

(2.26.1) d( f (x , yi ) , f (x , y2)) < kd(yi ,y2).
Alors, l'équation /(x, y) = y admet pour tout x de X  une solution et une seule 
y =  tp(x). De plus, l'application : X  Y  est continue.
Preuve L’existence et l’unicité de p(x) résultent du théorème 2.26.1. Prouvons la 
continuité de (p en un point a G X  ; en posant b =  <p(a) et y = p(x), on a 

d(<p(x),<p(a)) = d(y, b) =  d( f (x , y), f{a, b))

< d(f(x,  y) , f (x,  b)) + d(f(x, b), f(a, b))
< kd(y,b) + d(f(x,b), f(a, b)),

d’où
d(ip(x),(p(a)) < (1 -  k ) * 1 d(f(x,b),f(a,b)) 

et d’après la continuité de l’application x f ( x yb) au point a, il existe, e >  0 
étant donné, un voisinage F  de a tel que d (/(x , 6), / ( a ,  b)) <  e, pour x G V,  d’où 

d(<^(x),y?(a)) <  (1 — k)~ 1£, pourx G V> 
ce qui prouve le résultat voulu. Q.E.D.
Proposition 2.26.4 Soient X  un espace topologique, Y  un espace métrique com­
plet, îî un ouvert de X  x Y  et f  : Q —» Y  une fonction continue. On suppose 
qu'il existe une constante 0  <  k < 1 telle que, pour tout (x, y\), (x, 2/2) € fi, 
d(f(x > 2/i)» f ( x > 2/2)) <  k d(yi, 2/2)- Soit (a, b) un point de fi tel que / ( a ,  b) = b, 
alors il existe un voisinage ouvert A de a et une fonction continue tp : A —ï Y  dont 
le graphe est contenu dans fi tels que, pour tout x G A, y =  p(x) soit l'unique 
solution de l'équation l'équation / (x ,  y) =  y.
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Preuve On vérifie l’unicité comme dans le théorème 2.26.1. Pour démontrer l’exis­
tence et la continuité, nous allons nous ramener à la situation de la proposition
2.26.3. On peut trouver des ouverts et Cl2  tels que (a, b) € Sl\ x C  îî, puis 
une boule fermée B r(b\ r ) ,  r >  0, telle que B f(b; r) C 0.2  et enfin un ouvert A tel 
que a e A C fti et

d(f (x , 6), / ( a ,  b)) < (1  -  k)r pour tout x e A.
On a alors pour tout (x, y) e A x B'(b; r)

d(f(x, y), f(a, b)) < d(f(x,  y) , f (x,  b)) + d(f(x, b), f ( a , b))

< k d(y, b) +  (1  -  k)r < r.

Ceci prouve que f (A  x B '(6 ; r)) C  Æ'(6 ; r). On peut alors appliquer la proposition
2.26.3 à la restriction de /  à A x B f(6 ; r), en notant que B'(b\ r ) est fermé dans 
y ,  donc complet. Q.E.D.

2.27 Topologie de la convergence uniforme

Soient X  un ensemble, Y  un espace métrique ; nous allons munir l’ensemble 
^(X ^Y )  de toutes les applications de X  dans Y  d’une structure d’espace mé­
trique.

Posons, pour tout /, g G 5T(X; y),
(2.27.1) di(f,g)  =  sup d(f(x),g(x)).

x£X

Cette application d\ vérifie trivialement les axiomes (£>1), (£>2 ) et (D3 ) mais la 
quantité d\ ( / ,  g) peut être égale à + 0 0  et d\ n’est donc pas en général une distance. 
Pour remédier à ce défaut, nous poserons
(2.27.2) d2 ( f yg) =  m in (M i (/,# )) ,
on obtient alors une distance sur l’ensemble J (X ; Y)  : l’inégalité triangulaire ré­
sulte de l’inégalité triangulaire pour d\ et de l’inégalité (2.15.1). On vérifie aisé­
ment qu’en substituant à d une distance uniformément équivalente, on remplace 
alors d2 par une distance uniformément équivalente ; autrement dit, la distance 
d2  définit sur 5F(X; Y)  une structure uniforme qui ne dépend que de la structure 
uniforme de Y  : nous l’appelerons structure uniforme de la topologie de la conver­
gence uniforme ; la topologie correspondante sera appelée topologie de la conver­
gence uniforme. Muni de cette topologie, l’espace J (X ; Y)  sera noté ^ ( X ;  Y).

Si un filtre J  sur l’espace 3U(X\Y)  converge vers une application /  pour la 
topologie de la convergence uniforme, nous dirons qu’il converge uniformément 
vers / .  Ceci signifie simplement que
(2.27.3) (Ve > 0)(3M G &)(Vg)(g G M  => sup d(f(x)yg(x)) < e),

xex
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d’après (2.23.3), on constate qu’un filtre convergeant uniformément vers /  conver­
ge simplement vers /  : la topologie de la convergence simple est moins fine que la 
topologie de la convergence uniforme.

Dire qu’une suite ( /n) converge uniformément vers /  signifie que
(2.27.4) (Ve > 0)(3n G N)(Vp G N)(p > n => sup d( f (x), f p{x)) < e).

xex
On peut introduire un sous-espace de l’espace J (X ; Y)  sur lequel la quantité 

d\ est une distance. Dans un espace métrique Y , une partie A est dite bornée si son 
diamètre (2.18.1) est fini ; cette notion ne dépend pas que de la structure uniforme 
de Y  mais dépend essentiellement du choix de la distance sur Y  : on peut en 
effet toujours remplacer une distance par une distance uniformément équivalente 
bornée (exemple 2.15.2) ; il faut donc manipuler cette notion avec précaution. Une 
application /  : X  -> Y  sera dite bornée si f ( X)  est une partie bornée de Y  et nous 
noterons ^ ( X ;  Y)  ou l°°(X ; Y) l’ensemble de toutes les applications bornées de 
X  dans Y.

Sur l’espace $b(X; Y)  la fonction d\ est une distance, on a en effet, en prenant 
un point a de X
di(f,g) = sup x€Xd(f(x),g(x))

< supx€Xd(f(x) , f (a))+d(f (a) ,g(a))+supxeXd(g(a),g(x)),
d’où di(f,g)  <  diam f ( X)  + d(f(a),g(a)) +  diam g(X)  <  oo.

On observera que la distance cfe induit sur le sous-espace ^ ( X ;  Y) une dis- 
tance uniformément équivalente à d\ d’après l’exemple 2.15.2.

Voici une propriété essentielle de l’espace £Fu(X; Y).
Théorème 2.27.1 Si Y  est un espace métrique complet, l'espace métrique 

(X; Y ) est complet.
Preuve Soit ( /n ) une suite de Cauchy dans l’espace 3U(X\ Y)

(Ve > 0)(3n G N)(Vp,<7 G N)((p >ne t q>n) =>  sup d(fp(x), f q(x)) < e).
xex

Ceci prouve que, pour tout x de X , la suite (fn(x)) est une suite de Cauchy dans Y  
qui est complet, donc elle converge dans Y  vers un point que nous noterons f(x).  
La suite (f n) converge donc simplement vers /  ; montrons que la convergence 
est uniforme : on a d{fp(x)) f Q(x)) < e pour tout x G l e t  tout p,q > n, donc 
en passant à la limite quand p tend vers l’infini (principe du prolongement des 
inégalités), on obtient d( f (x), f Q(x)) < e, pour tout x G X  et tout q > ?i, ce qui 
prouve le résultat voulu. Q.E.D.

On a un résultat semblable pour l’espace ^ ( X ^ Y )  ; c’est une conséquence 
immédiate de la

Proposition 2.27.2 Le sous-espace 5b(X  ; Y) est fermé dans J U(X  ; Y).
Preuve II s’agit de démontrer (corollaire 2.12.2) que la limite /  d’une suite (f n) 
uniformément convergente d’applications bornées est encore bornée. Soit e > 0,
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i l existe n G N tel que d(f (x), / n (:r)) <  £, pour tout x de X , d ’où

d (/(x ), /(y )) < d{f(x),  /„ (x )) +  d(fn( x), f n(y)) +  d(fn(y), f(y))
< 2e +  diam / n (X),

ce qui prouve que diam f ( X)  <  2e +  diam f n{X) <  oo. Q.E.D.
Corollaire 2.27.3 Si Y  est un espace métrique complet, l'espace métrique 

Y) est complet.
Exemple2.27.1 Prenons X  =  N, l°°(N;Y) est alors l’ensemble des suites bor­
nées de y ,  c’est-à-dire l’ensemble des suites x = (xn) telles que

sup d(ayxn) < oo

où a est un point quelconque de Y  ; cet espace est alors muni de la distance
di{x,y) = s\ipd(xn,yn), x = (xn),y = (yn); 

n e  N
cet espace est complet lorsque Y  est complet.

Lorsque X  est un espace topologique, nous noterons C{a}(X; Y)  l’espace de 
toutes les applications f  : X  -¥ Y  continues en un point a de X.  On a alors la
Proposition 2.27.4 L'espace Q{a}(X]Y) est un sous-espace fermé de l'espace 
Ju^X^Y) muni de la topologie de la convergence uniforme.
Preuve II s’agit de démontrer (corollaire 2.12.2) que la limite /  d’une suite ( /n) 
uniformément convergente d’applications continues au point a est encore continue 
au point a. Soit e > 0, il existe n G N tel que d( f (x), f n(x)) < e pour tout x e X.  
On a alors

d(f(a),  / (x ))  <  d(f(a), f n(a)) + d(fn(a), /„ (x )) +  d(fn(x), /(x ))

< 2  e + d(fn(a)Jn{x))
et d ’après la continuité de f n au point a, i l  existe un voisinage V  G V(a) tel que 

d(fn(a), f n(x)) < £ pour x e V ,

d’où d(f(à), f(x)) < 3e pour tout x  G V, ce qui prouve la continuité de /  au 
point a. Q.E.D.

Étant donné que C(X; Y) = P|0€X ^{a}(^î y)» on en déduit le
Corollaire 2.27.5 Le sous-espace C(X ; Y) des applications continues de X  dans 
Y  est fermé dans J U(X\Y)  ; si Y  est complet, ce sous-espace est donc complet.
Nous noterons Gb(X;Y) l’ensemble des applications continues et bornées de X  
dans y  ; ce qui précède prouve que ce sous-espace est fermé dans chacun des 
espaces ? ( X ; Y ), 3b(X\ Y)  et G(X; Y)  ; ce sous-espace est donc complet si Y  
est complet.

Exercice 2.27.1 Soient X  un ensemble et Y  un espace métrique, montrer que la topologie de la 

convergence uniforme sur fJ (X  ; Y)  est strictement plus fine que la topologie de la convergence simple 
si, et seulement si, X  est infini et Y  a au moins deux éléments.
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Exercice 2 .2 7 .2  Soient X , Y  des ensembles. Z  un espace métrique et soit 

<p : fJ ( X  X Y; Z)  —> J(X;  rJ ( Y ; Z))

la bijection qui à /  G 'J{X x Y ; Z )  associe la fonction <£(/) : x f ( x , •) de X  dans 5 { Y ; Z).  Mon­
trer que <Ê> est un homéomorphisme uniformément continu, ainsi que l’homéomorphisme réciproque, 
de l’espace JU(X  x  Y  ; Z)  sur l ’espace !Tn (X ; fJu(Y  ; Z)).

Exercice 2 .2 7 .3  Soient X  un ensemble, Y  et Z  des espaces métriques et g> : Y  ->  Z  une applica­
tion uniformément continue. Montrer que l ’application /  •-* o /  de 'JU(X; Y)  dans JU(X; Z)  est 

uniformément continue.

Exercice 2 .2 7 .4  Soient X , Y  des ensembles, Z  un espace métrique et (p : Y  —> X  une application. 
Montrer que l’application /  i-> /  o (p de fJ u(X\ Z)  dans 'JU( Y ; Z)  est uniformément continue.

Exercice 2 .2 7 .5  Soient X  un espace topologique, Y  un espace métrique, on dit qu’une suite ( / n ) 
d’applications de X  dans Y  converge localement uniformément vers une application f  : X  Y  si, 
pour tout x G X , il existe un voisinage V  de x tel que la suite (f n \ v ) converge uniformément vers 
f \ y .  Si les fonctions f n sont continues, montrer que /  est continu.

Exercice 2 .27 .6  Soit Y  un espace métrique complet, montrer que l’ensemble c(N; Y)  des suites 

convergentes de Y  est un sous-fermé de l’espace Z°°(N; Y).

Exercice 2 .27 .7  Complété d ’un espace métrique 1. Soit (X , d) un espace métrique et soit a un 
point de X , montrer que l’application x h-» f x de X  dans ^ ( X ;  M) où f x (y) =  d(x,y) — d(a>y) 
est une isométrie de X  sur un sous-espace de ^ ( X  ; M).

2. En déduire l’existence d’un espace métrique complet X  tel que X  soit isométrique à un sous- 
espace dense de X .

3. Si X i  et X 2  sont deux espaces métriques complets satisfaisant aux conditions de 2., montrer 
qu’il existe une isométrie de X \  sur X 2  [utiliser le théorème 2.25.2].

A une isométrie près, il existe un seul espace métrique complet vérifiant 2. ; on l'appelle le com­
plété de X .

Exercice 2 .2 7 .8  Permutation de limites Soient Ji  et J 2 des filtres sur des ensembles X \  et X 2 , 
Y  un espace métrique et /  : X \  x  X 2  —> Y  une application. On suppose que, pour tout x\  G X i ,  la 
limite c/(æi) =  lim ^2 f ( x  1 , •) existe et que, pour tout X2 G X 2 , la limite h(x 2 ) =  l im ^  / ( • ,  X2 ) 
existe et est uniforme par rapport à a?2. c ’est-à-dire que

(Ve >  0 )(3 M i G y iX V z i  G M x et Væ2 €  X 2) (d( f (xu x2) i h(x2)) <  e).

1. On suppose que g admet une limite suivant soit y  =  l im ^  g. Montrer alors que 
y  =  l im ^  X‘j 2 f  (exercice 2.11.4) et en déduire, grâce à l ’exercice 2.17.5, que l im ^  g =  lim y2 /i, 
c’est-à-dire que lim ^j lim y2 /  =  lim y2 lim ^! /  (théorème de permutation de deux limites).

2. Déduire de 1. la proposition 2.27.4.

3. Lorsque Y  est un espace métrique complet, montrer que la limite l im ^  x y 2 /  existe [utiliser 

le critère de Cauchy] et en déduire que les conclusions de 1. subsistent.

Exercice 2 .2 7 .9  Soient X  un espace métrique complet, fn : [a, 6] -»  X  une suite de fonctions 
réglées (exercice 2.20.8) convergeant uniformément vers / .  Montrer que /  est réglée [montrer que /  
admet des limites à gauche et à droite en tout point en vérifiant le critère de Cauchy].
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2.28 Le théorème de Baire
Définition 2.28.1 Dans un espace topologique, une partie est dite maigre si elle 
est contenue dans une réunion dénombrable de fermés sans point intérieur

On observera qu’une réunion dénombrable d’ensembles maigres est maigre. 
L’intérêt des ensembles maigres est le suivant. Certaines relations R(x) sur 

un espace topologique X  ne sont pas vérifiées pour tout x e X,  mais seulement 
sur le complémentaire d’un ensemble maigre ; de telles relations ne peuvent être 
intéressantes que si les ensembles maigres sont suffisamment petits. Ceci conduit 
à la définition suivante.

Définition 2.28.2 Un espace topologique est appelé un espace de Baire s'il vérifie
les relations équivalentes suivantes
(B[) Toute partie maigre est d ’intérieur vide.
(B'2) Toute réunion dénombrable de fermés d ’intérieur vide est d’intérieur vide. 
(B'3) Toute intersection dénombrable d’ouverts partout denses est partout dense.

La vérification de l’équivalence de ces trois propriétés est immédiate.
Voici un exemple important d’espace de Baire.

Théorème 2.28.1 Baire Tout espace métrique complet est de Baire.
Preuve Soit (On) une suite d’ouverts partout denses et soit O un ouvert non vide ; 
il s’agit de vérifier que O fl fl^Lo est non v^ e- Construisons par récurrence 
une suite de boules ouvertes Bn =  B(an; pn) telle que, pour tout n e  N
(2.28.1) B q C O, B n+1 C 5 n f l 0 n , 0 <  pn+1 < pn et lim pn = 0.

n-> oo
L’ouvert O étant non vide, il existe une boule ouverte B q telle que 

B q C O. De même, On étant partout dense , l’ouvert Bn n  On est non vide et 
il existe une boule ouverte Bn +1  telle que B n + 1  c  Bn fl On et on peut toujours 
choisir pn+\ < pn/ 2 . _

D’après la proposition 2.18.9, l’intersection H^=o est réduite à un point 
et, vu que p^Lo C O n  f l^ io  On d’après (2.28.1), ceci permet de conclure.

Q.E.D.
Note Nous montrerons ultérieurement que les espaces localement compacts sont 
également des espaces de Baire.

Exercice 2 .28 .1  Montrer que tout produit X  =  n * e /  Xi  d’espaces métriques complets est un 
espace de Baire [raisonner comme pour le théorème 2.28.1 en prenant pour Bn un ouvert élémentaire 

non vide de la forme n * e  J„ x  ! ! » € / - Jw Xi* Jn partie finie de / ,  où diam Bn%i <  pn\.

Exercice 2 .2 8 .2  1. On considère la fonction /  : E  ->  E  définie par f (x)  =  0 si x  est irrationel, 
/(O ) =  1 et f(x)  =  1/q si x =  p/q , p  G Z*, q G N*, la fraction p/q  étant irréductible. Montrer que 
la fonction /  est continue en tout point de E  — Q et discontinue en tout point de Q.

2. Montrer qu’il n’existe pas de fonction /  : E  ->  E  continue en tout point de Q et discontinue en 

tout point de E  — Q [utiliser l’exercice 2.18.2 et vérifier que Q ne peut être un G s].
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Exercice 2 .2 8 .3  Soit /  : [0, + o o [ —> R une fonction continue telle que

Vx >  0, lim  f(nx)  =  0.
n -+o o  '

Soit e >  0, on pose

Fn(e) =  {x  >  0 ; \f(px)\ <  e pour tout entier p > n}.
1. Montrer qu’il existe no E N et 0 <  a <  b tels que ]a, b[ C Fno (e).
2. Montrer qu’il existe n i G N tel que

]pa, p6[ D ] (p +  l ) a , ( p +  l ) 6 [ ^ 0  pour p  >  m
et en déduire que

oo
]n ia , + o o [ =  U ]pa, p 6 [.

p = n i

3. Déduire de ce qui précède que lim x_+oo f (x)  =  0.

Voici quelques propriétés utiles pour les applications.
Lemme 2.28.2 Soit X  un espace topologique et soit Y  un sous-espace de X. Une 
partie A de Y  maigre dans Y  est maigre dans X.
Preuve On a A C  U ^ 0 ^ 71 0^ ês ensemt>les Fn sont fermés dans Y  et d’intérieur 
vide dans Y. Soit Fn l’adhérence de Fn dans X , montrons que Fn est d’intérieur 
vide dans X  ; ceci prouvera le lemme. Raisonnons par l’absurde, soit O un ouvert 
non vide de X  contenu dans Fny alors O n F n est non vide et, vu que Fn est fermé 
dans F , Fn = Fn fl Y  d’où O fl Fn =  O fl Y  et ceci prouve que O fl y  est un 
ouvert non vide de Y  contenu dans Fn, ce qui est absurde. Q.E.D.
Exercice 2 .2 8 .4  Les notations étant celles du lemme 2.28.2, si Y  est ouvert et si A est maigre dans 

X , montrer que A est maigre dans Y.

Exercice 2.28.5 Montrer que tout ouveit d’un espace de Baire est un espace de Baire.

Exercice 2 .2 8 .6  Montrer qu’un espace topologique est un espace de Baire si tout point admet un 
voisinage qui est un espace de Baire.

Exercice 2 .28 .7  1. Soient X  un espace topologique, /  : X  —» M une fonction s.c.i. ; on sup­
pose qu’il existe une partie A de X  non maigre telle que f (x)  <  + o o  pour x  G A. Montrer 
qu’il existe un ouvert non vide O de X  tel que s u p ^ Q  f(x)  <  + o o  [considérer les ensembles 
Fn =  / - 1 ( [ - o o ,n ] )  pourn G N].

2. Soient X  un espace de Baire, f n : X  —> R une suite de fonctions s.c.i. convergeant simplement 
vers une fonction /  : X  —> M. Montrer que tout ouvert non vide de X  contient un ouvert non vide sur 

lequel /  est borné supérieurement [on peut raisonner sur l’ouvert X  (exercice 2.28.5), utiliser alors 1. 
en prenant pour fonction /  la fonction supn€N f n].

Proposition 2.28.3 Dans un espace de Baire, le complémentaire de toute partie 
maigre est un espace de Baire.
Preuve Soit X  un espace de Baire, Y  une partie maigre de X  et A une partie 
maigre de X  -  Y. Il s’agit de vérifier que A est d’intérieur vide dans X  — Y. 
Soit O un ouvert de X  — Y  contenu dans A> il existe un ouvert U de X  tel que 
O = U C\(X — Y)  ; on a alors U c  A  U Y  où A  U Y  est maigre dans X  car Y  est 
maigre dans X  par hypothèse et A est maigre dans X  d’après le lemme 2.28.2 ; il 
en résulte que U = 0 (X  étant de Baire), d’où 0  =  0. Q.E.D.
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Proposition 2.28.4 Soient X  un espace topologique, (Fn) une suite de fermés 
telle que X  = (J^Lo Alors, le complémentaire de l'ouvert O =  U^Lo est
maigre. Si X  est un espace de Baire, cet ouvert O est donc partout dense.
Preuve O n a X - O c  U ^ = o (^  ~  ^n) où Fn -  Fn est simplement la frontière de 
Fn> cet ensemble est donc fermé sans point intérieur (proposition 2.10.4) et ceci 
prouve que X  — O est maigre. Q.E.D.
Proposition 2.28.5 Soit X  un espace de Baire non vide, séparé et sans point isolé, 
alors le complémentaire de toute partie maigre dans X  n'est pas dénombrable. En 
particulier, Xn 'est pas dénombrable.
Preuve Soit A une partie maigre, il existe une suite (Fn) de fermés sans point 
intérieur telle que A  C U ^ = o  Fn-Si X  — A était dénombrable, soit

oo
X - A =  ( J W } ,

71=0
on pourrait écrire

oo oo
x =  Û nU (J {an},

71=0  71=0

où les ensembles {an} sont fermés et d’intérieur vide et X  serait maigre dans 
lui-même alors que X  est supposé non vide, ce qui est absurde. Q.E.D.
Exemple 2.28.1 Soit D = L ^L o W } une partie dénombrable de [0,1] partout 
dense. Pour e >  0 et n G N, on pose

On(e) = ]an -  2~n£,an +  2 ~ne[,
puis 0 (e) = [0 , 1] fl ( J £ L o ^ ( e) » cet ensemble 0 (e) est ouvert dans [0 , 1], 
contient D et par conséquent est partout dense. Il en résulte que le complémen­
taire de A = H ~ i  0 (1  /p) est maigre ; l’espace [0,1] étant de Baire d’après le 
théorème 2.28.1, la proposition 2.28.3 montre que A est un espace de Baire ; cet 
ensemble A contenant D est dense dans [0,1] et ne peut donc admettre de point 
isolé. D’après la proposition 2.28.5, A est donc non dénombrable. Ceci peut sem­
bler assez surprenant ; on pourrait en effet imaginer que A se réduit à D. Cet 
exemple est par ailleurs intéressant du point de vue de la théorie de la mesure : 
c’est un exemple d’ensemble non dénombrable de mesure nulle pour la mesure de 
Lebesgue.

Voici une autre application de ces notions. Il s’agit d’un exemple de propriété 
vérifiée sur le complémentaire d’un ensemble maigre.
Proposition 2.28.6 Soient X  un espace topologique, Y  un espace métrique et 
f n : X  -* Y  une suite d'applications continues convergeant simplement vers 
une application / .  Alors, l'ensemble des points de discontinuité de f  est maigre.
Preuve Soient k un entier >  1, p et q deux entiers ; considérons les ensembles 
fermés

Ak,p,q = {x G X  ] d(fp(x)y fq{x)) <  -B/e,p =  |^ | Aktptq
Q>P



2.28 LE THÉORÈME DE BAIRE 151

et posons A = f ) ^ = 1  (J“  0 Bk<p.
1. Montrons d’abord que /  est continu en tout point a G A. Soient e >  0, 

k G N* tel que 1/k <  e, il existe p G N tel que a G B^p ; pour tout x G Bk,p, on 
a

d(fp(x)Jq(x)) < l / k < £  pour q >  p, 
d’où d(fp(x), f(x))  <  e et par conséquent

d(f(x)J(a))  < d( f (x) , fp(x)) + d(fp{x),fp{a)) + d(fp(a),f(a))

< 2  £ + d{fp(x), fp(a)).
D’après la continuité de f p au point a, il existe un voisinage V  de a contenu dans 
BkyP tel que d(fp( x ) Jp(a)) < £ pour x G V, d’où d{f(x), f(a))  < 3e pour 
x G V, ce qui prouve la continuité de /  au point a.

2 . L’ensemble D des points de discontinuité de /  est donc contenu dans
oo oo

X - A = U ( X - | J 4 p);
k = 1 p = 0

la suite (fn(x)) étant de Cauchy, X  = Pour tout k > 1 et (proposition
2.28.4) X  -  ( J ^ o  est ^onc maigre î on en déduit que X  — A  est maigre en 
tant que réunion dénombrable d’ensembles maigres. Q.E.D.

D’autres applications des espaces de Baire seront données ultérieurement. Le 
théorème de Baire permet de prouver l’existence d’objets pathologiques sans qu’il 
soit nécessaire de faire des constructions explicites ; on peut par exemple mon­
trer l’existence de fonctions continues nulle part différentiables (exercice 2.33.15). 
Mais l’application la plus profonde concerne sans aucun doute l’étude des formes 
linéaires continues sur un espace de Banach par exemple ; ceci sera expliqué le 
moment venu.

E x erc ice  2 .2 8 .8  Soient X  un espace topologique, Y  et Z  des espaces métriques et /  : X  x  Y  —> Z  
une application séparément continue par rapport à chacune des variables.

1. Soit b e  Y,  pour tout x G X  et e >  0, on pose

A e(z) =  {6 >  0; (Vy E Y)(d(y,b) < 6 => * ( / ( « ,* ) , / ( * ,* ) )  <  e)}.

Montrer que A e(x) =  [0 ,£e (a;)] où 6e : X  -* ]0 , +oo] est une fonction s.c.s.
2. On note D  l’ensemble des points de discontinuité de / ,

D\y = {x G X  ; (a?, b) E D}  ;

o n a D b =  UÎÏLi A i  où Dn =  {x  E X  ; u /(/;  (æ ,6)) >  1 /n } . On pose 

Fp(e) =  { x e X ;  ôe(x) >  1 /p } , p >  1.

Montrer que X  =  U £ L i Fpie) et Que l’ouvert U ^ = i Fp(e) est contenu dans X  — Dn si 
0 <  e <  1 /4 n. En déduire que Df, est maigre dans X.

3. Si X  est un espace de Baire, en déduire que l ’ensemble D  des points de discontinuité de /  est 
maigre dans X  x  Y  et d’intérieur vide.
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2.29 Espaces analytiques
On considère l’espace produit X Q = Nn où chaque espace facteur N est muni de la 
métrique discrète. La topologie produit sur X 0  peut être définie par une distance ; 
d’après l’exemple 2.18.1, le théorème 2.22.5 et la proposition 2.21.4, X Q est alors 
un espace métrique complet séparable.

Définition 2.29.1 Un espace topologique séparé X  est appelé un espace analy­
tique s'il existe une application continue surjective f  : X Q —» X.
Note D’après l’exercice 2.22.4, l’espace X Q est homéomorphe à l’ensemble I  des 
irrationnels de ]0,1[ ; dire qu’un espace séparé X  est analytique signifie donc que 
X  est une image continue de l’ensemble des irrationnels.

Un sous-ensemble A d’un espace topologique X  est appelé un sous-espace 
analytique de X  si, muni de la topologie induite, A est un espace analytique. Ceci 
signifie donc que A est un sous-espace séparé de X  et qu’il existe une application 
continue /  : X Q —> X  telle que f ( X 0) = A.

L’image continue d’un espace analytique est analytique, soit

Proposition 2.29.1 Soient X  et Y  des espaces séparés et f  : X  —> Y  une appli­
cation continue. Si A est un sous-espace analytique de X, f (A) est un sous-espace 
analytique de Y.
Note Cette propriété de stabilité est à l’origine de la notion d’espaces analytiques ; 
l’image continue d’un borélien (voir ci-dessous la définition de la tribu borélienne) 
n’est pas en général un borélien (erreur célèbre dûe à Lebesgue), mais c’est tou­
jours un sous-espace analytique. Indiquons à ce propos que les espaces analytiques 
métrisables sont appelés sousliniens dans Bourbaki [4].

Voici une première propriété des espaces analytiques.

Proposition 2.29.2 Tout espace analytique est séparable.
Preuve En effet, soit D une partie dénombrable de X Q partout dense ; si 
/  : X Q —» X  est continue surjective, f ( D ) est dense dans X  d’après la propo­
sition 2.13.3, ce qui prouve la proposition. Q.E.D.

Des exemples d’espaces analytiques sont donnés par la

Proposition 2.29.3 Tout espace métrique complet séparable est analytique.
Preuve Notons X  un tel espace métrique complet séparable.

Voici une première remarque valable pour tout espace métrique séparable. Soit 
D une partie dénombrable de X  partout dense et soit x £ X , on a d(x, D) =  0 
(proposition 2.10.5) ; pour tout e > 0, il existe donc a G D tel que d{x, a) <  e/2, 
ce qui prouve que X  = \Ja£D B'(a] e / 2 ). Autrement dit, pour tout e > 0, X  peut 
s’écrire comme une réunion dénombrable de fermés non vides de diamètre < e.

Si en > 0 est une suite tendant vers 0, on peut donc écrire X  =  U jlo  où 
les Fj sont des fermés non vides de diamètre < £q, puis par récurrence, grâce à la 
proposition 2.20.4, Fao...an = U^Lo Fa„...anj où les Fao...aHj sont des fermés non
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vides de diamètre < £n+i- Soit a = (an) G X Q> rintersection •••<*« est
réduite à un point f(a) d’après le théorème de Cantor 2.18.9. On définit ainsi une 
application /  : X 0  -* X  surjective car, pour tout x de X , il existe a =  (an) G X 0  

tel que x G Fa<t...an pour tout n G N.
Montrons que cette application est continue en tout point a =  (an) G X Q. 

Soit e > 0, B'  =  B'(f(d)-,e) ; construisons un voisinage F  du point a tel que 
f (V)  C B \  ceci prouvera le résultat voulu. Prenons V  de la forme

V = {x = (xn) G X 0  \ Xi = ai pour 0 < i < p}, ;
un tel V  est un voisinage élémentaire ouvert du point a et, si x  G V, 
f (x)  G Fa o , . . a p 9  d’où d(f (x), /(a ) )  <  £p, soit /(a?) G B f en choisissant p suffi­
samment grand pour que ev < e. Q.E.D.
Note L’espace X 0  étant analytique, la classe des espaces analytiques est par consé­
quent la plus petite classe d’espaces séparés stable par image continue et contenant 
la classe des espaces métriques complets séparables.

Corollaire 2.29.4 Tout sous-espcice fermé d'un espace analytique est analytique.
Preuve Soit F  un sous-espace fermé d’un espace analytique X  et soit 
/  : X 0  -» X  une application continue surjective. Alors, A  = f ~ l (F) est un 
sous-espace fermé de X Q ; il en résulte que A  est un espace métrique complet 
séparable, donc analytique d’après la proposition précédente et F = f(Â)  est 
analytique d’après la proposition 2.29.1. Q.E.D.

Nous allons vérifier ensuite que la classe des espaces analytiques est stable par 
les opérations de type dénombrable.
Proposition 2.29.5 /. Tout produit dénombrable d'espaces analytiques est analy­
tique.

2. Dans un espace séparé, toute réunion dénombrable et toute intersection 
dénombrable de sous-espaces analytiques est analytique.
Preuve 1. Soit (Yn) une suite d’espaces analytiques. L’espace produit 
Y  =  n ~ o e s t  séparé. Il existe des surjections continues f n : X 0  Yn. 
Considérons l’application /  : X % Y  définie par f (x) = ( /n (^n))n€n si
x = (xn) G X q . Cette application est évidemment surjective ; sa continuité équi­
vaut à celle des applications <pn : x f n(xn) de dans Yn et ces applications 
sont bien continues vu que ipn = / n °PTn , prn : X ^  X Q désignant la projection 
d’indice n. L’espace est homéomorphe à NNxN d’après le corollaire 2.21.16, 
donc à X Q d’après le corollaire 2.21.14 et ceci prouve que Y  est analytique.

2. Soit (An) une suite de sous-espaces analytiques d’un espace séparé X  et soit 
A = U^=o • Il existe des applications continues f n : X Q -» X  telles que 
An =  f n(X0). On définit une application r  : X 0 X 0  en posant 
t ( x ) = (o;n+i)nGN pour x =  (xn)nen £ X Q ; cette application est continue, car 
prn or = prn+1 où prn : X 0  -» N désigne la projection d’indice n. On définit en­
suite une application /  : X Q -» X  en posant f (x)  = f X{,(r (x ))• On a f ( X Q) =  A  
car, pour chaque j  G N, f ( {x  G X 0; x 0  =  j }) =  f j ( XQ) = Aj.  Vérifions
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enfin la continuité de /  : soit (xp) une suite de X Q convergente vers a G X Qi 
montrons que la suite (f ( x p)) converge vers f(a)  ; si xp =  (æp>n)neN G X 0y 
a =  (an)nen £ X 0, il existe q G N tel que xP i0  =  a 0 pour p > q, d’où 
f ( x p) =  f a,XT(xp)) pour p >  q et, vu la continuité de f a<> et de r ,  ceci prouve 
que la suite (f ( xp)) converge vers f ao(r (a)) =  f i a)-

3. Avec les mêmes notations, montrons que B  =  fl^Lo An est un sous-espace 
analytique de X . Or, £? est homéomorphe à un sous-espace fermé de An 
(corollaire 2.21.7), ce qui permet de conclure vu 1. et le corollaire 2.29.4. Q.E.D. 

Ces résultats vont nous permettre de vérifier la

Proposition 2.29.6 Dans un espace méîrisable analytique, tout ouvert est un sous- 
espace analytique.

Cette proposition résulte du lemme suivant vu le corollaire 2.29.4 et la propo­
sition 2.29.5.
Lemme 2.29.7 Dans un espace métrique, tout fermé s'écrit comme une intersec­
tion dénombrable d'ouverts et tout ouvert s'écrit comme une réunion dénombrable 
de fermés.
Preuve Soit X  un espace métrique, d la distance sur X  et soit F  un fermé de 
X. Les ensembles On =  V\/n(F)> n > 1 , (exemple 2.13.2) sont ouverts et 
contiennent F  ; l’intersection On est a \  car la relation x  G f l ^ l i  
signifie d(x, F) < 1 /n  pour tout n >  1 , c’est-à-dire d(æ, F) = 0, soit a; G F = F. 
En passant au complémentaire, on obtient la propriété concernant les ouverts.

Q.E.D.
Introduisons maintenant la notion de tribu, cette notion sera utilisée ultérieure­

ment en théorie de la mesure.

Définition 2.29.2 Soit X  un ensemble, un ensemble T  de parties de X  est appelé 
une tribu si 
(Tx) X  G T.
(T2) (VA){A£‘J = > X - A e 7 ) .
(T3) (Vn G N )(VAn G 7 )= >  L T = o A n G 7.

Une tribu T est donc un ensemble non vide de parties de X  stable par pas­
sage au complémentaire et par réunion dénombrable ; une tribu est donc stable par 
intersection dénombrable.

On a évidemment le
Lemme 2.29.8 Soient X  un ensemble et une famille de tribus sur X, alors
PlieI % est une tribu sur X.

On en déduit ceci : si G est un ensemble de parties de X t l’intersection de toutes 
les tribus contenant G est encore une tribu et c’est la plus petite (pour l’inclusion 
entre parties de ? (X )) tribu contenant S ; on l’appelle la tribu engendrée par G.
Définition 2.29.3 Soit X  un espace topologique, la tribu engendrée par l'en­
semble 0  des ouverts de X  est appelée la tribu borélienne de X.
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Une partie de X  appartenant à la tribu borélienne est appelée un borélien. 
D’après (O2 ), toute partie fermée est un borélien ; la tribu borélienne est par consé­
quent la plus petite tribu contenant 0  U O'. Ceci peut être précisé comme suit.
Lemme 2.29.9 Soit X  un espace topologique, la tribu borélienne est le plus petit 
ensemble de parties de X  contenant O U O' stable par réunion et intersection 
dénombrable.
Preuve Si (Ci)iej est une famille de parties de ?(X)  telle que chaque Ci soit stable 
par réunion et intersection dénombrable, l’intersection p |iG/ Ci est encore stable 
par réunion et intersection dénombrable ; il existe donc bien un plus petit ensemble 
C de parties de X  contenant O U O' stable par réunion et intersection dénombrable. 
Il est clair que C est contenu dans la tribu borélienne 23 de X . Montrons que C 
est une tribu, c’est-à-dire que C est stable par passage au complémentaire ; ceci 
prouvera que C contient 23, donc que C =  23. A cet effet, considérons l’ensemble 
C' =  {X — A; A e C} des complémentaires des ensembles de 6  ; C' contient 
0  U 0 ' et est stable par réunion et intersection dénombrable ; il en résulte que 
6  C 6 ' et ceci signifie précisément que A G C\ c’est-à-dire X  -  A  G 6 , dès que 
A G C. Q.E.D.
Exercice 2.29.1 Soit X  un espace métrisable, montrer que la tribu borélienne de X  est le plus petit 
ensemble de parties de X  contenant O (resp. O') stable par réunion et intersection dénombrable [utiliser 

le lemme 2.29.7].

Vu le corollaire 2.29.4 et les propositions 2.29.5 et 2.29.6, on en déduit la
Proposition 2.29.10 Soit X  un espace métrisable analytique, alors tout borélien 
est analytique.

Ce qui précède va nous permettre de déterminer la cardinalité de la tribu boré­
lienne de R par exemple.
Proposition 2.29.11 Soit A  Vensemble de tous les sous-espaces analytiques d fun 
espace séparé X  ayant la puissance du continu, alors A  a la puissance du continu. 
Preuve Toute partie de X  réduite à un point est évidemment analytique, donc

Card R < Card A.
D’après la définition même d’un sous-espace analytique Card A < Card C(XQ\X).  
L’espace X 0  étant séparable, une fonction continue de X Q dans X  est déterminée 
par sa restriction à une partie dénombrable de X 0  partout dense, d’où

Card Ç.{X0 \X )  <  Card X N =  Card =  Card R 
d’après la proposition 1.9.7 et ceci permet de conclure. Q.E.D.
Corollaire 2.29.12 Soit X  un espace métrisable analytique ayant la puissance du 
continu, alors la tribu borélienne 23 de X  a la puissance du continu.
Preuve Toute partie réduite à un élément est fermée, donc borélienne, d’où 
Card R < Card 23. D’après la proposition 2.29.10, on a 23 c A, d’où

Card 23 < Card A = Card R
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d’après la proposition précédente et on peut donc conclure. Q.E.D.
Par exemple, la tribu borélienne de Rn (n > 1) a la puissance du continu.



C -  Espaces compacts

2.30 Définitions équivalentes de la compacité
Sur un espace topologique, un filtre n’admet pas nécessairement de point adhérent 
comme nous l’avons déjà remarqué (paragraphe 2.16). Ceci conduit à la définition 
suivante.

Définition 2.30.1 Un espace topo logique séparé X  est dit compact si 
(Ci) Tout filtre sur X  admet un point adhérent.

Il en résulte que toute application /  : X  Y  à valeurs dans un espace com­
pact Y  admet une valeur d’adhérence suivant tout filtre sur X. En particulier, toute 
suite dans un espace compact admet une valeur d’adhérence et dans un espace 
compact à base dénombrable de voisinages, de toute suite on peut extraire une 
sous-suite convergente (proposition 2.16.6).
Note L’espace K n’est pas compact : la suite xn = n n’a pas de valeur d’adhérence.

Donnons de suite une autre caractérisation topologique des espaces compacts. 
Une famille (0.;)*€/ d’ensembles ouverts est appelée un recouvrement ouvert 
de l’espace X  si X  =  \JieI Oi ; on dit que ce recouvrement contient un sous- 
recouvrement fini, ou qu’on peut extraire un sous-recouvrement fini, s’il existe 
une partie finie J  de I  telle que X  = (J iG j  O*.

On a alors le théorème suivant.

Théorème 2.30.1 L'axiome (Ci) est équivalent à chacun des axiomes suivants. 
(C2) (Axiome de Borel-Lebesgue) Tout recouvrement ouvert de X  contient un 
sous-recouvrement fini.
(C3 ) Toute famille d'ensembles fermés de X  dont l'intersection est vide contient 
une sous-famille finie dont l'intersection est vide.
Preuve L’équivalence de ces deux axiomes est évidente.

(Ci) => (C3). Soit ( une famille de fermés dont l’intersection est vide ; 
supposons que l’intersection de toute sous-famille finie soit non vide. Considé­
rons alors l’ensemble de ces intersections, c’est-à-dire l’ensemble des 
où J  décrit l’ensemble 3(1) des parties finies de I  ; cet ensemble de parties non
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vides stable par intersection finie est une base de filtre qui admet un point adhérent 
d’après (Ci) ; les ensembles Fi étant fermés, ceci prouve que l’intersection de la 
famille ( est  non vide contrairement à l’hypothèse.

( C 3 )  => (Ci). Supposons qu’il existe un filtre 3  sans point adhérent, c’est- 
à-dire tel que CÏMefM = 0. Alors, d’après ( C 3 ) ,  on pourrait trouver une fa­
mille finie ( d’ensembles de 3  telle que M* =  0 , d’où a fortiori 
H ieï Mi = 0, ce qui est absurde cet ensemble appartenant à 3. Q.E.D.
Exemple 2.30.1 Un espace discret X  est compact si, et seulement si, il est fini. 
Rappelons d’abord que la topologie discrète est séparée. Si X  est fini, tout re­
couvrement est fini donc X  est compact. Réciproquement, si X  est compact, le 
recouvrement ouvert ({ x } )^ *  contient un sous-recouvrement fini, donc X  est 
fini et ceci prouve l’assertion voulue.
Remarque 2.30.1 Soit (Fn) une suite décroissante de fermés dans un espace com­
pact ; l’axiome ( C 3 )  montre que l’intersection Fn est non vide si, et seule­
ment si, tous les ensembles Fn sont non vides.
Exercice 2.30.1 Soient X  un espace topologique séparé et (Bi)iç.j une base de la topologie de X ,  
montrer que X  est compact si, et seulement si, tout recouvrement de X  par des ouverts de la base 

(Bi) i ei  contient un sous-recouvrement fini.
Exercice 2.30.2 Soit X  un espace topologique, montrer l ’équivalence des propriétés suivantes.

1. Tout recouvrement ouvert dénombrable contient un sous-recouvrement fini.
2. Toute suite décroissante de fermés non vides a une intersection non vide.
3. Toute suite d’éléments de X  admet une valeur d’adhérence.

Exercice 2.30.3 Espace de Lindelof Un espace topologique X  est appelé un espace de Lindelôf si 
tout recouvrement ouvert de X  contient un sous-recouvrement dénombrable.

1. Soit X  un espace topologique admettant une base de topologie dénombrable et soit (O * )^ /  
une famille d'ouverts de X.  Montrer qu’il existe une partie dénombrable J  de I  telle que

U = U 0iieJ ieï
[si (Bn) est une base de topologie, soit A l ’ensemble des entiers n e  N tels qu’il existe i(n) e  I  tel 
que Bn C Oi(n)y montrer alors que U i g j  O* =  U nçA ° i ( n ) l

2. En déduire que tout espace à base de topologie dénombrable est un espace de Lindelôf et que 
toute base de topologie contient une base de topologie dénombrable.

3. Soit X  un espace séparé tel que toute suite admette une valeur d'adhérence, montrer que X  est 
compact si, et seulement si, X  est un espace de Lindelôf [utiliser l ’exercice 2.30.2].

Exercice 2.30.4 Soit (Xi ) iç i  une famille d'espaces topologiques non vides, montrer que l’espace 

X  =  r i i G/  Xi  admet une base de topologie dénombrable si, et seulement si, tous les espaces Xi  
admettent une base de topologie dénombrable et si tous les X i, sauf au plus une infinité dénombrable, 
sont munis de la topologie grossière [pour démontrer que la condition est nécessaire, on utilisera le 

fait que X  admet une base de topologie dénombrable constituée d’ouverts de la forme (2.21.1) d’après 

l’exercice 2.30.3],

Exercice 2.30.5 Coefficient de Lebesgue d ’un recouvrement Soient X  un espace métrique com­
pact et (O i) i€ /  un recouvrement ouvert de X , montrer qu’il existe un nombre e >  0 (appelé coef­
ficient de Lebesgue du recouvrement) tel que tout ensemble de diamètre <  e soit contenu dans l ’un
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des Oi  [pour tout x e  X , il existe i  G /  et r(x)  >  0 tel que B(x;r(x))  c  O* ; du recouvre­
ment (B(x ; r(x)/2))x€x  extraire un sous-recouvrement fini (£ (æ ; r(x) /2) )xeA, A fini, et prendre 
e =  m in x G i 4  r {x ) / 2].

Exercice 2.30.6 Soient X  un espace topologique, Y  un espace compact et /  : X  x  Y  —> R une 

fonction s.c.i., montrer que la fonction g(x) =  in fy € y  f ( x , y) est s.c.i.

Exercice 2.30.7 Soient X  un espace topologique, Y  un espace compact et Z  un espace métrique, 
montrer que l’homéomorphisme <ï> : fSu{ X x Y \ Z )  £FU(X ; ^ ( Y ;  Z ))  (exercice 2.27.2) induit un
homéomorphisme de l’espace GU(X  x  Y; Z ) sur l’espace e u (X ; GU( Y ; Z)),  uniformément continu 
ainsi que l’homéomorphisme réciproque.

Donnons une dernière caractérisation des espaces compacts qui utilise la no­
tion suivante.

Définition 2.30.2 Un filtre U est appelé un ultrafiltre s'il n'existe pas de filtre 
strictement plus fin.

Autrement dit, un ultrafiltre est un élément maximal de l’ensemble ordonné 
des filtres sur X. On peut donner un exemple (c’est le seul) d’ultrafiltre. Étant 
donné un point a de X , notons Ua le filtre engendré par la base de filtre constituée 
du seul ensemble {a} ; ce filtre est un ultrafiltre : en effet, s’il existait un filtre £F 
strictement plus fin que Ua, on pourrait trouver un ensemble M  de îF ne contenant 
pas le point a ; on aurait alors {a} e J, M  e iFet {a}DM =  0 ce qui est absurde. 
L’ultrafiltre Ua est appelé l’ultrafiltre trivial associé au point a.
Exercice 2 .3 0 .8  Soit U un ultrafiltre sur un ensemble X , montrer que D m  e u  M  contient au plus 
un point et, si cette intersection est réduite à un point a, U est l’ultrafiltre trivial Ua.

On a alors le théorème.

Théorème 2.30.2 Pour tout filtre J  sur un ensemble X , il existe un ultrafiltre plus 
fin que J.
Preuve D’après le lemme de Zorn 1.5.1, il s’agit de prouver que, sur un ensemble 
non vide, l’ensemble ordonné des filtres est inductif. Notons d’abord que cet en­
semble est non vide. Considérons une famille ($i)%ei de filtres totalement ordon­
née. Il suffit de vérifier que J  =  \JieI 9* est un filtre sur X  : il est évident que (Fi) 
et ( F s )  sont vérifiés ; quant à (F2 ), soient A i, A 2  G J ,  alors il existe i u % 2  G I  
tel que Ai G 5 ^  et A 2 G Ji2 ; la famille (Ji)iei étant totalement ordonnée, on a 
par exemple 7ix C  d’où Ai  fl A 2  G 7 i2  C  J ,  ce qui prouve le résultat voulu.

Q.E.D.
Le théorème précédent est un théorème d’existence ; il ne donne aucun moyen 

pour construire un ultrafiltre plus fin qu’un filtre donné. D’autre part, il existe en 
général plusieurs ultrafiltres plus fins qu’un filtre donné : par exemple, si J  est 
le filtre engendré par une partie A non vide, tous les ultrafiltres triviaux Ua, où 
a G A, sont plus fins que 3r.

Notons enfin la propriété suivante, qui résulte de la proposition 2.16.5.
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Proposition 2.30.3 Sur un espace topologique X , un ultrafiltre U converge vers 
un point x si, et seulement si, x est un point adhérent à U.

Nous sommes maintenant en mesure de prouver le

Théorème 2.30.4 L'axiome (Ci) est équivalent à l'axiome 
(C4 ) Tout ultrafiltre converge.

Preuve La proposition 2.30.3 montre que (Ci) implique (C 4 ) . Réciproquement, 
soit 7  un filtre sur X  ; d’après le théorème 2.30.2, il existe un ultrafiltre U plus fin 
que 7  ; d’après ( C 4 ) ,  cet ultrafiltre converge et tout point limite de U est un point 
adhérent à 7  ce qui permet de conclure. Q.E.D.

Comme nous le verrons au paragraphe 2.33, cette caractérisation des espaces 
compacts permet d’étudier très simplement un produit d’espaces compacts.
Exercice 2.30.9 1. Soient J  un filtre sur un ensemble X,  Y  un espace topologique, y  e  Y  et 
f  : X  —► Y  une application. Montrer que y  =  lim y  /  si, et seulement si, y =  lim ^ /  pour tout 
ultrafiltre U plus fin que J  [condition suffisante : si y  n’est pas une valeur limite de /  suivant J,  il 
existe un voisinage V  de y  tel que J  admette une trace sur X  — f ~ 1 (K ), considérer alors un ultrafiltre 
plus fin que le filtre engendré par le filtre induit 3"\x ~f- i (v ) ] -

2. Si X  est un espace topologique, montrer que l ’application /  : X  —► Y  est continue en un point 
a de X  si, et seulement si, pour tout ultrafiltre U qui converge vers a, la base de filtre / ( U )  converge 

vers / ( a ) .

2.31 Propriétés des espaces compacts

En ce qui concerne le comportement des filtres sur un espace compact, outre la 
propriété (Ci), on a la

Proposition 2.31.1 Sur un espace compact, un filtre converge si, et seulement si, 
il admet un seul point adhérent.

Preuve La condition est nécessaire car un espace compact est séparé. Réciproque­
ment, soit 7  un filtre sur un espace compact X  admettant un seul point adhérent x. 
Nous allons montrer que 7  converge vers x. Si ce n’était pas le cas, on pourrait en 
effet trouver un voisinage ouvert V  de x n’appartenant pas à 7  ; il en résulterait 
que tout M  de 7  rencontrerait X  -  V  ; le filtre 7  admettrait donc une trace 7 7 sur 
X  — V  ; ce filtre 7 ' considéré comme une base de filtre sur X  admettrait un point 
adhérent y qui serait a fortiori adhérent au filtre moins fin 7  (remarque 2.20.2). On 
a alors y G X  -  V, d’où y e X  -  V  vu que V  est ouvert, d’où x ^  y et le filtre 
7  admettrait deux points adhérents, ce qui est contraire à l’hypothèse. Q.E.D.

Corollaire 2.31.2 Dans un espace compact, une suite converge si, et seulement si, 
elle admet une seule valeur d'adhérence. Dans un espace compact à base dénom­
brable de voisinages, une suite converge si, et seulement si, toutes les sous-suites 
extraites qui convergent, convergent vers la même limite.
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Exercice 2.31.1 Soient X , Y  des espaces topologiques et /  : X  —► Y  une application.
1. Si y  est séparé et si /  est continu, montrer que le graphe de / ,  c ’est-à-dire l’ensemble 

G =  {(x,y)  E X  x  y  ; y  =  / ( x ) } ,  est fermé.
2. Réciproquement, si Y  est compact et si le graphe de /  est fermé, montrer que /  est continu 

[montrer que / ( x )  est le seul point adhérent à la base de filtre (f(V))veV(x)]-

Définition 2.31.1 Dans un espace topologique X , une partie K  C  X  est dite 
compacte si, munie de la topologie induite par celle de X, K  est un espace com­
pact.

Dire que K  est une partie compacte de X  signifie que la topologie induite sur 
K  par celle de X  est une topologie compacte. Ceci implique d’abord que K  est un 
sous-espace séparé de X . Pour écrire ensuite l’axiome de Borel-Lebesgue, il est 
vivement conseillé d’utiliser des ouverts de X  ; cet axiome doit alors s’écrire de 
la façon suivante : soit (Oi)ieI une famille d’ouverts de X  telle que K  C (JiG/ O* 
(c’est-à-dire un recouvrement de K  par des ouverts de X )t alors il existe une partie 
finie J  de I  telle que K  c  |J ie j  Oi.
Exemple 2.31.1 Soit (xn) une suite convergente de limite x  dans un espace séparé 
X.  Posons A = U^Loi^n}» on a alors A =  A U {x} : en effet, le point x  est 
adhérent à A , montrons que tout point y e X  — A U {x} n’est pas adhérent à A  ; 
x ÿé y, donc il existe des voisinages ouverts disjoints V  et W  de x  et y ; la suite 
(xn) convergeant vers x, V  contient tous les xn sauf peut-être un nombre fini ; 
il en résulte que W  fl A est fini et par suite W — A est un voisinage ouvert de y 
ne rencontrant pas A. Montrons ensuite que A est une partie compacte de X.  Soit
(Oi)i£i un recouvrement ouvert de A ; il existe io G I  tel que x G O*(l ; cet ouvert 
Oi0 contenant tous les xn sauf peut-être un nombre fini, il existe une partie finie J  
de I  telle que (O*).^ j  soit un sous-recouvrement fini de A qui est donc compact.
Exercice 2.31.2 Soient X  un espace séparé à base dénombrable de voisinages et Y  un espace topo­
logique. Montrer qu’une application f  : X  —> Y  est continue si, et seulement si, pour tout compact K  
de X , la restriction f \ x  : K  Y  de /  à i f  est continue.

Exercice 2.31.3 Convergence uniforme sur tout compact Soient X  un espace topologique, Y  un 
espace métrique, on dit qu'une suite ( / n ) d’applications de X  dans Y  converge uniformément sur tout 
compact vers une application /  : X  -»  Y  si, pour tout compact K  C X t la suite (fn \i<) converge 
uniformément vers / 1/<\

1. Si la suite ( f n) converge uniformément sur tout compact vers / ,  montrer que la suite ( / n ) 
converge simplement vers / .

2. Si la suite ( / n ) converge vers /  localement uniformément (exercice 2.27.5), alors elle converge 
vers /  uniformément sur tout compact.

3. On suppose X  séparé à base dénombrable de voisinages, si ( f n ) est une suite d’applications 

continues convergeant uniformément sur tout compact vers / ,  alors /  est continue [utiliser l’exercice 

2.31.2].

Exercice 2.31.4 Soient Xi ,  X 2 deux espaces topologiques, I<\ C X \  et K 2 C X 2 des parties 

compactes non vides, montrer que l'ensemble des V\ x  V2 » lorsque V\ et V2 décrivent respectivement 
les filtres V(Ki)  et V(I<2 ). constitue un système fondamental de voisinages de K \  x  i f 2  [supposer 

d’abord que l ’un des if* est réduit à un point].
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Il est souvent essentiel de connaître les parties compactes d’un espace topo­
logique. Des théorèmes fondamentaux seront donnés ultérieurement (paragraphes 
2.32 et 2.33) ; pour l’instant contentons-nous de quelques remarques préliminaires.

Proposition 2.31.3 1. Dans un espace compact, toute partie fermée est compacte.
2. Dans un espace séparé, toute partie compacte est fermée.

Preuve 1. Soit i f  une partie fermée d’un espace compact X. Alors K  est un sous- 
espace d’un espace séparé, donc K  est un espace séparé. D’après la proposition
2.20.1, une partie de K  est fermée dans K  si, et seulement si, elle est fermée dans 
X  ; il en résulte que la propriété (Cf) est vérifiée par le sous-espace K , vu qu’elle 
l’est par l’espace X.  Ceci prouve que K  est une partie compacte.

2. Soit K  une partie compacte d’un espace séparé X.  Si K  n’est pas fermé, il 
existe a G K  -  I< ; l’espace X  étant séparé, flvrGV(a) ^  =  W » d’où

f l  ( V n K )  = 0.
V£V(a)

D’après (Cf), il existe donc une famille finie (T̂ )i<i<n de voisinages de a telle 
que a - i O W  = 0 ; on obtient une contradiction car flILi ^  est un voisinage 
de a et, a étant adhérent à K , ce voisinage doit rencontrer K.  Q.E.D.

Corollaire 2.31.4 Dans un espace compact, l }ensemble des parties compactes est 
égal à Vensemble des parties fermées.

Dans un espace séparé, toute partie compacte étant fermée, il est commode 
d’introduire la terminologie suivante.

Définition 2.31.2 Dans un espace séparé, une partie est dite relativement com­
pacte si son adhérence est compacte.

Toute partie relativement compacte est donc contenue dans une partie com­
pacte. Réciproquement, soit A une partie de AT où i f  est une partie compacte d’un 
espace séparé ; alors i f e s t  fermée dans X  d’après la proposition 2.31.3 et par 
conséquent l’adhérence A de A dans X  est contenue et fermée dans if ,  donc com­
pact d’après la proposition 2.31.3.

Dans un espace séparé, une partie est donc relativement compacte si, et seule­
ment si, elle est contenue dans une partie compacte. Il en résulte que, dans un 
espace séparé, tout ensemble contenu dans une partie relativement compacte est a 
fortiori relativement compact.

Proposition 2.31.5 i. Dans un espace séparé, une réunion finie de parties com­
pactes est une partie compacte.

2. Dans un espace séparé, l'intersection d'une famille non vide de parties com­
pactes est une partie compacte.
Preuve 1. Soit ( if* )^ / une famille finie de parties compactes dans un espace 
séparé X  ; le sous-espace i f  =  \JieI if* est donc séparé. Soit (Oj)j^j  un recou­
vrement ouvert de i f  ; pour tout i G i ,  il existe d’après (C2) une partie finie Ji de
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J  telle que K i  C  \ J j e j i O j , d’où K  C  |J j ^ j '  O j>  où J7 =  U ie J  ^  est une  
finie de J  ; ceci prouve que K  est compact.

2. Soit (Ki)iej une famille non vide de parties compactes d’intersection K  ; 
d’après la proposition 2.31.3, les ensembles Ki sont fermés, donc K  est fermé 
dans X , donc fermé dans chacun des Ki et on conclut avec la proposition 2.31.3.

Q.E.D.
Corollaire 2,31.6 Dans un espace séparé, une réunion finie d'ensembles relative­
ment compacts est relativement compacte.

Précisons les propriétés topologiques des espaces compacts.
Proposition 2.31.7 Tout espace compact est régulier ; autrement dit, tout point 
admet un système fondamental de voisinages compacts.
Preuve L’espace est séparé ; nous allons vérifier (i?i). L’ensemble 23 des voisi­
nages fermés d’un point x étant stable par intersection finie est une base de filtre 
qui engendre un filtre moins fin que V(x). D’après ( # 3 ), x  est le seul point adhé­
rent à 23, donc 23 converge vers x d’après la proposition 2.31.1, ce qui prouve que 
23 est une base du filtre V(x), et ceci prouve (i?i). Q.E.D.

Plus généralement, on a la
Proposition 2.31.8 Dans un espace compact, toute partie compacte admet un sys­
tème fondamental de voisinages compacts.
Preuve Soit K  une partie compacte d’un espace compact X  et soit V  un voi­
sinage de K. Pour tout x de K, il existe d’après la proposition précédente un 
voisinage fermé C(x) du point x tel que x G C(x) C  V .  Quant x décrit K,  les 
intérieurs C(x) de ces voisinages forment un recouvrement ouvert du compact K , 
dont on peut extraire un sous-recouvrement fini C ( x i ) 9 1 < i  < n. L’ensemble 
U L i C(xi) est un voisinage fermé, donc compact, de K  contenu dans V. Q.E.D.

On peut préciser la propriété (# 2) de séparation des espaces réguliers de la 
façon suivante.
Proposition 2.31.9 Dans un espace régulier X, soient A une partie compacte et 
B une partie fermée sans point commun. Alors, A et B admettent des voisinages 
disjoints.
Preuve Pour tout x e  A, il existe d’après (R2 ) un voisinage ouvert Vx de x  et un 
voisinage Wx de B  sans point commun. L’espace A étant compact, on peut extraire 
du recouvrement ouvert (V x ) x e A  de A un sous-recouvrement fini (V x ) x e M  (M  
partie finie de A). Alors, V  =  \Jx£M Vx et W = f \xeM Wx sont des voisinages 
disjoints de A et B. Q.E.D.

Étudions enfin les propriétés des fonctions continues définies sur un espace 
compact.
Théorème 2.31.10 Soit f  : X  —ï Y  une application continue définie sur un es­
pace topologique X  à valeurs dans un espace séparé Y. Alors, T image par f  de 
toute partie compacte de X  est une partie compacte de Y.



164 CHAPITRE 2 TOPOLOGIE

Preuve Soit K  une partie compacte de X  et soit (O *)^/ un recouvrement ouvert 
de f{K).  D’après la continuité de / ,  les ensembles / - 1(Oi) sont ouverts dans X  
et ( f ~ 1 (Oi))ieiest un recouvrement ouvert de K . On peut donc trouver une partie 
finie J  de I  telle que soit un recouvrement de K  ; il en résulte que
(Oi)ieJ est un sous-recouvrement fini de / ( i f ) ,  qui est donc compact, l’espace Y  
étant séparé. Q.E.D.

Introduisons la terminologie suivante.

Définition 2.31.3 Soient X  et Y  deux espaces topologiques, une application 
f  : X  —» Y  est dite fermée si limage par f  de toute partie fermée de X  est 
une partie fermée de Y.

Corollaire 2.31.11 Soient X  un espace compact, Y  un espace séparé, alors toute 
application continue f  : X  Y  est fermée.

Preuve En effet, toute partie fermée de X  est compacte et toute partie compacte 
de Y  est fermée ; il suffit d ’appliquer le théorème précédent. Q.E.D.

Corollaire 2.31.12 Soit f  : X  -* Y  une bijection continue définie sur un espace 
compact à valeurs dans un espace séparé. Alors, f  est un homéomorphisme et Y  
est un espace compact.

Nous allons en déduire une propriété intéressante des topologies compactes. 
Introduisons la terminologie suivante.

Définition 2.31.4 Sur un ensemble X , une topologie séparée est dite minimale si 
elle est minimale dans l'ensemble ordonné des topologies séparées sur X .

Proposition 2.31.13 Sur un ensemble X  les topologies compactes sont des topo­
logies minimales.

Preuve En effet, soit Ti une topologie séparée moins fine qu’une topologie com­
pacte T2 . Alors, l’application identique de X 2  dans X \ est une bijection conti­
nue, donc un homéomorphisme d’après le corollaire 2.31.12, ce qui prouve que 
Ti =  O* Q.E.D.

Autrement dit, toute topologie séparée moins fine qu’une topologie compacte 
coïncide nécessairement avec cette topologie compacte ; cette propriété n’est ce­
pendant pas caractéristique des topologies compactes.

Corollaire 2.31.14 Soient 7\ et 7 2 deux topologies séparées sur un ensemble X  
telle que 7\ soit moins fine que T2. Alors, toute partie compacte de X  pour J 2 est 
compacte pour 7\ et les topologies 7 1 et 7 2 coïncident sur une telle partie.

Exercice 2.31.5 Soient X  un espace compact, Y  un espace topologique, montrer que la projection 

pr2 : X  x  Y  —> Y  est une application fermée [soient A une partie fermée de X  x Y,  y  £  pr2 (A), 
pour tout x E X  il existe un voisinage ouvert Ux x  Vx de (x , y) ne rencontrant pas A, utiliser alors 

Borel-Lebesgue].
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Exercice 2.31.6 Soient X,  Y, Z  des espaces topologiques, on suppose Y  compact et Z  séparé et 
soit f  : X  x Y  Z  une application continue telle que, pour tout x  €  X,  l ’application y f(x,  y) 
soit injective. Soit a  €  Z , on pose

A =  { x e X ] ( 3 y e Y ) ( f ( x iy ) = a ) } .

1. Montrer que A  est fermé dans X  [utiliser l ’exercice 2.31.5].
2. On note g : A —> Y  l’application telle que f ( x , g(x)) =  a pour tout x G A. Montrer que g 

est continu [utiliser l ’exercice 2.31.1].

Indiquons enfin un théorème établissant un lien intéressant entre la conver­
gence simple et la convergence uniforme, et qui repose sur des hypothèses de 
croissance. Des relations entre ces deux types de convergence d’une toute autre 
nature seront étudiées au paragraphe 2.34.
Théorème 2.31.15 Dini Soient X  un espace compact, fo : X  R une suite 
généralisée (exemple 2.11.5) de fonctions s.c.i. telle que Vapplication i ^  fi soit 
croissante. On suppose la fonction f  = supi€/ fi à valeurs réelles finies. Alors, si 
f  est continue, la suite généralisée (fi)i£i converge uniformément vers f.
Preuve II s’agit de démontrer que
(2.31.1) (Ve > 0)(3 î € J)(V? <E I){j > i => su p (/(x ) -  fj(x)) < e).

x e x

Posons Oj = {x G X  ; f (x) -  fj(x) < e} ; la famille (Oj)jei est un recou­
vrement ouvert de X  dont on peut extraire un sous-recouvrement fini (Oj)j^j.  
L’ensemble I  étant filtrant (exemple 2.8.8), il existe k G I  tel que k > j  pour tout 
j  G J  ; d’après la croissance de l’application i f i , on a Oj C Ok pour tout 
j  e J, d’où Ok = X , ce qui prouve (2.31.1). Q.E.D.
Corollaire 2.31.16 Soient X  un espace compact, f n : X  -> R une suite crois­
sante de fonctions s.c.i. convergeant simplement vers une fonction continue 
f  : X  -> R. Alors, la suite (f n) converge uniformément vers f.

2.32 Le théorème de Tychonoff
Nous allons démontrer qu’un produit de topologies compactes est une topologie 
compacte ; il s’agit là d’un théorème fondamental dont la preuve utilise essentiel­
lement le lemme de Zorn par l’intermédiaire de la notion d’ultrafiltre.
Proposition 2.32.1 Soient U un ultrafiltre sur un ensemble X, A et B deux parties 
de X  telles que A U B  € U, alors A G U ou B  G U.
Preuve Supposons en effet que A £ U et B £ U ; alors l’ensemble 
J  =  {M  C X  ; A U M  € ÎI} est un filtre sur X  car 0 ^  SF vu que A £ U 
et ce filtre est strictement plus fin que IX car B  € J  — U. Ceci est contradictoire 
avec le fait que U est un ultrafiltre. Q.E.D.
Corollaire 2.32.2 Soient U un ultrafiltre sur un ensemble X  et (Ai)iej une famille 
finie de parties de X  telle que (J^ 7 Ai G U. Alors, il existe i G I  tel que Ai G U.
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Ceci va nous permettre de caractériser les ultrafiltres de la façon suivante.
Proposition 2.32.3 Un filtre U sur un ensemble X  est un ultrafiltre si, et seulement 
si, pour tout A C X, on a A e U ou X  — A e U.
Preuve La condition est nécessaire d’après la proposition 2.32.1, vu que

A U (X  -  A) = X  G U.
La condition est suffisante ; en effet, supposons qu’il existe un filtre 7  strictement 
plus fin que U ; alors, il existe un ensemble M  G 7  — U ; d’après la proposition
2.32.1, on a nécessairement X  — M  e U d’où X  — M  e $  et par suite M  et 
X  — M  appartiennent tous deux à jF, ce qui est absurde, leur intersection étant 
vide. Q.E.D.
Exercice 2.32.1 Soit II un ultrafiltre sur un ensemble X  et soit A  une partie de X , montrer que U 
admet une trace sur A si, et seulement si, A e U, auquel cas It^ est un ultrafiltre.

Nous pouvons établir maintenant le résultat dont nous aurons besoin.

Proposition 2.32.4 Soient X, Y  des ensembles et f  : X  -» Y  une application de 
X  dans Y . Alors, l'image par f  de tout ultrafiltre sur X  est une base d'ultrafiltre 
sur Y.
Preuve Soit U un ultrafiltre sur X  et soit B  une partie de Y. D’après la caractéri­
sation précédente, on a f ~ 1 (B) e U ou X  -  f ~ x(B) € U et il en résulte que B  
ou Y  -  B  appartient au filtre engendré par /(U ), ce qui prouve que f(U) est une 
base d’ultrafiltre sur Y.  Q.E.D.

Théorème 2.32.5 Tÿchonoff Un produit d'espaces topologiques non vides est 
compact si, et seulement si, tous les espaces facteurs sont compacts.
Preuve Soit (X i)iGj une famille d’espaces topologiques et soit X  =  
l’espace topologique produit. Si X  est compact, X  est séparé, les espaces facteurs 
sont séparés (corollaire 2 .2 1 .12) donc homéomorphes à des sous-espaces fermés 
de X  (corollaire 2.21.11) ; les espaces facteurs sont donc compacts (proposition
2.31.3). Réciproquement, supposons tous les espaces facteurs Xi compacts, alors 
les espaces Xi sont séparés donc X  est séparé (corollaire 2.21.12). Soit U un 
ultrafiltre sur X , alors les bases de filtre pr^U) sont des bases d’ultrafiltre qui 
convergent d’après (C4) ; il en résulte que U converge (proposition 2.21.8), ce qui 
prouve que X  est compact. Q.E.D.

Le théorème de Tÿchonoff est un théorème fondamental car il permet de ca­
ractériser les parties compactes d’un grand nombre d’espaces fonctionnels. Voici 
d’abord un corollaire immédiat.

Corollaire 2.32.6 Soit X  le produit d'une famille (Xi)iej d'espaces séparés. Une 
partie A d e X  est relativement compacte si, et seulement si, pour tout i e I, pri(A) 
est relativement compacte dans X^.
Preuve La condition est nécessaire. En effet, soit A une partie relativement com­
pacte de X  qui est séparé (corollaire 2.21.12) ; A est compact, donc priÇÂ) est
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compact d’après la continuité des projections et on a pri{A) C priÇA), ce qui 
prouve que pri(A) est relativement compact.

La condition est suffisante. On a en effet A c n ^ /  Pri(A), d’où

A  c JJpr*(i4)
i e i

d’après (2.21.3) ; notons alors que la topologie induite par la topologie de X  sur 
l’ensemble ü i e / Wi{A) est la topologie produit des topologies des sous-espaces 
pr-i(A) ; d’après le théorème de Tychonoff cette topologie est compacte, ce qui 
prouve que A est relativement compact. Q.E.D.

Dans le corollaire précédent, si on suppose les ensembles pri(A) compacts 
pour tout i G / ,  on ne peut pas en déduire que A est compact, car A  n’est pas 
nécessairement fermé : par exemple, dans M2, il suffit de considérer l’ensemble 
A = (]0,1] x {0}) U {(0,1)}.

Les résultats qui précèdent s’appliquent par exemple à la topologie de la conver­
gence simple. Le théorème 2.32.5 et le corollaire 2.32.6 impliquent le
Théorème 2.32.7 Soient X  un ensemble non vide et Y  un espace topologique. 
L'espace J S(X; Y), muni de la topologie de la convergence simple, est compact 
si, et seulement si, Y  est compact. Si Y  est séparé, une partie Ade 3r$(X;Y)  est 
relativement compacte si, et seulement si, pour tout x  G X, l'ensemble

A(x) = prx(A) = {f(x)  ; /  € A} 
est relativement compact dans Y.

Rappelons que la topologie de la convergence simple n’est pas en général 
à base dénombrable de voisinages ; lorsque Y est un espace compact, l’espace 
$S(X\ Y)  est compact, donc toute suite d’applications f n : X  -> Y admet une 
valeur d’adhérence, mais il n’existe pas nécessairement de sous-suite extraite qui 
converge simplement. Ceci conduit à la définition suivante.
Définition 2.32.1 Un espace topologique séparé X  est dit séquentiellement com­
pact si toute suite de X  admet une sous-suite convergente.

Un espace compact à base dénombrable de voisinages est séquentiellement 
compact d’après la proposition 2.16.6. Nous montrerons ultérieurement qu’un es­
pace métrisable séquentiellement compact est compact. Pour l’instant, voici un 
résultat dont la démonstration utilise une méthode intéressante, il s’agit de la mé­
thode diagonale introduite par Cantor pour démontrer que R n’est pas dénom­
brable.

Proposition 2.32.8 Un produit dénombrable d 'espaces séquentiellement compacts 
est séquentiellement compact.
Preuve Notons X  =  Yl^Li X q l’espace produit. Soit (xp)pe^* une suite de X , 
on a xp =  (xPtQ)q£M+ où xp>q G X q. Construisons par récurrence une suite dé­
croissante (Aq) de parties infinies de N* telle que, pour tout q G N*, la sous-suite 
(xP,q)p€A,t de X q converge : l’espace X q étant séquentiellement compact, de la
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suite (xPtQ)peA<l-1  (-Ao =  N*) on peut en effet extraire une sous-suite convergente 
Aq d  Aq—\. Posons dq = Ülïlp—̂oo^GAq XPiq G Xq et Ci — {o>q) G X. 

Notons ip(q) le qtème élément de Aq et montrons alors que la sous-suite diago­
nale (æ<p(p))pgn* converge vers le point a, c’est-à-dire que la suite (aV(p),g)peN* 
converge vers aq : en effet, pour p > q, on a p(p) G Ap c  Aq et la suite 
( x tp(p ) yq ) p > q  est donc une sous-suite de la suite ( x Pyq ) p e A tl, suite qui converge 
vers aq. Q.E.D.
Exercice 2.32.2 Soient X  un espace compact, R  une relation d’équivalence sur X,  X / R  l ’espace 
quotient, 7r : X  ->  X / R  la surjection canonique et

G =  { (x,y)  G X  x  X  ; 7r(x) =  tt(y)}

le graphe de la relation R. Montrer l’équivalence des propriétés suivantes
1 . l’espace X / R  est séparé,
2. le graphe G est fermé,
3. l’application w est fermée,

[pour démontrer que 2 => 3, si F  est un fermé de X,  noter que 7r“ 1 (7r(F ))  =  pr\  ((X  x  F)  n  G) où 

pr\  : X  x  X  —► X  désigne la première projection ; pour démontrer que 3 => 1 , soient £ , 7 7  G X/R ,  
£ 7̂  77, alors 7r“ 1 (£) et ty~  1 (77) sont des fermés disjoints qui admettent des voisinages ouverts disjoints 
V  et W  ; si V'  et W'  sont les saturés (exercice 2.24.1) de X  — V  et X  — W y vérifier que 7r(X  — V') 
et 7r(X  -  W')  sont des voisinages ouverts disjoints de £ et 77 ].

2.33 Espaces métriques compacts
La compacité des espaces métriques peut se caractériser par des propriétés de leur 
structure uniforme. Cette caractérisation utilisera la notion suivante.

Définition 2.33.1 Dans un espace métrique, une partie A est dite précompacte si, 
pour tout £ > 0 , il existe un recouvrement fini de A par des ensembles dont le 
diamètre est inférieur à e.

Un ensemble de diamètre < e étant contenu dans une boule fermée (resp. ou­
verte) de rayon e (resp. 2 e), un ensemble A est précompact si, et seulement si, pour 
tout e > 0, il existe un recouvrement fini de A par des boules de rayon £ qu’on 
peut choisir ouvertes ou fermées. En prenant des boules fermées, on constate que 
A est précompact dès que A est précompact. Par ailleurs, si A est précompact, tout 
sous-ensemble de A est précompact. Il en résulte que A est précompact si, et seule­
ment si, A est précompact. Notons également que toute réunion finie d’ensembles 
précompacts est précompacte et que tout ensemble précompact est borné.

Voici une première propriété des espaces métriques précompacts.

Proposition 2.33.1 Un espace métrique précompact est séparable.
Preuve Pour tout entier n > 1, il existe un recouvrement fini de l’espace X  par 
des boules de rayon 1 /n  ; soit An l’ensemble des centres de ces boules ; An est 
fini et A = U ^ i  est dénombrable. Montrons que A est partout dense. On a
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d(x, A) < d(x, An) < 1 / n  pour tout a; G X  et tout n >  1 , d’où d(x> A) =  0  et 
on conclut avec la proposition 2.10.5. Q.E.D.

La notion de précompacité ne dépend que de la structure uniforme de l’espace ; 
on a en effet la proposition suivante.

Proposition 2.33.2 Soient X , Y  des espaces métriques, f  : X  -¥ Y  une applica­
tion uniformément continue. Alors, l'image par f  de toute partie précompacte de 
X  est une partie précompacte de Y.
Preuve Soit A une partie précompacte de X  et soit e > 0 ; alors il existe un nombre 
S > 0 , tel que l’image par /  de tout ensemble de diamètre < S soit un ensemble de 
diamètre < e. Il existe un recouvrement fini de A par des ensembles de diamètre 
< Æ, dont l’image par /  est un recouvrement fini de f (A)  par des ensembles de 
diamètre < e. Q.E.D.

Comme nous allons le montrer, il existe des liens très étroits entre la notion de 
partie précompacte et celle de partie relativement compacte.

Proposition 2.33.3 Dans un espace métrique, toute partie relativement compacte 
est précompacte.
Preuve Soit A une partie relativement compacte, alors A est compact et l’ensemble 
des boules ouvertes (B(x; (e >  0) recouvre A ; d’après Borel-Lebesgue, il
existe un sous-recouvrement fini ce qui prouve que A  est précompact. Q.E.D. 

On a alors le résultat fondamental que voici.

Théorème 2.33.4 Soit X  un espace métrique, les propriétés qui suivent sont équi­
valentes

1. L'espace X  est compact.
2. Toute suite de X  admet une valeur d'adhérence.
3. L'espace X  est complet et précompact.

Preuve 1 => 2 d’après (Ci).
2 => 3 Soit (xn) une suite de Cauchy ; d’après 2., cette suite admet une va­

leur d’adhérence donc elle converge (proposition 2.18.1) et ceci prouve que X  est 
complet. Pour montrer que X  est précompact, nous raisonnerons par l’absurde ; 
supposons qu’il existe un nombre e >  0  tel qu’il n’existe pas de recouvrement fini 
de X  par des boules de rayon e. Construisons alors par récurrence une suite (xn) 
de X  telle que d(xp, xq) > e pour tout p, q G N , p ^  q. Pour Xo on prend un point 
quelconque de X  ; les points (xj)o<j<n étant construits, on a (J* = 0  B(xj î€) i 1 X  
grâce à l’hypothèse, il existe donc un point xn+i de X  tel que d(xjixn+i) > et 
pour tout 0 < j  < n, ce qui achève la construction. Cette suite (xn) ne peut ad­
mettre de valeur d’adhérence, c’est-à-dire de sous-suite convergente, car aucune 
sous-suite ne satisfait au critère de Cauchy. Ceci est donc contraire à l’hypothèse 
2.

3 => 1 Montrons que tout ultrafiltre U converge, c’est-à-dire que tout ultrafiltre 
est de Cauchy, l’espace X  étant complet. Soit e > 0 et soit (Ai)iei un recouvre­
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ment fini de X  par des ensembles de diamètre <  e. Daprès le corollaire 2.32.2, il 
existe i e I  tel que Ai G U, ce qui prouve bien que U est de Cauchy. Q.E.D.
Corollaire 2.33.5 J. Soit X  un espace métrique compact. Alors l'ensemble des 
parties fermées, l'ensemble des parties complètes et l'ensemble des parties com­
pactes sont trois ensembles égaux.

2. Soit X  un espace métrique complet. Alors l'ensemble des parties précom­
pactes est égal à l'ensemble des parties relativement compactes.
Preuve 1 . résulte des corollaires 2.20.6, 2.31.4 et du théorème précédent.

Quant à 2., vu la proposition 2.33.3, il s’agit de vérifier qu’une partie précom­
pacte A est relativement compacte ; X  étant complet, A est une partie complète et 
précompacte, donc compacte d’après le théorème 2.33.4 ; ceci prouve le résultat 
voulu. Q.E.D.
Corollaire 2.33.6 Soit X  un espace métrique, une partie A de X  est relativement 
compacte si, et seulement si, toute suite de A contient une sous-suite convergente 
dans X.
Preuve La condition est nécessaire : si A  est relativement compact, A est com­
pact, donc toute suite de A , et a fortiori de Ay contient une sous-suite conver­
gente. Réciproquement, soit (xn) une suite de A , il existe yn G A  tel que 
d(xny yn) <  (n +  l ) ” 1. Vu l’hypothèse, il existe une sous-suite (y^L) qui conver­
ge ; la sous-suite (xUk ) est alors convergente et ceci prouve que A est compact 
(théorème 2.33.4) ; A est donc relativement compact. Q.E.D.
Exercice 2.33.1 Montrer qu’un espace métrique est compact si, et seulement si, tout recouvrement 
ouvert dénombrable contient un sous-recouvrement fini [utiliser l ’exercice 2.30.2].

Exercice 2.33.2 Soient X  un espace métrique compact et /  : X  -*  X  une application telle que
d(x,y) < d( f (x ) , f ( y ) )  pour tout x, y  G X.

1. Soient a, b G X , an =  / n (a ), bn =  f n (b) pour n  G N. Montrer que, pour tout e >  0, il 
existe un entier n  >  1 tel que d(a, an) < € et d(bt bn) <  e [si (ank) et (bnk) sont des sous-suites 
convergentes, noter que, pour tout k <  /,

d(ai Q>m —nk ) ^  d(an k , o>m ) et d(b, bm —nk ) — d(bnk , bm )•]

2. En déduire que d (a , b) =  d(f(a),  f(b)).
3. Montrer que /  est une isométrie de X  sur X  [pour démontrer la surjectivité de / ,  noter que 

f ( X )  est dense dans X  d’après 1.].

Exercice 2.33.3 Soit X  un espace métrique borné et soit J  l’ensemble des fermés non vides de X  ; 
pour A, B  G !T, on pose

p(A , B) =  m a x (su p  d(x , B),  sup  d(x , A )).
x S A  x€B

1. Montrer que p est une distance sur J  [pour vérifier l ’inégalité triangulaire, montrer que, pour 
tout A , B , C  G J, supxç A d(x, C) <  su p x€i4 d(x , B)  +  su p y€B  d(y , C)].

2. Soit (An) une suite de fJ  convergeant vers A  et soit xn G An , si la suite (xn ) converge vers
x , montrer que x G A. _________

3. Soit (An) une suite de J  convergeant vers A, montrer que A =  H^Lo U p>n ^ p x aPPar_ 
tient à ce dernier ensemble, construire une sous-suite (Ank) et des Xk G Ank tels que la suite (xk) 
converge vers x ; utiliser alors 2.].
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4. Si X  est précompact, montrer que fJ  est précompact [soient e >  0, A  un recouvrement fini 
de X  par des ensembles fermés de diamètre <  e et Æ l’ensemble de toutes les réunions d’ensembles 
appartenant à A> montrer que, pour tout A e  'J, il existe B  G !B tel que p(A> B)  <  e].

5. Si X  est complet, montrer que J  est complet en raisonnant comme suit. Soit (A n ) une suite de 
Cauchy de 3", on pose B„  =  U p> „  Ap et B =  f | ^ 0 Bn-

a. Montrer que, pour tout e >  0, il existe n G N tel que, pour tout p, q >  n  et x  G Ap, il 
existe y  G Aq tel que d(x> y) <  e.

b. Soient e >  0 et (<s*) une suite de nombres >  0 telle que Y^kLo €k <  £» construire une
sous-suite (Ank ) et, pour tout xo G U p>no ^p» des x k €  Anit (k >  1) tels que æ ^+i) <  
pour tout k >  0. ~

c. En déduiie que B  est non vide et que, pour tout e >  0, il existe n  G N tel que d(pc, B) < e 
pour tout x  G B n.

d. Montrer que la suite ( An ) converge vers B.
6. Si X  est compact, en déduire que fJ  est compact.

Le théorème 2.33.4 montre que la définition 2.5.2 des parties compactes de R 
coïncide bien avec la définition générale 2.30.1. Une partie de R est relativement 
compacte si, et seulement si, elle est bornée (théorème 2.5.5). Plus généralement, 
on a le
Théorème 2.33.7 Les parties relativement compactes de Rn sont les parties bor­
nées de Rn.
Preuve II suffit d’appliquer le corollaire 2.32.6 en remarquant qu’une partie de 
Rn est bornée si, et seulement si, pour tout i G [l,n], les ensembles pri(A) sont 
bornés dans R. Q.E.D.
Corollaire 2.33.8 Les parties compactes de Rn sont les parties fermées et bor­
nées.
Exemple 2.33.1 Étant donné que R est homéomorphe à l’intervalle compact 
[ - 1 , + 1], la droite achevée R est compacte.
Exemple 2.33.2 L’intervalle [0,1] étant compact, le cube de Hilbert [0,1]N (exem­
ple 2.22.3) est compact.
Note L’espace R, muni de la distance usuelle d\{x,y) =  \x — y\, est un espace 
complet,_non précompact. Par contre, si on munit R de la distance d<i induite par 
celle de R, R est isométrique à l’intervalle ouvert ] — 1 , + 1 [, donc non complet 
mais précompact. Cet exemple, où les distances d\ et cfo sont topologiquement 
équivalentes, montre combien il est essentiel de ne substituer à une distance qu’une 
distance uniformément équivalente.
Exercice 2.33.4 Soit X  un ensemble, une fonction /  : [a, 6] —> X  est appelée une fonction en 
escalier s ’il existe une suite finie de points de [a, 6], t e ) i < i < n+1 telle que

a  =  x\  <  X2 <  • • • <  xn+i  =  b
et telle que /  soit constante sur chaque intervalle ouvert Xi+i [, 1 <  i <  n.

1. Si X  est un espace métrique, montrer que toute fonction réglée (exercice 2.20.8) est la limite 
uniforme d’une suite f n : [a, 6] -¥ X  de fonctions en escalier [soient e >  0, x G [a, 6], il existe 
Sx >  0 tel que d( f (y ) , f ( z ) )  <  epour y , z  G [a,6]n]rc,a: +  <5x[ et pour y t z  G [a, b]n]x -  Ôx, x[ ; 
extraire du recouvrement ouvert (]æ — SXyx +  <M)xGla,6] un sous-recouvrement fini et construire 
une fonction en escalier g telle que d( f (x) t g(x)) <  e pour tout x  G [a, 6] ].

2. En déduire que toute fonction réglée /  : [a, 6] ->  X , X  métrique, est bornée.
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Exercice 2 .3 3 .5  Soit X  un espace métrique compact non vide, on propose de prouver qu’il existe 
une surjection continue de { 0 , 1}N* sur X  : tout espace métrique compact est une image continue de 
l’ensemble de Cantor (exercice 2.22.5). On procédera de la façon suivante. Posons 
En =  3 ( [ l ,n ]; { 0 ,1 } )  pour n  >  1 et £ =  UÎÏLi £n  ; construire une famille (Ae)eçe  de par­
ties compactes non vides de X  telle que

1. X  = AoUAu
2. pour tout n  >  1, tout e €  £ n > Ae =  Ae/ U Ae/t où e' ,en E £ n + i  désignent les deux 

applications qui prolongent e>
3. pour tout e E { 0 , 1}N*, le diamètre de A€ll> où £n =  e |( i ,n]» tend vers 0 quand n  tend vers 

l’infini.
Pour tout £ E { 0 , 1 }N*, l’ensemble f l ^ i  est réduit à un point a ; montrer que l ’application 

£ a est une surjection continue.

Exercice 2.33.6 Soit X  un ensemble totalement ordonné muni de la topologie de l ’ordre (exercices 

2.9.3 et 2.17.4), montrer que X  est compact si, et seulement si, toute partie non vide de X  admet 
une borne supérieure et une borne inférieure [pour prouver que la condition est nécessaire, si A est 
une partie non vide de X , considérer la base de filtre sur X , ([æ, [n A ) x 6 i 4  ; pour la condition 

suffisante, si 'J est un filtre sur X , vérifier que a =  s u p i n f  M  est un point adhérent à 9 ]. 
Retrouver ainsi le fait que M est compact.

Exercice 2 .3 3 .7  1. Étant donné des ensembles ordonnés X \  et X 2 , on considère sur X \  x  X 2  la 
relation «(x\ <  y\)  ou (a?i =  y\  et £ 2  <  2/2 )»où  (æ i,X 2 ), (î/i > 2/2 ) €  X \  X X 2 . Montrer que cette 
relation est une relation d’ordre (appelé ordre lexicographique) et que cet ordre est total si les ordres de 
X i et X 2  le sont.

2. On munit [0, l ] 2 de l’ordre lexicographique et de la topologie de l’ordre correspondante, mon­
trer que cette topologie est compacte [utiliser l’exercice 2.33.6].

Grâce à la proposition 2.33.3, on a la
Proposition 2.33.9 Soient X  un espace compact, Y  un espace métrique et 
f  : X  -* Y  une application continue. Alors f  est une application bornée, au­
trement dit, G(X-Y) = eb(X;Y).
Preuve En effet, f (X)  est une partie compacte de Y  (théorème 2.31.10) donc 
précompacte (proposition 2.33.3), donc bornée. Q.E.D.

Lorsque Y  est R ou M, on peut préciser la proposition précédente.

Proposition 2.33.10 Soient X  un espace compact, /  : X  -¥ R (ou R) une fonc­
tion s.c.i. Alors f  atteint sa borne inférieure sur une partie compacte non vide.
Preuve Posons a = infx€x  f (x)  E R, la proposition étant évidente si a  =  + 0 0 , 
on peut supposer a < + 0 0 . Soit (an) une suite décroissante de R, an > a , conver­
geant vers a. Les ensembles Fn =  / _ 1([-oo, an]) sont fermés d’après la propo­
sition 2.14.3, non vides car an > a  et constituent une suite décroissante. L’espace 
X  étant compact (remarque 2.30.1), l’intersection F = f|^=o est non vide ; F 
est fermé, donc compact et F = f ~ x({a}) ce qui prouve l’assertion. Q.E.D. 

On en déduit le théorème suivant.

Théorème 2.33.11 Soient X  un espace compact, /  : X  R (ou R) une appli­
cation continue. Alors, f  est une application bornée et elle atteint ses bornes : il 
existe des points a,b E X  tels que f(a) = mmx£X f(x) et f(b) = m a x ^ *  f(x).
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On peut donner de très nombreuses applications de ce théorème. En voici 
quelques unes à titre d’exemples.
Corollaire 2.33.12 Soient X  un espace compact et f  : X  ->]0,+oo[ une ap­
plication continue. Alors, il existe un nombre ô > 0 tel que f ( x ) > ô  pour tout 
x e X .
Exercice 2 .33 .8  Soient X  un espace métrique compact, /  : X  -»  X  une application telle que 

d(f {x) , f (y) )  <  d(x,y)  pour tout x, y G X,  x ±  y. Montrer que /  admet un unique point fixe 

[considérera =  m inx € x  d(x , f(x))].

Exercice 2 .33 .9  Soit A une partie compacte d’un espace métrique X , montrer que la suite 

{Vi/n{A))n>i  (exemple 2.13.2) est un système fondamental dénombrable de voisinages de A.
Exercice 2 .3 3 .1 0  Montrer que le sous-ensemble N de IR n’admet pas de système fondamental dé­
nombrable de voisinages [on raisonnera par l’absurde en utilisant la propriété suivante : soit 
(amn )(mjn)eN 2  une suite double de nombres >  0, alors la relation

(3 m  G N )(Vn €  N )(a mn <  ann/2)

est fausse].

Exercice 2.33.11 Théorème de D’Alembert Montrer que tout polynôme à coefficients complexes 
non constant admet au mois un zéro complexe (théorème de D’Alembert) [on raisonne par l’absurde, 
soit P(z)  =  ai zl  un polynôme non constant, c ’est-à-dire n  >  1 et an ^  0  ; on suppose
P(z)  7  ̂ 0 pour tout z  G C ; montrer qu’il existe zo tel que |P (2 o ) | =  in f^ ec  \P(Z)\ »on Peut écrire 
(Taylor)

n
P{z)  =  P{z0) +  ^  bi(z -  zqY où  1 <  A; <  n ,  7^  0  ;

i=k
montrer qu’ il existe p >  0 telque5^ JL fc+i \bi\p1 <  \bk\pk <  |P(^o)| ; montrer qu’ il e x is t e r  G C, 
\zi — zo\ =  p, tel que le point P(zo)  +  bk(zi —  zo)k appartienne au segment [0, P(zo)] et en déduire 

que |P (* i)|  <  |P(zo)| ]•

Étant donné deux parties A et B  non vides d’un espace métrique X , on définit 
la distance de A à B  par la formule
(2.33.1) d(AyB) =  inf dix, y) =  inf dix, B) = inf d(y,A) ;

x £ A , y £ B  x € A  y t B

on notera que d(A, B) n’est évidemment pas une distance sur l’ensemble des par­
ties de X.
Corollaire 2.33.13 Soient X  un espace métrique, A et B deux parties non vides 
deX.

1. Si A est compact, il existe a e  A tel que d(A, B) = d(a, B). Si A et B sont 
compacts, il existe a E A et b G B tels que d(a, b) =  d(A, B).

2. Si A est compact, B  fermé et si A et B sont disjoints, alors d(A, B) > 0 .
Preuve 1. L’application x  h* d(x, B)  de A  dans R est continue, donc elle atteint 
sa borne inférieure, ce qui prouve la première assertion. De même, l’application 
y i—y d(a, y) de B  dans R est continue, donc elle atteint sa borne inférieure si B  
est compact.

2. résulte de 1. d’après la proposition 2.10.5. Q.E.D.
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Remarque 2.33.1 En prenant B  réduit à un point a, le corollaire précédent montre 
que, pour tout compact K  non vide, il existe un point a; G i f  tel que

d(a,x) =  d(a,K).
On dit que x est une projection de a sur K.  Nous venons de résoudre un problème
de minimisation, à savoir la recherche des points x € K  tels que

d(a, a:) =  inf d(a, y) ; 
yei<

cet exemple très simple montre que des techniques de compacité peuvent conduire 
à des théorèmes d’existence ; bien entendu, sans hypothèse supplémentaire il n’y 
a aucun théorème d’unicité.

On a enfin le résultat suivant.
Théorème 2.33.14 Heine Soient X  un espace métrique compact, Y  un espace 
métrique. Alors, toute application continue f  : X  —► Y  est uniformément conti­
nue.
Preuve Supposons que /  ne soit pas uniformément continue. Alors, il existe e >  0 
tel que, pour tout <5 >  0, il existe x ,y  G X  vérifiant

d{x,y) <  (Set d(f(x), f(y)) > e.
En prenant <î =  1 / n  (n > 1), on construit ainsi une suite ((xnyyn)) de X  x X  
telle que

d(xn,yn) <  1/ n  et d(f  (xn), f  (yn)) > £■
L’espace métrique X  étant compact, il existe une sous-suite (xUk) convergente, 
soit a sa limite. L’inégalité d(xnkiynk) <  1/n* montre que la sous-suite (ynk) 
converge vers a. En passant à la limite dans l’inégalité d(f(xnk), f (ynk)) >  £, on 
obtient d(f(a)> f(a)) > e, ce qui est absurde. Q.E.D.

On peut alors préciser le corollaire 2.31.12.
Corollaire 2.33.15 Soit f  : X  —» Y  une bijection continue définie sur un espace 
métrique compact à valeurs dans un espace métrique. Alors, /  est un homéomor­
phisme uniformément continu ainsi que / -1 .
Corollaire 2.33.16 Soit X  un espace compact métrisable. Alors toutes les dis­
tances sur X  compatibles avec la topologie de X  sont uniformément équivalentes.

Observons enfin que dans le théorème 2.25.2, si X  est un espace métrique com­
pact, la continuité uniforme de /  est une condition nécessaire pour que /  admette 
un prolongement continu ; elle est suffisante d’après ce théorème même.
Exercice 2.33.12 Soient X , Y  des espaces métriques. K  un compact de X  et /  : X  —► Y  une 

application continue en tout point de K.  Montrer que, pour tout e >  0, il existe 6 >  0  tel que 

d (/(æ ) , f(y))  <  e pour tout x e  K , y  € X  vérifiant d{xy y) <  ô.

Exercice 2.33.13 Soient X  un espace topologique, fn : X  -*  E  une suite de fonctions s.c.i. en un 

point a G X  et qui converge uniformément vers / ,  montrer que /  est s.c.i. au point a [se ramener au 

cas où toutes les fonctions sont à valeurs réelles finies en raisonnant comme dans l ’exercice 2.14.4 et 
en utilisant l ’exercice 2.27.3].
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Exercice 2.33.14 Soient X  un espace topoiogique, Y  un espace métrique, (fn) une suite d’appli­
cations de X  dans Y  et /  : X  —» Y  une application.

1. Si la suite (fn) converge uniformément vers /  et si /  est continu, montrer que, pour tout x e X  
et toute suite (xn) de X  convergeant vers x, la suite (fn(xn)) converge vers f(x).

2. Réciproquement, on suppose que, pour tout x G X  et toute suite (æn ) de X  convergeant vers 
x , la suite (f n(xn)) converge vers f(x).

a. Montrer que la suite ( f n ) converge simplement vers / .
b. Montrer que, pour toute sous-suite (f nk ), la suite (fUk (xk)) converge vers f(x).
c. Si X  est à base dénombrable de voisinages, montrer que /  est continu [construire une 

sous-suite (fnk ) telle que d(fnk (xk), f ( x k)) <  l / k  pour k >  1].
d. Si X  est une espace métrique compact, montrer que la suite ( / n ) converge uniformément 

vers /  [raisonner par l’absurde].

3. Si X  est un espace métrique compact, en déduire que la topologie de la convergence uniforme 

sur l’espace Q(X,Y) ne dépend que de la topologie de Y  : deux distances sur Y  topologiquement 
équivalentes conduisent à la même topologie de la convergence uniforme.

Exercice 2.33.15 Fonction nulle part dérivable On considère l’espace E =  Cu ([0 ,1 ];R ). On 
pose I =  [0,1] et, pour tout entier n ,

Fn = { /  e E ; (31 G /)(Va G J)(|/(a) -  f(t)\ < n \ a -  t|)}.
1. Montrer que les ensembles Fn sont fermés et d’intérieur vide [on pourra vérifier que l’ensemble 

des fonctions continues, affines par morceaux de E — Fn est dense dans E].
2. En déduire que l’ensemble des /  G E dérivables en au moins un point (dépendant de / )  est 

maigre dans E , puis que l’ensemble des f  e E n’admettant de dérivée en aucun point de [0,1] est 
partout dense dans E.

2.34 Le théorème d’Ascoli
Nous nous proposons de caractériser les parties compactes pour la topologie de la 
convergence uniforme et plus précisément les parties compactes de l’espace des 
fonctions continues GU( X ; Y ) 9 où X  est un espace topologique et Y  un espace 
métrique.

La topologie de la convergence simple étant moins fine que la topologie de la 
convergence uniforme, notons d’abord (corollaire 2.31.14) que toute partie com­
pacte pour la topologie de la convergence uniforme 7U est compacte pour la topo­
logie de la convergence simple 7S et que ces deux topologies coïncident sur une 
telle partie. Il s’agit donc essentiellement de trouver les parties compactes pour 
la topologie Ts sur lesquelles les topologies 7S et 7U coïncident. Pour cela, nous 
allons introduire la notion nouvelle qui suit.
Définition 2.34.1 Soient X  un espace topologique et Y  un espace métrique. Un 
ensemble A C 7{X\Y)  d'applications de X  dans Y  est dit équicontinu en un 
point a G X  si, pour tout € > 0, il existe un voisinage V  G V(a) tel que, pour tout 
f  G A et tout x G V, on ait d(f(x), /( a ) )  <  e.

Toute fonction /  de A est donc continue au point a, mais une famille d’ap­
plications continues au point a n’est pas nécessairement équicontinue au point a : 
dans la définition qui précède, le voisinage V  ne dépend pas de f  G A.



176 CHAPITRE 2 TOPOLOGIE

Nous dirons qu’une suite f n : X  -» Y  d’applications est équicontinue en 
un point a G X,  si l’ensemble {X?=0 {fn} est équicontinu au point a. Enfin, si 
A C  7(X; Y) est équicontinu en tout point de X , nous dirons simplement que A 
est équicontinu.
Note La notion de partie équicontinue ne dépend que de la structure uniforme de 
Y. Il est évidemment essentiel de disposer d’une structure uniforme sur Y  : le 
point f(a) dépend de /  et il faut être capable de mesurer la proximité du point 
f (x)  à ce po in t/(a).
Exemple 2.34.1 Si X  est muni lui ausssi d’une structure d’espace métrique, une 
application /  : X  Y  est dite a — holdérienne de constante k >  0 où a > 0 
si, pour tout x,y G X,  on a d(f(x)>f(y)) < kd(x,y)a. Alors, tout ensemble 
A C  £F(X; Y)  de fonctions a-hôldériennes de même constante k est équicontinu.
Exercice 2.34.1 Soient X  un espace topologique, Y  un espace métrique et une famille
d’applications de X  dans Y.  Notons /  : /  x X  ->• Y  l ’application (i , x ) fi(x).  Montrer que la
famille est équicontinue en un point a G X  si, et seulement si, l ’application x »->• / ( • , # )  de
X  dans 3^ (7; Y)  est continue au point a.

Proposition 2.34.1 Soient X  un espace topologique, Y  un espace métrique et 
A C  7(X; Y) un ensemble équicontinu en un point a G X. Alors, Vadhérence 
A de A dans J s {X ; Y ) (c ’est-à-dire pour la topologie de la convergence simple) 
est équicontinue au point a.
Preuve Soit e > 0, d’après l’équicontinuité de A au point a, il existe un voisinage 
V G V(a) tel que

d(f(x), f(a))  <  e pour tout /  G A et tout x G V.
D’après la continuité des projections /  i-> / ( a )  et /  h* f (x)  dans l’espace pro­
duit 3r5 (X;Yr) et le principe du prolongement des inégalités, il en résulte que 
d(g(x),g(a)) < e pour tout g G A et tout x G V,  ce qui prouve l’équiconti­
nuité de As au point a. Q.E.D.
Corollaire 2.34.2 Soit une base de filtre sur 3(X\ Y)  qui converge simplement 
vers une application / .  S3il existe un ensemble M  de 3  équicontinu en un point 
a G X, Vapplication f  est continue au point a. En particulier, si ( f n) est une suite 
équicontinue en un point a G X  qui converge simplement, la limite de cette suite 
est continue au point a.
Ce corollaire donne un critère permettant d’affirmer la continuité d’une limite 
simple ; comme nous allons le voir, lorsque X  est un espace compact, ce critère 
ne diffère pas de celui donné par le corollaire 2.27.5.
Proposition 2.34.3 Soient X  un espace compact, Y  un espace métrique et 
A c  G(X;Y) un ensemble équicontinu d'applications de X  dans Y. Alors, sur A 
les topologies de la convergence simple et de la convergence uniforme coïncident.
Preuve La topologie de la convergence simple 7S étant moins fine que la topologie 
de la convergence uniforme Tu, il s’agit de prouver que, sur A , la topologie 7U est
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moins fine que 7$. Pour cela il suffit de démontrer que, pour tout /  G A, tout 
voisinage de /  dans A pour la topologie 7U est un voisinage de /  dans A pour la 
topologie 7S. On peut supposer que ce voisinage est la boule ouverte dans A,

B(f ;r)  = {g G A ; sup d(f(x),g{x)) < r } ;  
xex

nous allons construire un ouvert O de A pour la topologie 7 S tel que 
/  G O C B(f \ r)  ; ceci prouvera le résultat souhaité. Or, pour tout a G X , il 
existe un voisinage V(a) G V(a) tel que, pour tout x  G V(a) et tout g G A, 
on ait d(g(x), g(a)) < r /3 . Ces voisinages V(a) (qu’on peut supposer ouverts) 
constituent un recouvrement ouvert de X , qui est compact ; on peut donc en ex­
traire un sous-recouvrement fini V(ai)> 1 < i < n. Considérons alors l’ensemble 
O = {g G A ; sup1<i<n d(g(a,i), /(a*)) <  r/3 }  ; cet ensemble est un voisinage 
ouvert de /  dans A pour la topologie 7S. En outre, soit g G O ; alors, pour tout x 
de X , il existe un V(a,i) contenant x, d’où

d(f(x),g(x)) < d(f(x), f(ai))  +  d(f(ai),g(a,i)) + d(g(a,i),g(x)) < r, 
ce qui prouve que O C  B(f;r).  Q.E.D.

Corollaire 2.34*4 Soient X  un espace compact et Y  un espace métrique. Toute 
suite équicontinue d ’applications f n : X  —> Y  qui converge simplement, converge 
uniformément.

Preuve Posons A =  \J™=0 {fn} et soit /  la limite simple de la suite (fn) ; on 
a alors A* =  {/}  U A ; A est équicontinu, donc A* est équicontinu d’après la 
proposition 2.34.1 et la proposition précédente montre que sur Âs les topologies 
7u et 7S coïncident, ce qui permet de conclure. Q.E.D.

Si on ne suppose pas l’espace compact, on peut simplement dire qu’une suite 
équicontinue de fonctions, qui converge simplement vers / ,  converge vers /  uni­
formément sur tout compact de X.

Venons-en au résultat essentiel de ce paragraphe.

Théorème 2.34.5 Ascoli Soient X  un espace compact et Y  un espace métrique. 
Pour qu’une partie A de GU(X;Y)  soit relativement compacte pour la topologie 
de la convergence uniforme, il faut et il suffit que les deux conditions qui suivent 
soient vérifiées.

1 . A est une partie équicontinue.
2. Pour tout x de X , l’ensemble A(x) = {f(x)  ; /  G A} est relativement 

compact dans Y.

Preuve Les conditions sont suffisantes. En effet, 2. signifie <jue A est relative­
ment compact pour la topologie 7$ (théorème 232.7), donc A est compact pour 
la topologie 7S. D’après la proposition 234.1, A 8 est une partie équicontinue et 
la proposition 2 3 4 3  montre alors que A est compact pour la topologie de la 
convergence uniforme ; il en résulte que A C  A est relativement compact pour la 
topologie de la convergence uniforme.
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Les conditions sont nécessaires. Soit A une partie relativement compacte de 
CU(X; Y) ; les applications prx : f  f (x)  de e u (X; Y)  dans Y  étant continues, 
les ensembles prx(A) = A(x) sont relativement compacts dans Y.  Montrons que 
A est équicontinu en un point a de X  ; notons d’abord que A est précompact 
(proposition 2.33.3), donc, pour tout e >  0, il existe une famille finie (fi)i<i<n 
de fonctions appartenant à A telle que les boules de A, l < i < n,
recouvrent A. Une famille finie de fonctions continues étant de toute évidence 
équicontinue, il existe un voisinage V  de a tel que, pour tout x  G V  et tout 
1 < z <  n, on ait d(fi(x)i fi(a)) < e. Considérons alors une fonction /  de 
A ; il existe i G [1, n] tel que /  G B(fi\e)  ; on a alors pour tout x de V 

d(f(x)J(a))  < d(f(x)Ji(x))  + d(fi( x ) J i(a)) +  d ( / ,(a ) ,/ (a ) )  <  3e 
et ceci prouve l’équicontinuité de A au point a. Q.E.D.

Le théorème précédent, pour être utilisé pratiquement, suppose connues les 
parties compactes de Y.  Par exemple, si Y  = Rn, la condition 2. signifie que, pour 
tout x  de X , A(x) est une partie bornée de Rn .
Exercice 2.34.2 Soient X  un espace topologique, Y  un espace métrique, montrer qu’une suite ( f n ) 

d’applications continues de X  dans Y  qui converge localement uniformément (exercice 2.27.5) est 
équicontinue [observer que dans le théorème d’Ascoli la compacité de X  n’est pas utilisée pour dé­
montrer que les conditions sont nécessaires].

2.35 Espaces localement compacts
Comme nous l’avons déjà remarqué, l’espace R n’est pas compact ; cependant 
tout point admet un voisinage compact. Ceci conduit à la
Définition 2.35.1 Un espace topologique séparé est dit localement compact si 
tout point admet un voisinage compact.

Tout espace compact est évidemment localement compact, mais il existe des 
espaces localement compacts non compacts : par exemple, tout espace discret in­
fini, l’espace R. Notons également qu’un produit d’une famille finie d’espaces 
localement compacts est localement compact d’après le théorème de Tychonoff. 
En particulier, les espaces Rn , Cn sont localement compacts.
Exercice 2.35.1 Soient X  un espace localement compact, Y  un espace métrique, montrer qu’une 

suite ( / n ) d’applications de X  dans Y  qui converge localement uniformément converge uniformément 
sur tout compact (exercice 2.27.5 et 2.31.3).

Exercice 2.35.2 Soient X  un espace localement compact, Y  un espace métrique, montrer qu’une 

suite équicontinue ( f n) d’applications de X  dans Y  qui converge simplement converge uniformément 
sur tout compact (exercice 2.31.3) [utiliser le corollaire 2.34.4].

Exercice 2.35.3 Soient X , Y  des espaces séparés et f  : X  —> Y  une application continue. On 

suppose, ou bien que X  est à base dénombrable de voisinages, ou bien que X  est localement compact ; 
on note Ti la topologie de Y.  Soit 0*2 une topologie sur Y  plus fine que telle que, pour tout compact
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I< de X,  f  (K)  soit compact pour la topologie T2 . Montrer alors que /  : X  -»  Y  est continu, l ’espace 
Y  étant muni de la topologie O2 .

Proposition 2.35.1 Dans un espace localement compact, toute partie compacte 
admet un système fondamental de voisinages compacts.
Preuve Soit K  une partie compacte d’un espace localement compact X . Montrons 
d’abord que K  admet un voisinage compact. Tout x  de K  admet un voisinage 
compact C(x) ; lorsque x décrit K , l’ensemble des intérieurs C(x) constitue un 
recouvrement ouvert de K  dont on peut extraire un recouvrement fini (C(xi))iGi ; 
l’ensemble |J iG/ C(xi) est alors un voisinage compact de K  d’après la proposition
2.31.5, vu que X  est séparé.

On peut ensuite appliquer la proposition 2.31.8. Soit V  un voisinage compact 
de K , alors K , considéré comme une partie compacte de V, admet un système fon­
damental de voisinages compacts dans V  qui est a fortiori un système fondamental 
de voisinages dans X , vu que V  est un voisinage de K.  Q.E.D.

D’après la proposition 2.31.3, on en déduit le
Corollaire 2.35.2 Tout espace localement compact est régulier.
Exercice 2.35.4 Topologie de la convergence compacte Soient X  et Y  des espaces topologiques, 
pour tout compact K  de X  et tout ouvert O de Y , on pose

r ( t f ,  O) =  { /  E e(X; Y)  ; f ( K )  C O }

et on note X> l ’ensemble de toutes les intersections finies d’ensembles de la forme r ( K , O ).
1. Montrer que X> est une base d’une topologie Tc sur e (X ;  Y)  appelée topologie de la conver­

gence compacte ; muni de cette topologie, l’espace C(X; Y ) est noté Cc (X ; Y).
2. Montrer que la topologie Tc est plus fine que la topologie de la convergence simple ; la topologie 

Tc est donc séparée si Y  est séparé.
On suppose désormais que Y  est un espace métrique.
3. Soit (fn) une suite de l’espace C (X ; Y)  convergeant vers /  €  C (X ; Y)  uniformément sur tout 

compact (exercice 2.31.3), montrer que la suite ( / n ) converge vers f  pour la topologie Tc . En déduire 
que la topologie Tc est moins fine que la topologie de la convergence uniforme.

4. Si X  est localement compact, montrer réciproquement qu’une suite ( / n ) convergeant pour la 
topologie Tc converge uniformément sur tout compact.

5. Si X  est un espace compact, en déduire que la topologie Tc est la topologie de la convergence 

uniforme. En déduire que la topologie de la convergence uniforme sur l’espace C(X; Y)  ne dépend 

que de la topologie de Y  (cf. exercice 2.33.14 lorsque X  est métrisable).

Nous allons démontrer l’important théorème suivant.
Théorème 2.35.3 Tout espace localement compact est un espace de Baire.
Preuve La démonstration est tout à fait analogue à celle du théorème 2.28.1. Soit 
(On) une suite d’ouverts partout denses et soit O un ouvert non vide ; vérifions que 
O n f C o  On est non vide. Construisons par récurrence une suite (Bn) d’ouverts 
non vides relativement compacts telle que
(2.35.1) B q C O et B n+i c  Bn fl On pour tout n  € N.
Soit a £ O, alors O est un voisinage de a, donc (proposition 2.35.1) contient un 
voisinage compact de a et par conséquent il existe un ouvert non vide relativement
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compact B 0  tel que B q C  O. L’ouvert Bn fl On étant non vide, le même raisonne­
ment permet de construire un ouvert Bn+1 ayant les propriétés voulues. La suite 
(Bn) est une suite décroissante de fermés non vides dans l’espace compact B q ; 
son intersection est donc non vide (remarque 2.30.1) ce qui permet de conclure 
comme pour le théorème 2.28.1. Q.E.D.

Corollaire 2.35.4 Tout espace compact est un espace de Baire.

Exercice 2.35.5 Montrer que tout produit X  =  YlieI Xi  d’espaces localement compacts est un 

espace de Baire [raisonner comme pour l ’exercice 2.28.1 en prenant les BU)i relativement compacts].

Soit X  un espace localement compact, tout ouvert de X  est encore un es­
pace localement compact d’après la proposition 2.35.1. En particulier, le complé­
mentaire d’un point dans un espace compact est un espace localement compact. 
Réciproquement, nous allons démontrer que tout espace localement compact est 
homéomorphe au complémentaire d’un point d’un espace compact.

Théorème 2.35.5 Alexandroff Soit X  un espace localement compact et soit u un 
ensemble n’appartenant pas à X. Alors, sur l ’ensemble X 1 =  X  U {a;}, il existe 
une unique topologie compacte qui induise sur X  la topologie donnée de l’espace 
X.

Preuve Notons d’abord qu’il existe un tel ensemble {a;} d’après le paradoxe de 
Cantor (remarque 1.1.3).

1. Supposons qu’il existe une topologie compacte sur X 1 induisant sur X  la 
topologie de X  ; notons Ox et Ox' l’ensemble des ouverts de X  et X 1 et X  
l’ensemble des parties compactes de X. Montrons que nécessairement
(2.35.2) 0 X' = 0 X U { X ' - K ; K g X}.
L’espace X  étant un ouvert de X \  tout ouvert de X  est un ouvert de X f. Si K  est 
une partie compacte de X , donc de X \  X f -  K  est un ouvert de X '. Inversement, 
soit O G QX ' ; si u  0  O, O = O n X  est un ouvert de X  et, si oj G O, K  =  X f—O 
est fermé, donc compact, d’où K  G X  et O = X f — K.  Ceci prouve que, s’il 
existe une topologie sur X f vérifiant les exigences voulues, elle est parfaitement 
déterminée : l’ensemble des ouverts de X'  est donné par la formule (2.35.2).

2. Montrons qu’on définit bien ainsi une topologie sur X \  c’est-à-dire que 
0 Xt vérifie les axiomes des ouverts. Ceci est clair pour {Os). Quant à (Oi) et
(02), observons d’abord que l’ensemble {X* — K) X£% vérifie ces axiomes : on a 
en effet

\ J ( X ' - K i) = X ' - f ] K h
i e i  i e i

{X' -  K x) f l  {Xf -  K 2) = X ' -  IU U K 2

et il suffit d’utiliser la proposition 2.31.5. D’autre part, soit O G 0 X et K  G X, 
alors

O U (X; -  K) = X f -  K  n (X -  O)
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où K  fl (X -  O) est fermé dans K , donc compact, et
O fl (X ' -  K) = O fl (X  -  K)  G Qx-

Ceci prouve que les axiomes (Oi) et (O2 ) sont satisfaits et Ox'  définit bien une 
topologie sur X '.

3. Il est évident que cette topologie sur X f induit sur X  la topologie de X.
4. L’espace X'  est séparé. Vérifions l’axiome de Hausdorff ( # 2 )- Soient x  et y 

deux points distincts de X ' ; si x et y appartiennent tous deux à X , il suffit d’écrire 
( # 2 ) dans l’espace X  et, si x G X , y =  u,  il existe un voisinage compact K  G X  
de x dans X  (cet espace étant localement compact) ; K  et X'  — K  sont alors des 
voisinages disjoints de x  et u  dans X ', ce qui prouve le résultat voulu.

5. Montrons que la topologie de X ' est compacte. Soit (O *)^/ un recou­
vrement ouvert de X '. Il existe G I  tel que u  G O*0 et O*,, =  X'  — K,  
I< G X  ; alors (Oi)iei est un recouvrement ouvert du compact K  qui contient 
donc un sous-recouvrement fini On obtient ainsi un sous-recouvrement
fini (Oi)i£ju{iü} de X '. Q.E.D.

L’espace compact X ' que nous venons de construire est unique à un homéo­
morphisme près ; on a en fait le théorème suivant.

Proposition 2.35.6 Soient X  un espace localement compact, X[ (i-1,2) deux 
espaces compacts tels qu'il existe un homéomorphisme hi de X  sur le complé­
mentaire d'un point u>i de X[. Alors, il existe un unique homéomorphisme 
h : X[ -)> X f2 tel que hoh \  = A2.

Preuve Posons Xi  =  X[ — {cĵ }, soit X[ — Xi  U {a;*}. On a nécessairement
h\xi = Ii2 ° h ï l )

ce qui prouve la continuité de h en tout point de X\  vu que X\  est ouvert dans 
X[ (remarque 2.20.3), et h(u 1) =  u)2 • Vérifions la continuité de h au point u>i : 
soit O2 un voisinage ouvert de CJ2 , alors K 2 = X f2 — O2 est fermé dans X donc 
compact et

K 1 = h~1 (K2) = (h1 o h ï 1 )(K2)
est une partie compacte de X i, donc fermée dans X[ ; il en résulte que

h ~ \ 0 2) = X [ - K l
est un voisinage ouvert de wi. On vérifie de même que h~ 1 est continu, ce qui 
permet de conclure. Q.E.D.

A un homéomorphisme près, il existe un unique espace compact X ' tel que 
X  soit homéomorphe au complémentaire d’un point u  G X '. Cet espace X ' est 
appelé le compactifié d’Alexandroff de X  et u; le point à l’infini de l’espace X  ; 
on dit qu’on a compactifié l’espace X  par adjonction d’un point à l’infini.

Exemple 2.35.1 On peut donner une description concrète du compactifié d’Alexan­
droff de l’espace Rn . Considérons l’espace Mn + 1  = R n xM, les coordonnées d’un 
point
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(x, u) G Rn xM seront notées ( x i , . . . ,  xni u) ; identifions Rn à l’hyperplan u = 0 
et notons §n la sphère unité de Rn+1, soit

Sn : x\  H-. . .  +  x \  +  u2 = 1.
La projection stéréographique à partir du pôle nord N  = (0,1) G Rn x R définit 
un homéomorphisme h : §n -  {N}  Rn : on a simplement

h(x,u) =  (1 — u)~lx.
La sphère §n étant compacte est donc le compactifié (TAlexandroff de Rn .
Exercice 2.35.6 Soient X  un espace localement compact, X'  — X U {cj} son compactifié d’Alexan- 
droff, montrer que X  est compact si, et seulement si, lj est un point isolé de X ' .

Exercice 2.35.7 Soit X  un espace localement compact, non compact.
1. Montrer que =  (X  — K ) K e%, où X  désigne l’ensemble des parties compactes de X , est 

une base de filtre sur X  [utiliser l’exercice 2.35.6].
Soient Y  un espace topologique, f  : X  -> Y  une application, y e  Y.  On dit que f (x)  tend vers 

y  lorsque x tend vers l’infini si y  =  lim $ /  • on écrit alors y  =  limx-+oo / ( # ) •
2. Soit f  : X  -*■ K une fonction continue admettant une limite y  G ] — oo, +oo] lorsque x  tend 

vers l’infini, montrer que /  est borné inférieurement et que /  atteint sa borne inférieure lorsqu’elle est 
différente de y  [utiliser l’exercice 2.20.5].

Exercice 2.35.8 1. Montrer que dans un espace séparé tout sous-espace localement compact est 
localement fermé (exercice 2.20.2).

2. Réciproquement, dans un espace localement compact tout sous-espace localement fermé est 
localement compact.

Exercice 2.35.9 Soient X  un espace séparé, Y  un espace localement compact, une application conti­
nue /  : X  —> Y  est dite propre si l’image réciproque par /  de tout compact de Y  est une partie 
compacte de X.  S ’il existe une application propre de X  dans Y , on notera que X  est nécessairement 
un espace localement compact.

1. Montrer que toute application propre est fermée [soient A  une partie fermée de X , 6 G f(A) ,
V  un voisinage compact de 6 et W  =  f ~ 1 (K ), montrer que V  D f (A)  =  f ( W  f ï A),  en déduire que
V  n  f (A)  est fermé et, b étant adhérent à V  n  / ( A ) ,  que b G f(A)].

2. Soient X , Y  des espaces localement compacts, X ' =  X  U {u;}, Y'  =  Y  U {c*/} leur compac­
tifié d’Alexandroff, montrer qu’une application continue /  : X  -»  Y  est propre si, et seulement si, le 

prolongement g : X'  ->  Y'  de /  défini par g(uj) =  a /  est continu au point u).
Exercice 2.35.10 Espace localement compact dénombrable à l’infini Soient X  un espace locale­
ment compact, X '  =  X  U {a;} son compactifié d’Alexandroff. Montrer que les propriétés suivantes 
sont équivalentes.

1. le point lj admet un système fondamental dénombrable de voisinages,
2. l’espace X  est une réunion dénombrable de parties compactes,
3. l ’espace X  est la réunion d’une suite (O n ) d’ouverts relativement compacts telle que 

On C On+i  pour tout n ,
4. il existe une suite (K n ) de parties compactes telle que, pour tout compact K , il existe n  tel que 

K  C K n-
[pour vérifier que 2 => 3, si (Kn) est une suite de compacts de réunion X , prendre pour Oo un 

voisinage ouvert relativement compact de Ko  et pour On , n >  1, un voisinage ouvert relativement 
compact de On- \  U K n].

Un espace localement compact vérifiant ces propriétés est dit dénombrable à l’infini. Tout espace 

compact est dénombrable à l’infini, tout sous-espace fermé d’un espace localement compact dénom­
brable à l’infini est un espace localement compact dénombrable à l’infini [utiliser l’exercice 2.35.8].
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E x ercice  2 .35 .11  Paracompacité des espaces localement compacts dénombrables à l’infini Dans 
un espace topologique, un recouvrement (Ai)ie i est dit plus fin qu’un recouvrement (B j ) j e j  si, pour 
tout i E / ,  il existe j  E J tel que Ai C B j .

Soit X  un espace localement compact dénombrable à l’infini (exercice 2.35.10) et soit 
Æ =  (Oi)içi  un recouvrement ouvert de X.  Montrer qu’il existe un recouvrement ouvert dénom­
brable localement fini (exercice 2.10.4) plus fin que Æ et constitué d’ouverts relativement compacts 
[il existe une suite (Un) d’ouverts relativement_compacts de réunion X  telle que Un C Un+ 1 pour 
tout n, poser K n =  Un ~ Un- \  ; ((Un+i -  Un- 2 ) H Oi)i e j  est un recouvrement ouvert de K n 
qui contient un sous-recouvrement fini Æn ; montrer que Æ' =  (Jn Æn vérifie les propriétés voulues : 
pour démontrer que IR' est localement fini, si x E K n remarquer que £ / n + 1 — Un - 2  est un voisinage 
de x ne rencontrant pas les ensembles de pour \p — n\ >  2].

Un espace séparé est dit paracompact si, pour tout recouvrement ouvert, il existe un recouvrement 
ouvert plus fin localement fini. Avec cette terminologie, tout espace localement compact dénombrable 
à l’infini est paracompact.

2.36 Le théorème d’Urysohn
Un espace compact étant régulier, la proposition 2.31.9 montre que dans un espace 
compact, deux fermés disjoints admettent des voisinages disjoints. Un espace ré­
gulier ne possède pas nécessairement cette propriété de séparation ; ceci conduit à 
la définition suivante.

Définition 2.36.1 Un espace séparé X  est dit normal s'il vérifie l'une des pro­
priétés équivalentes qui suivent.
(Ni ) Quels que soient les fermés disjoints A et JB, il existe des voisinages de A et 
B disjoints.
(N2) Tout fermé admet un système fondamental de voisinages fermés.
Preuve Vérifions l’équivalence de (Ni) et (N2).

(Ni) => (N2). Soit F  un fermé de X , montrons que tout voisinage O de F  
contient un voisinage fermé de F. On peut supposer O ouvert (proposition 2.9.2) ; 
alors F  et X  -  O sont des fermés disjoints, il existe donc des voisinages disjoints
V  G V(F) et W  G V(X — O) qui peuvent être supposés ouverts. Il en résulte que
V  C X  -  W  C O, ce qui montre que X  — W  est un voisinage fermé de F  contenu 
dans O.

(N2) => (Ni). Soient A et B  deux fermés disjoints. Alors, X  -  B  est un 
voisinage ouvert de A donc contient un voisinage fermé V  de A ; X  — V  est alors 
un voisinage ouvert de B  et ces voisinages V  et X  -  V  sont disjoints. Q.E.D.

Tout espace normal est régulier vu que (Ni) implique (# 2 ). Tout espace com­
pact est normal d’après la proposition 2.31.9. Tout espace métrisable est également 
normal : en effet, si A et B  sont des fermés disjoints,

V =  {x G X; d(x, A) < d(x, B)} et W = {x G X; d(x9 B) < d(x, A)} 
sont des voisinages ouverts de A et F  disjoints.
Exercice 2 .36 .1  Montrer que tout espace régulier de Lindelôf (exercice 2.30.3) est normal [soient 
A et B deux fermés disjoints de l’espace X  ; construire des recouvrements ouverts dénombrables
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(Mn)neN et (Wn)n€N de A et B tels que
M n C X - B y N n c X - A ; 

poser alors Vq =  M o, Wq =  No -  Vo et, pour n >  1,

Vw = M n - W ro U . . . U l ÿ n - i ,  Wn = Nn - V 0 U . . . U V n 

et montrer que U^Lo et U^Lo Wn sont des voisinages disjoints de A et B].

Exercice 2 .3 6 .2  Montrer que tout espace localement compact dénombrable à l ’infini (exercice 

2.35.10) est un espace de Lindelôf (exercice 2.30.3), donc normal (exercice 2.36.1).

Exercice 2 .3 6 .3  Soit X  un espace normal.
1. Soient O i, 0 2 des ouverts tels que X  =  0 \  U O 2 , montrer qu’il existe un ouvert U\ tel que 

Ui  C O i e t X  =  Ui U 0 2 .
2. Soit (On ) un recouvrement ouvert dénombrable et localement fini (exercice 2.10.4) de X ,  

montrer qu’il existe un recouvrement ouvert (Un) de X  tel que Un C On pour tout n  [en utilisant 1., 
construire les ouverts Un par récurrence tels que

n 00
* = l M u  U Oj  pour tout n].

j = 0 j = n + 1

Exercice 2 .3 6 .4  Soit X  un espace normal, R  une relation d’équivalence sur X , si la surjection 

canonique 7r : X  —» X / i l  est fermée, montrer que l’espace quotient X / R  est un espace normal 
[raisonner comme dans l ’exercice 2.32.2 pour démontrer que 2 =$► 3 en prenant pour £ et 77 deux 

fermés disjoints de X / R].

L’intérêt des espaces normaux réside dans le théorème suivant.
Théorème 2.36.1 Urysohn Un espace séparé X  est normal si, et seulement si, 
(Ns) Quels que soient les fermés disjoints A et B, il existe une fonction continue 
f  : X  -> [0 , 1] telle que f \ A = 1, / | b =  0 .
Preuve II est facile de montrer que (./V3 ) implique (Ni). En effet, si /  vérifie les 
propriétés indiquées dans (Ns), f ~ l (] -  0 0 , l / 2 [) et / - 1( ] l / 2 , +oo[) sont des 
voisinages ouverts de A et B  disjoints. Il s’agit de vérifier la réciproque.

1. Soit D l’ensemble des nombres dense dans [0,1] de la forme k / 2 n où n  G N, 
0 < fc < 2n ; construisons par récurrence sur n une famille d’ouverts (0(t))teD 
telle que
(2.36.1) A c 0(0), 0 (1) C X  -  B  et Ô(t) C 0( t ') pour t < t'.
Pour n  =  0, prenons 0(1) =  X  -  B,  alors d’après (AT2), il existe un voisinage 
fermé V de A tel que A c V c  0 (1) ; posons 0 (0 ) =  V,  alors 

A C 0(0) c 0(0) C 0(1).
Supposons 0(fc/2n) C 0((k  +  l ) /2 n), de même d’après (iV2) il existe un ouvert 
0 ((2 k +  l ) / 2n+1) tel que

Ô(k/2n) C 0((2k +  l ) /2 n+1) C Ô((2k +  l ) /2 n+1) C 0((k  +  l ) /2 n), 
ce qui achève la construction de la famille (0 (t)).

2. Posons f t = (1 -  9 s  = 1 -  s +  s l ü(a), puis /  =  supteD f t et
g =  infsçD gs. La fonction /  est s.c.i. et la fonction g est s.c.s. d’après la pro­
position 2.14.1 et l’exemple 2.14.1. On a f t = 1 -  t sur 0(t)  donc sur A , d’où
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/U — 1 e* St — 0  sur X  — 0(t) donc sur B y d’où f \ s  = 0 . Si on montre 
que /  =  g> la fonction /  sera continue (proposition 2.14.2) et vérifiera toutes les 
propriétés voulues.

3. Montrons d abord que /  < ^^c’est-à-dire ft < gs pour tout s,t  G D. 
Soit a G X,  si a G (X  -  0(t)) U 0(s)  on a f t (a) =  0 ou gs(a) =  1, d’où 
ft(a) < gs(a). Si a G 0(t) D (X -  O(s)), on a nécessairement s <  t d’après
(2.36.1), d’où

ft(a) = 1 — t < 1  — s = gs(a).
4. Montrons ensuite que /  =  g. Raisonnons par l’absurde : supposons qu’il

existe a G X  tel que /( a )  <  g(a). More, il existes, t e D tel que / ( a )  <  1 - 1 < 
1 -  s < g(a), d’où a € (X  — Ô(t)) n O(s) d’où O(s) <£. 0(t),  ce qui est absurde 
d’après (2.36.1) vu que s < t. Q.E.D.
Exercice 2,36.5 Théorcme de Tietze-Urysohn Soit F  une partie fermée d’un espace normal X.

1. Soit /  : F —> M une fonction continue telle que |/(a?)| <  a pour tout x G F,  montrer qu’il 
existe une fonction continue g : X  M telle que

|p(*)l <  a / 3  pour tout x  G X  et |/(æ )  -  g(x)\ <  2 a /3  pour tout x G F  

[considérer les fermés

A =  { x e  F ; f ( x)  <  - a / 3 }  et B =  {x G F ; f(x)  >  a /3 } ] .

2. Soit /  : F  - > [ —1,1] une fonction continue, montrer que /  admet un prolongement continu 
0 : ^  [“ 1 > 1] (théorème de prolongement de Tietze-Urysohn) [en utilisant 1., construire une suite
gn : X  ->  R de fonctions continues telle que \gn (x)\ <  2n / 3 n+1 pour x  G X  et

/(*) - <  ( 2 /3 ) n+1 pour a: e F,
p=0

puis considérer la série 5D?Lo Pn].

3. Montrer que le théorème précédent subsiste pour des fonctions à valeurs dans un intervalle 
compact de M ou à valeurs dans un intervalle ouvert de K [dans ce dernier cas, se ramener au cas de 

l’intervalle ] — 1 , 1[, construire un prolongement g à valeurs dans [—1,1], puis construire une fonction 

continue h : X  —> [— 1,1] telle que la fonction g x  h ait les propriétés voulues].

La démonstration du théorème d’Urysohn est triviale pour des espaces métri- 
sables. Il suffit de prendre f (x)  =  d(x, B)(d(x, A) +  d(xy B ) ) ' 1. En utilisant la 
métrique, on peut construire des fonctions continues possédant diverses proprié­
tés. Par contre, sur un espace topologique général on ne sait pas a priori construire 
des fonctions continues non constantes. Ceci montre tout l’intérêt des espaces nor­
maux et du théorème d’Urysohn. Nous allons d’ailleurs voir qu’on peut en déduire 
des critères de métrisabilité.

Théorème 2.36.2 Urysohn Soit X  un espace normal admettant une base de to­
pologie dénombrable. Alors, X  est métrisable. En outre, X  est homéomorphe à un 
sous-espace du cube de Hilbert.
Preuve Soit (Bn)n^n une base de la topologie de X  et D l’ensemble dénombrable 

D =  e  N 2 ; Bi C  B j) .
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D’après le théorème d’Urysohn, il existe pour tout (i,j) G D une fonction conti­
nue fij : X  -» [0,1] telle que fij\si =  0, f i j \x-Bj = 1. Considérons l’applica­
tion continue /  =  ( fij)(i,j)€D de X  dans [0 , 1 ]D. Nous allons démontrer que /  est 
un homéomorphisme de X  sur f ( X ), l’espace [0,1]D étant métrisable (corollaire
2.22.3), ceci prouvera que X  est métrisable.

1. Vérifions que /  est injective. Soient x , y  G X,  x ^  y, alors l’espace X  étant 
séparé, il existe y G N td q u e  x  G B j , y  g Bj ,  de plus X  étant régulier, il existe 
i G N tel que x G C B* C Bj  ; on a ( i j )  G D, d’ou f ^ x )  = 0, / y (y) =  1, 
soit / (x )  ^  /(y ).

2. Montrons que / - 1  : f ( X )  —ï X  est continu. Le sous-espace f ( X)  étant 
métrisable, il s’agit de démontrer que toute suite (xn) de X  converge si la suite 
( f (xn)) converge dans f (X).  Notons f (x)  la limite de la suite (f ( x n)) et mon­
trons que la suite (xn) converge vers x. Soit j  G N tel que x  G Bj  (l’ensemble 
de ces ouverts Bj  est évidemment un système fondamental de voisinages de x) ; 
comme précédemment, il existe i  G N tel que x  G Bi c  Bi  C Bj , d’où 
fij{x) =  0  ; étant donné que fij(x) = lim n->oo hj (xn)> on a f i j(xn) ^  1 dès que 
n est suffisamment grand, c’est-à-dire xn G Bj  et ceci prouve que 
x — limn—y oo xn.

3. Quant à la dernière assertion, elle résulte du fait que [0,1]D est homéo-
morphe à [0,1]N d’après le corollaire 2.21.14. Q.E.D.

Corollaire 2.36.3 Soit X  un espace métrisable, les propriétés suivantes sont équi­
valentes.

1. X  admet une base de topologie dénombrable.
2. X  est séparable.
3. X  est homéomorphe à un sous-espace du cube de Hilbert.

Preuve L’équivalence de 1. et 2. a déjà été démontrée (proposition 2.10.7). Le 
théorème précédent prouve que 1. implique 3. Enfin, le cube de Hilbert étant mé­
trisable séparable (exemple 2.22.3), la proposition 2.20.4 montre que 3. implique
2. Q.E.D.

Corollaire 2.36.4 Un espace compact est métrisable si, et seulement si, il admet 
une base de topologie dénombrable.
Preuve La condition est suffisante d’après le théorème 2.36.2 et elle est nécessaire 
d’après la proposition 2.33.1 et la proposition 2.10.7. Q.E.D.

Exercice 2.36.6 Montrer qu’un espace métrique complet X  est séparable si, et seulement si, X  est 
homéomorphe à un S <5 du cube de Hilbert [utiliser l’exercice 2.25.2].

Exercice 2.36.7 Soient X  un espace métrisable séparable, d une distance sur X  définissant sa to­
pologie telle que 0 <  d <  1 et soit (an ) une suite de X  partout dense. Montrer que l’application 

f  : x (d(æ, an)) de X  dans [ 0 ,1]N est un homéomorphisme de X  sur un sous-espace du cube de 

Hilbeit : on obtient ainsi une démonstration directe (n’utilisant pas le théorème d’Urysohn) de l’impli­

cation 2 => 3 du corollaire 2.36.3.
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Exercice 2 .3 6 .8  Soient X  un espace localement compact, X'  =  X U {u /} son compactifié d’Alexan- 
droff, montrer l’équivalence des propriétés suivantes

1. X  admet une base de topologie dénombrable,
2. X 1 est métrisable,
3. X  est métrisable et dénombrable à l’infini (exercice 2.35.10),
[pour démontrer 1 => 2, si (O n ) est une base de la topologie de X,  montrer que l’ensemble 

des On relativement compacts constitue déjà une base de la topologie de X  ; en déduire que X  est 
dénombrable à l’infini, puis que X ' admet une base de topologie dénombrable ; pour démontrer 3 => 1, 
vérifier que X  est séparable].

Exercice 2.36.9 1. Soient X  un espace métrique compact et Y  un espace séparé, s ’il existe une 
surjection continue /  : X  —> Y,  montrer que Y  est un espace compact métrisable [soit (B n )n € N une 
base de la topologie de X  stable par réunion finie, montrer que les ouverts Cn =  Y  — f ( X  — Bn) 
constituent une base de la topologie de Y  en procédant comme suit : soient O un ouvert de Y  et 
a E O, montrer qu’il existe un ouvert Bn tel que / _ 1 ( { a }) C &n C / _ 1 ( 0 )  et en déduire que 
a e C n C O).

2. En utilisant l’exercice 2.33.5, en déduire que pour un espace séparé X  les propriétés suivantes 
sont équivalentes

a. X  est un espace compact métrisable,
b. X  est une image continue de l ’ensemble de Cantor.

Exercice 2 .3 6 .1 0  Montrer que les espaces [0, l ] n et [ 0 ,1]N sont des images continues de l’intervalle 
[0,1] [si X  est l’un de ces espaces, il existe une surjection continue de l’ensemble de Cantor C  sur X  
(exercice 2.36.9), utiliser ensuite le théorème de Tietze (exercice 2.36.5)].

Peano (1890) a construit une application continue surjective de l’intervalle [0,1] sur le carré 

[0, l ] 2, c ’est-à-dire une courbe, dite courbe de Peano, remplissant tout le carré [0, l ] 2 .

Exercice 2.36.11 1. Soient X  un espace métrique compact et Y  un espace métrique borné. On note 
3  l’ensemble des parties fermées non vides de X  x  Y  et on munit 3  de la distance définie à l ’exer­
cice 2.33.3 (sur X  x  Y  on prend comme distance d(z>zf) =  d(xyxf) +  d(yyy f) où z  =  (xyy), 
z ' =  (x'}y') ). Si /  : X  —> Y  est une fonction continue, on note Gf e  3  son graphe ; on définit 
ainsi une application <p : f  ■-> Gf  de l’espace e (X ;  Y)  dans 3.  L’espace QU(X ;Y )  étant muni de 
la topologie de la convergence uniforme, montrer que (p est un homéomorphisme de GU(X; Y)  sur 
un sous-espace de 3  [si ( / n ) est une suite de QU(X ;Y )  convergeant uniformément vers / ,  montrer 
que la suite (G fu ) converge vers G /  dans l’espace 3  en remarquant que p(G / ,  G /„  ) <  d\  ( / ,  fn ) ; 
réciproquement, si (Gfn ) converge vers Gf,  soit (x n ) une suite de X  convergeant vers x , mon­
trer qu’il existe une suite (x'n) de X  telle que lim n _+oo d(zUy z'n) =  0 où zn =  (xn, fn(xn )), 
zn =  (xn> f ( xn)) et en déduire que la suite (fn (xn )) converge vers f ( x)  ; conclure avec l’exercice 
2.33.14].

2. Si X  est un espace métrique compact et Y  un espace métrique séparable, déduire de 1. que 

l’espace CU(X ; Y)  est séparable [remarquer que QU(X \Y )  est homéomorphe à un sous-espace de 

Cti(X; Z) où Z  est le cube de Hilbert et que l’espace 3  des parties fermées non vides de X  x Z  est 
compact].

Exercice 2.36.12 Espace complètement régulier Un espace topologique séparé est dit complète­
ment régulier si
(CRi)  pour tout fermé F  et tout x g  F,  il existe une fonction continue /  : X  —> [0,1] telle que 
f(x) = 0  et f (y)  =  1 pour y  €  F.

1. Montrer que tout espace complètement régulier est régulier et que tout espace normal est com­
plètement régulier ; en particulier, tout espace compact est complètement régulier, tout espace métri­
sable est complètement régulier.

2. Tout sous-espace d’un espace complètement régulier est complètement régulier ; en particulier, 
tout espace localement compact est complètement régulier.
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3. Soit X  un espace complètement régulier, on pose Y  =  C(X; [0 ,1]), on considère l’espace
compact Z =  fSS{Y\  [0 ,1]) et on note : X  —> Z  l’application qui à x  E X  associe l’application
&{x) : f  e  Y  f (x)  E [0,1]. Montrer que $  est un homéomorphisme de X  sur &(X)  [pour 
démontrer la continuité de O -1  : i ( X )  —> X , soit O  un voisinage ouvert d’un point a E X,  il existe 
f  e Y  tel que / ( a )  =  Oet f(x)  =  1 pour rr E X  — O , montrer que U =  {©  E 4>(X) ; 0 ( / )  ^  1} 
est un ouvert de <Ê>(X) et que i ( a )  G l l c  0 ( 0 ) ] .  En déduire que X  est homéomorphe à un sous- 
espace dense de l ’espace compact (3X =  &(X),  appelé compactihé de Stone-Cech de X.

4. En déduire qu’un espace séparé X  est complètement régulier si, et seulement si, X  est homéo­
morphe à un sous-espace dense d’un espace compact.

Exercice 2.36.13 Soient X  un espace complètement régulier (exercice 2.36.12) et /  : X  —> R une 

fonction s.c.i., montrer que /  est l ’enveloppe supérieure des fonctions continues g : X  —> R telles que 

g <  /  [en utilisant l’homéomorphisme : R -»  [—1,1] définie par <p(t) =  t / {  1 +  |f |)  si t  E R 

et y>(±oo) =  ± 1 , se ramener au cas où /  est à valeurs dans [—1,1] ; soient a e  X ,  a  <  f(a),  
construire une fonction continue g : X  —* [— 1,1] telle que g < f  et g(a) >  a ].

Un espace localement compact n’est pas en général un espace normal et au lieu 
du théorème d’Urysohn, on a seulement la

Proposition 2.36.5 Dans un espace localement compact X , soient A une partie 
compacte et B une partie fermée sans point commun. Alors il existe une fonction 
continue f  : X  - ¥  [0,1] telle que f\& =  1 et f  \b  =  0.

Preuve Soit X ' =  X  U {a;} le compactifié d’Alexandroff. Alors, A  est une partie 
compacte de X \  B  est fermé dans X  donc est la trace sur X  d’une partie fermée 
de X ' qui ne peut être que B  ou B  U {cd} et dans tous les cas B  U {cd} est fermé 
dans X'. Il suffit alors d’appliquer le théorème d’Urysohn dans l’espace compact 
X ' aux fermés disjoints A t t B U  {cd}. Q.E.D.

Étant donné une fonction /  : X  -» R  définie sur un espace topologique X , 
le support de /  est par définition l’adhérence de l’ensemble {x G X\ f (x)  ^  0} 
et on le note supp ( /)  ; c’est le plus petit fermé de X  tel que /  soit nulle sur son 
complémentaire. Si supp ( /)  est une partie compacte de X , on dit que /  est à 
support compact ; on note Co(X;M) l’ensemble de toutes les fonctions continues 
/  : X  -> R à support compact. Avec cette terminologie, on a alors le corollaire 
suivant.

Corollaire 2.36.6 Soient X  un espace localement compact, I< une partie com­
pacte et O un voisinage ouvert de K. Il existe une fonction continue f  : X  —> [0,1] 
égale à 1 sur K  et à support compact contenu dans O.
Preuve II existe un voisinage compact V  de K  contenu dans O d’après la proposi­
tion 2.35.1. Utilisons la proposition 2.36.5 en prenant A —K  et B — X  -  V  ;on 
obtient ainsi une fonction à support dans V, donc à support compact contenu dans
O. Q.E.D.

Théorème 2.36.7 Partition de l’unité Soient X  un espace localement compact, 
K  une partie compacte de X  et (O *)^/ un recouvrement ouvert fini de K. Alors, 
il existe des fonctions continues à support compact tpi : X  [0 , 1] telles que
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supp (ipi) C Oi et Pi ~  1 sur K  •* une te^e famille (Pi) est appelée une 
partition de Vunité sur K  subordonnée au recouvrement {Oi).
Preuve Lorsque I  est réduit à un élément, il s’agit simplement du corollaire précé­
dent. Nous raisonnerons alors par récurrence sur Card I. Supposons donc 
I  =  [0,n] et K  c U l 0 Oi. On peut alors trouver deux compacts Ko et K'  
tels que K  C K 0  U K f et I<0 C O0, K ' c O' où Of =  ( J I U  ° i  : en effet, 
étant un voisinage du compact K  — Oo, il existe (proposition 2.35.1) un voisinage 
compact K'  de K  — Oo contenu dans Of et il suffit de prendre Ko = K  — K f. 
D’après l’hypothèse de récurrence, il existe une partition de l’unité sur K ' subor­
donnée au recouvrement (0*)i<i<n , soit (/j)i< i<n : d’après le corollaire 2.36.6, 
il existe d’autre part une fonction ip0 e Go{X;  [0 , 1]) égale à 1 sur I<o et à support 
dans Oo. Posons alors ip-i = (1 -  ipo)fi  pour 1 <  i <  n ;  la famille (<Pi)o<i<n 
est évidemment une partition de l’unité sur Ko U K \  donc sur K , subordonnée au 
recouvrement (O*)o<i<n- Q.E.D.

Si /  : X  -»> R est une fonction continue à support contenu dans le compact 
K , on peut donc écrire /  =  fi  où fi =  (pif est une fonction continue de X  
dans R à support dans Oi. Ceci montre que /  peut s’écrire comme la somme de 
fonctions continues dont les supports sont arbitrairement petits ; ce type de résultat 
est, comme nous le verrons, très utile dans l’étude des mesures de Radon sur un 
espace localement compact.
Exercice 2.36.14 Partition de l’unité Soient X  un espace topologique, (Ai)i^j  un recouvrement 
(quelconque) de X  ; une famille ( f i ) ie i  de fonctions continues fi  : X  —> [0,1] est appelée une 
partition de l’unité subordonnée au recouvrement (Ai)i e j  si

a. supp fi  C Ai et la famille des supports (supp / i ) i e /  est localement finie (exercice 2.10.4),
b. pour tout x e  X , J2iei =  1-
1. Soient X  un espace normal et (O n ) un recouvrement ouvert dénombrable localement fini de

X,  montrer qu’il existe une partition de l’unité subordonnée à un tel recouvrement [soit (Un) un 
recouvrement ouvert de_X tel que Un c  On pour tout n (exercice 2.36.3), il existe des ouverts Vn 
tels que Un C Vn C V n C On et des fonctions continues gn : X  -»  [0,1] telles que gn =  1 sur 
Un> 9n =  0 sur X  — Vn ; montrer que la fonction g =  $n est ^ en définie, continue et >  0 ;
prendre alors fn =  gn/ g l

2. Soit X  un espace localement compact dénombrable à l’infini, montrer que, pour tout recouvre­
ment ouvert de X , il existe une partition de l’unité subordonnée à ce recouvrement [soit 
Oi =  (Oi)içf  un recouvrement ouvert de X,  il existe (exercice 2.35.11) un recouvrement ouvert 
dénombrable Oi' =  (Un) localement fini et plus fin que 5? ; soit (fn ) une partition de l ’unité subor­
donnée à Oi' (exercice 2.36.2) ; il existe une fonction y? : N ->• I  telle que Un C D v>(n ) pour tout n  ; 

on pose gi =  X ^ ( n )= i f n ; montrer que la famille (gi) est une partition de l’unité subordonnée à Æ].

2.37 Limite supérieure et inférieure
Considérons sur R une base de filtre ; l’espace R étant compact, l’ensemble des 
points adhérents à $  est une partie non vide de R ; cet ensemble étant de toute 
façon fermé, c’est une partie compacte non vide de R. Nous pouvons donc poser 
la définition suivante.
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Définition 2.37.1 Soit 3  une base de filtre sur R. On appelle limite supérieure 
(resp. inférieure) de cette base de filtre, le plus grand (resp. petit) point adhérent à 
3  et on la note lim sup 3  (resp. lim inf 3).

D’après la proposition 2.31.1, une base de filtre 23 sur R converge si, et seule­
ment si, lim inf 3  = lim sup ® et on a alors

lim 3  =  lim inf 3  = lim sup®.
Si 3  et 3 ' sont deux bases de filtre sur R et si 3  engendre un filtre moins fin 

que 23', on a
(2.37.1) liminf23 <  liminf23/ <  lim sup® ' <  limsup23.

Dans ce qui suit, on raisonnera uniquement sur les limites supérieures vu que 
lim inf® =  - l im s u p (—®),

où —3  désigne l’ensemble des parties — M  =  {—x ; x € M} lorsque M  décrit ®. 
Il est utile d’expliciter la définition 2.37.1 sous la forme suivante.

Proposition 2.37.1 Soit 3  une base de filtre sur R, on a alors
lim sup ® =  inf sup M  et lim inf ® =  sup inf M.

Preuve Vérifions la première formule par exemple. Posons x = lim sup 3. Notons 
d’abord que sup M  est le plus grand point adhérent à M  ; on a donc x  <  sup M  
pour tout M  G ®, d’où x  < infmgb supM . Pour démontrer l’inégalité opposée, 
soit y > x, montrons que ® n’admet pas de trace sur [y, +oo] ; supposons en effet 
que ® admette une trace ®' sur un tel intervalle ; cet intervalle étant compact, 3 ' 
aurait un point adhérent z 6  [y, +oo] qui serait a fortiori un point adhérent à ® et 
ceci est absurde vu que x  est le plus grand point adhérent à ®. Il en résulte qu’il 
existe M e ®  tel que M  fl [y, + 0 0 ] =  0, d’où sup M  <  y et inf^ea* sup M  < y 
ce qui permet de conclure. Q.E.D.

Si on considère maintenant une application f  : X  R définie sur un en­
semble X  et si ® est une base de filtre sur X , on appellera limite supérieure (resp. 
inférieure) de /  suivant la base de filtre ® la limite supérieure (resp. inférieure) de 
la base de filtre /(® ). On utilisera les notations suivantes

lim sup /  =  lim su p /(® ) et lim inf /  =  lim inf /(® ).

Si ® est une base de filtre sur X  engendrant un filtre moins fin que ®7, on a d’après
(2.37.1)
(2.37.2) lim inf /  < lim inf /  <  lim sup /  <  lim sup / .

La proposition 2.37.1 montre que

(2.37.3) lim su p / =  inf s u p /(x )  et lim inf /  =  sup inf f(x).

Le principe du prolongement des inégalités (proposition 2.13.5) se généralise 
ainsi.
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Proposition 2.37.2 Soient 3  une base de filtre sur un ensemble X, / ,  g : X  —> R 
deux applications telles que f  < g, on a alors

limsup /  <  lim sup g et lim inf /  <  lim inf g.
3  3  ®

Preuve II suffit d’utiliser les formules (2.37.3). Q.E.D.
La notion générale de limite supérieure et inférieure d’une application contient 

comme cas particulier diverses notions fréquemment utilisées. Voici les plus im­
portantes.
Exemple 2.37.1 Limite supérieure et inférieure d ’une suite Soit (xn) une suite 
de R ; on appelle limite supérieure (resp. inférieure) de cette suite, la limite su­
périeure (resp. inférieure) de l’application n i-» xn suivant le filtre de Fréchet ; 
ces limites sont notées l i m s u p ( r e s p .  l im in f^ o o xn). En d’autres 
termes, limsupn _>00 xn est la plus grande valeur d’adhérence de la suite (xn) et 
liminfn-^oo xn est la plus petite valeur d’adhérence. D’après (2.11.4) et (2.37.3), 
on a

(2.37.4)
lim sup xn =  inf supa;p =  lim supæp,

n —>oo n£N p > n  n —* ° ° p > n

lim inf xn =  sup inf xv =  lim inf xp.
n - ^ o o  n ^N P > n  n —>oo p > n

La suite (xn) converge si, et seulement si,

et on a alors

lim inf xn =  lim sup x
n —>oo n —»oo n

lim xn =  lim inf xn =  lim sup xn
n-+ oo n -ïo o  n->oo

Si (xn) et (yn) sont deux suites de R telles que xn < yn pour tout n G N, on a 
d’après la proposition 2.37.2,

lim inf xn < lim inf yn et lim sup xn <  lim sup yn.

Si f n : X  -»• R est une suite d’applications de X  dans R, on définit la limite 
supérieure et inférieure de cette suite par les formules

(lim su p /n)(x) =  limsup f n(x) et (lim inf f n)(x) = lim inf f n(x) ;
n —» oo n —>oo n —>oo n —ï  oo

on a donc

(2.37.5)
lim sup f n = inf sup f p =  lim s u p /p,n—>oo n€N p> n  n—>oo p>^

lim inf f n = sup inf f p = lim inf f p.
n—>oo n€N P>n n->oop>n

La suite ( f n) converge simplement si, et seulement si,
lim inf f n =  lim sup / n ,
n->°° n—ïoo

auquel cas limn_>oo f n = liminfn^oo f n =  lim su p ,,^ ^  f n.
Exemple 2.37.2 Soient X  un espace topologique, A une partie de X , a un point 
adhérent à A et /  : A -» R une application. On appelle limite supérieure (resp.
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inférieure) de f ( x ) quand x  tend vers a en restant dans A la limite supérieure 
(resp. inférieure) de /  suivant la trace sur A du filtre V(a) ; ces limites sont notées 
lim supæ_>a æGA f(x)  et lim infx_+a>a;(EA f(x).

Si A = X,  on les note simplement lim s u p ^ ^  f (x)  et lim infx_>a f(x)  ; étant 
donné que f(a)  est adhérent à la base de filtre /(V (a)), on a
(2.37.6) lim in f /(x )  < f(a)  <  lim su p /(x )

œ ~~ï q > x — y o,

et /  est continue au point a si, et seulement si, ces deux limites sont égales.
Si (xn) est une suite de A  qui converge vers a, le filtre élémentaire associé à 

cette suite étant plus fin que V(a), on a d’après (2.37.2)

(2.37.7) lim inf f (x)  <  lim in f /(x n) < lim su p /(x n ) < limsup f(x).
x —>atx € A  n - >  oo n-»oo x - ¥ a , x € A

Lorsque le filtre V(a) est à base dénombrable, il est possible de caractériser 
les limites précédentes en termes de suite. De façon précise, on a la proposition 
suivante.

Proposition 2.37.3 Les notations étant celles de Vexemple 2.37.2, si le filtre V(a) 
est à base dénombrable, on a y = lim supæ_>û a .(Ei4 f (x) si, et seulement si, les 
deux conditions qui suivent sont réalisées.

1. Pour toute suite (xn) de A qui converge vers a, lim supn ^ 00 f ( xn) <  y.
2. Il existe une suite (xn) de A qui converge vers a telle que la suite ( f (xn)) 

converge vers y.

Preuve En effet, d’après la proposition 2.16.7, 1. signifie que toute valeur d’adhé­
rence de /  suivant V ( cl) \ a  est < y et 2 . signifie que y est une valeur d’adhérence.

Q.E.D.
La semi-continuité se caractérise aisément en termes de limite supérieure ou 

inférieure.

Proposition 2.37.4 Soit X  un espace topologique. Une fonction f  : X  -» West 
s.c.i. en un pointa G X  si, et seulement si,
(SCI4 ) f(a) <  l im in f^ a  f(x), auquel cas f(a) = lim inf*-^  f(x).

Preuve Si /  est s.c.i. au point a, pour tout a  <  /(a ) , il existe V  G V(a) tel que 
f (V)  c ]a , + 0 0 ], d’où infæGv f (x)  >  a  et lim infx_+a f (x) > a  et ceci prouve 
(SCI 4 ). On a alors l’égalité d’après (2.37.6).

Réciproquement, si (SCI 4 ) est vérifié, c’est-à-dire si
/ ( a )  <  sup in f / ( x ) ,

K eV (a) xëV

pour tout a < f(a),  il existe V G V(a) tel que a  <  in f ^ y  f(x),  d’où 
f (V)  c]a, + 0 0 ] ce qui prouve la semi-continuité inférieure de / .  Q.E.D.

Si /  est s.c.i. au point a, pour toute suite (xn) de X  qui converge vers a, on a 
d’après (2.37.7) / ( a )  <  lim in f ^ ,»  f ( x n). Réciproquement, on a la
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Proposition 2.37.5 Soit X  un espace à base dénombrable de voisinages, une ap­
plication f  : X  R est s.c.i. en un point a € X  si, et seulement si, pour toute 
suite (xn) de X  qui converge vers a
(2.37.8) / ( a )  <  lim inf f ( xn).

n—»oo
Preuve D’après la proposition 2.16.7, (2.37.8) signifie que toute valeur d’adhé­
rence de /  suivant V(a) est >  /(a ) . Q.E.D.
E x ercice  2 .37 .1  Soient J  un filtre sur un ensemble X  et / ,  g : X  ->  R des applications, on suppose 
que /  admet une limite finie >  0 suivant fS , montrer alors que

l im sup (/<7) =  lim /  x limsup#.  
•J ?  '5

Exercice 2.37.2 Régularisée s.c.i. Soit A  une partie d’un espace topologique X  partout dense et 
soit /  : A  -»  R une application, montrer que la fonction /*  (a?) =  lim  vça f {y)  est la plus
grande fonction s.c.i. telle que /*  <  /  sur A  : /*  est appelée la régularisée s.c.i. de / .  Si /  est s.c.i., 
/*  prolonge / .

Exercice 2.37.3 Soient X  un espace topologique admettant une base de topologie dénombrable et 
f i  : X  M, i e  / ,  une famille de fonctions s.c.i.. Cet exercice a pour objet de démontrer qu’il existe 
une partie dénombrable Iq de I  telle que (exercice 2.37.2) ( in fi€ j  f i ) *  =  (in fi6 j0 f i ) *  (lemme de 
Choquet). _

En utilisant l’homéomorphisme : R —► [—1,1] de l ’exercice 2.36.13, on peut supposer les
fonctions f i  à valeurs dans [—1,1]. Pour toute partie J  de I,  on pose f j  =  inf^ç j  f i  et on note 
( On ) n > i une base de la topologie de X  telle que chaque ouvert On soit répété une infinité de fois 
dans la suite (On ).

1. Soit n >  1, montrer qu’il existe x n  6  O n  tel que f i { x n ) <  in fo „  f i  +  1 /n  et un indice 
in €  /  tel que /<n (æn ) <  f l  (^n) +  1 /n  ; en déduire que

j» f  f i n  <  jnf f i  +  2 /n .
U n  L fn

2. On pose Iq =  (JSÏLi {^n}. Soit g : X  R  une fonction s.c.i. telle que g < f i 0 , montrer que 
g < f i  [soit x  e  X ,  e >  0, il existe V  G V ( x )  tel que g ( x )  < g(y )  +  e  pour tout y  €  V  ; en déduire 
que, pour tout n  tel que x  e  O n  c  V , g{x)  < f j  (x )  +  e +  2 /n ].

3. Conclure.

2.38 Les espaces projectifs
On rencontre, en géométrie en particulier, de très nombreux exemples d’espaces 
compacts. Il faut d’abord citer la sphère unité §n de Rn + 1  : si les coordonnées 
d’un point x C Mn + 1  sont notées (2^)0<i<n» on a

n

Sn = {xG Rn + 1  ; ^ ( x * ) 2 =  1}.
2=0

Voici une description du cercle unité S 1 utile dans la théorie des fonctions 
périodiques. Considérons sur R le sous-groupe additif 27tZ et la relation d’équiva­
lence associée x — y €  27tZ ; notons R  cette relation d’équivalence et T =  R/27tZ 
l’espace quotient muni de la topologie quotient ; cet espace est appelé un tore de 
dimension 1. Nous allons démontrer la proposition suivante.
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Proposition 2.38*1 Le tore T est un espace compact homéomorphe à S1.
Preuve 1. Considérons l’application p  : R S1 définie par ip(x) = exx ; cette 
application est continue, surjective et, pour tout t  £ S1, est une classe
d’équivalence pour R. Si on note p : R —> T la surjection canonique, ceci montre 
qu’il existe une unique application ÿ  • T —> S 1 telle que ^ ° p  =  y?;e  n outre, 
'ijj est une bijection, continue d’après la proposition 2.24.3. La topologie de T est 
donc séparée, vu qu’elle est plus fine que la topologie compacte image réciproque 
par ^  de celle de S1.

2. Considérons l’intervalle compact [0,1] et notons i : [0,1] R l’injection 
canonique ; considérons la relation d’équivalence i?/ sur [0 , 1] induite par R , l’es­
pace quotient [0 , 1]/Æ' (muni de la topologie quotient) et la surjection canonique 
p' : [0,1] -» [0,1] jR !. Il existe alors une unique application 6  : [0,1 ]/Rf -> T 
telle que 6 o p f =  p o i  ; en outre, 9 est une bijection, continue d’après la propo­
sition 2.24.3 et la continuité de p o i ; l’espace T étant séparé, il en résulte que 
[0 ,1  \/R! est séparé ; l’espace [0 , 1] étant compact et pf étant continu, on en déduit 
(théorème 2.31.10) que [0, l ] / # 7 est compact. Le corollaire 2.31.12 montre alors 
que 6  est un homéomorphisme et que T est compact.

3. L’espace T étant compact, la bijection continue ^  : T —> S 1 est un homéo­
morphisme. Q.E.D.
Note Les classes d’équivalence associées à R' sont d’une part les ensembles ré­
duits à un point {x} où 0 < x  < 1, d’autre part l’ensemble {0,1}. Le cercle unité 
S1 s’obtient donc en identifiant les points 0  et 1 de l’intervalle compact [0 , 1] et 
ceci est vrai du point de vue topologique : l’application ÿ  o 0  : [0, 1  )/R! S 1 est
un homéomorphisme.

A toute fonction /  : S1 —> C associons la fonction f  = f  o ipy soit 
f (x)  = f (exx). Alors /  : R -»• C est une fonction périodique de période 2n 
(c’est-à-dire f ( x  +  27r) =  f(x),  pour tout x  € R) ; nous noterons 
l’ensemble de toutes les fonctions /  : M C périodiques et de période 27r. Réci­
proquement, soit /  € C), il existe une unique application /  : S1 C telle
que /  =  f  oip. L’application f  ^  f  est donc une bijection de l’espace ^ (S 1; C) 
sur En outre, la proposition 2.24.3 montre, compte tenu de l’homéo-
morphisme ^  : T -» S1, que l’application /  i-> /  induit une bijection de l’espace 

(̂S^C) sur l’espace e2 7r(M;C) de toutes les fonctions continues /  : R C 
périodiques et de période 27t.

Introduisons maintenant les espaces projectifs. On considère l’espace 
Kn+i -  {0 }, où K =  R ou C ; les coordonnées d’un point x G K n + 1  seront 
notées (xx)o<*<n . Si x et y sont deux éléments de Kn + 1  — {0}, la relation

(31 £ K*)(x =  ty)
est une relation d’équivalence R. L’espace quotient Pn (K) =  Kn + 1  -  {0} /R  est 
appelé l’espace projectif (réel ou complexe selon le cas) de dimension n ; on munit 
cet espace de la topologie quotient et on note 7r : Kn + 1  -  {0 } -> Pn (^ )  la surjec­
tion canonique. Nous allons démontrer que les espaces projectifs sont compacts.
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Lemme 2.38.2 U application n : Kn + 1  — {0} —> Pn (K) est ouverte.
Preuve Soit O un ouvert de Kn + 1  — {0}, montrons que ir(O) est ouvert dans 
Pn (K), c’est-à-dire (paragraphe 2.24) que 7r- 1(7r(0 )) est ouvert dans Kn + 1  — {0}. 
Notons ht : Kn + 1  -  {0} Kn + 1  — {0} l’homothétie de rapport t e  K*, soit 
ht(x) = tx ; l’application ht est un homéomorphisme. Alors d’après la définition 
de la relation d’équivalence /?., on a

îr_ 1(’r(O)) =  ( J  lh(0 )
t€K*

qui est donc ouvert dans IKn+1 -  {0}. Q.E.D.
Afin d’appliquer la proposition 2.24.4, vérifions le

Lemme 2.38.3 Le graphe de la relation R est fermé dans (Kn + 1  — {O})2.
Preuve Notons G ce graphe ; si ((xk,yk)) est une suite de G qui converge vers 
(x,y) dans (Kn + 1  -  {O})2, il faut démontrer que (x,y) e G, c’est-à-dire qu’il 
existe t e K* tel que x = ty. Or, il existe tk G K* tel que Xk = tkyk• Il existe 
0  < i < n tel que y 1 ^  0 , d’où yk ^  0  pour k suffisamment grand, soit k > ko ; 
il en résulte que la suite tk = xk/yk est convergente, soit t = \imk->ootk- En 
passant à la limite dans la relation Xk = tkyk» ° n obtient x = ty et t ne peut être 
nul vu que x ^  0 ; ceci prouve que (x , y) e G. Q.E.D.

Compte tenu de la proposition 2.24.4, on en déduit que l’espace projectif 
Pn (K) est séparé. Nous allons démontrer que cet espace est compact. Suppo­
sons d’abord K = R. La relation d’équivalence R. induit sur la sphère unité §n 
de Mn +1  une relation d’équivalence R'  dont les classes d’équivalence sont de la 
forme {x) —x} avec x G Sn . On peut alors considérer l’espace quotient §n/i? / 
muni de la topologie quotient et on note n1 : Sn -* Sn/ R f la surjection cano­
nique. Il existe alors une application et une seule 0  : Sn/ R f -» Pn W  telle que 
9 o 7r' =  7r o î, où i désigne l’injection canonique de §n dans Rn + 1  — {0} ; en 
outre, 6  est une bijection, continue d’après la proposition 2.24.3 et la continuité de 
no i  ; l’espace Fn (R) étant séparé, on en déduit que l’espace §n/i? ' est également 
séparé ; l’espace Sn étant compact et l’application 7r' étant continue, le théorème 
2.31.10 montre que l’espace §n/i?/ est compact et le corollaire 2.31.12 prouve que 
Pn (R) est compact et que 6  est un homéomorphisme.

Lorsque K = C, le même raisonnement montre que l’espace Pn (C) est com­
pact et homéomorphe à § 2n+1/ i? ,/ où R" désigne la relation d’équivalence 
dont les classes d’équivalence sont les ensembles {tx ; t G C, |£| =  1} où 
x  G § 2n+1 c  Cn+1.

Examinons plus précisément l’espace P i (K).
Proposition 2.38.4 L'espace P i (R) est homéomorphe au cercle unité S1.
Preuve Considérons l’application /  : S 1 -> S 1 définie par f (z)  =  z2, z = x  +  iy. 
Cette application /  est surjective et pour Z  G S1, il existe exactement deux points 
de S1 diamétralement opposés 2  et - 2  tels que f (z)  =  / ( —2 ) =  Z. Ceci montre 
qu’il existe une application et une seule ip : S l /R! -» S1 telle que (p o 7r' =  /  ;
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en outre p  est une bijection. La continuité de /  et la proposition 2.24.3 montrent 
que p  est continu ; p  est donc une bijection continue, donc un homéomorphisme 
d’après le corollaire 2.31.12. Q.E.D.

Proposition 2.38.5 L'espace P i(C ) est homéomorphe à la sphère unité S2.
Preuve Le raisonnement est analogue à celui de la proposition précédente. Il s’agit 
de construire une application continue surjective /  : S3  ->* S2  telle que l’image 
réciproque par /  de tout point de S2  soit une classe d’équivalence pour R". Les 
coordonnées de C2 étant notées (x , y), la sphère S3  est définie par \x\2 +  |y |2 =  1 . 
On peut d’autre part identifier C x R et R3 au moyen de l’application (X , Y) G Cx 
R H-* (Sfte X , 9 m X , Y) G R3 ; la sphère S2 a alors pour équation |X |2 +  Y 2  = 1. 
On pose

f ( x , y )  = (2xÿ,\x\2 -  \y\2).
Si (x, y) G S3, on a

\2xÿ\2 + (\x\2 - \ y \ 2)2 = (\x\2 + \y2\)2 = l ,

d’où /(x,y) G S2. L’équation /(x,y) =  (X,Y)  G S2, c’est-à-dire le système 
2xÿ =  X , \x\2 — \y\2 = Y  se résout de la façon suivante. Si Y  = —1 , donc 
X  =  0 on obtient x  = 0 et |y| =  1 . Si Y  > —1 , on a \x\2 =  (1 +  Y ) / 2 d’où 
x  =  t(( 1 +  Y ) / 2) 1/ 2 où t G C, |i| =  1, et y = t X / ( 2(1 +  Y ) ) 1 / 2  et on vérifie 
que ces points (x, y) appartiennent à S3  : en effet,

\A2 + \y?
l + Y m 2 1 + y + l z l  = 1.

2 2(1 +  Y)  2 ' 2
On constate bien que / _ 1(X, Y)  est une classe d’équivalence pour R".  Le raison­
nement est alors identique à celui de la proposition précédente. Q.E.D.

Nous avons vu (exemple 2.35.1) que §n était le compactifié d’Alexandroff de 
Rn . Les propositions précédentes montrent que Pi (K) peut être considéré comme 
le compactifié d’Alexandroff de K. Comme nous le verrons, le compactifié du plan 
complexe C, c’est-à-dire P i(C ) ou S2, joue un rôle important dans la théorie des 
fonctions d’une variable complexe.



D -  Espaces connexes

2.39 Propriétés fondamentales
Nous abordons ici l’étude d’une catégorie d’espaces topologiques d’une nature 
différente de ceux qui ont été étudiés jusqu’à présent ; la connexité ne se relie pas 
à des notions de convergence.

Définition 2.39.1 Un espace topo logique X  est dit connexe s'il vérifie l'une des 
propriétés équivalentes qui suivent.
(COi ) X  n 'est pas la réunion de deux ensembles ouverts non vides et disjoints. 
(CO 2 ) X  n 'est pas la réunion de deux ensembles fermés non vides et disjoints. 
(CO3 ) L'ensemble X  et la partie vide sont les seuls ensembles à la fois ouverts 
et fermés.

Une partie d’un espace topologique est dite connexe si, munie de la topologie 
induite par celle de X , A est un espace connexe. Quand on manipule des topologies 
induites, il est conseillé d’utiliser des ouverts et des fermés de l’espace ambiant. 
Par exemple, dire que A n’est pas une partie connexe de X  signifie qu’il existe 
des ouverts 0 \  et O2 de X  tels que A  C 0 \  U O2 , A n  0 \  ^  0, A fl O2 7̂  0 et 
A n Oi n 0 2 =  0.

Dans un espace topologique, toute partie réduite à un élément est évidemment 
connexe. Un espace discret est connexe si, et seulement si, il admet au plus un 
élément ; tout sous-espace d’un espace discret étant discret, ceci montre que, dans 
un espace discret, les parties connexes non vides sont les parties réduites à un 
élément.

Donnons de suite une propriété fondamentale des espaces connexes.

Théorème 2.39.1 Soient X , Y  des espaces topologiques, /  : X  —► Y  une appli­
cation continue. Alors, l'image par f  de toute partie connexe de X  est une partie 
connexe de Y.

Preuve Soit A une partie de X , montrons que A n’est pas connexe si f (A)  n’est 
pas connexe. Il existe donc des ouverts O i, O2 de Y  tels que
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f (A) cO,u o 2, f (A) n Oi ^ 0, /(A) n o2 ^ 0 et /(A) n Ox n o2 = 0. 
Les ensembles / - 1(Oi) et f ~ 1 (02) sont deux ouverts de X  tels que

a c r H o i )  u r l {o2), a  n r \ o { )  ±  0, a  n r \ < h )  ±  0
et A fl / - 1(Oi) fl / _1(02) =  0, ce qui prouve que A n’est pas connexe. Q.E.D. 

Ceci permet d’en déduire la caractérisation suivante.

Proposition 2.39.2 Soit D un espace discret tel que Card D > 2. Un espace topo­
logique X  est connexe si, et seulement si, toute application continue 
f  : X  —> D est constante.
Preuve La condition est nécessaire d’après le théorème 2.39.1 vu que f ( X)  doit 
être une partie connexe de D. Pour démontrer que la condition est suffisante, sup­
posons X  non connexe. Il existe alors des ouverts non vides et disjoints 0 1, O2 
tels que X  = 0 \  U O2  ; considérons alors deux éléments différents a et b de D 
et l’application /  : X  -» D égale à a sur 0 \  et à b sur O2 ; cette application non 
constante est continue, l’image réciproque de tout ouvert de D étant un ensemble 
ouvert de X.  Q.E.D.

Corollaire 2.39.3 Soit A  une partie connexe d'un espace topologique. Alors, toute 
partie B telle que A  C B  C  A  est connexe.

Preuve Soit D un espace discret et /  : B —> D une application continue. D’après 
la proposition 2.39.2, l’application / | a est constante ; A  étant dense dans B , 
le principe du prolongement des identités (corollaire 2.17.4) montre que /  est 
constante. La proposition 2.39.2 permet alors de conclure. Q.E.D.

Corollaire 2.39.4 L'adhérence de toute partie connexe est connexe.

Corollaire 2.39.5 Soit (Ai)iej une famille de parties connexes telle que
Ai  D A j 0 si i ^  j ,

alors la réunion de cette famille est connexe.

Preuve Soient D un espace discret et /  : |Ji<=/ A* -> D une application continue. 
Les applications f \A{ sont constantes, donc /  est constante vu l’hypothèse. Q.E.D. 

En raisonnant de façon similaire, on obtient les résultats suivants.

Corollaire 2.39.6 Soit (An)ne  ̂ une suite de parties connexes telle que 
A n fl An+1 ^  0 pour tout n e  N. Alors U^=o A i est connexe.

Corollaire 2.39.7 Soient A une partie connexe et (Ai)i€j une famille de parties 
connexes telles que A  fl Ai ±  0 pour tout i, alors A  U |J iç / Ai est connexe.

Indiquons enfin une dernière propriété des espaces connexes.

Proposition 2.39.8 Soient A  une partie d'un espace topologique X  et B une par­
tie connexe de X. Si B rencontre A  et X  — A, alors B rencontre la frontière de 
A.
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Preuve Si B  ne rencontrait pas la frontière de A , les ensembles Int A fl B  et 
Int (X — A) fl B  seraient deux ouverts non vides de B , disjoints et leur réunion 
serait B  d’après la proposition 2.10.3, ceci serait contraire à la connexité de B.

Q.E.D.

Corollaire 2.39.9 Dans un espace connexe X, une partie non vide distincte de X  
admet une frontière non vide.

Un sous-espace d’un espace connexe n’a aucune raison d’être connexe en gé­
néral. Par contre, un produit d’espaces connexes est connexe ; pour démontrer ce 
résultat nous aurons besoin du

Lemme 2.39.10 Soit (Xi)iej une famille d'espaces topologiques et soit 
a =  (ûi)iE/ un point de l'espace produit X. Alors l'ensemble A des x =  
tels que x-i = ai sauf pour un nombre fini d'indices i est dense dans X.
Preuve En effet, tout ouvert élémentaire non vide rencontre A. Q.E.D.

Théorème 2.39.11 Un produit X  = riiez  ^  dfespaces topologiques non vides 
est connexe si, et seulement si, tous les espaces facteurs sont connexes.
Preuve Si X  est connexe, les espaces facteurs sont connexes car les projections 
sont continues et surjectives. Réciproquement, supposons les espaces facteurs 
connexes et soit /  : X  —> D une application continue à valeurs dans un espace 
discret D. Soit a =  (a.j)*e / un point de X . Les applications partielles Xi •->> f{x) 
étant continues, la proposition 2.39.2 montre que /  est constante sur l’ensemble 
des x  = (Xi)i£i tels que Xi =  a* sauf pour une valeur de l’indice i,  donc grâce 
au même raisonnement /  est constante sur l’ensemble des x  =  (xi)içi tels que 
Xi = ai sauf pour deux valeurs de l’indice i , et par récurrence /  est donc constante 
sur l’ensemble A du lemme 2.39.10, donc sur X  d’après ce lemme et le principe 
du prolongement des identités. Q.E.D.

Dans un espace produit, une partie non vide de la forme IL e / est connexe 
si, et seulement si, tous les Ai sont connexes. Si X  est un ensemble et Y  est un 
espace topologique, l’espace 3rs(X;Y)  muni de la topologie de la convergence 
simple est connexe si, et seulement si, Y  est connexe.

Exercice 2.39.1 Soient A et B des parties d’un espace topologique. Si A et B  sont fermés et si 
A u  B et A n  B sont connexes, montrer que A et B  sont connexes.

Exercice 2.39.2 Soient A et B  des parties d’un espace topologique. Si A et B  sont connexes et si 
A fl B  ou A fl B est non vide, montrer que A U B est connexe.

Exercice 2.39.3 Soit une famille de parties connexes filtrante pour l’inclusion : pour tout

i , j  G / ,  il existe k € I  tel que Ci U Cj C C^. Montrer que U ^ e/ Ci  est connexe.

Exercice 2.39.4 Soient X  un espace connexe et (O i)$€ j un recouvrement ouvert de X.  Montrer 

que, pour tout x, y  G X,  il existe une sous-famille finie (0 » p ) i < p< n telle que x G Oix, y  G 0 * n et 

° i P #  0 pour 1 <  p <  n — 1.
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Exercice 2 .3 9 .5  Soient X> Y  des espaces connexes, A et B  des sous-ensembles stricts de X  et Y , 
montrer que X  x  Y  — A  x  B  est connexe.

Exercice 2 .3 9 .6  Soit (K n ) une suite décroissante de compacts non vides dans un espace topolo­
gique X.

1. Montrer que K  =  f lîïL o  Kn  est un compact non vide et, que pour tout voisinage V  de AT, il 
existe n  G N tel que K n C V.

2. Si tous les compacts K n sont connexes, montrer que K  est connexe [raisonner par l’absurde et 
utiliser la proposition 2.31.9].

Exercice 2 .3 9 .7  Montrer que dans un espace métrique connexe non borné, toute sphère est non vide.

Exercice 2 .3 9 .8  Soit X  un espace métrique compact, montrer l’équivalence des propriétés suivantes
1. X  est connexe,
2. pour tout e >  0 et tout x, y  G X> il existe une suite finie de points de X y (a^)0< i< n , telle que 

xo =  x, xn =  y  et d(xi , Xi+i  ) <  e pour tout i G [0, n  — 1] : on dit alors qu’il existe une e — chaine 

reliant x et y.

Exercice 2.39.9 Soit X  un espace métrique compact, on suppose que, pour tout a G X  et tout 
r  >  0, ~B(a\r) =  £ ' ( a ; r ) .  Montrer alors que toute boule ouverte ou fermée est connexe [soit 
x G B'(a\r)  et soit Ae, e >  0 , l’ensemble des y  G B'(a;r)  tels qu’il existe une e — chaine 

(exercice 2.39.8) dans B'  (a; r) reliant x et y  ; montrer que Ae est compact, que in f ^ ç ^  d(a, y)  =  0 

et en déduire que a G Ae].

Exercice 2 .3 9 .1 0  Soient X  un ensemble, Y  un espace métrique, montrer que l’ensemble Jb (X ; Y)  
des applications bornées de X  dans Y  est à la fois ouvert et fermé dans 5U( X ; Y).
Exercice2.39.11 1. Soient X  un espace topologique, Y  un espace métrique et A  c  £U( X \Y )  
une partie équicontinue. Montrer que l’ensemble des x  G X  tels que A{x) =  { f (x)  ; /  G A}  soit 
précompact est à la fois ouvert et fermé.

2. Si X  est un espace compact connexe et si Y  est un espace métrique complet, en déduire qu’une 

partie A C GU(X; Y)  équicontinue est relativement compacte dès qu’il existe un point a G X  tel 
que A(a)  soit relativement compact : ceci affaiblit, dans le cas où X  est connexe, la seconde condition 

figurant dans le théorème 2.34.5 d’Ascoli.

2.40 Parties connexes de la droite réelle
Théorème 2.40.1 Les parties connexes de R et R sont les intervalles de R et R. 
En particulier, R et R sont des espaces connexes.
Note Un intervalle I  de R ou R peut être limité ou illimité ; si a =  inf I  désigne 
son origine et b = sup I  son extrémité, un tel intervalle sera noté |a, b\ ; les points 
a et 6 n’appartiennent pas nécessairement à I  et peuvent être infinis.
Preuve Nous raisonnerons sur R ; le théorème pour R s’en déduit de suite puisque 
R est un sous-espace de R. __

1. Soit I  une partie connexe non vide de R ; posons a =  inf /  et b = sup I. 
Alors tout x  tel que a < x < b appartient nécessairement à / ,  sinon les ensembles 
I n  [—oo, x[ et In  ]x, +oo] formeraient une partition de I  en deux ouverts de I  non 
vides et disjoints. Ceci prouve que I  est un intervalle d’origine a et d’extrémité b.
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2. Réciproquement, soit I  =  |a, b\ un intervalle non vide de R. Cet intervalle 
peut s’écrire comme une réunion d’une famille d’intervalles de la forme [x, y] dont 
l’intersection est non vide. D’après le corollaire 2.39.5, il suffit de prouver que tout 
intervalle compact [x, y] est connexe. Supposons non connexe un tel intervalle 
[x, y] ; il existerait alors deux fermés, donc deux compacts K\ et K 2 non vides et 
disjoints tels que [x, y\ = K\ U K 2  ; d’après le corollaire 2.33.13, il existerait des 
points a-i G Ki tels que

d(ai,a2) = d(Ku K 2);
les compacts K\ et K 2  étant disjoints, on aurait a\ ^  a<i et l’intervalle non vide 
]ai, a2 [ si a i <  a 2 ou ]a2 , a i [ si a 2 <  a i n’appartiendrait pas à K\ U K 2  =  [x, y], 
ce qui est absurde. Q.E.D.

Compte tenu du théorème 2.39.11, on a le

Corollaire 2.40.2 Les espaces Mn et Cn sont connexes.
Corollaire 2.40.3 Théorème des valeurs intermédiaires Soient X  un espace 
connexe, /  : X  —> R une application continue, a et b deux points de X. Po­
sons a  = f(a ), /3 =  /(£>). Alors, pour tout 7  G [a>0 \ si a  < f3 (7 G [P, a] si 
P <  &), il existe un point c G X  tel que 7  =  /(c ).

Preuve En effet, f ( X)  est une partie connexe de R (théorème 2.39.1), donc un 
intervalle de R (théorème 2.40.1) et cet intervalle contient les points a  et /? donc 
tout l’intervalle [a , /?] si a  <  P ([/?, a] si fi <  a ) .  Q.E.D.

Exercice 2.40.1 Montrer que les intervalles ]a, b[ et ]a, b], a  <  6, ne sont pas homéomorphes. 

Exercice 2.40.2 Montrer que toute application continue /  : [—1,1] ->  [—1,1] admet un point fixe. 

Exercice 2.40.3 Montrer qu’il n’existe pas d’application continue /  : R —> K telle que 

/ ( Q )  C R -  Q et f (R  -  Q) C Q.

Exercice 2.40.4 Soit X  un ensemble totalement ordonné muni de la topologie de l’ordre (exercice 
2.9.3).

1. Montrer que X  est connexe si, et seulement si,

{toute partie non vide de X  majorée admet une borne supérieure et pour tout 
æ, y  G X,  x < y, l’intervalle ]x, y[ est non vide.

2. On suppose X  connexe, montrer qu’un ensemble I  C X  est un intervalle si, et seulement si, 
pour tout x, y  G X, x < y, on a ]x, y[ C / .  Montrer que les parties connexes de X  sont les intervalles 
d e X .

Exercice 2.40.5 Soient I  un intervalle de K et /  : I  -► R une fonction continue injective.
1. Soient x yy y z e  I  tels que x < y < z, montrer que l ’on a, soit f(x)  <  f ( y)  <  f ( z ), soit 

f(x)  >  f(y)  > f ( z)  [utiliser le corollaire 2.40.3].
2. Soient a, 6 G / ,  a <  6, si / ( a )  <  f (b )  (resp. / ( a )  >  /(6 )) ,  montrer que /  est strictement 

croissante (resp. décroissante).

3. En déduire que /  est un homéomorphisme de I  sur / ( / ) .  De plus, si I  est un intervalle ouvert 
(resp. compact), alors / ( / )  est un intervalle ouvert (resp. compact).

Exercice 2.40.6 Sur K, on note d(x , y) =  \x—y \ la distance usuelle et, pour toute fonction injective 
/  : R R, on considère la distance df(x, y)  =  \f(x) — f(y)  |. Montrer que

1. les distances d et df  sont topologiquement équivalentes si, et seulement si, /  est continu,
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2. les distances d et d j  sont uniformément équivalentes si, et seulement si, /  est un homéomor­
phisme uniformément continu de E  sur M ainsi que / - 1 ,

3. les suites de Cauchy pour d e td f  sont les mêmes si, et seulement si, /  est un homéomorphisme 
de E sur E,

4. E  muni de la distance df  est complet si, et seulement si, / ( E )  est fermé.

Définition 2.40.1 Un chemin dans un espace topologique X  est une application 
continue f  : [a, 6] -* X  définie sur un intervalle compact de R.

L’image /([a , b]) de l’intervalle [a, b] par /  sera appelée un arc de courbe ; le 
point A = f(a)  est appelé l’origine du chemin, le point B  =  f(b) l’extrémité du 
chemin. D’après les théorèmes 2.39.1 et 2.40.1, un arc de courbe dans un espace 
topologique X  est une partie connexe de X.  D’après la proposition 2.39.8, on a 
donc la

Proposition 2.40.4 Théorème du passage de la frontière
Soit f  : [a, 6] —> X  un chemin dans un espace topologique X  et soit A une partie 
de X  telle que / ( a )  e A et f(b) G X  — A. Alors il existe t G [a, b] tel que 
f(t)  G Fr A.
Définition 2.40.2 Un espace topologique X  est dit connexe par arc si, pour tout 
x, y de X, il existe un chemin f  : [0, lj -» X  d'origine x et d'extrémité y.
Remarque 2.40.1 Soient x, yy z trois points d’un espace topologique X. S’il existe 
un chemin /  : [0,1] -» X  d’origine x et d’extrémité y et un chemin g : [0,1] -* X  
d’origine y et d ’extrémité z, alors il existe un chemin h : [0,1] —> X  d’origine x 
et d’extrémité z. En effet, il suffit de définir h de la façon suivante : h(t) = f(2t) 
pour 0  <  t < 1 / 2  et h(t) = g(2 t — 1 ) pour 1 / 2  <  t <  1 .

Proposition 2.40.5 Un espace connexe par arc est connexe.
Preuve En effet, soit a un point de X  ; alors pour tout x de X , il existe un chemin 
f x : [0,1] ->> X  tel que f x(0) =  a et f x( 1 ) =  x et on a alors X  =  \JxeX /* « 0 , 1]), 
qui est donc connexe d’après le corollaire 2.39.5. Q.E.D.

Un espace connexe n’est pas nécessairement connexe par arc (exercice 2.41.2).

Proposition 2.40.6 Tout produit d'espaces connexes par arc est connexe par arc.
Preuve Notons X  = ÜILi ^  un te  ̂ esPace produit. Soient x =  (x*)^/, 
V =  {Vi)iei deux points de X.  Pour tout i G / ,  il existe une application 
continue 7 i : [0,1] -> Xi  telle que 7 ^(0 ) =  x* et 7 ^(1 ) =  yt. L’application 
7  : t 1-» ( 7 i(t))iei est continue et 7 (0 ) =  x et 7 (1) =  y , ce qui permet de 
conclure. Q.E.D.

L’espace R étant évidemment connexe par arc, les espaces Rn et Cn sont 
connexes par arc.

Exercice 2.40.7 Montrer que l ’image continue d’un espace connexe par arc est connexe par arc.

Exercice 2.40.8 Montrer que les sphères Sn , n  >  1, sont connexes par arc et que les espaces 
projectifs Pn (K) sont connexes par arc [utiliser l’exercice 2.40.7].
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Exercice 2.40.9 Soit X  un espace connexe tel que, pour tout x G X,  il existe un voisinage V  de x 
tel que, pour tout y G V,  il existe un chemin tracé dans X  joignant les points x  et y. Montrer que X  
est connexe par arc.

Exercice 2.40.10 Espace localement connexe par arc Un espace topologique X  est dit localement 
connexe par arc si tout point admet un système fondamental de voisinages connexes par arc.

1. Montrer qu’un espace X  est localement connexe par aie si, et seulement si, pour tout x de X  
et tout voisinage V de æ, il existe un voisinage W  de x tel que, pour tout y  €  W,  il existe un chemin 
tracé dans V  joignant les points x et y.

2. Un espace connexe, localement connexe par arc est connexe par arc [exercice 2.40.9].
3. Un espace métrique est localement connexe par arc si, et seulement si, pour tout x G X  et tout 

e >  0, il existe 6 >  0 tel que, pour tout y  G B(x\ 6), il existe un chemin tracé dans la boule B(x;e)  
joignant les points x et y.

4. Soit X  un espace métrique compact, localement connexe par arc, montrer que, pour tout e >  0, 
il existe ô >  0 tel que, pour tout x , y  G X  vérifiant d(x , y) <  6, il existe un chemin joignant x e t y  
de diamètre <  e [raisonner par l’absurde].

Exercice 2.40.11 1. Montrer qu’un produit fini d’espaces localement connexes par arc (exercice 
2.40.10) est localement connexe par arc.

2. Montrer que tout produit d ’espaces connexes et localement connexes par arc est connexe et 
localement connexe par aie.

Exercice 2.40.12 Montrer que tout espace métrique compact, connexe et localement connexe par 
aie X  est une image continue de l’intervalle [0,1] [soit /  : C X  une surjection continue (exercice 
2.33.5) où C  désigne l’ensemble de Cantor ; on peut écrire [0,1] — C  =  U ^ = o la n » ^n[ °ù les inter­
valles ]an , ù7l[ sont disjoints deux à deux ; montrer que lim n -^oo(^n — an ) =  0 et en déduire que 
lim n _»oo d(f (an ), f(bn)) =  0  ; en utilisant l’exercice 2.40.10, construire des fonctions continues 
7 n ' [an ,6 n ) ->  X  telles que

7 n(an) =  / ( a n ) ,  7 n ( M  =  / ( M  et lim  diam 7 n ([a n , M )  =  0 în —>-oo
prolonger alors /  en une surjection continue g : [0,1] X  en posant </|[ani6„l =  7 n]- Comparer 

avec l’exercice 2.36.10.

2.41 Composante connexe
Sur un espace topologique X , considérons la relation R(x , y)
(2.41.1) il existe une partie connexe de X  contenant xety.

On définit ainsi une relation d’équivalence sur X.  Cette relation est en effet 
réflexive car toute partie réduite à un élément est connexe ; elle est évidemment 
symétrique et la transitivité résulte du corollaire 2.39.5. Les classes d’équivalence 
associées à cette relation d’équivalence sont appelées les composantes connexes de 
X.  L’ensemble des composantes connexes de X  constitue une partition de X.  Pour 
tout x de X , il existe une composante connexe de X  qui contient x, on l’appelle la 
composante connexe de x.

Proposition 2.41.1 La composante connexe d'un point x est le plus grand en­
semble connexe contenant x.
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Preuve Notons Cx la composante connexe de x. D’après la définition (2.41.1) 
de la relation d’équivalence R, un point y appartient à Cx si, et seulement si, il 
existe un ensemble connexe contenant x  et y. Il en résulte que Cx est la réunion 
de tous les ensembles connexes contenant x  et cette réunion est connexe d’après 
le corollaire 2.39.5. Q.E.D.

Corollaire 2.41.2 Les composantes connexes sont des ensembles connexes fer­
més.
Preuve En effet, l’adhérence d’un ensemble connexe est connexe (corollaire 2.39.4) 
et la composante connexe d’un point x  est le plus grand ensemble connexe conte­
nant x. Q.E.D.

Les composantes connexes sont fermées ; s’il n’y a qu’un nombre fini de com­
posantes connexes, elles sont également ouvertes, mais en général elles ne le sont 
pas sauf pour une catégorie particulière d’espaces que nous allons étudier mainte­
nant.

Définition 2.41.1 Un espace topologique X  est dit localement connexe si tout 
point admet un système fondamental de voisinages connexes.

Un espace localement connexe n’est pas nécessairement connexe (par exemple 
un espace discret) et un espace connexe n’est pas nécessairement localement 
connexe (exercice 2.41.2).

Dans un espace localement connexe, tout sous-espace ouvert est localement 
connexe. Un produit fini d’espaces localement connexes est localement connexe 
d’après le théorème 2.39.11.

L’espace R est localement connexe : l’ensemble des intervalles
]x -e ,x  + £[oÙ£ > 0

constitue un système fondamental de voisinages connexes du point x. Il en résulte 
que les espaces Mn, Cn sont localement connexes.

L’intérêt des espaces localement connexes réside dans la propriété suivante.

Proposition 2.41.3 Un espace topologique X  est localement connexe si, et seule­
ment si, les composantes connexes de toute partie ouverte sont ouvertes.
Preuve La condition est nécessaire. Soit C une composante connexe d’un ouvert O 
et soit x  G C, il existe un voisinage connexe V  de x  tel que x  G V  C O ; C étant le 
plus grand ensemble connexe contenant x  et contenu dans O, on a nécessairement 
V  C C ce qui prouve que C est un voisinage de chacun de ses points, donc un 
ensemble ouvert.

La condition est suffisante. Soit O un voisinage ouvert d’un point x  de X , alors 
la composante connexe de O qui contient x  est ouverte, donc un voisinage de x  
contenu dans O, ce qui prouve le résultat voulu. Q.E.D.

Corollaire 2.41.4 Dans un espace localement connexe séparable, tout ouvert est 
une réunion dénombrable d'ouverts connexes disjoints.
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Preuve Un ouvert est en effet égal à la réunion de toutes ses composantes connexes 
qui sont ouvertes et disjointes deux à deux. L’ensemble (C*).^/ de ces compo­
santes connexes est par ailleurs dénombrable : si D est une partie dénombrable 
partout dense, Ci D D est non vide, soit Xi G Ci fl D ; l’application % t-»* Xi de I  
dans D est injective, donc I  est dénombrable. Q.E.D.

Ceci permet de préciser le corollaire 2.5.9 comme suit.
Corollaire 2.41.5 Un ouvert de R est une réunion dénombrable d ’intervalles ou­
verts disjoints.
Exercice 2.41.1 Soient X  un espace topologique, /  : X  —> M une application s.c.s. et A l’ensemble 

des points où /  admet un minimum local (exercice 2.9.5). Montrer que /  est constante sur chaque 

composante connexe de A.
Exercice 2.41.2 Dans R2, on considère le sous-espace A réunion des deux sous-ensembles 

{(x,y)  E K2 ; x  E M - Q e t  y >  0 }  et { ( x ,y )  E Q et y <  0 }.

Montrer que A est un espace connexe, non localement connexe et non connexe par arc [pour démontrer 

que A est connexe, soit f  : A D  une application continue à valeurs dans un espace discret, 
considérer l ’ensemble connexe B  =  A  U (Q x  { 0 } ) , prolonger /  en une application g : B D  
en posant g(x , 0) =  f ( x , y) pour x  E Q  et y  <  0, puis vérifier que g est continu ; pour démontrer 
que A n’est pas connexe par arc, considérer un chemin ( / ,  g) : [0,1] -»  A  joignant deux points 

(x,y)  et (x'}y ') de A tels que y >  0  et y1 <  0  et une composante connexe ]a ,6 [ de l’ouvert 

{t  E ]0,1[ ; g(t) <  0}].

Exercice 2.41.3 Espace extrêmement discontinu Soit X  un espace topologique, montrer l’équiva­
lence des propriétés suivantes
(EDi  ) l’adhérence de tout ouvert est un ensemble ouvert, _  _
(ED 2 ) quels que soient les ouverts disjoints 0 \  et O 2 , on a O i fl O2 =  0.

Un espace séparé vérifiant ces propriétés est dit extrêmement discontinu. Montrer que dans un tel 

espace toute partie connexe non vide est réduite à un point.

Exercice 2.41.4 Soient X  un espace connexe, A une partie connexe de X.
1. Soit M  une partie de X  — A à la fois ouverte et fermée dans X  — A, montrer que A U  M  

est connexe [soient O i, O 2  des ouverts disjoints de A U M  tels que A U M  =  0 \  U O2 ; A étant 
connexe, on peut supposer A C 0 \ , A n C >2 =  0 ; montrer que O2 est ouvert et fermé dans X  (utiliser 
l’exercice 2.20.1)].

2. Si M  est une composante connexe de X  — A , montrer que X  — M  est connexe [soient 0 \ , O2 

des ouverts disjoints de X  — M  tels que X  — M  =  0 \  U O 2 , on peut supposer A C 0 \ , A n C >2 =  0 ; 

en utilisant 1., montrer que M  U O 2  est connexe].

Exercice 2.41.5 Soient X  un espace séparé connexe, Y  =  X  x  X  — A  où A  est la diagonale 
de X  x  X.  Pour toute partie A c  X  x  X , on note A " 1 l’image de A par l’homéomorphisme 
{x,y)>-+(y,x).  _ i

1. Soient O i , O2 deux ouverts disjoints tels que Y  =  0 \  U O2 et O* =  Oi .
a. Soit x E X , si Oi(x)  est non vide, montrer que Oi(x)  =  Oi(x)  U {rc}.
b. Montrer que Oi (x) et O2 (x) sont connexes pour tout x E X  [utiliser l ’exercice 2.39.1].
c. Soit y  E O i (x ), montrer que Ü 2 (x) x  { y}  C 0 \  ; en déduire que

((* , y) E O i et (æ, z)  E 0 2) =*■ (y, z) G 0 \  

et que, pour tout x E X , l’un des deux ensembles 0 \  (x ), Û2 (x) est vide.
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d. Montrer que l ’un des ouverts O i, O2 est vide.
2. Soient 0 1 , O2 deux ouverts non vides et disjoints tels que Y  =  0 \  U O 2 . Montrer que 

Y  =  U\ \JÜ2 UC/ 1 2  où Ui =  Oi  D O “ \  U\ 2  =  (O i f l O J 1) U fO j-1 n 0 2 ) ,  et déduire de l.q u e  
O i =  O 2 1 et que 0 \  et O2 sont connexes.

3. Déduire de ce qui précède que, ou bien Y  est connexe, ou bien Y  admet deux composantes 
connexes C e t  C ” 1.

Exercice 2.41.6 Soit X  un espace connexe compact, montrer que X  est localement connexe si, et 
seulement si, pour tout recouvrement ouvert (Oi)i e j t il existe un recouvrement fini (C j ) j ç j  plus 
fin (exercice 2.35.11) et constitué de parties connexes compactes [pour vérifier que la condition est 
nécessaire, on procédera ainsi : soit x E X , il existe i(x)  E /  et un ouvert Ux tel que

x € U x C Ï Ï x C Oi(x) ;

on note A  le recouvrement ouvert constitué de toutes les composantes connexes des ouverts Ux, x 
décrivant X  ; si (A j ) j e j  est un sous-recouvrement fini, prendre Cj  =  Aj  ; pour démontrer que la 

condition est suffisante, soit x G X  et soit O un voisinage ouvert de x  ; considérer le recouvrement 
ouvert {Oy X  — { x } }  et un recouvrement fini plus fin constitué de parties connexes compactes pour 
construire un voisinage connexe de x contenu dans O].

Exercice 2.41.7 Soient X  un espace connexe compact localement connexe, Y  un espace séparé et 
/  : X  —► Y  une application continue surjective. Montrer que Y  est un espace connexe compact 
localement connexe [utiliser le critère de l’exercice 2.41.6].

Exercice 2.41.8 Théorème de Sierpinski Montrer qu’un espace métrique connexe compact X  est 
localement connexe si, et seulement si, pour tout e >  0, X  est la réunion d’une famille finie de parties 

connexes compactes de diamètre <  e [utiliser le critère de l’exercice 2.41.6 et l ’exercice 2.30.5].

2.42 Espaces connexes compacts
Dans un espace compact X , les composantes connexes sont compactes, car fer­
mées. Nous allons étudier d’une façon plus précise les propriétés de ces compo­
santes connexes.

Lemme 2.42.1 Soit C une composante connexe d’un espace compact X , alors C 
est égal à l'intersection des voisinages de C à la fois ouverts et fermés.
Preuve Notons S l’ensemble des voisinages de C à la fois ouverts et fermés, po­
sons
D = fV eS  L’ensemble D est fermé, donc compact et il contient C. Sup­
posons D ^  C, alors D n’est pas connexe ; il existe des fermés non vides et 
disjoints M  et N  tels que D = M  U N  et l’espace X  étant normal (proposition 
2.31.9), des ouverts disjoints Om et On  tels que M  C Om > N  C O ^. La fa­
mille (X  — V)vg9  est un recouvrement ouvert du compact X  — Om U On , car 
U Keg( X - F )  =  X - D  = X - M U N .  Il existe donc une famille finie (V*)^/ de 
S telle que ^  X —Om ^ O n , soit Vq C Om UO# où Vo =  f]i&j Vi
appartient encore à S-
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Étant donné que C est connexe et que C c M  U N,  on a C C M  ou C C TV ; 
supposons C C M  pour fixer les idées. L’ensemble Vo H Om  est ouvert, il est 
également fermé vu que VqCiOm = VoD( X —On ) et il contient C, par conséquent 
Vo H Om € S, d’où D C Om ce qui est absurde. Q.E.D.

Proposition 2.42.2 Soit C une composante connexe compacte d'un espace loca­
lement compact X . Alors, C admet un système fondamental de voisinages à la fois 
ouverts et fermés.

Preuve 1. Supposons d’abord X  compact. Soit O un voisinage ouvert de C, X —O 
est compact et la famille (X  — V)ve$,  où S désigne l’ensemble des voisinages de 
O à la fois ouverts et fermés, est un recouvrement ouvert de X  — O car

(J { X - V ) = X - C ^ X - 0

K€S
d’après le lemme 2.42.1. Il existe un sous-recouvrement fini (V*)iE/> on a alors

X - V 0 D X - O  
où Vo =  fiiez vi e S» d’où yo C O.

2. Lorsque X  est localement compact, montrons que tout voisinage ouvert O 
de C contient un V  G S. Soit K  un voisinage compact de C (proposition 2.35.1), 
O fl AT est un voisinage ouvert de C contenu dans K , on peut donc supposer 
O C K. Alors, O est un voisinage ouvert de C dans le sous-espace compact I< ; 
d’après 1. il existe un voisinage V  de C dans A" à la fois ouvert et fermé dans K  
tel que C C V C O. L’ensemble V  est ouvert dans K , donc dans O (car O est 
contenu dans AT), donc dans X  car O est ouvert ; l’ensemble V est fermé dans A", 
donc dans X  car I< est fermé et ceci prouve que V  G 9- Q.E.D.

Lemme 2.42.3 Soient X  un espace localement compact et connexe, O un ouvert 
relativement compact non vide et distinct de X. Alors les composantes connexes 
de O (qui sont fermées dans O) ne sont pas fermées dans X.
Preuve Raisonnons par l’absurde. Soit C une composante connexe de O, suppo­
sons la fermée dans X , alors C est compact vu que O est relativement compact. 
Il existe (proposition 2.35.1) un voisinage compact K  de C tel que C C K  C O  
et, d’après la proposition précédente, il existe V  à la fois ouvert et fermé dans O 
(qui est bien un sous-espace localement compact) tel que C C V C K. Montrons 
que V est à la fois ouvert et fermé dans X  : V  est fermé dans O, donc dans K  et, 
K  étant fermé dans X , V  est fermé dans X  ; V  est ouvert dans O et, O étant un 
ouvert de X , V  est bien ouvert dans X . L’ensemble V à la fois ouvert et fermé 
étant non vide et distinct de X  (car O X), X  ne saurait être connexe. Q.E.D.

Proposition 2.42.4 Soient X  un espace localement compact, O un ouvert de X  
distinct de X  et soit X ' =  X  U {a;} le compactifié d'Alexandroff de X. Alors, les 
propriétés suivantes sont équivalentes.

1. L'espace X ' — O est connexe.
2. Le point u est adhérent à toute composante connexe de X  — O.
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Preuve 1 => 2 Notons (C*)^/ les composantes connexes de X  — O. Par hypothèse 
K  = X ' -  O est un espace compact connexe, u e  K  et X  — O = K  — {a;} est un 
ouvert non vide de K  distinct de K. On peut donc appliquer le lemme précédent 
dans l’espace K  à cet ouvert X  — O : toute composante connexe Ci est fermée dans 
K  — {a;}, mais n’est pas fermée dans K  ; autrement dit, u  est un point adhérent à 
Ci.

2 => 1 On a X  -  O -  U ^ /  Ci et X f -  O = \JieI Ci U {u}. D’après 2. et 
le corollaire 2.39.3, Ci U {a;} est connexe et il suffit d’utiliser le corollaire 2.39.5 
pour en déduire que X 1 -  O est connexe. Q.E.D.
Corollaire 2.42.5 Soit X  un espace non vide, localement compact et connexe et 
soit X 1 =  X  U {a;} le compactifié d’Alexandroff de X. Alors, X f est connexe si, 
et seulement si, X  n *est pas compact.
Preuve On applique la proposition précédente en prenant 0  =  0. Alors, X ' est 
connexe si, et seulement si, le point u> est adhérent à X. Dire que le point u> est 
adhérent à X  = X ' -  {cj} signifie que {u;} n’est pas ouvert, c’est-à-dire que X  
n’est pas fermé dans X \  donc n’est pas compact ce qui permet de conclure. Q.E.D. 
Note Bien entendu, ce corollaire peut se démontrer directement : si X  est compact, 
X  et {lü} sont deux fermés de X'  non vides, disjoints et de réunion X \  donc X ' 
n’est pas connexe ; réciproquement, si X  n’est pas compact, X  est dense dans X ' 
qui est donc connexe d’après le corollaire 2.39.4.
Corollaire 2.42.6 Les sphères Sn (n>  1) sont connexes.
Preuve La sphère §n est le compactifié d’Alexandroff de Rn, espace localement 
compact et non compact. Q.E.D.
Exemple 2.42.1 L’espace X  =  Rn (n > 1) a pour compactifié d’Alexandroff la 
sphère §n . Si A est une partie de Rn , dire que le point à l’infini u> est adhérent à A 
signifie simplement que A n’est pas borné dans Rn, la proposition 2.42.4 peut donc 
s’énoncer comme suit : §n — O est connexe si, et seulement si, les composantes 
connexes de Rn — O sont non bornées. On peut s’exprimer d’une façon imagée en 
appelant trou de O toute composante connexe bornée de Rn — O ; alors, §n — O 
est connexe si, et seulement si, l’ouvert O n’a pas de trou.
Exercice 2.42.1 Espace totalement discontinu Un espace topologique est dit totalement discontinu 

si les parties connexes de X  sont réduites à un point. Montrer qu'un espace métrique compact est 
totalement discontinu si, et seulement si, pour tout e >  0, il existe une partition finie de X  constituée 

de parties compactes de diamètre <  e [pour démontrer que la condition est nécessaire, utiliser la 

proposition 2.42.2].

Exercice 2.42.2 Montrer qu’un espace métrique compact non vide, totalement discontinu (exercice 

2.42.1) et sans point isolé est homéomorphe à l’ensemble de Cantor [utiliser la méthode de l ’exercice 

2.33.5 : construire la famille ( A e ) telle que A q n  A \  =  0, A e/ n  A en =  0 grâce à l'exercice 2.42.1].

Exercice 2.42.3 Soit X  un espace métrique compact.
1. Montrer que l’ensemble A  des parties de X  à la fois ouvertes et fermées est dénombrable [si 

(B n ) est une base de la topologie, noter que tout A  e  A  s ’écrit comme une réunion finie de B n ].
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2. On pose A =  (Dn )n > i  et on définit une application /  : X  -»  C  à valeurs dans l ’ensemble
de Cantor (exercice 2.6.2) en posant f (x)  =  xn / 3n où xn =  2 si x e  Dn et xn =  0  si
x 0  D n . Montrer que l ’application /  est continue, constante sur chaque composante connexe de X  et 
qu’elle prend des valeurs différentes sur des composantes connexes différentes [pour vérifier ce dernier 
point utiliser la proposition 2.42.2].

3. En déduire qu’un espace métrique compact est totalement discontinu (exercice 2.42.1) si, et 
seulement si, il est homéomorphe à un sous-espace fermé de l’ensemble de Cantor.

Exercice 2.42.4 Soit X  un espace métrique complet, connexe et localement connexe (par exemple 

[0,1]), montrer que X  ne peut s ’écrire comme une réunion infinie dénombrable de fermés, non vides 

et disjoints deux à deux [on raisonne par l’absurde, supposons X  =  IJ^Lo ^n où les Fn sont fermés, 
non vides et disjoints ; on pose Gn =  Fn — Fn et G =  U^L o ; montrer que G est fermé et en 

déduire que G est un espace de Baire, puis montrer que les Gn sont fermés dans G et d’intérieur vide 

dans G et en déduire que G est maigre dans G ; conclure].





E -  Corrigés des exercices

2.43 Exercices du chapitre 2.A

EXERCICE 2.1.1
1. Si a; + y  > 0, on a \x + y\ = x + y  où x < |æ| et y  < \y\ ; d’après (2.1.1), on en déduit 

\x + y \ =x  + y  <\x \+y< \x\ +  \y\.
Si x  + y  < 0, on a \x H- y\ = —(x + y)  = (—x) + (—y), où — x < \x\ et —y < \y\ et on 
en déduit l’inégalité triangulaire comme précédemment.

2. Quant à la seconde relation, lorsque x  et y  sont positifs, x  y  est positif d’après (2.1.2), 
d’où \xy\  = x y =  \x\ \y\.

Lorsque x est négatif et y positif, on notera d’abord que —x est positif. En effet, d’après
(2.1.1) on a x + (—x) < 0 + (-x ), soit 0 < —x. On peut alors écrire xy = —(—x) y, 
d’où \xy\ = |(—æ) y | = (—x) y d’après le premier cas étudié et on conclut en remarquant
que —x = |x| et y  = \y\.

On traite de la même façon les deux autres situations.
EXERCICE 2.1.2
On a æ =  y  +  x  — y,  d’où |æ| <  \y\ H- \x — y\  d’après l’inégalité triangulaire et 
\x\ -  \y\ < \ x  - y \  d’après (2.1.1). En permutant x  et y t on obtient 

M  -1*1  < \ y - x \  = \x — î /|,
d’où le résultat voulu.
EXERCICE 2.2.1 PARTIE BIEN ORDONNÉE DE M
1. On définit une application /  : A  -» R de la façon suivante : si A admet un plus grand 
élément a, on pose /(a ) =  a +  1 et, si a n’est pas le plus grand élément de A lorsqu’il 
existe, on prend

/(a) =  min M où M = {x  G A ; x > a}.
On a alors a < /(a) et A fl ]a, /(a)[ =  0 pour tout a e A.

2. Montrons que les intervalles ouverts ]a,/(a)[ et ]&,/(&)[ sont disjoints lorsque 
a ^  b. Supposons a < b par exemple, alors /(a ) < 6, sinon on aurait a < b < f  (à) 
ce qui est contraire à la définition de /(a) ; ceci prouve que a < /(a) <b<  / ( 6), d’où le 
résultat annoncé.

3. D’après la proposition 2.2.5, ]a, /(a)[flQ  est non vide ; il existe donc (axiome de 
choix) une application g : A -» Q telle que a < g(a) < f(a) pour tout a G A ; cette ap-



212 CHAPITRE 2 TOPOLOGIE

plication est injective d’après 2., d’où Card A <  Card Q et, Q étant dénombrable (exercice
1.9.3), ceci prouve que A est dénombrable.

EXERCICE 2.6.1

On a R =  Q U (R — Q) et, Q étant dénombrable, R -  Q ne peut être dénombrable, sinon R 
serait dénombrable (proposition 1.9.6). On a donc Card Q <  Card (R -  Q) ; vu l ’exercice
1.9.4 Card R =  Card (R -  Q), ce qui prouve que l ’ensemble des irrationnels a la puissance 
du continu.

EXERCICE 2.6.2 ENSEMBLE TRIADIQUE DE CANTOR

1. Les intervalles Eni étant ouverts, En est ouvert d’après (O i) (proposition 2.5.7) ; le 
même argument montre que E = U ^ L i &n est ouvert, donc C, qui peut s’écrire 
C = [0, 1] f l  (R -  E ), est fermé d’après (O2) (proposition 2.5.2). L’ensemble C  étant 
fermé et borné est donc compact (théorème 2.5.5).

2, a. Si un réel x e [0,1] admet deux développements triadiques, l ’un est 
de la forme x = O .a i. . .  an2 . . .  2 . . .  où n  >  1, a n =  0 ou 1, le second étant alors 
x =  O .a i. . .  an +  1. Si an = 0, alors an +  1 =  1 et si an = 1, an +  1 =  2 ; ceci 
montre que si l ’un des développements ne contient pas le chiffre 1, l ’autre développement 
contient le chiffre 1. Par conséquent, si x  admet un développement triadique ne contenant 
pas le chiffre 1, ce développement est unique.

b. Montrons que l ’ intervalle Eni peut s’écrire
(2.43.1) ]0 .a i .. .a n- i l , 0 . a i .. . a n-\2[ où aj = 0 ou 2.
Raisonnons par récurrence sur n. On a bien E\ = ]0.1,0.2[. Supposons (2.43.1) établi, alors 
Eni est le tiers central ouvert de l ’ intervalle ]0. a i . . .  a n- i ,  O .a i. . .  an- \  +  1[ et donne 
naissance à deux intervalles ouverts En+1 j qui peuvent donc s’écrire

]0. a i .. .a n_ i01, 0. a i .. . a n- i 02[ et ]0. a i .. .a n- i 21, 0. a i .. .a n- i 22[ 
et qui sont bien de la forme voulue ; ceci prouve le résultat souhaité.

Inversement, tout intervalle ]0 .a i . . .  a n- i  1 ,0 .a i . . .  an-\2[ où aj = 0 ou 2 est un 
intervalle Eni car il y a exactement 2n_1 tels intervalles.

c. Montrons qu’un point x € [0,1] appartient à l ’ensemble de Cantor si, et seulement 
si, x admet un développement triadique ne contenant pas le chiffre 1. On remarque d’abord 
que les extrémités des intervalles Eni appartiennent à l ’ensemble de Cantor et que ces points 
s’écrivent

O .a i. . .  a n- i l  =  O .a i. . .  a n_ i0 2  2 . .. ou 0 .c*i.. .a n- i2  où les aj  valent 0 ou 2 ; 
ces points admettent bien un développement triadique ne contenant pas le chiffre 1.

Considérons alors un point x  =  O .a i. . .  an . . .  qui n’est pas extrémité de l ’un des 
intervalles Eni ; d’après la caractérisation des intervalles Eni , on observe qu’un tel point 
appartient à En si, et seulement si, a i , . . . ,  an- i  G { 0, 2} et an =  1. Un tel point appar­
tient à l ’ensemble de Cantor si, et seulement si, x  n’appartient pas à En pour tout n  >  1 : 
x g Ei signifie ai  ^  l ,  x g E\ U E 2 signifie donc a\ ±  1 et <*2 7̂ 1 et par récurrence 
x e C signifie donc an î  1 pour tout n > 1. Ceci prouve le résultat annoncé.

3. Il en résulte que l ’application (aj)j>i •-» O .a i. . .  Qn . . .  est une bijection de l ’en­
semble {0 ,2 }n* sur l ’ensemble de Cantor. L’ensemble de Cantor a donc la puissance du 
continu d’après la remarque 1.8.2.
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2.44 Exercices du chapitre 2.B

EXERCICE 2.8.1

Soit T  un filtre sur un ensemble fini X.  Posons A = f]Me3r M.  L’ensemble X  étant fini, 
J  est fini, d’après (F2 ) on en déduit que A appartient au filtre T. Toute partie M  contenant 
A appartient à J  d’après (Fi) et tout M e J  contient A d’après la définition de A. Ceci 
montre que

J  = {M  <E y(X)  ; A C M}
et on obtient tous les filtres sur X  en faisant décrire à A l ’ensemble des parties non vides 
de X.
EXERCICE 2.9.1

Soit X  un espace métrique fini. Si X  est un ensemble à un élément {a }, la seule métrique est 
donnée par d(a, a) =  0 et la seule topologie sur X  est la topologie discrète. Si Card X  >  2 
et si a G X , posons r =  m inx6x - { a} d(atx), alors r est >  0 et B(a\r) =  {a } est un 
ensemble ouvert ; tout point étant ouvert, toute partie de X  est ouverte et la topologie est 
bien la topologie discrète.

EXERCICE 2.9.2

1. Sur un ensemble X  =  {a, 6} à deux éléments, il existe 4 topologies différentes. On a 
d’abord la topologie discrète et la topologie grossière, puis les deux topologies définies par 
O =  {0, {a }, X }  et O =  {0, { & } , * } .

2. Soit X  = {a, 6, c} un ensemble à 3 éléments.
Déterminons d’abord les topologies pour lesquelles aucun point n’est ouvert. On a 

d’une part la topologie grossière, d’autre part la topologie O =  {0, {a ,6 } ,X }  et celles 
qu’on obtient en permutant les points a, b et c. En résumé, on obtient 4 topologies. 

Supposons ensuite qu’un seul point soit ouvert. On obtient les topologies suivantes :
O =  {0, { a } ,X }  3 topologies,
O =  {0, {a } , {a, 6}, X }  6 topologies,
O =  {0, {a } , {b ,c } ,X }  3 topologies,
O =  {0, {a } , {a, 6}, {a, c}, X }  3 topologies.

Lorsque deux points sont ouverts, on obtient
O =  {0, {a } , {6 }, {a,b},X}  3 topologies,
O =  {0, {a } ,{6 } , {a ,6 } ,{a ,c }À /'}  6 topologies.

Lorsque tous les points sont ouverts, on obtient la topologie discrète.
En résumé, on obtient 29 topologies.

EXERCICE 2.9.3 TOPOLOGIE DE L’ORDRE

L’ensemble (B des intervalles ouverts étant stable par intersection finie est une base de to­
pologie d’après la proposition 2.9.4.

Tout intervalle fermé est fermé. On a en effet X  — [a, 6] = ] a[ U ]6, —> [ et s’ il s’agit
d’un intervalle illim ité

X —] i—, a] — ]a, —y [ et X  — [û , —> [ — ] 4—, û [.

La topologie usuelle sur R coïncide avec la topologie de l ’ordre ; il en est de même de
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la topologie de R.
EXERCICE 2.9.4

Soit 23 une base de la topologie de X  et soit x G X .  Si V  est un voisinage de x, il existe 
un ouvert O tel que x G O C V  ; cet ouvert peut s’écrire comme une réunion d’ouverts 
appartenant à CB. Il existe donc un ouvert U G 23 tel que x e U c O c V t t  ceci montre 
que l ’ensemble des ouverts appartenant à 23 et contenant x est un système fondamental de 
voisinages de x.

Réciproquement, supposons que Sx = {O G 'B ; x  G O} est un système fondamen­
tal de voisinages de x. Soit O un ouvert, pour tout x G O il existe Ox G Sx tel que 
x G Ox C O car O est un voisinage de x. Il en résulte que O =  \JxeQOx ; tout ouvert 
peut donc s’écrire comme une réunion d’ouverts appartenant à 23, ceci prouve que 23 est 
une base de la topologie.

EXERCICE 2.9.5

L’espace X  admet une base de topologie dénombrable que nous notons (Bn).
1. Soit A l ’ensemble des points où /  présente un minimum local strict. Soit a G A, 

il existe un voisinage K  de a tel que f(a) < f(x)  pour tout x  G V — {a }. D ’après 
l ’exercice 2.9.4, les ouverts Bn qui contiennent a constituent un système fondamental de 
voisinages de a, il existe donc n tel que a G Bn C V ; d’après l ’axiome de choix, il 
existe donc une application <p : A -» N telle que a G B ^ a) et / ( a )  <  f (x)  pour tout 
x G B ^ a) -  {a }. Montrons que cette application ip est injective. Soient a, b G A, a ^  6 , 
tels que n  =  y?(a) =  <p(b). On a alors f(a) < f (x)  pour tout x  G Bn-{ a }  e t/(6 ) <  f(x)  
pour tout x e Bn — {b}. Dans la première relation, prenons x = 6, on obtient f(a) < f(b) 
et dans la seconde x = a, alors f(b) < / (a ) , ce qui conduit à une contradiction ; <p est 
donc injective, ce qui prouve que A est dénombrable.

2. Soit B  l ’ensemble des points où /  présente un minimum local. Bien entendu, le 
résultat précédent ne subsiste pas ; B  n’est pas en général dénombrable comme le montre 
l ’exemple d’une application constante. Nous allons démontrer que f (B )  est dénombrable. 
Comme précédemment, on peut construire une application ip : B  -» N telle que a G B ^ a) 
et f(a) < f (x)  pour tout x  G B ^a ). Montrons que /  est constante sur B  f l  (p~1(n) 
quel que soit l ’entier n  : ceci prouvera le résultat voulu. Soient a, 6 G B  f l  ^ _1(n), alors 
Î ( q)  < f(x)  et f(b) < f (x)  pour tout x  G Bn> d’après la définition de l ’application 
ip ; en prenant x = b dans la première relation et x = a dans la seconde, on en déduit 
f(a) = /(6 ), ce qui prouve le résultat voulu.

EXERCICE 2.10.1

Prenons A =  [0,1] et B =  [1,2], alors
À u Ô  = ] 0 , l [U ] l , 2 [e t I n t ( y lu B )  = ]0 ,2 [.

EXERCICE 2.10.2

D’après (2.10.3), on a À U B C  Int (A U B) et il s’agit de démontrer l’inclusion 
Int (A U B) c  A U B. Soit x G Int (A U B)> alors x G A U B. Supposons par exemple 
x G A et montrons que x e À. Par hypothèse, A C  X — B et X — ~B est donc un ouvert 
contenant le point x> donc un voisinage de ce point ; d’autre part, A U B est un voisinage de
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X.  Il en résulte que (X — B)  f l  (A U B)  =  A  est un voisinage de x , d’où x  G À  C À U J3, 
ce qui prouve le résultat voulu.

EXERCICE 2.10.3

1. Soit x € A  f l  B y montrons que tout voisinage V de x  rencontre A  f l  B,  ceci prouvera 
que x  est un point adhérent à A  f l  B.  L’ouvert A  contenant x  est un voisinage de x> donc 
V f l  A  est un voisinage de x  et, x  étant un point adhérent à B, V f l  A  rencontre B , donc V 
rencontre A n  B, ce qui prouve le résultat souhaité.

2. L’ inclusion peut être stricte comme le montre l ’exemple suivant. Sur R, prenons 
A = ]0,2[ et B = [1,2]. On a alors A  f l  B  =  [1 ,2[ et A  f l  B = [1,2].

3. L’ensemble A  f l  B  étant fermé, on en déduit que A  f l  B  C A  H B  ; l ’ inclusion 
opposée étant trivialement vérifiée vu que A  H B  C A  f l  B,  on obtient bien la relation 
A H B  = A n  B.
EXERCICE 2.10.4 FAMILLE LOCALEMENT FINIE DE FERMÉS
1. D ’après (2.10.7), on a \JieI Ai c  |J i€/ Ai et il s’agit de démontrer l ’ inclusion opposée. 
Soit x e U ie /  Ai. Il existe un voisinage V de x qui ne rencontre qu’un nombre fini de Ai : 
il existe une partie finie J  de I  telle que V H Ai = 0 pour tout i € /  -  J. Considérons 
alors un voisinage quelconque W de x, V D W est un voisinage de x et, x étant un point 
adhérent à A = (JieI Aiy V H W rencontre A. Or,

vrnW'n.4 = Krwn((J.4i);
ceci prouve que W  rencontre B  =  (J ie j  Ai  et par conséquent x  est un point adhérent à B. 
D’après (2.10.7), B = Au J  étant fini. Il en résulte que x e Ai  C IJ ie / ^  et 
ceci prouve le résultat voulu.

2. Lorsque les ensembles Ai  sont fermés, on en déduit que

u ^ = o x .
iel i€l

L’ensemble U i€/  Ai est donc fermé : une réunion localement finie de fermés est fermée. 

EXERCICE 2.10.5

l .O n a F r(Â )  = Â - J  oùÂ = Âet 'Â D Â, d’où Fr (Â) c A  — À = Fr A.
De même, on a Fr (À) = Â — Â où À C A,  d’où Fr (;4) c  ~Â -  À =  Fr A.

2. SurRprenons>4 =  {0 }U ]1 ,2 [U ]2 ,3 [, alors A  =  {0 }U [1 ,3 ] et A  = ]1 ,2 [ü ]2 ,3 [, 
d’où

Fr (A) = {0 ,1 ,2 ,3 }, Fr (Â) = {0 ,1 ,3 } e t F r ( i )  =  {1 ,2 ,3 }.

Cet exemple montre que les inclusions peuvent être strictes et qu’ il n’existe en général 
aucune inclusion entre les ensembles Fr (A) et Fr (A).
EXERCICE 2.10.6

l,a. Démontrons d’abord l ’ inclusion
Fr (A U B)  U Fr ( A n  B) U (Fr (A) f l  Fr (B)) C Fr (A) U Fr (B).

En utilisant les relations A  U B  =  A  U B  et À U B  C Int (;4 U JB), on a
Fr (AU B) = M J B  -  Int (A U B)  C Â  U B -  À U B  C (Â -  À) U (B -  È ) , 

d’où Fr (A U B)  C Fr (4 ) U Fr (B).
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En utilisant les relations A n B c A r \ B e t À n B  = ln l (A n  B ), on a 
Fr (A H B) = ~ Â n B -  Int (A f l  B) C A n  B -  À  f l  B  C (A -  À) U (B -  B ), 

d’où Fr ( A n  B) C Fr (A) U Fr (B).
On a d’autre part Fr (A) f l  Fr (B) C Fr (A ) U Fr (B), ce qui prouve l ’ inclusion annon­

cée.
b. Démontrons ensuite l ’ inclusion opposée, c’est-à-dire

Fr (A ) U Fr (B ) C  Fr (A  U B ) U Fr ( A n  B) U (Fr (A) f l  Fr (B )).
Soit x e Fr (>1) U Fr (B ), supposons par exemple x e Fr (A) ; si x  G Fr (B ), on a 
x e Fr (i4) f l  Fr (B ) et par conséquent on peut supposer x ÿ. Fr (B ). Démontrons alors 
que x e Fr (A U B ) U Fr (̂ 4 f l  B ) et pour cela raisonnons par l ’absurde : autrement dit, 
supposons

x e Fr (A ), x £  Fr (B ), x g  Fr (A U B ) et æ £  Fr (A f l  B ).
Il existe donc un voisinage V de x tel que

(V D B  =  0 ou V  n  (X  -  B) =  0 
et

( V n ( A u B )  =  $ o u V n ( X  — A u B )  =  tï) 
et.

(V n  (A n  B ) =  0 ou v  n  (X  -  A  n  B ) =  0).
Le point x appartenant à la frontière de A, V n (A U B) est non vide, ainsi que
V n  (X  -  A f l  B ) ; on a donc V  f l  (X  -  A U B ) =  0 et V  n  (A f l  B ) =  0. En ré­
sumé, on a

( K n B  =  0ouV r n ( X - B )  =  0 )e tV r c A u B e t V r n A n B  =  0.
Si V  f l  B  =  0, il en résulte que V C A et ceci est absurde : x  étant un point frontière 
de A , V  doit rencontrer X  -  A. Si V  f l  (X  -  B) = 0, alors K  c  B  et par conséquent
V n A n  B = V n Aest  vide, ce qui est absurde comme précédemment, x  appartenant 
à la frontière de A. Dans tous les cas, on obtient donc une contradiction, ce qui prouve le 
résultat voulu.

c. Lorsque A f l B  =  0, on a A  f l  B  =  0, d’où Fr (A n  B ) =  0, et Fr A C A , 
Fr B  C B, d’où Fr A D Fr B  =  0 ; on en déduit que Fr (A U B ) =  Fr A U Fr B.

2. D ’après l ’exercice 2.10.2, on a Fr (AUB)  = A U  B - In t  (AuB)  = A u B - À u È .  
On remarque ensuite que

Â U B - i u B  =  ( Â - i ) U ( B - B )  =  Fr (A ) U Fr (B ), 
car À fl B  = A fl B  = 0.

EXERCICE 2.10.7 AXIOMES DE FERMETURE DE KURATOWSXI
L’application a possède bien les propriétés indiquées : 0 =  0 car l ’ensemble vide est fermé, 
A C 34, Â  =  A car A est fermé e t i4 ü B  =  i4 U B  d’après (2.10.7).

Réciproquement, soit a  une application vérifiant les propriétés 1. à 4. S’i l existe une 
topologie sur X  telle que a(A) = A pour toute partie A  de X ,  cette topologie est unique : 
une partie A de X  est fermée si, et seulement si, A = a(A). Nous allons donc démontrer 
que l ’ensemble de parties 0 ' =  {A  € ?(.X ) ; A = e*(;4)} vérifie les axiomes des fermés 
(proposition 2.9.5) ; ceci permettra de définir une topologie sur X  et il restera à vérifier que 
pour cette topologie a(A) = A.

Il s’agit de montrer que O7 vérifie (0[)t (O'z) et (O 3 ) .  Notons d’abord que 
A C B  => a(A) C a(B)  :
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on a en effet d’après 4. a(A) C  a(A)  U a(B  — A) =  a(B).  Considérons alors une 
famille non vide (Ai)iei de parties de X  telle que Ai  =  a(Ai)  pour tout z et posons 
A = p |.€J Ai  ; alors A c  Ai  pour tout z, d’où a(A) C a(Ai) = Ai  et par conséquent 
a(A) c  A,  d’où a(A) = A d’après 2., ce qui prouve (0[). Si A = a(A)  et B = a(B)> 
a(A  U B) = a(A)  U a(B) = A U B  d’après 4., ce qui prouve (0 '2). Enfin, a(0) =  0 et 
a(X) = X  car X  c  ot(X) d’après 2., ce qui prouve (0 3).

Vérifions ensuite que, pour la topologie définie par O', a ( A )  = A  pour toute partie A .  

Notons d’abord que a ( A )  est fermé d’après 3. et contient A  d’après 2. Si B est une partie 
fermée contenant A ,  on a alors a ( A )  C  ot(B) = B , ce qui prouve que a ( A )  est le plus 
petit fermé contenant A ,  d’où le résultat voulu.

EXERCICE 2.10.8 DIVERSES PROPRIÉTÉS DE DÉNOMBRABILITÉ
( D i )  => (£>2) Soit ( B n ) n € n une base de la topologie de X  ; on peut supposer que ces 

ouverts B n sont non vides. Choisissons alors un point x n dans chaque B n . On construit 
ainsi un ensemble D  = UnGN“tXn} dénombrable qui est partout dense, car tout B n > donc 
tout ouvert non vide, rencontre D .  Ceci prouve que l ’espace est séparable.

(£>2) => (£>4) Soit D  un ensemble dénombrable partout dense et soit (Oi)iei une 
famille d’ouverts non vides disjoints deux à deux. L’ensemble D  f l  O* est non vide ; il 
existe donc (axiome de choix) une application /  : I  —► D  telle que /(z ) G D  f l  Oi pour 
tout z. Cette application est injective : si /(z ) =  f(j)> l ’ intersection Oi f l  Oj est non vide, 
donc Oi =  Oj et i = j. Ceci prouve que I  est dénombrable.

(£>1) =$> (£>3) Soit (-Bn)neN une base de la topologie de X  et soit A  une partie de 
X  dont tous les points sont isolés. Pour tout a G A ,  il existe un voisinage V  de a tel que 
V  f l  A  =  {a } ; il existe donc un entier n tel que B n f l  A  = {a }. On peut donc définir une 
application f  : A  N telle que B f (a) f l  A  = {a }  pour tout a G A .  Cette application /  
est injective : si f(a) =  /(6 ), {a } =  B f  (a) f l  A  = B f ^ )  H A  =  {6}, d’où a = b. Ceci 
montre que A  est dénombrable.

(£)3) =î> (£)4) Soit (Oi)iei une famille d’ouverts non vides disjoints deux à deux. 
Choisissons un point Xi dans chaque Oi et posons A  = U ie / { x *}- ^ ous ês P°^nts A 
sont isolés, car Oi est un voisinage de Xi ne recontrant A  qu’au point Xi, les ouverts Oi étant 
disjoints deux à deux. D’après (£>3 ), l ’ensemble A  est donc dénombrable. L’application 
z Xi étant une bijection de /  sur A ,  ceci prouve que I  est dénombrable.

EXERCICE 2.10.9
1. L’ensemble An est non vide : 0 G An. Soit (Ai)iei une famille totalement ordonnée 
par inclusion d’ensembles appartenant à An et soit A la réunion de cette famille. Montrons 
que A appartient à An : ceci prouvera que A est un majorant de la famille (Ai) et par 
conséquent que An est inductif. Soit x, y G A, x  7  ̂ y ; la famille (Ai) étant totalement 
ordonnée, il existe z tel que Ai contienne x et y , d’où d(x, y) > 1/rz, Ai appartenant à An> 
et ceci prouve le résultat voulu.

2. Soit A n un élément maximal de A n (lemme de Zorn) et soit D  =  I J ^ i  A n - Mon­
trons que D  est partout dense, c’est-à-dire (proposition 2.10.5) que cl(x, D )  =  0 pour tout 
x  G X.  Or, dire que A n est un élément maximal signifie qu’ il existe an 6 A n tel que 
d(x, an) < 1 /n , d’où d(x, A n ) <  1 /n  et, vu que d(x> D )  < d(x, A n ) pour tout n, il en 
résulte que d(x, D )  =  0, ce qui prouve le résultat souhaité.

3. On suppose que toute famille d’ouverts non vides disjoints deux à deux est dénom-
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brable et il s’agit de prouver que l’espace est séparable. L’entier n étant fixé, l’ensemble 
des boules ouvertes B(x\ 1/2n) où x décrit An est donc dénombrable, ces boules étant 
disjointes deux à deux. Ceci signifie que An est dénombrable, donc D = U^Li An est 
dénombrable et partout dense d’après 2., ceci prouve que X  est séparable et par conséquent 
(D4 ) ^ ( D 2).

Étant donné que (£>2) => (D\) (proposition 2.10.7), on en déduit que dans un espace 
métrisable, les propriétés (£>1) à (£>4) sont équivalentes.
EXERCICE 2.10.10

1. Soit x un point isolé de A, il existe un voisinage V de x tel que V fl A =  {#}, d’où
V fl A C {x} ; le point x étant adhérent à A, V fl A est non vide et il en résulte que
V H A = {x}, ce qui prouve que x appartient à A et que x est un point isolé de A.

2. Soit Xi  la réunion de la famille (Ai)i^i de tous les sous-espaces de X  sans point 
isolé. Montrons que X\  est sans point isolé en raisonnant par l’absurde. Soit x un point isolé 
de X\  ; il existe un voisinage V de x tel que V D X\  = {æ}, d’où V D (JiG/ Ai = {x}, 
soit (JieI(V H Ai) = {æ} ; il existe donc i tel que V fl Ai =  {#}, ce qui signifie que x est 
un point isolé de Ai, ce qui est absurde vu la définition de la famille (Ai).

Le sous-espace X\ est donc le plus grand sous-espace de X  sans point isolé ; X\  
étant sans point isolé d’après 1., X\ est donc fermé. De plus, si A est une partie non vide de 
X —X \ , A admet nécessairement un point isolé : si A était sans point isolé, A appartiendrait 
à la famille (Ai) et serait donc contenu dans X\.
EXERCICE 2.10.11 ENSEMBLE DÉRIVÉ

Rappelons (définition 2.10.4) qu’un point x est un point d’accumulation de A si, et seule­
ment si, pour tout voisinage V de x, V fl A — {x} ^  0.

a. Soit A c  B et soit x G A!, alors quel que soit le voisinage V de x, V n A — {x} est 
non vide et a fortiori V fl B -  {#}, ce qui prouve que x est un point d’accumulation de B 
et par conséquent A C  B => A' C  B'.

b. Tout point d’accumulation de A étant adhérent à A, on a A U A! c  A. Inversement, 
soit x un point adhérent, tout voisinage V de x rencontre A ; si x n’appartient pas à A, on 
en déduit que V DA -  {x} est non vide, ce qui prouve que x est un point d’accumulation, 
d’où A U A! = A.

c. On a A c  A U B et B c  A U B, d’où A' c  (Au B)' et B' c  (Au B)' d’après a., 
d’où A! U B' C (A U B)'.

Inversement, soit x £ A! U B ', alors il existe un voisinage V de x tel que 
V fl A -  {æ} = 0 et V D B — {æ} = 0,

d’où V H (A U B) -  {æ} = 0, ce qui prouve que x £ (AU B)', soit (A U B)f c  A' U B'. 
On en déduit ainsi que (A U B)' = A! U B\

d. D’après b. et c., on a A! = (A U A')' = A1 U A" = A', soit a! =  A'.
e. On suppose que tout point est fermé. Soit x G A" et soit O un voisinage ouvert 

de x ; alors O D A! — {a;} est non vide, il existe donc un point y G O fl A!, y ^  x ; 
ce point y est donc un point d’accumulation de A et O — {#} est un voisinage de y, d’où 
(O — {#}) n A — {y} 7̂  0 et par conséquent (O -  {x} n A  = O nA  — {x} est non vide, 
ce qui prouve que x est un point d’accumulation de A et par conséquent An c  A! . D’après 
b. et c., on a donc A' = A! U Al' = A', soit Al = A' = (A)' d’après d. Ceci montre que
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l’ensemble dérivé est fermé.
EXERCICE 2.10.12 THÉORÈME DE CANTOR-BENDIXON
l,a. Supposons A C B et soit x un point de condensation de A. Pour tout voisinage V de 
xyVr\A  est non dénombrable et V fl B est a fortiori non dénombrable, ce qui prouve que 
x est un point de condensation de Bt d’où A C B => A** C B**.

b. Tout point de condensation x est un point d’accumulation : si V est un voisinage de 
x, V fl A est non dénombrable, donc V fl A -  {x} est non vide. Autrement dit, A* C A'.

c. Montrons que A* = A*, c’est-à-dire que l’ensemble des points de condensation est 
fermé. Soit x un point adhérent à A* et soit O un voisinage ouvert de x ; O fl A* est non 
vide, soit y E Ofl A*, alors O est un voisinage de y, donc O n  A est non dénombrable, ce 
qui prouve que x est un point de condensation de A.

d. On a A C A U B et B C A U J5, d’où A* C (A U B)* et B* C (A U B)*
d’après l,a., ce qui prouve que A* U B* C (A U B)*. Inversement, montrons que tout 
point de condensation x de AU B appartient h A* U B* en raisonnant par l’absurde : si 
x £ A* U B* y il existe un voisinage V de x tel que V fl A et V fl B soient dénombrables 
et par conséquent V fl (A U B) est dénombrable, ce qui est absurde. Ceci prouve donc que 
(AU B)* = A* U B*. _  __

e. D’après l,b., on a A* C A' C A, d’où A** C Â *, soit A** c  A* d’après l,c.
2. On suppose que l’espace X  admet une base de topologie dénombrable, soit (Bn). 

Soit x e A -  A* y il existe un voisinage V de x tel que VC\A soit dénombrable et par suite 
il existe un entier n tel que x E Bn et Bn fl A est dénombrable. Il en résulte que A — A* 
est contenu dans la réunion de tous les ensembles Bn fl A qui sont dénombrables et cette 
réunion étant dénombrable, on en déduit (proposition 1.9.6) que A -  A* est dénombrable. 
Un ensemble dénombrable n’ayant pas de point de condensation, on a (A — A*)* = 0, d’où 
A* = ( A -  A*)* U (A n  A*)* c  A** d’après l,a. et l,d., soit A* c  A** ; d’après l,e., 
on en déduit que A* = A**.

3. On pose X\ = X* et X 2 = X — X*. Alors, X\  est un sous-espace fermé d’après 
l,c., sans point isolé car Xi = X{ c  X[ d’après 2. et l,b. Le sous-espace X 2 = X  -  X* 
est dénombrable d’après 2. Ceci prouve le résultat voulu.
EXERCICE 2.11.1

Si X  est un ensemble fini, tout filtre J  sur X  est fini ; il en résulte que l’ensemble f |A,/€:r M 
appartient au filtre et est donc non vide. Si l’intersection C\Me? M est vide» l’ensemble X  
est donc infini. En outre, pour tout x e X y il existe Mx E J  tel que x £ Mx, soit 
Mx C X -  {x} et par suite X -  {x} appartient au filtre T. Si A est une partie finie de X t 
on en déduit que X -  A =  fixe a  (X ~~ (a’}) appartient au filtre qui est donc plus fin que 
le filtre des complémentaires des parties finies.
EXERCICE 2.11.2

Soit J  un filtre sur X, montrons que /(? )  =  {f(A) ; A € T} est un filtre sur Y  lorsque 
/  est surjective. Vérifions (Fi). Soit M  une partie de Y  telle que M  D f(A) où A E T  ; 
posons B =  alors B D  A, donc B appartient à J e t  M = f(B) (exercice 1.2.2)!
ce qui prouve (Fi). Quant à (F2), soit A, B e  J , alors

M = f (A )n f (B )  Z) f  (An B),
d’où M e / ( J )  d’après (Fi). Enfin, 0 g /(y )  car 0 0 J e t  Y = f(X) e f(J)  car /  est
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surjective.

EXERCICE 2.11.3 FILTRE INTERSECTION

1. Si J  =  f |i€/ 9* = {M C X ; M  e J i  pour tout z G 1} est un filtre, ce filtre sera la 
borne inférieure de la famille Soient A  G 3r et F  D A f alors A  G % pour tout
z, d’où F  G J *  pour tout z, ce qui prouve (Fi). Soient A, B  G J,  alors A , F  G 3  ̂ pour 
tout z, d’où i4 fl B  G 3  ̂ pour tout z, soit i4 fl B  G J , ce qui prouve (F2). Quant à (F3), 
l’ensemble vide n’appartenant à aucun 3  ̂n’appartient pas à 3r et X  appartenant à tous les 
Ji appartient à J.

2. D’après la définition même d’une borne inférieure, dire que le filtre J  est plus fin que 
le filtre V(a) des voisinages d’un point a signifie que 3  ̂est plus fin que V(a) pour tout z, 
ce qui prouve le résultat voulu.

EXERCICE 2.11.4

1. L’ensemble 231 x 232 est un ensemble non vide de parties non vides ; en outre, soient 
B i j B i  G 23i, # 2 , B '2 G $ 2, alors (proposition 2.8.3) il existe B "  G 23i et B2 G $2 tels 
que B "  C B\  fl B[  et B2 C B2 fl B2, d’où

(Fl X £2) n (B[ X b 2) = (Fl n b [) X (f 2 n f £) d Fi' n F2 
et ceci prouve que 23i x $ 2  est une base de filtre. Montrons que le filtre engendré J  ne 
dépend que des filtres 3*. Il suffit de remarquer que la base de filtre J i  x 3^ est équivalente 
à la base de filtre 231 x $ 2  ; il est évident que J i  x J 2 est plus fine Œ3i x Œb et si Mi G J* 
il existe Bi G tel que Fi C Àfi, d’où Fi x F2 C Mi x M2, ce qui prouve l’inclusion 
opposée.

2. Lorsque ^i et J2 sont les filtres de Fréchet sur X \  = X2 = N, le filtre J  admet 
donc pour base [py +oo[x[q, +oo[ où p et q décrivent N. Cette base de filtre est en fait 
équivalente à la base de filtre, évidemment moins fine, ([n, +oo[2)n€N, vu que

[p,+oo[x[q,+oo[D [n,+oo[2 où n = max(pyq).
Le filtre J  est strictement plus fin que le filtre J'des complémentaires des parties finies. 

En effet, soit A une partie finie de N2, il existe un entier n tel que A C [0, n[2 et il résulte 
que N2 - A d  [n, -|-oo[2, d’où N2 — A  G 3̂ , ce qui prouve que J  est plus fin que 3r/. Étant 
donné que [1, + o o [2G J  -  3r/, J  est strictement plus fin que

3. Il suffit d’écrire la définition d’une valeur limite de l’application /  suivant une base 
de filtre. On remarquera que

x = lim /  => x = lim /,-r y
mais la réciproque est en général fausse comme le montre l’exemple suivant. Sur R, la suite 
double xm,n =  1 /(m  + 1) tend vers 0 selon J , mais n’a pas de limite selon 3r/.

EXERCICE 2.11.5

1. Le filtre J  est un ensemble filtrant lorsqu’on le munit de la relation d’ordre indiquée : 
soit A yB  G 3r, alors A  fl F  appartient à £ F e tA < ;4 n F , F < i4 f lF .

2. Le filtre 3r/ associé à la suite généralisée (x m ) m ç ' j admet pour base l’ensemble des
S(M) = | J  {z n } où  M décrit 3r.

N C M ,  N Ç X

Lorsque N  C M , on a x n  C N C M , d’où 5(M ) C M  et ceci prouve que le filtre 3=* est
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plus fin que 3.
EXERCICE 2.12.1 FILTRE A BASE DÉNOMBRABLE

1. Soit 3  un filtre admettant une base dénombrable (Bn) qu’on peut supposer décroissante 
et soit 3 ' l ’ intersection de tous les filtres élémentaires plus fins que 3. Par définition, le filtre 
3' est plus fin que 3. Montrons que ces deux filtres coïncident et, à cet effet, raisonnons 
par l ’absurde. Supposons 3' strictement plus fin que 3  : alors, il existe M e  3' tel que 
Bn (jL M  pour tout n ; il existe donc xn G Bn -  M.  On construit ainsi une suite (æn) ; le 
filtre élémentaire 3\ associé à cette suite est plus fin que 3  vu que xn G Bn, donc plus fin 
que 3' et par conséquent M e  J i ,  ce qui est contradictoire avec le fait que xn 0 M pour 
tout n.

2. D’après l ’exercice 2.11.3, un filtre 3  à base dénombrable sur un espace topologique 
converge vers un point a si, et seulement si, tous les filtres élémentaires plus fins que 3 
convergent vers a, ce qui prouve le résultat voulu.

EXERCICE 2.12.2

Soit x e  A tel qu’ il existe une suite (xn) de A qui converge vers x telle que xn ^  x 
pour tout n et soit V un voisinage de a;, alors il existe n tel que xn G V et par conséquent 
xn G V f l  A -  {æ}, ce qui prouve que le point x n’est pas un point isolé (on notera que 
cette démonstration n’utilise pas le fait que l ’espace est à base dénombrable de voisinages).

Réciproquement, soit x e A un point non isolé et soit (K*) un système fondamental 
dénombrable décroissant de voisinages de x. Alors, Vn f l  A — {x} est non vide pour tout 
n ; choisissons un point xn dans chaque Vn f l  A -  {æ}, on construit ainsi une suite (xn) 
de A qui converge vers x telle que xn i 1 x pour tout n.
EXERCICE 2.12.3

1. Reprenons les notations de l ’exercice 2.6.2. On a, pour tout entier N  >  1,
C c  [0, 1] -  Un=i En et cet ensemble est la réunion d’un nombre fini d’ intervalles fermés 
disjoints deux à deux et de longueur S~N ; étant donné que 3~N tend vers 0 lorsque N  
tend vers l ’ infini, l ’ensemble de Cantor ne peut contenir d’ intervalle ouvert non vide, ce qui 
prouve que l ’ensemble de Cantor est d’ intérieur vide.

2. Soit x =  O .a i. . .  a n • • ocj G {0 ,2 }, un point de l ’ensemble de Cantor. Construi­
sons une suite (æ„) de C convergeant vers x telle que xn ^  x pour tout n, ceci prouvera 
que l ’ensemble de Cantor n’admet pas de point isolé (exercice 2.12.2). L’entier n >  1 étant 
fixé, posons

fa = Oij si j  ^  n et =  0 si an = 2, pn =  2 si an =  0,

puis xn =  0 ./? i. . .  . . . .  On obtient ainsi un point xn G C tel que \x -  xn\ = 2 x  3 " n ;
on construit ainsi une suite (xn) ayant les propriétés voulues.

EXERCICE 2.12.4 ESPACE SÉPARABLE A BASE DÉNOMBRABLE DE VOISINAGES

Soit D un ensemble dénombrable partout dense. Pour tout x G X,  il existe (proposi­
tion 2.12.1) une suite (a?n) de D qui converge vers x ; il existe donc une application 
/  : X  -> D® telle que, pour tout x G X t la suite f(x) converge vers x. Cette applica­
tion /  est donc injective, d’où

Card X  < Card DN
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et ceci prouve que X  a au plus la puissance du continu.

EXERCICE 2.13.1

La condition est nécessaire : si /  est continu au point a et si la suite généralisée (Xi)iei 
converge vers a, alors la suite généralisée (f(xi))iei  converge vers /(a ) . En effet, soit V 
un voisinage de /(a ) , il existe un voisinage W de a tel que f(W)  C V et un indice i G I 
tel que Xj G W pour j  > i , d’où f(xj) G V pou rj >  z, ce qui prouve le résultat voulu.

Réciproquement, supposons que pour toute suite généralisée (Xi)iei qui converge vers 
a, la suite généralisée f(xi)iei  converge vers /(a )  et montrons que /  est continu au point 
a. Raisonnons par l ’absurde : si /  n’est pas continu au point a, il existe un voisinage V de 
/(a )  tel que f (W)  çLV quel que soit le voisinage W de a, autrement dit f(W)  f l  (X -  V) 
est non vide ; il existe donc xw  E W  tel que f(pcw) i  V. Munissons le filtre V(a) de la 
relation d’ordre W < W' si W D W1 ; on obtient ainsi d’après l ’exercice 2.11.5 une suite 
généralisée (xw)wçv(a) qui converge vers a alors que la suite (f ( x w )) ne converge pas 
vers /(a ) , le voisinage V ne contenant aucun f (xw)-
EXERCICE 2.13.2

La condition est évidemment nécessaire (sans hypothèse sur X  et Y). Réciproquement, on 
suppose que, pour toute suite (xn) de X  convergeant vers a, la suite ( f (xn)) admet une 
limite ; montrons alors que la suite ( f ( x n)) converge vers /(a ) , ceci prouvera la continuité 
de /  au point a. Considérons la suite (yn) définie par y^n =  xn et y2n+i = a. Cette 
suite (yn) converge vers a, la suite (f(yn)) admet donc une limite d’après l ’hypothèse. 
Montrons que toute valeur limite l de cette suite (f (y n)) est nécessairement égale à /(a ) . 
Raisonnons par l ’absurde, supposons l ^  /(a ) . La sous-suite ( / ( î /2n + i)) converge vers l 
et, vu l ’hypothèse faite sur Y, Y  — { / ( a ) }  est un voisinage ouvert de l ne contenant aucun 
terme de cette sous-suite, ceci est absurde. Ceci montre que la suite ( f (y n)) converge vers 
/ ( a )  et on en déduit que la sous-suite ( f ( x n)) converge vers /(a ) , ce qui prouve le résultat 
souhaité.

EXERCICE 2.13.3

1 => 2 Soit A une partie de ^ ,  on a À c  A, d’où f ~ l (À) C f ~ x(A) et, f ~ 1(À) étant 
ouvert, on en déduit que f ~ 1(À) C Int ( f ~ 1(A)).

2 => 3 Soit A une partie de y ,  posons B = Y  — A ; d’après 2., on a 
f ~ 1(B) C Int ( f ~ 1(B)) où

f - \ È )  =  / -1(K -  A) = X  -  r \ A )  
et

Int f ~ \ B )  = Int (X — f ~1(A)) = X  —
on en déduit X — f ~ 1(A) C X — / - 1(A ), d’où f ~ 1(A) c  f ~ 1(A)t ce qui prouve le 
résultat voulu.

3 => 1 Soit A  une partie fermée de Y.  D’après 3., on a / _1(^4) c  / _1(i4), ce 
qui prouve que f ~ 1(A) est fermé ; l ’ image réciproque de tout fermé étant fermée, /  est 
continu.

EXERCICE 2.13.4

Soit A un S«5 de Y f alors A peut s’écrire A = (X Lo  où (On) est une suite d’ouverts
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de Y  ; on a alors /  x(i4) =  f)^L0 f  1(&n) où les /  l (On) sont ouverts d’après la 
continuité de / ,  ce qui prouve que f ~ l (Â) est un Sa de X.

De même, un s’écrit A = |J£L0 &n où (Fn) est une suite de fermés de y  ; on a 
alors f ~ 1(A) =  U^Lo où les f ~ 1(Fn) sont fermés d’après la continuité de / ,  ce
qui prouve que f ~ l (A) est un de X.
EXERCICE 2.13.5

1. Soit A une partie dense dans X , on a alors d’après la continuité de / ,
f ( X )  = f ( Â ) ç J ( Â )

et, /  étant surjective, ceci prouve que Y  =  f (A)  : f (A)  est dense dans Y.
2. Soit B une partie dense dans Y y montrons que tout ouvert non vide O de X  rencontre 

/ _ 1(J5), ceci prouvera que f~ 1(B) est partout dense. L’application /  étant ouverte, f(0)  
est un ouvert non vide et, B étant partout dense, f (0)  f l  B est non vide : il existe x e O 
tel que f(x) E B , soit x E f ~ l(B), ce qui prouve que O f l  f ~ 1(B) est non vide.

EXERCICE 2.13.6

D’après la continuité de l ’application x t-> d(x,A)  -  d(x,B)  (exemple 2.13.1), les en­
sembles disjoints

O a =  {x E X  ; d(x, A) < d(x, B)} et Ob = {x E X  ; d(x> B) < d(x) A )}, 
sont ouverts. D’autre part, soit x € A, alors d(x, ^4) =  0 et d(x, B) > 0 car x n’appartient 
pas à B vu que A f l  B  est vide ; ceci prouve que x E O a , d’où A c  O a - Ceci montre
que O a est un voisinage ouvert de A , de même O b  est un voisinage ouvert de B  et ces
voisinages sont disjoints, ce qui prouve le résultat voulu.

EXERCICE 2.14.1

Soit a E X.  Si f(a)g(a) = 0, la fonction /  g admettant un minimum au point a est s.c.i. 
en ce point (remarque 2.14.1). Supposons f(a)g(a) > 0 et soit 0 <  a < f(a)g(a) ; on 
peut écrire a  =  £7 où 0 <  P < f(a)  et 0 <  7 <  g(a) : on choisit a/g(a) < fi < f(a) 
puis 7 =  a/f i . Les fonctions /  et g étant s.c.i. au point a, il existe des voisinages V  et W  
de a tels que f (x)  > P pour x € V et g(x) > 7 pour x  E W> d’où f(x)g(x) > ^7 =  a  
pour x e V n W  et ceci prouve que la fonction f(x)g(x)  est s.c.i. au point a.
EXERCICE 2.14.2

Soient a E X  et a > 1 / / ( a ) ,  c’est-à-dire l / a  < / (a )  ; la fonction /  étant s.c.i. au point 
a, il existe un voisinage V  de a tel que f (x)  > l / a  pour x  E V, d’où l / f ( x )  < a  pour
a; E K  et ceci prouve que 1 / f  est s.c.s. au point a.

EXERCICE 2.14.3

1. Soit a < ( /  o <p)(a). La fonction /  étant s.c.i. au point <p(à), il existe un voisinage V  
de ce point tel que f  (V) C ]a, + 00] et, d’après la continuité de y  au point a, il existe un 
voisinage W  de a tel que <p(W) C V, d’où ( /  o ip)(W) C ]a , + 00], ce qui prouve que 
/  o ip est s.c.i. au point a.

2. Soit a < (<p o / ) (a ) , posons b =  /(o ) . On a a < (p(b) et, la fonction ip étant 
continue au point 6, il existe e > 0 tel que (p(y) > a  pour y  E f(X)C\)b — e>b +  e[, 
donc pour tout y E f (X)n]b -  e,+oo] d’après la croissance de y.  La fonction /  étant
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s.c.i. au point a , il existe un voisinage V  de a  tel que / f a )  >  b — e pour x  G V,  d’où 
(<p o f ) (x )  >  a  pour x  G V, ce qui prouve que la fonction <p o f  est s.c.i. au point a.

EXERCICE 2.14.4

1. La continuité des fonctions f n résulte de la continuité de l ’application x d (x , X  -  O).
Montrons que la suite ( / n) est une suite croissante convergeant vers la fonction caractéris­
tique de O. Si x  G X  — O, f n (x) = 0 = lo f a )  et, si a; G O, d ( x , X  -  O) est >  0, il 
existe donc un entier n >  1 tel que d (x , X  -  O) >  1 /n, d’où f P(x)  =  1 =  lo fa )  pour 
p >  n, ce qui prouve le résultat voulu.

2. On pose On,k =  / - 1(]& /n, +oo[) pour n  >  1, 1 <  k < n — 1 ; ces ensembles 
Ontk sont ouverts, /  étant s.c.i.

On pose ensuite gn =  (1 /n )  montrons que /  =  supn pn. On a
9n(x) =  0 si 0 <  / f a )  <  1/ n  

et
9n(x) = k /n  si k/n  < / f a )  <  (k +  1 ) /n ,  1 <  k < n — 1, 

d’où 0 <  / f a )  — 0n fa) <  1/n  et ceci montre que la suite (gn) converge (uniformément) 
vers / .

Les fonctions gn : X  —> [0,1] étant s.c.i. (exemple 2.14.1), il existe d’après 1. une suite 
croissante (hnm)m>î de fonctions continues hnm : X  -» [0 ,1] telle que gn =  supm hnrn. 
Posons f n = sup1<i <n 1<J<n /it j.  Ces fonctions f n : X  -> [0,1] sont continues, la 
suite ( f n) est évidemment croissante. En outre, 0 <  hnm < 9n < (n — 1 ) /n , d’où 
0 < f n <  (n -  l ) / n  et ceci prouve que les fonctions f n sont à valeurs dans [0 ,1[ . Enfin, 
on a

sup f n = supsup hij = sup gi =  / .
n i  j  i

Ceci prouve le résultat voulu.
3. La fonction g étant à valeurs finies, la fonction /  -  g est bien définie et elle est

s.c.i. d’après la continuité de g. On peut donc supposer la fonction /  à valeurs positives. 
Considérons la fonction ip : R+ —> [0,1] définie par ip(t) = £ /( l -h t) si t G K+ 
et y?(+oo) =  1. D’après l ’exercice 2.14.3, la fonction tp o f  : X  -» [0,1] est s.c.i. ; 
d’après 2., il existe une suite croissante de fonctions continues f n : X  -> [0,1[ telle que 
ipo f  = supn / n. Notons ^  : [0,1[ [0, +oo[ la fonction définie par ÿ(s)  =  s/(  1 — s).
Cette fonction ^  étant continue croissante, la suite de fonctions ÿ o  f n : X -* [0, +oo[ est 
une suite croissante de fonctions continues à valeurs finies et

sup /lp O f n  = ' l p O p o f  = f \
n

la suite (ip o  f n ) possède toutes les propriétés voulues.

EXERCICE 2.15.1

1. Vérifions les axiomes des distances (définition 2.7.1). On a
d 2 ( x , y )  =  >p(di ( x ,  j/))  =  i p(di (y ,x) )  =  d2(y ,x) ,  

ce qui prouve (D i ). Quant à (£>2), <p(di(x,y))  =  0 équivaut à d \ ( x , y )  =  0 d’après les 
hypothèses faites sur donc à x  =  y.  Enfin, on a

d2(x , z )  =  i p(d\ (x , z ) )  <  ip(di (x ,y)  + d \ ( y , z ) )  
d’après la croissance de ipt d’où

d2(x , z )  <  ip(di(x}y))  +  y ( d \ ( y , z ) )  =  d2(x , y )  +  d2(y , z )  
vu les hypothèses, ce qui prouve l ’ inégalité triangulaire.
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2. Si p  est continue à l ’origine, pour tout e >  0, il existe ô >  0 tel que 0 <  u < ô 
implique 0 <  p(u) <  e:, d’où di(x,y) < ô => d,2 (x,y) < e.

Inversement, la fonction p  étant croissante, soit e >  0, ô = p(e), alors
p(u) < ô => u <  £, d’où d,2(x,y) < ô => d\(x,y) < e. distances d\ et cfe sont uni­
formément équivalentes.

3. La fonction p(u) = m in ( l, t t)  est continue, croissante, p(u) =  0 si, et seule­
ment si, u =  0 et p{u +  v) < p(u) + p(v) d’après l ’ inégalité (2.15.1). La fonction 
p(u) = u/(  1 +  u) possède les mêmes propriétés, l ’ inégalité p(u +  v) < p(u) +  <p(v) se 
vérifie comme suit

u + v _  u v < u + v
1 + u + v 1 + u + v l + u + v ~ l  + u 1 +  v*

EXERCICE 2.17.1

1. La condition est évidemment nécessaire d’après la définition même d’un espace séparé. 
Réciproquement, supposons que toute suite généralisée admette au plus un point limite et 
montrons que l ’espace est séparé. Raisonnons par l ’absurde, si l ’espace n’est pas séparé, 
il existe a, b e X, a ±  6, tel que tout voisinage de a rencontre tout voisinage de b ; 
soient V  G V(a), W  G V(b), choisissons un point xvnw  G V  n  W.  L’ensemble J  des 
intersections {V f l  W  ; V  G V(a) et W  G V (6) }  est un filtre (lemme 2.16.4) plus fin que 
les filtres V(a) et V(6). Vu l ’exercice 2.11.5, la suite généralisée converge à la
fois vers a et 6, ce qui contredit l ’hypothèse.

2. On suppose l ’espace à base dénombrable de voisinages et que toute suite admet au 
plus un point limite et il s’agit de démontrer que l ’espace est séparé. On raisonne comme 
précédemment en utilisant des systèmes fondamentaux dénombrables décroissants de voi­
sinages de a et b, soient (KO et (Wn) ; on choisit un point xn G Vn f l  Wn et on construit 
ainsi une suite (xn) qui converge à la fois vers a et b.

EXERCICE 2.17.2

1. Soit (Ai)içi une famille de parties finies, alors (J i€ /(^  ”  =  X  — A où
A = p|ie/ Ai est une partie finie, ce qui prouve (Oi). Si À et B sont des parties finies, 
(X -  A) fl (X -  B) = X  — C où C = A U B est fini, d’où (O2). L’axiome (O3 ) 
étant trivialement vérifié, on définit bien une topologie T sur X  en prenant pour ouverts 0 
et l’ensemble des complémentaires des parties finies.

2. Pour cette topologie, les fermés sont X  et les parties finies de X. En particulier, les 
points sont fermés. Lorsque X  est un ensemble fini, il en résulte que la topologie 7  est la 
topologie discrète, topologie séparée. Lorsque X  est infini, la topologie n’est pas séparée, 
car deux ouverts non vides 0 1 et O2 ont toujours une intersection non vide, vu que

x  — Oi n O2 =  ( x  — Oi) u ( x  — o 2)
est fini et l ’axiome de Hausdorff ne peut être vérifié.

3. Si X  est fini, les suites convergentes sont les suites stationnaires à partir d’un certain 
rang.

Lorsque X  est infini, montrons qu’une suite converge vers x si, et seulement si, pour 
tout y x, l ’ensemble {n G N ; xn = y} est fini. En effet, si x =  limn-+oo xn et si 
y ^  x, l ’ensemble X — {y }  est un voisinage ouvert de x, donc il existe un entier n  tel que 
xp G X -  {y} pour p > n et ceci montre que l ’ensemble {p G N ; xp = y} est contenu 
dans l ’ intervalle [0 ,n [, donc fini. Réciproquement, si {n G N ; xv = y} est fini pour tout
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y ^  x y soit O un voisinage ouvert de x  ; alors O =  X  — A où A est une partie finie ne 
contenant pas le point x ; il en résulte que

{n £ N ; xn G A} =  ( J  {n G N ; xn =  y}
yeA

est fini, donc contenu dans un intervalle de la forme [0, n[ ; on a alors xp € O pour p >  n 
et ceci prouve que la suite (xn) converge vers x.

En particulier, une suite (xn) dont tous les termes sont distincts (c’est-à-dire telle que 
l ’application n xn soit injective) converge vers tout point.

EXERCICE 2.17.3

1. Montrons que 23 est une base de topologie. Vérifions les propriétés (B\) et ( £ 2) de la 
proposition 2.9.4. Soient Oi et O2 des ouverts de X> D\ et D2 des parties dénombrables, 
alors

(0 \ — D\ ) n (O2 — D 2 ) =  0 \ n O2 — D\ u D2 
et ceci montre que 23 est stable par intersection finie, ce qui prouve (B \ ). Quant à (B 2), on 
remarque que X  = X  — 0 appartient à 23. Nous noterons T2 la topologie engendrée par 23. 
Cette topologie est plus fine que la topologie T i vu que tout ouvert O pour la topologie T i 
peut s’écrire O = O — 0 et est également ouvert pour la topologie T2.

2. Soit (xn) une suite convergente vers a pour la topologie T2. Montrons que cette
suite est nécessairement stationnaire et égale à a à partir d’un certain rang. Raisonnons par 
l ’absurde ; supposons qu’ il existe une sous-suite (xUk ) telle que xnk ^  a pour tout h, alors 
X  -  }  est un voisinage ouvert de a pour la topologie T2 qui ne contient aucun
terme de la sous-suite (xnk ), sous-suite qui converge vers a ; ceci est évidemment absurde. 
Les suites convergentes pour la topologie T2 sont bien les suites stationnaires.

3. Si la topologie 72 est métrisable, cette topologie est nécessairement la topologie 
discrète d’après 2. Il en résulte que, pour tout x G X,  il existe un ouvert O pour la topologie 
7\ et une partie dénombrable D tels que {æ} =  O -  D et ceci montre que O est un 
voisinage ouvert dénombrable de x pour la topologie 7i. Réciproquement, supposons que 
tout x admette un voisinage dénombrable pour la topologie 7i, alors x admet un voisinage 
ouvert dénombrable O et on peut écrire {x} = O — D oùD  = O — { x }  est dénombrable ; 
ceci montre que {# }  est ouvert pour la topologie T2 et cette topologie est donc la topologie 
discrète qui est métrisable. Ceci prouve que la topologie T2 est métrisable si, et seulement 
si, tout point admet un voisinage dénombrable pour la topologie 7i.

4. Prenons X  =  R muni de sa topologie usuelle 7\. Le procédé précédent permet de 
construire sur R une topologie 72 séparée (car plus fine qu’une topologie séparée), non 
métrisable d’après 3. et pour laquelle les seules suites convergentes sont les suites station­
naires.

EXERCICE 2.17.4

Montrons d’abord que la topologie est séparée. Soit a, 6 G X,  a < b. S’il existe c G ]a, b[,
] c[ et ]c, [ sont des voisinages ouverts disjoints de a et b. Sinon, ] b[ = ] g-, a] et
]a, -> [ =  [6, [ sont des voisinages ouverts disjoints de a et 6.

Montrons ensuite que la topologie est régulière, c’est-à-dire que tout voisinage d’un 
point x  contient un voisinage fermé. Un voisinage de x  contient un intervalle ouvert conte­
nant x  ; nous supposerons que cet intervalle est de la forme ]a ,6[, on raisonnerait de la 
même façon lorsqu’ il est de la forme ] b[ ou ]a, -> [. On suppose donc x  e]a, 6[ .
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S’il existe a, p  G X  tel que a < a < x < @ <  b, alors x  G ]a, /3[ C  [a, /3] c  ]a, b[ , 
ce qui montre que [a, /?] est un voisinage fermé de x  contenu dans ]a, b[ .

Si ]a, æ[ =  ]xy 6[ =  0, ]a, b[ = {x} est un voisinage fermé de x.
Si ]a, æ[ =  0 et s’ il existe G X  tel que x < <  6, on a a; G ]a, /?[ C [x, /3] C ]a, 6[ ,

ce qui montre que [;x , /?] est un voisinage fermé de x  contenu dans ]a, 6[ . On raisonne de
façon analogue lorsque ]æ, 6[ =  0 et s’ il existe a  G X  tel que a < a < x.

Ceci prouve que la topologie de l ’ordre est régulière.

EXERCICE 2.17.5 DOUBLE LIMITE

1. Posons y  =  l im ^  /  et so it ^  un voisinage fermé de y.  Il existe M* G J* tel que 
/ ( M i  x  M 2 ) C  V.  Pour tout x \  G M u  on a donc / ( æ i ,  M 2 ) C  K  ; tout point limite 
étant un point adhérent, on en déduit que g (x \ )  G V  =  V  pour tout x \  G M i ,  c’est-à-dire 
g ( M i )  C V.  L’ensemble des voisinages fermés de y  constituant un système fondamental 
de voisinages de ce point, l ’ inclusion précédente prouve que y  =  l im ^  g. Ceci prouve le 
résultat voulu, qu’on peut écrire sous la forme

lim  lim  /  =  lim  / .ifl 'J‘2 9iXlf2
2. Prenons X  =  N et pour J* le filtre de Fréchet. Considérons une suite double (æm>n) 

dans un espace régulier Y.  On suppose que cette suite double admet une limite y  suivant 
la base de filtre 7\ x  J 2, c’est-à-dire que, pour tout voisinage V  de y, il existe un entier n  
tel que xPtQ G V  pour p > n et q > n. On suppose en outre que, pour tout m, la limite 
ym = l iin n_*oo xm,n existe, alors la suite (ym) converge vers y d’après 1.

EXERCICE 2.17.6

l. L’ensemble *B des intervalles [a ,6[, a < 6, est une base de topologie sur R car !B est 
stable par intersection finie et M =  U /ieB A (proposition 2.9.4). Notons 7  la topologie 
définie par cette base de topologie ; cette topologie est plus fine que la topologie usuelle 7o 
de R. En effet, soit ]a, b[ un intervalle ouvert, alors ]a, b[ =  U a« *< 6[a >M est ouvert Pour 
la topologie 7  ; tout ouvert de R pour 3b étant une réunion d’ intervalles ouverts est donc 
ouvert pour T  : ceci prouve que 7  est plus fine que 3o.

2. La topologie T, plus fine qu’une topologie séparée, est séparée. La suite 
([a, a +  l / n ] ) n> i est un système fondamental de voisinages fermés (car ces intervalles 
sont fermés pour la topologie usuelle) de a : en effet, tout intervalle [a,/3[ qui contient 
le point a contient un intervalle de la forme [a, a +  1/n]. Tout point admet un système 
fondamental dénombrable de voisinages fermés. La topologie 7  est donc régulière.

3. Montrons que R, muni de la topologie 3\ est séparable : tout intervalle [a, b[ , a < 6, 
contient un rationnel, donc Q est partout dense pour la topologie T, ce qui prouve le résultat 
voulu.

4. Montrons que la topologie 7  n’admet pas de base de topologie dénombrable. Soit 
(Bi)iei une base de topologie. Soit i GR, l ’ intervalle ouvert [æ, +oo[ peut s’écrire comme 
une réunion de Bi ; il existe donc nécessairement un i tel que x G Bi et Bi C [x, + o o [, 
c’est-à-dire tel que x = m in Bi. On peut donc définir une application /  : R -> I  telle que 
x = min Bf(x) ; cette application /  est nécessairement injective, ce qui prouve que I  a au 
moins la puissance du continu. Ceci prouve qu’ il ne saurait exister de base de la topologie 
3' qui soit dénombrable.

L’espace R, muni de la topologie 3', étant séparable d’après 3., cette topologie n’est pas
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métrisable d’après la proposition 2.10.7.

EXERCICE 2.18.1

1. Notons d’abord que diam A <  diam B si A c  B , en particulier diam A <  diam A. Dé­
montrons l ’ inégalité opposée, soit £ >  0, il existe xyy G A tel que
diam A <  d(xy y) + £ \ les points x et y étant adhérents à A, il existe x' G A et y' G A tels 
que d(xyx') < e et d(y,y') < e> d’où diam A < d(yyy') +  3e <  diam A H- 3e et, ceci 
étant vérifié pour tout e >  0, diam A <  diam A, ce qui prouve le résultat voulu.

2. Soit e > 0, il existe x,y G AU B tel que diam (A U B) < d(x, y) +  e. Si x et y 
appartiennent à A , d(xy y) <  diam A <  diam A  +  diam B , d’où 

diam (A U B) <  diam A +  diam B +  e
et de même si x et y appartiennent à B. Lorsque x G A et y G B, si A f l  B  est non vide, 
soit z e A n  B, alors d(xyy) < d(xy z) +  d(zy y) <  diam A +  diam B , d’où, d’après 1., 

diam (AU B) <  diam A +  diam B  -h e.
Si c’est A f l  B qui est non vide, on choisit un point z G A f l  B et on raisonne de la même 
façon. L’ inégalité ci-dessus valable dans tous les cas prouve le résultat voulu.

EXERCICE 2.18.2

L’ensemble C des points de continuité de /  peut s’écrire
oo

c  = {x € X  ; w (/;*) = 0} = f |  {x € X  ; w(f;x) < 1/n}
n = l

où les ensembles {x G X  ; u( f \  x) < 1 /n } sont ouverts, la fonction u  étant s.c.s. (propo­
sition 2.18.5). Ceci prouve que C est un Sa-

EXERCICE 2.18.3

Il s’agit de démontrer que le théorème de Cantor (proposition 2.18.9) caractérise les es­
paces métriques complets. Soit (æn) une suite de Cauchy, posons Bn =  Up>n ( æp} et 
Fn = Bn. Ces ensembles Fn sont fermés, la suite (Fn) est décroissante comme la suite 
(Bn) et le diamètre de Fn tend vers 0, car la suite (xn) est de Cauchy et 
diam Fn = diam Bn d’après l ’exercice 2.18.1. Il en résulte que l ’ intersection f£ L o  ^ n 
est réduite à un point, ce qui signifie que la suite (xn) admet une valeur d’adhérence ; 
la suite (xn) converge donc d’après la proposition 2.18.1, ce qui prouve que l ’espace est 
complet.

EXERCICE 2.18.4

1. L’ image du filtre des sections sur /  par l ’ application i Xi admet pour base l ’ensemble 
des Bi = où i décrit I. Dire que ce filtre est de Cauchy signifie donc que, pour
tout e > 0, il existe i e I  tel que diam Bi < e, c’est-à-dire d(xjyXk) < e po u rj >  i et 
k>i.

2. Tout filtre convergent étant de Cauchy, toute suite généralisée convergente est de 
Cauchy.

3. Si X  est un espace métrique complet, toute suite généralisée de Cauchy converge 
d’après la définition 2.18.2. Réciproquement, si toute suite généralisée de Cauchy converge, 
toute suite (ordinaire) de Cauchy converge et l ’espace est complet d’après le théorème
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2.18.8.

EXERCICE 2.19.1

La topologie initiale 7  vérifie la propriété indiquée (corollaire 2.19.4). Réciproquement, soit 
7f une topologie sur X  vérifiant cette propriété. Prenons pour espace Y 
l ’espace X  muni de la topologie 7' et pour application /  l ’application identique 
Ix : (X , T') (X , O'7) ; cette application étant continue, les applications

f i o I x = f i i ( X , ‘J')->Xi
sont continues, ce qui prouve que la topologie 7' est plus fine que la topologie 7  (théorème 
2.19.1). Prenons ensuite pour espace Y  l ’espace (X , T) et pour application /  l ’application 
identique Ix  : (X ,7 )  -» (X ,T ')  ; les applications f ioIx  : (X,CT) -» X i étant continues, 
cette application Ix  : (X , 7) -» (X , T ') est continue, ce qui signifie que la topologie 7  est 
plus fine que 7f. Ceci prouve que 7 = 7' et le résultat voulu.

EXERCICE 2.19.2 TOPOLOGIE ENGENDRÉE PAR UNE FAMILLE DE PARTIES
l. Notons X i  l ’espace topologique obtenu en munissant l ’ensemble X  de la famille d’ou­
verts Oi = {0, i 4 i ,X } .  Si 7  est une topologie sur X ,  dire que A* est ouvert pour cette 
topologie signifie que l ’application identique Ix  : ( X , 7 )  -> X i ,  que nous noterons / i, 
est continue. La topologie initiale sur X  associée à cette famille est donc la topolo­
gie la moins fine sur X  pour laquelle tous les ensembles Ai sont ouverts. On dit que cette 
topologie est engendrée par la famille (A i) .

D’après (2.19.2), une base de cette topologie est constituée des intersections p|ieJ A< 
où J  décrit l ’ensemble des parties finies de I.

2. Étant donné un espace topologique Y , le corollaire 2.19.4 montre qu’une application 
/  : Y  —> X  est continue si, et seulement si, les applications f i o f : Y  —> Xi  sont 
continues, c’est-à-dire si f ~ 1(Ai) est un ouvert de Y  pour tout i.
EXERCICE 2.20.1

Dire que M est ouvert dans A signifie qu’ il existe un ouvert U de X  tel que 
M = U fl A ; de même il existe un ouvert V de X  tel que M = V fl B. On en déduit que 
M = (U fl V) fl (A U B), ce qui prouve que M est ouvert dans A u  B.

Le raisonnement est analogue lorsque M est fermé dans A et dans B.
EXERCICE 2.20.2 SOUS-ESPACE LOCALEMENT FERMÉ

1 => 2 Soit x G A, il existe un voisinage Vx de x tel que
Vx fl A soit fermé dans Vx, c’est-à-dire tel que Vx fl A =  Vx Q A  fl Vx. Soit Ox un 
ouvert tel que x G Ox C Vx ; d’après l ’exercice 2.10.3, on a Ox f l  A C Ox f l  A, d’où

o x n Â  c  O ifiA  n o x c  vx n  A n  vx = vx n  A c  A
et ceci prouve que (U xga Ox) n A c  A \ l ’ inclusion opposée étant trivialement vérifiée, 
on a donc l ’égalité, soit A = O D A où O désigne l ’ouvert Ux€>i 0 *  et ceci prouve que A 
est une partie ouverte de A.

2 => 3 Dire que A est une partie ouverte de A signifie qu’ il existe un ouvert O tel que 
A =  O fl A, ce qui prouve que A peut s’écrire comme l ’ intersection d’un ouvert et d’un 
fermé.

3 => 4 On suppose que A =  O fl F où O est un ouvert et F un fermé, alors A est fermé 
dans l ’ouvert O, ce qui prouve 4.
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4 => 1 D’après 4., il existe un ouvert O contenant A et un fermé F  tel que A =  O f l  F, 
alors, pour tout x € A, O est un voisinage de x et A f l  O =  O f l  F , donc A D O est fermé 
dans O, ce qui prouve 1.
EXERCICE 2.20.3 RECOLLEMENT D’ESPACES TOPOLOGIQUES
Notons Oi l ’ensemble des ouverts de X* et soit 7  une topologie sur X  vérifiant les condi­
tions requises. Un ouvert O de X  peut s’écrire O =  | J iG/ Oi où Oi =  O f l  Xi  est un 
ouvert de Xi. Inversement, soit Oi un ouvert de X i , alors Oi est ouvert dans X , X» étant 
ouvert dans X ,  et par suite O = (J i€/ Oi est un ouvert de X .  Ceci montre que, s’ il existe 
une topologie vérifiant les propriétés voulues, cette topologie est unique : l ’ensemble des 
ouverts est nécessairement donné par

0 = { 0 ; 0  = l j 0 <où0i €0 i} .
iei

Nous allons démontrer que O vérifie bien les axiomes des ouverts et que la topologie 
associée possède les propriétés voulues.

1. Vérifions d’abord la propriété suivante : soit Oj un ouvert de X j , alors Xi  f l  Oj est 
un ouvert de Xi. Or Xi  n  Oj = (Xi f l  Xj  ) f l  Oj est un ouvert de Xi  f l  Xj  pour la topologie 
induite ‘Jj\xinxj , topologie qui, d’après l ’hypothèse b., coïncide avec la topologie induite 
7i\xinXj ; il existe donc un ouvert Ui de Xi  tel que Xi  f l  Oj =  (X* f l  X j )  f l  £/* et cet 
ensemble est ouvert dans Xi  d’après l ’hypothèse a., ce qui prouve le résultat annoncé.

2. Montrons alors que O est stable par intersection finie, les autres axiomes des ouverts 
sont trivialement vérifiés. Soit

O =  U Oi, O' =  U O'i où Oi.O'i € Oi.
i€l i€l

On a O n  O ' =  U(i,j)ei2 n  et ^ âut vérifier que Oi f l  O ' est ouvert dans Xi  par 
exemple. Étant donné que Oi f l  O ' =  Oi f l  (X i f l  O '), il suffit de remarquer que X i f l  Oj 
est ouvert dans X i  d’après 1.

L’ensemble O définit donc une topologie 7  sur X .
3. Montrons que X i  est un sous-espace ouvert de X .  En effet, on peut écrire 

Xi = U j€/ Oj où Oi = Xi  et Oj = 0 si j  ^  i.
4. Vérifions que T  induit la topologie 7i sur X i. Soit O = (Jie / Ou Oi € Oi, 

un ouvert de X , alors O f l  X i =  \Jje I (Oj n  X i)  où Oj f l  X i est un ouvert de X i 
d’après 1., ce qui prouve que O f l  X i est un ouvert de X i : la topologie 7i est donc plus 
fine que la topologie induite 7\xi . Inversement, soit Oi un ouvert de X i  ; on peut écrire 
Oi = Xi  n  ((Jj<E/ O*) oa ^  =  0 si j  ^  i et ceci prouve que Oi est un ouvert pour la 
topologie induite 7\xi , topologie qui est donc plus fine que la topologie 7u Ceci achève la 
démonstration.

EXERCICE 2.20.4 IMAGE RÉCIPROQUE D’UN FILTRE
1. Pour que / - 1(!B') soit une base de filtre, il est évidemment nécessaire que / _ 1(M ')  
soit non vide pour tout M ' e !B', un ensemble appartenant à un filtre étant non vide. 
Réciproquement, si cette condition est vérifiée, montrons que f ~ 1(‘B/) est une base de 
filtre. Utilisons la proposition 2.8.3, / _1(îB') est un ensemble non vide de parties non vides 
et, si M \  N f e <B \  il existe P ' E 33' tel que P ' C M'  f l  N \  d’où

r \ M ' )  n  / - ' ( O  3  r \ M '  n  N') D r ' i P ' ) ,  
ce qui prouve le résultat voulu.
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2. Notons 3'  le filtre engendré par 23' et J  le filtre engendré par Une partie
M de X  appartient à J  s’ il existe M' G 23' tel que / _ 1(M ')  c  M , ce qui équivaut à dire 
qu’ il existe Mf G J1 tel que C  M. Ceci montre que le filtre J  ne dépend que du
filtre J '.

3. La base de filtre / ( /“1 ('B ')) engendre un filtre plus fin que J ' car, pour tout 
M ' G 23', M* D / ( / _ 1(A /'))  (proposition 2.11.1).

Note Cet exercice généralise la situation décrite à la remarque 2.20.2 : si J  est un filtre sur 
X  admettant une trace sur une partie A de X,  le filtre induit J a est l ’ image réciproque de 
J  par l ’ injection canonique i . A X  1 1 i( J  a ), c’est-à-dire J  a en tant que base de filtre 
sur X , engendre un filtre plus fin que 3r.

EXERCICE 2.20.5

Rappelons la situation envisagée. On considère une application /  : X  — {a} -» Y  où a 
est un point non isolé de X , ce qui signifie que a est un point adhérent à X  — {o }. Alors, 
y = lim x->a,x^a f(x) signifie que, pour tout voisinage V de y, il existe un voisinage W 
de a tel que f (W — {a } )  C  V. Dire que /  est continue au point a signifie que, pour tout 
voisinage V de y, il existe un voisinage W de a tel que f(W)  C  V. Ces deux conditions 
sont équivalentes vu que f(a) = y G V, ce qui prouve le résultat voulu.

EXERCICE 2.20.6 LIMITE A GAUCHE ET A DROITE

1. Dire que y =  f (a  -h 0) signifie que, pour tout voisinage V  de y, il existe un voisinage 
W  de a tel que f (A  f l  WH ]a, +oo[ ) C V ; l ’ensemble (]a — S, a -h £[)<$>0 constituant un 
système fondamental de voisinages de a, il est équivalent de dire qu’il existe 6 > 0 tel que 
/(A n ]a , a + ô[) C  V ; ceci prouve que y =  / ( a  +  0) équivaut à a.

a => b Soit (xn) une suite de A flja , +oo[ convergeant vers a, alors il existe n  tel que 
xp G ]a, a 4- ô[ pour p > ?z, d’où f (xp) G V, ce qui prouve que la suite ( f (xn)) converge 
vers y.

b => c est trivialement vérifié.

c => a On raisonne par l ’absurde, si a. n’est pas vérifié, il existe un voisinage V de y tel 
que / ( A n  ]a, a+ £ [ ) (jL V pour tout ô > 0. On construit alors par récurrence une suite (xn) 
de Af) ]a, +oo[ strictement décroissante convergeant vers a tel que f ( x n) g V. On choisit 
x q  G A n ]a ,a + l[ te lq u e /(a ;o )  £  V, puisæn+ i G A n ]a ,a  +  æn [ tel que /(æn+ i)  0 V. 
On obtient ainsi une suite ( f ( x n)) qui ne converge pas vers y, ce qui contredit c.

2. Dire que /  est continu au point a signifie que, pour tout voisinage V  de /(a ) , il 
existe ô > 0 tel que f (An]a -  <5,a +  ô[) c  V, c’est-à-dire f (An]a -  Æ,a[) c  V  et 
/ ( A f l ]a ,a  +  <5[) c  V  ; d’après l,a „ ceci signifie donc que /  est continu à gauche et à 
droite au point a : f(a)  =  f (a  +  0) =  f (a  -  0).

3. Posons g(x) = f (x  H- 0) pour x G [a, 6[ . Soient x G [a, b[ , y  =  g(x) et V  un voisi­
nage fermé de y. Il existe S > 0 tel que f(x') G V  pour tout 
x < x‘ < x + ô, d’où f (x ' -h 0) G V  =  V, tout point limite étant un point adhérent. 
Ceci prouve que g(x') G V  pour tout x' G ]x, x +  ô[ ; l ’ensemble des voisinages fermés de 
y étant un système fondamental de voisinages de y  =  g(x), on en déduit que g est continu 
à droite au point x. La fonction x t-> f(x  +  0) est continue à droite : en quelque sorte,
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f(x  +  0 + 0) =  f(x  +  0).

EXERCICE 2.20.7 DISCONTINUITÉ D’UNE FONCTION MONOTONE

1. Montrons que /  admet une limite à droite en tout point x G [a ,6[. On pose 
y =  in f2€jX|6] f(z) ; cette borne inférieure est bien définie car f(z) > f(x) lorsque z> x .  
Montrons que y = f(x  +  0). Soit e >  0, il existe ô >  0 tel que y < f (x  +  <$) <  y +  e, 
d’où y < f(z) <y  + e pour tout 2 G ]x, x +  ô[, ce qui prouve le résultat voulu. De plus, 
f(x) < f(x  + 0).

De la même façon, on vérifie que /  admet une limite à gauche en tout point x G ]a, 6], 
f (x  -  0) =  sup2€|a f(z) et que f(x  -  0) <  f(x). Pour tout x G [a, 6], on a donc (vu 
les conventions adoptées aux extrémités de l ’ intervalle) f(x — 0) <  f(x) < f(x  +  0). 

Lorsque a < x < y < b, on a f(x  +  0) <  f(y — 0) : en effet, soit x ' G ]æ, y[, alors 
f (x  +  0) =  in f f(z) < f{x ) <  sup f(z) = f(y -  0).ze]x,xf[ ze Jac'.j/l

2. Soit a <  x < y < 6, d’après 1. on a
f(x) < f(x + 0) < f(y -  0) < f(y) < f(y + 0), 

ce qui montre que la fonction x i->- f(x  4- 0) est croissante ; cette fonction est continue 
à droite d’après l ’exercice 2.20.6. De même, on vérifie que la fonction x f(x — 0) est 
croissante et continue à gauche.

3. D’après l ’exercice 2.20.6, la fonction /  est continue en un point x si, et seulement si, 
f(x) = f(x  +  0) =  f(x — 0), c’est-à-dire si, et seulement si, le saut de la fonction au point 
x est nul : s(x) = 0.

Montrons que l ’ensemble D des points de discontinuité de /  est dénombrable. On re­
marque que les intervalles ]f(x — 0) , f ( x  +  0 )[, x  G [a ,6], sont disjoints deux à deux 
et contenus dans l ’ intervalle [ / ( a ) , /(&)]. Il en résulte que l ’ensemble des points x pour 
lesquels s(x) > 1/ n  est nécessairement fini et on en déduit que l ’ensemble

oo
D = U t *  G [a, b] ; s(x) >  1 /n }

7 1 =1

est dénombrable.

EXERCICE 2.20.8 FONCTION RÉGLÉE

Soit e >  0, on pose
De = {a; G [a, b] ; d(f(x -  0), f(x  +  0)) > e} ; 

l ’ensemble D des points de discontinuité de /  peut alors s’écrire D =  U ^L i D\/n et il 
suffit donc de démontrer que les ensembles De sont dénombrables. Nous allons vérifier que 
tous les points de De sont isolés ; l ’exercice 2.10.8 permettra de conclure, l ’espace [a, b] 
admettant une base de topologie dénombrable.

Soit x  G D€y il existe S > 0 tel que d(f (x  -h 0), f(y)) < e/3 pour tout x < y < x  +  6 
et il en résulte que d(f (x  +  0), f ( y  ±  0)) <  e /3  pour tout x < y  < x  + S ;on en déduit 
que d(f(y -  0), f ( y  -h 0)) <  2e/3 <  e et ceci prouve que DeC\ ]x> x  +  S[ =  0. De même, 
on vérifie qu’ il existe Sf > 0 tel que DeC\ ]x -  ô', x[ = 0, d’où DeC\ ]x -  <$', x  +  ô[ = {# } , 
ce qui prouve que x  est un point isolé de De.
Note Toute fonction monotone /  : [o, 6] -> R est réglée d’après l ’exercice 2.20.7, on 
retrouve ainsi le fait que l ’ensemble des points de discontinuité d’une fonction monotone
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est dénombrable.

EXERCICE 2.20.9 DISCONTINUITÉ ARTIFICIELLE
l,a. Montrons d’abord que est continu en tout point a de A. On a 
(p{a) — lim x_>a>X9éa f(x). Si V  est un voisinage fermé de <p(a), il existe donc un voi­
sinage ouvert W de a tel que f (W -  {a } )  c  V, c’est-à-dire f(x) G V  pour tout 
x e W  -  {a }. En particulier, cp(y) G V pour tout y G (W -  {a })  -  A. D’autre part, soit 
y G (W -  {a } )  D A, Pespace X  étant séparé, W -  {a }  est un voisinage ouvert de y et il 
en résulte que tp(y) G V = V  pour tout y G (W — {a })  f l  A. Ceci montre que ip(y) g V 
pour tout y G W — {a }, donc pour tout y eW .  L’ensemble des voisinages fermés de ip(a) 
étant un système fondamental de voisinages de y?(a), ceci prouve que y? est continu en tout 
point de A.

b. Montrons ensuite que ip est continu en tout point de continuité de / .  Si a est un 
point isolé de X , il n’y a rien à démontrer car toute fonction est continue en un point isolé. 
Si a n’est pas un point isolé, on a </?(a) =  f(a) = lim x_*,x^a f{x) d’après la continuité de 
/  au point a et le raisonnement est alors identique à celui fait précédemment.

2. Montrons que tout point de An est isolé. Raisonnons par l ’absurde, supposons qu’ il 
existe un point x G An non isolé. Alors, on peut considérer l ’éventuelle limite

* =  ^  Km
y - >x>yeArl- { x }

cette limite, si elle existe, est nécessairement >  1/n. D ’après la définition de <p et la conti­
nuité de <p au point x, on a

lim  f(y) = <p(x)et lim  , , <p(y) = <p(x),
y - > x , y 6 A n - { x }  y - * x , y e A u - { x }

d’où 2 =  0, ce qui est absurde vu que 2 doit être >  1/n .
3. D’après l ’exercice 2.10.8, X  admettant une base de topologie dénombrable, l ’en­

semble An est dénombrable et il en résulte que A =  |J^= i An est dénombrable.

EXERCICE 2.20.10 PARTIE DE R DÉNOMBRABLE ET PARTOUT DENSE
1. Pour n =  0, on prend A0 = {ao}, A'0 =  {a'0} et pour f 0 : Aq A'0 l ’application 
définie par /(ao ) =  a'0. Supposons construite une bijection croissante f n : An A!n 
vérifiant les conditions requises et construisons f n+1.

Si an+i G An et a!n+ x G A'n+i, on prend simplement
•^n+l =  Anj An + 1  = An et fn+1 =  /n*

Sinon, on a an+1 ^  An ou a^+ i ^  A!n. On prolonge d’abord f n en une bijection 
croissante gn : An U {an+ i}  -> B fn où Bn D A!n (si an+ i appartient à A n, on prend 
9n = fn) puis on prolonge gn en une bijection croissante /n+1 : A n+1 ->• A'n+i où 
An+i D An U {an+ i}  et A +̂1 =  B'n U {a'n+1} (si a!n+1 appartient à B'n9 on prend 
/n + i =  gn)• Expliquons la construction de gn> celle de / n+1 est semblable.

S’il existe G An tel que a < an+ i <  P et ]a ,^ [n A n =  0, on choisit un point 
a' G D1 tel que f n(a) < a' < f n(P)> ceci est possible car D ' est partout dense ; on prend 
alors B^ = A!n U {a '}  et on prolonge f n en posant #n (an+ 1) =  a'.

S’il existe a  G An telquean+ i <  a e t ] - o o ,a [n A n =  0, on choisit un point a' G D ' 
tel que a' <  f n(a) et comme précédemment on pose B'n =  A!n U {a '}  et £n (an+1) =  a'.

Le raisonnement est identique lorsqu’ il existe a  G An tel que a < an+1 et 
]a, + o o [n A n =  0.

Ceci achève la construction des bijections f n : An Afn.
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2. On définit une bijection f  : D - ï  D' en posant simplement / | a „  = /n.
3. Montions que toute bijection croissante /  : D -> D' est un homéomorphisme. 

Soient a 6 D, V  un voisinage de a' =  f(a).  L ’ensemble D ' étant partout dense, i l  existe 
oc ,0'  6 D ' tel que a' 6] a ' , ^ ' [ c  V  ; on a a'  = f (a)  et P' = f(P)  où a, P € D  et 
a < a < p. On a alors f(]a,P[ f l  D) C V  n  D 'o ù  ]a , P[ n  D est un voisinage de a dans 
D, ce qui prouve la continuité de /  au point o. De même, on vérifie la continuité de / _1. 

EXERCICE 2.20.11

On remarque que toute suite de Cauchy est bornée : en effet, il existe n 0 tel que 
d(x„0 , x „ ) < l  pour tout n >  n 0, d’où x n e B '(xno ; r )  en posant

r =  m ax(l max d(xno,xn)).
0<n<no

Cette boule étant complète par hypothèse, la suite (x n) est convergente.

EXERCICE 2.21.1

O n a F r( i4 x £ ) = A x B n ( X x Y - Int (Ax B))t où (proposition 2.21.2) A x B — Â x B  
et Int (A x B) = À x B. De plus,

X  x Y  -  À x ê  =  ( (X  -  À) x Y)  U (X x (Y -  Ô)) 
et par conséquent

_Fr (A x B) = ((À x B )  f l  ( (X  -  A) x Y))  U ((À  x B) n (X x (Y -  ê)))  
où (A x B) f l  ((X  — À) x Y) =  (A f l  (X — À)) x B = Fr (j4) x B  et de même 

(A  x B) H (X x (Y -  È)) =  A x (Bf) (Y -  B)) = A x Fr (B ), 
ce qui permet de conclure.

EXERCICE 2.21.2

I l s’agit de vérifier que, pour tout x  G R, l ’ensemble {(a;, l -  x)} est ouvert et ceci résulte 
de l ’égalité suivante

{(x , 1 — x )}  =  X  f l  ([x, x  +  e[ x  [1 — x, 1 — x  +  e[) où € > 0.
Il en résulte que X  est le seul sous-espace de X  dense dans X  et, X  n’étant pas dénom­
brable, ceci prouve que X  ne saurait être séparable.

EXERCICE 2.21.3

1. Lorsque J  est le filtre élémentaire associé à une suite ((xnyyn)) et que l ’espace X  est 
à base dénombrable de voisinages, la démonstration est la suivante. D ’après la proposition
2.16.6, il existe une sous-suite (xnk) qui converge vers x  ; la sous-suite (ynk ) converge 
alors vers y et il en résulte que la sous-suite ((Xnk>ynk)) converge vers (x,y), ce qui 
prouve que (x, y) est une valeur d’adhérence de la suite ((xntyn)).

2. Dans le cas général, soient V  et W  des voisinages de x  et y, il s’agit de démontrer 
que V x W  rencontre tout M  6 J . Le filtre pr2( J )  converge vers y , donc est plus fin que 
le filtre V(y) ; il existe donc TV € J  tel que W  =  pr2 (N). Posons P = M  n  N  e  J , on a 

(V x W) n M D (V x pr2(P)) f l P = ( V T l Wi{P))  x  pr2(P) 
et cet ensemble est non vide car VDpri (P) est non vide, le point x  étant adhérent à pr\ (P ). 
Ceci prouve le résultat voulu.

EXERCICE 2.21.4

Notons d’abord que pt\\g : G -y X  est une bijection dont la bijection réciproque est 
donnée par la formule (W\\g)~1(x) =  (æ ,/(x )). D’autre part, cette bijection p ti \g est
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continue d’après la continuité de la projection p n  : X  x  Y  -» X.  Quant à la bijection 
réciproque, elle est continue si, et seulement si, /  est continu. Ceci prouve que /  est continu 
si, et seulement si, pr\ |g est un homéomorphisme de G sur X.
EXERCICE 2.21.5 PRODUIT D’ESPACES RÉGULIERS

Un produit d’espaces séparés étant séparé (corollaire 2.21.12), il s’agit de démontrer que 
tout voisinage d’un point x  =  (Xi)iei contient un voisinage fermé. On peut supposer que 
ce voisinage est un voisinage élémentaire, donc de la forme ^  — llzGJ V* X Yliel-J Xi  
où J  est une partie finie de I  et où VJ est un voisinage de Xi. Les espaces Xi  étant supposés 
réguliers, il existe un voisinage fermé W i  de X i  tel que W i  C  V i  et il en résulte que 
rizG J W» x Yliei-J Xi  est un voisinage fermé (corollaire 2.21.3) de x  contenu dans V , ce 
qui prouve que l ’espace produit est régulier.

EXERCICE 2.22.1

1. Soit ((xn)yn)) une suite de G convergeant vers (xyy) dans l ’espace X  x R, montrons 
que (x , y) appartient à G, c’est-à-dire que a; G O et que y =  / ( x ) ,  ceci prouvera que G est 
fermé dans X  x R. On a ynd(xn,F) = 1 pour tout n, d’où y d(x, F) = 1 ; on en déduit 
que d(xy F) ±  0, soit x e Oc  t (x, y) G G.

2. La fonction /  : O —> R étant continue, l ’exercice 2.21.4 montre que O est ho- 
méomorphe à G, donc à un sous-espace fermé de X  x R d’après 1. Si X  est un espace 
métrique complet, tout sous-espace fermé de X  x R est complet et par conséquent O est 
homéomorphe à un espace métrique complet.

3. Soit A un 9 s d’un espace métrique complet X  : A peut s’écrire H^Lo 0ù ês
ensembles On sont des ouverts de X.  D ’après le corollaire 2.21.7, A  est homéomorphe 
à un sous-espace fermé de l ’espace produit * chaque On étant homéomorphe à
un espace métrique complet, cet espace produit est homéomorphe à un espace métrique 
complet (théorème 2.22.5) et la proposition 2.20.5 montre alors que A est homéomorphe à 
un espace métrique complet, ce qui prouve le résultat voulu.

4. On peut écrire
/  = R -  Q =  p | ( R - { 9}),

qeQ
ce qui prouve que l ’ensemble des irrationnels I  est un 9$ de M ; d’après 3., /  est donc 
homéomorphe à un espace métrique complet : il existe sur I  une distance topologiquement 
équivalente à la distance usuelle, celle induite par celle de R, pour laquelle I  est complet. 
Bien entendu, il ne peut s’agir de la distance usuelle pour laquelle I  n’est pas complet, 
n’étant pas fermé dans R.

EXERCICE 2.22.2

1. Il est clair que d' est une distance sur O. Montrons que les distances d et d! sont to­
pologiquement équivalentes. On remarque d’abord que d < d\  donc l ’application iden­
tique Io ' (0,d')  -» (0 ,d )  est continue. Pour démontrer que l ’application identique 
Io : (O, d) (Oy d') est continue, montrons que toute suite (x n) de O qui converge vers 
x pour la distance dy converge vers x  pour la distance d D’après (2.13.4), on a

(2MA) d‘{X' Xn) -  d{-X' Xn) +  d(x,F)d(x„,F)
où lim n->oo d(xyx n) = 0 et lim n_>oo d(Xy Fn) = d(xy F) d’après la continuité de l ’ap-
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plication y d(y, F) ; il en résulte que limn_>oo d'(x> xn) = 0, ce qui prouve le résultat
voulu.

2. On suppose l ’espace X  complet, montrons que l ’espace O muni de la distance d! est 
complet. Soit (xn) une suite de Cauchy de (O, d'). Vu l ’ inégalité d <  d', la suite (xn) est 
de Cauchy pour la distance d et converge donc vers un point x G X  pour la distance d. 
D’autre part, la suite (æn) étant de Cauchy pour d\ pour tout e > 0, il existe un entier n tel 
que

1
d(xPiF)

1
d(xq,F) < € pour p > n et q > n,

c’est-à-dire
|d(xp,F) -  d(xqiF)| < ed(xP)F)d(xq,F).

En faisant tendre q vers l ’ infini, on en déduit que
|d(xp,F) -  d(x>F)\ < ed(xPiF)d(x)F) pour tout p> n.

Cette inégalité montre que d(x, F) ne peut être nul et par conséquent x appartient à O, F  
étant fermé. L’ inégalité (2.44.1) montre alors que la suite (xn) converge vers x pour d'. 
Ceci prouve que tout ouvert d’un espace métrique complet est homéomorphe à un espace 
métrique complet.

EXERCICE 2.22.3

Munissons l ’ensemble X  de la métrique discrète et prenons sur l ’espace produit Y  = X N 
la distance dp définie en (2.22.5) avec f$n = 1/n. On obtient alors dp(x,y) = 0 si x = y 
, et si x ± y, dp(x>y) = 1/ n  où n est le plus petit entier tel que xn ^  yny c’est-à-dire 
la distance d proposée. D’après le théorème 2.22.5, l ’espace Y  est bien un espace métrique 
complet pour cette distance.

EXERCICE 2.22.4 FRACTION CONTINUE ILLIMITÉE
1 ,a. On a r i  =  1 /a i , soit

P in  = — ou p i =  1, q i = a  i  ; 
Qi

1 Ot2r*2 =  ------------  — -----------
a i  +  \ / o t 2 OL\OL2 +  1 *

soit
P iT2 — —  où p2 =  cx.2 et q2 =  a 2<?i +  1 ; 
<72

r 3 s’obtient à partir de r 2 en substituant a 2 +  l / a 3 à a 2, d’où
a2 +  l /a 3  a3P2+Pi

(ol2 +  l / a 3) a i  +  1 OL$q2 +  q\ *

r 3 =  —  oùp3 =  a 3p2 +  Pi et q3 = a3q2 +  qi.Q3
On raisonne ensuite par récurrence, r n+1 s’obtient en remplaçant dans l ’expression de r n , 
an par an +  1/t tn + i*  d’où

_  (a n  +  l / a n + l ) P n - l  +  Pn- 2 _  &n+lPn +  Pn- 1  

( a n +  l / a n + i)q n _ i  +  qn-i a n + iq n +  qn-i 
où pn =  otnPn- 1  +Pn-2, qn = &n<ln-1 +<7n-2 et ceci prouve le résultat voulu. On notera 
que les pn et qn sont des entiers >  1, que pn < qn pour n > 2 d’après les formules de 
récurrence (car pi < qi et p2 < qi), donc 0 <  rn < 1 pour n > 2.
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b. On a P2Q1 — p i02 =  —1 et par récurrence
Pn+10n Pn0n+1 i&n+lPn "H Pn— \)Qn Pn(û!n+10n H" Qn — l )

=  (P n  07i—l P n  — l Qn )  =  ( l ) n .
On en déduit que

( - l ) n
? n+1 ^ti — )

071071+1

d’où rn+1 =  n  +  S fc = i( - 1 )fc/0fc0fc+i- La série Z ) ^ L i ( - l ) fc/0fc0fc+i est en fait conver­
gente car il s’agit d’une série alternée ; le terme général tend vers 0 car la suite (qn) est 
strictement croissante d’après la formule de récurrence qn = anqn- 1 +  qn- 2 - Ceci prouve 
que la suite ( rn) est convergente, notons x sa limite. On a V2n < x < 7*271+1 pour tout n  et 
en particulier 0 <  x <  1.

c. Si 0 <  x <  1 est développable en fraction continue illimitée, nous allons montrer 
que x est nécessairement irrationnel et que le développement est unique.

Notons d’abord la formule
rk+i(<*i) • • • )ûffc+f) =  rk(a 1, . . .  ,afc +  n (a fc + i,. . .  ,<*fc+0) 

pour tout A,*, l > 1. En effet, pour l = 1 il ne s’agit que de la définition de rk+i en fonction de 
rk ; on raisonne ensuite par récurrence sur /, rk+i+i s’obtient à partir de rk+i en remplaçant 
a k+i par a*+ i +  l/a ^+ z + i, ce qui conduit de suite à la formule voulue.

En faisant tendre l vers l ’ infini, on en déduit que, pour k > 1,
æ =  ?Te(ai,. . . , afc_i,afc 4- Xk) où xk = lim  n (a fc + i,. . .  ,ajb+i) ;i—><x>

observons que E ]0 ,1 [. Étant donné que
n + i(û fc+ i, • .. ,a fc+ i+ i) =  r i (ak+i +  ri(ajb+2>.. .,<*&+*+1)),

on obtient en passant à la limite =  l / ( a k+i +  Xfc+i), formule qui vaut encore pour
k = 0 en posant x q  =  x. Autrement dit,

1 , ^  „Xk = ------------------ pour tout k > 0.
ûffc+l +  Xk+l

Cette formule permet de calculer par récurrence les entiers ctk >  1 et les réels Xk E ]0 ,1 [. 
En effet, ak+i est nécessairement la partie entière de l / x k, soit

1 1 1 T 1 1—  et Xk+i = —  -  —  .
Xk] Xk IXk]

Lorsque x est rationnel, soit x = xq =  p/q , 0 <  p < 0, tous les Xk sont rationnels ; 
montrons que Xk =  2/*+i / yk où (yk) est une suite d’entiers >  0 strictement décroissante : 
ceci prouvera qu’ il existe k tel que 0 =  yk+1 <  yk> d’où Xk =  0 ce qui est absurde, les 
Xk appartenant à ]0 ,1 [. On a xq =  yi/yn avec 2/0 =  0 et y\ =  p, puis par récurrence on a 
(division euclidienne) yh =  sp fc+ i +  f, 0 <  t < yk+1, d’où P fcM + i =  s +  t/yk+1, soit 
s =  [l/xfc] et æfc+ i =  pfc+2/ 2/fc+i où yk+2 =  £, ce qui prouve le résultat voulu.

2. Ce qui précède montre que toute fraction continue illimitée définit un nombre irra­
tionnel de ]0,1[ et que l ’application /  qui à toute suite (a n)n> i associe le nombre irration-

(2.44.2) Olk+l =

nel —-J 4-<*1 4- |-^J H-----est injective. Montrons que cette application de Y  =  J (N *; N*)

sur l ’ensemble I  des irrationnels de ]0, 1[ est surjective.
Étant donné un irrationnel de ]0 ,1 [, les formules (2.44.2) définissent une suite (a7i ) n> i

d’entiers >  1, tous les xn étant irrationnels. Vérifions alors que x = - -̂1 H-------h r-^J- H-----.
En effet, on note que

x =  r*fc(û:i,. . .  ,a fc-i,a fc  + x k) pour tout k >  1.
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Pour k = 1, cette formule se réduit à x =  n(oti +  x\)  =  l/(c * i +  xi),  soit 
1 /x  =  a i +  xu  ce qui est la définition de ai  et x\.  On raisonne ensuite par récurrence : 
onaxfc =  1/ (afc+i +  Xk+i), d’où

x = H---------- — -----)
\  afc+i +  tffc+i /

=  rfc+ i(a i,...,a fc ,o :fc+ i +  £fc+i)>
ce qui prouve le résultat voulu. La fonction y »-* r *  ( a i , . . . ,  a *-1, otk +  y) étant croissante 
si k est pair, décroissante si k est impair, on en déduit que

P 2 n /q 2 n  < X  <  P 2 n + l/q 2 n + l  p o u r  tO U t Tl
et, en faisant tendre n  vers l ’ infini, i l résulte que x  est bien égal à la fraction continue 

illimitée H------- h p-J- H----- . Ceci prouve que /  : Y  -> /  est une bijection.

3. Soit a  =  (a n) G Y  et soit (a?) une suite de Y , a3 =  (a£) ; on pose x = f (a)  et 
xj = f ( a j ). Les espaces Y  et I  étant métrisables, il s’agit de démontrer que la suite (a j ) 
converge vers a  si, et seulement si, la suite (x j ) converge vers x.

Supposons d’abord que la suite (a?) converge vers a, alors (proposition 2.21.8) pour 
tout entier n > 1, il existe un entier k tel que ap = a3p pour 1 <  p < n  et tout 
j  > k. Il en résulte que x  et xj pour j  > k appartiennent au même intervalle d’extré­
mités r n_ i ( a i , . . . ,  an- \ )  et rn(a i , . . . ,  a n), intervalle dont la longueur l /qn-iqn tend 
vers 0, ce qui prouve que la suite (xj ) converge vers x.

Réciproquement, si la suite (x3) converge vers x, les formules (2.44.2) montrent que, 
pour tout n, la suite (a3n) converge vers an et ceci prouve le résultat voulu.

Tout espace métrique discret étant complet, l ’espace Y  est un espace métrique complet 
d’après le théorème 2.22.5 : plus précisément, il existe une distance sur Y  compatible avec 
sa topologie pour laquelle Y  est complet. On en déduit que I  est homéomorphe à un espace 
métrique complet.

EXERCICE 2.22.5

1. Rappelons que l ’application
oo

/  : (ûJn)n>l ^  a n3 71
71 =  1

est une bijection de l ’espace {0 ,2 }N* sur l ’ensemble de Cantor C. Montrons que /  est un 
homéomorphisme. Soit (a k) une suite de {0 ,2}N*, a k = (a£), et soit

a = (an) G { 0, 2} "  j
posons x k = f ( a k) et x = f(a).  Les espaces {0 ,2} N* et C étant métrisables, il s’agit de 
démontrer que la suite (a k) converge vers a  si, et seulement si, la suite (x k) converge vers 
x.

Notons d’abord le résultat suivant. Soient a, fl G {0 ,2 }N*, a  ^  fl ; posons x  =  f (a)  
et V =  î{fl)• Notons p  > 1 le plus petit entier tel que ap ^  flp. On a

oo
x -  y =  2 x  3~p + ^ 2  K  ~  Pn)3~n

n=p+ 1

K  -  M3~n < 2  Y, 3_n =  3_p-
n=p+l n=p+l

OÙ
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d’où3_p < \ x - y \  <  3_ï>+1.
Si la suite (ak) converge vers a ,  pour tout entier p il existe k  tel que an =  a3n pour 

1 <  n  <  p et tout j  > k y d’où \x — xj \ <  3_p+1 et, 3-p+1 tendant vers 0 lorsque p tend 
vers P infini, ceci prouve que la suite (xk) converge vers x. Réciproquement, si la suite (xk) 
converge vers æ, pour tout entier po> il existe k  tel que \x — x3\ < 3“ Pü pour j  > k , d’où 
3~Pj < 3“ pü, soit pj > po si pj désigne le plus petit entier tel que aPj ^  a3Pj et ceci 
montre que an = a3n pour 1 <  n  <  po et tout j > k : \ à  suite (a k) converge vers a.

2. D ’après le corollaire 2.21.16, on en déduit que les espaces C n, n  >  1, et CN sont ho- 
méomorphes à {0 ,2 }N* x ll,nl et {0 ,2 }N* xN. Les ensembles N* x [1, n] et N* x N étant équi- 
potents à N*, le corollaire 2.21.14 prouve que ces espaces sont homéomorphes à {0 ,2 }N*, 
donc à l ’ensemble de Cantor.

EXERCICE 2.22.6

1. Soit a  G A, alors a  G A n pour tout n >  1 ; les ensembles A n>e étant disjoints deux 
à deux, il existe une unique application e G £n telle que a  G A n,e. Vu l ’hypothèse c., on 
en déduit qu’ il existe une unique application e : N* {0 ,1 } telle que a  G A Uten pour 
tout n >  1 où en désigne la restriction de e à [1, n]. Ceci permet de définir une application 
/  : A  -> { 0, 1}N* telle que a  G A nJiiia) pour tout n  >  1 où f n (a) = f ( a ) |(i,n]. 
Cette application est une bijection. En effet, soit e  G { 0 ,1 }N*, alors f ( a )  = e  signifie 
^ G fln==l A nteu , ce qui détermine a, cette intersection étant réduite à un point d’après le 
théorème de Cantor (proposition 2.18.9).

2. Montrons ensuite que cette bijection est un homéomoiphisme. Soit (ak) une suite de 
A  qui converge vers a G A et soit n > 1, alors il existe e G £n tel que a G A n,e. Soit 
0 <  6 < minetec1ltef^£ d(a, A n>e/), il existe k  tel que \a—a3\ < S pour j  > k. Vu le choix 
de ô, aP appartient au même ensemble A n%e que a. Si on pose e = f(a)  et e3 =  f (a3)> ceci 
prouve que e(ri) = e3{n) pour tout j  > k  et ceci démontre que la suite (efc) converge vers 
e, d’où la continuité de / .  Inversement, supposons que la suite (ek) converge vers 6. Soit 
n > 1, il existe k tel que en =  e3n pour tout j  >  k, ce qui prouve que a et a3 appartiennent 
au même ensemble A nt£, d’où |a — a? \ < maxeG£n diam A n,e pour tout j  > k  ; vu 
l ’hypothèse b., ceci montre que la suite (ak) converge vers a. Ceci prouve la continuité de 
f ~ l . L’espace A  est donc homéomorphe à l ’ensemble de Cantor d’après l ’exercice 2.22.5. 
Note On observera que l ’ensemble de Cantor lui-même est bien construit selon le procédé 
décrit ci-dessus

EXERCICE 2.22.7

Utilisons l ’exercice 2.22.6. Construisons une suite (i4n)n> i de fermés vérifiant les proprié­
tés requises dans cet exercice. En prenant pour i4n>e des boules fermées, il suffit de vérifier 
la propriété suivante : soit Æ '(a ;r), r > 0, une boule fermée et soit S > 0, alors il existe 
des boules fermées disjointes s) et B ;(a2 \s), 0 <  s < 6t contenues dans B'(a;r). 
En effet, prenons a\ = a ; le point a n’étant pas un point isolé, la boule ouverte B(a\ r /2 )  
contient un point ai ^  a. Il suffit alors de choisir s tel que 0 <  s < min(£, d (o i, û2) / 2).

EXERCICE 2.23.1

On a 3rs(X\3rs(Y ; Z)) =  (Z Y)X et 3rs(X x Y \  Z) = Z XxY où les espaces produits sont 
munis des topologies produits. Il suffit d’utiliser alors le corollaire 2.21.16 en observant 
que, dans cette situation particulière, 1*homéomorphisme décrit dans la proposition 2.21.15
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est bien la bijection canonique qui nous intéresse ici.

EXERCICE 2.24.1

1 => 2 Soit A un ouvert de X,  alors 7r(A) est ouvert d’après 1. Vu la continuité de 7r, 
on en déduit que 7r~1 (n(A)) est ouvert, ce qui prouve 2.

2 => 1 Soit A un ouvert de X , Tï~l (it{A)) est ouvert d’après 2., ce qui signifie que 
7t(j4) est ouvert d’après la caractérisation des ouverts de la topologie quotient. Ceci prouve 
que l ’application ir est ouverte.

Le raisonnement est identique dans le cas fermé.

EXERCICE 2.24.2

1. On a /  =  g o 7r et la surjection canonique 7r : X  ->> X /Æ  est continue. Si g est continu, 
/  est donc continu. Réciproquement, si /  est continu et si O est un ouvert de Y , g~l (0) 
est un ouvert de X /Æ  car 7r~1(g~1(0)) =  / _1(0 )  est un ouvert de X  ; ceci prouve que 
g est continu.

2. Soit O un ouvert de X/% alors U = est un ouvert de X  et, ir étant surjec­
tive, 7t(U) =  O ; il en résulte que g(0) = g(n(U)) =  f(U)  est un ouvert de Y , ce qui 
prouve que g est une application ouverte.

3. Lorsque /  est surjective, g est bijective. La continuité de g résulte de celle de /  
d’après 1. Si /  est ouverte, g est ouverte d’après 2. et réciproquement, si g est ouverte, /  est 
ouverte en tant que composée d’applications ouvertes (n est supposée ouverte). Enfin, dire 
que g est ouverte signifie que g-1 est continu, autrement dit que g est un homéomorphisme, 
ce qui prouve le résultat demandé.

EXERCICE 2.25.1

1. Le raisonnement est analogue à celui de la proposition 2.18.5. Soit a > x ), il existe
un voisinage ouvert de x  tel que diam f ( V  f l  A) < a. Soit y e V  f l  Â , alors V  est un 
voisinage de y , d’où a > u>(f ; y) et

to(f;V) C [ - 00, a [,
ce qui prouve que u>(/; •) est s.c.s. au point x.

2. On a Ao =  H ^ L i {x € A \ u ( f  ; x) < l /n}  ; la fonction w étant s.c.s., on en déduit 
que Ao est un Sa de A. Il existe des ouverts On de X  tels que Ao = H A).

Si X  est un espace métrique, A est un Sa de X  d’après le lemme 2.29.7 : il existe des 
ouverts 0'n de X  tels que A = f|^°=1 0'n, d’où

c»
A > =

71 =  1

ce qui prouve que A0 est un Sa de X.
3- Si /  : Aj-^ Y  est continu, u>(f\x) = 0 pour tout x e A  (proposition 2.18.5), d’où 

A C Ao C A. Ceci montre que A est dense dans Ao. Montrons que /  se prolonge en 
une application continue fo : Ao Y , c’est-à-dire (proposition 2.25.1) que la limite

f(y) existe pour tout x e Ao. L’espace métrique Y  étant complet, il suffit de 
remarquer que ( f (V  n A))vev(x) est une base de filtre de Cauchy, l ’oscillation de /  étant
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nulle au point x.
EXERCICE 2.25.2

1. On note F : A q -> X  x Y  l ’application x »->• (x, fo(x)) et
G0 = {(æ,y) e X  x B0;x = go(y)} 

le graphe de go. On a alors

F ~ l ( G 0) =  { x  G A 0 ; / 0 (a;) G B 0 e t x  =  g o ( f o ( x ) ) }  =  A u  
Le sous-espace G o est fermé dans X  x  Bo  d’après la continuité de go ; d’après le lemme 
2.29.7, G o est un 9$ de X  x  Bo,  donc de X  x  Y ,  X  x  Bo  étant un 9$ de X  x  y .  L’application 
F  étant continue, l ’exercice 2.13.4 montre que A i  est un 5s  de Ao,  donc de X , Ao  étant un 
5s  de X .

Pour démontrer que Bi est un 9$, on raisonne de façon similaire. On introduit l ’appli­
cation F' : y i-> (go(y),y) de Bo dans X  x  Y  et on remarque que B\ = Ff~1(G/0) où Gq 
est le graphe de fo.

2. On vérifie d’abord que fo(Ai) c B\. Soit x G Au alors y = f 0(x) G B0 et 
9 o(fo(x)) = x , d’où g0(y) =  x G Ai c A0 et fo(go(y)) = fo(x) = y, ce qui prouve que 
y appartient à Bi .

De même, on vérifie que go{Bi) c Ai ; on peut donc définir des applications 
fi = /oUi : Ai -» Bi et = go\B1 : -Bi -» -Ai. Ces applications sont continues et 
d’après la définition de Ai et Bu  on a gi(fi(x)) = x pour tout x G Ai et fi(gi(y)) = y 
pour tout y G Bi, ce qui prouve que fi : Ai —ï Bi est un homéomorphisme, gi étant 
l ’homéomorphisme réciproque. Cet homéomorphisme prolonge /  par construction.

3. Soient X  un espace métrique complet, A un sous-espace de X  homéomorphe à un 
espace métrique complet Y  ; notons /  : A -> Y  un tel homéomorphisme. D ’après 2., il 
existe un 5s Ai de X  contenant A , un 5s Bi de Y  contenant Y , qui ne peut donc être 
que y ,  et un homéomorphisme f i  : Ai  -> Y  qui prolonge / .  On a donc nécessairement 
A = Ai, ce qui prouve que A est un 9a et le résultat voulu.

EXERCICE 2.27.1

On sait déjà que la topologie de la convergence uniforme est plus fine que la topologie de 
la convergence simple. Lorsque Y  est l ’ensemble vide, l ’ensemble J  (X\Y) est l ’ensemble 
vide ; lorsque Y  est réduit à un élément, il en est de même J(X ; Y) : dans les deux cas, 
il n’existe qu’une seule topologie sur ÎF(X ; Y) et par conséquent la topologie de la conver­
gence uniforme coïncide avec la topologie de la convergence simple. Lorsque X  est fini, 
l ’espace J(X\Y)  s’ identifie à Y n si n désigne le nombre d’éléments de X. La distance 
définissant la topologie de la convergence uniforme s’écrit

d\(y,z) = max d(yi,Zi) oùy = (2/i)i<i<n, 2  = (zi)i<i<ni
l < i < n

et on sait que cette distance définit la topologie produit sur Y n ; dans ce cas les deux topo­
logies sont donc les mêmes.

Si X  est infini et si Y  admet au moins deux éléments, construisons une suite ( / n) de 
y )  qui converge simplement, mais qui ne converge pas uniformément : ceci prouvera 

que les deux topologies sont différentes. Il existe une injection n xn de N dans X  et 
deux éléments distincts a et b de Y. Notons alors f n : X  —> Y  l ’application définie par 
f n(x) = a si x = xn et f n(x) =  b si x ± xn. Cette suite ( / n) converge simplement 
vers la fonction /  identiquement égale à 6, car, x G X  étant fixé, ou bien x ^  xn pour
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tout n  et alors f n =  / ,  ou bien il existe un entier n  (et un seul) tel que x = xn auquel cas 
fP(x) = f(x) pour p > n. Par contre, cette suite ne converge pas uniformément : en effet, 
si elle convergeait uniformément, sa limite ne pourrait être que /  et ceci n’a pas lieu car 

) =  supl€ X  d(f(x),fn(x)) - d(a,b).
EXERCICE 2.27.2

On peut supposer que la distance sur Z  est bornée, car deux distances uniformément équi­
valentes sur Z  induisent la même structure uniforme sur les espaces J U(X  x  Y; Z) et 
J U(Y;Z),  donc sur l ’espace J U(X ; JuÇY] Z)). Étant donné deux fonctions 
f , g  G J ( X  x Y] Z \  on a alors

d i( f ,g )=  sup d( f (x1y),g(xiy))
( x , y ) e X x Y

et

d’où

di(f (x, .) ,g(x, . ))  = supd(f (x iy)ig(x,y))i
y e Y

di($ (/),$ (£ )) = sup d i(/(z ,.),p (æ ,.)) = sup sup d(f(x,y)yg(x,y)) 
x ex  xeXyeY

et par conséquent d i ( $ ( / ) ,  $>(#)) =  d i ( f )g) : autrement dit, l ’application $  est simple­
ment une isométrie, ce qui prouve le résultat voulu.

EXERCICE 2.27.3

Comme pour l ’exercice 2.27.2, on peut supposer que les distances sur Y  et Z  sont bornées. 
Soit e > 0, il existe ô > 0 tel que d(<p(y)> (p(y')) < € pour tout y ,y1 £ Y  vérifiant 
diy^y') < S. Soient / , g € J u(^ ;^ ),o n a d o n cd ((< ^o /)( ir) ,(< /? o p )(a :)) <  e pour tout 
x e X  tel que d(f(x),g(x)) < ô ; autrement dit,

di(f,g) <S=> di(tpo fyipog) <  e 
et ceci prouve que l ’application /  i-> (p o f  est uniformément continue.

EXERCICE 2.27.4

Comme dans les exercices précédents, on peut supposer que la distance sur Z  est bornée. 
Soient / ,  g G J.u (X  ; Z ) , on a

di(fo<p,go'p) = 8upd(f(tp(y)),g(<p(y))) < su p d(f(x),g(x)) = di(f ,g)
y €  Y  x € X

et ceci prouve que l ’application /  f  o (p est uniformément continue.

EXERCICE 2.27.5

Si les fonctions f n sont continues en un point x> montrons que la fonction /  est continue au 
point x. Il existe un voisinage V  de x  tel que la suite (fn \v) converge uniformément vers 
/ \v- D ’après la proposition 2.27.4, la fonction f \ v  : V Y  est continue au point x  ; si W  
est un voisinage de / ( x ) ,  ( / | v ) _ 1(W0 =  VCif~1(W) est donc un voisinage de x  dans le 
sous-espace V, donc dans X  d’après la proposition 2.20.2 et il en résulte que f ~ l (W) est 
un voisinage de x  dans X , ce qui prouve la continuité de /  au point x.
EXERCICE 2.27.6

Soit (x k), x k =  (xk)t une suite de c(N; Y)  qui converge vers x  =  (xn) dans Z°°(N; Y). 
L’espace Y  étant complet, il s’agit de démontrer que la suite (xn) est de Cauchy. On a

d ( x P)Xq)  ^  d ( x p i Xp)  H- d{Xq j Xq'j ~|- d { Xp )X q}
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et, e >  0 étant donné, il existe un entier k tel que
d(xp,xp) < e, d(xq,xq) < e\

la suite (xfynen appartenant à l ’espace c, il existe un entier n  tel que d(xpi xq) < £ pour 
p , q > n , d’où d(xp,xq) <  3e, ce qui permet de conclure.

EXERCICE 2.27.7 COMPLÉTÉ D’UN ESPACE MÉTRIQUE

1. On a \fx(y)\ = \d(x,y) — d(ayy)\ < d(a,x) ; ceci montre que l ’application f x appar­
tient bien à l ’espace Jfc(X; R). On a d’autre part

I fx(z) -  f y(z)| =  |d(x,z) -  d(y, z)\ < d(x,y), 
d’où di(fxyfy) < d(xyy) ; de plus, |f x(x) -  f y(x)\ =  d(x,y)> ce qui prouve que 
d\{ fx , fv) =  d(x,y). L’application ip : x f x est donc une isométrie de X  sur un 
sous-espace de l ’espace Jb(X\R).

2. Soit X  l ’adhérence de </?(X) dans ^ ( X ; R), alors X  est un espace métrique complet 
(corollaire 2.27.3) et X  est isométrique à un sous-espace dense de X , à savoir </?(X).

3. Soient X\  et X 2 deux espaces métriques complets et (pi : X  -» X* des applications 
telles que (pi soit une isométrie de X  sur son image (pi(X) supposée dense dans X^. Alors 
<P2 o (pïl : <p\{X) —> </?2(X ) est une isométrie ; cette application uniformément continue 
se prolonge donc (théorème 2.25.2) en une application continue (p : X 1 -» X 2. Le principe 
du prolongement des identités montre que y? est une isométrie sur son image, image qui 
est donc complète ; cette image y?(X 1) est donc fermée, elle est par ailleurs partout dense 
vu qu’elle contient y?2(X ) et par conséquent </?(X 1) =  X 2. Ceci montre que ip est une 
isométrie de X i sur X 2, ce qui prouve le résultat voulu.
Note La méthode précédente de complétion d’un espace métrique utilise de façon essen­
tielle le fait que R est complet par l ’ intermédiaire du corollaire 2.27.3. Cette méthode ne 
peut donc être utilisée pour construire R en tant que complété de Q.

EXERCICE 2.27.8 PERMUTATION DE LIMITES
1. Soit £ > 0, il existe M\ G tel que

d(f(x i ,  æ2), h(x2 )) <  £ pour tout x\ G M\ et tout X2 G X 2,
d’où
(2.44.3) d(f(xi>X2 ),f(x'i1X2 ))) < 2e pouræi,æ'i G M\ ttX2 € X 2.
Étant donné que y =  l im ^  g, on peut choisir M i tel que d(g(xi),y) < e pour tout 
xi G M i. Le point x[ G M i étant fixé, il existe d’autre part M2 G 3r2 tel que
(2.44.4) d(f(x[, X2), g(x'i)) < £ pour tout X2 G M 2.

On a alors pour x\ G M\ et X2 G M2

d( f (xu x 2)iy) < d( f  (xi,X2 ) J ( x ' lyx2)) + d( f (xu X2),g(x1)) + d(g(x!)yy), 
d’où d(f (x\ ,X2),y) < 4e et ceci prouve que y = lim y lX 2̂ / •  L’application /  ayant une 
limite suivant le filtre produit J i  x  J 2, on peut utiliser l ’exercice 2.17.5 en permutant le 
rôle des espaces X i  et X 2 et ceci prouve que y = lim y2 /i, soit

lim  lim  /  =  lim  lim  / .*2 ? 1
2. Le fait qu’on puisse permuter deux limites lorsqu’une de ces limites est uniforme 

contient comme cas particulier la proposition 2.27.4. Soient X  un espace topologique, Y 
un espace métrique et f n : X Y  une suite d’applications continues en un point a G X  
convergeant uniformément vers une application h. Prenons X i  =  N et X 2 =  X , pour J i
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le filtre de Fréchet et pour J 2 le filtre des voisinages du point a. Notons /  : X\  x X 2 —» Y 
l ’application f(n, x) =  fn(x). La continuité au point a signifie

fin,a) = f n(a) =  lim  f n = lim  f(n, •)
7 V(a) V(a) 7

La convergence uniforme de la suite ( / n ) vers h signifie précisément que la limite
h(x 2 ) = l i m / ( # ,X 2 )

est uniforme par rapport à X2 . D ’après 1., on a donc
lim  lim  / n (x) =  lim  lim  f n(x),

71—>00 x —>■ a  x—y CL 71—>00
c’est-à-dire

lim  f n{o) =  lim  h{x),
71—><X) X —> û

soit /i(a) =  lim^-^a /i(æ) ce qui signifie que h est continu au point a.
3. Lorsque Y  est un espace métrique complet, montrons que la limite lim y lX 3r2 f  

existe, c’est-à-dire que la base de filtre / ( J  1 x J 2) est de Cauchy. On écrit d’abord (2.44.3) 
et (2.44.4) ; de (2.44.4), on déduit

d{f{x\,X2) , f { x i ,y 2)) <  2 e pour tout X2 ,y2 G M 2.
On a d’autre part

d(f(x 1, x2),f(x'x, y2)) < d(f(xi,x2), f ( x \ , x2)) + d(f(x[ ,x2), f (x i , y2)), 
vu (2.44.3), on en déduit que

di f (xi ,X2)i f ( x 1,y2)) < 4 e pour tout x\  G M i,  a?2, 2/2 G M 2.
On a alors

d( f (xu x2) , f ( y i ,y 2)) < d( f (x1, x 2),f(x' l ,y2)) + d( f (x \ ,y2) , f ( y i ,y 2)),
d’où

d (/(* i» æ 2) , / ( y i , î fe ) )  <  8e pour tout x i ,  2/1 G M i e tx 2, î/2 G M 2,
ce qui prouve le résultat voulu.

EXERCICE 2.27.9

Montrons par exemple que /  admet une limite à droite en tout point x  G [a, 6[ . Soit e >  0, 
il existe un entier n  tel que

d ( f ( x ) , fn(x) )  <  e pour tout x  G [a, b].
La fonction f n admettant une limite à droite au point x , il existe ô > 0 tel que

d ( f n (y ) , f n ( z ) )  < e  pour x  < y,  z  < x  +  S,
d’où

d(f(y),f(z)) < d(f(y),fn(y)) + d(fn(y), f n(z)) +  d(fn(z),f(z)) <  3e 
et ceci montre que la base de filtre (/(]® ,a : +  5[))o<«<k-» est de Cauchy et, X  étant 
complet, que /  admet une limite à droite au point x.
EXERCICE 2.28.1

Le raisonnement est analogue à celui du théorème 2.28.1. Soit (On) une suite d’ouverts par­
tout denses et soit O un ouvert non vide ; il s’agit de vérifier que O rencontre l ’ intersection 
H ~ o  0°  construit une suite d’ouverts élémentaires de la forme

Bn = n x n x,
*€«/« iEl — Jn

où Jn est une partie finie de / ,  BUyi est un ouvert non vide de Xi  de diamètre <  pn, cette 
suite vérifiant en outre (2.28.1), c’est-à-dire

B q C O , B n+ i C Bn n  On, 0 <  pn+ i <  pn et lim  pn = 0.n—ïoo
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Pour conclure, il faut alors vérifier que l ’ intersection B = H ^ o  Bn^st  non videMDr, si on 
écrit Bn = n * €/ Bn>i en posant BUti = Xi lorsque i g Jn, on a B n = ü te /  d’où

b  = n <6/ ( f r = o ® » . i ) - Soit * € ai° rs ° u bien B «.i =  Xi p°ur tout n  et
=  ou bien su*te (®n,t) est une suite décroissante de fermés non vides 

dont le diamètre tend vers 0 et l ’ intersection P £ lo  Æn,» est réduite à un point d’après le 
théorème de Cantor (proposition 2.18.9). Dans tous les cas ^ n>i est non v^ e et ^ en 
résulte que B  est non vide.

Expliquons maintenant comment on construit par récurrence les ouverts B n . L’ouvert 
non vide O contient un ouvert élémentaire non vide de la forme Ylie Jo Oo,i x n»€/-J»  
et, Jo étant fini, i l existe des boules fermées B ' ( x i \ p o / 2 )  c  Oo,* pour i G Jo ; on prend 
alors

B 0 =  n  B ( x i - , p o / 2 )  x  f ]  X i
i £ J o  i € l —Jo

dont l ’adhérence Ylie j (J B(xi\po/2) x  J l i e / - j0 est bien contenue dans O, l ’adhérence
d’une boule ouverte étant contenue dans la boule fermée de même centre et de même rayon. 
La construction de Bn+\ est analogue, il suffit d’utiliser le fait que Bn H On est non vide.

EXERCICE 2.28.2

1. La fonction /  est discontinue en tout point rationnel a =  p/q G Q* car f(a) =  1/q > 0 
alors que tout voisinage de a contient un irrationnel ; il en est de même si a =  0 vu que
m  = i.

Si a G R -  Q, soit qo G N* ; l ’ensemble des rationnels p/q avec 1 <  q < qo tels que 
|a -  p/q\ < 1 est fini. Il en résulte qu’ il existe e > 0 tel que 

p/q e ] a -  £,a + £[ => q > qo.
On en déduit que

x  G ]a — e, a +  e[ = >  0 <  f (x)  < 1/qo 
et ceci prouve la continuité de /  au point a vu que /(a )  =  0.

2. D’après l ’exercice 2.18.2, il suffit de vérifier que Q n’et pas un G s. On raisonne 
par l ’absurde : on suppose que R — Q peut s’écrire comme une réunion dénombrable de 
fermés ; ces fermés sont nécessairement d’ intérieur vide et R — Q serait donc maigre. On 
remarque ensuite que Q =  W  est maigre. Il en résulte que R, en tant que réunion de 
deux ensembles maigres, serait maigre, donc d’ intérieur vide d’après le théorème de Baire 
(théorème 2.28.1) et ceci est absurde.

EXERCICE 2.28.3

1. On a
Fn(e) = f )  { x  >  0 ; |/(pa;)| <  e}.

p>n
Ces ensembles sont donc fermés d’après la continuité de /  et l ’hypothèse signifie que

oo

IJ  Fn(e) =  [0, +oo[
7 1 = 0

et, vu le théorème de Baire, l ’un des Fn(e) est d’ intérieur non vide, d’où le résultat voulu.
2. Vu que b/a >  1, on remarque que (p +  \ ) /p < b/a pour p suffisamment grand. Il 

existe donc un entier m  tel que (p +  1 )a < pb pour p > m , c’est-à-dire 
]pa,p6[n ] ( p +  l ) a , ( p +  1)6[ ^  0
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et on en déduit que ]m a , +oo[ =  U £ lm  }Pa>Pb[-
3. On peut supposer m  > no. Soit x > n ia , i l existe p > ni tel que x  E ]pa,p6[, soit 

x /p  E ]a, b[ et, vu que p > no,

l/(*)l =  | / ( p | ) | < e
et ceci prouve le résultat voulu.

EXERCICE 2.28.4

La situation envisagée est la suivante. Soient X  un espace topologique, Y  un ouvert de X  
et A  une partie de y .  On suppose que A  est maigre dans X  et on demande de vérifier que 
A est maigre dans Y  ; il s’agit donc d’une réciproque du lemme 2.28.2. Par hypothèse, 
il existe une suite (Fn) de fermés de X  d’ intérieur vide telle que A C (J™=0Fn, d’où 
A C U r=o y  n i*n  où les ensembles Y  C\Fn sont fermés dans Y. Montrons que ces fermés 
sont d’ intérieur vide dans Y , ceci prouvera le résultat voulu. Soit O un ouvert de Y  tel que
0  C y  f l  Fn , alors O est un ouvert de X  car Y  est un ouvert de X  et O C Fn, d’où 0  =  0, 
Fn étant d’ intérieur vide.

EXERCICE 2.28.5

Soient X  un espace de Baire, Y  un ouvert de X  et A une partie maigre de Y. Alors, A  est 
une partie maigre de X  d’après le lemme 2.28.2, donc d’ intérieur vide dans X . Montrons 
que A est aussi d’ intérieur vide dans Y . En effet, soit O un ouvert de Y  contenu dans A, 
alors O est ouvert dans X  car Y  est un sous-espace ouvert et, A  étant d’ intérieur vide dans 
X t il en résulte que O est vide, ce qui prouve le résultat souhaité.

EXERCICE 2.28.6

Soit (On) une suite d’ouverts partout denses et soit V un voisinage d’un point x  E X , il 
s’agit de démontrer que V rencontre l ’ intersection A =  H^Lo ^ r» *1 existe un voisinage 
Vo de x  qui est un espace de Baire et qu’on peut supposer ouvert d’après l ’exercice 2.28.5 ; 
On H Vo est alors un ouvert de Vo dense dans Vo, donc A n  Vo est dense dans Vo. Il en résulte 
que V  H Vo, qui est un voisinage de x dans Vo, rencontre A H Vo, soit AC\V C\Vq ^  $ et a 
fortiori A n V  ^  0, ce qui prouve le résultat voulu.

EXERCICE 2.28.7

1. Les ensembles Fn =  / _1( [-o o ,n ])  sont fermés et A  c U £ L o ^n * A  n’étant pas 
maigre, l ’un de ces fermés, soit Fn, est d’ intérieur non vide ; sur l ’ouvert O =  Fn , on a 
alors supx eo / ( * )  <  n.

2. Soit O un ouvert non vide, alors O est un espace de Baire (exercice 2.28.5) et 
fn\o : O R est s.c.i. (exercice 2.14.3). On peut donc raisonner sur l ’ouvert X  sup­
posé non vide. La fonction g =  supn€N f n est s.c.i. (proposition 2.14.1), g(x) est fini pour 
tout x  E X  car la suite ( f n(x)) est convergente et X  n’est pas maigre car X  est de Baire et 
non vide : d’après 1., il existe un ouvert non vide sur lequel g est borné supérieurement et il 
en est de même de /  vu que f  < g.
EXERCICE 2.28.8

1 ,a. Il est clair que A e(x) est un intervalle de [0, +oo] contenant 0. La continuité au point b 
de la fonction y  i-> f ( x , y) montre que cet intervalle n’est pas réduit à 0. Cet intervalle est
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d’autre part fermé : en effet, soit (ôn) une suite de A e(x) convergente vers S, si d(y, b) < ô> 
il existe n  tel que d(yy b) < Sn, d’où d(f(x> &), / ( x ,  y)) < e ce qui prouve que S appartient 
à A e(x). 11 existe donc bien une fonction Se : X  ->> ]0, +oo] telle que A e(æ) =  [0, £e(x)].

b. Montrons que cette fonction est s.c.s. Soit a > S£(a), alors il existe y G Y  tel que 
d(y,b) < a et d(f  (a, b ) y ) )  > e  ; la fonction x »-> d(/(æ, 6), f (x,  y)) étant continue 
au point a, on en déduit que a > ôe (x ) pour x  voisin de a et ceci prouve le caractère s.c.s. 
de la fonction ô£.

2, a. Les ensembles Fp(e) sont fermés d’après la semi-continuité de la fonction ô£ et 
X  =  (J £ li Fp(e) vu Que ôe(x) est >  0 Pour tout x -

b. Montrons que l ’ouvert O = (J£Li Fp(e) est contenu dans X  — Dn si 
0 <  € < 1/4n. Soit a G FP(e). D ’après la continuité au point a de l ’application 
x h-» /(x ,6 ) , il existe un voisinage V  de a tel que a G V  C Fp(e) et 
d(f(x,  6), /(a , 6)) <  l /4 n  pour tout x e V .  On en déduit que pour x  G V  et tout y e Y,

d(f (x ,2/), / ( a ,6)) <  d ( / ( x ,y ) , / ( ® ,6)) -h d(/(œ ,6), / ( a ,b))

< d ( f ( x , y ) J ( x ib)) +  l /4 n  ;

lorsque d(y, 6) <  1/p, on a d(/(æ , b)i f ( x i y)) < £ < 1/4n  car x  G Fp(e) et par consé­
quent

d( f(xiy)yf(a,b)) < l/2npou ræ  G K  et y G £(&; 1/p), 

ce qui prouve que cj( / ;  (a, 6)) <  1/n , soit a E X  — Dn.

c. Le complémentaire de l ’ouvert O étant maigre d’après la proposition 2.28.3, l ’en­
semble Dn C X  — O est maigre. L’ensemble Db est donc maigre en tant que réunion 
dénombrable de maigres.

3. On peut écrire D  =  U^=i où les ensembles

Gn = {(x,y) € X  x  Y  ; w ( / ;  (x , y )) >  1 /n }

sont fermés. Montrons que D  est d’ intérieur vide, les ensembles Gn seront a fortiori d’ in­
térieur vide et ceci prouvera donc que D  est maigre. Il s’agit de prouver que tout ou­
vert non vide A  de X  x Y  contient des points de continuité de / .  Soit b G pr2 (A) où 
pr2 : X  x Y  - *  Y  désigne la seconde projection. L’ensemble

A(b) = { x e X ; ( x , b ) e A }

est un ouvert non vide de X  ; l ’espace X  étant de Baire, l ’ensemble maigre Db est d’ in­
térieur vide et il en résulte que A(b) rencontre X  — Db, ce qui signifie précisément qu’ il 
existe des points de continuité de /  de la forme (æ, 6) appartenant à A .

EXERCICE 2.29.1

Soit C le plus petit ensemble de parties de X  stable par réunion et intersection dénombrable 
contenant O. D’après le lemme 2.29.7, tout fermé appartient à 6, donc 6 est le plus petit 
ensemble de parties de X  stable par réunion et intersection dénombrable contenant O et 
O' ; d’après le lemme 2.29.9, e est donc la tribu borélienne de X.
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2.45 Exercices du chapitre 2.C

EXERCICE 2.30.1

La condition est évidemment nécessaire. Inversement, soit (Oj)jej  un recouvrement ouvert 
de X.  Chaque O j  s’écrit O j  = (J i e I j  Biy I j  C I .  Posons K  =  (J ,-€ j  alors la famille 

est un recouvrement de X  qui, par hypothèse, contient un sous-recouvrement fini, 
soit (Bi)iç.L où L est une partie finie de K.  Il existe une application f  : K  J  telle que 
i e I/(i) pour tout i G K  ; on a alors Bi C Of  <*) et il en résulte que (0 /( i) ) i€ £  est un 
sous-recouvrement fini de X , ce qui prouve que X  est compact.

EXERCICE 2.30.2

1 => 2 Soit (Fn) une suite décroissante de fermés non vides, montrons que l ’ inter­
section D ~ o  Fn est non V^ e en raisonnant par l ’absurde. Si cette intersection est vide, la 
suite (X -  Fn) est un recouvrement ouvert dénombrable qui admet, d’après 1., un sous- 
recouvrement fini ; cette suite (X  — Fn) étant croissante, ceci signifie qu’ il existe un entier 
n tel que X  — Fn =  X,  ce qui est absurde, les ensembles Fn étant non vides.

2 => 3 Soit (xn) une suite de X y l ’ensemble des valeurs d’adhérence de cette suite est 
égal à l ’ intersection de la suite décroissante de fermés non vides LÇLnfap}» intersection 
non vide d’après 2., ce qui prouve 3.

3 => 1 Soit (On) un recouvrement ouvert dénombrable de X , montrons qu’ il existe un 
sous-recouvrement fini en raisonnant par l ’absurde. On suppose donc que X  ±  Up=o 
pour tout n. Les ensembles X  — U p=o^p sont non vides, choisissons un point 
xn e X  — (Jp=o ^ p dans chacun de ces ensembles. On construit ainsi une suite (xn). 
Montrons que cette suite n’admet pas de valeur d’adhérence, ceci contredira 3. Supposons 
que x  soit une valeur d’adhérence de la suite (æn), alors il existe un entier n  tel que x  G On 
et cet ouvert On doit contenir tous les xv à l ’exception peut-être d’un nombre fini d’entre 
eux, ce qui n’est pas vérifié vu que xp ^  On pour p > n .
EXERCICE 2.30.3 ESPACE DE LINDELÔF
1. Soit (Bn) une base de topologie dénombrable et soit (Oi)iei une famille d’ouverts. 
Posons

A = {n e  N ; (3i e I)(Bn C Oi)}.
On peut alors définir une application i  : n  4  i(n) de A dans /  telle que Bn C 0*(n) 
pour tout n e A. Montrons que |J i(E/ Oi = U n<=A soit L U /  Oi =  L U j  où 
J  = i(A) est bien une partie dénombrable de / .  Il s’agit de démontrer l ’ inclusion

U0i c (J oi(n).
iEl n€A

Or, (Bn) est une base de topologie, donc pour tout i G I  il existe une partie Ai de N telle 
que Oi =  UneA; B n ' ce 9ui montre Que A i C A e t O i C  (JneA Bn C U neA 0<(n). d’où 
l ’ inclusion voulue.

2,a. D ’après L, si X  est un espace à base de topologie dénombrable, tout recouvrement 
ouvert de X  contient un sous-recouvrement dénombrable, ce qui prouve qu’un tel espace 
est un espace de Lindelôf.

b. De plus, soit (Bn) une base de topologie dénombrable et soit (Ci)iei une autre base 
de la topologie de X.  Alors, pour tout entier n, il existe d’après 1. une partie dénombrable
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In de I  telle que Bn = | J i€/ C *. L’ensemble J =  U ^ o  In est dénombrable et (C *)*e j 
est une base de la topologie de X  car tout ouvert s’écrivant comme une réunion de Bn 
s’écrit comme une réunion de Ci avec i G J. Ceci montre que toute base de topologie 
contient une base de topologie dénombrable.

3. Soit X  un espace séparé tel que toute suite admette une valeur d’adhérence. Si X  est 
un espace de Lindelôf, X  est compact d’après l ’exercice 2.30.2. Réciproquement, si X  est 
compact, tout recouvrement ouvert contient un sous-recouvrement fini, donc dénombrable, 
et X  est un espace de Lindelôf.

EXERCICE 2.30.4

1. Démontrons d’abord que la condition est suffisante. Chaque espace Xi  admet une base 
de topologie dénombrable que nous notons 23i et il existe une partie dénombrable Iq de 
/  telle que 23* =  {0 ,X * }  pour i £ I  — Iq. On obtient une base de la topologie produit 
en prenant l ’ensemble des ouverts de la forme B  =  n * ej  Bi x Tliei -j  X* °ù Bi décrit 
23* et J l ’ensemble des parties finies de I. On peut supposer J c  /o, donc J  décrit un 
ensemble dénombrable, à savoir l ’ensemble des parties finies d’un ensemble dénombrable 
(exercice 1.9.5). Lorsque J est fixé, on obtient un ensemble dénombrable d’ouverts B  car 
un produit fini d’ensembles dénombrables est dénombrable (proposition 1.9.5). La base de 
la topologie produit considérée est donc dénombrable en tant que réunion dénombrable 
d’ensembles dénombrables (proposition 1.9.6).

2. Montrons ensuite que la condition est nécessaire. Chaque X*, homéomorphe à un 
sous-espace de l ’espace produit, est nécessairement à base de topologie dénombrable. Si 23* 
est une base de la topologie de X iy l ’exercice 2.30.3 montre qu’ il existe une base dénom­
brable (Bn) de la topologie produit où chaque Bn est de la forme

Bn =  BUti X 1 1  Xi  
i€Jn iel-J„

où Jn est une partie finie de I  et Bn,i E 23*. L’ensemble Iq =  L£Lo est dénombrable 
et si i 0 Iq la topologie de Xi  est nécessairement la topologie grossière, sinon l ’ouvert 
O =  O* x R  Xj  où O* est un ouvert non vide et distinct de Xi  ne contiendrait aucun 
Bn> ce qui est absurde car cet ouvert O doit s’écrire comme une réunion de Bn.
EXERCICE 2.30.5 COEFFICIENT DE LEBESGUE D’UN RECOUVREMENT

Pour tout x  G X,  il existe i £ I  tel que x G O* et, O* étant ouvert, une boule ouverte 
centrée au point x et contenu dans O*, soit B(x\r(x)) C O*, r(x) > 0. Du recouvrement 
ouvert (B(x\r(x)/‘2))X£x, on peut extraire un sous-recouvrement fini : il existe une partie 
finie A de X  telle que Uxga B(x\r(x)/2) =  X. Prenons alors e = min^A r(x)/2. Si 
M est une partie non vide de X  de diamètre <  e, il existe x G A tel que M rencontre la 
boule B(x; r (x ) /2 )  ; il en résulte que M est contenu dans la boule B(x\ r ( x ) /2  + e), d’où 
M  C B(x\ r (x ) )  C O* car e < r ( x ) /2  et ceci prouve le résultat voulu.

EXERCICE 2.30.6

Montrons que g est s.c.i. au point a £ X.  Soit a  G R tel que a < g(a) et soit 
oc <  P  <  g(a), pour tout y G Y  on a p  <  f(ayy) et, /  étant s.c.i., il existe un voisi­
nage Vy x Wy de (a, y) tel que P < / ( x ' ,  y1) pour tout (x ', y') £ Vy x Wv. Bien entendu, 
on peut supposer ce voisinage ouvert, alors (Wy)yç.Y est un recouvrement ouvert de l ’es­
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pace compact Y. Il existe donc un sous-recouvrement fini, soit (Wy)yeA, A  désignant une 
partie finie de Y. L’ensemble V = p |y€>1 est un vo*s n̂aêe de a et P <  f ( x , y) pour tout 
{xy y) G V x Y ,  d’où fi < g{x) pour tout x G V  et par conséquent a  <  g(x) pour tout 
x  G V, ce qui prouve le résultat voulu.

EXERCICE 2.30.7

1. On peut supposer la distance sur Z  bornée : des distances uniformément équivalentes 
sur Z  induisent des distances uniformément équivalentes sur les espaces J U{X x Y \ Z )  
et J U{Y\Z),  donc sur l ’espace 3ru (X my3ru(Y;Z))  ; il en résulte que remplacer la distance 
sur Z  par une distance uniformément équivalente ne modifie ni les espaces GU(X  x  Y ; Z)y 
QU( Y ; Z ), £U(X\ GU(Y] Z)), ni leur structure uniforme.

2. Rappelons la définition de l ’homéomorphisme <Ê>. Soit /  G X  x Y ; Z), notons 
gx : Y  -> Z  l ’application y f ( x yy) ; alors, $ ( / )  désigne l ’application x  h*  gx de X  
dans J (  Y ; Z). Si /  est une fonction continue, il est clair que gx est une fonction continue, 
s o it$ ( / )  : X - > e ( Y \ Z ) .

2,a. Montrons d’abord la continuité de $ ( / ) ,  l ’espace C (Y ; Z) étant muni de la topo­
logie de la convergence uniforme, soit $>(/) G C (X ; CU( Y ; Z)). Soit a G X  et soit e > 0, 
il s’agit de démontrer qu’ il existe un voisinage V  de a tel que di(gXyga) < 2e pour tout 
x  G V, c’est-à-dire

x  G V => supd(f (x ,y) , f (a ,y))  <  2e. 
yGY

La fonction /  est continue au point (a, b) 6 X  x Y,  il existe donc un voisinage ouvert 
Vb x Wb de (a, b) tel que

d{f{xyy)yf ( a yb)) < e  pour tout (x,y) G H  x Wb.
Le recouvrement ouvert (Wb)beY de l ’espace compact Y  contient un sous-recouvrement 
fini (Wb)b€B, B  partie finie de Y.  Posons V = fï&eB H . alors V  est un voisinage de a et 

d ( / ( z ,2/ ) , / ( a ,6)) <  e pour tout (xyy) e V  x Y,
d’où

d( f (xyy ) , f (a yy)) < d( f (x9y) , f (a 9b)) + d(f (a,y)J(a,b)) <2e  
pour tout (x, y) G V x Y,  ce qui prouve le résultat voulu.

b. D’après 2,a., l ’application $  induit une injection de l ’espace C(X x Y \ Z )  dans 
C(X'}(3U(Y; Z)). Montrons que cette application est surjective. Étant donné une appli­
cation continue x gx de X  dans eu(K ;Z ) , il s’agit de démontrer que l ’application 
/  : X  x y  -» Z  définie par f ( x y y) = gx (y) est continue. Soient (a, 6) G X  x Y  et e > 0, 
d’après la continuité au point a de l ’application x  i-» gx, il existe un voisinage V  de a tel 
que

d( f (xyy)yf ( a yy)) < e  pour tout (xyy) G V x Y  
et, d’après la continuité au point 6 de l ’application ga : Y  -» Z , il existe un voisinage W  de 
b tel que d(f (ay y)y f (a y b)) < e pour tout y G W . Il en résulte que, pour (xy y) e V x W ,  

d(f (x ,y) ,f {a,b)) <  d( f(x ,y) , f (a,y) )+d( f (a ,y) , f (a ,b))  < 2e, 
ce qui prouve la continuité de /  au point (a, b).

c. Ce qui précède prouve que $  induit une bijection de l ’espace (X x Y  ; Z) sur l ’es­
pace QU(X\QU( Y ; Z)). Vérifions que cette bijection est un homéomorphisme uniformé­
ment continu, ainsi que l ’homéomorphisme réciproque. Étant donné que 
$  : 3U(X x Y; Z) JuÇY; Z)) est un homéomorphisme uniformément continu,
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ainsi que P homéomorphisme réciproque, il suffit de remarquer que t u{X x Y ; Z) est un 
sous-espace métrique 3U(X  x  Y ; Z) et que QU(X\ CU( Y ; Z)) est un sous-espace mé­
trique de JuiX] 5FU(Y ; Z)). Comme nous l ’avons vérifié (exercice 2.27.2), <ï> est en fait 
une isométrie lorsque la distance sur Z  est bornée.

EXERCICE 2.30.8

Soit a G H a/ gu alors a e M  Pour tout M  € U et ceci prouve que M  € Ua. L’ultrafiltre 
IX est donc moins fin que l ’ultrafiltre trivial Ua et donc coïncide avec cet ultrafiltre, ce qui 
prouve le résultat voulu.

EXERCICE 2.30.9

1. La condition est évidemment nécessaire, tout filtre plus fin qu’un filtre convergent conver­
geant vers la même limite. Réciproquement, supposons que y — lim u /  pour tout ultrafiltre 
U plus fin que J  et montrons que y =  lim ^  / .  Raisonnons par l ’absurde, supposons que y 
ne soit pas une valeur limite de /  suivant J . Alors, il existe un voisinage Y  de y n’appar­
tenant pas au filtre engendré par / ( J ) ,  ce qui signifie /(M) ÇL V  pour tout M  G J , soit 
M D ( I - / - 1(V))^ 0. Autrement dit, J  admet une trace sur X  -  f ~1 (V) qui engendre 
un filtre J ' sur X  plus fin que J. Soit U un ultrafiltre plus fin que J ',  donc que J  ; la base 
de filtre f(U) ne converge pas vers y car X  -  / _ 1(Y ) G ?  C  II , d’où / _1(Y ) £  U et on 
obtient ainsi une contradiction.

2. Dire que /  est continu en un point a signifie que / (a )  =  lim V(a) /  donc d’après 1. 
que, pour tout ultrafiltre U plus fin que le filtre V(a), c’est-à-dire qui converge vers a, la 
base de filtre f(U) converge vers /(a ) .

EXERCICE 2.31.1

1. Le graphe de /  peut s’écrire

G = {(x,y) 6 X  x Y  ;pr2(x,y) = ( /  °pri)(x,y)}
en notant pri : X  x Y  —> X  et pr2 : X  x Y  —> Y  les deux projections. Si /  est continu, son 
graphe est donc fermé d’après le principe du prolongement des identités, Y  étant séparé.

2. Réciproquement, on suppose l ’espace Y  compact et le graphe de /  fermé. Montrons 
que /(æ), x G X,  est le seul point adhérent au filtre de base f(V(x))t on en déduira que 
cette base de filtre converge vers f (x)  d’après la proposition 2.31.1, ce qui signifie que /  est 
continu au point x. Considérons donc un point y G Y  adhérent au filtre de base f(V(x)). 
Alors, pour tout voisinage Y  x JY de (x, y), W  n / ( Y )  ^  0, ce qui signifie que Y  x W  
rencontre G ; ceci montre que le point (x,y) est adhérent à G, d’où (z ,y ) G G, G étant 
fermé, soit y =  f(x).

EXERCICE 2.31.2

La condition est évidemment nécessaire. Réciproquement, l ’espace X  étant à base dénom­
brable de voisinages, soient x g X  et (xn) une suite de X  convergeant vers x , il s’agit 
de démontrer que la suite ( f ( x n)) converge vers f(x).  Considérons le compact (exemple 
2.31.1) K  = {æ} U U n=o{*»*}. La fonction / | k  : K  Y  étant continue et la suite 
(xn) convergeant vers x  dans le sous-espace AT, la suite (f ( x n)) converge vers f ( x ), ce
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qui prouve le résultat voulu.

EXERCICE 2.31.3 CONVERGENCE UNIFORME SUR TOUT COMPACT

1. Une suite ( / n) convergeant uniformément sur tout compact vers /  converge simplement 
vers /  car toute partie de X  réduite à un point est compacte.

2. Soit ( / n) une suite convergeant localement uniformément vers /  et soit K  une partie 
compacte de X .  Pour tout x G X ,  il existe un voisinage ouvert Ox de x tel que la suite 
( /n |o x. ) converge uniformément vers f\o.x : pour tout e >  0, il existe un entier nx tel que

sup d(f(y), f p(y)) < e pour tout p > n x.
yeOj;

La famille (Ox)xeK est un recouvrement ouvert du compact K  ; il existe donc une partie fi­
nie A de I< telle que K  C P°sons n = maxxeAnx, on a alors
sup y€KdUiy)yfp(y)) <  £ Pour P  > net  ceci prouve que la suite ( / n |/c) converge 
uniformément vers f\i<. La suite ( / n) converge donc uniformément sur tout compact vers 
/•

3. On suppose l ’espace X  séparé et à base dénombrable de voisinages et on considère 
une suite ( / n) de fonctions continues convergeant uniformément sur tout compact vers / .  
Soit K  une partie compacte de X ,  d’après le corollaire 2.27.5 la fonction / \ k  est continue 
et /  est donc continu d’après l ’exercice 2.31.2.

EXERCICE 2.31.4

1. On considère un compact K\  de X\ ,  un point a e X 2 et un voisinage V  de K\  x  {a}. 
Pour tout x e Ki, V est un voisinage du point (x , a), il existe donc un voisinage ouvert 
Oi,x x O2,® de (x, a) contenu dans V. La famille (OiiX)X£Ki est un recouvrement ouvert 
du compact K\,  il existe donc une partie finie A de K\  telle que K\  C  Oi — \JxeA OitX. 
Posons O2 = ^ 2,x» alors 0 \  x O2 est un voisinage ouvert de K\  x  {a }  contenu
dans V , ce qui prouve le résultat voulu lorsque K2 est réduit à un point.

2. Dans le cas général, soit V un voisinage de K \  x K2 . Pour tout y e K 2t il existe, 
d’après 1., un voisinage ouvert Oi,y x  C>2,y de K \  x {y} contenu dans V. Lorsque y décrit 
K 2 , les ouverts 02iV constituent un recouvrement de K 2 ; il existe donc une partie finie A 
de K 2 telle que Ki  C  O2 =  (JyeA Posons Oi =  Oi,v> alors x  O2 est un 
voisinage ouvert de K \  x  K2 contenu dans V , ce qui prouve le résultat voulu.

EXERCICE 2.31.5

Soit A une partie fermée de X  x  Y  et soit y g pr2(A). Pour tout x e X ,  le point (x , y) 
n’appartenant pas à A n’est pas adhérent à A ; il existe donc un voisinage ouvert Ux x  Vx 
de ce point ne rencontrant pas A. Lorsque x décrit X , les ouverts Ux forment un recou­
vrement ouvert de l ’espace compact X. Il existe donc une partie finie F  de X  telle que 
X  = U ig f  Posons V = H x€F Alors, V est un voisinage ouvert du point y ne 
rencontrant pas pr2 (A), ce qui prouve que pr2 (A) est fermé.

EXERCICE 2.31.6

1. On peut écrire A =  p r i ( / _1({a }))  en notant pn  : X  x Y X  la première projec­
tion. L ’ensemble / -1 ( {a })  est fermé d’après la continuité de / ,  l ’espace Z  étant séparé. 
L’espace Y  étant compact, l ’exercice 2.31.5 montre que A est fermé.

2. L’application g : A —> Y  est bien définie d’après l ’ injectivité de l ’application
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y i-> f(x,  y). Le graphe G de g est fermé dans A x Y  car
G =  { ( * ,» )  € A  x  y  ; / ( * , y )  =  a } =  (A  x y )  n  r l ({a}).

L’espace Y  étant compact, l ’application g est continue d’après l ’exercice 2.31.1.

EXERCICE 2.32.1

L’ultrafiltre U admet une trace sur A si, et seulement si, M  f l  A ^  0 pour tout M  G U. 
Or, i4 G U ou bien X  — A G IX d’après la proposition 2.32.3 ; si U admet une trace sur A, 
X  -  Ane  peut pas appartenir à U et on a donc nécessairement A G U et, si cette condition 
est réalisée, alors U admet une trace sur A, l ’ intersection de deux ensembles d’un filtre étant 
non vide.

Montrons alors que le filtre induit U a est un ultrafiltre. Utilisons le critère de la propo­
sition 2.32.3. Soit B  une partie de A , alors ou bien B G IX, ou bien X  -  B G IL  Lorsque 
B G U, on a alors B  =  B f l  A G U a et lorsque X  -  B GU, on a 

A -  B = (X -  B) n  A G IU ,

ce qui permet de conclure.

EXERCICE 2.32.2

1 => 2 d’après la continuité de 7r et l ’exercice 2.31.1.
2 3 Soit F  un fermé de X,  montrons que 7r(F ) est fermé dans X / R , c’est-à-dire 

que 7r_1(7r(F)) est fermé dans X.  On observe que
=  (z  € X  ; (3y € F ) ( tt(j/) =  7r(æ))}

et par conséquent
n~1(n (F))=pr 1((X x F) n  G)

en notant pr\ : X  x X  -»> X  la première projection. L’ensemble (X  x  F) C\G est une partie 
fermée de l ’espace compact X  x X  Cfychonoft), donc compacte ; d’après la continuité de 
la projection pr\ , 7r_1(7r(F)) est donc compact dans X,  c’est-à-dire fermé.

3 => 1 Montrons que deux points distincts £ et 77 de l ’espace quotient X / R  admettent 
des voisinages disjoints. L’application 7r étant fermée, le saturé de tout fermé est fermé 
(exercice 2.24.1) ; en particulier, l ’ensemble 7t_ 1(£) est fermé en tant que saturé de l ’un 
quelconque de ses points et de même 7r— 1 (77) est fermé. Les ensembles 7t_ 1(£) et
sont donc deux fermés disjoints dans un espace compact ; d’après la proposition 2.31.9, ces 
fermés admettent des voisinages disjoints

V  G V(7r_1(£)) et W  G V f r " 1^ ) )

qu’on peut supposer ouverts. L ’ensemble (saturé) 7t_1(£) ne rencontrant pas X  — V  ne ren­
contre pas le saturé V1 de X  -  V, d’où 7t_1(£) C  X  -  V* C  V  ; de même, 
7r_ 1 (77) C X  -  W1 C  W en notant W' le saturé de X  -  W. Les ensembles V'  et Wf sont 
fermés en tant que saturés d’ensembles fermés. Les inclusions précédentes montrent que 
X  — V' et X  -  Wf sont des voisinages ouverts disjoints de 7t_1(£) et 7r—1 (77). Ces ouverts 
étant saturés, on en déduit que leurs images par 7r sont des ouverts disjoints et ce sont donc 
des voisinages ouverts disjoints de £ et 77, ce qui prouve le résultat voulu.

EXERCICE 2.33.1

La condition est évidemment nécessaire. Réciproquement, si tout recouvrement ouvert dé­
nombrable contient un sous-recouvrement fini, toute suite admet une valeur d’adhérence
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(exercice 2.30.2) et l ’espace est compact d’après le théorème 2.33.4.

EXERCICE 2.33.2

1. L’espace X  x X  est un espace métrique compact Otychonoff) ; i l existe donc une sous- 
suite ((ank, bnk)) convergente. Les suites (ank) et (bnk) sont convergentes , donc de Cau­
chy : en particulier, pour tout e >  0, il existe un entier k tel que

d(ank, ani ) < £ et d(bnk, bni ) < e pour tout l > k .
Vu l ’hypothèse, on a

d (û ,o>ni—nk) ^  d(f  *(& )> / k{o,ni— nk)) = d{ank, Ün i) <  £ 
et de même d(b, bni- nk ) <  e. Choisissons un l > k et posons n = n i —nk > 1, on a alors

d(ay an) < e et d(b> bn) <  s.
2. D ’après l ’ inégalité triangulaire, on en déduit que
d(f(a)y/(&)) < d(an,bn) < d(aian) +  d(an,6n) + d(6,6n) < 2e + d(aib)i 

et, ceci valant pour tout e > 0 ,d ( /(o ) , / (6 ) )  <  d(a, 6), d’où d(f (a), /(6 ))  = d(a,b).
3. L ’application /  est donc une isométrie de X  sur son image f(X).  L’espace X  étant 

compact, f (X)  est une partie compacte, donc fermée. Notons d’autre part que f(X)  est 
dense dans X  : en effet, pour tout a e X  et tout e >  0, il existe d’après 1. un point 
x e f ( X ), à savoir an , tel que d(aix) < e. Ceci prouve que f(X)  est fermé et partout 
dense et par conséquent f(X) = X  : /  est une isométrie de X  sur X.
EXERCICE 2.33.3 ESPACE DES FERMÉS D’UN ESPACE MÉTRIQUE
1. On a évidemment p(A , B) = p(By A). La relation p(A, B) = 0 signifie d(æ, B) = 0 
pour tout x e A et d(x, 4̂) = 0 pour tout x e B, c’est-à-dire A c B  =  B e t B c A  =  A, 
d’où A — B. Quant à l’inégalité triangulaire, montrons que, pour tout A ,B yC e J , 

sup d(x, C) < sup d(x, B) + sup d(y, C).
x £ A  x e A  y € B

D’après (2.13.4), on a pour tout x G A et tout y E B
d(x, C) < d(x,y) +  <%, C) < d(rr, y) +  sup d(y, C),

soit

C) < inf d(x,y) + sup d(y, C),Î/€B j,€B

d(æ, C) < d(x, B) + sup d(i/, C)
yeB

et on obtient l’inégalité annoncée en prenant la borne supérieure sur x E A. On en déduit 
que

sup d(x, C) < p(A, B) +  p(B, C)
xeA

et en permutant A et C,
sup d(æ, A) < p(A, B) +  p(-B,C),

d’où
p(AiC)<p(AiB) + p(B,C).

2. On considère une suite (An) de J  convergeant vers A pour cette distance p et 
des points xn E An tels que la suite (æn) converge vers une limite notée x. Montrons 
que x appartient à A. Posons en — supxeAit d(xyA), la suite (en) tend vers 0 ; on a
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dt(xn , A) < en et en passant à la limite d(x, ^4) =  0, d’où x G A = A, ce qui prouve le 
résultat voulu.

3. Soit ( A n ) une suite de J  convergeant vers A, on se propose de démontrer que A  est 
égal à l ’ensemble B = |X L o  U P> „  Av

Soit x G A, montrons que x appartient à B. Il s’agit de démontrer que, pour tout n  G N, 
x est adhérent à l ’ensemble ( J p> n AP, c’est-à-dire que pour tout e > 0 il existe p > n tel 
que l ’ intersection B(x\ e)C\Ap soit non vide : en effet, supx€A d(x, Ap) tend vers 0 lorsque 
p tend vers l ’ infini ; il existe donc p > n tel que d(x, Ap) < e, ce qui prouve le résultat 
voulu.

Inversement, soit x e  B. Soit (Ek) une suite de nombres >  0 convergeant vers 0, 
construisons par récurrence une sous-suite (A nk ) telle que

B(x\Ek) f l  Ank ^  0 pour tout k.
Pour k = 0, le point x  étant adhérent à (Jp>o ^ p» ^ existe un entier no tel que B(x ; eo) 
rencontre A ni). De même, le point x  étant adhérent à UP>nfc+i A »  ^ existe nk+i > nk tel 
que B(x\Ek+1) rencontre i4nfc+1. Choisissons alors Xk € B(x\£k) H AUk ; on construit 
ainsi une suite (xk) qui converge vers x  et, la sous-suite (i4nA:) convergeant vers A ,  on a 
x e A  d’après 2.

Ceci prouve la formule voulue.
4. On suppose l ’espace X  précompact. Soit £ >  0, il existe une famille finie (Ai)içi de 

fermés non vides de diamètre <  e dont la réunion est X. On note 23 l ’ensemble des parties 
de X  qui s’écrivent (Ji€ j  Ai où J  est une partie non vide de I  ; de telle parties de X  étant 
fermées, 23 est une partie finie de J . Si A est une partie fermée non vide de X , l ’ensemble 
J  = {i e I  ; A D Ai ^  0} est non vide et A C B  où B  =  (Ji€ j  Ai e  23. Il en résulte que

p(A, B) = sup d(æ, A) < e
xeB

et ceci prouve que l ’ensemble des boules fermées (B'(B\ e ) ) b € ‘b  est un recouvrement fini 
de J, ce qui prouve que J  est précompact.

5. a. La suite (An) étant de Cauchy, il existe un entier n tel que p(Ap, Aq) < e/ 2, 
c’est-à-dire supxeA/t d(x, Aq) < e/ 2, pour tout p, q > n. Pour tout x e  Apy on a donc 
d(x} Aq) < e/ 2 et par conséquent il existe y e  Aq tel que d(x> y) < e.

b. D’après 5,a., il existe un entier no tel que, pour p,q > no et x e A pt il existe 
y  e  A q tel que d ( x ,  y) <  £o. On choisit un point quelconque xq de (J P> n 0 ^ p - A l ° r s > pour 
q >  no, il existe y  e A q tel que d(xoyy) < £o. D’après 5,a., il existe un entier n i >  no 
tel que, pour pyq > m  et x  G A py il existe y  G A q tel que d ( x yy)  < £\. On choisit un 
point x i  G A ni  tel que d(xo,æi) <  £o ; pour q > m , il existe alors y  G A q tel que 
d (x \ , y )  < Ei. Par récurrence, on construit ainsi une sous-suite (A n k ) et des Xk £ A n k , 

k  > 1, tels que d(xk-i,Xk) < £ k-i  et, pour tout q > il existe y G A q tel que 
d (xk, y)  <  ek.

c. La suite (xk) est de Cauchy car on a

d(xkyXk+i) <£fc +  . . .  +  efe+i-1, l > 1,
et la série YlkLo €k est convergente. L’espace X  étant complet, cette suite converge vers 
une limite que nous notons y. On a xnk G Arlk_C Bk car nk > k et la suite (Bk) étant 
décroissante xnk G Bi pour k > /, d’où y G Bi =  Bi pour tout /, soit y e B et ceci 
prouve que B  est non vide. De plus,

d(xo, Xk) < €0 4-. . .  +  £k-1 < e,
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d’où d ( x o , y )  < e et en particulier d ( x o , B )  < e. En posant no = n et x o  = x , on 
en déduit ceci : pour tout e > 0 , il existe un entier n tel que, pour tout x  E Up>n A» 
d ( x y B )  <  e  et ceci vaut encore pour tout x  E B n .

d. Soit £ > 0 , d’après 5,a., il existe n tel que, pour tout q > n et tout x G (Jp>n 
donc tout x € B, d(x, Aq) < e, soit supxeB d(x) Aq) < £. D’après 5 ,c., on peut en outre 
choisir n tel que supxGAy d(x, B) < £ pour q >  n  et ceci prouve que p(B , A9) < e pour 
q > n. La suite (An) converge donc vers B et l’espace J  est donc complet.

6 . Si X  est compact, X  est complet et précompact (théorème 2 .33.4) ; il en est donc de 
même de J  qui est donc compact.
EXERCICE 2.33.4

1. Soient £ > 0 et x G [a, 6], la fonction /  admettant des limites à gauche et à droite au point 
x, il existe 6X > 0 tel que d(f (y)}f(z)) < £ lorsque j/,z G [a,6]n]x,x + ôx[, ou bien 
lorsque y, z G [a, b]C\]x — 6x,x[. Le recouvrement ouvert (]æ —£*>#+£*[^ela.d) de l’in­
tervalle compact [a, b] contient un sous-recouvrement fini ( ]a,j —6a j, aj +6aj [)j€J-Notons 
(Xi)i<i<n+i la suite strictement croissante constituée des points a, 6, a j —6a j, aj9aj+ôaj 
appartenant à [a, b] . On a alors d(f(y), f(z))  < £ lorsque y 9z € ]xi,x*+i[. On construit 
ensuite une fonction en escalier g : [a, 6] -► X en posant (̂æ<) = /(x«), l < ï < n + l e t  
g(x) = f(yi) pour x  G ]®<, æ*+1[, 1 < î < n, où yi est un point arbitraire de l’intervalle 
]xi,Xi+1[. On a alors d(f(x),g(x)) < £ pour tout x  G [a,6], ce qui prouve le résultat 
voulu.

2 . Toute fonction en escalier étant bornée, la proposition 2 .27.2 montre que toute fonc­
tion réglée est bornée.
EXERCICE 2.33.5

1. Construisons la famille (i4e). Notons 6 le diamètre de X.  Si S = 0 , c’est-à-dire si X  
est réduit à un point, on prend A q = A\ = X.  Lorsque ô > 0, X  étant précompact, il 
existe une famille finie (i^t)i<t<p+i de parties compactes non vides de diamètre < 6 / 2  
dont la réunion est X  et, 6 étant > 0 , on notera que p > 1. Définissons alors les Ae pour 
£ G Un=i faÇ°n suivante. On pose

p + i

A q = Ki et A\ = Km
n=2

puis pour £ e £q où 1 <  q < p, si Ae est l’un des Knt on prend Ae> =  Aen — Kn et, si 
Ae = U n tU l Kn> 0n prend

p + 1

Aef = Kq+i et Aeft =  ( J  Kn.
n=q+2

On constate alors que chaque Ae pour £ G £p est égal à l’un des Kn et est donc de diamètre 
< 6/ 2 . Il suffit alors d’itérer cette construction à partir de ces Ae, £ G £p, pour obtenir le 
résultat voulu.

2 . Pour £ G {0 , l }n*, l’intersection fl^Li A£ll est réduite à un point a d’après le théo­
rème de Cantor (proposition 2 .18.9) ; montrons que l’application /  : £ a de {0 , l }n* 
dans X  est une surjection continue.

Cette application est surjective. En effet, soit a G X  ; pour tout n >  l ,X  = (Je6£ 
donc il existe £n € £n tel que a G A£n. D’après la condition 2 ., en raisonnant par récur­
rence on peut choisir les £n tels que en\[itn-i] = £n-1 pour n > 2. Autrement dit, il existe
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e G £ tel que e|[i>n) =  £n pour tout n > 1 et par conséquent a =  f(e).
Quant à la continuité de / ,  soit (ek) une suite de {0 , 1}N convergeant vers e. Montrons 

que la suite ak = f (ek) converge vers a = f(e). La topologie sur l’espace {0 , 1}N* étant 
la topologie produit, pour tout n > 1, il existe un entier k tel que, pour / > fc, eln — en> 
d’où a1 E A£n et par conséquent \a -  a1 \ < diam A£n pour l > k et, vu la condition 3., 
ceci montre que la suite (ak) converge vers a.
EXERCICE 2.33.6

1. Montrons que la condition est nécessaire. On suppose l’espace compact et on considère 
une partie non vide A de X.  Posons Ax = [x, -» [ C\A, alors 3  = (i4x)xGi4 est une base de 
filtre en tant qu’ensemble non vide de parties non vides (car x E A x) stable par intersection 
finie car Ax fl Ay = Az où z = max(x, y). Cette base de filtre admet un point adhérent a, 
soit a e Ax pour tout a; E A  On en déduit en particulier que a E [x, —> [ pour tout x e A, 
ce qui prouve que a est un majorant de A. Montrons que a est la borne supérieure de A en 
raisonnant par l’absurde. Supposons qu’il existe un majorant 6 de A tel que b < a, alors 
]ù, -> [ est un voisinage ouvert de a ne rencontrant pas A , ce qui est absurde vu que a e A.

En remplaçant l’ordre par l’ordre opposé qui induit la même topologie, on en déduit 
que toute partie non vide admet une borne inférieure.

2. Réciproquement, supposons que toute partie non vide admet une borne supérieure 
et inférieure. Montrons que l’espace est compact. L’espace est séparé d’après l’exercice
2.17.4 . Montrons que tout filtre J  admet un point adhérent. On pose xm =  infM  et 
a = supM€3r xm ; vérifions que a est un point adhérent à J . Les intervalles ouverts de 
la forme ]a, p [, ]a, —> [, ] «—, /?[ qui contiennent a constituent un système fondamental de 
voisinages de a ; vérifions que chacun de ces intervalles rencontre tout M  G J.

Si /  =]a, P[ ou /  =]a, [, on a a < a ; il existe donc N  G J  tel que a < xn < a,
d’où a  < xn  < xmhn < cl et, vu la définition de x mhn , il en résulte que l’intervalle I  
rencontre M  fl N  et a fortiori M.

Si I  =] P[, alors a < fi, d’où x m  < a < P et par conséquent I  fl M  ±  0 , ce qui 
prouve le résultat voulu.

3. La topologie de l’ordre sur M est la topologie usuelle, elle est donc compacte d’après 
le critère précédent.
EXERCICE 2.33.7

1. Notons (x\ , X2) < (2/1,2/2) la relation. Cette relation est évidemment réflexive. Véri­
fions la transitivité. On suppose (xi,X2) < (2/1,2/2) et (2/1,2/2) < (21,22). Si xi < 2/1 ou
2/i < 21, alors x\ < z\> d’où (xi,X2) < (21,22). Sinon, x\ — y\ =  z\ et 
X2 < 2/2 < 22, d’où (x i,X2) < (21,22). Quant à l’antisymétrie, si (xi,X2) < (2/1,2/2) et 
(2/1,2/2) < (^ î, X2), on a nécessairement x\  =2/1» d’où X2 < 2/2 et 2/2 < #2, s°il x 2 = 2/2. 
Ceci prouve que la relation considérée est bien une relation d’ordre.

Lorsque les relations d’ordre sur X\  et X2 sont des relations d’ordre total, montrons 
que l’ordre lexicographique est total. Soient (xi,X2), (2/1,2/2) G X\  x X 2. Si x\ < y\ ou 
si 2/1 < xi,  on a (x i,x2) < (2/1,2/2) ou (271,2/2) < Oci,x2). Sinon, x\ = yi et x 2 < 2/2
ou 2/2 < x 2,d ’où (x i,x2) < (2/1,2/2) ou (2/1,2/2) < (æi,x2).

2 . On munit l’espace [0 , l ]2 de l’ordre lexicographique et de la topologie de l’ordre 
associée. Utilisons l’exercice 2 .33.6. Montrons que toute partie non vide A admet une borne 
supérieure et une borne inférieure. Posons a = sup(Xj3/)€A x  et B  =  A fl ({a} x [0 , 1]).
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Si B = 0, alors (a,0) est la borne supérieure de A : en effet, si (x,y) G A, on a 
x < a, d’où (æ, y) <  (a, 0) ce qui prouve que (a, 0) est un majorant ; en outre, pour tout 
b < a, il existe (x>y) G A tel que b < x et, si (m ,n ) est un majorant, il en résulte que 
b < x < ra, d’où a <  m e t (a, 0) <  (m ,n ), ce qui prouve que (a, 0) est le plus petit 
majorant, c’est-à-dire la borne supérieure de A.

Lorsque B  est non vide, posons b =  sup(aty)eB 2/> alors (a> &)est évidemment la borne 
supérieure de A.

On démontre de même que A admet une borne inférieure et on en déduit que l ’espace 
[0, l ] 2 est compact.

EXERCICE 2.33.8

Vu l ’hypothèse, l ’application /  est continue ; il en résulte que l ’application x d(x, f(x))  
est continue. L’espace X  étant compact, cette application admet un minimum (théorème 
2.33.11) : si a =  m in ^ x  d(x, f ( x )), il existe xo € X  tel que a = d(xo, f ( x o)). Montrons 
que xo est un point fixe de / .  Raisonnons par l ’absurde. Si on avait f ( x o) ^  xo, on aurait 

d(f (x0) J ( f ( x 0))) < d(x0J ( x 0)) = a, 
ce qui est contraire à la définition de a.

Montrons que ce point fixe est unique. Supposons en effet que /  admette deux points 
fixes xo et xu  #o ± x\.  On aurait alors d(xo,x\) = d(f (xo), f ( x i ) )  <  d{xo,® i), ce qui 
est absurde.

EXERCICE 2.33.9

Soit V un voisinage de A , on peut supposer V ^  X. L’application x i-> d(æ, X  — V) est 
continue sur X  et d(x, X  — V) > 0 pour tout x e A. D’après le corollaire 2.33.12, il existe 
S > 0 tel que d(x, X  - V )  > S pour tout x e A et il en résulte que Vx/n(A) C V dès que 
1 /n  <  ô, ce qui prouve le résultat voulu.

EXERCICE 2.33.10

On raisonne par l ’absurde. Supposons que N admette un système fondamental dénombrable 
de voisinages, soit (Kn). Il existe des nombres amn > 0 tels que

oo

VÇn D ]n 0>mn > ̂  H- Q>mn [ •
n = 0

Bien entendu, on peut supposer amn < 1/2. Considérons alors le voisinage de N,
oo

V = ( J  ]n -  ann/ 2, n + ann/ 2[.
71=0

Il doit exister un entier m  tel que Vm C V> c’est-à-dire tel que amn < ann/2  pour tout n  
et ceci est évidemment en défaut pour n = m.

Ceci prouve que dans l ’exercice 2.33.9, l ’hypothèse de compacité est essentielle.

EXERCICE 2.33.11 THÉORÈME DE D’ALEMBERT
Notons P(z) = aiZÏ Ie polynôme ; on suppose n  >  1 et an ±  0. Raisonnons par 
l ’absurde : supposons P(z) /  0 pour tout z e C. Étant donné que \P{z)\ tend vers l ’ infini 
quand \z\ tend vers l ’ infini, il existe R > 0 tel que

\P(0)\ < \P(z)\ pour tout \z\ >  R.
Sur le compact {z G C ; \z\ <  R}> \P\ admet un minimum (théorème 2.33.11) : il existe 
zq G C tel que |P(^o)| =  m in ^ ^ H  \P(z)\, d’où \P(zo)\ = mmz€c \P(z)\-
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D’après la formule de Taylor, on peut écrire
n

P(z) = P(z0) +  ^  bi(z — zo)k où 1 <  k < n  et bk ^  0.
i —k

Lorsque p >  0 tend vers 0, |6fc|pfc et £ )”=fc+1 |i>i| p*~k tendent vers 0 ; P(zo) et bk étant 
non nuis, on en déduit que, pour p suffisamment petit,

È  N p* <1^1^ <1^)1-
i=k+l

Quand 2 décrit le cercle \z -  zq| =  p, le point P(zo) +  bk(z -  zo)k décrit k fois le cercle de 
centre P(zq) et de rayon |6fc | pfc, rayon <  \P(zo) | ; il existe donc un point z \ , \z\ — zq\ =  p, 
tel que le point P(zo) +  bk(zi — zo)k appartienne au segment ]0, P(zo)[, d’où 

\P{zo) +  bk{zx -  Z o ) k \ =  \P(z0)\ -  l&fcl p k

et on en déduit

w * i)i < \P(zo) +  bk(zi -  «o)fc| +
n

^ 2  bi(zi -  zoT
i=k+1

< i ^ ) i - i & fc|pfc+ E  n p * < w * ) i.
i=fc+l

soit \P(zi)\ < \P(zo)l ce qui contredit le fait que |P| admet un minimum au point z q .
EXERCICE 2.33.12

On raisonne par l ’absurde. Supposons qu’ il existe e >  0 tel que, pour tout S > 0, il existe 
x € I< et y G X  tels que

d(x,y) < 5 et d(f(x) , f (y))  > e.
Prenons ô =  1/n, n  >  1 ; on construit ainsi une suite (xn) de K  et une suite ( j/„ )  de X  
telles que

d(xn,yn) < l / n e t d ( / ( z n),/(2 /n )) >  e.
Le sous-espace K  étant compact, il existe une sous-suite (xnk ) convergente vers a e K  ; de 
l ’ inégalité d(xnk, ynk ) <  1 /n * ,  on déduit que la suite (ynk ) converge vers a. L’application 
/  étant continue au point a, en passant à la limite dans l ’ inégalité d(f(xnk),f(ynk)) > s, 
on obtient d(f(a)1 f(a)) > e, ce qui est absurde.

EXERCICE 2.33.13

Utilisons la fonction <p : R —> [— 1,1] définie par
(p(t) =  < /( l +  |£|) si t G M et <p(±oo) =  ±1.

Les fonctions <p o f n : X  ->  [-1 ,1 ] sont s.c.i. d’après l ’exercice 2.14.3 ; l ’espace R  
étant compact, la fonction (p est uniformément continue et on en déduit que la suite (<po f n) 
converge uniformément vers <po /  (exercice 2.27.3). Les fonctions <p et (p-1  étant continues 
et croissantes, la fonction /  est s.c.i. si, et seulement si, la fonction <p o /  est s.c.i. (exercice
2.14.3). Ceci montre qu’on peut supposer toutes les fonctions f n et /  à valeurs réelles finies. 

Soit a < f(à) et soit e > 0 tel que a  +  3 e < f(a).  Il existe un entier n  tel que 
| f (x)  -  f n(x)\ < e pour tout x e X.

On a alors f ( x )  =  f ( x )  -  f n (x)  +  f n(x) -  f n (a)  +  fn (a ) -  f ( a )  +  / ( a ) ,  d’où 
f ( x )  > fn(x)  -  fn(a)  H- /(a )  -  2e.
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D’après la semi-continuité de f n au point a, il existe un voisinage V de a tel que 
fn(x) > f n(a) -  e pour x e V y d’où f (x) > f(a) -  3e > a  pour tout x e V, ce 
qui prouve que /  est s.c.i. au point a.
EXERCICE 2.33.14

1. Soit e > 0, il existe un entier n tel que d(f(x)>fp(x)) < e pour tout x e X  et tout 
p > n. On a alors, pour p > n,

d( f (x ) , fP(xp)) <  d(f (x)i f ( x p)) 4- d(f (xp) i f P{xp)) <  d(f (x)yf(xp)) +  £.  

D’après la continuité de /  au point x t on peut supposer de plus que d(f (x)yf ( x p)) < e 
pour p > n  et on en déduit que d( f(x) )f p(xp)) < 2e pour p >  n, ce qui prouve que la 
suite (fn{xn)) converge vers f(x).

2, a. En prenant pour suite (xn) la suite constante xn =  x , l ’hypothèse implique que la 
suite (f n(x)) converge vers f (x)  : la suite ( / n) converge simplement vers / .

b. On pose yn = Xk pour n* < n < n *+ i. On obtient ainsi une suite (yn) qui 
converge vers x : si V  est un voisinage de x 9 il existe l tel que Xk G V  pour k > l, d’où 
yn G V  pour n >  ni. La suite ( f n(yn)) converge vers f (x)  et il en résulte que la sous-suite 
l fnk (2/n J ) ,  c’est-à-dire la suite ( / nfc (a *)), converge vers f(x).

c. Soit (xn) une suite convergeant vers x. D ’après 2,a., la suite (f n(xk)) converge vers 
f(xk).  Par récurrence, on peut donc construire une sous-suite (f nk) telle que 
d(fnk(xk)yf(xk)) < 1 / k  pour tout k > 1. La suite (fnk(xk)) convergeant vers f (x)  
d’après 2,b., on en déduit que la suite ( f ( xk )) converge vers f ( x ), ce qui prouve la conti­
nuité de /  au point x , l ’espace X  étant à base dénombrable de voisinages.

d. Lorsque X  est un espace métrique compact, montrons que la suite ( f n) converge 
uniformément vers / .  Raisonnons par l ’absurde. On suppose qu’ il existe e > 0 tel que, pour 
tout entier n, il existe p > n et x e X  tels que d(f (x ), f P(x)) > e. Par récurrence, on peut 
alors construire une sous-suite ( / nfc) et une suite (Xk) telles que d(f(xk)i fnk (Xk)) > e. 
L’espace X  étant un espace métrique compact, quitte à extraire une sous-suite on peut 
supposer que la suite (xk) est convergente ; notons x  sa limite. La fonction /  est conti­
nue d’après 2,c., un espace métrique étant à base dénombrable de voisinages ; on peut 
donc passer à la limite dans l ’ inégalité d(f (xk), fnk(xk)) > e grâce à 2,b., on obtient 
d(f(x)yf(x)) > e, ce qui est absurde.

3. Lorsque X  est un espace métrique compact, ce qui précède prouve qu’une suite ( / n) 
converge uniformément vers une application continue /  si, et seulement si, pour toute suite 
(xn) convergeant vers æ, la suite (fn(xn)) converge vers f(x).  Cette dernière propriété 
n’utilisant que la structure topologique de l ’espace Y , ceci montre que deux distances topo- 
logiquement équivalentes sur Y  induisent la même topologie de la convergence uniforme 
sur l ’espace C (X ; Y).
EXERCICE 2.33.15 FONCTION NULLE PART DÉRIVABLE

1. Soit ( fk) une suite de Fn convergeant uniformément vers / .  Il existe tk E I  tel que 
I fk{s) -  f k(tk) | < n \ s -  tk\ pour tout s € I  

et, I  étant compact, il existe une sous-suite convergente (tkt ) de limite t. Posons gi = fkt ; 
la suite (gt) converge uniformément vers /  et

19i(s) -  gi(tkt ) | <  n |s -  tkl | pour tout s e l .
On sait que lim/_*oo gi(tkt ) =  f(t)  d’après l ’exercice 2.33.14 ; à la limite, on a donc 

l / ( s) -  f ( t )| <  n \s -  t\ pour tout s e l
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et ceci prouve que f  e Fn qui est donc bien fermé.

Vérifions ensuite que Fn est d’ intérieur vide, c’est-à-dire que E — Fn est dense dans 
E. Soient f  € E,e > 0, montrons qu’ il existe une fonction continue, affine par morceaux, 
g e E -  Fn telle que supÆ6/ \f(x) -  p(rc)| <  e. D’après la continuité uniforme de / ,  il 
existe une subdivision

0 =  xi < x2 <  . . .  <  Xp+i =  1

de l ’ intervalle I  telle que \f(x) -  f(y)\ < e lorsque æ, y e [xi,Xi+1], 1 < i  < p. Il 
existe alors ai tel que /( [# * , #*+1]) c  [a*, ai +  e] et il est aisé de construire une fonction 
continue g, affine par morceaux, telle que g(xi) = f ( x i ), g(xi+1) =  f(xi+1), chaque 
segment constituant le graphe de g ayant une pente en valeur absolue >  n‘ >  n  et telle que 
g([xi,Xi+i]) C  [ai, ai +  e]. On a alors \g(x) -  f(x)\ < e pour tout x e [xi>Xi+1], ce qui 
achève la construction de g.

2. Si /  admet une dérivée en un point t G /, la fonction s «->• ( / ( s) — f(t))/(s — t) 
admettant une limite quand s tend vers t par valeurs différentes est bornée : il en résulte que 
/  appartient à l ’ un des Fny donc à l ’ensemble maigre U^Lo ^ n• complémentaire de cet
ensemble est partout dense car E est complet, donc de Baire, et une fonction appartenant à 
ce complémentaire n’est dérivable en aucun point de I .

EXERCICE 2.34.1

On peut supposer la distance sur Y  bornée. Dire que la famille ( fi)iei  est équicontinue au 
point a signifie que, pour tout e > 0, il existe un voisinage V  de a tel que, pour tout i e I  
et tout x e X,  d(fi(x), fi(a)) < e, c’est-à-dire

= supd(fi(x), fi(a)) < e; 
tel

l ’équicontinuité est donc équivalente à la continuité au point a de l ’application x i-> / ( • ,  x) 
d e X  dans Y).

EXERCICE 2.34.2

Soit (fn) une suite qui converge localement uniformément. Observons que l ’équicontinuité 
est une propriété locale : la suite ( f n) est équicontinue en un point a si, et seulement si, il 
existe un voisinage V de a tel que la suite ( /n | v) des restrictions à V soit équicontinue au 
point a. On peut donc supposer que la suite ( f n) converge uniformément ; cette suite est 
donc relativement compacte pour la topologie de la convergence uniforme, donc équiconti­
nue d’après le théorème d’Ascoli, l ’hypothèse de compacité de X  n’étant pas utilisée pour 
établir que les conditions 1. et 2. de ce théorème sont nécessaires.

EXERCICE 2.35.1

Soit K  une partie compacte de X , pour tout x e K  il existe un voisinage Vx de x , qu’on 
peut supposer ouvert, tel que la suite (fn \ v* ) converge uniformément vers f\vx. Le recou­
vrement ouvert (Vx)x€K du compact K  contient un sous-recouvrement fini (Vx)xeA> A 
partie finie de K.  Soit e > 0, pour tout x € A il existe un entier nx tel que 
supy£Vvd(f(y),fp(y)) < e pour p > nx. Posons n = maxa^ A n Xt on a alors 
d(f(y),fp(y)) < £ pour p > n et tout y e ( j xeA Vx, donc pour tout y G K ,  ce qui
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prouve que la suite ( fn) converge vers /  uniformément sur K.
EXERCICE 2.35.2

Soient a E X  et V un voisinage compact de a. La suite (fn\v) est équicontinue et converge 
simplement ; elle converge donc uniformément d’après le corollaire 2.34.4. Ceci prouve 
que la suite ( / n) converge localement uniformément, donc uniformément sur tout compact 
d’après l ’exercice 2.35.1.

EXERCICE 2.35.3

1. Supposons X  à base dénombrable de voisinages. Montrons la continuité de /  en un 
point x 6 X. Soit (xn) une suite de X  convergeant vers xt il s’agit de démontrer que la 
suite (f (xn)) converge vers f(x) pour la topologie 32. Or, K  =  {x }  U | J ^ l0{x n }  est 
compact, donc f(K)  est compact pour la topologie 32 d’après l ’hypothèse. La topologie 
3 i étant moins fine que 32, sur f(K)  les topologies 3 i et 32 coïncident ; la suite ( f (xn)) 
convergeant vers f(x) pour la topologie 3 i d’après la continuité de / ,  converge vers f(x) 
pour la topologie 32 et ceci prouve le résultat voulu.

2. Si X  est localement compact, soit K  un voisinage compact de xt alors 
f\i< : K f(K)  est continu lorsque f(K)  est muni de la topologie 3 i,  donc de la 
topologie 32 puisque les deux topologies coïncident sur f(K)  comme précédemment et 
ceci prouve que /  est continu au point x lorsque Y  est muni de la topologie 32.

EXERCICE 2.35.4 TOPOLOGIE DE LA CONVERGENCE COMPACTE
1. L’ensemble !B est stable par intersection finie et r(0, Y) =  Q(X]Y) ; d’après la propo­
sition 2.9.4, !B est donc une base de topologie.

2. Montrons que la trace sur C (X; Y) de tout ouvert élémentaire ( l’ensemble de ces 
traces est une base de la topologie de la convergence simple) est un ouvert pour la topologie 
3C. Étant donné une partie finie A de X  et, pour tout x G A, des ouverts Ox de Y t on pose

o  = { / e e(X ;y ) ; (Vx e A)(f(x) e o x)} 
et il s’agit de démontrer que O est un ouvert pour la topologie Tc. Or, O peut s’écrire

0 =  p |r ({ x } ,o * )
x£A

où {æ} est une partie compacte, donc O G !B, ce qui prouve le résultat voulu.
Si l ’espace Y  est séparé, la topologie de la convergence simple est séparée, la topologie 

3C plus fine qu’une topologie séparée est donc séparée.
3. On suppose que la suite ( fn) converge uniformément sur tout compact vers / .  

Soient K  un compact de X  et O un ouvert de Y  tel que /  e Y(K,0). D’après la 
continuité de / ,  f  (K) est compact ; ce compact et le fermé Y -  O sont disjoints, d’où 
£ =  d(f(K), Y — O) > 0 d’après le corollaire 2.33.13. La suite ( / n i* )  convergeant uni­
formément vers /|/c , il existe un entier n  tel que supxeK d(/(æ ), f P(x)) < e pour tout 
p > n, d’où fP(K) c  O, c’est-à-dire f p G Y(KyO) pourp >  n, ce qui prouve que la 
suite (fn) converge vers /  pour la topologie de la convergence compacte.

En particulier, une suite uniformément convergente converge pour la topologie 3C, ce 
qui prouve que la topologie 3C est moins fine que la topologie de la convergence uniforme.

4. Réciproquement, on suppose l ’espace X  localement compact et on considère une 
suite (fn) convergeant vers /  pour la topologie 3C. Montrons que cette suite converge lo­
calement uniformément, donc uniformément sur tout compact d’après l ’exercice 2.35.1.
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Soient e >  0, a; 6 X  et O = B(f(x)\e),  d’après la continuité de / ,  il existe un voisi­
nage A" de a: tel que f(I<) C  O et l ’espace X  étant localement compact, on peut choisir 
K  compact. On a donc /  G T(Ar, O) et, la suite ( / n) convergeant vers /  pour la topolo­
gie Tc, il existe un entier n  tel que f p G T (K, O) pour p > n> soit f P(K) C  O, d’où 
d(/(æ ), / p(æ)) <  2 e pour tout a: G A ” et tout p >  n , ce qui prouve le résultat voulu.

5. Lorsque X  est un espace compact, 3. et 4. prouvent que la topologie 7C coïncide avec 
la topologie de la convergence uniforme. La définition de la topologie Tc ne faisant appel 
qu’à la structure topologique de Y , la topologie de la convergence uniforme sur l ’espace 
G(X ; Y )  ne dépend pas de la structure uniforme de Y  : deux distances topologiquement 
équivalentes sur Y  conduisent à la même topologie de la convergence uniforme.

EXERCICE 2.35.5 PRODUIT D’ESPACES LOCALEMENT COMPACTS

Le raisonnement est analogue à celui de l ’exercice 2.28.1. Il suffit d’observer qu’on peut 
choisir les ouverts B n>i non vides et relativement compacts, on utilise ensuite le fait qu’une 
suite décroissante de compacts non vides admet une intersection non vide. Un tel choix est 
possible car, dans un espace localement compact, pour tout ouvert non vide O, il existe un 
ouvert non vide relativement compact B  tel que B  C  O d’après la proposition 2.35.1.

EXERCICE 2.35.6

Si l ’espace X  est compact, il est fermé dans X \  donc { cj}  est un ensemble ouvert, ce 
qui signifie que le point u  est isolé. Réciproquement, si {u} est ouvert, X  est fermé dans 
l ’espace compact X \  donc compact.

EXERCICE 2.35.7

1. Le point co n’est pas isolé d’après l ’exercice 2.35.6. Le filtre des voisinages de ce point ad­
met donc une trace sur X  ; le filtre V(cj) admettant pour base (X'  — K ) k £X> 
(X  — K)Kçx  est une base du filtre induit.

2. On prolonge /  en une application /  : X 1 - *  R en posant f(cj) =  y . On obtient 
ainsi une application continue d’après l ’exercice 2.20.5 ; elle admet donc un minimum sur 
l ’espace compact X '  : il existe xo G X '  tel que f ( x o) <  f (x)  pour tout x  G X'.  Ceci 
montre que /  est borné inférieurement. Lorsque xo =  cj, la borne inférieure de /  est égale 
à y. Lorsque la borne inférieure de /  est différente de y, on a donc xo -fi w et /  admet un 
minimum au point xq.

EXERCICE 2.35.8

1. Soit A un sous-espace localement compact d’un espace séparé. Soit x G A , il existe un 
voisinage compact I< de x dans le sous-espace A. 11 existe un voisinage V de x dans X  tel 
que I< =  V D A et K  est fermé dans V  car compact, ce qui signifie que A est localement 
fermé (exercice 2.20.2).

2. Soit A un sous-espace localement fermé d’un espace localement compact X.  Soit 
x G A, il existe un voisinage V  de x tel que V fl A soit fermé dans V. D’après la proposition
2.35.1, il existe un voisinage compact A" de a; tel que x G K  C V. Alors, KD A est un 
voisinage de x dans A  et ce voisinage est compact : en effet, K  f l  A = K  D (V n  A) et 
V  fl A  est fermé dans V, donc K  fl (V fl A) est fermé dans K.  Ceci prouve que tout point
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x e A admet un voisinage compact dans A ; A est un sous-espace localement compact. 

EXERCICE 2.35.9 APPLICATION PROPRE
On notera que l ’espace X  est nécessairement localement compact. En effet, soient x e X  
et y = / ( x ) ,  il existe un voisinage compact V  de y, alors f ~ l (V) est un voisinage de x 
d’après la continuité de /  et ce voisinage est compact, /  étant propre.

1. Montrons que /  est une application fermée. Soient A une partie fermée de X  et b 
un point adhérent à f(A).  Il existe un voisinage compact V  de 6, alors W  = / ^ ( V )  
est une partie compacte de X. Vérifions que V  f l  f (A)  =  f ( W  f l  A). On a d’une part 
f ( W  f l  A) C f (W )  f l  f (A)  c V n  / ( A ) ,  d’autre part, si y G V  D f ( A ), il existe x  G A 
tel que y =  / ( x ) ,  d’où x e W D A & t y e  f ( W  f l  A) ; W  f l  A  est fermé dans W,  donc 
compact et f ( W  D A) est compact d’après la continuité de / .  Il en résulte que V  f l  f (A)  
est compact, donc fermé. Soit V'  un voisinage du point 6, alors V  f l  V* est un voisinage de 
b qui rencontre donc f ( A ), ce qui prouve que b est adhérent à V Y l f (A)  et, cet ensemble 
étant fermé, on en déduit que b e f(A),  ce qui prouve que f (A)  est fermé.

2. Supposons l ’application /  propre et soit Y '  -  K \  K 7 partie compacte de Y f un
voisinage ouvert de u/ ,  alors g~1(Y' -  K ')  = X' -  est un voisinage ouvert de
oj, car / ^ ( K ' )  est une partie compacte de X. Ceci prouve la continuité de g au point oj. 

Réciproquement, si g est continu, X 7 — / _1 (K1) est un ouvert en tant qu’ imagé réciproque 
d’un ouvert par une application continue, ce qui prouve que est fermé dans X \
donc compact : /  est donc propre.

EXERCICE 2.35.10 ESPACE LOCALEMENT COMPACT DÉNOMBRABLE A L’INFINI
1 => 2 On suppose que lo admet un système fondamental dénombrable de voisinages, 

il en résulte que oj admet un système fondamental dénombrable de voisinages de la forme 
(X*—K n) où les K n sont des parties compactes de X.  Montrons alors que X  =  U^=o 
Soit x e X , alors X '  — {x} est un voisinage ouvert de cj, il existe donc n tel que 
X '  — K n C X 1 — {x}> soit x e Kn, ce qui prouve le résultat voulu.

2 3 On suppose que X  est la réunion d’une suite (Kn) de parties compactes. D ’après 
la proposition 2.35.1, il existe un voisinage ouvert relativement compact Oo de Ko et, pour 
n >  1, un voisinage ouvert relativement compact On du compact On- i  U Kn. Les ouverts 
On possèdent les propriétés voulues.

3 => 4 On pose Kn = On, les ouverts On vérifiant 3. Si K  est une partie compacte de 
X , la suite (On) est un recouvrement ouvert de K  et, cette suite étant croissante, il existe 
un n tel que K  C On, d’où K C Kn.

4 => 1 Soit (Kn) une suite de compacts vérifiant 4. Alors, (X' — Kn) est un sys­
tème fondamental de voisinages de oj car tout voisinage de oj contient un voisinage ouvert 
X' — K y K  partie compacte de X y donc contient un voisinage de la forme X' — Kn d’après
4.

Tout espace compact est dénombrable à l ’ infini d’après 2.
Montrons que tout sous-espace fermé A d’un espace localement compact X  dénom­

brable à l ’ infini est un espace localement compact dénombrable à l ’ infini. Le fait que A soit 
localement compact résulte de l ’exercice 2.35.8, tout fermé étant localement fermé (exer­
cice 2.20.2). De plus , si X  est la réunion d’une suite (Kn) de parties compactes, A est la 
réunion des compacts A f l  Kn-
EXERCICE 2.35.11 PARACOMPACITÉ DES ESPACES LOCALEMENT COMPACTS DÉNOM-
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BRABLES A L’INFINI

On considère un recouvrement ouvert R = (Oi)i€/ d’un espace X  localement compact 
dénombrable à l’infini. D’après l’exercice 2.35.10, il existe une suite (Un) d’ouverts re­
lativement compacts de réunion X  telle que Un C £/n+i pour tout n. Pour tout entier 
n, on pose Kn = U n — Un-i  en convenant que U-1  = 0, alors Kn est compact et 
I<n C t/ n+1 - U n - 2 en convenant que U- 2  = 0 ; il en résulte que

((Un+1 — Un- 2) fl Oi)içI
est un recouvrement ouvert de Kn ; il existe donc un sous-recouvrement fini Æn. Posons 
Æ' = Un » il est c*a“* fl00 est dénombrable, Æ' est un recouvrement ouvert de X  
car X = Un=o Kn et ce recouvrement est évidemment plus fin que Æ. Le seul point 
restant à vérifier est que Æ' est localement fini. Soit x G X , il existe n tel que a; G Kn, 
alors t/n+i -  Un—2 est un voisinage ouvert de x qui ne rencontre pas t/p+i — Up- 2 si 
|p — n| > 2 ; ce voisinage ne peut rencontrer que les ensembles appartenant à IRP où 
\p -  n\ < 2, c’est-à-dire un nombre fini d’ensembles appartenant au recouvrement Æ' et 
ceci prouve le résultat voulu.

EXERCICE 2.36.1

Soient A et B deux fermés disjoints. Soit a G A, X  -  B est un voisinage ouvert de a ; 
l ’espace étant régulier, il existe un voisinage ouvert Ma de a tel que Ma C X — B ; 
X -  A et (Ma)aeA constitue un recouvrement ouvert de X  et, X  étant un espace de 
Lindelôf, il existe un sous-recouvrement dénombrable : il existe donc un recouvrement 
ouvert dénombrable (M n) de A tel que Mn C X  —B. De même, il existe un recouvrement 
ouvert dénombrable (iVn) de B tel que N n C  X  -  A.

On pose alors
Vo =  M o, W0 =  N o-  Vo

et, pour n > 1,
Vn = Mn -  W 0 U . . . U f n - 1 ,  Wn = Nn ~Vo U . . . ü F n.

Montrons que
00 00

V = \ J V n e t W = \ J W n
71=0 71=0

sont des voisinages disjoints de A et B. On vérifie d’abord que A c  V. En effet, six € A, 
il existe n tel que x G M n, d’où x G Vn car

W o U  . . . uW n- i  C N 0U.. . \JNn-i  C X -  A.
De même, on vérifie que B c  W. On observe ensuite que V et W sont disjoints car 
Vm H Wn = 0 pour tout m et n : en effet, Vm H Wn = 0 si n < m et Vm D Wn = 0 si 
n > m. Enfin, V et W sont ouverts, ce sont donc bien des voisinages disjoints de A et B. 
Ceci prouve que l’espace X  est normal.

EXERCICE 2.36.2

D’après l’exercice 2.35.10, l’espace X  peut s’écrire comme une réunion dénombrable de 
compacts, soit X  = U^Lo Kn- Soit un recouvrement ouvert de X. D’après la
compacité de Kn, il existe une partie finie In de I  tel que Kn C Ui€/W ^ im A*ors» 
J = UT=0 est dénombrable et (Oi)iej  est un sous-recouvrement dénombrable de X.
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Ceci prouve que l’espace X  est un espace de Lindelôf.

EXERCICE 2.36.3

1. Les fermés X  -  Oi et X -  0 2 étant disjoints et l’espace X  étant normal, il existe des 
voisinages ouverts disjoints U\ et U2 de X — O2 et X  — 0 \  respectivement. Il en résulte 
que

X - O 2 CU1 C X - U 2 CO 1 ;
la première inclusion montre que X = U\ U O2 et, X -  U2 étant fermé, la seconde montre 
que U\ C X — U2 C 0 \ , soit U\ C 0 \ .

2. On considère un recouvrement ouvert dénombrable (On) localement fini. D’après 
1., il existe un ouvert Uo tel que

00

X  = Uo U ( J  Oj et Ü0 CO0 .
j=l

Par récurrence, on construit ainsi des ouverts Un tels que
n 00

X = ( J ^ U  ( J  Oj etÜj c  Oj.
3 = 0  j=n+l

Montrons que (Un) est un recouvrement de X. Soit x G X> l’ensemble des n tels que 
x e On est fini (le recouvrement (On) est localement fini), il en résulte que, pour n assez 
grand, x n’appartient pas à (J£Ln+i donc

* e I J  U, c  Û  U,.
j=0 j=0

On obtient ainsi un recouvrement ouvert (Un) tel que Un C On pour tout n.
EXERCICE 2.36.4

On reprend le raisonnement qui a été fait pour prouver l’implication 3 => 1 de l’exercice
2.32.2.

Ce raisonnement prouve d’abord que l’espace quotient est séparé : en effet, ce raison­
nement utilise seulement le fait que l’espace compact X  est normal.

On considère ensuite deux fermés disjoints £ et 77 de l’espace quotient X/R.  Les en­
sembles tt~ 1 (£) et 7r—1 (77) sont fermés d’après la continuité de 7r ; ces fermés sont de plus 
disjoints, donc ils admettent des voisinages disjoints, l’espace X  étant normal. Le raison­
nement se poursuit alors de façon identique.

EXERCICE 2.36.5 THÉORÈME DE TIETZE-URYSOHN

1. On considère les fermés
A = {x e F  ; f(x) < -a/3} et B = {x e F  ; f(x) > a/3}.

Ces fermés étant disjoints, il existe d’après le théorème d’Urysohn (théorème 2.36.1) une 
fonction continue g : X  -» [-a/3 , a/3] telle que

g(x) = - a /3  pour x G A et g(x) = a/3 pour x e B, 
d où |/(æ) — (?(æ)| < 2a/3 pour tout x e F.

2 . D’après 1., il existe une fonction continue go : X  -> E telle que |po(x)| < 1 /3  pour 
x e ^ e t l/(æ )-0O(aO| < 2/3 pour x e F. Raisonnons ensuite par récurrence. Supposons
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construite une fonction continue gn : X  -¥ K telle que \gn(x)\ < 2n/3n+1 pour x  € X  et
I H
|/(*) _  -  (2/ 3)n+1 pour a; € F.

p=0
D’après 1., il existe une fonction continue gn+1 : X  -» R telle que

ls»+i(*)| < (1/3) (2/3)n+1 pour® € X  
et

|/(* ) ~ -  (2/3)n+2 pour a: € F.
p=0

Les fonctions gn une fois construites, on considère la série g = 0gn. Cette série 
normalement convergente définit une fonction continue g : X  -»  R. Lorsque x  appartient 
à F, un passage à la limite dans l’inégalité \f(x) -  £ p = 0 pp(®)| < (2/3)n+1 montre que 
l/(æ) “  9(x)I < 0» /(#) = p(x) pour a; G F. En outre,

oo

|g ( x ) |< X ;2 7 3 n+1 =  l.
n = 0

Ceci prouve que g : X  [—1,1] est une fonction continue qui prolonge /.
__ 3. Lorsque /  : F  I  est une fonction continue à valeurs dans un intervalle compact de 
R, un tel intervalle étant homéomoiphe à l’intervalle [-1,1], il existe une fonction continue 
g : X  -¥ I  qui prolonge / .

Le même résultat subsiste si /  est un intervalle ouvert de R. En effet, un intervalle 
ouvert de R étant homéomorphe à ] — 1,1[, on se ramène au cas où /  =] — 1,1 [. D’après 
2., il existe alors un prolongement continu g : X  -> [-1,1]. Posons G = p_1({ - l ,  1}), 
G est un fermé disjoint de F. Il existe donc une fonction continue h : X  -> [—1,1] telle 
que h(x) = 1 sur F  et h(x) = 0 sur G. La fonction continue g x  h : X  ->] -  1,1 [ est 
alors un prolongement de /  qui a les propriétés voulues.
EXERCICE 2.36.6

Soit X  un espace métrique complet séparable. D’après le corollaire 2.36.3, X  est homéo­
morphe à un sous-espace Y  du cube de Hilbert. Le cube de Hilbert étant complet, Y  est un 
sous-espace d’un espace métrique complet homéomorphe à un espace métrique complet ; 
d’après l’exercice 2.25.2, Y  est nécessairement un Sa- Réciproquement, le cube de Hil­
bert étant métrisable séparable, tout sous-espace est séparable et par conséquent tout espace 
homéomorphe à un sous-espace du cube de Hilbert est séparable.
EXERCICE 2.36.7 PLONGEMENT D’UN ESPACE MÉTRISABLE SÉPARABLE DANS LE CUBE 
DE HILBERT
Montrons que l’application f  : x  (d(æ,an)) de X  dans [0, 1]N est injective. Soit 
x ,y  G X  telle que f (x)  = /(y), c’est-à-dire telle que d(æ,an) =  d(y,an) pour tout 
n. On a donc d(x, z) = d(æ, z) pour tout z appartenant à une partie de X  partout dense, 
donc pour tout 2 d’après le principe du prolongement des identités. En prenant z = y, on 
en déduit d(x> y) = 0, soit x = y et ceci prouve que /  est injective.

L’application /  est continue car toutes les applications x t-ï d(x, an) de X  dans R sont 
continues (proposition 2.21.9).

Montrons enfin que l’application / -1 : f(X) X  est continue. Soient (xk) une 
suite de X et x € X  tels que la suite (f(xk)) converge vers f(x). Les espaces étant mé-
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trisables, il s’agit de démontrer que la suite (Xk) converge vers x. L ’hypothèse signifie que 
d(x, an) =  limfc-»oo d(xk, an) pour tout n. Soit e >  0, choisissons n  tel que d(x, an) <  e, 
puis h tel que

|d(x, an) — d(xij an)\ < £ pour tout l > k.
On a alors d(xi,an) < d(x,an) +  e <  2ey d’où d(x>xi) < d(x,an) H- d(xi,an) <  3e 
pour tout / >  k et ceci prouve le résultat voulu.

L'application /  est donc un homéomorphisme de X  sur un sous-espace du cube de 
Hilbert.

EXERCICE 2.36.8

1 => 2 Soit (On) une base de la topologie de X.  Montrons que l ’ensemble des ouverts 
On relativement compacts constitue une base de la topologie de X.  Soit O un ouvert et soit 
x G O ; d’après la proposition 2.35.1, il existe un voisinage compact V de x contenu dans 
O et par conséquent il existe un entier nx tel que x G Onx C V C O. Cet ouvert Onx est 
relativement compact et O =  U æeo »ce Prouve résultat annoncé.

On peut donc supposer les ouverts On relativement compacts. Il en résulte que X  est 
la réunion des compacts On. L'espace X  est donc dénombrable à l ’ infini (exercice 2.35.10) 
et on en déduit que le point u  admet un système fondamental dénombrable de voisinages 
ouverts, soit (O^). Montrons que l ’ensemble des ouverts (On) et (0 'n ) est alors une base 
de la topologie du compactifié d'Alexandroff X '  de X.  Soit O un ouvert de X ' . Si O est 
contenu dans X,  O est un ouvert de X  et peut donc s’écrire comme une réunion d'ou­
verts On. Si O contient le point u>, il existe un ouvert 0'n tel que lj e 0 ’n C O, d’où 
O = (O -  {cj}) U Ofn où O -  {a;} est un ouvert de X , ce qui permet de conclure.

Ceci prouve que l ’espace compact X ‘ admet une base de topologie dénombrable ; 
d’après le corollaire 2.36.4, l ’espace X 1 est métrisable.

2 3 Si X'  est métrisable, le sous-espace X  est métrisable et, le point a; admettant 
un système fondamental dénombrable de voisinages, X  est dénombrable à l ’ infini (exercice 
2.35.10).

3 => 1 L’espace X  est dénombrable à l ’ infini, il peut donc s’écrire comme une réunion 
dénombrable de parties compactes K n. Un espace compact métrisable étant séparable (pro­
position 2.33.1), il existe une partie dénombrable Dn de Kn dense dans Kn, soit Kn C D n. 
L’ensemble D = \Jn Dn est dénombrable et

X  =  | J t f n C  ( J  D n  C D ,
n n

ce qui prouve que l ’espace X  est séparable et, vu la proposition 2.10.7, on en déduit que X  
admet une base de topologie dénombrable.

EXERCICE 2.36.9 ESPACE COMPACT MÉTRISABLE

1. L ’espace Y  est compact (théorème 2.31.10) et il s’agit de démontrer que cet espace admet 
une base de topologie dénombrable (corollaire 2.36.4). Or, l ’espace métrique compact X  
admet une base de topologie dénombrable (Bn). On peut supposer que cette base est stable 
par réunion finie, il suffit de considérer l ’ensemble des réunions finies d’ensembles de cette 
base. On pose

C n  =  Y - f ( X - B n),
ces ensembles sont ouverts car f ( X  -  Bn) est compact, donc fermé. Montrons que (Cn) 
est une base de la topologie de Y.
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Soient O un ouvert de y  et a G O, d’après la continuité de / ,  f ~ 1({a}) est fermé, 
donc compact et / -1 (0 )  est un ouvert de X.  Il existe donc une partie A de N tel que 
Z " 1 (O) =  U Pe,4 Bp ; l ’ensemble (Bp)peA de ces ouverts est un recouvrement du com­
pact / -1 ({a })  ; il existe donc une partie finie B  de A tel que f ~ 1({a}) C U PeB Bv et, la 
base (Bn) étant stable par réunion finie, il existe un entier n tel que Bn =  |JpeB Bv. Il en 
résulte que

f - \ { a } ) c B n c f - \ 0 ) .
Vérifions qu’on a alors a G Cn C O. Pour vérifier que a G Cn> raisonnons par 

l ’absurde : supposons a G f ( X  -  Bn), alors il existe x G X  — Bn tel que a = f ( x ), d’où 
x  G / _1({a })  C  Bn, ce qui est contradictoire. On a d’autre part Bn c  / _ 1 ( 0 ) ,  d’où 
f {Bn) C  O, soit

Y  — O C Y  — / (B n )  c f ( X  -  Bn)
Q t C n  =  Y  — f ( X  — Bn) C  O.

Pour tout a G O, on a donc trouvé un na tel que a G CUa C O, d’où O = |Jo€0 Cna 
et ceci prouve que (Cn) est une base de la topologie de Y.

2. D’après l ’exercice 2.33.5, tout espace métrique compact est une image continue de 
l ’ensemble de Cantor. Ce qui précède prouve donc qu’un espace séparé X  est un espace 
compact métrisable si, et seulement si, X  est une image continue de l ’ensemble de Cantor.

EXERCICE 2.36.10 ESPACE DE PEANO

Notons X  l ’un des espaces [0, l ] n , [0 ,1]N. L’espace X  est un espace compact métrisable 
(corollaire 2.22.3 et théorème 2.32.5) ; d’après l ’exercice 2.36.9, il existe une surjection 
continue f  : C X 9 C désignant l ’ensemble de Cantor. Lorsque X  = [0, l ] n , 
/  “  (fj) i <j<n où les fonctions f j i C - ï  [0,1] sont continues. D’après le théorème 
de Tietze-Urysohn (exercice 2.36.5), chacune de ces fonctions se prolonge en une fonction 
continue fj  : [0,1] [0,1] ; la fonction /  =  (fj)i<j<n ’ [0,1] -» [0, l ] n est une fonc­
tion continue qui prolonge / ,  donc surjective. Lorsque X  = [0 ,1]N, on écrit /  =  ( / n)neN 
et on raisonne comme précédemment en prolongeant les fonctions f n.
EXERCICE 2.36.11

1. Si f  : X  -» Y  est une fonction continue, son graphe Gf  est fermé (exercice 2.31.1) 
et l ’application ip : f  i-> Gf  est bien une application de C (X ; Y ) dans J , évidemment 
injective.

Si /  et g sont deux fonctions continues de X  dans Y , notons d’abord que 
p(Gf, Gg) <  di(f,g).  En effet, si z = (x> f(x))  G Gf> on a

d(z,Gg) < d(f(x),g(x)) < d i( / ,p ) ,
d’où maxzçGf d(z,Gg) < d\{f,g)  et max26G(/ d(z,Gf) < di(f ,g)  en permutant le 
rôle d e /  et p, d’où p(Gf ,Gg) < d i ( f yg).

Montrons ensuite que l ’application y? est continue lorsqu’on munit l ’espace C (X ; Y ) 
de la topologie de la convergence uniforme. Soit ( / n) une suite de Gti(X;Y)  convergeant 
uniformément vers / .  Alors, la suite (G/n) converge vers G/  dans l ’espace d’après 
l ’ inégalitép(Gf ,Gfn) < d i ( f j n)

Réciproquement, supposons que la suite (Gfn) converge vers Gf  dans l ’espace 3r. 
Montrons que pour toute suite (x n) de X  convergeant vers x , la suite (f n(xn)) converge 
vers f(x)  : l ’espace X  étant un espace métrique compact, ceci démontrera que la suite
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(fn) converge uniformément vers /  d’après l ’exercice 2.33.14. Posons 
zn =  (xn,fn(xn)) € Gfn, on a d(znyGf) < p(Gf ,Gf tl) et par conséquent la suite 
(d(zn , G /))  tend vers 0 ; il existe donc une suite (z 'n ) de Gf  telle que la suite (d(zn , z'n)) 
tende vers 0. Posons z'n = ( æ ^ / K ) ) ,  les suites (d(xn,x'n)) et (d(fn(xn), f(x'n))) 
tendent vers 0, ce qui prouve que la suite (x fn) converge vers x  et par conséquent la suite 
( fn(xn)) converge vers f(x)> ce qui prouve le résultat souhaité.

Ceci prouve que y? est un homéomorphisme de l ’espace <ZU(X\ Y) sur un sous-espace 
de J.

2. L’espace métrique séparable Y  est homéomorphe à un sous-espace du cube de H il­
bert Z  (corollaire 2.36.3) : il existe une application h  : Y  Z  telle que h  soit un ho­
méomorphisme de Y  sur h ( Y ) .  On en déduit une application H  : /  «-» h  o f  de l ’espace 
QU( X \ Y )  dans QU( X \ Z ) .  Vérifions que cette application H , évidemment injective, est 
un homéomorphisme de GU( X ; Y )  sur son image. Soient ( / n) une suite de CU( X ; Y )  et 
/  e 6 U( X ;  y ) ,  il s’agit de vérifier que la suite ( / n) converge uniformément vers /  si, et 
seulement si, la suite ( h o  f n) converge uniformément vers h o  f. L’espace X  étant un es­
pace métrique compact, l ’exercice 2.33.14 montre que la suite ( / n) converge uniformément 
vers /  si, et seulement si, pour toute suite (xn) de X  convergeant vers x , la suite (f n(xn)) 
converge vers f(x) et, h  étant un homéomorphisme de Y  sur son image, ceci équivaut à 
dire que la suite ( ( h  o f n)(xn)) converge vers ( h  o f)(x), c’est-à-dire que la suite ( h  o f n) 
converge uniformément vers h o  f  toujours d’après l ’exercice 2.33.14.

Ceci prouve que l ’espace QU(X\Y)  est homéomorphe à un sous-espace de l ’espace 
QU( X ; Z), espace homéomoiphe d’après 1. à un sous-espace de l ’espace J  des parties fer­
mées de X  x Z. L’espace X  x Z étant compact, l ’espace J  est un espace métrique compact 
(exercice 2.33.3), donc séparable et il en résulte que l ’espace QU(X;Y) est homéomorphe 
à un sous-espace d’un espace métrique séparable, cet espace est donc séparable.

EXERCICE 2.36.12 ESPACE COMPLÈTEMENT RÉGULIER

1. Montrons que tout espace complètement régulier est régulier. Vérifions ( i ^ ) ,  soient F 
un fermé de X  et x g F , si /  : X  ->• [0,1] est une fonction continue telle que f(x) = 0 
et f(y) — 1 pour y G F, alors / -1 (] — oo, l /2 [)  et / -1 (] l/2 ,o o [) sont des voisinages 
ouverts disjoints de x et F respectivement.

Tout espace normal est complètement régulier d’après le théorème 2.36.1. En particu­
lier, tout espace compact est complètement régulier, tout espace métrisable est complète­
ment régulier.

2. Soit A un sous-espace d’un espace X  complètement régulier, soit F un fermé de A 
et soit x G A — F. Il existe un fermé G de X  tel que F =  G f l  A. Alors x & G, il existe 
donc une fonction continue /  : X  -> [0,1] telle que f(x) =  0 et f(y) = 1 pour y € G. 
En considérant la restriction de /  à A, on constate que le sous-espace A est complètement 
régulier.

Tout espace compact étant complètement régulier, on en déduit que tout espace locale­
ment compact est complètement régulier.

3. On se propose de démontrer que tout espace complètement régulier X  est homéo­
morphe à un sous-espace d’un espace compact. On considère l ’ensemble Y = Q(X; [0,1]), 
l ’espace compact Z = Ta( y ; [0 ,1]) et l ’application $  : X Z définie par 
S(æ) : /  G y  ►->/(*) G [0 , 1].

a. Montrons que l ’application $  est injective. Soit æ, y g X, x ± y, l ’espace X  étant
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complètement régulier il existe /  e Y  telle que f(x) =  0 et f(y) =  1, d’où $ (x ) ±  $(?/), 
ce qui prouve l ’ injectivité de <ï>.

b. L’application <ï> est continue car, pour tout /  G Y, l ’application 
x t-t $(x)(f) = f(x) est continue (proposition 2.21.9).

c. Montrons enfin que l ’application $>_1 : -» X  est continue. Soit O un
voisinage ouvert d’un point a G X. Il existe f  € Y  tel que f(a) =  0 et f(x) =  1 pour 
x G X -  O. On pose

U =  { 0  G $ ( * ) ; © ( / )  7^1}.
Cet ensemble U est un ouvert de ®(X) d’après la continuité de la projection 0  »-> 0 ( / )  
de l ’espace produit Z. Cet ouvert contient $ (a ) : g h-» g(a) car /(a )  ^  1. Montrons enfin 
que IX C $ (0 )  : soit 0  G U, alors 0  =  $(x) où $ (# ) ( / )  =  / ( x )  est différent de 1, d’où 
x G O d’après le choix de /  et ceci prouve que 0  G $ (0 ) .

En résumé, $ (a ) 6 U C $ (0 )  ; ceci prouve que $ (0 )  est un voisinage de $  (a) 
dans $(X) ; autrement dit, l ’ image réciproque par «Ê-1 du voisinage ouvert O de a est un 
voisinage de $ (a ), ce qui prouve la continuité de S»” 1 au point 3>(a).

Ceci prouve que $  est un homéomorphisme de X  sur un sous-espace de l ’espace com­
pact Z. Il en résulte que X  est homéomoiphe à un sous-espace dense du sous-espace com­
pact $ (X ) ,  noté P(X).

4. Tout sous-espace d’un espace compact étant complètement régulier, ceci montre 
qu’un espace séparé est complètement régulier si, et seulement si, il est homéomorphe à 
un sous-espace dense d’un espace compact. Dire qu’un espace est complètement régulier 
signifie donc qu’ il est compactifiable.

EXERCICE 2.36.13

En considérant la fonction (p o /  où (p : R -» [-1 ,1 ] désigne l ’homéomorphisme 
<p(t) =  f / ( l  +  \t\) si t G K et </?(±oo) =  ±1 , 

on peut supposer /  à valeurs dans [—1,1] (exercice 2.14.3). Il s’agit alors de démontrer que 
/  est l ’enveloppe supérieure des fonctions continues g : X  -» [—1,1] telles que g < f. 

Posons
F = sup g.

9 e e ( x - , [ - i , i ] ) t g < f

Soient a G X  et a < / (a ) , construisons une fonction continue g : X  -* [—1,1] telle que 
g < f  et g(a) > a. Ceci prouvera que a < F(a) < / (a ) , d’où F(a) = /(a ) . Lorsque 
a <  -1 ,  on peut prendre pour fonction g la fonction constante et égale à —1. Lorsque 
a > -1 ,  soit O un voisinage ouvert de a tel que f(x) > a pour x G O ( /  est s.c.i.). 
L’espace X  étant complètement régulier, il existe h G C (X; [0,1]) tel que h{a) =  0 et 
h(x) = 1 pour x G X — O. Posons alors g(x) =  a — (a  -h l)h(x) ; cette fonction a toutes 
les propriétés voulues car g G e (X ; [— l ,a ] ) ,  g(a) =  a  et g(x) =  — 1 pour a; G X  — O.
EXERCICE 2.36.14 PARTITION DE L'UNITÉ

Voici d’abord une remarque préliminaire qui sera utile. Si fi : X  R est une famille de 
fonctions dont les supports constituent une famille localement finie, la somme /  =  Yliei /*  
est bien définie. En effet, si a est un point de X,  il existe un voisinage V de a tel que V 
ne recontre qu’un nombre fini de supp fi. Il en résulte qu’ il existe une partie finie J  de 7 
telle que f(x) =  £)<63 fi(x) pour tout x G V. Ceci prouve que localement la somme
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Z)«€/ /* se r^ u i t  à une somme finie. Si les fonctions fi sont continues, on en déduit que /  
une fonction continue.

1. D’après l ’exercice2.36.3, il existe un recouvrement ouvert (Un) tel queTJn c On
pour tout n. Les fermés Un et X  — On étant disjoints, il existe un voisinage ouvert Vn de 
U n tel que X  -  Vn soit un voisinage de X  -  On, c’est-à-dire tel que Vn soit contenu dans 
On, soit _  _

Un C Vn C  Vn C  On.
D’après le théorème 2.36.1, il existe une fonction gn G £(X\  [0,1]) telle que 

gn =  1 sur Un et pn =  0 sur X  -  Vn .
Considérons alors la fonction g = Y^=o9n- Cette fonction est bien définie car 

supp gn C Vn C On et le recouvrement (On) est localement fini. Il en résulte que 
g : X  —> [0, +oo[ est une fonction continue . En fait, cette fonction est >  0 : en effet, 
soit a G X , (Un) étant un recouvrement de X , i l existe n tel que a e Un> d’où pn (a) =  1 
et g(a) >  1. On peut donc définir les fonctions continues f n =  gn/g ; on a évidemment 
supp f n C supp gn C On et / n =  1 : la famille (f n) est une partition de l ’unité 
subordonnée au recouvrement (On).

2. Soit IR =  (Oi)i£i un recouvrement ouvert de X.  D ’après l ’exercice 2.35.11, il existe 
un recouvrement ouvert dénombrable IR' =  (Un) localement fini et plus fin que IR. Tout 
espace localement compact dénombrable à l ’ infini étant normal (exercice 2.36.2), il existe 
d’après 1. une partition de l ’unité subordonnée à IR', notons la ( / n ) .

Le recouvrement IR' étant plus fin que IR, il existe une application tp : N  ->• I  telle que 
Un C Ov(n) pour tout n. Posons gt =  X ^ ( n)=î /n  i cette somme étant localement finie, 
la fonction est bien définie et elle est continue.

L’ensemble F% =  \ J ^ n)=i supp f n étant fermé d’après l ’exercice 2.10.4, le support de 
gi est contenu dans Fit soit supp gi C Fi C Oi.

Montrons que la famille (Fi)iei est localement finie, ceci prouvera que la famille des 
supports des fonctions gi est localement finie. Soit x  E X,  il existe un voisinage V de x  tel 
que
A = {n e  N  ; V f l  Un ^ 0 }  soit fini. L’ensemble B = {i e I  ; V f l  Fi ^  0 }  est 
alors fini : si V f l  F» ^  0 , il existe n  tel que <p(ri) = i et V f l  Un ^  0 , soit i e <p(A), ce 
qui prouve que B C  y>(A).

La somme Yli^iQi est donc bien définie et

=  fn =  y^,fn =  ly
i€l i£l tp(n)=i n = 0

ceci prouve que (gi)iei est une partition de l ’unité subordonnée au recouvrement IR. 
EXERCICE 2.37.1

Posons l =  lim y /  et soit 0 <  e <  Z, il existe M  e J  tel que
l -  e < f(x)  < l  + e pour tout x e M.

Supposons d’abord que, pour tout N e  J  contenu dans M , il existe unx e N  tel que 
g(x) >  0. Posons JV+ = {x e N  ; g(x) > 0}, on a alors

(l -  é)g(x) < f(x)g(x) < (l +  e)g(x) pour x e N + 
et

supg =  supp, sup fg  = su p /p ,
N  N +  N  N +
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d’où
(Z -  e)supg < sup fg < (l + e)supg.

N  N  N
En prenant la borne inférieure sur de tels N  qui constituent une base du filtre J , on obtient 
l’inégalité (dans [0, +oo])

(Z — e) lim sup g < lim sup fg<{l  + e) lim sup g
j  j  j

et le résultat voulu.
Sinon, il existe N  G J ,  N c  À/, tel que g(x) < 0 pour tout x e N. On a alors 

(Z + e)g(x) < f(x)g(x) <  (Z -  e)g(x) pour x G N  
et par conséquent pour tout P G J ,  P C  N,

(Z + e) sup g < sup fg < (Z -  e) sup g
p p  p

et de tels P constituant une base du filtre J , le raisonnement se poursuit comme précédem­
ment.
EXERCICE 2.37.2 RÉGULARISÉE S.C.I.
1. Montrons que la fonction /* est s.c.i. Soit a < /*(a), d’après la définition de /* il 
existe un voisinage ouvert V de a tel que a < inf^nA /  ; il en résulte, V étant ouvert, que 
a < /* (x) pour tout x 6 V, ce qui prouve la semi-continuité de /* au point a.

Lorsque a appartient à A, on a infvnA /  < f(a) quel que soit le voisinage V de a, d’où 
/*(a) < f(p) et ceci prouve que /* < /  sur A.

Soit g une fonction s.c.i. telle que g < f  sur A. Pour tout a G X, on a
g{a)= sup inf g < sup inf g < sup inf /  = /.(a )

K 6V (a) v  V € V ( a ) v n A  V € V (o )v n / *

ce qui prouve que g < f*.
Ce qui précède prouve que /* est la plus grande fonction s.c.i. telle que /* < /  sur A. 
2. Lorsque /  est s.c.i., la restriction / | a de /  à A est s.c.i. ; il en résulte que, pour tout

a G A,
f(a)= sup i n f /  =  /.(a ),

V 6V (a) V n A

ce qui prouve que /* prolonge / .
EXERCICE 2.37.3 LEMME DE CHOQUET
Vérifions d’abord qu’on peut se ramener au cas où toutes les fonctions fi sont à valeurs 
dans [-1,1]. Utilisons V homéomorphisme ip : R —> [— 1,1] définie par 

ip(t) = t/(l + |£|) si f G R et y?(d=oo) =  ±1.
Montrons d’abord que, pour toute suite (xi)içi de R,

<p(inf æ<) =  inf

Posons x = infiçiXi. Alors, x < xu d’où (p(x) < <p(xt) d’après la croissance de (p 
et par conséquent ip(x) < infie/ <p(xi). Pour démontrer l’inégalité opposée, distinguons 
différents cas. Si x = +oo, x± — +oo pour tout i et le résultat est évident. Si x < -hoo, 
pour tout a > x, il existe i tel que a?< < a, d’où <p{xi) < y?(a), i n f <p(xi) < y?(a) et, en 
faisant tendre a vers x> la continuité de (p au point x montre que infie/ ip(xi) < y?(æ), ce 
qui prouve le résultat voulu.

Bien entendu, on a également
p(supxi) =  sup</?(æi). 

i £ l  i £ l
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D’après la définition de la régularisée s.c.i., on en déduit que
ip o ( in f f i )* =  ( in f <p o /* )*  iei iei

et de même en remplaçant I  par Io. Ceci prouve que toutes les fonctions fi  peuvent être 
supposées à valeurs dans [—1,1].

1. D ’après la définition d’une borne inférieure, pour tout n > 1, il existe xn G On tel 
que fi{xn) <  in fo M fi  +  1/n , puis un in tel que /*n (xn) <  fi(xn) +  1/n . Il en résulte 
que

/ i , . ( x „ )  <  i n f / /  +  2 /n ,
U n

d’où
in f fin <  in f / /  +  2 /n .O-n On

2. Soient x  € X  et e >  0, la fonction g étant s.c.i., il existe un voisinage V  de x  tel que
g{x) < g(y) +  e pour tout y e V,

d’où g(x) < f i0{y) +  e. Pour tout n tel que x € On C V, on en déduit que 
g(x) <  in fo „  / / „  +  e et d’après 1.,

in f f i0 < in f f in <  in f fi  +  2 /n ,
U n U n U n

d’où
g(x) <  in f f i  +  2 /n  +  £ < fi(x)  +  2 /n  +  e.

Chaque ouvert On étant répété une infinité de fois dans la suite (On), on peut choisir n  tel 
que
2 /n  <  e ; on obtient alors g(x) < fi(x) +  2e:, d’où g{x) < fi(x). Ceci prouve que 
toute fonction s.c.i. g plus petite que / j 0 est nécessairement plus petite que / / .

3. Il en résulte que (f j 0)* <  / / ,  d’où ( / / „ ) *  <  ( / / ) *  d’après la caractérisation de la 
régularisée s.c.i. Étant donné que / /  <  / / 0, on a l ’ inégalité opposée ( / / ) *  <  ( / / 0)* et on 
en déduit le résultat annoncé.

2.46 Exercices du chapitre 2.D

EXERCICE 2.39.1

Soit D un espace discret et soit f  : A -> D une application continue. On peut prolonger 
/  en une application g : A U B  -> D telle que g soit constante sur B  : en effet, ceci est 
évident si A n B est vide et, si A f l  B  est non vide, /  est constante sur A f l  B  d’après la 
connexité de A f l  B  et on pose g\B = /U n s .  Montrons qu’un tel prolongement est continu. 
Soit M  une partie de Dt alors g~1(M) =  f ~ 1(M) ou bien g~1(M) = / ” 1(M )U JB  ; les 
ensembles A et B  étant fermés, ceci montre que l ’ image réciproque par g de tout fermé est 
fermée. L’application g est continue, donc constante et a fortiori /  ; on en déduit que A  est 
connexe (proposition 2.39.2). Il en est de même de B.
EXERCICE 2.39.2

Soit f  : A U  B - ï  D une application continue à valeurs dans un espace discret. Les 
applications f\A et / \b sont constantes : f\A =  a et f \B = b. Supposons par exemple 
A D B  non vide ; soit x G A f l  J3, alors f(x) = a et, B  U {x }  étant connexe (corollaire
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2.39.3), /  est constante sur B U {#}, (Toù f(x) =  b et par conséquent a =  b, ce qui prouve 
que /  est constante et A U B est donc connexe.

EXERCICE 2.39.3 FAMILLE FILTRANTE DE PARTIES CONNEXES

Posons C  =  (J i e  j  C i  et soit /  : C  -*  D une application continue à valeurs dans un espace 
discret. Alors, /  est constante sur C i ,  soit / |c ; =  a*. Soient i , j  G I ,  il existe k  e  I  tel que 
C i  U C j  C C k  et par conséquent a i  =  a j  =  afc, ce qui prouve que /  est constante ; C  est 
donc connexe.

EXERCICE 2.39.4

Soit x G X,  notons Ax l’ensemble des points y tels qu’il existe une famille finie d’ouverts 
( C i p ) \ < v <n  telle que x e  O i l t  y e  O ilt et O ip fl O ip+1 ^  0 pour 1 <  p <  n -  1. On 
a x G Ax car ( O i )  est un recouvrement de X  ; Ax est ouvert car 0*w C Ax. Montrons 
que Ax est fermé. Soit 2 un point adhérent à Ax, il existe un ouvert O i  contenant z et cet 
ouvert rencontre Ax en un point que nous notons y ; la suite d’ouverts ( O i p ) i< p<n+ i où 
O i n+1 =  O i  possède les propriétés requises permettant d’affirmer que z appartient à Ax, 
ce qui prouve que Ax est fermé. L’ensemble non vide Ax est à la fois ouvert et fermé, d’où 
Ax =  X  l’espace étant connexe et ceci prouve le résultat souhaité.

EXERCICE 2.39.5

Soit f  : X x  Y — A x  B ^  D une application continue à valeurs dans un espace 
discret et soit a e X  -  A, b e Y -  B. Soit (a\ b') G X  x Y -  A x  B, alors 
ou bien a' 0 A, ou bien bf g B. Supposons par exemple a' 0 A ; les applications 
x  1—̂ f  ( x  j  6) de X  dans D et y i-> /(a ', y) de Y  dans D sont continues, donc constantes, 
d’où /( a ,b) =  f(a\b) =  /( a ',6'). Ceci prouve que /  est constante et par suite 
X x  Y -  A x  B est connexe.

EXERCICE 2.39.6 SUITE DÉCROISSANTE DE COMPACTS CONNEXES

1 ,a. Le compact K n est contenu dans l’espace compact Ko, donc fermé dans Ko ; la suite 
(K n) est une suite décroissante de fermés non vides de l’espace compact Ko ; l ’intersection 
K  est donc un fermé non vide de Ko et par conséquent I< est compact.

b. Soit V  un voisinage ouvert de K ,  alors K n — V  est fermé dans K n, donc compact. 
La suite (K n — V )  est une suite décroissante de compacts dont l’intersection K  — V  est 
vide ; d’après l,a., l’un de ces compacts K n - V  est vide, ce qui signifie K n c  V .

2. Si les compacts K n sont connexes, montrons que I< est connexe. Raisonnons par 
l’absurde. Supposons K  non connexe : on peut alors écrire K  =  F\ U F2 où F\ et F2 sont 
deux fermés de K  non vides et disjoints. Ces ensembles F\ et F2 sont donc compacts ; 
utilisons alors la proposition 2.31.9 dans l’espace I<o, il existe des ouverts disjoints 0 \  et
0 2 de I<o tels que F i c  O i. 11 en résulte que 0 \  U O 2 est un voisinage ouvert de K  dans 
l’espace K o . D’après 1., utilisé dans l’espace Afo, il existe n tel que I<n C  0 \  U O 2 et 
O i  fl K n D O i C\K =  F i est non vide, ce qui contredit le fait que K n est connexe.
Note On observera que cette dernière propriété est en général en défaut pour une suite 
décroissante de fermés connexes. Il suffit de considérer dans M x la suite

Fn =  {(æ,2/) € R x  R+ ; y < \x\ +  1/n}, n > î,
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dont l ’ intersection {(# , y) G R x RÜj_ ; y < |a;|} n’est pas connexe.

EXERCICE 2.39.7

Supposons qu’ il existe une sphère S(a\ r ) ,  r > 0, vide ; on peut alors écrire 
X  = B(a]r) U (X -  B'(a\r))

où les deux ouverts B (a; r) et X  — B f(a\ r) sont non vides, le second car X  est non borné 
par hypothèse. Si l ’espace X  est connexe, on obtient une contradiction.

EXERCICE 2.39.8 CHAINE DANS UN ESPACE MÉTRIQUE

1 2 Soit x G X  et soit e >  0, notons A l ’ensemble des points y G X  tels qu’ il 
existe une e — chaine reliant x  et y. Montrons que cet ensemble A  est non vide et à la fois 
ouvert et fermé ; ceci prouvera que A = X  et le résultat voulu.

Observons d’abord que A est non vide car x G A. Notons ensuite que A est ouvert : si 
y G A, A contient évidemment la boule B(y\e). Si 2 est un point adhérent à A> la boule 
B(z\e) rencontre A  ; soit y G AnB(z;  e), alors A  contient la boule B(y ; e), donc le point 
z et ceci montre que A est fermé.

2 => 3 Raisonnons par l ’absurde. Supposons l ’espace X  non connexe. On peut alors 
écrire X  = K\ UK2 où K\  et K 2 sont deux fermés non vides et disjoints ; l ’espace X  étant 
compact, ces fermés sont compacts et par conséquent (corollaire 2.33.13) r = d(K\, K 2) 
est >  0. Prenons x G K\,  y G K 2 et 0 <  e < r , il n’est alors pas possible de relier x  et y 
par une e — chaine, ce qui prouve le résultat voulu.

EXERCICE 2.39.9

Notons que B(a\ r) = Uo<p<r ^ '(a ;  P) et ^ suffit donc (corollaire 2.39.5) de vérifier que 
toute boule fermée est connexe.

On considère donc une boule fermée B'(a; r ) , r >  0, et un point x G B'(a; r) de cette 
boule. Soit e >  0, notons Ae l ’ensemble des y G B'(a\r) qui peuvent être reliés dans 
B\a\  r) au point x par une e — chaine (exercice 2.39.8).

Notons que Ae est fermé. En effet, si 2 G B'(a\ r) est un point adhérent à Ae, la boule 
B{z\e) rencontre Ae. L ’ensemble fermé Ae est donc compact.

Posons a = in f ^ / i *  d(a ,y), il existe yo G Ae tel que a = d(ayyo). Montrons, en 
raisonnant par l ’absurde, que a = 0. On suppose a > 0, alors le point yo appartenant à 
la boule fermée B f (a; a) est adhérent à la boule ouverte B(a\ a) d’après les hypothèses : 
il existe donc un point y G B(a ; a) tel que d(yyyo) < e et il en résulte que ce point y 
appartient à Ae, ce qui est contradictoire avec la définition de a.

Ceci prouve que a  =  0, c’est-à-dire a G Aet ce qui signifie que tout point x  de la 
boule B '(a ;r )  peut être relié dans B \a \ r )  au point a par une e — chaine. I l en résulte 
que deux points quelconques de la boule B'(a; r) peuvent être reliés dans B 1 (a; r) par une 
e — chaîne ; d’après l ’exercice 2.39.8, on en déduit que cette boule compacte B*(a; r )  est 
connexe, ce qui prouve le résultat voulu.
Note Étant donné que X  = Ur>o ^  (aî r )»on en déduit que l ’espace X  est connexe. 

EXERCICE 2.39.10

L’ensemble des applications bornées est fermé d’après la proposition 2.27.2. Montrons que 
cet ensemble est ouvert. Soit /  G ^ ( X j y )  et soit 0 <  e < 1, montrons que la boule 
ouverte £?(/; e) est contenue dans Jb(X\Y) i ceci démontrera le résultat voulu.
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Soit g G B ( f \ e ), ayant choisi e <  1, on a d(f(x),g(x)) < e pour tout x G X  ; pour 
tout x, y G X,  on a alors

d(p(aO,0(î/)) < d(g(x)J(x)) + d(f(x)J(y)) + d(f(y),g(y)), 
d’où d(g(x),g(y)) <2e + diam f ( X ), ce qui prouve que £ est une application bornée. 

EXERCICE 2.39.11

1. Notons P  l ’ensemble des x  G X  tels que A(x) soit précompact.
a. Si A(a) est précompact, il existe, pour tout e >  0, une partie finie F  de y  telle que

A(a) C Us/^F D’après l ’équicontinuité au point a, il existe un voisinage K  de a
tel que

d( f (x ), / (a ) )  <  € pour tout x E V  et tout /  6 A.
Si x  appartient à V, il en résulte que A(x) c  U ^gf ^ ( î / i  2e) et ceci prouve que A(x) est 
précompact pour tout x G V : P  est ouvert.

b. Montrons que P  est fermé, soit a G P  et soit e >  0. On écrit l ’équicontinuité de 
A au point a comme précédemment. Alors, V  G V(a) rencontre P  en un point x  et A(x) 
étant précompact, il existe une partie finie P  de y  telle que A(x) C (J^gf ^ (2 /;£)» d’où 
A(a) C U j/gf £ ( î /i 2e)>ce prouve que a G P.

2. On observe que dans un espace métrique complet, une partie est relativement com­
pacte si, et seulement si, elle est précompacte.

EXERCICE 2.40.1

Raisonnons par l ’absurde. Soit /  : ]a ,6] —>]a,b[ un homéomorphisme; si
p = f(b) g ]û , 6[, /  induit un homéomorphisme de l ’ intervalle ]a,6[ sur l ’espace 
]a,/?[U]/3,6[ et ceci est absurde car l ’espace ]a,6[ est connexe alors que l ’espace 
]a, P[ U ]fi, 6[ ne l ’est pas.

EXERCICE 2.40.2

On considère l ’application continue g(x) =  f (x)  — x. On a g( 1) <  0 et g(—1) >  0 ; 
d’après le théorème des valeurs intermédiaires (corollaire 2.40.3), cette fonction g s’annule, 
ce qui signifie que /  admet un point fixe.

EXERCICE 2.40.3

Si /  vérifie les propriétés indiquées, f(R)  est dénombrable ; de plus, /(R )  est connexe, 
en tant qu’ imagé continue d’un connexe, donc /(R )  est un intervalle. Cet intervalle est 
nécessairement réduit à un point, ce qui signifie que /  est constante et bien entendu une 
application constante ne peut posséder les propriétés requises.

EXERCICE 2.40.4 TOPOLOGIE DE L’ORDRE : PARTIES CONNEXES
l,a. On suppose l ’espace X  connexe.

Montrons que toute partie A non vide et majorée admet une borne supérieure. Raison­
nons par l ’absurde, supposons que l ’ensemble M  des majorants de A n’admette pas de plus 
petit élément : autrement dit, on suppose que, pour tout x  G M , il existe y e M  tel que 
y < x.  Alors, l ’ intervalle ]y, -» [ est un voisinage ouvert de x  et ]y, -» [ C M , ce qui prouve 
que M  est ouvert. Montrons que M  est également un ensemble fermé. Soit x  G M  — M , x 
n’est pas un majorant de A, il existe donc y G A tel que x < y ; l ’ intervalle ouvert ] 4-, y[ 
est alors un voisinage de x ne rencontrant pas M , ce qui est absurde, le point x  étant un 
point adhérent à M . Ceci prouve que M  =  M  : M  est fermé. L’ensemble non vide M
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étant à la fois ouvert et fermé, on en déduit que X  =  M , donc A  est nécessairement réduit 
à un point qui ne peut être que le plus petit élément de X , donc de M , ce qui est contraire 
à l ’hypothèse faite sur M.

Montrons ensuite que tout intervalle ouvert ]x,y[ est non vide si x < y. On raisonne 
par l ’absurde. Supposons ]x,y[= 0, alors ] x] et [;y, [  sont deux fermés non vides, 
disjoints et de réunion X , ce qui contredit la connexité de X.

b. Réciproquement, supposons que toute partie non vide majorée admette une borne 
supérieure et que tout intervalle ]æ, y [ , x < y, soit non vide. Montrons que X  est connexe. 
Raisonnons par l ’absurde, on suppose X  non connexe, c’est-à-dire X  = A U B oùA qI B  
sont deux fermés non vides et disjoints. Soient a e A et b G B> supposons a < b pour fixer 
les idées. L’ensemble non vide et majoré (par b) A f l  [a, b] admet une borne supérieure m. 
D ’une façon générale, observons que la borne supérieure d’une partie E  de X , lorsqu’elle 
existe, est nécessairement un point adhérent à E  : en effet, si m = sup E , pour tout x < m, 
il existe y e E  tel que x < y <  m, donc tout intervalle ouvert ]æ, x’[ contenant m  rencontre 
E. Ceci prouve, l ’ensemble A f l  [a, 6] étant fermé, que m e A  D [a, 6] et m < b vu que 
b e B.  Soit x e ]m, 6], l ’ intervalle ouvert ]ra, x[ est non vide par hypothèse et contenu dans 
B  ; il en résulte que tout intervalle ouvert contenant m  rencontre B , donc m  E B  =  B  et 
par conséquent m  appartient à la fois à A et à B,  ce qui est absurde, ces ensembles étant 
disjoints.
Note L’hypothèse que tout intervalle ]x, y [ , x < y, est non vide est essentielle. Par exemple, 
si X  est un ensemble à deux éléments {a, b} muni de la relation d’ordre a <  6, toute partie 
non vide admet un plus grand élément mais l ’espace X  n’est pas connexe.

2,a. La caractérisation fondamentale des intervalles de R que donne le corollaire 2.4.3 
repose uniquement sur le fait que R est totalement ordonné et que toute partie non vide 
majorée (resp. minorée) admet une borne supérieure (resp. inférieure). Si X  est un espace 
totalement ordonné, connexe pour la topologie de l ’ordre, on sait d’après 1. que toute par­
tie non vide majorée admet une borne supérieure. En munissant X  de l ’ordre opposé qui 
induit la même topologie, on en déduit que toute partie non vide minorée admet une borne 
inférieure et on obtient ainsi la même caractérisation des intervalles que sur R.
Note On peut aussi remarquer que, plus généralement, si dans un ensemble totalement or­
donné toute partie non vide majorée admet une borne supérieure, alors toute partie non vide 
minorée A admet une borne inférieure. En effet, l ’ensemble M  des minorants de A admet 
une borne supérieure m  qui est par définition le plus petit majorant de M  ; l ’ensemble des 
majorants de M  contenant A , m  appartient à M , ce qui prouve que m  est le plus grand 
élément de M , donc la borne inférieure de A.

b. Si X  est connexe, montrons que les parties connexes de X  sont les intervalles de 
X .

Soit I  une partie connexe et soit x, y  G / ,  x < yy alors ]x ,2/ [c  I  : sinon, il existerait 
a 0  I  tel que x < a < y et I  serait la réunion des deux ouverts non vides et disjoints 
/ f I  ] a[ et I n  ]a, -» [, ce qui contredit la connexité de I. Vu 2,a., ceci prouve que I  est 
un intervalle.

Réciproquement, si I  est un intervalle, on observe que la topologie induite sur I  par 
celle de X  coïncide avec la topologie associée à l ’ordre induit. En effet, on vérifie que tout 
intervalle ouvert de I  est la trace sur I  d’un intervalle ouvert de X  et qu’ inversement la trace 
sur I  d’un intervalle ouvert de X  est un intervalle ouvert de I. La connexité de /  résulte 
alors de 1. comme on le vérifie aisément.



2.46 EXERCICES DU CHAPITRE 2.D 279

Note Si A est une partie quelconque de X , on se gardera bien de croire que la topologie 
induite sur A coïncide toujours avec la topologie associée à l ’ordre induit. Par exemple, 
prenons l ’espace

X = R et A =] - o o , - l [U { 0 } U ] l , + o o [ .

Le point 0 est isolé pour la topologie induite alors qu’ il ne l ’est pas pour la topologie de 
l ’ordre induit car tout intervalle ouvert de A contenant 0 n’est pas réduit à 0. On peut 
également voir les choses de la façon suivante. L’ensemble ordonné A est isomorphe à R ; 
muni de la topologie de l ’ordre, l ’espace A est donc homéomorphe à R, donc connexe, alors 
que pour la topologie usuelle A n’est pas connexe.

EXERCICE 2.40.5

1. Supposons f(x) < f(z) pour fixer les idées et montrons que f(x) < f(y) < f(z). 
Raisonnons par l ’absurde, si f(x) < f(z) < f(y), il existe, d’après le théorème des valeurs 
intermédiaires (corollaire 2.40.3, un a E]æ, y[ tel que /(a )  =  f(z)> ce qui est contradictoire 
avec l ’ injectivité de /  ; de même, on vérifie que l ’hypothèse f(y) < f(x) < f(z) est 
absurde. Ceci prouve le résultat voulu.

2. Supposons / ( a )  < /(&) par exemple et soit a < x < y < 6, on a en utilisant 1. 
f(a) <  f(x) < f(y) < f(b). Ceci montre que la restriction de /  à l ’ intervalle [o,6] est 
strictement croissante si f(a) <  /(6) ; de même on vérifie que la restriction de /  à l ’ inter­
valle [a, 6] est strictement décroissante si f(b) <  /(a ) . La restriction de /  à tout intervalle 
compact contenu dans I  est donc soit strictement croissante, soit strictement décroissante.

Considérons alors deux points a, b E I  tels que a <  b et supposons comme précédem­
ment /(a )  <  /(&). Si x  et y sont deux points quelconques de I  tels que x < y, il existe 
un intervalle compact J  contenu dans I  et qui contient tous les points a, 6, x, y. L’applica­
tion f \ j  est nécessairement strictement croissante vu que /(a )  <  f(b) et il en résulte que 
f ( x) < /(? /) , ce qui prouve que /  est strictement croissante. De même, si f(b) < / (a ) , on 
vérifie que /  est strictement décroissante.

3. Si I  est un intervalle compact, / ( / )  est un intervalle compact en tant qu’ imagé conti­
nue d’un espace connexe et compact.

Lorsque I  est un intervalle ouvert, si x  E / ,  il existe a, b E I  tels que a <  x < b ; 
supposons /  croissante pour fixer les idées, alors /([a, b]) est un intervalle contenu dans 
l f(a)>f(b)] ( /  est croissante) et qui contient les points /(a )  et /(& ), d’où 
/(M D  =  [/(a),/(6)] et par conséquent /(]a ,6 [) = ] /(a ) ,/(6 )[  ; on a donc 
f ( x ) € ] / ( a ) , / ( 6) [ c  /(-O  et ceci montre que / ( / )  est un voisinage de f(x),  donc de 
chacun de ses points et / ( / )  est bien un intervalle ouvert.

Montrons enfin que /  est un homéomorphisme de I  sur / ( / ) .  Soit x E I  et soit V un 
voisinage de x dans / ,  montrons que f(V) est un voisinage de f(x) dans / ( / ) ,  ceci prou­
vera la continuité de / -1 au point f{x). Si a; est un point intérieur à / ,  il existe a, b E /  tels 
que x E]a, 6[c V et le raisonnement qui précède a montré que 
/ ( æ) € ]/(a ) , f(b)[ C f (V ), ce qui prouve bien que f(V) est un voisinage de f(x) dans 
/ ( / ) .  Si x est l ’une des extrémités de / ,  par exemple son origine, soit x =  m in /,  alors 
f(x) est l ’origine de l ’ intervalle / ( / )  (on suppose /  croissante) et il existe b E /  tel que 
x ^  [æ,6[ c  V et on vérifie comme précédemment que /( [# ,& [)  =  [f(x)t / ( 6) [ , d’où
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f(x) € [ / (x ) ,  f(b)[ C /(V ), ce qui prouve que f(V) est un voisinage de f(x).
EXERCICE 2.40.6

1. Une suite (xn ) converge vers x  pour la distance d / si, et seulement si, la suite ( f ( x n)) 
converge vers f ( x ) .  Les distances d et d f  sont donc équivalentes si, et seulement si, /  est 
un homéomorphisme de R  sur / ( R ) ,  c’est-à-dire si /  est continu d’après l ’exercice 2.40.5.

2. La continuité uniforme de l ’application identique /r : (R ,d )  -> ( R , d / )  équivaut
à la continuité uniforme de /  et celle / r : ( R , d / )  (R ,d )  à la continuité uniforme de

Les distances d et df sont donc uniformément équivalentes si, et seulement si, /  est 
un homéomorphisme uniformément continu de R sur / ( R )  ainsi que / _1.

Vérifions que /  est alors nécessairement surjective. Raisonnons par l ’absurde, suppo­
sons par exemple / ( + o o )  fini ( /  est strictement croissante ou décroissante d’après l ’exer­
cice 2.40.5). Soit e > 0, d’après la continuité uniforme de / _1, il existe ô >  0 tel que

1/0*0 -  f(y)| < S => \x -  y\ < e.
Or, f(x) admettant une limite finie lorsque x tend vers + o o ,  il existe A G R tel que 
\f(x)-f(y)\ < £ pour tout æ, 2/ >  A, ce qui est contradictoire avec la propriété précédente.

3. Si l ’application /  est un homéomorphisme de R sur R, l ’application 
/  : (Rj df) —> (R ,d) est une isométrie et par conséquent les suites de Cauchy pour les 
distances d et df sont les mêmes.

Réciproquement, supposons que les suites de Cauchy pour d et df  soient les mêmes. 
Montrons d’abord la continuité de / .  Soit (xn) une suite convergeant vers a, alors la suite 
(xn) étant de Cauchy pour d, elle est de Cauchy pour d /, ce qui signifie que la suite ( / ( x n)) 
est de Cauchy pour d, donc convergente et ceci prouve la continuité de /  au point a (exercice 
2.13.2). Montrons ensuite que /  est surjective. Raisonnons par l ’ absurde, supposons par 
exemple /(+ o o ) fini ; la suite xn =  n  est alors une suite de Cauchy pour d / car la suite 
( f ( xn)) est convergente, alors qu’elle ne l ’est pas pour la distance d.
Note Prenons f(x) = x3. Alors, les distances d et df sont topologiquement équivalentes, 
non uniformément équivalentes et les suites de Cauchy sont les mêmes pour ces deux dis­
tances.

4. L’application /  : (R, d /) -> ( / ( R ) ,  d) est une isométrie et par conséquent R muni 
de la distance d / est complet si, et seulement si, / ( R )  est complet, c’est-à-dire fermé.

EXERCICE 2.40.7

Soit /  : X  -» Y  une application continue surjective, on suppose que l ’espace X  est 
connexe par arc. Soient y, y' e Y , il existe x,x'  € X  tels que y = f (x)  et y' = 
L’espace X  étant connexe par arcs, il existe une application continue 7 : [0,1] -» X  telle 
que 7(0) =  x  et 7(1) =  x '. L’application continue /  o 7 : [0,1] Y  est alors un chemin 
joignant les points y et y \  ce qui prouve que Y  est connexe par arc.

EXERCICE 2.40.8

1. La sphère §n est connexe par arc en tant qu’ imagé continue (exercice 2.40.7) de l ’espace 
connexe par arc R n+1 — {0 } par l ’application continue x h*  æ/||a;|| où ||«|| désigne la 
norme euclidienne.

2. L’espace projectif Pn (lK), n  >  1, est connexe par arc en tant qu’ imagé continue de
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l ’espace connexe par arc K n+1 — { 0}.

EXERCICE 2.40.9

Soit a e X, notons A l ’ensemble de tous les points x tels qu’ il existe un chemin joignant 
les points a et x. Montrons que A est un ensemble non vide, à la fois ouvert et fermé ; 
l ’espace X  étant connexe, ceci prouvera que A =  X,  c’est-à-dire que X  est connexe par 
arc.

L’ensemble A est non vide car a G A t il suffit de considérer l ’application 
/  : [0 ,1] -» X  constante et égale à a. Soit x e A, alors il existe un voisinage V de x 
tel que, pour tout point y de V , il existe un chemin joignant les points x et y. Il en résulte 
que V C A, ce qui prouve que A est ouvert. Considérons enfin un point x adhérent à A et 
soit V un voisinage de x ayant la propriété indiquée ci-dessus, alors V  rencontre A en un 
point y et il en résulte que x appartient à A , ce qui prouve que A est fermé.

EXERCICE 2.40.10 ESPACE LOCALEMENT CONNEXE PAR ARC
1. La condition est évidemment nécessaire. Réciproquement, si cette condition est vérifiée, 
pour tout y G W, il existe un chemin : I  —> V joignant les points x et y. Posons

W '  = |J  7v(/),
yew

alors W1 est connexe par arc et x G W C W' c  V, donc W' est un voisinage connexe 
par arc de x contenu dans V et ceci prouve que tout point admet un système fondamental 
de voisnages connexes par arc.

2. Un espace connexe et localement connexe par arc est connexe par arc d’après l ’exer­
cice 2.40.9.

3. résulte du fait que, dans un espace métrique, l ’ensemble des boules ouvertes centrées 
en un point x est un système fondamental de voisinages de x.

4. Raisonnons par l ’absurde. On suppose qu’ il existe e >  0 et, pour tout n >  1, des 
points xn,yn € X  tels que d(xniyn) <  1 /n  et tels qu’ il n’existe pas de chemin joignant 
xn et yn de diamètre <  e. L’espace X  étant un espace métrique compact, il existe une 
sous-suite (xnf{) convergente, soit x sa limite ; la sous-suite (ynk) converge alors vers x. 
L’espace X  étant localement connexe par arc, il existe ô >  0 tel que, pour tout y G B(x\ S), 
il existe un chemin joignant x et y tracé dans la boule B(x\e/2). Pour h suffisamment 
grand, les points xUk et ynk appartiennent tous deux à la boule B(x\ <$) et peuvent donc être 
joints par un chemin tracé dans B(x\e/2), donc de diamètre <  e, d’où une contradiction.

EXERCICE 2.40.11

1. Soit X  =  YlieI X i  un produit fini d’espaces localement connexes par arc et soit 
x  =  (a;*) e X .  Soit V  un voisinage de x, il existe des voisinages V% de Xi tels que 
YlieI Vi C V , puis des voisinages Wi de x» tels que, pour tout yi G Wu il existe un che­
min f i  : [0, 1] -» Vi joignant les points xi  et yi.  Posons W  =  Y\ieI W i , alors W  est un 
voisinage de x et, pour tout y  =  (yi) € W ,  il existe un chemin /  : [0 ,1 ] - »  V  joignant x 
et î/, à savoir le chemin f  = (f i) .

2. On considère maintenant un produit quelconque X  = YlieI Xi  d’espaces connexes 
et localement connexes par arc. Cet espace est connexe (théorème 2.39.11). Montrons qu’ il 
est localement connexe par arc. Soit x =  (xi) E X  et soit V  un voisinage de x ; il existe 
des voisinages Vi de Xi tels que n » g j Vi C V et Vi = Xi  pour i G /  -  J  où J  est une
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partie finie de J. Il existe des voisinages Wi de Xi tels que, pour tout yi e Wu il existe un 
chemin fi : [0 , 1] —> V* joignant les points Xi et yi et lorsque i G /  — J  on peut prendre 
Wi =  Xu  les espaces Xi  étant connexes par arc (exercice 2.40.10). Alors, W  = r i ie z  
est un voisinage de x et le raisonnement se poursuit comme pour 1.

EXERCICE 2.40.12

D’après l ’exercice 2.33.5, il existe une surjection continue /  : C X  où C désigne l ’en­
semble de Cantor. Il s’agit alors de prolonger cette application en une application continue
g : [0,1] —y X.

Le complémentaire de l ’ensemble de Cantor peut s’écrire, d’après sa définition (exer­
cice 2.6.2), comme une réunion dénombrable d’ intervalles ouverts disjoints deux à deux, 
soit

oo
[0,1] - C  = ( J ] a „ , 6„ [ .

7 1 = 0

On observe que lim n_»oo(&n -  an) =  0 : sinon, il existerait e >  0 et une infinité d’ inter­
valles ]an , bn [ de longueur >  e, ce qui est absurde, ces intervalles étant disjoints et contenus 
dans l ’ intervalle [0,1] de longueur finie. D ’après la continuité uniforme de /  ( l’ensemble 
de Cantor est compact), on en déduit que lim n_>oo d(f(an), f(bn)) = 0.

Donnons-nous une suite (e*) de nombres >  0 convergeant vers 0. D’après l ’exer­
cice 2.40.10, il existe 6k >  0 tel que deux points quelconques f ( x ) yf(y)  de X  vérifiant 
d(f (x)yf(y)) < 6k peuvent être joints par un chemin de diamètre <  e*. Soit (rik) une 
suite strictement croissante d’entiers telle que d(f(an),f{bn)) < £k pour n > rik. Pour 
rik < n  < nfc+i, on peut donc construire des chemins 7n : [an , bn\ -» X  joignant f (an) 
et f(bn) dont le diamètre est <  e*. Il en résulte que diam 7n ([an , bn]) tend vers 0.

On prolonge alors la fonction /  en posant g\[an ,bn \ =  7n .  On obtient ainsi une appli­
cation g  : [0, 1] —> X  évidemment continue en tout point de ]an , bn [ . Il reste à vérifier la 
continuité de g  en un point a  de l ’ensemble de Cantor.

Supposons d’abord que a soit l ’une des extrémités de l ’un des intervalles ]an , bn [ , soit 
a =  ano par exemple. Il s’agit alors de démontrer la continuité à gauche au point a. Soit 
e > 0, d’après la continuité de /  au point a, il existe S > 0 tel que d(f (x)y f(a)) < e pour 
x E C tel que \x — a\ < S. Les intervalles [an , 6n] étant disjoints deux à deux, on peut 
choisir 6 > 0 suffisamment petit pour que

[cl — 6 } û [ D ]ü n  > b n [ ^  0  diam 7?i( [ûn > bn ]) ^  c.
Considérons alors un point x e [a —ôya[ n’appartenant pas à l ’ensemble de Cantor, il existe 
n  tel que x G ]an , bn[ et par conséquent a — Ô < x < bn < a, d’où

d{g(x),g(a)) < d{g(x),g(bn)) +  d(f(bn),f(a)) < 2e
et par suite d(g(x),g(a)) <  2e pour tout x  e [a -  <5, a[ que x  appartienne ou non à 
l ’ensemble de Cantor. Ceci prouve la continuité de g au point a dans le cas considéré.

Lorsque a est l ’ un des points 6n, le raisonnement est semblable. Lorsque a n’est pas une 
des extrémités de l ’un des intervalles ]an , bn [, en raisonnant de la même façon on démontre 
que g  est continue à droite et à gauche au point a.

Note La méthode utilisée dans l ’exercice 2.36.10 repose sur le théorème de Tietze-Urysohn 
et ne permet pas d’obtenir le résultat plus général établi ci-dessus. On notera que les espaces 
[0, l ] n et [0, 1]N sont des espaces métriques compacts, connexes et localement connexes par
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arc d’après l ’exercice 2.40.11.

EXERCICE 2.41.1

Soit C l ’une des composantes connexes de A et soit a G C. L’ensemble non vide 
M = {x G C\f(x) >  f(a)} est fermé dans C d’après la semi-continuité supérieure 
de / .  Montrons que cet ensemble M est ouvert dans C. Soit x G M, alors il existe un 
voisinage V de x tel que f(y) > f(x) pour y G V, d’où f(y) >  f(a) ; ceci prouve que 
V f l  C C M  et par conséquent M  est ouvert dans C. Il en résulte que M  = C  : autrement 
dit, pour tout atx e Ct f(x) > f(a) ; /  est donc constante sur C.

EXERCICE 2.41.2

1. Montrons que A est connexe. Soit f  : A D une application continue à valeurs dans un 
espace discret. Posons B = AU (Q x {0 })  et prolongeons /  en une application g : B D 
en posant g(x, 0) =  f ( x y y) pour x  G Q et y < 0 ; le choix de y importe peu, la fonction 
y i-> f ( x , y) y où x G Q est fixé, étant constante sur la demi-droite (connexe) y <  0. Nous 
allons démontrer que g est continue ; on en déduira que g, donc / ,  est constante, l ’ensemble 
B étant évidemment connexe par arc.

Il s’agit de démontrer la continuité de g en un point (æ,0). Soit ((xn , 2/n)) une suite 
de B convergeant vers (x, 0), montrons que la suite (,g(xn, yn)) converge vers g(x, 0). En 
considérant d’une part les n pour lesquels xn est rationnel, d’autre part les n pour lesquels 
xn est irrationnel, on peut supposer que tous les xn sont rationnels, ou bien que tous les xn 
sont irrationnels.

Si tous les xn sont rationnels et si x est rationnel, on a g(xn,yn) = f(xn, —1) qui 
converge vers f (x , - 1 )  =  g{x,0). Lorsque x est irrationnel, g{xn)yn) =  f (xn, — 1/n) 
qui converge vers /(æ ,0) =  g(x, 0).

Lorsque tous les x n  sont irrationnels, on a g ( x n , y n ) = f { x n , 0). La fonction /  étant 
une fonction continue à valeurs dans un espace discret, espace où les ensembles réduits à 
un point sont ouverts, il existe un voisinage V  du point ( x n , 0) tel que /(a;, y )  = f ( x n , 0) 
pour tout (x, y )  G V  D A  ; ce voisinage V  f l  A  contient un point de la forme (x'n , y'n ) où 
X n  £ Q» Ix n  — x 'n \ < 1/ n  et —1/ n  <  y'n  < 0. La suite ((a4,2/n)) converge alors vers 
(x, 0) et g ( x n , y n ) =  g (x 'n ,y 'n ) et on s’est ainsi ramené au cas déjà traité où tous les x ’n  
sont rationnels.

Ceci prouve la continuité de g et, comme nous l ’avons expliqué, la connexité de A.
2. Montrons que A n’est pas localement connexe. Considérons l ’ouvert de At

O = A n  {(x,y) € R2 ; y > 0}
et un point (a, b) 6  O. Si V est un voisinage de (a, b) contenu dans O, sa projection sur 
l ’axe des x est contenu dans R — Q et n’est pas réduite à un point ; il en résulte que V ne 
peut être connexe, ce qui prouve le résultat voulu.

3. Considérons deux points m  =  (x, y) et m! = (x', y') tels que x e R  — Q, 2/ > 0et 
xf G Q, y' < 0. Supposons qu’ il existe un chemin (f,g)  : [0,1] ^ jo ignant les points m  
et ?7i '.  L’ensemble ouvert O = {t G ]0,1[ ; g(t) < 0} est non vide ; O peut s’écrire comme 
une réunion dénombrable d’ intervalles ouverts disjoints (corollaire 2.41.5), soit ]û , 6[ l ’un 
d’entre eux. Lorsque t G]a, b[, f(t)  est rationnel, donc /  est constante sur cet intervalle ; il 
en résulte que /(a )  est rationnel et ceci est absurde, car g (a) est >  0 d’après la définition
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de O et / ( a )  doit être irrationnel. Ceci prouve que l ’espace A n’est pas connexe par arc. 

EXERCICE 2.41.3 ESPACE EXTRÊMEMENT DISCONTINU

l. (E D i ) =>> (ED 2) Soient_Oi et 0 2 deux ouverts disjoints. L’ensemble 0 \  est contenu 
dans le fermé X  — 0 2, d’où 0\  c X — O2 , soit O2 C X — 0\  et, l ’ensemble X  -  0\  étant 
fermé diaprés (ED\)t on en déduit que O2 C X  -  Ou ce qui prouve que les ensembles 
ü\  et O2 sont disjoints.

(ED2 ) => (EDi) Soit O un ouvert, les ouverts O et X -  O sont disjoints ; d’après 
(.ED2 ), les ensembles O et X -  O sont disjoints, d’où O C O, ce qui prouve que O est 
ouvert.

2. Montrons que dans un espace extrêmement discontinu, toute partie connexe non vide 
est réduite à un point, c’est-à-dire que toute partie A admettant au moins deux éléments 
n’est pas connexe. Soient G A, x ± y. L’espace étant séparé, il existe un voisinage 
ouvert O de a; tel que y ne soit pas adhérent à O. Il en résulte que X  =  O U (X — O) 
constitue une partition de X  en deux ensembles ouverts telle que x e O e t y E X  — O et 
par conséquent A =  ( A n Ô ) U ( A n ( X -Ô ) )  où A f l  O et A f l  ( X - Ô) sont deux ouverts 
de A non vides et disjoints, ce qui prouve que A n’est pas connexe.

EXERCICE 2.41.4

1. Soient 0 \  et O2 deux ouverts disjoints de A U M tels que AU M =  0 \  U 0 2. On a 
A C 0\  U O2 et, A étant connexe, l ’un des ouverts de A A f l  0\  ou A f l  O2 est vide. Pour 
fixer les idées, supposons A fl O2 = 0, donc A c 0 \ . Montrons que O2 est à la fois ouvert 
et fermé dans X  ; cet espace étant connexe, ceci prouvera que 0 2 =  0 ou bien 0 2 = X, 
donc que AU M est connexe.

L’ensemble O2 est à la fois ouvert et fermé dans AuM et O2 C M ; O2 est donc ouvert 
et fermé dans M , donc dans X  -  A vu que M est ouvert et fermé dans X -  A. D’après 
l ’exercice 2.20.1, on en déduit que 0 2 est ouvert et fermé dans (A U M) U (X -  A), 
c’est-à-dire dans X.

2. Soient O i et 0 2 deux ouverts disjoints d e X - M  tels que X  -  M = Oi U 0 2. On a 
A C X -  M et A est connexe, on peut donc supposer A c Oi et A n O2 =  0. L’ensemble 
0 2 est à la fois ouvert et fermé dans X  -  Met M est connexe ; d’après L, 0 2 U M est 
connexe ; M étant une composante connexe, on en déduit que O2 C M, donc 02 = 0 et 
ceci prouve que X — M est connexe.

EXERCICE 2.41.5
l,a. Supposons 0\(x) non vide. On a X — {x} = 0\(x) U 0 2(x). L  ensemble 0 2(æ) 
étant ouvert, le seul point adhérent à Oi(x) n’appartenant pas à Oi(x) ne peut être que 
x. Si x n’appartient pas à Oi(æ), l ’ensemble Oi(x) est donc à la fois ouvert_et_fermé et 
X  étant connexe, Oi(x) =  X , ce qui est absurde. Ceci prouve que x G Oi(æ), d’où 
Oi(x) = Oi(x) U {x}.

b. Si X  n’est pas réduit à un point, Tun des ouverts Oi(x) etChjx) est non vide ;
d’après l,a., on en déduit que X  =  Oi(x) U L’ intersection Oi(x) f l  0 2 (x) C {x}
étant connexe, l ’exercice 2.39.1 montre que Oi(x) et 0 2 (x) sont connexes. Lorsque X  est 
réduit à un point, ces ensembles sont vides, donc connexes.

c. Soit y e O i(* ) ,  montrons que Oa(*) x  {y} C Oi. On peut supposer 0 2 (x) 
non vide. L’ensemble connexe 0 2 (x) x {y} est contenu dans K  car y £ 0 2 (x) : en effet,
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( x , y )  G O u  donc ( x >y )  g  0 2 et y j f i _ x .  Il en résulte que 0 2( x )  x { y }  c  0 \  ou bien 
O 2(g) x {?/} C  0 2. Vu que x  G 0 2(æ) et que (x > y ) G O u  c’est la première inclusion 
0 2 ( x)  x { y }  C  O i qui est vérifiée.

Si ( x yy )  G 0 \  et (x yz ) G 0 2, on en déduit que (z yy ) G O u  soit ( y yz )  G O u  
En permutant le rôle de 0 \  et 0 2y on a également ( y yz )  G 0 2, ce qui est absurde et par 
conséquent Tun des ensembles Oi(æ), 0 2( x )  est vide.

d. Supposons l’ouvert 0 \  non vide ; d’après l,c., il existe alors x  G X  tel que 
0 \  ( x )  =  X  -  {æ}. Soit x 7 un point de X  différent de x , on a x '  G O i  ( x ) f d’où x  G 0 \  (x7), 
ce qui prouve que 0 \  (x 7) est non vide et 0 2 ( x f) est donc vide quel que soit x \  ce qui prouve 
que 0 2 est vide.

2. On a F  =  O i  U 0 2 =  O f 1 U O ^ 1 =  (Oi U 0 2) n (O r1 U O J1), d’où 
y = U\ u u2 u U\2 où Ui =  Oi n o i 1 et Ui2 = (Oi n ô -1) u (o ï 1 n o2). ces 
ensembles sont ouverts, disjoints deux à deux et symétriques par rapport à la diagonale 
A. D’après 1., deux de ces ouverts sont vides. Lorsque U\ — 0, on a O f1 c  0 2, d’où 
U\ 2 D 0 2 est non vide ; de même si U2 est vide, U\ 2 est non vide. Ceci prouve que U\ et 
U2 sont tous deux vides, ce qui prouve que O f1 C 0 2 et O J1 C O u  d’où 0 \  =  O ^ 1 et 
y  =  0 iU 0 1" 1.

Montrons que 0 \  est connexe. Soient O i, Oi' deux ouverts disjoints de réunion O u  
Alors, y  =  (Oi U O i" 1) U (O7/  U O i'"1) et d’après 1.,

O i U O i" 1 =  0 ou O "  U O7/ " 1 =  0
et par conséquent l’un des ouverts O i, Oi' est vide, ce qui prouve que O i est connexe. Il en 
résulte que 0 2 =  O f1 est également connexe.

3. Si y  n’est pas connexe, on peut écrire d’après 2. Y  =  O i U O f1 où 0 \  est un ouvert 
connexe et O u  O f1 sont disjoints. Il en résulte que Y  admet deux composantes connexes, 
à savoir O i et O f1.
Note Prenons X  =  Rn, si n  =  1, y  admet deux composantes connexes et, lorsque n  >  2, 
y  est connexe.

EXERCICE 2.41.6
1. Montrons que la condition est nécessaire. Soit (O i ) i ^ i  un recouvrement ouvert et soit 
x  G X ,  il existe i ( x )  tel que x  G O ^ ) et, l’espace X  étant régulier, il existe un ouvert Ux 
tel que

x  G U x c  TJX C  O i{x) .

L’espace X  étant localement connexe, les composantes connexes de Ux sont ouvertes (pro­
position 2.41.3). L’ensemble A  de toutes les composantes connexes des ouverts Ux lorsque 
x  décrit X  est un recouvrement ouvert de X  qui admet, X  étant compact, un sous-recou- 
vrement fini ( A j ) j € j .  Posons C j  =  A j  ; ces ensembles sont connexes (corollaire 2.39.4), 
compacts et forment un recouvrement fini de X .  Si A j  est une composante connexe de UXy 
alors C j  C  0 ^ x) y ce qui prouve que ce recouvrement est plus fin que le recouvrement (O i) .

2. Montrons que la condition est suffisante. Soient x  G X  et O  un voisinage ouvert 
de x.  On considère le recouvrement ouvert { O yX  — {x }} ; il existe un recouvrement fini 
( C j ) j e J  plus fin constitué de parties connexes compactes. Posons

V  =  U C j  où K  =  { j  €  J ; x  e  C j } .
j e i<

Notons d’abord que V  est connexe (corollaire 2.39.5) et que, pour j  G K t C j  ne peut être 
contenu dans O  -  { x } y donc C j  C  O et par conséquent x  e V  C  O.  Montrons que V  est
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un voisinage de x , ceci prouvera le résultat voulu. On a
X  — V C F  = IJ c}

j € J ~ K
où F  est un fermé ne contenant pas x  ; X  -  F  est par conséquent un voisinage ouvert de x  et
V  D  X  -  F ,  ce qui permet de conclure.

EXERCICE 2.41.7

L’espace séparé Y  est connexe et compact en tant qu’imagé continue d’un espace connexe 
et compact. On peut donc utiliser le critère de l’exercice 2.41.6. Soit Æ =  (Oî )ïg / un 
recouvrement ouvert de Y , alors / _ 1(Æ) =  ( / “1(0<))*€Jr est un recouvrement ouvert de 
X  ; il existe donc un recouvrement fini ( C j ) j ç j  de X  constitué de parties connexes et 
compactes plus fin que / _ 1(^). On en déduit que (f(Cj))j€J est un recouvrement fini de
Y  constitué de parties connexes et compactes plus fin que % ce qui permet de conclure. 
EXERCICE 2.41.8 THÉORÈME DE SIERPINSKI
1. La condition est nécessaire. En effet, si X  est localement connexe, pour tout x  G X ,  
il existe un voisinage connexe Vx de x  tel que Vx C B ( x \ e / 2). Le recouvrement ouvert 
( V x ) x e x  contient un sous-recouvrement fini (Vx ) x e A ,  A  partie finie de X .  Il en résulte que 
X  =  \ J x e A  V x  où les ensembles V x sont connexes, compacts et de diamètre <  e.

2. Réciproquement, on suppose que, pour tout e  >  0, X  est la réunion d’une famille 
finie de parties connexes compactes de diamètre <  e. Montrons que X  est localement 
connexe en utilisant la caractérisation de l’exercice 2.41.6. Soit Æ =  (O i)i€/ un recou­
vrement ouvert de X  et soit e  >  0 le coefficient de Lebesgue du recouvrement (exercice
2.30.5). Par hypothèse, il existe un recouvrement fini de X  ( C j ) j ^ j  constitué de parties 
connexes, compactes, de diamètre <  e.  Un tel recouvrement est plus fin que Æ d’après la 
définition du coefficient de Lebesgue, ce qui prouve le résultat voulu.

EXERCICE 2.42.1 ESPACE TOTALEMENT DISCONTINU
1. Montrons que la condition est nécessaire. D’après la proposition 2.42.2, tout point ad­
met un système fondamental de voisinages à la fois ouverts et fermés. Tout point x  admet 
par conséquent un voisinage Vx à la fois ouvert et fermé tel que Vx C B ( x \  e / 2 ) .  Le re­
couvrement ouvert (Vx ) X£ x  contient un sous-recouvrement fini, soit (V*)i<i<n. Posons 
Wi = Vî et Wi = Vi — Wi-1 pour 2 <  i < n ; les ensembles Wi sont compacts, de 
diamètre <  e  et constituent une partition de X .

2. Réciproquement, soit e  >  0, il existe une partition finie ( A j )  de X  constituée d’en­
sembles compacts de diamètre <  e.  Chacun de ces ensembles A j  est à la fois ouvert et fermé 
et par suite tout point x  admet un voisinage V  à la fois ouvert et fermé de diamètre <  e.  

Soit C la composante connexe du point x  ; étant donné que C =  (C fl V )  U (CD ( X  — V ) ) ,  

l’ensemble connexe C est nécessairement contenu dans V ,  le diamètre de C est donc <  e  

et on en déduit que C est réduit au point x.

EXERCICE 2.42.2

On utilise la méthode décrite dans l’exercice 2.33.5 dont on conserve les notations. Lorsque 
X  est un espace métrique compact non vide, totalement discontinu et sans point isolé, on 
peut construire la famille ( A e) £ e z telle que A q et A \  soient disjoints, ainsi que A e> et A e» 
pour tout €.
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En effet, l ’espace X  n’ayant pas de point isolé, X  admet au moins deux éléments et son 
diamètre 6 est donc >  0. D ’après l ’exercice 2.42.1, il existe une partition finie ( ^ i) i< i< p + i 
constituée de parties compactes non vides de diamètre <  6/2 etp >  1. On pose Aq = K\  et 
A i  =  (J n = 2  Le sous-espace K \  est un espace métrique compact non vide, totalement 
discontinu et sans point isolé car I<\ étant ouvert dans X , tout point isolé de K\ serait un 
point isolé de X  ; d’après l ’exercice 2.42.1, il existe des compacts non vides et disjoints 
K{ et K"  tels que K\  =  K[ U K".  Lorsque p >  2, on pose j4oo =  Aoi = K " , 
Aïo =  K<i et A n  = En poursuivant cette construction, on obtient une partition
(Ae)eetP de X  constituée de parties compactes non vides de diamètre <  6/2. Chaque Ae 
est un espace métrique compact non vide, totalement discontinu et sans point isolé (car Ae 
est ouvert) et il est donc possible d’ itérer cette construction.

Il suffit ensuite de vérifier que la surjection continue /  : { 0 ,1 }N* —> X  est injective, 
ceci démontrera que /  est un homéomorphisme (corollaire 2.31.12). L’ injectivité de /  ré­
sulte du fait que, pour tout n, la famille (Ae)e€zn est une partition de X  : si a appartient à 
X , il existe un unique en G £n tel que a G Aen, d’où un unique e G £ tel que a = f(e).
EXERCICE 2.42.3

1. L’espace X  admet une base de topologie dénombrable, soit (Bn). Soit A une partie de 
X  à la fois ouverte et fermée. Il existe une partie I  de N telle que A =  U ne/ Ee sous“ 
espace A étant compact, le recouvrement ouvert (B n ) n e i  contient un sous-recouvrement 
fini, d’où une partie finie J  de N telle que A = (J n € j  Bn. L ’ensemble des parties finies 
de N étant dénombrable, on en déduit que l ’ensemble A  des parties à la fois ouvertes et 
fermées est dénombrable.

2. La fonction x i-> xn est continue car Dn est à la fois ouvert et fermé. La fonction 
/  est donc continue en tant que somme d’une série normalement convergente. Si C' est 
une composante connexe de X , f(C')  est une partie connexe de l ’ensemble de Cantor, 
donc réduite à un point ( l’ensemble de Cantor ne contient évidemment aucun intervalle 
d’après sa construction) et ceci prouve que /  est constante sur chaque composante connexe 
de X . Si C ' et C" sont deux composantes connexes de X  différentes, alors X  — C" est un 
voisinage ouvert de C1 et d’après la proposition 2.42.2 il existe donc un n  tel que C' c Dn 
et C" f l  Dn = 0- On en déduit que / \ c  ±  f \ c " car xn = 2 si x  G C' et xn = 0 si 
x G C " .

3. L’ensemble de Cantor est un espace compact totalement discontinu, il en est donc de 
même de tout sous-espace fermé et a fortiori de tout espace homéomorphe à un sous-espace 
fermé de l ’ensemble de Cantor.

Réciproquement, si X  est un espace métrique compact totalement discontinu, l ’ap­
plication /  : X  -» C construite précédemment est continue et injective et par suite un 
homéomorphisme de X  sur un sous-espace compact, donc fermé, de C.
EXERCICE 2.42.4

On suppose que X  =  U£°=o ^ n °ù *es Bn sont fermés, non vides et disjoints deux à deux. 
On pose Gn = Fn — Fn et G =  U^Lo ^ es ensembles Gn sont fermés dans X , donc 
dans G ; l ’espace X  étant connexe, Gn est non vide d’après le corollaire 2.39.9 ; G est donc 
non vide. Nous allons démontrer que G est fermé et que les fermés Gn sont d’ intérieur vide 
dans G. Ceci prouvera que G est un espace métrique complet, donc de Baire (théorème 
2.28.1) et que G est maigre dans lui-même, d’où une contradiction vu que G est non vide.



288 CHAPITRE 2 TOPOLOGIE

1. Montrons que G est fermé. Soit a G G, il existe un entier n tel que a G Fn. Montrons 
que a G Gn. Raisonnons par l ’absurde, supposons a G Fn. Alors, V = Fn est un voisinage 
de a et ce voisinage V  ne rencontre ni <3n, ni Gp pour p ^  n, Fn et Fp étant disjoints ; 
ceci montre que V  ne rencontre pas G, ce qui est absurde, le point a étant adhérent à G.

2. Montrons que Gn est d’ intérieur vide dans G. Soit a un point intérieur à Gn rela­
tivement à Gy autrement dit Gn est un voisinage de a dans G. L’espace étant localement 
connexe, il existe un voisinage connexe C de a tel que CC\G C Gn- Le point a appartenant 
à la frontière deFn ,C  doit rencontrer X  — Fn ; il existe donc un entier p ^  n  tel que C 
rencontre Fp ; C rencontrant X  — Fp (car a G X  — Fp)y C doit rencontrer la frontière de 
FPy c’est-à-dire Gp et ceci est absurde car C fl G c Gn-

Comme nous l ’avons expliqué, 1. et 2. permettent de conclure.



Chapitre 3

ESP A CES LO CALEM ENT  
C O N V E X E S





Sommaire

Ce chapitre est consacré à l’étude des espaces localement convexes (en abrégé 
e.l.c.), c’est-à-dire aux espaces vectoriels topologiques dont la topologie peut être 
définie par une famille de semi-normes. Les espaces fonctionnels utilisés dans 
la pratique sont toujours de ce type et il est donc utile d’étudier les propriétés 
fondamentales de ces espaces.

Les paragraphes 3.1 à 3.8 présentent les premières notions et propriétés des 
e.l.c. : sous-espace, produit, quotient, somme directe topologique, etc. On notera 
en particulier le critère de métrisabilité (théorème 3.4.6) et les deux théorèmes 
fondamentaux concernant les espaces de dimension finie : le premier théorème 
(théorème 3.5.8) affirme que sur un espace de dimension finie il n’existe qu’une 
seule topologie séparée d’e.l.c. et que cette topologie est une topologie d’espace 
de Banach ; le second théorème dû à F. Riesz (théorème 3.7.4) donne une caracté­
risation topologique de la dimension finie : un espace normé localement compact 
est nécessairement de dimension finie. C’est ce théorème qui permet de démontrer 
que, pour un opérateur compact, les sous-espaces propres sont de dimension finie 
(corollaire 3.32.5).

On étudie ensuite (paragraphe 3.9) la topologie de la convergence uniforme, et 
plus généralement la topologie de la ^-convergence ; ces topologies sont évidem­
ment très importantes dans les applications.

La partie B aborde l’étude des espaces L(E;F)  de toutes les applications li­
néaires et continues de E  dans F. Lorsque E  et F  sont des espaces normés, on 
montre d’abord comment ces espaces peuvent être munis d’une structure d’espace 
normé en définissant la norme d’une application linéaire continue. On étudie en­
suite, dans le cadre des espaces de Fréchet, c’est-à-dire des e.l.c. métrisables et 
complets, les théorèmes de Banach. Lorsque E  et F  sont des espaces de Fréchet, 
toute bijection linéaire et continue de E  sur F  est un isomorphisme (corollaire
3.11.3) ; ce théorème fondamental dû à Banach apparaît ici comme un corollaire 
du théorème de l’application ouverte (théorème 3.11.1), théorème qui repose es­
sentiellement sur le théorème de Baire. Le second théorème fondamental est le 
théorème 3.12.10 de Banach-Steinhaus : si (Tn) est une suite d’applications li­
néaires et continues de E  dans F  qui converge simplement vers T, alors T  est 
linéaire et continue si E  est un espace de Fréchet et F  un e.l.c. séparé. On notera 
la simplicité de cet énoncé et l’utilité pratique d’un tel théorème pour vérifier la
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continuité d’une application linéaire. La démonstration de ce théorème utilise une 
notion d’équicontinuité (définition 3.12.1) généralisant celle étudiée dans le cas 
métrique (définition 2.34.1), le théorème de Baire permettant de démontrer que 
toute partie de &(E\ F) simplement bornée est équicontinue (proposition 3.12.8).

La partie C étudie le dual d’un e.l.c. Le point de départ de cette étude est 
un lemme algébrique de prolongement, le lemme 3.13.1, qui permet d’obtenir les 
deux formes du théorème de Hahn-Banach. Sous sa première forme, dite ana­
lytique, le théorème 3.13.6 de Hahn-Banach affirme que toute forme linéaire et 
continue définie sur un sous-espace se prolonge en une forme linéaire et continue 
sur tout l’espace : l’étude de la dualité, c’est-à-dire l’étude des relations entre un 
espace E  et son dual E \  utilise constamment ce théorème ; par exemple, le fait que 
E  et E f soient des espaces vectoriels en dualité (proposition 3.15.1), c’est-à-dire le 
fait que la topologie affaiblie a(E , E') soit séparée, est une des conséquences de 
ce théorème. Le théorème de Hahn-Banach sous sa forme géométrique (théorème 
3.14.8) est un théorème de séparation qui permet de démontrer, par exemple, que 
dans un e.l.c. séparé tout convexe fermé est faiblement fermé, résultat fondamental 
en anayse convexe.

Après avoir introduit les notions d’espaces vectoriels en dualité et de topolo­
gies faibles associées, l’étude de la dualité est faite dans le cadre des espaces de 
Banach. Grâce au théorème de Tychonoff, on vérifie d’abord que la boule unité 
du dual d’un espace normé est faiblement compacte (théorème 3.16.2 d’Alaoglu). 
En plongeant un espace de Banach dans son bidual, on en déduit qu’un espace 
de Banach est réflexif si, et seulement si, sa boule unité est faiblement compacte 
(théorème 3.16.16). Ces propriétés de compacité sont illustrées par une applica­
tion importante à la minimisation des fonctionnelles convexes s.c.i. (théorème 
3.16.18). Le paragraphe 3.17 s’intéresse à la métrisablité des parties faiblement 
relativement compactes d’un espace de Banach ou de son dual (corollaire 3.17.4 
et théorème 3.17.7). Ceci permet d’en déduire des propriétés de compacité faible 
séquentielle : en particulier, dans un espace de Banach réflexif toute suite bornée 
contient une sous-suite faiblement convergente (théorème 3.17.11). Dans le même 
ordre d’idées, il faut mentionner le théorème remarquable d’Eberlein (théorème 
3.17.12).

Le paragraphe 3.18 étudie la notion d’orthogonalité et la transposée d’une ap­
plication linéaire et continue ; ces propriétés seront utilisées pour l’étude des opé­
rateurs compacts (partie G).

La partie D expose d’abord la théorie des séries convergentes et des familles 
sommables (paragraphes 3.19 à 3.22). L’étude des produits infinis est faite dans le 
cadre des algèbres de Banach et concerne essentiellement les produits infinis abso­
lument convergents ; ce sont en effet ces produits infinis qui sont utiles (en parti­
culier le corollaire 3.23.6) dans la théorie des fonctions holomorphes. Les espaces 
lp sont étudiés en détail au paragraphe 3.24 ; ceci permet de tester concrètement 
les techniques élaborées précédemment ; en outre, on retrouvera ces espaces sous
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une forme plus générale en intégration. Le seul résultat difficile et assez surpre­
nant est le théorème 3.24.17 selon lequel une suite faiblement convergente de l1 
est fortement convergente.

La partie E présente les théorèmes d’approximation de Weierstrass.
La partie F expose la théorie classique des espaces de Hilbert, les théorèmes 

fondamentaux étant le théorème de projection (théorème 3.28.2), le théorème de 
représentation du dual de F. Riesz (théorème 3.29.2) et le théorème 3.30.2 concer­
nant les sommes hilbertiennes.

La partie G est une introduction à l’analyse spectrale ; on se limite aux opé­
rateurs compacts sur des espaces de Banach. Le théorème 3.33.3 donne les pro­
priétés fondamentales de ces opérateurs. Dans un cadre hilbertien, la donnée d’un 
opérateur compact symétrique ou normal permet alors de décomposer l’espace en 
une somme hilbertienne de sous-espaces propres (théorème 3.34.8), c’est-à-dire 
de diagonaliser l’opérateur. Des applications seront développées ultérieurement, 
en particulier l’étude de certains opérateurs intégraux relève de cette théorie.





A -  Espace localement convexe

3.1 Espace vectoriel topologique

Les espaces topologiques utilisés dans la pratique sont très souvent munis d’une 
structure algébrique naturelle. L’existence sur un même ensemble de deux struc­
tures, à savoir une structure algébrique et une structure topologique, ne présente 
un réel intérêt que si certaines relations de compatibilité entre ces structures sont 
vérifiées : il est naturel d’exiger la continuité des opérations définissant la struc­
ture algébrique. Ceci conduit à définir des notions de groupe topologique, de corps 
topologique, etc.

Définition 3.1.1 Un groupe G, la loi de composition étant notée multiplicative­
ment, muni d'une topologie T est appelé un groupe topologique si 
(GT\ ) L'application (x, y) h-» xy  de G x G (muni de la topologie produit) dans 
G est continue.
(GT2 ) L'application x  i-> x ~ l de G dans G est continue.

Un corps K muni d'une topologie 7  est appelé un corps topologique si K en 
tant que groupe additif et K* en tant que groupe multiplicatif sont tous deux des 
groupes topologiques.

La proposition 2.3.8 signifie que R est un corps topologique. Cette proposition 
reste vraie sur C (avec la même démonstration) : le corps C est un corps topolo­
gique.

Dans la suite, nous allons essentiellement nous intéresser à des espaces vec­
toriels sur un corps K qui sera soit le corps R, soit le corps C. Tous les espaces 
vectoriels apparaissant dans une même question seront toujours supposés des es­
paces vectoriels sur le même corps.

Définition 3.1.2 Un espace vectoriel E sur le corps K (R ou C) muni d'une topo­
logie 7  est appelé un espace vectoriel topologique (en abrégé e.v.t.) si 
(EVT\) L'application (x, y) h* x +  y de E  x  E (muni de la topologie produit) 
dans E est continue.
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(EVT2 ) L'application (À, x )  X x  de K  x  E (muni de la topologie produit) 
dans E est continue. On dit alors que les structures vectorielle et topologique sont 
compatibles.

Pour que l’axiome (EVT 2 ) ait un sens, il est évidemment essentiel que le corps 
K soit muni d’une topologie.
Exemple 3.1.1 Sur un espace vectoriel E , la topologie grossière est une topologie 
d’e.v.t., alors que la topologie discrète ne l’est pas si E  ^  {0} : en effet, soit û ^O , 
l’application (p : À Xa de K dans E  n’est pas continue en 0 si E  est muni de la 
topologie discrète, car {0} est un voisinage de 0 G -B et <£-1 (0) =  {0} n’est pas 
un voisinage de 0 dans K.

Voici quelques conséquences immédiates de cette définition.
Considérons d’abord la translation associée à un vecteur a e E

Ta \ x G E  1—>■ x +  û G E.
D’après (EVT\)y cette bijection ra est un homéomorphisme de E  sur E. Il en 
résulte que le filtre V(a) des voisinages du point a est l’image du filtre V(0) par la 
translation r a, soit
(3.1.1) V(a) =  a +  V(0) =  {a +  V  ; V G V(0)},
où a +  V = ra(V) =  {û +  x ; x G V}. Il en résulte également que l’ensemble des 
ouverts et l’ensemble des fermés sont des ensembles invariants par translation.

L’axiome (EVT2 ) montre d’abord que l’application x — x  de E  dans E  est 
continue ; compte tenu de (EVT\)y un e.v.t. est donc, pour sa structure additive, 
un groupe topologique. Par ailleurs, étant donné un scalaire non nul À, considérons 
l’homothétie de centre 0 et de rapport À
(3.1.2) h\  : x G E  1—y Xx G B,
une telle homothétie h\  est, d’après (BVT2), un homéomorphisme de B  sur B. 
Ceci prouve que le filtre V(0) des voisinages de 0 est invariant par toute homothétie 
de centre 0 et de rapport non nul.
Remarque 3.1.1 Pour tout entier n >  1, l’application

n
(3.1.3) (A, x) e Kn x En Y ;  Xixi e  E,

i =  1
où À =  (A*)i<*<n, x = (Xi)i<i<n , est continue. Pour n = 1, il s’agit simple­
ment de (BVT2 ). On raisonne ensuite par récurrence. La continuité des projec­
tions montre que les applications

(A, a:) G P x B M  (à' , x') G Kn_1 x B n_1, 
ou À; =  (Ai)i<ï<n_i, xf =  (xi)\<i<n—1, et

(A, x) G IKn x En h* (An , xn) G K x B 
sont continues ; vu l’hypothèse de récurrence, l’application

71-1
(A,x) e Kn x En ^2, ^ix i 6 E

i = l
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est continue et on conclut avec (E V T\) vu que
n  n — 1

i = l  i = l

Voici une application simple de ce qui précède.

Proposition 3.1.1 Dans un e.v.t. E, l'adhérence d'un sous-espace vectoriel F est 
un sous-espace vectoriel.
Preuve Étant donné des scalaires À, p> l’application

/  : (xt y) G E  x E Xx +  py G E
est continue d’après la remarque précédente et f(F  x F) C F , d’où / ( F  x F) C F  
d’après le théorème 2.13.4 et la formule (2.21.3) et ceci prouve que F  est un sous- 
espace vectoriel. Q.E.D.
Exercice 3.1.1 Dans un espace vectoriel E , si A et B sont deux parties de E,  on pose 

A +  B =  {x + y ; x € A e ty  € B} et A — B =  {x — y  ; æ G A et y  G B }.

Si E  est un e.v.t., montrer que, pour tout voisinage V  G V (0), il existe des voisinages W, W f G V(0) 

tels que W  +  W  C V  et W'  — W' C V.

Exercice 3.1.2 Dans un espace vectoriel E,  une partie A est dite absorbante si 

(Vx G E)(3e >  0)(VA G K ) ( | À |  <  e =» A x E A).

1. Montrer que dans un e.v.t., tout voisinage de 0 est absorbant.
2. En déduire que, pour tout voisinage V  de 0 et toute suite (An ) de K telle que

limn_*oo |An| =  + o o , on a E =  U £L o

Exercice 3.1.3 Soit F  un sous-espace vectoriel d’un e.v.t. E , si F  est différent de E , montrer que 

F  est d’intérieur vide [raisonner par l ’absurde et utiliser l’exercice 3.1.2].

3.2 Topologie définie par une famille de semi-normes
Nous allons étudier une catégorie particulière d’espace vectoriel topologique, les 
espaces localement convexes. Les espaces fonctionnels utilisés dans la pratique, 
en particulier ceux qu’on rencontre dans la théorie des distributions, ne sont pas 
toujours des espaces normés ; par contre, ce sont toujours des espaces localement 
convexes. Il s’agit donc d’une classe particulièrement importante d’espace vec­
toriel topologique et les considérations qui suivent constituent une introduction à 
l’analyse fonctionnelle moderne.

Voici une première définition.
Définition 3.2.1 Une semi-norme sur un espace vectoriel E est une application

||«|| : x G E  i—y | |x | |  G M +  

vérifiant les propriétés suivantes
(N\) Pour tout x, y G E, ||a; +  2/|| < | |x | |  +  | |y ||  (Inégalité triangulaire)
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(N2 ) Pour tout X G K, x  G E, ||Àx|| =  |À| ||x||.
Une norme est une semi-norme qui vérifie en outre 

(Ns) La relation ||x|| =  0 est équivalente à x =  0.
On notera que, pour toute semi-norme, on a ||0|| =  0 d’après (N 2 ) (prendre 

A =  0 et x = 0). Dire qu’une semi-norme est une norme signifie donc que le 
vecteur nul est le seul vecteur de norme nulle.
E x e r c ic e 3 .2 .1  Soit ||*|| une semi-norme sur un espace vectoriel E,  montrer que 

F  =  {x  G E  ; ||æ|| =  0} est un sous-espace-vectoriel de E.

Définition 3.2.2 Un espace vectoriel muni d'une norme est appelé un espace nor­
mé.
Proposition 3.2.1 Soit E un espace vectoriel normé, l'application 

d : (x,y) € E  x E  t-ï \\x -  y || G R+ 
est une distance sur E.
Preuve La propriété (D\) résulte de (N 2 ) : on a en effet x — y = (—1) x (y — x), 
d’où ||x -  y || =  ||y -  x||. La propriété (D2) résulte de (Ns) : \\x -  y|| =  0 
équivaut à x — y = 0, soit x =  y. Quant à (D 3), on a x  — z = x  — y + y — z, d’où 
\\x -  z\\ < \\x -  y\\ +  ||y -  j*|| d’après (Ni). Q.E.D.

Un espace vectoriel normé sera toujours muni, sauf mention expresse du con­
traire, de la topologie associée à la distance d(x, y) =  ||x —y||. Un espace vectoriel 
normé est donc muni d’une structure d’espace métrique : toutes les propriétés des 
espaces métriques lui sont donc applicables. Rappelons, en particulier, que l’en­
semble des boules fermées

B'(a\r) = { x e  E; \\x -  a\\ < r} lorsque r décrit M+ 
est une base du filtre V(a) des voisinages du point a, qu’il en est de même de 
l’ensemble des boules ouvertes B(a\r) =  {x G E; \\x — a\\ < r} et qu’une suite 
(xn) de E  converge vers x si, et seulement si, lim n_>oo ||#  -  ^n|| =  0* On Pe ut en 
outre donner la définition suivante
Définition 3.2.3 Un espace vectoriel normé complet est appelé un espace de Ba- 
nach.
Exemple 3.2.1 L’application x ^  \x\ est une norme sur R, la distance asso­
ciée à cette norme étant la distance usuelle d(x,y) = \x -  y\ : l’espace vec­
toriel R est donc muni d’une structure d’espace de Banach. De même, sur C, 
\z\ = (x2  +  y2)1/ 2 où z =  x  +  ïy, est une norme et la distance associée est 
la distance euclidienne sur R2 ; la topologie usuelle sur C est donc une structure 
d’espace de Banach.

Examinons ensuite le cas d’un espace vectoriel muni d’une seule semi-norme 
||*||. Lorsque (Ns) n’est pas vérifié, l’application (x, y) \-> \\x -  y || n’est plus une 
distance sur E. Nous appellerons toujours boule ouverte (resp. fermée) de centre 
a G E1 et de rayon r > 0 les ensembles

B(a;r) = {x G E;  ||x -  a|| < r} e tB'(a;r) = {x G E] ||x -  a|| <  r}.
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On a alors

Proposition 3.2.2 Soit E  un espace vectoriel muni d'une seule semi-norme ||*||, 
alors l'ensemble des boules fermées r) de centre x, r décrivant R+, est une 
base d'un filtre V(x) définissant sur E  une structure d'espace vectoriel topo lo­
gique.
Preuve Notons d’abord que cet ensemble de boules fermées est un ensemble non 
vide de parties non vides (car x G B'(x\r)) stable par intersection finie ; il en­
gendre donc (proposition 2.8.3) un filtre noté V(x). Ce filtre vérifie (Vi) (définition 
2.8.2) comme nous venons de le voir. Vérifions (V^)- Soit V = B f(x;r), r >  0, 
prenons W = B(x;r). On a W D B'(x \r j2), ce qui prouve que W  appartient à 
V(x). Déplus, soit y G W,  c’est-à-dire ||2/ - x | |  < r  ; posons p =  r - \ \ y —x\\ >  0, 
l’inégalité triangulaire montre que V D B'(y\p), ce qui prouve que V  appartient 
à V(y) et (V2) est bien vérifié.

Ces filtres définissent une topologie sur E  ; montrons que cette topologie est 
compatible avec la structure vectorielle de E. La continuité de l’addition 
p  : (x, y) 1-» x +  y en un point (a, 6) G E x E  résulte de l’inclusion

<p{B'{a\ r /2 )  x B'{b\r/2)) C B'(a +  6;r) , r  >  0.
Vérifions enfin la continuité de l’application h : (A,x) i-> Axen (Ao,xo) € K xE .  
On a

Xx -  X0 x 0  = \ 0(x -  xo) +  (A -  A0)(x -  xo) +  (A -  A0)x0,

d’où ||Ax -  A0xo|| <  (|Ao| +  lko|| +  e)e9 si |A — A0| <  e, \\x -  x0\\ < e ; étant 
donné que (|Ao| +  ||xo|| +  e)e tend vers 0 avec e, ceci prouve, r > 0 étant donné, 
que pour e > 0 suffisamment petit ^(^ '(A o;^) x j3 '(x0 ;^)) C J5'(AoXo;r), ce 
qui prouve le résultat voulu. Q.E.D.

En particulier, la topologie d’un espace vectoriel normé est une topologie d’es­
pace vectoriel topologique.

Considérons maintenant un espace vectoriel E  muni d’une famille de semi- 
normes (H.lli)^/ ; chaque semi-norme ||«||i permet de définir une topologie % 
sur E  et on peut donc munir E  de la topologie borne supérieure de toutes ces topo­
logies. Pour vérifier que cette topologie est une topologie d’e.v.t. nous utiliserons 
le résultat suivant.

Proposition 3.2.3 Soient (Ei)i€j une famille d'e.v.t., E  un espace vectoriel et 
fi : E  -> Ei une famille d'applications linéaires. Alors, la topologie initiale sur 
E associée à ces données est une topologie d'e.v.t.

Preuve La continuité de l’application tp : (x,y) G E x E —> x + y G E  équivaut 
à celle des applications fi o ip ; on a

(f i 0 (p)(x,y) =  fi(x) +  fi(y) =  <Pi(fi(x),fi(y)) 
où pi désigne l’application (x,y) i-> x  +  y de Ei x Ei dans Ei ; la continuité 
de p  résulte alors de la continuité des projections (x,t/) x  et (x,y) y , de
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la continuité des applications fi (définition de la topologie initiale), du corollaire
2.19.4 et de la continuité des applications ipi (les Ei sont des e.v.t.).

De même, la continuité de -0 : (A, x) G K  x  E Xx G E  équivaut à celle 
de fi o  'i/j ; on a (fi o -0)(À, x) =  Xfi(x) et on conclut comme précédemment en 
utilisant la continuité des projections dans l’espace produit K  x E> la continuité 
des fi et le fait que les Ei sont des e.v.t. Q.E.D.
Corollaire 3.2.4 Sur un espace vectoriel E, la topologie borne supérieure d'une 
famille de topologies d'e.v.t. est une topologie d'e.v.t.
Preuve En effet, l’application identique de E  est linéaire. Q.E.D.

Si l’espace vectoriel E  est muni d’une famille de semi-normes (IHIOie/» nous 
noterons Bi(x; r)  et B[(x\ r)  les boules relatives à la semi-norme ||«||i et 7 \ la to­
pologie définie par la seule semi-norme ||.||*. Soit 7  la topologie borne supérieure 
de ces topologies 7i. D’après la formule (2.19.3), une base du filtre V(x)  des voi­
sinages d’un point x  est constituée par l’ensemble des parties B[(x\ri)  où 
J  décrit l’ensemble ^ ( 7 )  des parties finies de I  et ri l’ensemble R + . L’inclusion 
CïieJ r i) D P liej B-(x; r )» où r  =  miniç.j r* montre qu’on peut se conten­
ter de prendre tous les r* égaux. Autrement dit, si on considère les semi-normes 
\\x\\j = max iej  \\x\\i, l’ensemble des boules fermées
(3.2.1) B'j(x\r) où J e  7(1) e t r  >  0
est une base du filtre V(x).

Résumons l’analyse précédente comme suit.
Théorème 3.2.5 Soit E  un espace vectoriel muni d'une famille de semi-normes 
(IMI»)i€/- L'ensemble des boules fermées (3.2.1) est la base d'un filtre V(x) dé­
finissant sur E  une topologie 7  d'e.v.t. Si 7\ est la topologie définie par la seule 
semi-norme ||.||i, 7  est la borne supérieure des topologies 0V Muni de cette topo­
logie 7, E  est appelé un espace localement convexe (en abrégé e.l.c.).

Pour simplifier le langage, nous nous exprimerons dans la suite en disant 
“soit E , (||*|U)ie7> un espace localement convexe”

Proposition 3.2.6 SoitEy ( | | . | | ^ G/, un espace localement convexe, alors les semi- 
normes ||. ||2 sont continues.
Preuve L’inégalité | \\x\\i -  ||a||i| <  \\x-a\\i montre que l’image par l’application 
||*||i de la boule fermée B[(a\ r) est contenue dans la boule fermée B̂/(||a|U; r) de 
R et ceci prouve la continuité au point a de la semi-norme ||«||i. Q.E.D.

La continuité des semi-normes ||*||i, donc des semi-normes ||*|| j ,  montre que 
les boules ouvertes Bi(x\ r), B j (x ; r)  sont effectivement ouvertes pour la topolo­
gie de l’espace E  ; les boules fermées B[(x; r) et Bj(x\ r) sont fermées. Notons 
les formules
(3.2.2) Bi(a; r) = B[{a\ r) , Int Bl(a\ r) =  Bi(a; r).

En effet, grâce à une translation on peut supposer a =  0 et, vu que Bi C  B[y 
il s’agit de démontrer que tout point x e B[ est adhérent à Bi : soit (£n) une
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suite vérifiant 0 < tn < 1 et limn_>oo tn =  1, on a alors xn =  tnx  G Bi et la 
suite (xn) converge vers x d’après (EVT 2), ce qui prouve le résultat voulu. Pour 
démontrer la seconde égalité, on note d’abord que Bi C Int B[ et il s’agit donc 
de vérifier qu’un point x £ Bi est adhérent au complémentaire de B[ : si tn >  1 
et limn_>oo tn = 1, xn = tnx  G E  -  B 'i9 car ||xn ||i =  tn \\x\\i > \\x\\i > r soit 
\\xn\\i > et la suite (xn) converge vers x, ce qui prouve le résultat désiré.

Dans un e.l.c. tout point admet un système fondamental de voisinages fermés, 
soit (définition 2.17.2)
Corollaire 3.2.7 Un espace localement convexe séparé est régulier.

On notera que l’ensemble des boules ouvertes
(3.2.3) Bj(x;  r) où J  G !?(/) et r >  0
constitue également un système fondamental de voisinages de x , vu les inclusions 

Bj(x;r/2)  C  Bj(x-,r) C  B'j(x-,r).
Il en résulte que l’ensemble de toutes les boules ouvertes (3.2.3) constitue une 
base de la topologie de E. Lorsque E  est un espace normé, ceci est conforme à 
une propriété générale des espaces métriques.

On notera enfin que, dans les formules (3.2.1) et (3.2.3), on peut se contenter 
de prendre r de la forme 1 /n  où n est un entier >  0 ; on en déduit le 
Corollaire 3.2.8 Un e.l.c. dont la topologie peut être définie par une famille dé­
nombrable de semi-normes est un espace à base dénombrable de voisinages.

Étant donné deux points x  et y d’un espace vectoriel E , on définit le segment 
fermé d’extrémités x et y par la formule

[x,y\ = {tx + (1 - t ) y \  0 <  t <  1};
un tel segment est donc l’image de l’intervalle [0,1] par l’application 
t 1-» tx +  (1 -  t)y ; si E  est un e.v.t. séparé, un tel segment est compact, donc 
fermé.

Une partie C d’un espace vectoriel E  est dite convexe si, pour tout x, y G C, 
le segment [x, y] est contenu dans C. Si ||«|| est une semi-norme sur E , toute boule 
ouverte ou fermée est convexe : six , y G £ (a ;r ) ,  on a ||x — a\\ < r et ||y — a\\ < r, 
d’où

||*x +  (1 -  t)y -  o|| =  ||*(x -  a) +  (1 -  t)(y -  a)||

< t||x-o || + ( l - t ) | |y - o | |
< tr -h (1 — t)r = r

et ceci prouve que la boule B(a ; r) est convexe ; on vérifie de même que toute 
boule fermée est convexe. Ceci montre que, dans un e.l.c., tout point admet un sys­
tème fondamental de voisinages convexes. On démontre réciproquement (exercice 
3.14.8) que, si l’origine, donc tout point par translation, d’un e.v.t. E  admet un 
système fondamental de voisinages convexes, alors la topologie de E  peut être dé­
finie par une famille de semi-normes ; autrement dit, E  est un espace localement 
convexe. C’est cette propriété qui est à l’origine de la terminologie adoptée.
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E x e rc ice  3 .2 .2  Soit E  un e.l.c., étant donné n  +  1 points ( x i ) i< i< n + i de E  et ( t t ) i< i< n + i  
une suite strictement croissante de [0 , 1 ] telle que t \  =  0  et tn+i  =  1 , on définit une application 
7  : [ 0 ,1 ] —> E  en posant

7 (t) =  — L Xi _j-----î— —  Xi+1 pourtj <  t <  tj+i, 1 <  i <  n.
1 t̂+ 1  ti

1. Montrer que 7  est une application continue. On dit que 7  est la ligne polygonale de sommets 
(•£») l<i<n+l ■

2. Soit O un ouvert de E t montrer l’équivalence des propriétés suivantes.
a. O est connexe,
b. pour tout x, y  € O, il existe une ligne polygonale tracée dans O joignant x  et y ,
c. O est connexe par arc.

Explicitons ensuite la définition de la convergence des filtres. Soit E , (|| •!!<)<€/» 
un espace localement convexe ; un filtre J  sur E  converge vers un point x  si, et 
seulement si, pour tout i G / ,  J  converge vers x  pour la topologie (proposition 
2.19.2), c’est-à-dire, en utilisant l’ensemble des boules fermées B[(x\r) comme 
système fondamental de voisinages de x y
(3.2.4) (Vi € J)(Vr > ())(£'(*;r) G 90 
et, si 23 est une base du filtre J ,
(3.2.5) (\/i G /)(V r > 0 )(3£  G B)(B  C B jfo r ) ) .
Dire qu’une suite (xn) converge vers x signifie donc que
(3.2.6) (Vi G J)(Vr > 0)(3n G N)(Vp G N)(p > n ^ x p G B fa;  r)), 
ce qui peut s’écrire tout simplement sous la forme
(3.2.7) pour tout i G / ,  lim ||x -  x n \\i = 0.

n —> 0 0

Un e.l.c. n’est pas nécessairement séparé et on a le critère suivant

Proposition 3.2.9 Soit E, (IMIOie/, un e.Lc., les conditions suivantes sont équi­
valentes.

7. U espace E  est séparé.
2. Si (xn) est une suite de E convergeant vers x, x est le seul point limite de la 

suite (xn).
3. La suite constante xn = 0 admet 0 pour seul point limite.
4. ||a;||i =  0 pour tout i G I  implique x = 0.

Preuve 1 => 2 Dans un espace séparé tout filtre, donc toute suite, admet au plus 
un point limite.

2 => 3 La suite constante x n =  0 converge vers 0 qui est donc le seul point 
limite de la suite.

3 => 4 Soit x  G E  tel que ||z ||i =  0 pour tout i, alors \ \x — x n \\i = 0 s ix n =  0. 
Il en résulte que la suite (x n ) converge vers x  et d’après 3. on en déduit que x  = 0.

4 => 1 Soit x, y G E ,x  ^  y  ; d’après 4. il existe i tel que r = \\x — y\ \ i  ^  0. Il
en résulte que les boules ouvertes Bi(x; r /2 )  et B ^ y ; r/2 )  sont disjointes, ce qui 
prouve que l’espace est séparé d’après ( # 2 )- Q.E.D.
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En particulier, un espace muni d’une seule semi-norme est séparé si, et seule­
ment si, cette semi-norme est une norme. On notera également qu’un e.l.c. est 
séparé dès que l’une des semi-normes définissant sa topologie est une norme, mais 
il ne s’agit là que d’une condition suffisante de séparation.
Exemple 3.2.2 Soit E  un espace vectoriel et soit (||*|U)ieir la famille de toutes les 
semi-normes sur E , alors E  est un e.l.c. séparé. En effet, soit x  ^  0 ; il existe une 
base (ea )aGA de E  telle que x  soit l’un des vecteurs de base, soit ep ; tout y e E  
s’écrit d’une manière unique sous la forme y = où les ya G K sont
tous nuis sauf un nombre fini d’entre eux ; l’application y yp étant linéaire, 
1 / 4  \yp\ est alors une semi-norme et \xp\ = 1 n’est pas nul : l’espace est donc 
séparé d’après la proposition 3.2.9.
E xercice  3.2.3 Soit E,  (IMIOie/. un e.l.c., montrer que

{0 }  =  {x e  E  ; ||x |b  =  0 pour tout i G / }  

et en déduire que E  est séparé si, et seulement si, l’ensemble {0 }  est fermé.

3.3 Application linéaire et continue
Précisons d’abord les notations utilisées. Si E  et F  sont deux espaces vectoriels, 
on note £*(F ; F) l’ensemble de toutes les applications linéaires de E  dans F  ; cet 
ensemble est un sous-espace vectoriel de l’espace vectoriel 7{E\ F) de toutes les 
applications de E  dans F. Lorsque F  =  K, une application linéaire de E  dans K 
est appelée une forme linéaire sur E  et l’espace vectoriel E * de toutes les formes 
linéaires sur E  s’appelle le dual algébrique de E .

Lorsque E1 et F  sont des e.v.t., on s’intéresse aux applications linéaires et conti­
nues ; on note £ ( F ;F )  l’ensemble des applications linéaires et continues de E  
dans F  ; l’ensemble E ' des formes linéaires et continues sur E  s’appelle le dual to­
pologique de E  ou tout simplement le dual de E. L’ensemble £ (F ; F) est un sous- 
espace vectoriel de £* (F ; F) ; on a, en effet, £ (F ; F) = £* (F ; F) fl 6(F ; F) et 
C(F; F) est un sous-espace vectoriel de l’espace 5F(F; F) d’après la 
Proposition 3.3.1 Soient X  un espace topologique et F un e.v.t., alors l'ensemble 
Q(X; F) des applications continues de X  dans F est un sous-espace vectoriel de 
l'espace $(X\F)  de toutes les applications de X  dans F.
Preuve Soient / ,  g € G(X] F) et À, p e  K, on a alors Xf  +  pg = y  o ( /  x g) où (p 
désigne la fonction (y, z) i-> Xy +  pz de F x F  dans F , qui est continue d’après 
la remarque 3.1.1, et /  x g la fonction x (f(x),g(x)) de X  dans F  x F  qui 
est continue d’après la continuité de /  et g ; ceci prouve la continuité de Xf  +  pg.

Q.E.D.
Étant donné deux e.v.t., un homéomorphisme linéaire de E  sur F  est appelé 

un isomorphisme (topologique) ; on dit que F  et F  sont isomorphes s’il existe un 
isomorphisme de E  sur F .

Voici d’abord un lemme qui sera utile à diverses reprises.
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Lemme 3.3.2 Soient p,q : E  -» deux applications définies sur un espace 
vectoriel E  et vérifiant p(tx) = tp(x) et q{tx) = tq(x) pour tout x G E et t >  0. 
On suppose que p(x) <  r implique q{x) < s où r et s sont deux nombres >  0, 
alors q(x) < r~lsp(x) pour tout x G E.
Preuve Quel que soit t > 0, p(x) < tr implique q(x) <  ts et ceci est encore vrai 
pour t = 0 : si p(x) =  0, on a p(x) < tr pour tout t > 0, donc q(x) <  ts pour tout 
t >  0, d’où q(x) =  0. En prenant t = r~lp{x), on en déduit q(x) < r~ 1 sp(x)y ce 
qui prouve le lemme. Q.E.D.

Une application linéaire n’est pas nécessairement continue (voir l’exemple 
3.3.1 ci-dessous) ; on a le théorème important qui suit.
Théorème 3.3.3 Soient Ef (11*11*)̂ /, F , (||«|| j  deux e.l.c. et T  : E F une
application linéaire. Les propriétés suivantes sont équivalentes.

1. T  est continue.
2. T  est continue à Vorigine de E.
3. Pour tout j  G J, il existe une partie finie K  G ? ( / )  et une constante c > 0 

telles que ||T'a;||^ < c||x ||jr pour tout x G E.
Lorsque E  et F sont des espaces normés, cette condition s'écrit
4. il existe une constante c > 0 telle que \\Tx\\ < c\\x\\ pour tout x G E. 

Preuve II est clair que 1 => 2.
2 => 3 D’après la continuité de T  à l’origine, pour tout j  G J ,  il existe 

K  G 5F(/) et r > 0 tel que T(B'K (0;r))  C  B j ( 0; 1) ; autrement dit, ||x ||a : <  r  
implique ||Tx||^ <  1 ; vu le lemme précédent, on en déduit ||Tx\\j < r - 1 M k , 
ce qui prouve 3.

3 => 1 Soit € > 0, on a T(BfK(0;S)) C Bj(0;e) dès que cô < ey d’où
T(B'K(a; J)) C  S ' (Ta; e)  d’après la linéarité de T, ce qui prouve la continuité de 
T  au point a. Q.E.D.

Les propriétés 3. et 4. sont constamment utilisées dans la pratique pour démon­
trer la continuité des applications linéaires : on majore Tx  au sens des semi-normes 
de l’espace F.

Remarque 3.3.1 Lorsque E et F  sont des espaces normés, une application li­
néaire et continue est uniformément continue car, d ’après 4., on a

\\Tx — Ty\\ <  c\\x — y\\ pour tout x>y G E.

Exemple 3.3.1 Sur un espace normé E  de dimension infinie, il existe toujours 
des formes linéaires non continues. En effet, soit (e*)*e / une base de E  ; on peut 
supposer ||ei|| =  1. Soit (a,i)i£i  une famille non bornée de K  (il en existe, I  étant 
infini) et soit T  la forme linéaire vérifiant Te* =  a*. Il ne peut exister de constante 
c > 0 telle que \Tei\ = |a^ <  c pour tout i G I  et T  n’est donc pas continue. 
L’existence de formes linéaires continues (évidemment non identiquement nulles), 
c’est-à-dire le problème de savoir si E f est réduit à {0 }  ou non, est un problème 
plus difficile qui sera étudié ultérieurement.
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Exercice 3.3.1 Si E  est l’e.l.c. défini à Pexemple 3.2.2 et si F  est un e.l.c., montrer que toute appli­
cation linéaire T  de E  dans F  est continue. En particulier, E* =  E'.

Exercice 3.3.2 Soient E, F  des e.l.c. et T  : E  —> F  une application linéaire, montrer que T  est 
continu dès que T  est continu en un point.

En prenant E = F  et pour application T  l’application identique de E , le théo­
rème 3.3.3 permet de comparer les topologies définies par deux familles de semi- 
normes sur un même espace vectoriel.

Corollaire 3.3.4 Soient (||•||^)^e/ et (|M |j)eJ deux familles de semi-normes sur 
un espace vectoriel E, alors

1. La topologie définie par les semi-normes (||•!!<)<€/ est moins fine que la 
topologie définie par les semi-normes (||«|| j ) j e J  si, et seulement si,
(3 3 1) [Pour tout i ^  M existe une partie finie K  G 7 {J) et une 

\constante c >  0 telles que ||a:||i <  c||x ||k- pour tout x G E.
2. Les deux familles de semi-normes définissent la même topologie (on dit alors 

qu'elles sont équivalentes) si, et seulement si, on a (3.3.1) et

(3 3 2) IP°Ur t0UÎ ^ ^  ^  ex ŝte une Partie finie K  € ÎF(/) et une
'  “ * ) \constante c >  0 telles que \ \x\ \ j  < c||a;||/<- pour tout x  G E.

Dans le cas des espaces normés, ce corollaire s’écrit

Corollaire 3.3.5 Soient ||«||i et ||*||2  deux normes sur un espace vectoriel E  et 
soient 7\, T2 les topologies définies par chacune de ces normes.

1. La topologie Ti est moins fine que la topologie T2 si, et seulement si, il existe 
une constante c > 0 telle que

IM|i <  c||rc||2 pour tout x G E.
2. Les topologies Ti et T2 sont égales (on dit alors que les deux normes sont 

équivalentes) si, et seulement si, il existe des constantes ci, C2 >  0 telles que
ci||a:||i <  ||x ||2 <  C2 \\x\\i pour tout x G E.

Remarque 3.3.2 Ce corollaire montre que les distances associées à des normes 
équivalentes sont uniformément équivalentes : autrement dit, deux normes qui dé­
finissent la même structure topologique, définissent la même structure uniforme.

Exemple 3.3.2 Une famille de semi-normes (IMIOie/ sur un espace E  est équi­
valente à la famille (|M| j)  je 'j(i)-Si I  est fini, la famille (|M |i)ie/ est même équi­
valente à la seule semi-norme ||«|| /.
Exercice 3.3.3 Soit E , (IMIOie/, un e.l.c. séparé, montrer que la topologie de E  est une topologie 

d’espace normé si, et seulement si, il existe une partie finie J  de /  telle que la seule semi-norme ||«|| j  
définisse la topologie de E , auquel cas cette semi-norme est une norme.

Exercice 3.3.4 On considère l’espace E  =  0 ( [ 0 ,1]; R). Soient A une partie dénombrable de [0,1] 
et a  : A  ->  ]0, + o o [ une application telle que A <*(£) <  0 0 . On pose

ll/lk« = 5 > ( * ) l /« l . / e s .
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1. Montrer que || • |U ,a  est une semi-norme et que cette semi-norme est une norme si, et seulement 
si, A  est dense dans [0,1].

2. Soit to e  [0,1], montrer que la forme linéaire /  i-+ f ( t o ) est continue si, et seulement si, 
t0 e  A.

3. Montrer que deux semi-normes IMU.c* et |M U ',a / sont équivalentes si, et seulement si, 
A =  A! et c i a(t) <  a'(t) <  C2 a(t)  pour tout t  G A où c* >  0.

On dit qu’une famille de semi-normes (||# ||t)i€  / est une famille filtrante si pour 
tout iyj  E / ,  il existe k E I  tel que
(3.3.3) ||x||i < N U  et ||ac||_,- < ||x||fe pour tout x  e E.
L’exemple qui précède montre que la topologie d’un e.l.c. peut toujours être dé­
finie par une famille filtrante de semi-normes. L’intérêt des familles filtrantes est 
purement technique : dans le théorème 3.3.3, si la famille (IMIOie/ est une famille 
filtrante, la condition 3. s’écrit simplement

f pour tout j  E J ,  il existe i E I  et une constante c > 0 telles que 
ylTxllj- <  c\ \x\ \ i  pour tout x  E E .

En effet, si K  est une partie finie de J, il existe, d’après (3.3.3), uni E I  tel que 
IMU < ||æ||i pour tout k € K, c’est-à-dire \\x \\k  < ||a;||i.

Cette dernière propriété montre également que B ^ (a ;r )  D I?^(a;r) et de 
même B k (cl; r )  D Bi(a; r )  ; ceci prouve la
Proposition 3.3.6 Soit E  un e.l.c. dont la topologie est définie par une famille fil­
trante de semi-normes ( ||• /- Alors, l'ensemble des boules fermées
(B^a] r ))zG/,r>o constitue une base du filtre des voisinages de a et il en est de 
même de l'ensemble des boules ouvertes (^ ( a ; r ) ) ^ €/ jr>0.

Pour définir la topologie d’un e.l.c., on peut aussi utiliser la famille de toutes 
les semi-normes continues qui constitue bien une famille filtrante, vu qu’elle est 
stable par enveloppe supérieure finie. Pour démontrer ce résultat, vérifions d’abord 
le lemme suivant qui est, en quelque sorte, une extension du théorème 3.3.3.
Lemme 3.3.7 Soit E, ( ||• un ed.c. et soit p : E  —ï R+ une application 
vérifiant pour tout x yy E E  et tout À > 0
(3.3.4) p(x + y)<  p(x) + p(y), p(Xx) = Ap(x).
Alors, les propriétés suivantes sont équivalentes

1. p est continue.
2. p est continue à l'origine de E.
3. Il existe J  E J ( / )  et une constante c > 0 tels que p(x) < c\\x\\j pour tout 

x E E.
Preuve 1 => 2 de façon évidente.

2 => 3 On remarque que p(0) =  0, il existe donc une partie finie J  de /  et 
r  > 0 tels que p ( x )  < 1 pour ||x ||j  <  r, d’où (lemme 3.3.2) p ( x )  < r ~ 1\ \ x \ \ j ,  ce 
qui prouve 3.

3 => 1 On a
p(x) -  p(a) < p(x - a )  < c\\x -  a\\j
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et de même
p(a) -  p(x) < p(a -  x) <  c||o -  x|| j,

d’où |p(a;) — p(a)| <  c||x — a | | j  ; il en résulte, e >  0 étant donné, que 
\p(x) -  p(a)| <  e si ||x -  a|| j  < S dès que cô < e et ceci prouve la continuité de 
p au point a. Q.E.D.

Vu le corollaire 3.3.4, ce lemme prouve bien que la topologie d’un e.l.c. E  peut 
être définie par l’ensemble de toutes les semi-normes continues sur E.

La continuité d’une application linéaire peut alors se caractériser de la façon 
suivante.
Corollaire 3.3.8 Soient E, F  des e.l.c., (IMIjOjg j une famille de semi-normes 
définissant la topologie de F, alors une application linéaire T  : E  F est 
continue si, et seulement si, pour tout j  € J, Vapplication p : x ||T x ||j est une 
semi-norme continue sur E.
Preuve II est clair que p est une semi-norme sur E  et, d’après le lemme précédent, 
la continuité de cette semi-norme signifie que T  est continue (théorème 3.3.3).

Q.E.D.
On peut encore exprimer la continuité de T  en disant que, pour toute semi- 

norme q continue sur F , q o T  est une semi-norme continue sur E.
Exercice 3.3.5 1. Soit E un espace normé et soit a, 6 G E, on pose

Br = {x e E ; ||* -  a|| =  ||« -  b|| = \  ||a -  6||>
et, pour n  >  1,

Bn =  {x e  Bn- i  ; ||æ -  y\\ <  i  diam £ n - i  pour tout y e  Bn- 1 }.

a. Montrer que pour tout n  >  1

——— G B n  et (x  G B n cl +  b — a; G B n  )•

b. En déduire que l’intersection des Bn se réduit au point (a +  b)/2.
2. Soient E et F des espaces normés réels et f  : E F une isométrie de E sur F telle que 

/(O ) =  0. Montrer que, pour tout a , b G E,

f f a  +  b^ ^  f(a)  +  f(b)

[utiliser les ensembles Bn et les ensembles Cn construits de façon similaire à partir des points / ( a )  et 
/(&)] et en déduire que /  est linéaire.

3. En prenant E  =  F  =  C, montrer que le résultat de 2. ne vaut pas en général pour des espaces 

normés complexes.

E xerc ice  3 .3 .6  Soient E un espace de Banach et A une partie maigre de E. Pour x G E, on note 
sx : E —> E la symétrie par rapport à x , soit sx (y) = 2 x —y.

1. Soient x G E  et r >  0, montrer que B(x\ r) <£ A U  sx (A) et en déduire l’existence de deux 
points y , z €  E  tels que

« / x  w . y  +  zy t z  G B( x \ r ), y , z  £  A e t æ  = -------- .
2
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2. Soitent F  un espace vectoriel normé et T  : E  -»  F  une application linéaire telle que sa 
restriction T\e - a  au complémentaire de A soit continue. On se propose de démontrer que T  est 
continu.

a. On suppose d’abord que 0 E E — A  (on vérifiera qu’on peut toujours se ramener à ce cas). 
Montrer qu’il existe s >  0  tel que

{ x e E - A e t  |M  <  s) = >  ||Tæ|| <  1.

b. Soit x' e  B{0; s), il existe r >  0 tel que B(x‘\r)  C B(0; s). En utilisant 1., montrer que 

| |7 V ||  <  1 et conclure.

3.4 Espace localement convexe métrisable

La topologie d’un espace normé étant définie par une distance, on peut parler de 
filtre de Cauchy et de suite de Cauchy. Par exemple, une suite (xn) est une suite 
de Cauchy si
(3 4 1) J  (V  ̂>  0)(3n € N)(Vp € N)(Vg G N)

\  (p> ne tq  > n => \\xp — xq\\ < e).
Deux normes équivalentes définissent les mêmes suites de Cauchy d’après la re­
marque 3.3.2 : la notion de suite de Cauchy, et plus généralement de filtre de Cau­
chy, ne dépend que de la topologie de l’espace et non du choix particulier de la 
norme définissant cette topologie. Rappelons que ceci est complètement faux dans 
un espace métrique, la structure algébrique joue ici un rôle essentiel. Nous allons 
montrer que, dans un e.l.c., il est possible de définir des notions de suite de Cauchy 
et de filtre de Cauchy, ces notions ne dépendant que de la topologie de l’espace.

Soit E , (IMIOie/ un e.l.c., pour chaque semi-norme on peut d’abord définir 
une notion de diamètre : si A est une partie non vide de E , on pose

diam*i4 =  sup ||x -  y\\u
(xty )€AxA

ce diamètre est éventuellement infini.

Définition 3.4.1 Soit E, (II.Hi)^/ un e.l.c., un filtre £F sur E est dit de Cauchy si
(3.4.2) (Vt G J)(Ve > 0)(3M  G J){diarmM  <  e),
une suite (xn) est dite de Cauchy si le filtre élémentaire associé est de Cauchy, soit

(3 4 3) {  <V< G /)(Ve > W 3n G N)(VP G G N)\  (p > n et q > n => \\xp -  xQ \\i  < e).
Lorsque E  est un espace normé, cette définition coïncide évidemment avec les 
définitions antérieures.

Par ailleurs, le corollaire 3.3.4 montre que deux familles équivalentes de semi- 
normes définissent les mêmes filtres de Cauchy ; comme nous l’avons annoncé, 
les notions introduites ne dépendent que de la topologie de E. On a d’ailleurs la 
caractérisation suivante.



3.4 ESPACE LOCALEMENT CONVEXE MÉTRISABLE 309

Corollaire 3.4.1 Soit E, (||*||i)iG/ un e.l.c., un filtre 5F est de Cauchy si, et seule- 
ment si,
(3.4.4) (y v  G V(0))(3Af G 3f){M - M c  V ),
où M  -  M  = {x — y; x G M  et y G M}.
Preuve Soit J  un filtre de Cauchy, il existe une partie finie J  de I  et un e >  0 tels 
que B j(0;e) C V  et, pour tout i  G J , il existe Mi G J  tel que diam^Mi <  e, 
c’est-à-dire M* -  M.t C  J3-(0; e) ; en posant M = f]ieJ Mi on a alors

M  -  M  C Bj(0]e) C V.
Réciproquement, si (3.4.4) est vérifié, prenons V = B[{0; e), alors il existe M  G £F 
tel que x -  y G B[{0; e) pour tout x, y G M , d’où diam.jM < e. Q.E.D.

Notons la propriété importante suivante.
Proposition 3.4.2 Soient E, F des e.l.c. et T  : E  -» F une application linéaire et 
continue, alors si 3  est une base d ’un filtre de Cauchy sur E, T(‘.B) est une base 
d’un filtre de Cauchy sur F.
Preuve Soit V un voisinage de 0 dans l’espace F , il existe un voisinage W  de 0 
dans l’espace E  tel que T(W)  C V. Si J  est un filtre de Cauchy sur E , il existe 
M  G 5F tel que M  — M  C W , d’où

T(M) -  T(M) = T(M -  M)  C T(W)  C V 
et on conclut avec la proposition précédente. Q.E.D.
Proposition 3.4.3 Dans un e.l.c. E, (ll.ll*)^/, tout filtre convergent est de Cauchy 
et toute suite convergente est de Cauchy.
Preuve Soit J  un filtre convergeant vers x et soit e > 0, d’après (3.2.4) la 
boule fermée M  =  B[{x\£) appartient au filtre J  et, vu l’inégalité triangulaire, 
diam{M < 2e, ce qui prouve que le filtre est de Cauchy. Q.E.D.

Ceci conduit à la définition suivante.
Définition 3.4.2 Un e.l.c. est dit complet (resp. séquentiellement complet) si tout 
filtre (resp. toute suite) de Cauchy converge.

Un espace complet est séquentiellement complet, mais la réciproque est fausse 
(alors qu’elle est vraie pour des espaces métriques).

Les définitions qui précèdent ne supposent pas l’espace métrisable. 
Lorsque E  est un e.l.c. métrisable, le choix d’une distance compatible avec la 
topologie détermine une notion de filtre de Cauchy ; on souhaite évidemment que 
cette notion coïncide avec celle de la définition 3.4.1 : ceci n’est pas automatique­
ment vérifié comme le montre la remarque 2.20.7. La notion de distance invariante 
par translation permet de clarifier la situation.
Définition 3.4.3 Sur un espace vectoriel E, une distance est dite invariante par 
translation si

d(x + z ,y  + z) = d(x, y) pour tout x ,y ,z  G E.
Par exemple, sur un espace normé la distance associée à la norme est invariante 
par translation. L’intérêt de telles distances réside dans la
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Proposition 3.4.4 Sur un espace vectoriel E, deux distances invariantes par trans­
lation et topologiquement équivalentes sont uniformément équivalentes.
Preuve Soient d\ et d2 deux distances sur E  topologiquement équivalentes, d’après 
la continuité à l’origine de l’application identique Ie : (Eyd\) -> (Ey cfe), pour 
tout e > 0, il existe S > 0 tel que d\ (0, x) <5  implique £^(0, x) < e et, vu l’inva­
riance par translation, d\(x , y) <  S implique d2 (xy y) < e ce qui prouve la conti­
nuité uniforme de l’application identique Ie : (Eydi) -> (E,d2 ). On vérifie de 
même la continuité uniforme de l’application identique Ie : {E, d2) —► {E,d\).

Q.E.D.

Proposition 3.4.5 Soit E, (IMIOie/, un e.l.c. dont la topologie peut être définie 
par une distance d invariante par translation, alors un filtre J  est de Cauchy si, et 
seulement si, il est de Cauchy pour la distance d.
Preuve Soit *5 un filtre de Cauchy et soit e > 0, d’après le corollaire 3.4.1 il existe 
M  G y  tel que M  — M  c  £ '(0 ; e), c’est-à-dire d(x, y) = d(x — y, 0) <  e pour 
tout x ,y  G M , d’où diam M  < e, ce qui prouve que J  est de Cauchy pour la 
distance d.

Réciproquement, supposons le filtre J  de Cauchy pour d et soit 
V  G V (0 ), il existe e > 0 tel que B'{0; e) C V  et M  G 2f tel que d(x, y) < e pour 
tout x , y G M ,  d’où x -  y e  B '(0; e) C V et il en résulte que M  — M  C V, ce 
qui prouve que le filtre J  est de Cauchy d’après le corollaire 3.4.1. Q.E.D.

Les résultats précédents montrent bien quel est l’intérêt des distances inva­
riantes par translation. On a alors le théorème suivant.

Théorème 3.4.6 Soit E, ( ||• ||2)2̂ /, un e.l.c. séparé, les propriétés suivantes sont 
équivalentes.

1. La topologie de E peut être définie par une famille dénombrable de semi- 
normes. Il existe alors une partie dénombrable D de I  telle que la sous-famille de 
semi-normes (||•||^)^eD définisse la topologie de E.

2. La topologie de E peut être définie par une distance invariante par transla­
tion.

3. L’espace E est métrisable.
4. L’espace E  est un espace à base dénombrable de voisinages.

Preuve 1 => 2 Soit (Ŵ ln) une suite de semi-normes définissant la topologie de E  
et soit (an) une suite de nombres >  0 tendant vers 0. On pose

d(x,y) = max(a„ x min(||x -  y ||n , 1)), x,y  G E-,
nGN

on définit ainsi une distance sur E : l’inégalité triangulaire résulte de (2.15.1) et, 
si d(x,y) = 0, on a ||x — y ||n =  0 pour tout n, d’où x = y d’après la pro­
position 3.2.9, l’espace étant séparé. Cette distance est d’autre part invariante par 
translation.

Montrons que la topologie de E  coïncide avec la topologie définie par d. 
Soit B'(x ; r) (r > 0) une boule fermée pour la distance d ; l’ensemble
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I  =  { n  G N; r < an} est fini et un point y de E  appartient à cette boule 
B'(x\r) si, et seulement si, \\x — y ||n <  r/an pour tout n  G I  ; ceci signifie 
que B'(x\r) = fine/B n ( x > r / a n )  et ceci prouve que B'(x;r) est un voisinage 
de x  pour la topologie de E. Réciproquement, montrons que toute boule fermée 
B'n( x\ r) est un voisinage de x  pour la distance d: on a B '(x ; p) C B'n(x\ p/an) 
si p/an <  1, d’où B'{x\p) C  B'n(x\r) si p < an et p < anr et ceci prouve le 
résultat voulu.

Il est clair que 2 => 3 => 4.
Montrons que 4 => 1. L’origine admet un système fondamental dénombrable 

de voisinages, soit (Vn). Chaque Vn contient une boule de la forme B'^t (0 ;rn), 
rn > 0, où Jn est une partie finie de L  Posons D =  IJ^Lo et montrons que la 
topologie T  définie par la famille dénombrable de semi-normes (||•||^)^eD coïn­
cide avec la topologie T définie par la famille (||•||^)^e/. Le corollaire 3.3.4 montre 
que la topologie T' est moins fine que la topologie J  ; vérifions que J  est moins 
fine que T', c’est-à-dire que toute boule B<(0;r) est un voisinage de 0 pour la 
topologie y  : or, (Vn) étant un système fondamental de voisinages de 0 pour la 
topologie T, il existe un n tel que Vn C  0 ;r), d’où B j t (0 ;rn) C  B'^Oyr) et 
ceci prouve le résultat voulu. Q.E.D.
Remarque 3.4.1 Lorsque la topologie d’un e.l.c. peut être définie par une norme, 
on dit que l’espace est normable. On se gardera bien de croire qu’un e.l.c. métri- 
sable est toujours normable.

La notion d’espace de Banach se généralise de la façon suivante.
Définition 3.4.4 Un e.l.c. métrisable et complet est appelé un espace de Fréchet. 
Dire qu’un e.l.c. E  est un espace de Fréchet signifie donc que E  est un espace 
séparé dont la topologie peut être définie par une famille dénombrable de semi- 
normes et dont toute suite de Cauchy est convergente. Nous verrons ultérieurement 
des exemples importants d’espaces de Fréchet.
Exercice 3.4 .1  Application uniformément continue Soient E , (IMIOte/, et F , (IMI^ej, des 
e.l.c., A une partie de E. Une application /  : A -> F  est dite uniformément continue si

«  /  (VV G VF(0))(BW e  VE (0))(V æ ,y G A)
} \  ( x - y e w ^ f ( x ) - f ( y ) e v ) .

1. Montrer que cette propriété équivaut à

(3.4.6) /  (Vj G J ) (Ve >  0 ) ( 3 K  G ? ( I ) ) ( 3 6  >  0)(Vœ,y G A) 
\  (ll« “  v\\k <à=ï \\f(x) -  f(y)\\j < e)

et, lorsque F  et F  sont métrisables, leur topologie étant définie par des distances invariantes par trans­
lation, à la notion usuelle d'application uniformément continue.

2. Montrer que toute application linéaire et continue T  : E  —► F  est uniformément continue, ainsi 
que toute semi-norme continue ||«|| : E  M.

Exercice 3.4.2 1. Soient E  un espace de Fréchet, F  un e.l.c. et T  : E F  une application 
linéaire continue, on suppose qu’il existe une suite (F n ) de sous-espaces fermés de F  telle que 
F =  U nLo Fn* montrer alors qu’il existe un entier n tel que T(E)  c  Fn [si T _ 1 (F n ) ^  E,  
observer que E  =  U ^Lo F ~ 1(Fn) serait maigre].
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2. Soient E  un espace de Fréchet, F  un e.l.c. séparé et T  : E F  une application linéaire 

continue, si l'image T(E)  est de dimension dénombrable, cette image est nécessairement de dimension 

Unie.

Exercice 3,4.3 Soit E  un e.l.c. métrisable de dimension infinie ; sa topologie peut être définie par 

une suite croissante de semi-normes (||* ||n ). Étant donné une suite double libre (ep,q)(Pi9)€N2 , on dé­
finit une forme linéaire T  sur le sous-espace vectoriel engendré par cette suite en posant 
Tep>q =  APtq où XPtq E R. Si \ Ptq >  p \\epyq\\q pour tout p, q, montrer que toute forme linéaire sur 

E  prolongeant T  est discontinue.

Exercice 3.4.4 Opérateur hypercyclique Soit E  un e.l.c. et T  : E -> E  une application linéaire 
continue, l'orbite d'un point x  E E  est définie par

o (* )=  O t 7**}-
k = 0

On dit que l'opérateur T  est hypercyclique s'il existe x e  E  dont l'orbite est dense dans E .
On suppose que E  est un espace de Fréchet séparable et que T  vérifie la propriété suivante

{il existe une application S  : E  -► E  telle que T  o S  =  Ie  et telle que les ensembles 
{x  E E  ; limfc^oo T kx  =  0} et { y  E E  ; l im ^ o o  S ky  =  0} soient denses dans E.

On se propose de vérifier alors que T  est hypercyclique et même que l'ensemble des x  E E  dont 
l’orbite est dense dans E  est un G s dense.

1. Soient U et V  deux ouverts non vides de E.
a. Soient x E U, y e V  tels que limfc_»oo T kx  =  limfc-+oo S ky  =  0. On pose zk =  x + S ky, 

montrer que l im ^ o o  zk =  x et l im ^ o o  T kzk =  y.
b. En déduire que pour k suffisamment grand T k{U) n V / 0 .

2. Soit O un ouvert non vide de E , montrer que l ’ouvert

oo
U ( T fcr x(o)
fc=i

est dense dans E.
3. Soit (O n ), On 0, une base de topologie dénombrable de E  (proposition 2.10.7), montrer 

que l'ensemble
oo oo

A =  O  ( J ( Tfc) _ 1 ( ° n )
n = O k = l

est un G$ dense.

4. Vérifier que A  =  {x  E E  ; 0(x)  est dense dans E}  et conclure.

3.5 Sous-espace, produit
Précisons d’abord la proposition 3.2.3 lorsque les espaces sont des espaces locale­
ment convexes.
Proposition 3.5.1 Soient (Ea)aeA une famille d ’e.l.c., une famille de
semi-normes définissant la topologie de Ea, E  un espace vectoriel et 
fa : E Ea une famille d'applications linéaires. Alors, la topologie initiale 
sur E associée à ces données est une topologie d'e.l.c. En outre, si les ensembles
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Ia sont disjoints deux à deux, cette topologie peut être définie par la famille de
semi-normes (||•||t)i€/> où I  = \JaeA !<* et
(3.5.1) \\x\U =  \\fa(x)\\i Si i  G Ia .

Preuve Si J  est une partie finie de / ,  on a en effet J = \ faeB J  a où J  a est une 
partie finie de Ia et B  une partie finie de A , d’où

B'j{x\r)=  p |  / a 1 (Bja(fa(x);r))
aeB

et, vu la formule (2.19.3), ceci prouve le résultat voulu. Q.E.D.
Note Bien entendu, on peut toujours supposer les ensembles Ia disjoints deux à 
deux.

Considérons en particulier un sous-espace vectoriel F  d’un e.l.c. E , (||•||t)t€/, 
et soit j  : F E  l’injection canonique. La topologie initiale correspondante sur 
F  est la topologie induite par celle de E  et, l’application j  étant linéaire, cette 
topologie est une topologie d’e.l.c. qui, d’après (3.5.1), peut être définie par la 
famille de semi-normes x  G F  i-» ||a:||i G M+, c’est-à-dire par les restrictions 
à F  des semi-normes de E . Un sous-espace d’un e.l.c. est donc un sous-espace 
localement convexe.

Lorsque E  est un espace normé, la restriction à F  de la norme de E  est une 
norme sur F  ; un sous-espace d’un espace normé est donc un sous-espace normé. 
On notera que la distance correspondante sur F  est simplement la restriction à 
F  x F  de la distance de l’espace F  : F  est donc également un sous-espace métrique 
de F . Dans un espace normé, un sous-espace complet est donc fermé et un sous- 
espace fermé d’un espace de Banach est complet. Plus généralement, on a la
Proposition 3.5.2 1. Si E  est un e. I. c. complet, tout sous-espace fermé est complet. 

2. Si F  est un e.l.c. séparé, tout sous-espace complet est fermé.
Preuve 1. Soit F  un sous-espace fermé d’un e.l.c. F  complet et soit J  un filtre de 
Cauchy sur F , alors 7  est une base de filtre de Cauchy sur F  d’après la continuité 
de l’injection canonique de F  dans F  ; cette base de filtre converge donc dans 
l’espace F  vers un point a ; tout point limite étant un point adhérent, ce point a 
appartient à F  et il en résulte que le filtre 5F converge vers a dans le sous-espace 
F . Ceci prouve que F  est complet.

2. Soit F  un sous-espace complet d’un e.l.c. séparé F  et soit a G F . Le filtre 
V(a) des voisinages de a dans F  converge vers a, donc est un filtre de Cauchy 
sur F  (proposition 3.4.3) ; la topologie du sous-espace F  étant définie par les 
restrictions à F  des semi-normes de F , la définition même d’un filtre de Cauchy 
montre que la trace 3  de ce filtre V(a) est un filtre de Cauchy du sous-espace F . 
Ce filtre J  converge donc dans F  vers un point b e F, F  étant complet. En tant 
que base de filtre sur F , J  converge vers b dans F  ; or cette base de filtre engendre 
un filtre plus fin que V(a), donc converge aussi vers a et l’espace F  étant séparé, 
on a nécessairement a =  6, ce qui prouve que a appartient à F  et F  est donc fermé.

Q.E.D.
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Corollaire 3.5.3 1. Dans un espace de Fréchet (resp. Banach), un sous-espace est 
un espace de Fréchet (resp. Banach) si, et seulement si, ce sous-espace est fermé. 

2. Dans un espace normé, un sous-espace de Banach est fermé.
Voici une application intéressante des notions précédentes.

Théorème 3.5.4 Soient E  un e.l.c., F un e.l.c. séparé et complet, E\ un sous- 
espace vectoriel de E  partout dense et T  : Ei —> F une application linéaire et 
continue. Alors, il existe une unique application continue T  : E  -» F qui prolonge 
T ; de plus, cette application T  est linéaire.
Preuve Lorsque E F  sont des espaces normés, l’existence et l’unicité de T  
résulte du théorème 2.25.2. Dans le cas général, on applique la proposition 2.25.1 ; 
les hypothèses sont bien vérifiées : l’espace F  est régulier (corollaire 3.2.7) et, 
pour x 6 E, le filtre V(x) des voisinages de x  est un filtre de Cauchy, donc induit 
sur Ei un filtre de Cauchy dont l’image par T  est encore de Cauchy (proposition 
3.4.2) et il en résulte que la limite limy->x,y€Ei T(y) existe, F  étant complet. Vu 
la proposition 2.25.1, ceci prouve l’existence et l’unicité de T.

Montrons que T  est linéaire. Soit À, p G K, les applications de E  x E  à valeurs 
dans F (x9 y) T ( \x  +  py) et (x, y) ■-» ÀT(x) +  pT(y) coïncident sur E\  x E\ 
d’après la linéarité de T, donc sur E  x E  d’après le principe du prolongement des 
identités, Ei x E\  étant dense dans E  x E  et ces applications étant continues.

Q.E.D.
Les topologies produits sont également des topologies initiales ; considérons 

une famille (Ea)Q£A d’e.l.c. et soit E  =  Y\aeA Ea l’espace produit. Rappelons 
qu’on définit une structure vectorielle sur E  de la façon suivante

ÀX +  p y  — (ÀXo; H- pyoc)aeA OU X (^a)û€>l) 2/ {Vot)oc^Ai P  £
Les projections p r a : E  Ea étant linéaires, la topologie produit est donc une 
topologie d’e.l.c. d’après la proposition 3.5.1.

Notons (Il * II* une famille de semi-normes définissant la topologie de Ea, 
les ensembles Ia étant disjoints deux à deux ; la topologie produit sur

E = l [ E a
a e A

est une topologie d’e.l.c. qui peut être définie par la famille de semi-normes
(IMIi)t€/> °Ù I  =  UaeA
(3.5.2) ||* |̂|i si î C Icn X (^a)aGi4 ^ E.

Lorsque (Ea)aeA est une famille finie d’espaces normés dont les normes sont 
indifféremment notées ||*||, la famille (3.5.2) est finie et elle est donc équivalente à 
la seule norme
(3.5.3) ||x|| =  m ax ||xQ||, x =  (xa )ûGA,

a€A
qui est d’ailleurs équivalente à l’une des normes

(3.5.4) ||*ir =  £  I M ,  IMI" =  ( £  ll*a||2)  1/2>
c t £ A  aGA
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les distances associées étant en effet les distances (2.22.2) et (2.22.3).
Un produit fini d’espaces normés est donc muni d’une structure d’espace normé. 

On peut préciser ceci de la façon suivante
Proposition 3.5.5 Soit (Ea)aeA une famille d’e.l.c. métrisable, chaque espace 
Ea étant supposé différent de {0} et soit E  =  YlaeA Vespace produit.

1. U espace E est métrisable si, et seulement si, A est dénombrable.
2. L’espace E est normable si, et seulement si, A est fini.

Preuve 1. résulte de la proposition 2.21.17 et du théorème 3.4.6. Quant à 2., il 
s’agit de vérifier que la topologie de E  ne peut être définie par une norme si A 
est infini. A cet effet, on remarque d’abord que, dans un espace normé, une boule 
centrée à l’origine ne contient jamais de sous-espace vectoriel ^  {0} : si l’es­
pace est ^  {0}, il existe des voisinages de 0 ne contenant aucun sous-espace 
vectoriel ^  {0}. Au contraire, si A est infini, un voisinage V  de 0 contient un 
voisinage élémentaire et par conséquent il contient un sous-espace vectoriel de la 
forme E L e# W  x ELeA -B où B est une partie finie de A et ce sous-espace 
n’est pas réduit à {0}, d’où le résultat voulu. Q.E.D.

On a par ailleurs le théorème suivant
Théorème 3.5.6 Le produit d ’une famille d ’e.l.c. complets est un e.l.c. complet. 
Preuve Si J  est un filtre de Cauchy sur E = YlaeA Ea, les bases de filtre p ra (5F) 
sont de Cauchy, les projections pra : E  —» Ea étant linéaires et continues (pro­
position 3.4.2) ; ces bases de filtre sont donc convergentes, les espaces Ea étant 
complets et on conclut avec la proposition 2.21.8. Q.E.D.
Corollaire 3.5.7 Un produit dénombrable d ’espaces de Fréchet est un espace de 
Fréchet. Un produit fini d ’espaces de Banach est un espace de Banach.

En particulier, les espaces Rn et Cn sont des espaces de Banach pour chacune 
des normes équivalentes

(3.5.5) N  = max M , \\x\\' = f > | ,  ||s||" = ( f > | 2) 1/2,
- l ~ n  i =  1 »=1

OU X  — (X - i ) l< i< n *

Plus généralement, soit E  un espace vectoriel sur K de dimension finie n ; le 
choix d’une base (e.i)i<i<n permet de définir une bijection linéaire de Kn sur E

n
(3.5.6) p : ( X i ) i < i < n  €  K n  € E y

i=l
bijection qui permet de transporter sur E  la structure d’espace de Banach de Kn . 
Ceci consiste à prendre l’une des normes équivalentes (3.5.5) comme norme sur 
E  ; la bijection ip est alors un isomorphisme de Kn sur E  et même une isométrie 
linéaire.

Nous allons démontrer que, sur un espace vectoriel de dimension finie, il 
n’existe en fait qu’une seule topologie d’e.l.c. séparé, à savoir la topologie d’espace 
de Banach qui vient d’être définie. On notera qu’il est essentiel de se restreindre à
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des topologies séparées, la topologie grossière étant compatible avec la structure 
vectorielle.
Théorème 3.5.8 Soit E  un e.Lc. séparé de dimension finie n et soit (ei)\<i<n une 
base de E, alors l'application cp définie par (3.5.6) est un isomorphisme (topolo- 
gique).
Preuve Notons (IMIOie/ une famille de semi-normes définissant la topologie T 
de l’espace E  et soit To la topologie définie par l’une des normes (3.5.5). On 
remarque d’abord que, E  muni de la topologie 7  étant un e.v.t., l’application (p 
est continue et par suite la topologie 7  est moins fine que la topologie 7o et il 
s’agit de démontrer que ces deux topologies coïncident. Pour cela considérons 
la sphère unité S = {x € E; ||x|| =  1} ; cette sphère est compacte pour la 
topologie To et la topologie 7  est séparée et moins fine que To ; vu le corollaire 
2.31.14, la sphère S  est donc compacte pour la topologie T. Il en résulte que S  
est fermé ; l’origine n’est donc pas un point adhérent à S : il existe une boule 
B j( 0 ;r), r > 0, ne rencontrant pas S  et ceci montre que ||x ||j  > r pour tout 
x  G 5, d’où ||x|| <  r~l \\x\\j pour tout x £ E et ceci prouve que la topologie To 
est moins fine que la topologie T, c’est-à-dire le résultat voulu. Q.E.D.

Sur un espace vectoriel E  de dimension finie, l’unique topologie d’e.l.c. séparé 
est appelée la topologie canonique de E : c’est une topologie d’espace de Banach. 
Voici quelques conséquences importantes du théorème précédent.
Corollaire 3.5.9 Sur un espace vectoriel de dimension finie, toutes les normes 
sont équivalentes.
D’après la proposition 3.5.2, on a le
Corollaire 3.5.10 Dans un e.Lc. séparé, tout sous-espace de dimension finie est 
complet, donc fermé.

Corollaire 3.5.11 Soient E un e.Lc. séparé de dimension finie et F  un e.Lc., alors 
toute application linéaire T  : E  -» F est continue.

Preuve Les notations étant celles du théorème 3.5.8, il s’agit de vérifier la conti­
nuité de l’application T  o ip ; or, (T o <p)(x) = J2i=ixiTei si
x  =  (Xi)i<i<n , et on conclut en utilisant la continuité des projections x Xi 
et le fait que F  est un e.v.t. Q.E.D.

En particulier, si E  est un e.l.c. séparé de dimension finie n , le dual topologique 
E 1 coïncide avec le dual algébrique E * ; E f est donc un espace vectoriel de même 
dimension n.

Exemple 3.5.1 Topologie de la convergence simple Soient X  un ensemble et F  
un e.l.c., l’ensemble 7(X;F)  de toutes les applications de X  dans F  est muni de la 
structure vectorielle produit : si /  et g sont deux applications de X  dans F  et A, p 
deux scalaires, l’application À f+pg  désigne l’application x  Af(x)+p,g(x). La
topologie de la convergence simple sur cet espace 7(X\F),  en tant que topologie 
produit, est une topologie d’e.l.c. ; si la topologie de F  est définie par la famille
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de semi-normes (|M |i)ie/, la topologie de la convergence simple peut être définie 
par les semi-normes

ll/lkx  =  ||/(æ)llt» où i décrit I  et x décrit X.
On notera 3rs(X;F)  l’e.l.c. correspondant. Si F  est séparé, cet espace est séparé 
(corollaire 2.21.12) ; si F  est complet, cet espace est complet (théorème 3.5.6) ; 
si F  est métrisable, cet espace est métrisable si, et seulement si, X  est dénom­
brable (proposition 3.5.5) ; si F  est un espace de Fréchet et si X  est dénombrable, 
l’espace J S(X;F)  est alors un espace de Fréchet. Par exemple, la topologie de la 
convergence simple sur l’espace RN de toutes les suites (x n) de nombres réels est 
une topologie d’espace de Fréchet.
Exercice 3.5.1 1. Soient X  un ensemble et fi  : X  —» R, 1 <  i <  n, n fonctions linéairement 
indépendantes. Montrer qu’il existe n points Xj G X , 1 <  j  <  n, tels que dét ( f i { x j ) )  ^  0 
[raisonner par récurrence].

2. On considère un sous-espace vectoriel E  de dimension finie de l’espace $ t ( X ; K) de toutes les 
fonctions bornées. Montrer qu’il existe des points Xj G X,  1 <  j  <  n, et une constante c >  0 tels 
que

sup | / ( x ) |  <  c sup  \ f { x j ) \  pour tout /  G E.
x Ç X  1 < j < n

Exercice 3.5.2 Complété d’un e.l.c. métrisable Soit E un e.l.c. métrisable (resp. un espace normé), 
montrer qu’il existe un espace de Fréchet (resp. de Banach) Ê  tel que E soit isomorphe (resp. isomé­
trique) à un sous-espace vectoriel de Ê partout dense [considérer le complété Ê  de E en tant qu’espace 

métrique (exercice 2.27.7), définir une structure vectorielle sur Ê  prolongeant celle de E en utilisant le 

théorème 3.5.4, puis, (||« ||n ) désignant une suite de semi-normes définissant la topologie de E , utiliser 
l’exercice 3.4.1 pour prolonger ces semi-normes à Ê  et montrer alors que la topologie de È  est une 

topologie d’espace de Fréchet (resp. de Banach)]. Montrer que Ê  est unique à un isomorphisme (resp. 
une isométrie) près.

Exercice 3.5.3 1. Soit E un e.l.c. séparé, si E est un espace de Baire, montrer que E ne peut être de 
dimension infinie dénombrable [raisonner par l’absurde et utiliser l ’exercice 3.1.3].

2. En déduire qu’un espace de Fréchet est de dimension finie si tout sous-espace vectoriel est 
fermé.

3.6 Quotient

Considérons d’abord un espace vectoriel E  ; à tout sous-espace vectoriel 
F  de E , on associe une relation d’équivalence R  sur E 9 à savoir la relation 
“x -  y G F ” ; l’espace quotient sera noté E / F  et on notera it : E  E /R  
la surjection canonique. On définit une structure vectorielle sur l’ensemble quo­
tient E /F  de la façon suivante : soient x , x 'y>yf G E  tels que x -  x' G F  et 
y -  y' G F , alors (Àx +  fiy) -  (Xxf +  fiy') G F  pour tout A, /x G K  ; ceci prouve 
que la classe d’équivalence de Àx -h \xy ne dépend que des classes d’équivalence 
de x et y ; on peut donc poser, pour £, rj G F /F ,

A£ +  un = tt(Ax H- fiy), où 7r(x) =  £, n(y) = n ;



318 CHAPITRE 3 ESPACES LOCALEMENT CONVEXES

on définit ainsi une structure vectorielle sur E / F  ; la surjection canonique n est 
alors linéaire. Lorsque E  est un e.l.c., on munit E / F  de la topologie quotient ; 
notons 0#  et Qe / f  l’ensemble des ouverts de E  et E / F  respectivement. On sait 
que (paragraphe 2.24)
(3.6.1) QE/F = {0cE /F - ,T r - 1 ( 0 ) € Q E}.

Nous allons préciser les propriétés de cette topologie. Introduisons la notation 
suivante : si A et B  sont deux parties d’un espace vectoriel, on pose
(3.6.2) A H- B  =  {x  +  y ; x  G A y y G B}.
Lemme 3.6.1 Soient E  un e.v.î. et A, B deux parties de E, si A est ouvert ou si 
B est ouvert, alors A + B est ouvert.
Preuve Supposons B  ouvert, on a A +  B  =  (JaGA ra(Æ) et> ra{B) étant ouvert, 
on peut conclure. Q.E.D.
Exercice 3.6.1 Soient E un e.v.t. séparé, A  et B deux parties compactes de E, montrer que A  + B 
est compact.
Exercice 3.6.2 Soient E un e.v.t., A  une partie fermée et B une partie compacte, montrer que A +B 
est fermé en raisonnant de la façon suivante : on peut supposer A  et B non vide (sinon A  + B = 0) ; 
on considère un point x  adhérent à A  + B, montrer que (V — A)  vev(x) est une base de filtre sur E 
admettant une trace sur B ; en déduire un point 6 G B tel que, pour tout V G V(0),

(6 +  V  -  V )  n  ( x  -  A)  ï  0

et conclure grâce à l’exercice 3.1.1.

Proposition 3.6.2 Soient E un e.l.c. et F un sous-espace vectoriel, on munit Ves­
pace E /F  de la topologie quotient. Alors, la surjection n : E  E /F  est une 
application continue et ouverte, les ouverts de E /F  sont les images par n des 
ouverts de E, les voisinages d'un point tt(a), a e E, sont les images par 7r des 
voisinages de a et, si S est un système fondamental de voisinages de a, (tt(F ))vg§ 
est un système fondamental de voisinages du point n (a).
Preuve L’application 7r est continue d’après la définition de la topologie quotient ; 
montrons qu’elle est ouverte : si U est un ouvert de E , tt(U) est un ouvert de E /F  
car n~ 1 (7r(U)) = U +  F  est un ouvert de E  d’après le lemme.

L’image par 7r d’un ouvert de E  est donc un ouvert de E /F  ; réciproquement, 
si O est un ouvert de E / F , on a O = n(n~l (0)) d’après la surjectivité de 7r et O 
est l’image de l’ouvert ^ " ^ O ) .

Si V  est un voisinage d’un point a e  E, tt(V) est un voisinage de tt(a), 
l’application ir étant ouverte ; réciproquement, si W  est un voisinage de 7r(a), W  
est l’image de it~1 (W) qui est un voisinage de a d’après la continuité de ir.

Enfin, soit S un système fondamental de voisinages de a ; si W  est un voisinage 
de 7r(a), 7r_1(iy ) est un voisinage de a d’après la continuité de n ; il existe donc 
V  G S tel que V  C 7r~1 (W), d’où ^(V)  C W  et, 7r(F) étant un voisinage 
de 7r(a), ceci prouve que l’ensemble (7r(Vr))\/Gs est un système fondamental de 
voisinages de ir(a). Q.E.D.

On a alors le théorème suivant
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Théorème 3.6.3 Soient E  un e.l.c., (||•||^)^GJ une famille filtrante de semi-normes 
définissant la topologie de E  et soit F un sous-espace vectoriel de E, la topologie 
quotient sur Vespace E /F  est une topologie d ’e.l.c. qui peut être définie par la 
famille filtrante de semi-normes
(3.6.3) Iltëllli=  inf IMI<-x€tï~ * (£)
Preuve Montrons d’abord que |||£ ||| =  infx€7r-i(£) ||x|| est une semi-norme sur 
E / F  dès que ||«|| est une semi-norme sur E. Soient £, rj G E / F  et e > 0, il existe 
x G 7t- 1 (£) et y  G 7r—1 (77) tel que

\\x \\ — e < WfIII <  ||x||, ||î/|| — e < |||'/7||| <  ||y||,
d’où x  H- y  G 7t- 1 (£ +  77) et par suite

m  + v \\\<  \\x + y\\ < ||x|| + \\y\\ < Hklll + HHII + 2e,
ce qui prouve l’inégalité triangulaire. On a d’autre part

I M I =  inf f IWI;æ€7r-1(Â )
si À =  0, on en déduit |||A£||| =  0 en prenant x  =  0 et si À est différent de 0, en 
posant y = X~xx, on obtient

| M | =  inf ||Ay|| = |A| inf ||y|| = |A| |||(|||.y€ir_1(fl 2/€ tt-HO
La famille de semi-normes (HMHOie/ est filtrante : soit i, j  € / ,  il existe A; G I  

tel que ||.||, <  ||. ||fc et <  ||. ||fc, d’où || |. | | |,  <  ||MIU «  Il Mil., <  IIMIIfe- 
Notons BitE(cb; ?’) et Bi)E/ F(/ïï(a); r) les boules ouvertes de centre a et 7r(a),

de rayon r > 0 dans les espaces E  et E / F  respectivement. Étant donné que 
|||£ -7 r(a )|||i =  infxG7r- i (£) \\x -  a\\u on a |||£ -  7r(a)|||< < r si, et seulement si, 
il existe x G ?r-1 (£) tel que \\x -  a\\i < r et ceci signifie que 

7T(BitE(a\r)) = BiyE/F{Tt{a)\r).
L’ensemble des boules B^E(a\r), lorsque r décrit R+, constituant un système 
fondamental de voisinages de a, l’ensemble des boules BiyE/E{Tt(a)\r) constitue 
un système fondamental de voisinages du point 7r(a) pour la topologie quotient ; 
cet ensemble étant également un système fondamental de voisinages du point 
7r(a) pour la topologie définie par les semi-normes (3.6.3) (proposition 3.3.6), ceci 
prouve que ces deux topologies coïncident. Q.E.D.
Exercice 3.6.3 Soient E un e.l.c. et T  : E Kn une application linéaire. Montrer que T  est 
surjective si, et seulement si, T  est une application ouverte [factoriser T  à travers l’espace quotient 
E/KetT],

Lorsque E  est un espace normé, la topologie de l’espace quotient est définie 
par une seule semi-norme, mais ce quotient n’est pas nécessairement un espace 
normé. En effet, l’espace quotient n’est pas toujours séparé et on a le critère sui­
vant.
Proposition 3.6.4 Soient E un e.l.c. et F un sous-espace vectoriel, l fespace quo­
tient E /F  est séparé si, et seulement si, F est un sous-espace fermé.
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Preuve Si E /F  est séparé, F  est fermé d’après la continuité de 7r vu que 
F  =  7r—1 (0). Réciproquement, si F  est fermé, montrons que l’espace est sé­
paré, c’est-à-dire (proposition 2.24.4) que le graphe de la relation d’équivalence 
est fermé dans E  x E  ; ce graphe est simplement égal à f ~ x(F) où /  est l’appli­
cation continue (x,y) G E  x E  i-* x -  y G E  et ceci permet donc de conclure.

Q.E.D.

Corollaire 3.6.5 Soient E  un espace normé et F un sous-espace vectoriel fermé, 
alors Vespace quotient E /F  est un espace normé.
Exemple 3.6.1 Soit E , (IMIOie/» un e.l.c., on considère l’ensemble 

F = {x G E  ; \\x\\i = 0 pour tout i G 1} ; 
cet ensemble F  est en fait un sous-espace vectoriel fermé de E  ; on a en effet 
F = f)ieiFi  où chaque Fi =  {x G E;  ||x||i =  0} est un sous-espace fermé. 
L’espace quotient E / F  est donc séparé.

La signification de ce sous-espace F  est la suivante. Si 7  est un filtre convergent 
sur E , l’ensemble des points limites de J  est de la forme a +  F. En effet, suppo­
sons que J  converge vers a et que a -  b appartienne à F  ; alors, pour tout x, on 
a \\x -  a\\i < \\x -  b\\i +  ||6 -  a||* =  ||x -  b\\i et on vérifie de même l’inégalité 
opposée ; ceci montre que B[{a\r) = £^(6;r) et, vu la définition (3.2.4) d’un 
filtre convergent, il en résulte que 7  converge vers b. Réciproquement, si a et b 
sont deux points limites de jF, l’intersection i?^(a;r) fl B^fyr)  est non vide quel 
que soit r > 0 , d’où || a -  b\\i < 2 r  et par conséquent \\a — b\\i = 0 , soit a — b e F .  
Ceci démontre bien le résultat annoncé.

Sur l’espace E , la limite d’un filtre n’est donc définie que modulo la relation 
d’équivalence associée à F  ; il est donc naturel de s’intéresser à l’espace quotient 
E / F  qu’on appelle l’espace séparé associé à E.
Exercice 3.6.4 Soient E un e.l.c., F un sous-espace vectoriel fermé et G un sous-espace de dimen­
sion finie. Montrer que le sous-espace vectoriel F +  G est fermé [si 7r : E -» E/F  est la surjection 
canonique de E sur E/F , noter que F +  G = 7r_1(7r(G))].

Supposons que l’espace E  soit à base dénombrable de voisinages, alors la pro­
position 3.6.2 montre qu’il en est de même de l’espace E / F , qui est donc métri- 
sable si F  est fermé. Ceci peut se préciser comme suit.
Théorème 3.6.6 Soient E  un e.Lc. métrisable, d une distance invariante par trans­
lation définissant la topologie de E  et soit F un sous-espace fermé, alors la topo­
logie de E /F  peut être définie par la distance invariante par translation
(3.6.4) 5&V) inf

l fo )
d(x, y).

Preuve Montrons d’abord que S est une distance sur E/F.  Il est clair que (D \ ) 
est vérifié. Vérifions (D2 ) et (D3) ; soit £, 77 G E /F  et soit a G tt- 1 (£) et 
b G 7T—1 (77), on a alors

v) =  in f d(a +  x, b -h y) =  inf d(a, b +  z)
K u  x€F,yeF z€F  v '
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d’après l’invariance par translation de la distance d, d’où
ô(Ç,r}) = d(a,b + F) = d(a-b ,F ) .

Le sous-espace F  étant fermé, £(£,77) =  0 équivaut à a — b G F, c’est-à-dire 
à £ =  T] et ceci prouve (D%). Quant à l’inégalité triangulaire, soit £ G E / F  et
c G 7r_1(C), alors

\S& 0  -  5 (7), C)| =  |d(a ,c + F ) -  d(b, c +  F ) | <  d(a, 6) 
d’après (2.13.4), d’où |£(£, £) -  S(rj, £)| <  S(£, r7), ce qui prouve le résultat voulu. 

Vérifions l’invariance par translation ; avec les notations précédentes, on a
«K +  C,rç +  <) =  d((ü +  c) -  (6  +  c), F ) =  d(a -  b, F) = «(£, rj)

vu que a +  c G 7t_ 1(£ +  C) et 6 +  c G tt” 1^  +  C).
Soit a G F ,  on a <$(£, 7r(a)) =  in f ^ ^ - i^ )  d(x, a) ; il en résulte que

J ( £ ,7r(a)) <  r

si, et seulement si, il existe x  G 7r_ 1 (£) tel que d(x,a) < r et ceci prouve que 
BE/F(^(a)ir) — r)). La proposition 3.6.2 montre alors que la topologie
associée à la distance S est la topologie quotient. Q.E.D.

Théorème 3.6*7 Soient E  un espace de Fréchet et F un sous-espace fermé, alors 
E /F  est un espace de Fréchet.
Preuve On conserve les notations du théorème précédent : la topologie de E  est 
définie par une distance d invariante par translation et S est la distance (3.6.4). Soit 
(£n) une suite de Cauchy de E /F , c’est-à-dire pour la distance ô, et soit (e*.) une 
suite de nombres >  0  telle que la série J^kLo £k S0lt convergente.

Construisons une suite (n*.) de N strictement croissante telle que
(3.6.5) pour tout entier k , Æ(£p, £g) <€k dès que p, g > n^.
On effectue cette construction par récurrence. On écrit que la suite (£n) est de 
Cauchy en prenant e = e^.: il existe un entier rik > rik-i (pour k = 0, on 
convient que n_ 1 =  - 1) tel que <S(£P, £9) < ek pour tout p,q>  n^, ce qui prouve 
le résultat voulu.

Il s’agit de démontrer (corollaire 2.18.4) que la sous-suite (Çnic) converge ; 
notons encore (£n) cette sous-suite qui vérifie donc
(3.6.6) pour tout entier n, £(£p, ÇQ) < en dès que p ,q> n .
Construisons alors par récurrence une suite (xn) telle que
(3.6.7) x„ G 7r-1 (£n) et d(xn,xn+i) < 2en.
On choisit arbitrairement xo G 7r_ 1(^o) ; les points (xp)o< p < n  étant construits de 
telle sorte que d(xp,xp+\) < 2 ep pour 0  <  p < n -  1 , on construit .Tn+i de la 
façon suivante : soit an+i un point de 7r-1 (£n+i), on a

in f d(xn ,a n-|_i H- x̂ jxÇ:F
et par conséquent il existe 6n+ 1 G F  tel que d(xn,an+1 +  6n+ i)  <  2en + 1  ; le 
point xn+\ = an+i +  6n + 1 vérifie alors toutes les propriétés voulues.
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On a alors
p + g - l  P+q- 1

d { X p ,  X p + q }  <  ^  ^ d ( x n , X n _j_i) ^  2  ^   ̂ £ n J

n = p  n = p

la série ]C^L0 ^tant convergente, cette inégalité montre que la suite (xn) est de 
Cauchy dans l’espace E  ; elle est donc convergente et son image par l’application 
continue 7r, qui n’est autre que la suite (£n), est convergente et ceci prouve le 
théorème. Q.E.D.
Corollaire 3.6.8 Soient E  un espace de Banach et F  un sous-espace fermé, alors 
E /F  est un espace de Banach.
Exercice 3.6.5 Soit E, (IMIi)ie/*un e.l.c. séparé, notons Ei l ’espace vectoriel E muni de la seule 
semi-norme ||«|h, considérons le sous-espace fermé Fi =  {x  6  Ei  ; ||x ||i  =  0} et l’espace normé 
(proposition 3.6.4) Ei/Fi  pour la norme || |£ | | | i  =  \\x\\i, 7ri : Ei —> Ei/Fi  désignant la
surjection canonique.

1. Soit £ E Ei /Fi , montrer que || |£ ||h  =  ||æ||i quel que soit x e  Ei  tel que Tti(x) =  £.
2. Montrer que l ’application (p : x  E E  »-> (^(a?)) E f i i e z  Ei/Fi  est un isomorphisme de E  

sur ip(E).
3. En déduire que tout e.l.c. séparé est isomorphe à un sous-espace d’un produit d’espaces nor­

més et que tout e.l.c. métrisable est isomorphe à un sous-espace d'un produit dénombrable d'espaces 
normés.

4. (complété d’un e.l.c. séparé) Soit E  un e.l.c. séparé, montrer qu’il existe un e.l.c. séparé complet 
Ê , unique à un isomorphisme près, tel que E  soit isomorphe à un sous-espace dense de Ê  [utiliser 

l’exercice 3.5.2 pour des espaces normés]. Lorsque E  est métrisable, montrer que Ê  est métrisable et 
retrouver ainsi le résultat de l'exercice 3.5.2.

Voici une première application des notions précédentes concernant les proprié­
tés des hyperplans. Rappelons la définition d’un hyperplan.
Définition 3.6.1 Dans un espace vectoriel, le noyau d'une forme linéaire non 
identiquement nulle est appelé un hyperplan.
Lemme 3.6.9 Soient E  un espace vectoriel et H  =  K er T  un hyperplan de E , 
alors H ^  E  et, pour tout a E E — H, on a la décomposition en somme directe 
E = H  ® K a. De plus, la forme linéaire T  est déterminée de façon unique à une 
constante multiplicative près.
Preuve II est clair que H ± E  vu que H  =  K erT  où T  E E* -  {0}. Soit 
a e E -  H, on peut alors écrire tout x de E  sous la forme x = (Tx/Ta)a  +  h où 
h =  x - (T x /T a )a  appartient à H. Cette décomposition est unique : si x  =  Xa+h 
avec h E H, on a nécessairement Tx = XTa +  Th = XTa d’où À =  Tx/Ta  et 
h = x — (Tx/Ta)a.  Ceci montre que E = H  0  Ka.

Si H = Ker S  où S  E E* -  {0} la décomposition précédente montre que 
Sx = (Tx/Ta)Sa,  c’est-à-dire S = aT  où a = Sa/Ta  et ceci prouve le lemme.

Q.E.D.
Le lemme général suivant permet de faire le lien avec les espaces quotients.

Lemme 3.6.10 Soient E  un espace vectoriel, E\ et Ei deux sous-espaces vecto­
riels tels que E = Ei ® £ 2 et soit ir la surjection canonique de E  sur E/E\,  alors 
l'application tt\e 2 est un isomorphisme de E<i sur EjE\.
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Preuve On note d’abord que Kei*7r =  Eu  d’où Ker 7r|e2 = fl =  {0} et 
ceci prouve que tt\e2 est injectif. Quant à la surjectivité de 7t|£2, soit £ G E / E \ , 
il existe x  G E  tel que £ =  it(x ) et x peut s’écrire x = x\  +  a?2> Xi G E i , d’où 
£ =  7r(xi +  X2 ) = n f a )  ce qui prouve le résultat voulu. Q.E.D.

Ceci montre que, dans un espace vectoriel E , tous les supplémentaires d’un 
sous-espace E\ sont isomorphes, étant isomorphes à l’espace quotient E/E\  : leur 
dimension est appelée la codimension de E\. En particulier, si H  est un hyperplan 
de E , l’espace quotient E / H  est de dimension 1 d’après le lemme 3.6.9.

Du point de vue topologique, ceci va nous permettre d’établir le résultat sui­
vant.
Proposition 3.6.11 Soit H un hyperplan dans un e.l.c. E  et soit T  une forme 
linéaire telle que H = Ker T. Alors, H est soit fermé, soit partout dense ; de 
plus, H est fermé si, et seulement si, T  est continu.
Preuve Si H  n’est pas fermé, il existe un point a G H  — H  et, l’adhérence H  
de H  étant un sous-espace vectoriel de E  d’après la proposition 3.1.1, H  contient 
H  0  K a , d’où H = E , ce qui prouve que H  est partout dense.

Si T  est continu, H  est évidemment fermé. Réciproquement, supposons H  
fermé ; notons 7r la surjection canonique de E  sur E /H  ; si 7r(æ) =  7r(y), alors 
x -  y G H  et Tx = Ty, on peut donc définir une application S : E / H  -» K  telle 
que Son  =  T  en posant 5(£) =  Tx  où x  G 7t- 1(£). On vérifie aisément que cette 
application S  est linéaire ; en outre, elle est continue d’après le corollaire 3.5.11, 
l’espace E /H  étant séparé de dimension finie. La surjection 7r étant continue, on 
en déduit que T  est continu et ceci achève la preuve de la proposition. Q.E.D.
Exercice 3.6 .6  Soient E un e.l.c. et T  : E -» Kn une application linéaire. Montrer que T  est 

continu si, et seulement si, son noyau Ker T  est fermé.

La notion de somme directe n’est pas suffisante en analyse : la décomposi­
tion d’un e.l.c. en somme de deux sous-espaces n’est vraiment utile que si cette 
décomposition est faite d’une façon continue. Ceci conduit à la définition suivante. 
Définition 3.6.2 supplémentaire topologique On dit qu'un e.l.c. E  est la somme 
directe topologique de deux sous-espaces E\ et E<i, si E  est la somme directe 
algébrique de E\ et E 2 et si les projecteurs linéaires pi : E Eif i = 1,2, sont 
continus. On dit que E\ et E 2 sont des supplémentaires topologiques.

Étant donné que pi +  P2 = Ie > la continuité de l’un des projecteurs implique 
la continuité de l’autre.
Définition 3.6.3 Dans un e.l.c. E, on dit qu'un sous-espace E\ admet un supplé­
mentaire topologique, s'il existe un sous-espace E 2 tel que E soit la somme directe 
topologique de Ei et E 2 .
Remarque 3.6.1 Si E  est un e.l.c. séparé somme directe topologique de deux 
sous-espaces E\ et E 2 , ces sous-espaces sont nécessairement fermés : E\ est en ef­
fet le noyau de P2  et E 2  le noyau de p \. Des supplémentaires topologiques sont né­
cessairement fermés. On se gardera de croire que des supplémentaires algébriques
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fermés sont nécessairement des supplémentaires topologiques (exercice 3.31.2) ; 
comme nous le démontrerons ultérieurement, ceci est cependant vrai lorsque E  est 
un espace de Fréchet (proposition 3.11.6).

Voici deux propositions élémentaires concernant ces notions.
Proposition 3.6.12 Soit E un e.l.c. somme directe algébrique de deux sous-espaces 
Ei et E 2 , les propriétés suivantes sont équivalentes.

J. La somme directe est topologique.
2. L’application p : x t-> (pi(x),p2 (x)) est un isomorphisme topologique de 

E sur Ei x E 2 .
3. Si 7r désigne la surjection canonique de E sur E/Ei,  l’application 7r|e2 est 

un isomorphisme topologique de E 2 sur E/Ei.
Preuve 1 ^  2 L’application p est une bijection linéaire dont la bijection réci­
proque (xi , X2 ) € Ei  x E 2 •-> xi  +  a?2 6 E  est continue en tant que restriction 
à Ei x  E 2 de l’addition ( x , y) G E  x  E x  +  y G E. La continuité des appli­
cations pi est équivalente à celle de p =  (p i,P 2) qui est alors un isomorphisme de 
Ei © E 2 sur Ei x E2.

1 «=> 3 On remarque d’abord que la surjection 7r : E -¥ E /Ei  étant continue, 
l’application tt\e2 est continue. On observe ensuite que 7r =  (7ije2) °P z : soit 
x =  xi +  £ 2 , Xi G E i , on a en effet 7r(x) =  n fa )  et P2 (x) =  £2 * Notons q la 
bijection réciproque de la bijection 7r|e2 , on a alors P2  =  q o n et la continuité de q 
équivaut à celle de P2  d’après la proposition 2.24.3, ce qui prouve le résutat voulu.

Q.E.D.
Corollaire 3.6.13 Dans un e.l.c. E , soit Ei un sous-espace fermé de codimen­
sion finie, alors tout supplémentaire algébrique E 2  de Ei est un supplémentaire 
topologique.
Preuve L’espace E/Ei  est un e.l.c. séparé de dimension finie, l’application li­
néaire q = (7r|e2 ) ~ 1 * E/Ei  E 2  est donc continue (corollaire 3.5.11) et on 
conclut grâce à la proposition précédente. Q.E.D.

En particulier, si H  est un hyperplan fermé dans un e.l.c. E , un hyperplan étant 
de codimension 1, on en déduit que, pour tout a G E — H, E =  H (B K a  où la 
somme directe est topologique.

3.7 Partie bornée, partie compacte
Définition 3.7.1 Dans un e.l.c. E , (IMIOiG/* une partie A est dite bornée si, pour 
touti G I, s u p ^ ^  ||x||i < 00.

Dire que A  est borné signifie donc que les fonctions ||*||i sont bornées sur A.
On remarquera que cette notion ne dépend pas du choix de la famille de semi- 

normes définissant la topologie de E : ceci se vérifie de suite en utilisant le corol­
laire 3.3.4. Il s’agit donc d’une notion ne dépendant que de la topologie d’e.l.c. de 
l’espace.
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Lorsque E  est un espace normé, si r = supTGj4 ||x|| est fini, A est contenu 
dans la boule fermée B '(0 ; ?') et le diamètre de A est < 2r, donc fini. Inversement, 
si le diamètre p de A est fini, en prenant un point a e  Af on a

IMI < ||a|| +  ||x -  o|| <  ||a|| +  p
et sup^ç^ ||a;|| est fini. Ceci montre que, dans un espace normé, une partie est 
bornée si, et seulement si, elle est bornée pour la distance associée à la norme.

Lorsque E  est un e.l.c. métrisable, il est légitime de se demander si une partie 
bornée selon la définition 3.7.1 est bornée relativement à une distance invariante 
par translation et définissant la topologie de l’espace : en général, les deux notions 
sont différentes, comme le montre par exemple la distance d(x, y) = \x — y | sur R 
et la distance min(of, 1).

Exercice 3.7.1 Soit E  un e.l.c., montrer qu’une partie B  de E  est bornée si, et seulement si, pour 

toute suite (xn) de B  et toute suite (Àn ) de scalaires convergeant vers 0, la suite (An x n ) converge 

vers 0.

Exercice 3.7.2 1. Étant donné une suite double de nombres réels apq >  0, p, q E N, montrer qu’il 
existe une suite An >  0 telle que apq < ApAq pour tout p, q E N.

2. Soit E  un e.l.c. métrisable et soit (Bp) une suite de parties bornées de E,  montrer qu’il existe 

une suite erp >  0 telle que \J^L0 epBp soit encore une partie bornée [si (||*||q) est une suite de 

semi-normes définissant la topologie de E , on pourra utiliser la suite apq =  supxeBj> ||æ||9].

Exercice 3.7.3 Soient (Ea )a eA une famille d’e.l.c., E  un espace vectoriel, / a  : E  —► Ea une 

famille d’applications linéaires ; on munit E  de la topologie initiale correspondante. Montrer qu’une 
partie A de E  est bornée si, et seulement si, f a (A) est borné dans Ea quel que soit a  e  A.

Dans un espace normé, une boule étant bornée, l’origine admet un voisinage 
borné ; cette propriété caractérise en fait les espaces normés.

Proposition 3.7.1 Soit E  un e.l.c. séparé tel que Vorigine admette un voisinage 
borné, alors la topologie de E peut être définie par une norme.
Preuve Soit (II.Hi)^/ une famille de semi-normes définissant la topologie de E. 
L’origine admet un voisinage borné qu’on peut supposer de la forme 
V  =  B j ( 0 \ r ) , r  >  0, J  e  3(1)-  Chaque semi-norme ||*||i est donc bornée 
sur V : il existe M  > 0 tel que ||æ||i <  M  pour ||x ||j  < r  et il en résulte que 
M i  <  (M/r)\\x\\ j  pour tout x  e  E.  Ceci signifie (corollaire 3.3.4) que la seule 
semi-norme ||#|| j  définit la topologie de E  et, E  étant séparé, cette semi-norme est 
une norme, ce qui prouve la proposition. Q.E.D.

Exemple 3.7.1 Une fonction /  : X  ->> E  définie sur un ensemble X  et à valeurs 
dans un e.l.c. E  est dite bornée si f{X)  est une partie bornée. Par exemple, une 
suite convergente (xn) est bornée : en effet, les suites (||xn ||i) sont convergentes 
d’après la continuité des semi-normes, donc bornées.

L’ensemble des parties bornées joue un rôle important en raison de la propriété 
suivante.
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Proposition 3.7.2 Soient F , F deux e.Lc. et T  : E F une application linéaire. 
Si T  est continu, l'image par T  de tout borné de E est une partie bornée de F. 
Réciproquement, si E  est un e.l.c. métrisable et si l'image par T  de toute suite 
convergente vers 0 est bornée, alors T  est continu.
Preuve Si T  est continu, l'image de tout borné est bornée d'après le point 3. du 
théorème 3.3.3.

Réciproquement, supposons E  métrisable et T  non continu. Considérons une 
base décroissante (Vn)n>î du filtre des voisinages de 0 dans l’espace E  et soit 
(INIt)t€/ une famille de semi-normes définissant la topologie de F. Alors, il existe 
un voisinage de 0 G F , qu’on peut supposer de la forme W = Bj(0; r), r > 0, 
J  G £F(/), tel que T{(\/n)Vn) <£ W  pour tout n > 1 ; il existe donc xn G Vn 
tel que ||Txn || j  > nr ; on construit ainsi une suite (xn) de E  qui converge vers 0 
telle que la suite (Txn) ne soit pas bornée, ce qui prouve le résultat voulu. Q.E.D.

En particulier, lorsque F  et F  sont des espaces normés, une application linéaire 
de E  dans F  est continue si, et seulement si, l’image de tout borné est bornée.

Voici une première propriété des parties compactes qui résulte de la continuité 
des semi-normes.
Proposition 3.7.3 Dans un e.Lc. toute partie compacte est bornée. Dans un e.Lc. 
séparé toute partie relativement compacte est bornée.

On sait que réciproquement dans Kn les parties bornées sont relativement com­
pactes (théorème 2.33.7) ; dans un e.l.c. séparé de dimension finie, isomorphe à 
Kn (théorème 3.5.8), une partie est donc relativement compacte si, et seulement 
si, elle est bornée. Rappelons également que les espaces Kn sont des espaces lo­
calement compacts ; il en est donc de même des e.l.c. séparés de dimension finie ; 
nous allons démontrer que réciproquement un e.l.c. localement compact est néces­
sairement de dimension finie : on obtient ainsi une caractérisation topologique des 
espaces de dimension finie.

Avant d'énoncer un théorème précis, introduisons une notation utile pour sa 
démonstration. Si A est une partie d’un espace vectoriel F  et si A est un scalaire, 
on note À A l'ensemble {Ax ; x  G A }, c'est-à-dire l’image de A  par l’homothétie 
de centre 0 et de rapport A. On a évidemment 2A C A +  A, mais on ne commettra 
pas l'erreur de croire que l’égalité a lieu, etc.
Théorème 3.7.4 F. Riesz Soit E un espace normé, les propriétés suivantes sont 
équivalentes.

1. E  est de dimension finie.
2. Tout borné de E  est relativement compact.
3. La boule unité B = {x G F ; ||x|| <  1} est compacte.
4. E  est localement compact.

Preuve II est clair que 1 => 2 => 3 => 4. Montrons que 4 => 1. On sup­
pose l’espace F  localement compact ; soit V  un voisinage compact de l’origine. 
L’ensemble 2V étant compact en tant qu’imagé continue d’un compact, du re­
couvrement ouvert (a +  V)aç2 V> on peut extraire un sous-recouvrement fini, soit
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(ai +  V)iç.i> I  fini, ai G 2V. Notons F  le sous-espace de dimension finie engendré 
par les points (ai)içI. On a alors 2V C  F + V, d’où

2(F + V) = 2F + 2V C  2F + (F+ V) = F + V
et ceci montre que 22V C F  +  V  ; par récurrence, on vérifie que 
2nV  C  F  +  V  pour tout entier n  >  1. Considérons alors un point quelconque 
x de E  ; la suite (2~nx ) convergeant vers 0, x  appartient à 2 nV  dès que n est 
suffisamment grand et ceci prouve que E = F  +  V.

Soit x G F , il existe y G F  et z G V  tel que x  =  y +  2 , d’où
d(x,F) = inf d(x,t) = inî \\y + z - t \ \  < \\z\\;

tKzr tE.r

V  étant borné, posons M  =  supz€v \\z\\ ; on a alors d(x, F) < M  quel que soit 
le point x G E.

Nous allons en déduire que E = F  ; ceci prouvera le théorème. Supposons 
E ± F  ; soit a G E  -  F, le sous-espace F  étant fermé (corollaire 3.5.10), la 
distance r  =  d(ay F ) de a à F  est strictement positive. Pour tout réel t > 0, on a 
d(ta, F ) =  td(a> F) =  tr , F  étant un sous-espace vectoriel, et il en résulte que 
d(ta, F ) > M  pour t suffisamment grand, ce qui contredit la propriété établie 
ci-dessus. Q.E.D.

Le théorème de Riesz montre que les seuls espaces normés où les parties rela­
tivement compactes sont les parties bornées, sont les espaces de dimension finie. 
Dans un espace normé de dimension infinie, toute partie relativement compacte est 
bornée, mais il y a toujours une condition supplémentaire à “découvrir”pour carac­
tériser les parties relativement compactes. Par exemple, X  étant un espace compact 
et F  un espace normé, munissons l’espace CU(X ;F ) des fonctions continues de 
X  dans F  de la topologie de la convergence uniforme : cette topologie peut être 
définie par la norme ||/ | |  =  m a x ^ x  ||/(æ )||. Le théorème d’Ascoli (théorème
2.34.5) caractérise les parties relativement compactes de cet espace. Lorsque F  
est de dimension finie, ce sont les parties bornées et équicontinues : la condition 
supplémentaire est ici l’équicontinuité.

Il faut bien se garder de croire que la situation est identique dans un e.l.c. : il 
existe des e.l.c. séparés de dimension infinie où une partie est relativement com­
pacte si, et seulement si, elle est bornée (exercice 3.7.4). Ceci n’est nullement 
contradictoire avec le théorème de Riesz ; dans un tel espace, aucun voisinage de 
0 n’est borné d’après la proposition 3.7.1.

Exercice 3.7.4 Soit X  un ensemble, montrer qu’une partie A de £F5(X ; K) est relativement com­
pacte si, et seulement si, elle est bornée.

Corollaire 3.7.5 Un e.l.c. séparé est localement compact si, et seulement si, il est 
de dimension finie.
Preuve La topologie d’un e.l.c. localement compact peut être définie par une 
norme d’après la proposition 3.7.1 et on conclut grâce au théorème précédent.

Q.E.D.
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Corollaire 3.7.6 Dans un e.l.c. séparé de dimension infinie, les parties compactes 
sont sans point intérieur.
Preuve Supposons que K  soit un compact d’intérieur non vide, alors K  est un 
voisinage compact de l’un quelconque de ses points intérieurs et, par translation, 
on obtient un voisinage compact de l’origine et E  est donc nécessairement de 
dimension finie. Q.E.D.
Exercice 3.7.5 Soient E  un espace normé, F  un sous-espace vectoriel de dimension finie et a un 

point de E. Montrer qu’il existe un point x e F  tel que \\a — x\\ =  d(a , F).  Ce point x est-il unique ?

Exercice 3 .7 .6  Montrer qu’un espace normé est de dimension finie si, et seulement si, sa sphère 

unité est compacte.

Exercice 3 .7 .7  Soit E  un e.l.c.
1. Soient a G E  et B  une partie fermée tels que a 0  B.  Montrer qu’il existe un voisinage V  de 0 

tel que (a +  V)  D (B -|- V)  =  0.
2. Soient A une partie compacte et B une partie fermée, A et B  étant disjoints.

a. Montrer qu’il existe un voisinage K de 0 tel que A n  (B +  V)  = 0  [raisonner par l’absurde 
et utiliser la base de filtre (B  +  V)  v Gv(0)]

b. En déduire qu’il existe un voisinage V de 0 tel que {A +  V ) fl (B +  V)  = 0 .

Dans un espace métrique, la précompacité est un outil particulièrement utile, 
le théorème 2.33.4 constituant une caractérisation des parties compactes. Dans le 
cadre des e.l.c., la définition des parties précompactes est la suivante.
Définition 3.7.2 Une partie A d'un e.Lc. E est dite précompacte si, pour tout 
voisinage V de 0, il existe une famille finie (x*)^/ d'éléments de E telle que 
A c \ J i€l(xi + V).

Dans cette définition, on peut se contenter de voisinages V  appartenant à un 
système fondamental de voisinages de 0 ; en particulier, en prenant des voisinages 
fermés, on constate que l’adhérence d’une partie précompacte est précompacte.

Lorsque E  est un e.l.c. métrisable dont la topologie est définie par une distance 
invariante par translation, cette définition coïncide avec la définition 2.33.1 de la 
précompacité dans un espace métrique. En effet, dans la définition 3.7.2, on peut 
se limiter aux voisinages V  de la forme V  =  S '(0 ,£ ) où e >  0 ; la distance 
étant invariante par translation, on a X* +  ^ '( 0 ,er) =  B'(xi,e) et dire que A 
est précompact signifie exatement qu’il existe un recouvrement fini de A par des 
boules de rayon e.

Le théorème 2.33.4 se généralise alors comme suit.
Théorème 3.7.7 Dans un e.Lc. séparé et complet, une partie est compacte si, et 
seulement si, elle est fermée et précompacte.
Preuve Dans un espace séparé, une partie compacte est fermée. Montrons qu’une 
partie compacte A est précomçacte. Soit V  un voisinage de 0, A étant compact, 
le recouvrement ouvert (x 4- V)xÇ.a contient un sous-recouvrement fini, ce qui 
prouve le résultat voulu.

Réciproquement, soit A une partie fermée et précompacte, montrons que tout 
ultrafiltre U sur A  converge dans A. Vérifions d’abord que U, en tant que base de
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filtre sur E , est de Cauchy. Soit H.ll.; l’une des semi-normes définissant la topologie 
de E , prenons V = 0,e) ; alors, d’après la précompacité de A , il existe une
partie finie B  de E  telle que

A =  ( J  A nB'(b; e);
b € B

il existe donc (corollaire 2.32.2) 6 G B  tel que M  =  A fl B[(b\ e) G U et, vu que 
diam.;M < 2 e, ceci prouve que U est une base de filtre de Cauchy sur E. L’espace 
E  étant complet, cette base de filtre converge et sa limite a appartient à A vu que 
A  est fermé ; il en résulte que U converge vers a dans le sous-espace A et ceci 
prouve que A est compact. Q.E.D.

3.8 Partie convexe
Nous avons déjà donné la définition d’un ensemble convexe (paragraphe 3.2). On 
peut préciser cette définition de la façon suivante.
Proposition 3.8.1 Soit C une partie convexe d'un espace vectoriel E  et soient 
(xi)içi une famille finie d'éléments de C et (Ai)iej une famille de nombres 
réels > 0 telle que K  =  1» alors la combinaison linéaire, dite combinai­
son convexe, Yliei ^ iXi appartient à C.
Preuve On raisonne par récurrence sur le nommbre d’éléments de I, la propriété 
étant trivialement vérifiée lorsque I  est réduit à un élément. Supposons la proposi­
tion démontrée lorsque Card I  = n, où n  >  1, et démontrons la lorsque I  admet 
7 i+ l éléments. On peut supposer I  =  [1, ? i+ 1] ; considérons alors la combinaison 
convexe x = J27=i °ù 'W i  ^  1 (sinon x = xn+ i) ; posons À =  
alors le point y = A“ 1( ^ ^ =1 Kx-i) appartient à C d’après l’hypothèse de récur­
rence et le point x =  Xy +  Àn+ix n+i appartient à C d’après la convexité de C.

Q.E.D.
La définition même d’un ensemble convexe montre que l’intersection d’une 

famille quelconque de convexes est convexe. Étant donné une partie A d’un espace 
vectoriel, il existe donc un plus petit ensemble convexe contenant A qu’on appelle 
l’enveloppe convexe de A  et que nous noterons r(A ).
Proposition 3.8.2 Soit A une partie d'un espace vectoriel E, l'enveloppe convexe 
de A est égale à l'ensemble des combinaisons convexes d'éléments de A.
Preuve Notons C l’ensemble des combinaisons convexes d’éléments de A. Il est 
clair que A C  C C  T(A). Il s’agit donc de démontrer que C est convexe. Soient 
x ,y  G C, ces points peuvent donc s’écrire x =  £ \ € /  et V =  j  H V j  ° ù  

I  et J  sont finis, x ^ y j  G A, X u P j  > 0 et £ i€ / A* =  1, J 2 j e J  N  =  Soient 
A, p > 0 tels que A +  p = 1, on a alors

Xx + ny = ^ 2  ^ i xi + Y2 M jV j
i € l  j S J
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où ^ i  +  J2je J W j  =  !» ce qui prouve que Xx +  py appartient à C, qui est
donc convexe. Q.E.D.

Lorsque l’espace est de dimension finie, on peut préciser ce résultat de la façon 
suivante.
Proposition 3.8.3 Soit A une partie d'un espace vectoriel de dimension réelle n, 
alors l'enveloppe convexe de A est égale à l'ensemble des combinaisons convexes 
de la forme %̂x%> x% e A-
Preuve Un élément x de T(^4) peut s’écrire comme une combinaison convexe de 
la forme x  =  Ya = i K'xu Xi € A  ; si p est strictement plus grand que n +  1, nous 
allons démontrer que x peut s’écrire comme une combinaison convexe de p — 1 
éléments de A : ceci démontrera la proposition.

Supposons donc p > n +  1 ; alors les p -  1 vecteurs (Xi -  £p)i<i<p- i  sont 
liés : il existe une relation de liaison de la forme ai(x i ~ xp) =  0 où les 
ai ne sont pas tous nuis. On en déduit une relation de la forme Ylï=i Pix i =  0 où 
les Pi ne sont pas tous nuis et Ylï=i Pi — 0- Il existe au moins un indice i pour 
lequel Pi > 0  et, en modifiant éventuellement la numérotation, on peut supposer 
Pp > 0 et Xp/Pp < A i/Pi pour tous les fa >  0. On peut alors écrire x  comme 
la combinaison convexe x =  -  (Pi/Pp)Xp)xi : les coefficients sont en
effet positifs d’après le choix de l’indice p et de somme 1 vu que Pi =  ~Pp- 
Ceci prouve la proposition. Q.E.D.

Lorsque E  est un e.l.c., on notera d’abord la 
Proposition 3.8.4 Dans un e.l.c. E, l'adhérence d'un convexe est convexe.
Preuve Considérons l’application f t : (x,y) E E  x E  t-»* tx +  (1 — t)y E E  où 
0 <  t < 1. Dire qu’un ensemble C est convexe signifie que 

ft(C x C) C C pour tout 0 < t < 1.
La continuité de f t implique alors que f t ( C x C )  C C et ceci prouve que C est 
convexe. Q.E.D.
Exercice 3.8.1 Soit C  une partie convexe d’un e.l.c. E.

1. Soient x E C , y  G C, montrer que tout point 2  du segment ouvert ]x,y[, c ’est-à-dire de la
forme z  =  tx +  (1 -  t)y  avec 0 <  t <  1, appartient à C  [utiliser l ’homothétie de centre y  qui 
transforme x en z]. _

2. Montrer plus généralement que ce résultat subsiste pour x e  C  et y  G C  [si k : E —> E  est 
l’homothétie de centre z  qui transforme x en y , montrer qu’il existe a  E C  tel que k(a) E C , puis 
utiliser 1.].

3. Déduire de 1. que C  est convexe.
4. On suppose C  non vide, montrer que C — C  [montrer que tout point adhérent à C  est adhérent 

à C  en utilisant 2.] et que C =  C  [soient x e  C, B j (x \ r )  une boule ouverte contenue dans C, 
montrer que cette boule rencontre C  et, si y  E Bj(x\  r) D C, utiliser le symétrique par rapport à x de 

ce point y].
Exercice 3.8.2 Soient C  une partie convexe ouverte non vide d’un e.l.c. E  et /  : C  ->  M une 
fonction convexe.

1. Montrer que /  est continu si, et seulement si, il existe un ouvert non vide O C  C  tel que /  soit 
majoré sur O [pour démontrer que la condition est suffisante, vérifier que /  est continu en tout de point 
de O  et que /  est majoré au voisinage de tout point de C].
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2. Si E  est de dimension finie, montrer que toute fonction convexe (définie sur un ouvert convexe 
non vide) est continue.

Si A est une partie d’un e.l.c. E , T(^4) est donc le plus petit ensemble convexe 
fermé contenant A : on l’appelle l’enveloppe convexe fermée de A.

Si A est fermé, son enveloppe convexe n’est pas nécessairement fermée : par 
exemple, dans M2, le fermé {(x, y) G R2 ; x >  0 et \y\ > 1/x} a pour enveloppe 
convexe le demi-plan {(x, y) G M2 ; x  >  0} qui n’est pas fermé.

On a par contre le résultat suivant.
Proposition 3.8.5 Dans un e.l.c. séparé de dimension finie, Venveloppe convexe 
de tout compact est compacte.
Preuve Notons n la dimension de l’espace E  en tant qu’espace vectoriel sur R et 
soit K  un compact de E. La proposition 3.8.3 montre que r(AT) est l’image du 
compact A x K n+l par l’application continue

71+1
(À,x) G Rn+1 x E n+1 I-+ AiXi G E  où x =  (x<)i<<<n+i

A — {À G Rn+1 ; Xi > 0 et ^  À* =  1}, A =  (Ai)i<i<n+i.
2=1

L’espace E  étant séparé, ceci prouve que r(/C ) est compact. Q.E.D.
Corollaire 3.8.6 Dans un e.l.c. séparé, Venveloppe convexe de toute partie finie 
est compacte.
Preuve Soit A  une partie finie, alors T(A)  est contenu dans le sous-espace vec­
toriel F  engendré par A  ; A  est une partie compacte de ce sous-espace séparé de 
dimension finie, donc T(A) est une partie compacte de F  d’après la proposition 
précédente, ce qui prouve le résultat voulu. Q.E.D.

La proposition 3.8.5 ne subsiste pas dans un e.l.c. de dimension infinie. On a 
cependant la
Proposition 3.8.7 Dans un e.l.c. séparé E, l'enveloppe convexe de toute partie 
précompacte est précompacte.
Preuve Notons (||•||^)ie / une famille de semi-normes définissant la topologie de 
E.  Soient A  une partie précompacte, e > 0, V  = B j ( 0; e) un voisinage de 0, alors 
il existe une famille finie (a*)iG/ d’éléments de E  telle que 
A  C U e I (ai + V).

Montrons que T(A) C T(B) +  V  où B  désigne l’ensemble fini 
B  = U te/faî}- P°int x r(A ) peut s’écrire

x =  ^ 2  A i j i ü i  +  X i j )

( i j ) e i x J

où J est fini, Aiyj > 0, Y,(i,j)eixJ = 1 et xitj G V ; posons 
A» =  J2 jeJ on a al°rs x = y + z o ù y  = Yliei ^»a i appartient à T(B)
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et 2  =  Y2(ij)£ixj appartient à V , vu que V est convexe. Ceci prouve
l’inclusion annoncée.

D’après le corollaire précédent, T(B) est compact, donc précompact ; il existe 
une partie finie C de E telle que T (B) C | J cGC(c +  ^)> d’où

r ( A ) c  |J(c + ̂  + ïO;
c € C

posons W =  B j ( 0; 2e), on a alors V +  V C W, d’où

r w  c (J (c + W)
c e c

et ceci prouve que T(A) est précompact, l’ensemble de ces W formant un système 
fondamental de voisinages de 0. Q.E.D.

L’adhérence d’un ensemble précompact étant précompacte, on en déduit, grâce 
au théorème 3.7.7, le
Corollaire 3.8.8 Dans un e.l.c. séparé et complet, Venveloppe convexe fermée 
T (K) de tout compact K  est compacte.

3.9 Topologie de la convergence uniforme
La topologie de la convergence uniforme permet de donner de très nombreux 
exemples d’e.l.c. ; nous allons donc étudier cette topologie dans un cadre assez 
général.

On se donne un ensemble X , une famille non vide A  de parties non vides de 
X  et un e.l.c. F  dont la topologie est définie par une famille (IMIOie/ de 
semi-normes. Nous noterons 3^a (X\F)  l’ensemble de toutes les applications 
f  : X  F  telles que f ( A ) soit une partie bornée de F  pour tout A € A, au­
trement dit, telles que

pour tout i G I  et tout A G A, sup \\f(x)\\i < oo.
x€A

Remarquons d’abord que ^ ^ ( X ;  F) est un sous-espace vectoriel de l’espace vec­
toriel 7{X\ F) de toutes les applications de X  dans F  : on a, en effet, dans

sup ||A /(x) +  fig(x)\\i <  |A| sup ||/(rr)||i +  M  sup ||p(®)||<,
x€A x£A x£A

pour tout A, n € K et / ,  g G 3 ( X ; F).
On munit cet espace vectoriel de la famille de semi-normes 

(IMI*,.a)»€/,.A€./i où
(3-9.1) II/IIm  =  s u p ||/ ( x ) ||i ;

x e A

la topologie d’e.l.c. ainsi définie sur ^ ^ ( X j F )  est appelée topologie de la A- 
convergence ou topologie de la convergence uniforme sur tout ensemble de A. Si 
on remplace la famille de semi-normes (IMIiJte/ Par une famille de semi-normes 
équivalente, l’espace J ^ a ÇX; F) reste le même (car la notion de borné ne dépend
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(3.9.2)

(3.9.3)

que de la topologie de F) et la famille de semi-normes (3.9.1) est remplacée par 
une famille équivalente comme le montre le corollaire 3.3.4 : autrement dit, la 
topologie de la .A-convergence ne dépend que de la topologie de F.

Si un filtre ou une suite converge pour cette topologie, on dit qu’il converge 
uniformément sur tout ensemble de A. Explicitons ces notions de convergence ; 
d’après (3.2.5), une base de filtre ® converge vers /  si

f (V* € /)(VA G .A)(Ve >  0)(3B  G B)(V$)
\  (g Ç. B  =$> supieA ||/(a;) -  0 (37) 11, < e) ; 

une suite ( /n) converge vers /  si
f (Vi G I)(VA G A)(Ve >  0)(3n G N)(Vp G N)
{  (p > n = ï  supæ€A ||/(x )  -  f p(x)\\i < e),

autrement dit, si la suite (supæ€i4 || f (x) — f n (x ) ||i) converge vers 0 pour tout i G I  
et tout A G A.

On peut comparer la topologie de la ̂ -convergence et la topologie de la conver­
gence simple.
Proposition 3*9.1 Si A  est un recouvrement de X , la topologie de la A-conver­
gence est plus fine que la topologie induite sur J^ y ^ X ; F) par la topologie de la 
convergence simple.
Preuve Soit \\f\\i,x =  ||/(^)||i> x G X , i  e  / ,  l’une des semi-normes définissant 
la topologie de la convergence simple ; il existe A G A  tel que x G A, d’où 
ll/lkx < \\f\\i,A et ceci prouve le résultat voulu. Q.E.D.

La topologie de la convergence simple étant séparée lorsque F  est séparé, on 
en déduit le critère de séparation suivant.
Corollaire 3.9.2 Si A  est un recouvrement de X  et si F est séparé, la topologie 
de la A-convergence est séparée.

Notons le théorème important.
Théorème 3.9.3 Si F est complet, Vespace F) est complet.
Preuve Soit J  un filtre de Cauchy sur (X;F),  c’est-à-dire vérifiant (définition 
3.4.1)
n  û 4X /  (Vi g W A  G A)(Ve > 0)(3M G T)

‘ '  ̂ \  (V/ G M)(Vg G M )(supæ6A ||/(x )  -  0 (x)||i <  e).
Pour tout x  G X, considérons l’application

prx : f e ? byA( X - F ) ^ f ( x ) G F ;
lorsque x G U a€./i (3.9.4) montre que prx(3r) est une base de filtre de Cauchy 
sur F  qui converge donc, l’espace F  étant supposé complet ; notons fo(x) un point 
limite de prx(3r) ; on définit ainsi une application /o sur \JAeA A , qu’on prolonge 
de façon arbitraire à X  en une fonction que nous notons encore /o. D’après (3.9.4) 
et le principe du prolongement des inégalités, on a

(Vi € 7)(WL G A)(Ve > 0 )(3 M  G S)(V / € M )(sup \\f(x) -  / 0(x ) ||i  < e)
x € A
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et ceci prouve d’une part que f  -  fo appartient à F ), donc /o également,
d’autre part que le filtre J  converge vers /o, ce qui prouve le théorème. Q.E.D. 

Lorsque X  est un espace topologique, on note
ebA(X; F) = C(X; F) H y M (X; F)

le sous-espace vectoriel des fonctions continues et bornées sur tout ensemble de 
A  ; on munit cet espace de la topologie d’e.l.c. induite par celle de J b ^ X ;  F ) ; 
si F  est séparé et si A  est un recouvrement de X , cet espace Gb,A (X ; F) est séparé 
(corollaire 3.9.2). En outre, on a la
Proposition 3.9.4 Soit X  un espace topologique, le sous-espace Gb,A(X;F) est 
fermé dans l'espace ^ ^ ( X ;  F) si X  satisfait à l'une des propriétés suivantes

1. La famille (Â)AeA est un recouvrement de X.
2. X  est à base dénombrable de voisinages et, pour tout a G X  et toute suite 

(xn) de X  convergente vers a, il existe A e A  tel que
oo

{a} U ( J  {xn} C  A.
71=0

Si F est complet, l'espace C & ^X ; F ) est alors complet 
Preuve Soit /  G ^ ^ ( X j F )  un point adhérent à G^A (X\F)  ; montrons que /  
est continu en tout point a G X.  Pour tout i G / ,  tout £ > 0 et tout A G A> il existe 
9 e  e M (X; F) tel que supæeA ||/(x ) -  ÿ(x)||< < e.

Lorsque X  vérifie 1., il existe un A G A  qui est un voisinage de a ; d’après la 
continuité de g, il existe alors un voisinage V C A de a tel que

Il0(*) lli <  £ pour x  G Vy
d’où

||/(x )  -  /(a)K» <  ||/(x )  -  <?(x)||» +  ||5 (x) -  </(a)||* +  ||ÿ(a) -  /(a)||»  <  3e 
pour tout x  G V, et ceci prouve la continuité de /  au point a.

Lorsque X  vérifie 2., soit (xn) une suite de X  convergeant vers a et soit A un 
ensemble de A  contenant {a } U ; on a alors

||/(a) -  g (a ) \ \ i  <  e , | | / (x n) ~  ff(*n)||» <  e pour tout n 
et, la fonction g étant continue au point a, il existe n G N tel que 

Ilg(xp) -  g (a ) \ \ i  < £ pour tout p > n,
d’où

ll/0*p)-/(a)ll» < \\f(xp) ~ 9(xp)\\i + \\9(xp) ~ g{a)\\i + llôf(û) — /(û)||i < 3e 
pour tout p > net  ceci prouve que la suite ( f(xn)) converge vers f(a) ; la fonction 
/  est donc continue au point a (corollaire 2.12.4). Q.E.D.

Voici quelques cas particuliers de la situation précédente.
Le premier exemple concerne la topologie de la convergence simple ; cette to­

pologie est en effet une topologie de ^-convergence. Prenons pour ensemble A  
l’ensemble des parties réduites à un élément ; l’espace F) est alors l’es­
pace ^ (X ; F) de toutes les applications de X  dans F  et les semi-normes (3.9.1)
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(3.9.6)

(3.9.7)

Lorsque F ,

s’écrivent \\f\\itX =  Il/(^)||i avec x G X , i G I  ; ces semi-normes sont bien les 
semi-normes qui définissent la topologie de la convergence simple sur 5F(X;F). 
Ceci ne nous apprend rien de nouveau sur cette topologie.

Voici un second exemple très important. Si A  =  {X }, l’espace ^ ^ ( X j F )  
est alors l’espace de toutes les applications bornées que nous noterons jF^X; F ) 
ou /°°(X; F ) ; la famille de semi-normes (3.9.1) s’écrit
(3.9.5) H/lli =  sup ||/(rc)|U, où i G I

x£X
et la topologie correspondante s’appelle topologie de la convergence uniforme. Si 
une base de filtre ®, ou une suite ( /n), converge vers /  pour cette topologie, on dit 
qu’elle converge uniformément : ceci signifie que

(Vi G I) (Ve >  0)(3B e  2)(Vg)
(g G B => supx€X II/((x) -  g {x ) \ \ i  < e)  ;

(V* e J) (Ve > 0)(3n e N)(Vp e N)
(P > n => supæ€X ||/(x) -  /p(x)||i < e).
, est un espace normé, la famille (3.9.5) se réduit à la seule 

norme, appelée norme de la topologie de la convergence uniforme,
(3.9.8) | |/ | | =  sup ||/(a ) ||,

x£X
et l’espace ^ ( X ;  F) est donc un espace normé.

Les propriétés générales des topologies de la ̂ -convergence permettent d’énon­
cer le
Théorème 3.9.5 Si Ve.le. F est séparé (resp. métrisable, complet), Vespace 
Jb(X ; F) muni de la topologie de la convergence uniforme est séparé (resp. mé­
trisable, complet). Si F est un espace de Fréchet (resp. un espace de Banach), 
Vespace 9t,(X; F) est un espace de Fréchet (resp. un espace de Banach).
Preuve Lorsque F  est métrisable, l’ensemble I  peut être supposé dénombrable et 
la famille (3.9.5) est alors dénombrable ; il en résulte que l’espace 3&(X;F) est 
métrisable. Q.E.D.
Note Lorsque l’espace F  est un espace métrisable dont la topologie est définie par 
une distance invariante par translation, l’espace Sb(X; F) ne coïncide pas en gé­
néral avec l’espace noté de la même façon qui a été défini au paragraphe 2.27 : la 
notion d’ensemble borné utilisée ici est relative à une famille de semi-normes dé­
finissant la topologie de F. Par contre, lorsque F  est un espace normé, la distance 
d(/,<y) =  supxex  || f(x)  -  g ( x )  || associée à la norme (3.9.8) coïncide avec la 
distance d\ définie par la formule (2.27.1) et donc dans ce cas les espaces étudiés 
sont les mêmes.
Exercice 3.9.1 Soit X  un ensemble, on considère sur l’espace rS ( X \ IR) la topologie de la conver­
gence uniforme 7U, topologie associée à la distance d 2 définie en (2.27.2).

1. On suppose qu’il existe une fonction /  E J ( X ;R )  non bornée (ceci signifie simplement que 
l’ensemble X  est infini). Déterminer la topologie induite sur la droite engendrée par f  par la topologie
Tu.
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2. En déduire que sur un sous-espace vectoriel E  C $(X\  R) la topologie 7U est une topologie 

d’e.v.t. si, et seulement si, E  est un sous-espace vectoriel de l’espace E ) de toutes les fonctions 
bornées. En particulier, la topologie de la convergence uniforme sur l ’espace des fonctions continues 

C(M; R) n’est pas une topologie d’e.v.t.

Exercice 3 .9 .2  Soit E  un espace normé /  {0 } , on considère l’espace J b(E\ R) muni de la norme 

de la topologie de la convergence uniforme notée ||«|| et l'application f  : E  J b(E\R)  définie 

ainsi : soit x €  E, f(x) : E  ->  R désigne l'application y  i-» \\x — y  || -  ||y ||. Montrer que /(O ) =  0, 
||/(æ )  — /( æ 7) || =  ||x  — x 7|| pour tout x t x ‘ G E y mais que /  n'est pas linéaire (cf. exercice 3.3.5).

Lorsque X  est un espace topologique, on note
eb(X;F) = e ( X ; F ) n J b(X;F)

le sous-espace vectoriel des fonctions continues et bornées ; on munit cet espace 
de la topologie d’e.l.c. induite par celle de ^ ( X ;  F) ; cet espace est donc séparé 
(resp. métrisable) lorsque F  est séparé (resp. métrisable). D’après la proposition 
3.9.4, on a en outre la
Proposition 3.9.6 Le sous-espace Gb(X;F) est fermé dans 3b(X\F).
Corollaire 3.9.7 Si F est complet, Gb(X] F) est complet Si F  est un espace de 
Fréchet (resp. un espace de Banach), Gb(X\ F) est un espace de Fréchet (resp. un 
espace de Banach).
Remarque 3.9.1 Lorsque X  est un espace compact et F  séparé, toute fonction 
continue /  : X  -¥ F  est bornée, car f (X )  est compact donc borné ; dans ces 
conditions, on a donc Gb(X\ F) = G(X] F).
E x erc ice  3 .9 .3  Polynôme de meilleure approximation Soit E =  Qu ([a, 6]; R) l ’espace de Banach 
des fonctions continues /  : [o, b] —> R pour la norme de la topologie de la convergence uniforme

11/11= ma x\ f (x ) \ .a<x<b
On note En le sous-espace vectoriel des polynômes de degré <  n . Un polynôme P  G En est appelé 
un polynôme de meileure approximation si

Cet exercice a pour objet de prouver l’existence et l’unicité du polynôme de meilleure approximation.
L’existence résulte de l’exercice 3.7.5. Quant à l’unicité, on procédera de la façon suivante. On 

peut supposer que /  £  En et on pose g =  f  — P, P  étant un polynôme de meilleure approximation.
1. On construit une suite de points a <  x o < x\  <  . . .  <  æn + i <  b telle que

g(xi) = (—l) ze \\g\\y pourO < i < nobe =  ±1

en posant
x0 =  m in {x  G [a, 6] ; |^ (*)| =  ||p ||} ,

puis, pour 0 <  i <  n ,
Xi+ 1  =  m in {x  e ]x i t b] ; g{x) =  -g(x i ) } .

On notera que Xi+i  n'est bien défini que si l’ensemble {x  G ]#*, 6] ; g(x) =  —g(xi)}  est non vide. 
Il s ’agit donc de vérifier d’abord que la construction précédente est possible. Quitte à changer f  et P  
en - /  et - P ,  donc g en - g y on peut supposer g(xo) >  0 donc e =  1 et g(xo) =  ||p||.

a. Montrer que a <  xq <  b [si xo =  6, il existe Ô >  0  tel que — \\g\\ +  ô <  g(x) <  ||g|| pour 
a < x  < b  ; si Q  =  P  +  <5/2, vérifier que | | /  — Q|| <  \\g\\]m
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b. On montre ensuite que x\ est bien défini. Si l ’ensemble { x  E]æo,&] ; 9(%) =  —^(®o)} 
est vide, g(x) >  — ||g|| pour x >  xq, d’où —\\g\\ <  g(x) <  ||</|| pour tout a <  x < b d’après la 
définition de xq et le raisonnement de a. permet de conclure.

c. On peut construire ainsi des points a?o,. . . ,  xm tels que a <  xo <  x\  < . . . <  xm <  b 
et, ou bien xm =  6, ou bien l ’ensemble {x  G]æm ,6] ; g(x) =  - y (æ m )}  est vide et il s ’agit de 
démontrer que m > n +  1. on raisonne par l ’absurde : on suppose 1 <  m  < n. On construit des 
points & tels que

a <  æo <  Çi <  xi  <  . . .  <  £m < xm <  b
en posant

Ç* =  max{Ç G ; 9 ( 0  =  0 } .
On pose

m

Q(x) =  ( — l ) m J"J(æ ~ £i) £ Em C En'y
i =  1

montrer que, pour 6 >  0 suffisamment petit,

\ \ f - ( P  + ÔQ)\\ = \\g-6Q\\<\\g\\.
A cet effet, on vérifie que, pour ô >  0 suffisamment petit, \g(x) — <$Q(x)| <  \\g\\ sur chacun des 
intervalles [o, Çi], [& ,& + i] (1 <  i <  m  -  1) et [Çm ,6].

Sur l’intervalle [a,Ç i], noter que g(xo) — ôQ(xo) >  0 si S >  0 est suffisamment petit, soit 
yo £  [a,Çi] tel que

9(vo) -  ÔQ(yo) = max (g(x) -  SQ(x))}
a<a:<4i

montrer que m a x ^ . , . ^  (g(x) -  6Q(x)) <  g(yo) <  ||(/|| ; noter ensuite qu’il existe rj >  0 tel que 
9(x) >  - | |p | |  +  r) sur [a, Çi] et en déduire que m ina< x < €l (g(x) -  SQ(x)) >  - |M I  +  rj/2 pour 
5 >  0 suffisamment petit, et conclure sur cet intervalle. Procéder de même sur les autres intervalles.

2. On suppose qu’il existe deux polynômes de meilleure approximation P i ,  P 2  £  En. Montrer 
que tout polynôme P  G [P i, P 2 ] est encore un polynôme de meilleure approximation. Grâce à 1., en 
déduire que

£(/(*<) -  = ±11/ -  p \\
et conclure.

On suppose toujours que X  est un espace topologique et on prend pour en­
semble A  l’ensemble % des parties compactes non vides de X  ; la topologie de la 
3C-convergence sur l’espace 3^x{X \F )  est appelée topologie de la convergence 
compacte ; elle est définie par la famille de semi-normes
(3.9.9) \ \f\\i iK = sup ||/(rr)|U> i e l ,  K  G X .

x e i <

Lorsque F  est séparé, la topologie de la convergence compacte est séparée d’après 
le corollaire 3.9.2, car tout point de X  est compact. Voici un critère simple de 
métrisabilité.
Proposition 3.9.8 Si F  est métrisable et s'il existe une suite (Kn) de compacts de 
X  telle que tout compact de X  soit contenu dans l'un des Kn, l'espace J b x  ( X ; F)  
est métrisable. Si F  est un espace de Fréchet, l'espace $b/x(X]F)  est alors un 
espace de Fréchet.
Preuve On peut en effet supposer dénombrable l’ensemble J, la famille de semi- 
normes (3.9.9) est alors équivalente à la famille dénombrable

WfWi.K» =  sup ||/ (x ) ||i , i  G I ,  n G N,
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et ceci permet de conclure. Q.E.D.
Note On notera que tout ouvert X  de R71 vérifie les hypothèses de cette proposi­
tion.

Lorsque F  est séparé, toute fonction continue /  : X  —> F  est bornée sur 
tout compact : l’espace G(X\F) est donc un sous-espace vectoriel de l’espace 

(X) F) y on munit ce sous-espace de la topologie de la convergence compacte 
et on le note alors GC( X ; F). Cet espace est séparé (F est séparé) et il est métrisable 
sous les hypothèses de la proposition 3.9.8. Vu la proposition 3.9.4, on a la
Proposition 3.9.9 Soit F un e.l.c. séparé, on suppose que X  est localement com­
pact ou bien que X  est séparé à base dénombrable de voisinages, alors le sous- 
espace GC(X; F) est fermé dans Jb/x^X] F). Ce sous-espace est donc complet si 
on suppose en outre F complet
Preuve Si X  est localement compact, tout point admet un voisinage compact et la 
propriété 1. de la proposition 3.9.4 est vérifiée.

Si X  est séparé à base dénombrable de voisinages, soit (xn) une suite conver­
gente de X  et de limite a ; l’espace X  étant séparé, l’ensemble 
K  = M u |J ~ o { z » }  est compact (exemple 2.31.1) et la propriété 2. de la pro­
position 3.9.4 est vérifiée. Q.E.D.

Lorsque F  est un espace de Fréchet et lorsque X  vérifie les hypothèses des 
propositions 3.9.8 et 3.9.9, l’espace GC(X;F)  est un espace de Fréchet. On en 
déduit en particulier le résultat suivant.
Corollaire 3.9.10 Soient fl un ouvert de Rn et F un espace de Fréchet, alors 
Vespace Gc(fl\ F), muni de la topologie de la convergence compacte, est un espace 
de Fréchet.
Remarque 3.9.2 Lorsque F  est un espace normé, la topologie de la convergence 
compacte de ces espaces Gc(Cl\ F) n’est pas une topologie d’espace normé (bien 
entendu, si fi ^  0 et F  ^  {0}). En effet, montrons que tout voisinage de 0 contient 
un sous-espace vectoriel ^  {0}. On peut supposer ce voisinage V  de la forme 
{ /  € Cc(Q; F) ; supxeK ||/(x ) || <  e} où K  est un compact de Q et e >  0 ; soit 
/o : Q —> R une fonction continue nulle sur K  et non identiquement nulle (par 
exemple, la fonction x d(x, K)) et soit yo G F  -  {0}, alors ce voisinage V  
contient le sous-espace vectoriel engendré par la fonction x ^  fo(x)yo♦

Exercice 3.9.4 Soient X  un espace compact, E = en(X;M) l ’espace de Banach des fonctions 

continues pour la norme de la topologie de la convergence uniforme, (æn ) une suite de points de 

X  et an une s^r*e absolument convergente de nombres réels. Pour tout /  G E, on pose
T( f )  =  ün f ( xn )-Montrer que T  est une forme linéaire continue sur E de norme la «l*

Exercice 3.9.5 Étant donné un espace topologique X  et un e.v.t. E , le support d’une fonction 
f  : X  —> E  est par définition l’adhérence de l’ensemble {x e  X  ; f (x)  ^  0} : cette définition 
est cohérente avec celle donnée au paragraphe 36 pour des fonctions à valeurs réelles.

On note £q(X \E)  l’ensemble de toutes les fonctions continues de X  dans E dont le support est 
compact et co{X\ E) l’ensemble des fonctions continues /  : X  —> E qui tendent vers 0  à l'infini, 
c ’est-à-dire telles que
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{pour tout voisinage V  de 0 dans l ’espace E,  il existe un compact K  C X  tel 
que f ( X  -  K )  C V.

1. On suppose que l ’espace X  est séparé et que E,  (IM IOie/» est un e.l.c. séparé. Montrer que 
co(X ; E)  est un sous-espace vectoriel fermé de l’espace Gb( X ; E)  muni de la topologie de la conver­
gence uniforme et que Gq{X \E)  est un sous-espace vectoriel de cq{X;E) .

2. On suppose que X  est un espace localement compact et que E  est un espace normé. Montrer que 

l’espace Co(X; E)  est dense dans l’espace co(X\ E)  pour la topologie de la convergence uniforme 
[utiliser le corollaire 2.36.6],

Exercice 3.9.6 Soient I  un ensemble et E  un espace normé, on note co(/; E)  l ’ensemble des fa­
milles x =  (Xi)iej d’éléments de E  telles que

pour tout e >  0, il existe une partie finie J C  I  telle que ||æi || <  e pour tout i E I — J.

On munit /  de la topologie discrète.
1. Montrer que l’espace c o ( /;  E)  coïncide avec l ’espace noté de la même façon défini à l ’exercice 

3.9.5. L’espace c o ( /;  E)  est un sous-espace fermé de l’espace Z°°(/; E)  et on peut donc munir ce 
sous-espace de la norme ||æ|| =  supieI  ||æ i||. Si E  est un espace de Banach, c o ( /;  E)  est un espace 
deBanach.

2. Soit I =  I U {cj} le compactifié d’Alexandroff de J, on note F  l’ensemble des fonctions 
continues f  -+ E  telles que f (u)  =  0. Montrer que F  est un sous-espace vectoriel fermé de 
l’espace GU(I] E)  muni de la topologie de la convergence uniforme.

3. Si f  : I  —> E  est une application de /  dans E,  on note /  : I  —► E  l ’application prolongeant /  
telle que f(uj) =  0. Montrer que l’application /  i-> /  induit une isométrie linéaire de c o (/;  E)  sur F.

4. On note p* l’application x  =  (Xi)ie j  i-> Xi ; vérifier que cette application de c o ( /;  E)  dans E  
est linéaire et continue. Montrer qu’une partie A  de c o ( /;  E)  est relativement compacte si, et seulement 
si,

a. Pi(A) est relativement compact dans E  pour tout i G / ,
b. pour tout e >  0, il existe une partie finie J  de I  telle que ||x î || <  e pour tout i  G I  — J  et 

tout x e  A
[utiliser le théorème d’Ascoli].

Exercice 3.9.7 Soient X  un espace métrique, E un espace vectoriel normé et p un nombre réel tel 
que 0 < p <  1. On note G0t^(X; E) l’ensemble de toutes les fonctions f  : X  —> E /j-hôldériennes, 
c ’est-à-dire telles qu’il existe une constante c >  0 telle que

Il f (x)  -  f ( y)  || <  cdiXyyY  pour tout x , y  e  X.

1. Montrer que e 0,/x(A ’; E)  est un sous-espace vectoriel de l ’espace G(X\E).
2. Soit a e  X,  montrer que

\\f\\a = Il/(a)|| + supx^y
ll/(g)-/(y)ll

d(x,y)»

est une norme sur G°^(X ; E)  et que toutes ces normes 11*1̂  sont équivalentes lorsque a décrit X.
3. Lorsque E  est un espace de Banach, montrer que E)  est un espace de Banach.
4. Si X  est un espace métrique borné, montrer que G°^(X; E)  C Gf,(X; E)  et que l ’injection 

canonique est linéaire et continue lorsqu’on munit l ’espace Gb(X;E)  de la norme de la topologie de 
la convergence uniforme.

Exercice 3.9.8 Soient X , Y  des ensembles et F  un e.l.c. On considère la bijection 
$  ‘J ( X  x  Y\F )  —► 'J(X; ^(Y; F))  qui à /  €  3 ( X  x  Y; F)  associe la fonction 
$ ( / )  : x  ->  f(x,  . )  de X  dans 'J(Y; F).

1. Soit A  (resp. 25) un ensemble non vide de parties non vides de X  (resp. Y ), montrer que F  induit 
un isomorphisme de l’espace X'B ( X x Y; F)  sur l ’espace J btA (X ; 'Jbt3 ( y  ; F )) . En particulier, 

induit un isomorphisme de l’espace fSb(X x Y \ F )  sur l’espace £Fb(X; ^ ( y - ,  F)).
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2. Si X  et Y  sont des espace topologiques séparés, en déduire que $  induit un isomorphisme de 

l’espace Sbtx ( X  x Y; F)  sur l’espace fJ btx (X ;  ^6,%{Y\F ))-
Exercice 3 .9 .9  Soient X , Y  des espaces topologiques et F  un e.l.c. séparé.

1. Soit /  G G(X x Y,  F ), montrer que l ’application x i-> /(a?,*) de X  dans GC{Y\F)  est 
continue.

2. Réciproquement, on suppose Y  localement compact ; soit /  : X  x  Y  -»  F  une application 
telle que, pour tout x G X> l ’application f ( x y •)  : Y  F  soit continue, ainsi que l'application 
ï 4 / ( ï , •) de X  dans Cc (Y ; F ) , montrer alors que /  est continu.

3. On suppose X  séparé et Y  localement compact, en déduire que la bijection $  définie à l ’exercice 

3.9.8 induit un isomorphisme de l ’espace Cc(X  x Y; F)  sur l ’espace GC(X; GC( Y ; F)).

Exercice 3 .9 .1 0  Soit X  un espace localement compact dénombrable à l ’infini (exercice 2.35.10), 
montrer que dans l’espace de Fréchet 0 c (X ;M ) le sous-espace eo (X ;M ) des fonctions continues à 

support compact est partout dense.



B -  Espaces d’applications 
linéaires et continues

3.10 Norme d’une application linéaire continue définie 
et à valeurs dans un espace normé

Étant donné deux e.l.c. E  et F , il est possible de définir diverses topologies d’e.l.c. 
sur l’espace £(E]F)  des applications linéaires et continues de E  dans F  ; si A 
est un ensemble non vide de parties bornées de E , la proposition 3.7.2 montre 
que L(E;F)  est un sous-espace de l’espace S^a ^E^F) ; on peut donc munir 
£>(E; F) de la topologie de la convergence uniforme sur tout ensemble de A ; on 
obtient ainsi une topologie d’e.l.c. sur L(E\ F). Les propriétés de ces topologies 
jouent un rôle fondamental dans l’étude de la dualité.

Dans ce paragraphe, nous étudierons uniquement la situation la plus simple de 
deux espaces normés E  et F, A  étant l’ensemble de toutes les parties bornées de 
E  ou, ce qui conduit à la même topologie, l’ensemble réduit à la boule unité de E.

Théorème 3.10.1 Soient E et F des espaces normés, A l'ensemble des parties 
bornées de E et B = {B} où B = {x G E  ; ||æ|| <  1} est la boule unité de E . Sur 
L(E\ F), la topologie de la A-convergence et la topologie de la B-convergence 
coïncident avec la topologie définie par la norme
(3.10.1) ||T|| =  sup ||Tx||, T  G L{E\F).

x G B

Si F est un espace de Banach, £(£*; F) est alors un espace de Banach. En parti­
culier, le dual (topologique) E ' de tout espace normé est un espace de Banach.

Preuve La topologie de la .A-convergence est définie par la famille de semi-normes 
T  h* sup.cGA ||Tæ|| où A décrit A  ; quant à la topologie de la ïB-convergence, 
elle est définie par la seule semi-norme (3.10.1) et elle est donc moins fine que la 
topologie de la A-convergence. Inversement, soit A  une partie bornée de E  ; alors,
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A C B'(0; r) avec r >  0, d’où
sup ||Tx|| <  sup ||Ta;|| =  r sup ||Tx||
x e A  x e B ' ( 0 - , r )  x e B

d’après la linéarité de T  et ceci prouve que la topologie de la .A-convergence est 
moins fine que la topologie de la !B-convergence. Ces deux topologies coïncident 
donc sur £(E; F) ; on obtient ainsi une topologie séparée sur F) car la to­
pologie de la A-convergence est séparée (corollaire 3.9.2) et il en résulte que la 
semi-norme (3.10.1) est une norme : l’espace £(E; F) est donc muni d’une struc­
ture d’espace normé.

Montrons que C(E; F) est fermé dans l’espace Gb,A(E] F) ; cet espace étant 
complet lorsque F  est un Banach (proposition 3.9.4), ceci prouvera que £>{E\ F) 
est alors un Banach. Soient x, y G E> A, fi G K, la topologie de la A-convergence 
étant plus fine que la topologie de la convergence simple (proposition 3.9.1), les 
applications de GbtA(E\F)  dans 4  T ( \x  +  fiy) e t T  4  ATx  +  yTy  
sont continues ; ces applications coïncident sur £>{E\ F ), donc sur son adhérence 
d’après le principe du prolongement des identités, ce qui prouve le résultat voulu.

Q.E.D.
La linéarité de T  permet de donner les formes suivantes à la norme d’une 

application linéaire et continue

(3.10.2) ||T|| =  sup ||Tx|| =  sup ||Tx|| =  sup
| |* | |< i  11*11=1 * £ £ - { 0 }  11*11

On notera l’inégalité, constamment utilisée dans la pratique,
(3.10.3) ||Tx|| <  ||T|| ||x||, pour tout x G J5,
la norme de T  étant simplement, d’après sa définition, la plus petite constante telle 
que cette inégalité ait lieu pour tout x. En outre, la norme de T  est définie par une 
borne supérieure qui n’est pas nécessairement atteinte ; elle l’est, évidemment, si 
E  est de dimension finie, la boule unité de E  étant alors compacte.
Remarque 3.10.1 D’après sa définition même, la topologie ainsi définie sur 
£f(E\ F) ne dépend que de la topologie des espaces E  et F  : lorsqu’on substitue 
aux normes de E  et F  des normes équivalentes, la norme (3.10.1) est remplacée 
par une norme équivalente.

Remarque 3.10.2 Voici une remarque très utile concernant la convergence dans 
l’espace L(E;F).  Soit (Tn) une suite d’applications linéaires et continues de E  
dans F  telle que la suite (Tn \#) des restrictions à la boule unité de E  converge uni­
formément ; la limite /  est alors une application continue de B  dans F. Montrons 
que sous ces hypothèses, la suite (Tn) converge dans l’espace £(E; F ). Observons 
d’abord que cette suite converge simplement : soit x  de E , il existe A >  0 tel que 
x/X G B , la formule Tnx = XTn(x/X) montre que la suite (Tnx) converge, ce 
qui prouve le résultat voulu. Notons T  la limite simple de la suite (Tn) ; alors T  
est une application linéaire d’après le principe du prolongement des identités ; sa 
restriction à B  est égale à /  et ceci prouve, B  étant un voisinage de 0, que T  est
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continue en 0. L’application linéaire T  est donc continue et la suite (Tn) converge 
vers T  uniformément sur B , donc dans l’espace £(E ] F).

On peut préciser le théorème 3.5.4 de la façon suivante.
Proposition 3.10.2 Soient E  un espace normé, F un espace de Banach, E\ un 
sous-espace vectoriel de E  partout dense et T  : Ei —> F une application linéaire 
et continue. Si T  : E  —> F est l'application linéaire et continue qui prolonge T, 
alors | | r | |  =  ||T||.
Preuve On note d’abord que ||T|| <  ||T|| car T  prolonge T. On a d’autre part 
\\Tx\\ < im i ||x|| pour tout x  € üa, donc pour tout x  G E  d’après le principe du 
prolongement des inégalités et ceci prouve que ||T|| <  ||T||. Q.E.D.

Tous les résultats qui précèdent se généralisent de suite aux applications mul­
tilinéaires.

Rappelons quelques définitions. Étant donné une famille finie d’espaces vec­
toriels (Ei)i<i<n et un espace vectoriel F, une application T  : flIL i -» F  
est dite multilinéaire si, en notant x =  (a^)i<*<n les éléments de l’espace produit 
Yli=i Ei> les applications Xi T(x i , . . .  ,x n) sont linéaires de Ei dans F  pour
tout i, les variables Xj pour j  ^  i  étant donc fixées. On note JL* (E u . . . ,  En\F) 
l’ensemble de toutes les applications multilinéaires ; c’est un sous-espace vectoriel 
de l’espace vectoriel SXEKLi ^  F) de toutes les applications de n iL i  dans 
F.

Lorsque les espaces Ei et F  sont des e.l.c., on munit l’espace ÜILi de la 
topologie d’e.l.c. produit et on note £ ( E i , .. . ,E n\ F) l’ensemble de toutes les 
applications multilinéaires et continues de JliL i ^  dans F  ; on a évidemment 
L{E1 , . . . , E n; F ) = £ * ( E u . . . , E n; F ) n e ( n t 1 Ei;F) et L(EU . . .  ,E n; F) 
est donc un sous-espace vectoriel de chacun de ces espaces.

Lorsque tous les espaces Ei sont égaux à un même espace E , l’espace des ap­
plications multilinéaires (resp. continues) sera noté £* (En\ F) (resp. Jdn(En\ F)). 
Note Si n = 1, une application multilinéaire est simplement une application li­
néaire (les notations adoptées sont en accord avec ce fait). Par contre pour n > 1, 
on vérifie que l’application identiquement nulle est la seule application à la fois li­
néaire et multilinéaire : par exemple, pour n =  2, si T  : E\  x E 2 —> F  est linéaire 
et bilinéaire, on a

(xiyX2 ) — (#1,0) +  (0 ^ 2))
d’où T(x  1 , 0:2 ) =  T(x i,0 ) +  T (0, x2) d’après la linéarité et T (x i,0 ) =  0, 
T(0, X2 ) = 0 d’après le caractère bilinéaire ; ceci prouve bien que T = 0.

On étend aisément aux applications multilinéaires les théorèmes 3.3.3 et 3.10.1. 
En se limitant au cas des espaces normés, le lecteur vérifiera sans difficulté le théo­
rème suivant.
Théorème 3.10.3 Soient (Ei)i<i<n et F  des espaces normés, E  =  fliL i l'es­
pace normé produit et soit T  : E  —ï F une application multilinéaire. Les proprié­
tés suivantes sont équivalentes.

1. T  est continu.
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2. T est continu à ïorigine de E.
3. Il existe une constante c >  0 telle que

||T (a;i,. . .  ,x n)|| <  c ||x i || x . . .  x ||xn ||
pour tout Xi E Ei.

En outre, Vapplication
(3.10.4) T  H’ ||T || =  sup ||T (x)||, où ||x|| =  mæc ||ar<||,

||x ||< l l< t< n

est une norme sur l'espace £ (E i , . . . ,  En\F) et cet espace normé ést un espace 
de Banach lorsque F est un espace de Banach.

Exercice 3.10.1 Vérifier ce théorème.

En utilisant le caractère multilinéaire de T, on a des expressions équivalentes 
pour la norme (3.10.4) d’une application multilinéaire et continue

(3.10.5) | |T | |=  sup ||T (s)|| =  sup f ] * 1’ ' ' .
||.Ti|| =  l  X i ^ O  11^1 II X . . .  X | |x n ||

On observera que la norme ||T|| d’une application multilinéaire et continue est 
simplement la plus petite constante telle que
(3.10.6) | |T ( x i , . . . ,x n)|| <  ||T ||||x i || x . . .  x ||xn ||
pour tout Xi e Ei.

Enfin, lorsqu’on remplace les normes des espaces Ei et F  par des normes 
équivalentes, on remplace la norme (3.10.4) par une norme équivalente.

Exemple 3.10.1 Soient E, F  et G des espaces normés, la composée de deux appli­
cations linéaires et continues étant linéaire et continue, on peut définir l’application

< p : { S , T ) e £ ( E ; F ) x L ( F ] G ) ^ T o S e L ( E ; G ) .
On a, pour tout x £ E,

H (ToS)(x)|| =  ||T(S(x))|| <  II7ÏI ||S(x)|| <  ||T|| ||S|| ||x||, 
et ceci prouve que
(3.10.7) | |T o 5 | |< | |T | | | |5 | | .
L’application étant évidemment bilinéaire, cette inégalité prouve que (f est continu 
et que sa norme est <  1 : il s’agit d’une norme dans l’espace

L(L(E;F),L(F;Gy,L(E-,G)).

Exercice 3.10.2 Soient (£ i) i< i< n des e.l.c. séparés de dimension finie, F un e.l.c., montrer que 
toute application multilinéaire T : 11^=1 Ei ^  F est continue.

Exercice 3.10.3 Soient E,FetG  des e.l.c. et T : E x F —> G une application bilinéaire, montrer 
l ’équivalence des propriétés

1. Test continu,
2. T  est continu en un point (a, b) G E x F,
3. T  est continu au point (0,0) € E x F.
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Exercice 3.10.4 Soient E , F, G des espaces normés, à toute application bilinéaire et continue 
T  : E  x  F  —► G on associe l ’application

4>(T) : æ E F  •-> T(æ, •) E £ (F ; G).

Montrer que <ï>(T) est une application linéaire et continue de E  dans £ ( F ;  G) et que O est une isomé­
trie linéaire de £ ( F ,  F ; G) sur £ ( F ;  £ ( F ;  G )).

Les théorèmes de Banach
Le premier théorème fondamental est le suivant.
Théorème 3.11.1 Théorème de l’application ouverte Soient E  un espace de 
Fréchet, F un e.l.c. métrisable et T  : E  -» F une application linéaire et continue, 
alors ou bien T(E) est maigre, ou bien T  est une application ouverte (donc sur­
jective). Si, de plus F est un espace de Baire (par exemple un espace de Fréchet), 
toute application linéaire continue surjective de E  sur F est ouverte.

Avant d’aborder la démonstration de ce théorème, il est utile de faire quelques 
commentaires concernant la première assertion.

Observons d’abord que toute application linéaire ouverte est nécessairement 
surjective d’après l’exercice 3.1.3. Par ailleurs, la démonstration qui suit n’utilise 
que la métrisabilité de F , mais si F  n’est pas un espace de Baire, ce théorème est 
trivialement vérifié et n’a donc aucun intérêt. En effet, si F  n’est pas un espace de 
Baire, il existe un ensemble maigre d’intérieur non vide ; il en résulte qu’il existe 
un voisinage V  de 0 qui est maigre ; remarquons ensuite que F = (J^ L inV  : 
en effet, soit x e F, la suite (x/n) tend vers 0 et par conséquent x e nV  dès 
que n est suffisamment grand. Il en résulte que F  est maigre en tant que réunion 
dénombrable d’ensembles maigres. Si F  n’est pas un espace de Baire, F  est donc 
maigre et a fortiori toute partie de F.
Note Soit T : E F  une application linéaire continue et surjective, si 
7t : E E/KerT  désigne la surjection canonique, dire que l’application T  est 
ouverte signifie que l’unique application S : E / KerT  —> F  telle que T = S on  
est un isomorphisme (exercice 2.24.2).

La topologie des espaces E  et F  peut être définie par des distances invariantes 
par translation ; notons indifféremment d ces distances et S ^ (a ;r ) ,  BF(b\ s) les 
boules ouvertes dans les espaces E  et F. Démontrons d’abord le lemme suivant.

Lemme 3.11.2 Soient E  un espace de Fréchet, F un e.l.c. métrisable et 
T  : E  -» F une application linéaire et continue telle que
(3.11.1) (Ve > 0)(3S > 0 )(BF(0 ;ô) C T(BE(0;e))), 
alors T  est une application ouverte.
Preuve Par translation, on déduit de (3.11.1)
(3.11.2) (Ve >  0)(3<î >  0)(Va E E)(BF(Ta;ô) C T(BE(a\e)))
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1. Soit £o > 0 et (en) une suite de nombres > 0 telle que £n <  £o- 
Grâce à (3.11.2), on peut construire une suite (6 n) de nombres > 0 telle que, pour 
tout a € E  et tout n G N,
(3.11.3) BF(Ta-,ôn) cT(BE(a-,en)) et lim Sn =  0.n—xx)

2. Soit y G B f (0\So) 9 construisons par récurrence une suite (xn) de E  telle 
que xo =  0 et
(3.11.4) d(xnyxn+1) <  en et d(yyTxn+i) < 6 n+ï
pour tout n > 0. D’après (3.11.3), le point y est adhérent à T(BE(0;£o)) ; l’in­
tersection Bp(y;Si) D T(J5f?(0;eo)) est donc non vide : il existe x\ G E  tel que 
d(0 ,£ i) <  £q et d(y>Txi) <  S\ 9 ce qui prouve (3.11.4) pour n  =  0. Par récur­
rence, si d(y, Txn) < ôni il résulte de (3.11.3), où nous prenons a =  xn> que y est 
adhérent à T(BE(xn; en)) ; l’intersection BE(y; Æn+i) fl T(BE(xn; en)) est non 
vide, d’où un point arn+i G E  vérifiant (3.11.4).

3. La suite (xn) est de Cauchy, vu que d(xp,xp+q+1) <  Y l ^ p £n pour tout 
p , q > 0 , la série £n ^tant convergente. Cette suite est donc convergente ; 

soit x sa limite. On a d(0, £n+i) <  X)p=o £v ^  £o+Z)^=i £p> d’où d(0, x) < 2e0. 
On a d’autre part, d’après (3.11.4), d{y,Txn+1) <  (5n+i et la suite (£n) tendant 
vers 0, on en déduit que y = Tx.  Autrement dit, pour tout y G BE(0; 5o), on a 
construit un point x G BE(0; 2eo) tel que y = Tx  ; ceci prouve donc que, pour 
tout £o > 0, il existe £o > 0 tel que BE(0; So) C T(BE(0; 2eo)).

4. Le lemme en résulte. En effet, soit O un ouvert de E  et soit a G O ; il existe 
£q > 0 tel que BE(a; 2eo) C O, d’où

T(0) D T(BE(a; 2£o)) — Ta +  T(BE(0; 2eo)) D Ta + BE(0; <îo) 

et ceci prouve que T(0)  est un voisinage de Ta : on en déduit que T(0)  est ouvert 
en tant que voisinage de chacun de ses points. Q.E.D.
Preuve du théorème Supposons T(E)  non maigre et vérifions (3.11.1), le lemme 
permet de conclure.

1. Posons W = Be (0;£/2). Comme nous l’avons expliqué ci-dessus, on a 
E = IX L i n W • L’application T  étant linéaire, T(E) = \Jn=i nT(W)  et, T(E) 
étant supposé non maigre, l’un des ensembles nT(W) = nT(W) est donc d’inté­
rieur non vide et, les homothéties étant des homéomorphismes, T (W ) est d’inté­
rieur non vide : il existe a G F  et 8  > 0 tel que BE{a\ J) C  T(W).  Étant donné 
deux parties A  et B  de F , on pose A - B  = {x —y; x G Aet y G B}, c’est-à-dire 
A — B = <p(A x  B) si (p désigne l’application (x,y) G F x  F x -  y G F. 
On a alors BE(0; ô) C BE(a; S) — BE(a; S) : tout x G F  appartenant à BE(0; ô) 
peut en effet s’écrire x  =  (x H- a) — a où x  +  a, a G BE(a\ 5). On en déduit, vu la 
continuité de (p,

B f (0; S) C  T(W) -  T (W j  C  T(W) -  T(W) = T(W -  W) 
et on conclut en remarquant que W  — W  C  B E(0; e).

2. Quant à la dernière assertion du théorème, F  étant un espace de Baire, si T  
est surjective, F  =  T(E)  ne peut être maigre (car d’intérieur non vide), donc T
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est une application ouverte. Q.E.D.

Exercice 3.11.1 Soient E un espace de Fréchet, F  un sous-espace vectoriel de E distinct de E ; on 

suppose F  muni d’une structure d’espace de Fréchet telle que l ’injection canonique de F  dans E soit 
continue. Montrer alors que F  est maigre dans E .

Lorsque T  est une bijection, dire que T  est une application ouverte signifie que 
la bijection réciproque est continue ; on obtient ainsi le
Corollaire 3.11.3 Théorème de Banach Soient E et F des espaces de Fréchet, 
toute bijection linéaire et continue de E sur F est un isomorphisme.

On notera le caractère assez exceptionnel de ce théorème par sa simplicité ; il 
s’agit sans aucun doute de l’application la plus spectaculaire du théorème de Baire.

Corollaire 3.11.4 Sur un espace vectoriel, deux topologies comparables d*es­
paces de Fréchet sont nécessairement égales. En particulier, deux normes com­
parables d'espaces de Banach sont équivalentes.

Preuve Soient Ti et T2 deux topologies d’espaces de Fréchet sur un même espace 
vectoriel E. Si la topologie est moins fine que la topologie O2 , l’application 
identique de (E , ^ 2) dans (Ey Ti) est une bijection linéaire continue ; c’est donc 
un isomorphisme d’après le corollaire précédent ce qui prouve l’égalité des deux 
topologies. Q.E.D.

Exercice 3.11.2 Soient E un espace de Fréchet, F  un sous-espace vectoriel de E ; on suppose F  
muni d’une structure d’espace de Fréchet telle que l’injection canonique de F  dans E soit continue. 
Soit G un sous-espace vectoriel de F  fermé dans E , montrer que sur G  les espaces E et F  induisent 
la même topologie.

Le théorème de Banach permet d’obtenir un critère très simple de continuité 
d’une application linéaire.
Corollaire 3.11.5 Théorème du graphe fermé Soient E  et F des espaces de 
Fréchet, T  : E  -» F une application linéaire, alors T  est continue si, seulement 
si, le graphe de T  est fermé dans E  x F.
Preuve Notons pr\ : E x F E  et pr2  : E  x F F  les projections ; ce sont 
des applications linéaires continues. Le graphe de T  peut s’écrire

G = {z e  E  x F ; p r 2 (z) = (T o p n ) ( z )}.
Si T  est continu, ce graphe est donc fermé.

Réciproquement, si G est fermé, G est un sous-espace fermé d’un espace de 
Fréchet ; G est donc un espace de Fréchet. La première projection pr\ induit une 
bijection linéaire et continue tp =  pri\c : G -> E, donc un isomorphisme d’après 
le théorème de Banach. On a,pour# G E,(p~1 (x) = (x,Tx)> d’oùT  =  pr2 °ip~l 
et il en résulte que T  est continue. Q.E.D.

On dispose là d’un outil particulièrement puissant pour démontrer la continuité 
d’une application linéaire.
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Remarque 3.11.1 On peut expliciter le théorème du graphe fermé de la façon 
suivante. Dire que le graphe de T  est fermé signifie que, pour toute suite (xn) de 
E  telle que la suite ((xn,Txn)) converge, alors y =  Tx  si x  =  limn^oo xn et 
y =  limn_>oo Txn ; en outre, on peut supposer x =  0 d’après la linéarité de T. 
Dire que le graphe est fermé peut donc s’écrire de la façon suivante

H 11 / Pour toute su*te (Xn) te^e 9ue limn—kx> Xn = 0 et
\ lim n_*oo Txn = y, alors y = 0.

Voici une application intéressante du théorème de Banach concernant la notion 
de supplémentaires topologiques.
Proposition 3.11.6 Dans un espace de Fréchet, des supplémentaires algébriques 
fermés sont nécessairement des supplémentaires topologiques.
Preuve Soit E  un espace de Fréchet, somme directe algébrique de deux sous- 
espaces fermés E\ et E<i. Alors, E\ x E 2 est un espace de Fréchet et l’application 
(x i , xf) € Ei x E2  h* x\ +  X2  £ E  est une bijection linéaire et continue, donc 
un isomorphisme d’après le théorème de Banach, ce qui signifie précisément que 
Ei et E 2 sont des supplémentaires topologiques. Q.E.D.
Exercice 3.11.3 1. Soient E, F  des espaces de Fréchet, G un espace topologique séparé, 
T  : E  -*  F  une application linéaire et S  : F  -► G une application continue injective. Montrer 
que T  est continu si, et seulement si, S  o T  est continu [utiliser le théorème du graphe fermé].

2. En déduire que T  est continu si, et seulement si, T  est continu lorsqu’on substitue à la topologie 

de F  une topologie séparée moins fine.

Exercice 3.11.4 Soient E  et F  des espaces de Fréchet, on dit qu’une application T  E £ ( F ;  F)  est 
inversible à droite s ’il existe S  E £ ( F ;  E)  tel que T  o S  =  7> . Montrer l ’équivalence de

1. T  est inversible à droite.
2. T  est surjective et Ker T  admet un supplémentaire topologique.

[si S  est un inverse à droite, noter que E  =  Ker T  ©  1m S].

Exercice 3.11.5 Soient E  et F  des espaces de Fréchet, on dit qu’une application T  e &{E\ F)  est 
inversible à gauche s’il existe S e  C(F\ E)  tel que S  o T  =  Ip.  Montrer l’équivalence de

1. T  est inversible à gauche.
2. T  est injective et Im T  admet un supplémentaire topologique.

Exercice 3.11.6 Soient E , F des espaces de Fréchet, T  E £(E\ F) une application linéaire conti­
nue telle que Im T  admette un supplémentaire algébrique fermé Fo, soit F =  1m T  ©  Fo. On note 
7r : E —ï E/ Ker T  la surjection canonique et S : E / Ker T —> F l’application linéaire continue telle 
que T = S on. Montrer que l’application

7  : (Ç ,y) E F /K e r T  X F0 ^  y  — SÇ E F

est un isomorphisme et en déduire que 1m T  est fermé dans F .

Exercice 3.11.7 On considère l’espace de Banach E =  C ([0 ,1]; E ) pour la norme de la topologie 
de la convergence uniforme et un sous-espace vectoriel fermé F  tel que toute fonction de F  soit de 
classe C1.

1. Montrer que l’application T  : /  / ; (dérivée de / )  de F  dans E  est continue [utiliser le
théorème du graphe fermé].

2. En déduire que la boule unité de F  est équicontinue.
3. Montrer que F  est de dimension finie.
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3.12 Le théorème de Banach-Steinhaus

On se propose de donner des critères permettant d ’affirmer la continuité d’une li­
mite simple d’applications linéaires et continues. Ceci repose d’une part sur une 
notion d’équicontinuité généralisant celle étudiée au paragraphe 2.34 dans le cadre 
des espaces métriques, d’autre part sur le théorème de Baire permettant de carac­
tériser les parties équicontinues de l’espace £>(E\ F).

Si E  et F  sont deux e.l.c., on remarquera d’abord que l’espace £*(E; F) de 
toutes les applications linéaires de E  dans F  est fermé dans l’espace &S(E;F) 
dès que F  est séparé. En effet, soient x, y G E  et À, p G K, les applications 
T  i-> T(Xx 4* py) et T  XTx +  fiTy de ^ ( F ;  F) dans F  sont continues ; elles 
coïncident donc sur une partie fermée de 7S(E\ F) et £*(E; F) est l’intersection 
de tous ces fermés lorsque x, y décrivent E  et À, y, décrivent K. En particulier, la 
limite simple d’une suite Tn : E  F  d’applications linéaires est linéaire. Lorsque 
les applications Tn sont continues, la limite n’est pas en général continue. Voici un 
exemple très simple.

Exemple 3.12.1 Prenons pour espace E  l’espace des fonctions polynômes sur 
l’intervalle [0 ,1] avec la norme de la topologie de la convergence uniforme 
||p|| = max0<x<i |p(x)| et, pour n > 1, posons Tn(p) =  n (p (l/n ) -  p(0)) ; on 
définit ainsi des formes linéaires et continues Tn G E' vu que \Tn(p)\ <  2n||p||. La 
suite (Tn(p)) converge vers la dérivée p'{0) de p en 0 ; la suite (Tn) converge donc 
simplement vers la forme linéaire T  : p »-> p'(0). Montrons que cette forme li­
néaire n’est pas continue. Considérons la suite de polynômes Pk(x) =  kx(l — x)k ; 
on a p'k{x) =  A;(l -  x )A;“ 1(l — x — kx) ; pk présente donc un maximum pour 
x =  (1 -h fc)-1 , d’où 0 < pk{x) < (k/(k  +  l))^ -1"1 <  1, ce qui prouve que 
I M  < 1 alors que pk(0) =  k : il ne peut donc exister de constante c >  0 telle 
que 124(0)1 < c ||p^|| pour tout k > 0 et ceci prouve que la forme linéaire T  n’est 
pas continue.

Les parties équicontinues de £(E] F) sont définies de la façon suivante.

Définition 3.12.1 Soient E, F des e.l.c., une partie A de L(E\ F) est dite équi- 
continue si, pour tout voisinage V de 0 G F, il existe un voisinage W de 0 G E  
tel que T(W)  C V pour tout T  G A

Lorsque F  est métrisable, sa topologie étant définie par une distance d in­
variante par translation, il suffit de prendre pour voisinage V une boule fermée 
B'( 0; e), e > 0 ; la définition précédente signifie alors que, pour tout T  G A et 
tout x G VF, d{0, Tx) < e et par translation, pour tout T  G A et tout x G a +  W 9 

que d(T a,T x) <  e. Lorsque F  est métrisable, on retrouve donc la définition
2.34.1 d’une partie équicontinue.

Lorsqu’on dispose de semi-normes sur E  et F , on peut expliciter la définition
3.12.1 de la façon suivante.

Proposition 3.12.1 Soient E, (IMIOie/, et F, ( ||• | | ^ d e s  e.l.c., une partie
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A C £ ( F ;  F ) est équicontinue si, seulement si,

{pour tout j  G J, il existe une partie finie K  G 3^7) et 
une constante c >  0 telles que \\Tx\\j < c||x||/<, pour 
tout x  £ E et tout T  £ A.

Lorsque E  et F sont des espaces normés, A C  £ ( F ;  F) est équicontinue si, 
et seulement si, A est une partie bornée de l'espace normé C(E ; F), c'est-à-dire 
sup t &a l |r || <  oo, ||T|| désignant la norme de l'application linéaire et continue 
T.
Preuve Supposons A équicontinu et prenons V = F '(0 ;1 ), alors il existe un 
voisinage de 0 G E, qu’on peut supposer de la forme B'K(0; r), K  G 3^/), r  > 0, 
tel que T(BfK(0\r)) C F '( 0; 1) pour tout T £ A. Autrement dit, \\x \\k  < r 
implique \\Tx\\j < 1, d’où \\Tx\\j <  r _1||x||/c d’après le lemme 3.3.2, ce qui 
prouve (3.12.1).

Réciproquement, un voisinage V  de 0 G F  contient une boule fermée B'L{0; e), 
e >  0, où L est une partie finie de J  ; vu (3.12.1), un raisonnement élémen­
taire montre qu’il existe K  G 3'(7) et c > 0 tels que ||Tx ||l <  c||x||/c, d’où 
T(B'k {0; ô)) C B'l {0; e) C V dès que cS < e.

Lorsque E  et F  sont des espaces normés, (3.12.1) signifie \\Tx\\ < c\\x\\, soit 
||T|| <  c pour tout T  £ A, c’est-à-dire que A  est une partie bornée de l’espace 
normé £ (F ; F). Q.E.D.

On peut munir l’espace £ (F ; F) de la topologie de la convergence uniforme 
sur tout borné de E  ; cette topologie, appelée topologie de la convergence bor­
née, est définie par les semi-normes HTH^b =  supæeB ||Ta;||j, où j  décrit J  et 
B  l’ensemble des bornés de E  ; muni de cette topologie, l’espace &{E\ F) sera 
noté JCb(E;F). Lorsque E  et F  sont des espaces normés, la proposition précé­
dente affirme que les parties équicontinues de £>(E\ F) sont les parties bornées de 
Lb(E\ F ). Plus généralement, on a la
Proposition 3*12.2 Soient E  et F des e.l.c., toute partie équicontinue de L(E\ F) 
est bornée dans l'espace £>b(E; F ).
Preuve Si A est équicontinu, on a HTH^b <  c supæeB ||æ||k  d’après (3.12.1) et 
SUPx£B M K est fini dès que B  est borné, ce qui prouve que supTeA ||T ||jtj3 est 
fini quel que soit j  et B. Q.E.D.

La réciproque est inexacte : une partie bornée dans Lb(E\F) n’est pas né­
cessairement équicontinue. La réciproque est vraie lorsque les espaces sont des 
espaces normés ; il s’agit d’une circonstance exceptionnelle qui tient au fait que, 
dans un espace normé, l’origine admet un voisinage borné.

Ces remarques faites, on peut recopier les propositions 2.34.1 et 2.34.3. 
Proposition 3.12.3 Soient E, F des elc., Frétant séparé et soit A C  £ ( F ;  F) 
une partie équicontinue. Alors, l'adhérence A de A dans l'espace 3 ^ ( F ; F) est 
équicontinue.
Preuve Rappelons d’abord que As est contenu dans £*(F ; F ), l’espace F  étant 
séparé. Soit V  un voisinage fermé de 0 G F  (de tels voisinages constituent un
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système fondamental de voisinages de 0), il existe un voisinage W  de 0 £ E  tel 
que T ( W)  C  V pour tout T  £ A. L’application T  ^  T x  de 7S(E\F) dans F 
étant continue, l’ensemble des T  tels que T x  £ V  pour tout x  £ W  est fermé ; cet 
ensemble contenant A contient donc A . Ceci prouve que, pour T  £ A , x  £ W  
implique T x  £ V  ; il en résulte que toute application T  appartenant à A est 
continue en 0, donc continue, et que A est équicontinu. Q.E.D.

On en déduit le corollaire suivant.
Corollaire 3.12.4 Soient E, F des e.l.c., F étant séparé et soit (Tn) une suite 
d'applications linéaires et continues de E dans F convergeant simplement vers T. 
Si la suite (Tn) est équicontinue, alors l'application T  est linéaire et continue et, 
pour toute suite (xn) de E  convergeant vers x, la suite (Tnxn) converge vers Tx. 
En outre, lorsque E et F sont des espaces normés, on a ||T|| < liminfn-^oo ||Tn ||. 
Preuve Avec les notations de (3.12.1), on a en effet

IlTnx n -  Tx\\j < ||Tnx n -  Tnx\\j + ||Tnx  -  Tx\\j

< c\\xn - x \\k  + \\Tnx - T x \ \ j ,
inégalité qui prouve que \\Tnx n — T x\\j  converge vers 0 si la suite (xn) converge 
vers x.

Lorsque E  et F  sont des espaces normés, la démonstration directe de ce co­
rollaire est très simple. On a en effet ||Tnx|| <  ||Tn || ||x|| pour tout x  £ E, d’où 
||Tx|| < liminfn-^oo ||Tn || ||æ|| ; la suite (||Tn ||) étant bornée, ceci montre que T  
est continue et de norme inférieure à lim in f^ o o  ||Tn ||. Q.E.D.

Sur l’espace £(J5; F ), notons 7b la topologie de la convergence uniforme sur 
tout ensemble borné de E , 7C la topologie de la convergence uniforme sur tout 
ensemble compact de E  et 7S la topologie de la convergence simple ; notons 
£jb{E\F), £ c(E\F) et £ S(E]F) l’espace £(E;F)  muni des topologies T&, Tc 
et Tg respectivement. Il est clair que Ts <  7C <  Tb. D’autre part, si D est une 
partie de E , notons Tp la topologie de la convergence simple sur D, c’est-à-dire 
la topologie définie par les semi-normes T  i-> \\Tx\\j où j  décrit J  et x  l’ensemble 
Dy (|M |j)j€J désignant comme d’habitude une famille de semi-normes définissant 
la topologie de F. Bien entendu, la topologie 7d est moins fine que la topologie 
7$. On a alors la
Proposition 3.12.5 Soient E  et F des e.l.c. et soit D une partie de E partout 
dense, alors sur toute partie équicontinue A de £>(E\ F) les topologies 7d, 7s et 
7C coïncident. En outre, si (||«|| J  est une famille de semi-normes définissant la 
topologie de F, pour tout j  £ J, tout compact K  de E  et tout € > 0, il existe une 
partie finie Do de D et un S > 0  telles que, pour tout T, T ' £ A,
(3.12.2) sup ||T x  -  T fx\\j < S => sup ||T x  -  T 'x\\j < e.

x € D o  x £lK

Preuve II suffit de vérifier (3.12.2) ; ceci démontrera que, sur A , la topologie 7C 
est moins fine que la topologie 7o- En effet, soient To £ A et V  un voisinage de 
To dans A pour la topologie 7C, alors V  contient une intersection finie d’ensembles
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de la forme {T £ A  ; supxeK \\Tx -  Tox\\j <  e} (j £ J, K  compact de E  et 
€ >  0) ; d’après (3.12.2) chacun de ces ensembles contient un ensemble de la 
forme {T e A; supxGDo \\Tx -  T0 x\\j <  5} (D0 partie finie de D et S >  0), 
ensemble qui est un voisinage de To dans A pour la topologie Td ; il en résulte 
que V  est un voisinage de To dans A pour la topologie 7 d-

Vérifions (3.12.2). Prenons a priori S =  e/3. D’après l’équicontinuité de A , 
il existe un voisinage W  de 0 £ E  tel que \\Tx\\j < S pour tout x  £ W  et 
T  £ A, d’où ||Tx — Ta\\j <  ô pour x  £ a 4* W  ; D étant dense dans E> 
E = \JaeD(a +  W )  et K  étant compact, il existe donc une partie finie D o  de 
D telle que K  C  (JaeD0 (a +  W). On a alors

Il T x  -  T'xWj < ||T* -  Ta\\j +  || T a -  T'aWj +  || T 'a  -  T ' x ^  ; 
si x  appartient à K , il existe a € Do tel que x  £ a +  W,  d’où 

||Tx -  T 'x\\j < 28 +  sup ||Ta — T 'a^-,

d’où le résultat voulu. Q.E.D.
Remarque 3.12.1 Ceci permet de préciser que, dans le corollaire 3.12.4, la conver­
gence de la suite (Tn) est uniforme sur tout compact : en effet, si T  est la limite 
de la suite (Tn), l’ensemble {T} U Un{ ^ }  est équicontinu d’après la proposition
3.12.3 et il suffit d’appliquer la proposition précédente.

On en déduit également le corollaire suivant.
Corollaire 3.12.6 Soient E un e.Lc., F un e.l.c. séparé et complet et (Tn) une 
suite équicontinue d’applications linéaires et continues de E  dans F  convergeant 
simplement sur une partie D de E partout dense. Alors, la suite (Tn) converge 
uniformément sur tout compact et sa limite est une application linéaire et continue 
de E dans F.
Preuve La suite (Tn) est convergente, donc de Cauchy, pour la topologie 7d ; 
vu (3.12.2) c’est une suite de Cauchy pour la topologie Tc et ceci prouve qu’elle 
converge uniformément sur tout compact, l’espace (D; F) étant complet (théo­
rème 3.9.3). La suite (Tn) converge donc simplement et sa limite est continue 
d’après le corollaire 3.12.4. Q.E.D.
Remarque 3.12.2 Si (Tn) est une suite d’applications linéaires de E  dans F , l’en­
semble des x de E  pour lesquels la suite (Tnx ) converge est évidemment un sous- 
espace vectoriel de E. Dans le corollaire précédent, il suffit donc de supposer que 
le sous-espace vectoriel engendré par D est partout dense : on dit alors que D est 
une partie totale.

Le théorème de Banach-Steinhaus est, comme nous le verrons, une consé­
quence immédiate de la proposition suivante.
Proposition 3.12.7 Soient E, F des e.Lc. et soit A C  £(D; F) un ensemble d ’ap­
plications linéaires et continues. Pour tout x £ E, posons A{x) = {Tx ; T  £ A} 
et B = {x £ E \ A(x) est une partie bornée de F}. Alors, ou bien B est maigre, 
ou bien A est équicontinu.
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Preuve Supposons B  non maigre et montrons que A est équicontinu. Soit V  un 
voisinage de 0 G F  ; si (||•||^)^G-7 est une famille de semi-normes définissant la 
topologie de F , V  contient une boule fermée F ^ (0 ;r ) ,  r  > 0, K  G J ) ; soit
V ' =  B'k (0; r/2 ) , les ensembles Fn = f]TeA T~ l (nV')> n >  1 sont fermés.

Montrons que B  C  U^Li Fn . Soit x G B, A(x) étant borné, il existe n >  1 
tel que ||Tx||/c <  n (r /2 ) pour tout T  G A, soit Tx G n V \  d’où x G Fn. 
L’ensemble B  n’étant pas maigre, l’un des Fn est d’intérieur non vide : il existe 
a G F  et un voisinage W  de 0 G E  tel que a +  W  C Fn. S ix  appartient à W, 
on a donc T a+  Tx G nVf pour tout T  G A et, en particulier, Ta G n V \  d’où 
Tx G n(V' -  V ') C  nV  ; ceci prouve que T(W/n)  C  V  pour tout T  G A et A 
est donc équicontinu. Q.E.D.

Si A est une partie équicontinue, A est borné dans l’espace £>b(F\ F) (pro­
position 3.12.2), a fortiori A est borné dans l’espace £ S(F ; F) : on dit que A est 
simplement borné ; ceci signifie que A(x) est borné dans F  quel que soit x G E f 
c’est-à-dire B = E. La proposition 3.12.7 montre donc que, ou bien B  est maigre, 
ou bien B = E.
E xerc ice  3 .12 .1  Soient E  un e.l.c., F  un e.l.c. séparé complet et Tn : E  ->  F  une suite d’applica­
tions linéaires et continues. Soit C  l’ensemble des x G E  tels que la suite (Tnx) converge. Montrer 

que, ou bien C  est maigre, ou bien C =  E  [on notera que dans un e.l.c. un sous-espace vectoriel non 

maigre est partout dense d’après l’exercice 3.1.3].

La proposition 3.12.7 n’a d’intérêt que si E  est un espace de Baire : si E  n’est 
pas un espace de Baire, toute partie de E  est maigre comme nous l’avons expliqué 
à propos du théorème de l’application ouverte.

On a alors la
Proposition 3.12.8 Soient E  un espace de Fréchet, F un e.l.c., alors toute partie 
A C £ (F ; F) simplement bornée est équicontinue.
Preuve En effet, A  étant simplement borné, B  =  E  et E  étant de Baire ne peut 
être maigre. Q.E.D.

Cette proposition montre donc que, si F  est un espace de Fréchet, les trois en­
sembles suivants de parties de £ (F ;  F ) coïncident : l’ensemble des parties équi- 
continues, l’ensemble des parties bornées de £ S(E;F) et l’ensemble des parties 
bornées de £f>(F; F ).

Dans le cas des espaces normés, cette proposition s’écrit de la façon suivante. 
Corollaire 3.12.9 Soient E  un espace de Banach, F  un espace normé et 
A C  £ (F ; F ) un ensemble d'applications linéaires et continues tel que 
SUPtga l l^ l l  <  00 pour tout x G F, alors supTeA ||T|| <  oo.
E xerc ice  3 .1 2 .2  Soient X  un espace compact et E =  e (X ;  K) l’espace vectoriel des fonctions 
continues de X  dans K  muni d’une norme ||«|| définissant une topologie plus fine que la topologie de 
la convergence simple et pour laquelle E  est complet.

1. Montrer que, pour tout x G X,  les formes linéaires ôx : /  E E  i-> f(x) G K sont continues.
2. Montrer que l’ensemble A =  (ôx)xe x  de ces formes linéaires est simplement borné.
3. En déduire que la norme ||*|| est équivalente à la norme de la topologie de la convergence 

uniforme.
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On en déduit le théorème fondamental suivant.
Théorème 3.12.10 Théorème de Banach-Steinhaus Soient E  un espace de Fré- 
chet, F  un e.l.c. séparé et Tn : E  —» F une suite d'applications linéaires et 
continues convergeant simplement vers T, alors T  est linéaire et continue et la 
suite (Tn) converge vers T  uniformément sur tout compact. En outre, pour toute 
suite (xn) de E convergeant vers x, la suite (Tnxn) converge vers Tx.
Preuve La suite (Tn) converge simplement, elle est donc simplement bornée, donc 
équicontinue d’après la proposition 3.12.8. Le théorème résulte alors du corollaire
3.12.4 et de la remarque 3.12.1. Q.E.D.
Remarque 3.12.3 Le théorème de Banach-Steinhaus est un outil particulièrement 
efficace pour démontrer la continuité d’une application linéaire : toute limite simple 
d’applications linéaires et continues est continue. Il faut bien de se garder d’en dé­
duire que &{E\ F) est fermé dans 3 S{E\ F) : le théorème de Banach-Steinhaus ne 
concerne que les suites d’applications linéaires et continues.
Remarque 3.12.4 Dans la théorie des séries de Fourier, on rencontre la situation 
décrite dans le corollaire 3.12.6 ainsi que la situation suivante. Soient E  un espace 
de Fréchet, F  un e.l.c. séparé et Tn : E  -> F  une suite d’applications linéaires 
et continues ; on suppose que cette suite n’est pas équicontinue, alors l’ensemble 
B  des x G E  pour lesquels la suite (Tn(x)) est bornée dans F  est maigre dans E  
d’après la proposition 3.12.7 ; a fortiori, l’ensemble C des x  pour lesquels la suite 
(Tn(x)) converge est maigre ; cet ensemble C est donc d’intérieur vide, mais bien 
que d’intérieur vide, il peut arriver que cet ensemble soit partout dense !
Exercice 3.12.3 Espace tonnelé Dans un e.l.c. E , une partie V  convexe, fermée, équilibrée (défi­
nition 3.14.1) et absorbante (exercice 3.1.2) est appelée un tonneau. Un e.l.c. séparé est dit tonnelé si 
tout tonneau est un voisinage de {0 }.

1. Montrer que tout e.l.c. séparé E  de Baire est tonnelé [si V  est un tonneau, remarquer que 
F  =  U ~ = i  n K e tq u e  V  -  a C 2 V  si a e  V].

2. Soient E , F  des e.l.c., E  est supposé tonnelé.
a. Montrer que toute partie A  C £ ( E ;  F )  simplement bornée est équicontinue [si V  est une 

boule fermée centrée en 0, montrer que P ir e  A ^ -1  (V') est un tonneau].
b. Si T n  : E  -»• F  est une suite d’applications linéaires et continues convergeant simplement 

vers T  et si F  est séparé, montrer que T  est linéaire et continue (théorème de Banach-Steinhaus pour 

les espaces tonnelés).

Voici une application intéressante du théorème de Banach-Steinhaus concer­
nant la continuité des applications bilinéaires. Étant donné des e.l.c. E , F  et G, 
une application bilinéaire B : E  x F  -» G est dite séquentiellement séparé­
ment continue si, pour toute suite (xn) de E  convergente vers x et tout y G F , la 
suite (B(xn,y)) converge vers B(x,y)  et si, de même, pour toute suite (yn) de 
F  convergente vers y et tout x G E, la suite (B(x,yn)) converge vers B(x,y). 
Elle est dite séquentiellement continue si, dans les mêmes conditions, la suite 
(B(xn,yn)) converge vers B(x,y).  Rappelons que la continuité séquentielle im­
plique la continuité dès que les espaces sont métrisables. On a alors la proposition 
suivante.



3.12 LE THÉORÈME DE BANACH-STEINHAUS 355

Proposition 3.12.11 On suppose que l’un des espaces E, F est un espace de Fré- 
chet et que G est un e. I. c. séparé, alors toute application bilinéaire B : E x  F  —» G 
séquentiellement séparément continue est séquentiellement continue.

Preuve Soient (xn) une suite de E  convergente vers x et (yn) une suite 
de F  convergente vers y ; si F  est un espace de Fréchet, les applications 
Tn : y h» B(xn,y) de F  dans G sont linéaires et continues et la suite (Tn) 
converge simplement vers l’application T  : y h* B(x,y).  D’après le théorème de 
Banach-Steinhaus, la suite (Tnyn) converge vers Ty = B(x,y ), ce qui prouve le 
résultat voulu. Q.E.D.

Corollaire 3.12.12 Soient E, F et G des espaces normés, si l’un des espaces E, F 
est un Banach, toute application bilinéaire B  : E  x F G séparément continue 
est continue.
Exercice 3 .1 2 .4  Principe de condensation des singularités
1. Soient E , F  des e.l.c., Tpq : E —> F  une suite double d’applications linéaires et continues. On note 
B (resp. C ) l’ensemble des x  E  E tels que, pour tout entier p, la suite ( T pqx ) ne soit pas bornée 
(resp. convergente). On suppose que, pour tout entier p, il existe x  E  E tel que la suite ( T pqx ) q^ fi  ne 
soit pas bornée (resp. convergente), montrer alors que E — B (resp. E — C  si E est séparé complet) 
est maigre [pour E  — C  utiliser l’exercice 3.12.1].

2. Soit E  un sous-espace vectoriel de l’espace de Fréchet 3^ (N; K)  ; on suppose E muni d’une 
structure d’e.l.c. telle que l’injection canonique de E dans ^ ( N ;  K) soit continue. Soit (apq) une suite 
double de scalaires. On note B l ’ensemble des x  =  (xn ) G E tels que, pour tout entier p,

(3.12.3) sup
q<ENr=0

=  + o o

et C l’ensemble des x =  (xn) e E tels que, pour tout entier p,

oo
(3.12.4) la série ^  apqxq diverge .

<7=0

On suppose que, pour tout entier p, il existe x  =  (xn) E E  tel que (3.12.3) (resp. (3.12.4)) soit vérifié. 
Montrer alors que E — B  (resp. E — C) est maigre.

E x erc ice  3 .1 2 .5  Interpolation de Lagrange On considère l’espace de Banach E  =  C ([0 ,1]; M) 
pour la norme de la topologie de la convergence uniforme. Soit n un entier >  1, on pose an* =  i /n  
pour 0 <  i <  n  et

Qni(x)=  f [  X ~ ani  , « € [ 0 , 1 ] ,  
j= 0  Üni ~  a n Ô

et, pour /  E E,  on définit le polynôme

F n ( f ) ( x )  — y '  f {Q'ni )Qni (x )-
i = 0

1. Montrer que Pn {f)  est l'unique polynôme de degré <  n  tel que

Pn(f)(ani) =  f ( a ni) pourO < i < n .

2. Montrer que l'ensemble des f  e  E  tels que la suite (Pn( f  )) converge vers /  dans l’ensemble 
E  est partout dense [utiliser le théorème 3.26.1].
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3. Montrer que les applications linéaires Pn : /  i-» P „ ( / )  de E  dans E  sont continues et que

n

l|f«ILc(E) =  SUP
0 < *< 1  i= 0

4. Montrer que

h (i)h ipourl-i-"_1-
5. En déduire que l’ensemble des f  € E  tels que la suite (P n ( / ) )  converge uniformément est 

maigre.

Exercice 3.12.6 Base de Schauder Dans un espace de Fréchet E , (|| • | | i ) i e j ,  une suite (x n) 
d’éléments de E  est appelée une base de Schauder si, pour tout x G E,  il existe une unique suite 
A =  (Àn ) de scalaires telle que la série X ^ L o  An x n soit convergente et de somme x.

On note F  l’espace vectoriel des suites A =  (An ) telles que la série converge. On
munit F  de la famille de semi-normes

M i =  s u p ||f >
î>=0

1. Montrer que les formes linéaires sur F  A i-> An sont continues.
2. Montrer que F  est un espace de Fréchet.
3. Montrer que l’application T  : A H  X ^ L q ^nXn est un isomorphisme de F  sur E  et en 

déduire des formes linéaires continues x'n G E'  telles que

oo
x =  ^  x ,n (x)xn pour tout x e  E.

n—0
4. Montrer que

a. la suite (xn ) est totale,
b. pour tout a: G P e t  tout i G / ,  supn€N || J2p=o xp(x)xp\\i <  °°»
c. le système (xn ), (x{J  est biorthogonal, c ’est-à-dire

1
0

si p =  q, 
si p ^ q .

5. Réciproquem ent, é tan t donné une suite (x n ) de E  e t une su ite (x^)  de E '  vérifiant les cond i­

tions a, b e t c  de 4., m ontrer que (x n ) est une base de Schauder e t plus précisém ent que 

X =  J2n=0 xn(x )xn pOUrtOUtæ G E .



C -  Dualité dans les espaces 
localement convexes

3.13 Le théorème de Hahn-Banach (forme analytique)
Le théorème de Hahn-Banach (sous sa forme analytique) affirme que toute forme 
linéaire et continue définie sur un sous-espace d’un e.l.c. se prolonge à l’espace 
tout entier en une forme linéaire et continue ; la démonstration de ce résultat, par 
l’intermédiaire du lemme algébrique suivant, repose essentiellement sur le lemme 
de Zorn (théorème 1.5.1).
Lemme 3.13.1 Soient E un espace vectoriel réel, F un sous-espace vectoriel et 
T une forme linéaire sur F telle que T x < p(x) pour tout x G F, où p : E  - ï  R 
est une application vérifiant, pour tout x ,y  G E et tout A > 0,
(3.13.1) p(x +  y) < p(x)+p(y), p(\x) = Xp(x)y
alors, il existe une forme linéaire T  : E  —» R qui prolonge T  telle que Tx < p(x) 
pour tout x G E.
Preuve 1. Démontrons d’abord le lemme lorsque F  est de codimension un, c’est- 
à-dire lorsque E  est la somme directe algébrique du sous-espace F  et d’une droite 
G = Ra où a est un vecteur non nul de E. Un quelconque prolongement T  de T  
est de la forme Tx = Ty  H- Xa, a = Ta , si x  =  y +  Xa est la décomposition 
de x  selon la somme directe F  0  G. Il s’agit alors de choisir a G R tel que 
Ty  +  Aa < p(y +  Xa) pour tout y G F  et tout À G R. Cette propriété étant vérifiée 
par hypothèse pour À =  0, vu (3.13.1) il s’agit de satisfaire à
T(y/X) +  a < p(y/X +  a) si À >  0 , T(—y/X) -  a < p(-y/X -  a) si A < 0 , 

c’est-à-dire, en posant z = y/Xel zf = —y / A,
T(z!) — p(z f -  a) < a < p(z  +  a) -  T(z) 

pour tout z y z 1 G F. Ceci est possible si, et seulement si,
T(zf ) -  p(z! — a) < p(z +  a) — T(z) pour tout z, z' G F,
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c’est-à-dire T(z  +  z') <  p(z +  a) H- p(z’ — a), inégalité qui est bien vérifiée car 
T(z  +  zf) < p(z +  z') et

p(z -I- z f )  =  p(z + a + zf -  a) < p(z +  a) +  p(z9 -  a) 
d’après les hypothèses.

2. Le lemme étant démontré dans ce cas particulier, considérons l’ensemble 
X  des couples (G, S) où G est un sous-espace vectoriel de E  contenant F  et 
S  : G R une forme linéaire prolongeant T  telle que Sx  < p(x) pour tout 
x G G. On définit une relation d’ordre sur X  en décrétant que (Gi,Si) < (G2 ,S2) 
si G\ C G2 et S2 |gi =  Si. Montrons alors que X  est un ensemble inductif. 
On note d’abord que X  contenant (F,T) est non vide ; si ((G i,5 i))i€/  est une 
famille totalement ordonnée de X, G =  (Jie / G* est un sous-espace vectoriel de 
E  contenant F  et il existe une unique forme linéaire S  sur G telle que S |g . =  Si ; 
il est clair que (G, S) est un majorant de la famille ((G*, S*)) /̂ ; l’ensemble X  
est donc inductif et, d’après le lemme de Zorn, X  admet un élément maximal 
(G, S). Pour conclure, il suffit de vérifier que G =  E : en effet, supposons G ^  E  
et soit a G E  -  G, posons G' =  G 0  Ra ; d’après 1., on peut prolonger S  en une 
forme linéaire S f sur G' vérifiant S'x < p(x) pour tout x G G' ; on construit ainsi 
un élément (G', 5 ')  de X  strictement plus grand que (G, 5), ce qui contredit le 
caractère maximal de (G, 5). Q.E.D.

Corollaire 3.13.2 Soient E un espace vectoriel réel, a G E etp : E  —>■ R+ wne 
application à valeurs positives vérifiant (3.13.1), alors il existe une forme linéaire 
T  sur E telle que

Ta = p(a) et Tx  < p(x) pour tout x G E.
Preuve Si a = 0, T  =  0 convient. Si a ^  0, notons F = Ra la droite engendrée 
par a ; pour x  =  Xa € F , A G R, on pose S'x =  Àp(a). On définit ainsi une forme 
linéaire sur F  telle que Sa = p(a).

Vérifions que Sx < p(x) pour tout x G F. Cette inégalité étant vérifiée lorsque 
Sx < 0, on peut supposer S'x >  0 ;s ix  =  A a, onaalorsÀ > 0 et d’après (3.13.1)

Sx  =  A p(a) =  p(Xa) =  p(x),
ce qui prouve l’inégalité voulue et on conclut avec le lemme 3.13.1. Q.E.D.

Le passage du réel au complexe utilisera le lemme élémentaire suivant. 
Lemme 3.13.3 Soient E  un espace vectoriel complexe et T  une forme C-linéaire 
sur E , alors S = 5ReT est une forme R-linéaire sur E. Réciproquement, si S est 
une forme R-linéaire sur E, il existe une unique forme T  C-linéaire sur E telle 
que S = SfteT, à savoir Tx = S(x) -  iS(ix).
Preuve II est évident que la partie réelle d’une forme C-linéaire est une forme 
R-linéaire. Réciproquement, si S = SfteT, on a Sx = dteTx et

S(ix) =  SReT(ix) =  dteiTx = -Q m T x ,
d’où 9 m T x  =  - S(ix), soit Tx = S(x) -  iS(ix ) 9 ce qui prouve l’unicité de T  ; 
il faut ensuite vérifier que cette formule définit une forme C-linéaire : il est clair
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que T  est M-linéaire ; d’autre part
T(ix) = S(ix) — iS(—x) = iS(x) +  S(ix) =  iT x , 

ce qui prouve que T  est C-linéaire. Q.E.D.
E x ercice  3 .13 .1  Soit E  un e.l.c. complexe, montrer qu’une forme C-linéaire T  : E  —¥ C est conti­
nue si, et seulement si, la forme M-linéaire S  =  9fte T  est continue.

On a alors le
Théorème 3.13.4 Forme analytique du théorème de Hahn-Banach Soient E  
un espace vectoriel sur le corps K (R ou C), p une semi-norme sur E , F un 
sous-espace vectoriel et T  une forme linéaire sur F telle que \Tx\ < p(x) pour 
tout x £ F, alors il existe une forme linéaire T  sur E qui prolonge T  telle que 
\Tx\ < p{x) pour tout x e E.
Preuve 1. Lorsque K = M, on a Tx < p(x) pour x £ F  ; d’après le lemme 
3.13.1, il existe une forme linéaire T  sur E  qui prolonge T  telle que Tx < p(x), 
d’où —Tx  =  T (—x) < p(—x) = p(x) et par conséquent \Tx\ < p(x).

2. Lorsque K =  C, la partie réelle S  de T  se prolonge d’après 1. en une forme 
M-linéaire S  sur E  telle que \Sx\ < p(x). La forme C-linéaire Tx = Sx — iS(ix) 
(lemme 3.13.3) prolonge T. Le point x e E  étant fixé, il existe 6  £ R tel que 
\Tx\ = eieT xy d’où

\Tx\ = Sfte (eieTx) = S(ei6 x) < p(ei0 x) = p(x), 
ce qui prouve que T  possède toutes les propriétés voulues. Q.E.D.
Corollaire 3.13.5 Soient E  un espace vectoriel, a £ E  et p une semi-norme sur 
E, alors il existe une forme linéaire T  sur E  telle que Ta =  p(a) et \Tx\ < p{x) 
pour tout x £ E.
Preuve Lorsque a =  0, T  =  0 convient. Lorsque a n’est pas nul, soit F = Ka 
la droite engendrée par a ; l’application A a Àp(a) est une forme linéaire S  sur 
F  qui vérifie Sa = p(a) et |S(Àa)| =  |A|p(a) =  p(Aa), c’est-à-dire \Sx\ =  p(x) 
pour tout x £ F. D’après le théorème 3.13.4, cette forme linéaire se prolonge en 
une forme linéaire T  sur tout l’espace E  vérifiant |Trc| <  p(x), ce qui prouve le 
corollaire. Q.E.D.

On en déduit également le
Théorème 3.13.6 Soient E  un e.l.c., F un sous-espace vectoriel, alors toute forme 
linéaire et continue T  sur F se prolonge en une forme linéaire et continue T  sur E. 
En outre, si E  est un espace normé, il existe un prolongement T  de même norme 
que T, c'est-à-dire tel que ||T|| =  ||T||.
Preuve En effet, T  étant linéaire et continu, il existe (théorème 3.3.3) une semi- 
norme p continue sur E1 telle que |Tx| <  p(x) pourx £ E , d’où (théorème 3.13.4) 
une forme linéaire T  sur E  prolongeant T  telle que |Tx| < p(x) pour tout x £ E, 
ce qui implique la continuité de cette forme linéaire.

Lorsque E  est un espace normé, on notera d’abord que, quelle que soit la forme 
T  prolongeant T, on a ||T|| >  ||T||. On a d’autre part |Tx| <  ||T|| ||x|| pour tout
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x G F  ; on applique alors le théorème 3.13.4 en prenant comme semi-norme 
p(x) = ||T|| ||x|| et on obtient ainsi un prolongement T  vérifiant \Tx\ <  ||T|| ||x|| 
pour tout x G E, ce qui prouve que T  est continue et de norme inférieure à celle 
de T, donc de même norme. Q.E.D.

Voici les premières conséquences des théorèmes de Hahn-Banach 3.13.4 et
3.13.6.

Corollaire 3.13.7 Soient E  un e.Lc. séparé, a un vecteur non nul de E, alors il 
existe une forme linéaire et continue T  G E 1 telle que Ta ^  0. En particulier, si 
E est un e.Lc. séparé ^  {0}, le dual E' n’est pas réduit à {0}.

Preuve Si (11*11*) /̂ est une famille de semi-normes définissant la topologie de 
E , l’espace étant séparé, il existe une semi-norme telle que ||a||i ^  0. D’après 
le corollaire 3.13.5, il existe une forme linéaire T  sur E  telle que Ta =  ||a||i et 
\Tx\ < ||x||< pour tout x G E  ; cette forme linéaire est donc continue et vérifie les 
propriétés voulues. Q.E.D.

Corollaire 3.13.8 Soit F un sous-espace vectoriel d’un e.Lc. E, alors un point 
a e E appartient à F si, et seulement si, toute forme linéaire et continue T  G E 1 

nulle sur F est nulle au point a. Un sous-espace F d’un e.Lc. E  est donc partout 
dense si, et seulement si, toute forme linéaire et continue T  £ E' nulle sur F  est 
identiquement nulle.
Preuve Si a G F  et si T  G E f est nul sur F , T  est nul au point a d’après la conti­
nuité de T. Réciproquement, si a n’appartient pas à F , construisons une forme 
linéaire et continue T  G E' nulle sur F  et telle que Ta ±  0. Considérons le sous- 
espace vectoriel G = F  0  Ka ; F  est un hyperplan fermé de G, il existe donc 
(proposition 3.6.11 ) une forme linéaire et continue S  sur G telle que F  =  Ker S  et 
cette forme linéaire se prolonge (théorème 3.13.6) en une forme linéaire et conti­
nue T  sur E  qui possède les propriétés voulues. Q.E.D.

Corollaire 3.13.9 Dans un e.Lc. un sous-espace fermé F est égal à l ’intersection 
de tous les hyperplans fermés qui contiennent F.
Preuve En effet, F  est évidemment contenu dans cette intersection G et, si a n’ap­
partient pas à F , il existe d’après le corollaire 3.13.8 une forme linéaire et continue 
T  G E 1 nulle sur F  telle que Ta ^  0 ; il en résulte que H  =  Ker T  est un hyper- 
plan fermé contenant F  et tel que a # H, ce qui prouve que a n’appartient pas à 
G, d’où G C  F. Q.E.D.

Lorsque E  est un espace normé, on peut préciser ces résultats de la façon 
suivante.

Proposition 3.13.10 Soient E  un espace normé, F  un sous-espace vectoriel et 
a G E un point n’appartenant pas à F. Posons d = d(a, F) >  0, il existe une 
forme linéaire continue T  G E' telle que

T  = 0surFyTa = l et ||T|| =  1 /d.
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Preuve On pose G =  F  ® Ka et on définit une forme linéaire S : G K en 
posant Sx = X si x G G s’écrit x = y +  Xa où y  G F, À G K. Cette forme linéaire 
est nulle sur F  et Sa =  1.

Montrons que S  est continue et calculons sa norme. On a \Sx\ = |À| et, si À 
est non nul, x = X(y/X +  a), d’où

11*11 =  \M x l|yA  +  a|| >  |A|d
et par conséquent \Sx\ <  (l/d)||a;|| ; ceci prouve la continuité de S  et 
||S|| <  1/d. Montrons qu’on a en fait l’égalité. Il existe une suite (xn) de F 
telle que d =  limn_>oo \\xn -  a\\ ; posons yn =  xn -  a, on a alors

1 = \Syn\ < ||5|| Ibnll,
d’où 1 < d ||5 || en passant à la limite et ceci prouve que ||S|| >  1/d, d’où
m  =  i /d.

On conclut alors grâce au théorème 3.13.6. Q.E.D.
Corollaire 3.13.11 Soient E  un espace normé, a un vecteur non nul de E , alors 
il existe une forme linéaire et continue T  £ E' telle que Ta = ||a|| et ||T|| =  1.
Preuve On utilise la proposition précédente en prenant F  =  {0 }  : il existe une 
forme linéaire et continue S  sur E  telle que Sa =  1 et ||5 || =  l / | |a || et on prend
T  =  \\a\\ S. Q.E.D.
Corollaire 3.13.12 Soit E  un espace normé, alors

\\x\\ = sup \Tx\
T e E 'y\\T\\<l

et cette borne supérieure est atteinte.
Preuve En effet, si ||T|| <  1, on a \Tx\ < ||a;|| pour tout x> d’où l’inégalité 
supTe£v ||T||<i \Tx\ < ||a:|| et, d’après le corollaire précédent, il existe T  G E f, 
||T|| < 1, tel que Tx  =  ||x|| ce qui prouve le résultat voulu. Q.E.D.

Autrement dit, la norme de x est la plus petite constante telle que 
\Tx\ < ||T|| ||x || pour toute forme linéaire et continue T  G E'.

Le théorème de prolongement 3.13.6 concerne des formes linéaires ; il se gé­
néralise de façon évidente à des applications linéaires continues à valeurs dans un 
e.l.c. séparé de dimension finie, un tel espace étant isomorphe à un espace Kn. En 
utilisant cette remarque, démontrons le
Corollaire 3.13.13 Dans un e.l.c. séparé E, tout sous-espace E\ de dimension 
finie admet un supplémentaire topologique.
Preuve L’application identique Iex : E\ E\ se prolonge en une application 
linéaire et continue pi : E  -> E\. Soit E 2 = Kerpi, alors E  est la somme 
directe topologique de JSi et E2. En effet, Ex H E 2  =  {0 }  : si x G E x f l  E2t on 
a pi(x) =  x car x  G Ei  et pi(x) = 0 car x  G E2> d’où x  =  0. D’autre part, 
tout x  peut s’écrire x  =  Pi(x) +  p2 (x), où P2 (x) =  x -  p\(x) appartient à E 2  

car pi(x -  pi(x)) = pi(x) -  Pi(x) =  0 vu que p\ = p\. Ceci prouve que E  est 
la somme directe de Ei  et E 2 et cette somme directe est topologique d’après la 
continuité de pi. Q.E.D.
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Exercice 3.13.2 Soit E  un e.l.c. séparé de dimension infinie, montrer que le dual E'  est de di­
mension infinie [considérer un sous-espace F C E  de dimension n  et utiliser le théorème de Hahn- 
Banach].

Exercice 3.13.3 1. Soient E  un espace normé, A une partie de E  et /  : A  -»• K une fonction. 
Montrer qu’il existe une forme linéaire et continue T  G E f telle que T \ a  =  /  et ||T || <  c si, et 
seulement si,

(3.13.2) ^  ̂̂ i/(#i) — e
i=l

pour tout entier n  >  1 et tout Xi G A, À* E K (1 <  i <  n) [pour démontrer que la condition est 
suffisante, prolonger /  en une forme linéaire sur le sous-espace vectoriel engendré par A , puis utiliser 
le théorème de Hahn-Banach].

2. Étant donné une famille d’éléments de F e t  une famille ( a * )^ /  de scalaires, en déduire
qu’il existe une forme linéaire continue T  e  E '  telle que T x i  =  a i  pour i G /  et ||T || <  c  si, et 
seulement si,

'y 1 < c y  ]  ^ ixi
i€J i€J

pour toute partie finie J de I  et tout À* G K.

Exercice 3.13.4 On considère le sous-espace de l ’espace l°° =  l°°(N; K)

- { • el° ; sup
n>  0 k=0

<oo

et on note e =  (en ) G /°°  où en =  1 pour tout n.
1. Montrer que d (e, F)  =  1 et en déduire une forme linéaire continue T  G (l°°Y telle que

T \ f  =  0, T e  =  1 et ||T || =  1.

Une telle forme linéaire sera notée, selon Banach, Tx  =  L /M n _+oo xn .
2. Montrer que toute suite (æn ) tendant vers 0 appartient à F  et en déduire que pour toute suite 

(xn) convergente
lim  xn =  LI M xn .

n —»oo n —HX)

3. Soit x =  (xn ) E l°° tel que xn >  0 pour tout n , montrer que Tx >  0  [on pourra utiliser la 
suite x — ( ||æ ||/2 )e  et le fait que ||T || =  1] et en déduire que pour toute suite (xn) de l°°

l im in fx n  <  LI M xn <  lim  sup  æn -

3.14 Le théorème de Hahn-Banach (forme géométrique)
La forme, dite géométrique, du théorème de Hahn-Banach utilise la notion de jauge 
d’un convexe.

Lemme 3.14.1 Soient E  un espace vectoriel et C une partie convexe absorbante 
(exercice 3.1.2) non vide, on définit la jauge je  ■ E  -» R+ de C par
(3.14.1) jc(x) = inf{A > 0 ; a: € AC}.
Alors
(3.14.2)
(3.14.3)

jc{^x) = Ajc(x) pour tout x e  E, A > 0, 
j c ( x  +  y) < jc(x)  +  je  (y) pour tout x ,y  6  E.
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Si E  est un e.l.c. et si C est un voisinage ouvert convexe de l'origine, la jauge je  
est continue et C = {x G E  ; jc{%) <  1} / si C est un voisinage fermé convexe 
de l'origine, la jauge je  est continue et C =  {x G E; jc(x)  <  1}.

Preuve 1. Posons I(x) = {A > 0; x G AC}. On notera d’abord que J(x) est 
non vide car C est absorbant. Montrons ensuite que /(x ) est un intervalle de la 
forme | jc{x)> +oo[ , c’est-à-dire que tout p plus grand qu’un À appartenant à I(x) 
appartient a fortiori à I(x) : on a en effet, C étant convexe et contenant l’origine, 
A C C pC vu que 0 < X <  p.

2. On a jc{0) =  0, ce qui prouve (3.14.2) lorsque À =  0 et, lorsque À est >  0, 
(3.14.2) résulte simplement de la formule /(Ax) = XI(x).

3. Soient x,y  G E, X > jc(x)  et \x > jc(y)> on a x/X G C , y/p  G C d’où, C 
étant convexe, (x +  y)/(X H- p) G C ; ceci prouve que

jc (x  +  y) < X +  ix pour tout A > jc(x)  et tout p >  j e  (y) y 
d’où (3.14.3).

4. Si E  est un e.l.c., rappelons (exercice 3.1.2) que tout voisinage de l’origine 
est absorbant.

a. Lorsque C est ouvert, soit C' = {x G E ; jc{%) < 1}. Si x G C", il existe 
À G ]0,1[ tel que x/X G C, d’où x e C ,C  étant convexe et contenant l’origine ; 
ceci prouve que C" C  C. Inversement, soit x G C ; l’ensemble C étant ouvert, x/X 
appartient encore à C si À est suffisamment voisin de 1, ce qui prouve jc{x) < 1, 
d’où x G C', soit C C  C'. On a donc démontré que C = {x  G E  ; jc(x)  < 1} ; 
pour tout e > 0, on a j €e = £~ljc> d’où eC — {x G E\ jc(x) < e} et ceci 
prouve que j e  est continue à l’origine, donc partout d’après le lemme 3.3.7.

b. De même, si C est fermé, posons C' = {x G E ; jc(x) < 1}. Soit
x G C, alors jc(x) < 1, d’où x G C" et C  C  C". Réciproquement, soit x G C", 
alors Ax G C pour tout A > 1 et, C étant fermé, on en déduit x £ C, d’où C' C C. 
Ceci prouve que C =  C '. Quant à la continuité de la jauge jc> pour tout e >  0, 
eC =  {x  G E  ; jc{x) < e} car j ec  =  £~xjc  \ ceci prouve la continuité de la 
jauge à l’origine, donc partout comme précédemment. Q.E.D.

La jauge n’est pas nécessairement une semi-norme ; ceci conduit à introduire 
la notion d’ensemble équilibré.

Définition 3.14.1 Une partie A d'un espace vectoriel est dite équilibrée si 
(x G A et X G K, |A| < 1) => Ax G A.

Lorsque K = R, A est équilibré si, pour tout x G .A, le segment [x, —x] est 
contenu dans A.

Remarque 3.14.1 Dans un e.l.c., toute boule Bj(0;r) est équilibrée : l’origine 
admet un système fondamental de voisinages convexes, fermés et équilibrés.

Lemme 3.14.2 Soient E un espace vectoriel et C une partie convexe, absorbante, 
équilibrée et non vide, alors la jauge je  est une semi-norme sur E .
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Preuve II s’agit de vérifier que jc(A x) =  |A|jc (x) pour tout A G K et tout x  G E. 
Or,

jc(A x) =  inf{/r >  0; Ax G fj.C}
et, C étant équilibré, \ x  G fiC équivaut à |A|x G fiC, d’où d’après (3.14.2)

.7c (A®) =  inf{m > 0 ;  |A|® G nC} = j c (|A|x) =  |A|jc (x).
Q.E.D.

Nous utiliserons le résultat suivant
Lemme 3.14.3 Dans un e.v.t., l ’adhérence d ’un ensemble équilibré est équilibrée. 
Preuve Notons h\ : x i-> Xx l’homothétie de rapport A. Dire qu’une partie A 
est équilibrée signifie que h\(A)_C A si |A| <  1 ; d’après la continuité des ho- 
mothéties, on en déduit que h\(A)  C A si |A| <  1, ce qui permet de conclure.

Q.E.D.
Exercice 3.14.1 Si la jauge d ’un voisinage ouvert (resp. fermé) convexe C  de l’origine est une semi- 
norme, montrer que C  est équilibré.
Exercice 3 .1 4 .2  Soit E  un e.l.c.

1. Montrer que l ’enveloppe convexe de toute partie équilibrée est équilibrée.
2. Montrer que l ’intersection de toute famille de parties équilibrées est une partie équilibrée.
3. Si A est une partie de E,  en déduire qu’il existe une plus petite partie équilibrée contenant A 

qui peut s’écrire U|A|<i AA : on l’appelle l ’enveloppe équilibrée de A.

4. En déduire que F (lJ |A |< i A A ) est le plus petit convexe équilibré contenant A  et

r ( U aa)
|A|<1

le plus petit convexe fermé équilibré contenant A ; on les appelle respectivement enveloppe convexe 
équilibrée et enveloppe convexe fermée équilibrée de A.

5. Montrer que l ’enveloppe convexe fermée équilibrée de toute partie bornée est bornée.

Exercice 3.14.3 Soient E  un e.l.c. métrisable et B  une partie équilibrée telle que, pour toute suite 

(xn ) de E  convergeant vers 0, il existe A >  0 tel que \ x n e  B  pour tout n , montrer alors que B  est 
un voisinage de 0 [raisonnement analogue à celui de la proposition 3.7.2].
Exercice 3 .1 4 .4  Soit C  un convexe compact de Rn d’intérieur non vide, montrer que C  est ho- 
méomorphe à la boule unité B  de Rn [on peut supposer que C  est un voisinage de 0, considérer 
l’application /  : Mn —> Mn définie par

/(O ) =  0 et / ( x) =  j c (x) x/\\x\\ lorsque x ^  0,

vérifier sa continuité et montrer qu’elle induit un homéomorphisme de C  sur B].

La notion de jauge et les corollaires 3.13.2 et 3.13.5 permettent alors d’établir 
les propositions suivantes.
Proposition 3.14.4 Soient E  un e.l.c. réel, C une partie convexe contenant l'ori­
gine et a £C .

1. Si C est ouvert, il existe T  e E' tel que
Ta = 1 et Tx < 1 pour tout x £ C.

2. Si C est fermé, il existe T  £ E' tel que
Ta>  1 et Tx < 1 pour tout x £ C.
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Preuve 1. Lorsque C est ouvert, soit je  la jauge du convexe C, alors (lemme
3.14.1) C =  {x £ E; jc(x)  <  1}, d’où jc(o) > 1. D’après le corollaire 3.13.2, 
il existe une forme linéaire S  sur E  telle que Sa = j e  (a) et Sx < jc(x)  pour tout 
x e E. Soit (11*11*) /̂ une famille de semi-normes définissant la topologie de E , 
d’après la continuité de j e  et le lemme 3.3.7, il existe J  £ 3(1) et c > 0 tels que 
jc(x) < c||x || j ,  d’où Sx < c||æ|| j  et, en changeant x en —x, \Sx\ <  c ||x ||j .  La 
forme linéaire S  est donc continue et on conclut en prenant T  =  S/jc(o).

2. Lorsque C est fermé, il existe une boule Bj(a\r)  telle que 
C fl Bj(a\r ) =  0, d’où (C +  Bj(0;r/2))  fl Bj(a \r /2) =  0. Le point a n’ap­
partient donc pas à l’adhérence C "  de C +  B j ( 0 ; r / 2 ) ; ce dernier ensemble étant 
un voisinage ouvert convexe de l’origine, C' est un voisinage fermé convexe (pro­
position 3.8.4) de l’origine et a g C " .  On a C "  =  {x £ E; j c f(x) < 1} (lemme
3.14.1) , d’où j c f(ci) > 1. D’après le corollaire 3.13.2, il existe une forme linéaire
T  sur E  telle que Ta =  j e • (a) et Tx  <  je* (x) et, comme précédemment, cette 
forme linéaire est continue et vérifie les propriétés requises. Q.E.D.

Proposition 3.14.5 Soient E  un e.l.c. sur K (= R ou C), C une partie convexe 
équilibrée e t a ^ C .

1. Si C est ouvert, il existe T  £ E' tel que
Ta = 1 et \Tx\ < 1 pour tout x £ C.

2. Si C est fermé, il existe T  £ E 1 tel que
Ta > 1 et \Tx\ < 1 pour tout x £ C.

Preuve Reprenons la démonstration précédente.
1. Lorsque C est ouvert, sa jauge j e  est une semi-norme (lemme 3.14.2). 

D’après le corollaire 3.13.5, il existe une forme linéaire S  sur E  telle que 
Sa =  je  (a) et \Sx\ < jc(x)  pour tout x £ E  ; on conclut comme précédem­
ment en prenant T  =  S / j e  (ci).

2. Lorsque C est fermé, on remarque que C+Bj(0 ; r /2 )  est équilibré ; d’après
le lemme 3.14.3, C ' est équilibré. La jauge j e » est une semi-norme et (corollaire
3.13.5) il existe une forme linéaire T  sur E  telle que Ta = je* (a), \Tx\ < jc'(x)  
pour x £ E, ce qui permet de conclure. Q.E.D.

Pour formuler géométriquement les résultats précédents, nous utiliserons les 
notions suivantes d’hyperplan affine et de demi-espace.

Dans un espace vectoriel (réel ou complexe), le translaté d’un sous-espace vec­
toriel est appelé un sous-espace affine ; le translaté d’un hyperplan, c’est-à-dire 
d’un sous-espace vectoriel de codimension un, sera appelé un hyperplan affine et, 
plus simplement, un hyperplan lorsqu’aucune confusion ne sera à craindre. Une 
description très simple est donnée par le
Lemme 3.14.6 Soit E un espace vectoriel et soit T  une forme linéaire sur E non 
identiquement nulle, alors Vensemble {x £ E ; T x  = 1} est un hyperplan ne 
contenant pas 0. Réciproquement, si H est un hyperplan ne contenant pas 0, il 
existe une unique forme linéaire T  sur E  telle que H = {x £ E \ Tx  =  1}.
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Preuve Soit T  une forme linéaire non identiquement nulle et soit 
H  =  {x G E; Tx  =  1}. Il est clair que 0 g H. Montrons que H  est un hy- 
perplan. Il existe a G E  tel que Ta ^  0 ; posons b = a/Ta , on a alors Tb = 1 et 
on vérifie aisément que H = b +  Ker T.

Réciproquement, un hyperplan peut s’écrire H = a +  Ker S où S  G E* 
(lemme 3.6.9) ; si H  ne contient pas 0, Sa ^  0 et on vérifie alors que 
H = {x G E ; Tx = 1 } où T  = S/Sa.  Quant à l’unicité, soient Ti et T2 

deux formes linéaires telles que
H  =  {x G E  ; T\X =  1} =  {x G E  ; T2x = 1},

alors Ti =  T2 : en effet, s’il existait un point a G E tel que T ia ^  T2a, on aurait 
par exemple T\a 0 et, en posant b =  a /T ia , T\b =  1 et T2b ^  1, ce qui est 
absurde. Q.E.D.

Lorsque E  est un e.l.c., H  est fermé si T  est continu, sinon H  est partout dense 
d’après la proposition 3.6.11.

Lorsque E  est un e.l.c. réel, on définit la notion de demi-espace de la façon 
suivante. Si T G E' est une forme linéaire et continue non identiquement nulle et 
si a est un nombre réel, les ensembles

{x G E  ; Tx < a} et {x G E  ; Tx > à) 
sont appelés demi-espaces fermés déterminés par l’hyperplan

H  =  {x G E  ; Tx — a}.
Exercice 3.14*5 Soient E un e.l.c. réel et T  une forme linéaire sur E non identiquement nulle. Soit 
a G M, on pose H  =  {x e  E ; Tx  =  a } , £>+ =  {x G E ; Tx >  a} et D-  =  {x G E ; Tx  <  a}.

1. Soit 6 E  1? tel que Tb =  a, on considère l’homéomorphisme s : x  26 — x  (symétrie par 
rapport à b). Montrer que s(D±) =  D^.

2. En déduire que T  est continu si, et seulement si, £>+ (ou D-)  est fermé [utiliser la proposition 
3.6.11].

3. Si T  est continu, montrer que Tintérieur de D± est le demi-espace ouvert D± — H  et que H  
est la frontière de D±.

On a alors le résultat important qui suit et dont l’interprétation sera donnée 
ultérieurement lors de l’étude des topologies faibles.

Proposition 3.14.7 Dans un e.l.c. réel, tout convexe fermé non vide C est l'inter­
section des demi-espaces fermés qui contiennent C.
Preuve Grâce à une translation, on peut supposer que C contient l’origine. Soit 
a £ C, d’après la proposition 3.14.4, il existe T  G E' tel que Ta > 1 et Tx < 1 
sur C . Le demi-espace fermé {x G E  ; Tx < 1} contient C, mais non le point a, 
d’où le résultat souhaité. Q.E.D.

Après ces préliminaires, venons-en au théorème essentiel de ce paragraphe.

Théorème 3.14.8 Forme géométrique du théorème de Hahn-Banach Soient E  
un e.l.c., C un ouvert convexe non vide et M  un sous-espace affine ne rencontrant 
pas C. Alors, il existe un hyperplan fermé contenant M  et ne rencontrant pas C.
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Preuve 1. Supposons d’abord K = R. Grâce à une translation, on peut suppo­
ser que C contient l’origine. Le sous-espace affine M  peut alors s’écrire 
M  = a +  F  où F  est un sous-espace vectoriel de E  et a G E  n’appartient pas à F  
vu que l’origine n’appartient pas à M. Considérons alors le sous-espace vectoriel 
G = F  ® Ra ; M  est un hyperplan de G : il existe donc une forme linéaire T  sur 
G telle que M  = {x G G ; Tx = 1}.

Soit p = je  la jauge du convexe C. Montrons que Tx  <  p(x) sur G. La 
fonction p étant positive, il suffit d’étudier les x G G tels que Tx  > 0 ; posons 
y =  x /T x , alors Ty = 1, d’où y £ M,  donc y £ C et par suite (lemme 3.14.1) 
p(y) >  1» soit Tx  <  p(x).

D’après le lemme 3.13.1, il existe donc une forme linéaire T  sur E  prolongeant 
T  telle que Tx < p(x). Alors, H = {x G E  ; Tx = 1} est un hyperplan contenant 
M  ; cet hyperplan ne rencontre pas C vu que p <  1 sur C et, C étant ouvert, il ne 
peut être partout dense et est donc fermé.

2. Lorsque K = C, on peut par translation se ramener au cas où M  contient 
l’origine. Il existe alors d’après 1. une forme M-linéaire S  telle que l’hyperplan 
réel K  d’équation Sx  =  0 contienne M  et ne rencontre pas C. D’après le lemme
3.13.3, S  est la partie réelle de la forme C-linéaire Tx = Sx — iS(ix). L’hy­
perplan complexe H  d’équation Tx = 0 est contenu dans K , donc ne rencontre 
pas C. Vérifions que M  C H : soit x G M , alors ix G M  et, K  contenant M, 
Sx = S(ix) = 0, d’où Tx = 0 et x  G H. Cet hyperplan H  ne peut être partout 
dense, il est donc fermé ce qui permet de conclure. Q.E.D.

Remarque 3.14.2 Lorsque le sous-espace affine M  est réduit à un point, ce théo­
rème dans le cas réel est une conséquence immédiate de la proposition 3.14.4 et 
est encore vrai pour un convexe fermé non vide. Par contre, dés que la dimension 
de M  est > 1, le théorème peut être en défaut pour des convexes fermés (exercice
3.14.6).
Exercice 3 .1 4 .6  Dans M3, on considère l’ensemble

c  =  {(æ ,2 /,2 ) G M3 ; 0 <  x t 0 <  y , z 2 < xy}

et la droite D  d’équations x  =  0, z  =  1. Montrer que C  est un convexe fermé et que tout hyperplan 
passant par D  rencontre C.

Donnons pour clore ce paragraphe un exemple de théorème de séparation. On 
supposera l’espace réel, les notions de séparation n’ayant aucune signification dans 
le cas complexe.

Définition 3.14.2 Dans un e.l.c. réel E, on dit que deux parties A et B de E  sont 
séparées par un hyperplan fermé H si A est contenu dans l'un des demi-espaces 
fermés déterminés par H et B dans l'autre demi-espace fermé.

On a alors le théorème de séparation suivant.
Théorème 3.14.9 Soient E  un e.Le. réel, A et B deux ensembles convexes non 
vides et disjoints, l'un au moins de ces convexes étant ouvert, alors il existe un
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hyperplan fermé H séparant A et B. En outre, si A, par exemple, est ouvert, wn 
tel hyperplan H ne rencontre pas A.
Preuve On applique le théorème précédent en prenant M  = {0} et C = A — B  
qui est convexe, non vide et ouvert (lemme 3.6.1) : il existe un hyperplan fermé 
contenant 0 et ne rencontrant pas C ; autrement dit, il existe une forme linéaire et 
continue T e  E f qui ne s’annule pas sur C et, un convexe étant connexe, T  est 
donc de signe constant sur C ; supposons, par exemple, T > 0 sur C, c’est-à-dire 
Tx > Ty  pour tout x G A et y G B  ; posons a = i n f , ^  Tx  ; a est fini et Tx > a 
pour tout x e  A, Ty < a pour tout y G B, ce qui prouve que l’hyperplan fermé 
H = {z G E  ; Tz  =  a} sépare A et B.

Si A est ouvert, montrons que H  ne rencontre pas A. En effet, T (A) est ouvert : 
soit x  G A et h G E  tel que Th ^  0 ; le vecteur x +  th appartient à A pour t G R 
suffisamment petit et T(x  +  th) = Tx  +  tTh, ce qui prouve que T (A) est un 
voisinage de Tx  et T  (A) est donc ouvert. L’ensemble T(A) est donc un ouvert de 
R contenu dans la demi-droite [a, +oo[ ; le point a ne peut donc appartenir à cet 
ensemble, ce qui prouve le résultat voulu. Q.E.D.
E x e rc ice  3 . 14 .7  Soient E  un e.l.c. réel, A et B  deux convexes non vides et disjoints, on suppose A 
compact et B  fermé. Montrer qu’il existe un hyperplan fermé séparant A et B  qui ne rencontre ni A , 
ni B  [utiliser l’exercice 3.7.7 et le théorème 3.14.9].

E x e rc ice  3 .14 .8  Soit E  un e.v.t.
1. Soit V  un voisinage de^O, il existe (exercice 3.1.1) un voisinage W  6  V (0) tel que 

W  H- W  C V,  montrer que W  c  V  et en déduire que l’origine admet un système fondamental 
de voisinages fermés.

2. Montrer que, pour tout voisinage V  6  V (0), il existe a  >  0  et un voisinage W  G V(0) tels 
que

(\\\ <  a e i x  e W )  ^  Xx e V

et en déduire que l’origine admet un système fondamental de voisinages équilibrés.
3. On suppose que l’origine admet un système fondamental de voisinages convexes. Montrer alors 

que l ’ensemble (VÇ)ie/ des voisinages de l ’origine convexes, fermés et équilibrés est un système fon­
damental de voisinages et en déduire que la topologie de E  peut être définie par une famille de semi- 
normes [prendre la famille des jauges des ensembles %].

E x e rc ic e  3 .14 .9  Hyperplan d ’appui Soient E  un e.l.c. réel et C  C E  une partie non vide, un 
hyperplan fermé H  est appelé un hyperplan d’appui de C  si H  rencontre C  et si C  est contenu dans 
l’un des demi-espaces fermés définis par H.

1. Soit T  G E'  une forme linéaire et continue non identiquement nulle, si C  est compact, montrer 
qu’il existe un hyperplan d’appui de C  de la forme Tx  =  a.

2. Si C  est un convexe fermé d’intérieur non vide, par tout point frontière de C , il passe un 
hyperplan d’appui de C  [soit a G Fr (C ), noter que C  est convexe (exercice 3.8.1) et utiliser le 

théorème 3.14.8 de Hahn-Banach].

E x e rc ice  3 . 1 4 . 1 0  Soit K  une partie non vide d’ un espace vectoriel E , une partie non vide A  de K  
est appelée une partie extrémale de K  si

(Væ,y G K)(Vt  G]0, l [ ) ( t o  +  (1 -  t)y  G A =*► x , y  G A).

Un point a G K  est appelé un point extrémal de K  si {a} est une partie extrémale de K.
1. Si E  est un e.l.c., tout point extrémal de K  appartient à la frontière de K.
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2. Un espace normé E  est dit uniformément convexe si, pour tout e >  0, il existe 6 >  0 tel que

(IMI < i ,  IMI <  i «  ||(*  + 1/) /2 || >  1 -  <J) => ||x -  y\\ < e.

Montrer que les points extrémaux de la boule unité B =  {x E E  ; ||æ|| <  1} sont les points de la 
sphère unité S  =  {x E E]  ||æ|| =  1}.

3. Dans l ’espace de Banach Z°°(/; K), /  étant un ensemble quelconque, montrer que les points 
extrémaux de la boule unité sont les points a =  ( a * )^ /  tels que \at\ =  1 pour tout i.

On suppose désormais que E  est un e.l.c. séparé et que K  est une partie compacte non vide de E.
4. a. Soit y  l’ensemble des parties extrémales fermées de K  ; on ordonne fS  en prenant comme 

relation d’ordre l’opposé de l’inclusion. Montrer que J  est inductif.
b. Soit A E si T  est une forme K-linéaire et continue sur E  montrer que

B =  {x e  A ; Tx  =  sup Ty}  
yeA

appartient à fS.
c. En déduire que tout élément maximal de ‘S  est une partie réduite à un élément.
d. Montrer que toute partie extrémale fermée de K  contient un élément extrémal de K  et que 

l’ensemble EX(K)  des éléments extrémaux de K  est non vide.

5. Montrer que K  est contenu dans l’enveloppe convexe fermée F(EX(K))  de ses points ex­
trémaux [s’il existe un point a de K  n’appartenant pas à cette enveloppe convexe fermée, utiliser la 

proposition 3.14.4]. Si on suppose de plus K  convexe, alors K  =  r(Æ?x (i<')) (théorème de Krein- 
Milman).

Exercice 3.14.11 Soient E  un e.l.c. séparé, K  une partie convexe compacte non vide et /  : K  —> M 

une fonction convexe s.c.s. Montrer que l’ensemble K'  où /  atteint sa borne supérieure est une partie 

extrémale compacte (exercice 3.14.10) de K.

Exercice 3.14.12 Soient E  un espace normé uniformément convexe (exercice 3.14.10) et K  une 
partie compacte non vide de E.  On note A l’ensemble des x E E  qui admettent une unique projection 
sur K  : si d =  d(æ, K ), ceci signifie qu’il existe un unique point y E K  tel que ||æ — y || =  d .

1. Montrer que K  C A. Si x g  K , soit y  un point de I< tel que ||æ — y  || =  d, montrer que 
]æ, y[ C A [si 2  =  tx +  (1 — t)y E ]æ, y[, 0 <  t <  1, on montrera que B'(z\ td) C B(x\ d) U {y}  : 
à cet effet, on supposera qu’il existe un point y' E E  tel que

V Ï  y', \ \ z - v ' \ \  =  tdet  ||x  — j/ll = d ;

poser

y" =  v  +  -  v)i

les points y , y f, y" de la sphère S(x\d)  étant alignés, en déduire une contradiction grâce à l’exercice 
3.14.102 ]• En déduire que A est dense dans E.

Soient x E E ,d  =  d (x , K)  et Ô >  0,  on pose

K ô(x) =  K n B ' ( x \ d  +  6)

et, pour tout e >  0,
Oe =  {x E E  ; (35  >  0 )( diam K$(x) <  e )} .

2. Montrer que A =  f l o o
3. Soient x,x ' E E t d =  d(x,K)t d' =  d(æ',/<T). Montrer que Kÿt(x) C I<s(x) dès que 

2 ||æ — a?'|| +  <5' <  S et en déduire que les ensembles Fe =  E — Oe sont fermés.

4. En déduire que le complémentaire de A est maigre.
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3.15 Topologies faibles
Soient F  et F  deux espaces vectoriels (réels ou complexes). On dit qu’une forme 
bilinéaire (x, y) h-»< x, y > sur E  x F  met ces espaces vectoriels en dualité si
(3.15.1) < x ,y  > =  0 pour tout x G E  implique y = 0 
et
(3.15.2) < x, y >= 0 pour tout y e F  implique x =  0.
On dit alors que < •, • >  est le crochet de dualité ; le cas échéant, ce crochet peut 
être noté <  . ,•  >(e ,f)-

L’exemple fondamental est le suivant.
Proposition 3.15.1 Soient E  un e.Lc. séparé, E ' le dual topologique de E, alors 
la forme bilinéaire <  x, x 1 > =  x'(x) met les espaces E  et E* en dualité.
Preuve Si x '(x) =  0 pour tout x, on a évidemment x ' =  0. Si x '(x) =  0 pour tout 
x ' G E ', alors x =  0 : en effet, si x est différent de 0, il existe (corollaire 3.13.7) 
x ' G E ' tel que x '(x) ^  0. Q.E.D.

Lorsque deux espaces vectoriels sont en dualité, on peut définir des topo­
logies sur ces espaces, dites topologies faibles, de la façon suivante. Sur l’es­
pace E , les applications 0y : x  h*< x ,y  > , où y G F , sont des formes li­
néaires et on peut donc définir sur E  la topologie initiale rendant continues toutes 
ces formes linéaires lorsque y décrit F . Cette topologie est donc la topologie la 
moins fine rendant continues les applications 6 yy y G F  ; cette topologie, notée 
a(E) F ), s’appelle topologie faible sur E  associée à la dualité entre les espaces E  
et F. Bien entendu, on définit de la même façon une topologie faible sur F  no­
tée <r(F, E) : c’est la topologie la moins fine rendant continues toutes les formes 
linéaires y i-K  x ,y  > , x décrivant E . Les espaces E  et F  jouant un rôle parfai­
tement symétrique, nous allons indiquer les propriétés de la topologie faible sur
E.

D’après la proposition 3.5.1, la topologie cr(F, F ) est une topologie d’e.l.c. 
qui peut être définie par la famille de semi-normes
(3.15.3) x i->- | < x, y > | où y décrit F.
La topologie <r(F,F) est séparée d’après (3.15.2) et la proposition 3.2.9. Si une 
suite (xn) de E  converge vers x pour la topologie cr(F, F ), on dit qu’elle converge 
faiblement vers x : ceci signifie que, pour tout y G F , la suite (< xn, y >) de K 
converge vers < x,y  >.

Reprenons la situation de la proposition 3.15.1. Les espaces E  et E'  étant en 
dualité, on peut définir des topologies faibles <r(F, F ')  et o (F ', E ) sur E  et F '.  
Sur l’espace F , on dispose donc de deux topologies, d’une part de la topologie 
donnée initialement qu’on appelle donc la topologie initiale ou topologie forte sur
F , d’autre part de la topologie faible c r(F ,F /) : cette topologie faible est effec­
tivement plus faible, c’est-à-dire moins fine que la topologie initiale, vu que la 
semi-norme x h* |x'(x)| est continue sur F  pour la topologie initiale (c’est la
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continuité de x ' !) C’est pour cette raison que la topologie cr(Ey E ') est appelée la 
topologie affaiblie sur E  (sous-entendu affaiblie de la topologie initiale) ; muni de 
cette topologie, l’espace E  sera noté Ea. Dire qu’une suite (xn) de E  converge 
faiblement vers x signifie que, pour tout x' G E \  la suite (x'(xn)) converge vers 
x'{x). Par contre, l’espace E'  n’est pas naturellement muni d’une topologie et la 
dualité entre E  et E 7 permet de définir la topologie faible a ( E E )  sur E'  ; il est 
important de noter que cette topologie est en fait la topologie de la convergence 
simple et plus précisément la topologie induite par celle de l’espace 3rs(E;K) ; 
muni de cette topologie, l’espace E 7 sera noté E'a et sera appelé le dual faible de 
E.

D’après la définition même de la topologie cr(E,F), la forme linéaire 
x  i-»< x, y > est continue sur E  muni de sa topologie faible ; autrement dit, si on 
note E ' le dual de l’espace E  muni de sa topologie faible, l’application 0 :y  h-» 9y 
est une application, évidemment linéaire, de F  dans E'. Nous allons démontrer 
que cette application est un isomorphisme topologique, les espaces F  et E ' étant 
munis des topologies cr(F, E) et a(E/i E).

Voici d’abord un lemme algébrique.

Lemme 3.15.2 Soient T\ , . . . ,  Tn , T des formes linéaires sur un espace vectoriel 
E telles que T\x = ... = Tnx = 0 implique Tx  =  0, alors T  est une combinaison 
linéaire des formes T \ , . . . ,  Tn.
Preuve Considérons l’application linéaire R  =  (T i , . . .  ,Tn) : E  ->• Kn, l’hypo­
thèse signifie que Rx =  0 implique Tx = 0 ; autrement dit Rx = Rx' implique 
Tx = TV, il existe donc une forme linéaire et une seule S  : R(E) -> K  telle que 
S(Rx) = Tx. D’après le théorème 3.13.6, cette forme linéaire se prolonge en une 
forme linéaire S  sur Kn ; cette forme linéaire est de la forme

n

S  (Vu * * * > Vn) =  ^  y GiVii ^
i=1

d’où n
Tx = S(Tixy. . . ,  Tnx) =  ^  a{TiX

i= 1
et ceci prouve que T  =  XwLi aÆ - Q.E.D.

Proposition 3.15.3 Soient E  et F  deux espaces vectoriels en dualité, E f le dual de 
Ve.l.c. séparé E muni de la topologie faible a(EyF), alors Vapplication 
9 : y i y< > est un isomorphisme topologique de F sur E ' pour les topo­
logies a(F) E) et a (E \ E). Toute forme linéaire et continue T  sur E, a(E, F), 
peut donc s'écrire d'une façon et d'une seule

Tx =< x, y > où y G F.

Preuve L’application 9 est injective : 9(y) = 0 implique y = 0 d’après (3.15.1). 
Montrons que 9 est surjective. Soit T  G E \  d’après le théorème 3.3.3 il existe



372 CHAPITRE 3 ESPACES LOCALEMENT CONVEXES

une partie finie { y \, . . . ,  yn }  de F  et une constante c >  0 telle que 
\Tx\ <  c sup | <  x ,  yi  >  | pour tout x  ;

l < i < n

il en résulte que Tx  =  0 dès que <  x,yi > =  0, 1 <  i < n ; d’après le lemme 
précédent, T  est une combinaison linéaire des formes <  •, yi > , ce qui prouve que 
T  est de la forme < •, y >  où y est une combinaison linéaire des yi. L’application 
0  est donc surjective.

Montrons que 6  est un isomorphisme topologique. La topologie a(Fy E) de F  
est définie par les semi-normes px : y ■-* | <  x, y > | ; la topologie a ( E E )  
de E 1 est définie par les semi-normes qx : x 1 \x'(x)\ et, pour conclure, il suffit 
d’observer que px = qx ° 0. Q.E.D.

Lorsque E  et F  sont deux espaces vectoriels en dualité et qu’on munit ces 
espaces de leur topologie faible, on peut donc identifier F  et le dual de F , ainsi 
que E  et le dual de F. Autrement dit, la situation apparemment particulière de la 
dualité entre un e.l.c. séparé et son dual est en fait la situation générale. Dans ce 
cas l’application 9 est simplement l’application identique de E 1 et on a donc le
Corollaire 3.15.4 Soient E un e.l.c. séparé, E ' le dual de E, alors E' est encore 
le dual de E pour la topologie affaiblie <7 (F , E ').

Remarque 3.15.1 D’après la proposition 3.15.3, l’application qui à tout x de E  
associe la forme linéaire et continue sur E'a x f x'(x) est un isomorphisme de 
E  sur (E'a)f pour les topologies <t( F ,F ')  et a((Efa)\  ££), c’est-à-dire un iso­
morphisme de Ea sur le dual faible de E'a. En particulier, toute forme linéaire et 
continue sur le dual faible est de la forme xf x l{x) : le dual du dual faible E'a 
peut être identifié à E.

Soit E  un e.l.c. séparé, la topologie affaiblie étant moins fine que la topolo­
gie initiale, toute partie faiblement fermée, c’est-à-dire fermée pour la topologie 
<j(Ey £■'), est fortement fermée, c’est-à-dire fermée pour la topologie initiale. Ré­
ciproquement, une partie fortement fermée n’est pas en général faiblement fer­
mée. Cependant, les formes linéaires continues sur E  étant les mêmes pour ces 
deux topologies, un hyperplan fermé est faiblement fermé et, plus généralement, 
un sous-espace vectoriel fermé est faiblement fermé d’après le corollaire 3.13.9. 
Ce résultat subsiste pour toute partie convexe. Lorsque E  est un e.l.c. réel, ceci ré­
sulte de la proposition 3.14.7 ; cette proposition n’ayant aucune signification dans 
le cas complexe, nous utiliserons l’argument suivant.

Soient E  et F  deux espaces vectoriels complexes en dualité. Notons Eo et Fo 
les espaces vectoriels réels sous-jacents. La forme bilinéaire

(x, y) •-* <  x, y >
définit une dualité entre ces espaces : en effet, supposons 5Re <  x,y  > =  0 
pour tout x G E y alors 3fte < ix,y >= 0, d’où <  x,y >= 0 et par suite 
<  x>y > =  0 pour tout x e E, d’où y = 0, ce qui prouve (3.15.1) ; on vé­
rifie de même (3.15.2). Sur F , on peut donc définir deux topologies faibles, la
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topologie cr(E,F) et la topologie a(Eo,Fo) ; ces deux topologies coïncident : 
a(E,F)  =  a(Eo,Fo). En effet, la topologie a(E)F) est définie par les semi- 
normes x | <  x, y > |, la topologie a(E0 , F0) par les semi-normes

x  h* |$fte < x , y  > |
et on a

|Sfte < x, y > | < | <  x, y >  |, | <  x, y > | <  |Sfte < x, y > | +  |5Re < x, iy >  |, 
ce qui prouve le résultat voulu.

Les considérations précédentes prouvent donc la 
Proposition 3.15.5 Dans un e.l.c. séparé, tout convexe fortement fermé est faible­
ment fermé.
Exercice 3.15.1 Théorème de M azur Soit E  un e.l.c. métrisable et soit (xn ) une suite de E  conver­
geant faiblement vers x> c ’est-à-dire dans Ea . Si C  désigne l ’enveloppe convexe de la suite (æn )> 
montrer qu’il existe une suite (yn ) de C  qui converge vers x pour la topologie initiale [noter que 

l’adhérence de C  pour la topologie initiale coïncide avec l’adhérence faible de C ].

Exercice 3.15.2 Soit E  un espace normé de dimension infinie, montrer que la topologie affaiblie 
cr(E, E')  n’est pas métrisable [si la topologie cr(E, E f) est métrisable, montrer qu’il existe une suite 
(x'n) de E' vérifiant la propriété suivante : pour tout a:' E E \  il existe n  et c >  0 tels que

|a/(æ)| <  c m ax |cr'(cr)| pour tout a? E E
0 < j < n  J

utiliser ensuite le lemme 3.15.2, puis les exercices 3.5.3 et 3.13.2].

Exercice 3 .1 5 .3  Soit E  un e.l.c. séparé.
1. Montrer que E est métrisable si, et seulement si, E  est de dimension dénombrable [utiliser le 

lemme 3.15.2].
2. Montrer que E'a est normable si, et seulement si, E est de dimension finie [si E  est de dimension 

infinie, montrer que tout voisinage de 0 dans E'a contient un sous-espace vectoriel non réduit à {0}].

Exercice 3 .1 5 .4  On considère l ’e.l.c. E  =  (X ; K) (exemple 3.5.1).
1. Soit x E  X,  montrer que l’application Ôx : /  •—> f(x)  est une forme linéaire et continue sur E.
2. Montrer que E 7 coïncide avec l ’espace vectoriel engendré par (<5x ) x e x  [utiliser le lemme 

3.15.2].
3. Montrer que la topologie affaiblie sur E  coïncide avec la topologie initiale.

Exercice 3 .1 5 .5  Soit E  un espace vectoriel de dimension infinie qu’on munit d'une structure d’e.l.c. 
en prenant toutes les semi-normes définies sur E.

1. Montrer que la topologie de E  est séparée.
2. Montrer que la topologie affaiblie est strictement moins fine que la topologie initiale en procé­

dant comme suit.
a. Soit (ei) içi  une base de E , tout x e  E  s ’écrit d’une manière unique x =

Xi E K, où l ’ensemble des i tels que Xi ±  0 est fini. Montrer que ||æ|| =  \xi \ est une norme 
sur J?.

b. Expliciter l ’éventuelle continuité de l ’application identique de Ea dans E , puis conclure.

Exercice 3 .1 5 .6  On considère l'espace vectoriel E  =  K[x] des polynômes à une indéterminée et 
l’espace vectoriel F  =  K [[ce]] des séries formelles à une indéterminée. Si P  =  YlfLoPjxj  est un 
polynôme (l’ensemble { j  E N ; Pj ^  0 }  est fini) et Q =  Qjxj  est une série formelle, on pose

oo
<  P,Q > =

j = 0
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1. Montrer qu’on établit ainsi une dualité entre les espaces F  et F.
2. Montrer que toute forme linéaire T  : E  —> K est continue.
3. On note En le sous-espace vectoriel de E  constitué des polynômes de degré <  n. Montrer que 

la topologie induite sur En par celle de E  est la topologie canonique de En .
4. Montrer qu’une partie B  de E  est bornée si, et seulement si, il existe une entier n  tel que B

soit contenu et borné dans En [pour démontrer que la condition est nécessaire, on pourra raisonner par 
l’absurde : si B <£ En pour tout n , il existe une suite Pk E B  telle que degré Pk <  degré Pk+i  ; 
construire alors une série formelle de la forme Q =  qkXUft où =  degré P* telle que
I <  -Pfc.Q >  I >  k pour tout k],

5. Montrer qu’une suite (P*) de E  converge vers 0  si, et seulement si, il existe n  tel que Pfc E  En 
pour tout k et la suite (Pk) converge vers 0 dans En .

6. Montrer que l ’espace E  est séquentiellement complet.

7. Montrer que E  n’est pas métrisable [montrer que E  est maigre].

Exercice 3.15.7 Soient E  un e.l.c. séparé, F  un sous-espace vectoriel partout dense muni d’une 
topologie d’e.l.c. séparé telle que l’injection canonique de F  dans E  soit continue, l'application de 
restriction u  E  E1 »->• u \f  E  F’ est alors injective, ce qui permet d’identifier E ' à un sous-espace de 
F'.

1. Montrer que la topologie cr(E't E)  est plus fine que la topologie induite par la topologie 
<r(F',F).

2. Si F ±  F , la topologie a(E' ,E)  est strictement plus fine que la topologie induite par la 

topologie <j (F' ,F)  [raisonner par l’absurde : si ces deux topologies coïncident, considérer la semi- 
norme de F ',  xf i—y |æ'(a;)|, où x E  F  — F].

3.16 Dualité des espaces de Banach

Soient E  un espace normé (réel ou complexe) et E ' son dual. On dispose sur E  
de la topologie initiale et de la topologie affaiblie cr(E,E') associée à la dualité 
(x, x ') x '(x) entre E  et E 1 ; muni de cette topologie faible, l’espace E  est noté
Ea. Sur le dual E \  on dispose de la topologie faible a(Ef,E)  ; rappelons que 
muni de cette topologie, E \  noté E'a> est appelé dual faible. Sur E \  on dispose 
également de la topologie de la convergence uniforme sur tout borné qui est une 
topologie d’espace de Banach (théorème 3.10.1), la norme d’une forme linéaire 
et continue T  G E' étant définie par ||T|| =  s u p ^ u ^  \Tx\ ; cette topologie sur 
E \  notée est appelée topologie forte. Muni de cette topologie E \  noté Eb, 
est appelé le dual fort. On peut alors considérer le dual E" = (E'b)f du dual fort, 
appelé bidual de l’espace E , et la topologie affaiblie de la topologie forte, c’est-à- 
dire la topologie faible cr(E\E").

En résumé, on dispose sur l’espace E  de deux topologies, la topologie initiale 
et la topologie affaiblie de l’initiale, sur le dual E ' de trois topologies, la topolo­
gie faible <t(E \ E)> la topologie forte et la topologie affaiblie de la forte. Sur le 
bidual, nous utiliserons la topologie d’espace de Banach de dual fort de l’espace 
de Banach Eb et la topologie faible a(E" , E ').

Nous allons étudier les propriétés des topologies faibles a(E,E')  et 
a{E\E).  Ces propriétés seront qualifiées de l’adjectif faible ; par exemple, une
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partie bornée (resp. compacte) de Ea ou EG sera dite faiblement bornée (resp. fai­
blement compacte), etc. Afin d’éviter toute confusion, nous n’utiliserons pas cet 
adjectif faible pour la topologie a (E \ E n).

Rappelons enfin que, sur l’espace E , la topologie initiale est plus fine que la 
topologie affaiblie cr(E,E'). Lorsque E  est de dimension finie, ces topologies 
coïncident d’après le théorème 3.5.8.

Sur l’espace E \  on a la
Proposition 3.16.1 Soit E f le dual d ’un espace normé E , alors 

a ( E \E ) < a ( E \E " ) < 7 b.
Preuve On sait déjà que la topologie 7b est plus fine que sa topologie affaiblie 
a(E \ E n). La topologie a(E ',E) est définie par les semi-normes x' »->• \xf(x)\, 
x décrivant E , la topologie a (E \E ")  par les semi-normes x f i-» |æ,/(x,)|, xn 
décrivant E". Si x appartient à E , la forme linéaire x' x'(x) est continue sur 
Eb vu que |æ/(o:)| <  Hx'H ||x|| ; notons la x 11 G En tel que x"(x') = x'(x) pour 
tout x ' G E 1 et ceci prouve que les semi-normes de a (E \E )  sont encore des 
semi-normes de a (E \ E "), d’où a (E \ E) < cr(E'y E"). Q.E.D.

Lorsque E  est de dimension finie, E ' est de dimension finie et toutes ces topo­
logies sur E' coïncident.

Étudions d’abord les propriétés du dual faible. Le théorème de Tychonoff per­
met d’établir le

Théorème 3.16.2 Théorème d ’Alaoglu Soit E  un espace normé, la boule unité 
B ' =  {x7 G E' ; Ha;71| <  1} du dual E 1 est faiblement compacte, c’est-à-dire pour 
la topologie cr(E\ E).
Preuve II s’agit de démontrer que B' est compact dans l’espace 7 $(E; K).

On vérifie d’abord que B ' est relativement compact en utilisant le théorème 
de Tychonoff : en effet, pour x G E y l’ensemble {Tx ; T  G B'} est borné car 
\Tx\ < ||x||, donc relativement compact.

Montrons ensuite que B f est fermé. Or, B' est l’intersection de E*y qui est 
fermé, et des ensembles { /  G 7S(E\K) ; \f{x)\ < ||x||}, x  décrivant E  ; chacun 
de ces ensembles est fermé d’après la continuité des projections /  •-> f(x )  et ceci 
permet de conclure. Q.E.D.

Ce premier théorème de compacité montre quel peut être l’intérêt des topo­
logies faibles. Si E' est de dimension infinie, c’est-à-dire si E  est de dimension 
infinie (exercice 3.13.2), la boule unité de E 1 n’est jamais compacte pour la topo­
logie forte, alors qu’elle est compacte dans E'G.

Par translation et homothétie, toute boule fermée de E fb est faiblement com­
pacte et par conséquent on a le
Corollaire 3.16.3 Soit E un espace normé, toute partie bornée du dual fort Eb est 
faiblement relativement compacte.
Note Une partie bornée A du dual fort Eb est dite fortement bornée : cela signifie 
que supæ/€/1 Hæ'll < oo.
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Lorsque E  est un espace de Banach, on a alors la caractérisation suivante des 
parties relativement compactes de E fa.
Corollaire 3.16.4 Soient E un espace de Banach et A une partie de E ', alors les 
propriétés suivantes sont équivalentes.

1 . A est faiblement borné.
2. A est fortement borné.
3. A est faiblement relativement compact.

Preuve 1 => 2 résulte du corollaire 3.12.9, la topologie &(E\ E) étant la topologie 
de la convergence simple.

2 => 3 d’après le corollaire précédent.
3 => 1 d’après la proposition 3.7.3. Q.E.D.
Dans le dual d’un espace de Banach, lorsqu’on parle de parties bornées, il n’est

donc pas utile de préciser s’il s’agit de parties fortement bornées ou faiblement 
bornées. En particulier, une suite de E f faiblement convergente est bornée.
Remarque 3.16.1 Si E  est un espace de Banach de dimension infinie, l’espace 
E fa est donc un exemple d’e.l.c. séparé de dimension infinie où toute partie bornée 
est relativement compacte.

Précisons les propriétés des suites faiblement convergentes.
Proposition 3.16.5 Soit E un espace de Banach, une suite (x'n) du dual E ' con­
verge faiblement si, et seulement si, pour tout x G E la suite {xfn(x)) admet une li­
mite ; la suite (x'n) est alors bornée et, en notant x f sa limite, 
\\xf\\ <  lim infn_>00 ||a4||. En outre, pour toute suite (xn) de E convergeant vers 
x, la suite (x’̂ (xn)) converge vers x'(x).
Preuve Si la suite (x'n(x)) admet une limite quel que soit x  G E, le théorème de 
Banach-Steinhaus 3.12.10 montre que la suite (x 'n ) est faiblement convergente (de 
limite x') ; cette suite est donc faiblement bornée, donc équicontinue (proposition 
3.12.8) et, d’après le corollaire 3.12.4, on en déduit que Hrr'H < lim in f^ o o  Iknll* 
La dernière assertion résulte également du théorème de Banach-Steinhaus. Q.E.D.

D’après le corollaire 3.12.6, on a d’autre part la 
Proposition 3.16.6 Soit E un espace normé, une suite {x'n) de E' fortement bor­
née converge faiblement si, et seulement si, la suite (x'n(x)) admet une limite pour 
tout x appartenant à une partie totale de E.

On peut se demander si les résultats de compacité concernant le dual faible sont 
également vrais sur E  muni de la topologie faible a(E , E'). Il est en fait nécessaire 
de faire des hypothèses supplémentaires ; par exemple, la boule unité d’un espace 
normé n’est pas en général faiblement compacte, c’est-à-dire compacte pour la 
topologie o(E,E ') : le théorème 3.16.16 de Banach caractérise justement les es­
paces normés pour lesquels cette propriété est vraie.

L’origine des propriétés de compacité du dual faible est claire : la topologie 
a{E,,E) est la topologie de la convergence simple ; la topologie a(E, E 1) n’est 
pas a priori une topologie de convergence simple et, pour étudier cette topologie,
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il faut au préalable plonger E  dans un espace d’applications, cet espace sera le 
bidual de E.
Proposition 3.16.7 Soit E  un espace normé et soit j  : E  —ï E n Vapplication qui 
à x G E associe la forme linéaire et continue sur E'b x' x'(x). Alors, j  est une
isométrie linéaire de E  sur un sous-espace de Vespace de Banach E
Preuve Comme nous l’avons déjà vérifié, j(x)  appartient bien à E" ; il est clair 
également que j  est linéaire. On a ||j(a;)|| =  su p ^ u ^ !  |z7(z)l =  INI d’après le 
corollaire 3.13.12 et ceci prouve que j  est une isométrie. Q.E.D.

L’application j  sera appelée l’injection canonique de E  dans E".
Remarque 3.16.2 Complété d’un espace normé Posons Ê = j(E)> alors Ê  est 
un espace de Banach en tant que sous-espace fermé d’un espace de Banach. Ceci 
montre qu’il existe un espace de Banach Ê  tel que E  soit isométrique à un sous- 
espace dense de Ê  : cet espace de Banach est appelé le complété de E , car la pro­
priété précédente caractérise le complété à une isométrie près. En effet, soient Ei,
1 — 1,2, deux espaces de Banach tels qu’il existe une isométrie linéaire pi de E  
sur un sous-espace dense dans Ei ; alors, P2 ° (P Ï1 est une isométrie de p\ (E) sur 
<P2 (E) qui, d’après la proposition 3.10.2, se prolonge en une application linéaire et 
continue p  de E\ dans E 2  ; le principe du prolongement des identités montre que 
p  est une isométrie ; p(E\) isométrique à E\ est complet, donc fermé ; p  étant 
par ailleurs à image dense, ceci montre que p  est surjective et, par conséquent, p  
est une isométrie de E\ sur E 2 .

Au niveau des topologies faibles, on a la
Proposition 3.16.8 Soit E  un espace normé, l ’injection canonique j  est un iso­
morphisme de Ea surj(E) muni de la topologie a{E” , E ' ).
2 Preuve Les topologies a(E, E 1) et cr(E,f) E r) sont définies par les semi-normes

pxt : x 1—̂ \x \x) \ et qx> : x" ^  \x"(x')\
et px/ =  qX' o j , ce qui prouve que la bijection linéaire j  : E  —» j(E )  est un 
isomorphisme pour les topologies indiquées. Q.E.D.

Voici les premières applications de ce qui précède.
Proposition 3.16.9 Soit E  un espace normé, une partie de E est bornée pour la 
topologie initiale si, et seulement si, elle est faiblement bornée.
Preuve L’application identique de E  dans Ea étant continue, toute partie bornée 
est faiblement bornée. Réciproquement, soit A une partie faiblement bornée, alors 
j(A) est borné dans E" pour la topologie o{En, E 1), donc fortement borné dans 
E n d’après le corollaire 3.16.4 (E 7 est complet) et on conclut en utilisant le fait 
que j  est une isométrie. Q.E.D.

Autrement dit, soit A C  E  tel que supx€A \x'(x)\ < 00 pour tout x' e E \  
alors supæ€i4 ||x|| <  00. Dans un espace normé, on pourra donc parler de partie 
bornée sans qu’il soit utile de préciser s’il s’agit de partie bornée pour la topologie 
initiale ou pour la topologie affaiblie.
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Exercice 3.16.1 Théorème de Banach-Mackey 1. Soient E, F  des e.l.c. séparés, T  G £ ( £ ;  F). 
Si A est une partie faiblement bornée de Ea , montrer que T  (A) est faiblement borné dans Fa .

2 . Soit E , ( ||• | |z) / »  un e.l.c. séparé ; on note Ei l’espace E  muni de la seule semi-norme 11*111, 
Fi =  {x  G Ei ; ||æ||i =  0} et tt* : E* -»  Ei/Fi  la surjection canonique de Ei sur l ’epace normé 
quotient Ei/Fi  (exemple 3.6.1).

a. Soit A  une partie faiblement bornée de Ea, montrer que iti(A) est faiblement borné dans
Ei/Fi.

b. En déduire qu’une partie A  de E  est bornée si, et seulement si, elle est faiblement bornée 

(théorème de Banach-Mackey) [utiliser la proposition 3.16.9].

Exercice 3.16.2 Propriété de Montel On dit qu'un e.l.c. séparé E  possède la propriété de Montel 
si toute partie bornée de E  est relativement compacte.

1. Montrer qu’un espace normé ayant la propriété de Montel est nécessairement de dimension
finie.

On suppose désormais que E  est un e.l.c. séparé qui possède la propriété de Montel.
2 . Montrer que sur une partie bornée de E, la topologie initiale et la topologie affaiblie coïncident.
3. Montrer qu'une partie A  de E  est compacte pour la topologie initiale si, et seulement si, elle est 

compacte pour la topologie affaiblie [utiliser le théorème de Banach-Mackey (exercice 3.16.1)].
4. Montrer qu’une suite (æn ) de E  converge pour la topologie initiale si, et seulement si, elle 

converge faiblement.

Toute suite de E  faiblement convergente est bornée et plus précisément on a la 
Proposition 3.16.10 Soit E  un espace normé', toute suite (xn) de E  faiblement 
convergente est bornée et ||x|| <  lim in f^ o o  ||xn || en notant x la limite de la 
suite (xn). En outre, pour toute suite (x'n) de E' convergeant fortement vers x \ la 
suite (x^(xn)) converge vers x'(x).
Preuve La suite (j(xn)) converge vers j(x)  pour la topologie <j (E '\ E') ; on ap­
plique alors la proposition 3.16.5. Q.E.D.

D’après la proposition 3.16.6, on a la
Proposition 3.16.11 Soit E  un espace normé, une suite bornée (xn) de E  converge 
faiblement vers x si, et seulement si, la suite (xf(xn)) converge vers xf(x) pour 
tout x f appartenant à une partie totale de E'b.
Preuve Posons x„ = j(xn) et x" =  j ( x ), la suite (a;") de E"  est fortement bornée 
et, pour tout x 1 appartenant à une partie totale de E'h, la suite (x!^(x/)) converge 
vers x"(xf). D’après la proposition 3.16.6, la suite (x„) converge dans E n muni de 
la topologie a(Ef\  E f) ; sa limite est nécessairement x", ce qui prouve le résultat 
voulu. Q.E.D.

L’application j  n’est pas nécessairement surjective, ce qui conduit à la défini­
tion suivante.
Définition 3.16.1 Un espace normé est dit réflexif si Visométrie canonique de E  
dans E" est surjective.

On notera qu’un espace réflexif est nécessairement complet. Un espace de Ba- 
nach de dimension finie est réflexif : si E  est de dimension n, alors E 1 et E n 
sont également de dimension n et l’application j  étant injective est nécessairement 
surjective.

L’intérêt des espaces réflexifs réside dans la proposition suivante.
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Proposition 3.16.12 Soit E  un espace de Banach réflexif, alors sur E' les topo­
logies a { E E )  et cr(Ef, E") coïncident et l'injection canonique de E sur E" est 
un isomorphisme de E  sur E n pour les topologies a(E , E 1) et cr(E'\ E f).
Preuve La première assertion est évidente et la seconde résulte de la proposition 
3.16.8. Q.E.D.

L’application j  étant à la fois une isométrie et un isomorphisme pour les topo­
logies faibles précisées ci-dessus, le corollaire 3.16.4 se transcrit comme suit. 
Corollaire 3.16.13 Dans un espace de Banach réflexif Ef une partie A est faible­
ment relativement compacte si, et seulement si, elle est bornée.
Remarque 3.16.3 Si E  est un espace de Banach réflexif, les propositions 3.16.5 
et 3.16.6 permettent de préciser les propriétés des suites faiblement convergentes. 
Pour qu’une suite (xn) converge faiblement, il suffit que la suite (x '(xn)) admette 
une limite pour tout xf G E ' et même pour tout x‘ appartenant à une partie totale 
de El si la suite (xn) est bornée.

Remarque 3.16.4 Considérons une partie convexe C de E \  si C est fermé dans 
El, C est fermé pour la topologie affaiblie a(E f, E") d’après la proposition 3.15.5, 
mais n’est pas nécessairement fermé dans E ,(J. Par contre, lorsque E  est un espace 
de Banach réflexif, les deux topologies a(E,,E)  et cr(Ef,E")  coïncident et par 
suite tout convexe fermé de E'b est faiblement fermé.

En utilisant le théorème d’Alaoglu dans E", la proposition 3.16.12 va nous 
permettre d’obtenir des propriétés de compacité faible dans l’espace E. Nous no­
terons B, B ' et B " les boules unités fermées dans E , E f et E" respectivement. 

Établissons d’abord la
Proposition 3.16.14 Goldstine Soit E  un espace normé, alors j  (B) est dense 
dans B" pour la topologie cr(E", E ').
Preuve II est clair que j(B)  est contenu dans B " , j  étant une isométrie. Suppo­
sons alors qu’il existe un point Xq G B"  n’appartenant pas à l’adhérence de j (B)  
pour la topologie cr(E", E ') ; j(B)  étant convexe et équilibré, cette adhérence est 
convexe (proposition 3.8.4) et équilibrée (lemme 3.14.3), il existe donc (proposi­
tion 3.14.5) un x’ G E ' tel que |a;,,(a:,)| <  1 pour tout xn G j(B)  et Xq(x ') >  1. 
Il en résulte que |x '(x)| <  1 pour tout x  G B  ; ceci signifie que ||x '|| <  1, d’où 
\xq(x')\ < 1 ce qui contredit l’inégalité Xo(x') >  1. Ceci prouve le résultat voulu.

Q.E.D.

Corollaire 3.16.15 Soit E un espace normé, alors j(E ) est dense dans E" pour 
la topologie a(E/f, E').

Si E  est un espace de Banach, j(E)  est donc fermé dans E n pour la topologie 
de dual fort et partout dense pour la topologie affaiblie o(En, E f).

On a alors le théorème suivant dû à Banach.
Théorème 3.16.16 Banach Un espace normé E  est réflexif si, et seulement si, sa 
boule unité B est faiblement compacte.
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Preuve Supposons B  réflexif, alors j(B) = B"  et la boule B"  est compacte 
pour la topologie cr(B", E 1) d’après le théorème d’Alaoglu ; d’après la proposition 
3.16.12, B  est donc compact pour la topologie cr(B, E ').

Réciproquement, supposons B  faiblement compact, alors j (B)  est compact 
pour la topologie a(E,,)E f) d’après la proposition 3.16.8, donc fermé dans E n 
pour cette topologie ; j(B)  étant dense dans B", on en déduit que B " =  j (B ) t 
d’où E n = j(E)  par homothétie, ce qui prouve que E  est réflexif. Q.E.D.
Note Soit E  un espace normé, si l’espace E  est réflexif la boule unité B  est com­
pacte pour cr(B, B '), sinon elle ne l’est pas. Par contre, dans B ', la boule unité 
B ' est toujours compacte pour a (B ', B). Ceci montre que les topologies faibles 
associées à la dualité entre B  et B ' n’ont pas les mêmes propriétés : on se gardera 
bien de croire que la situation est symétrique. En outre, si B ' est réflexif, la boule 
unité B ' est compacte pour a(Efy B "), sinon elle ne l’est pas. Lorsque B ' n’est pas 
réflexif, les topologies cr(B/, B) et a (B /, B ") sont donc différentes : la topologie 
<t(B ', B) est strictement moins fine que cr(B/, B").

Voici une application de la compacité faible concernant la minimisation des 
fonctionnelles convexes. Si C est une partie convexe d’un espace vectoriel B, une 
fonction /  : C R est dite convexe si

f ( tx  4- (1 -  t)y) < tf(x)  +  (1 -  pour tout x, y £ C et 0 <  t < 1.

Lemme 3.16.17 Soient E un e.l.c. séparé, C une partie convexe fermée de B, 
alors une fonction convexe f  : C R est s.c.i. pour la topologie initiale si, 
et seulement si, elle est s.c.i. pour la topologie affaiblie. Si une suite (xn) de C 
converge faiblement vers x, on a alors / (x )  <  lim in f^ o o  f ( x n).
Preuve Utilisons la proposition 2.14.3 ; dire que /  est s.c.i. pour l’une quelconque 
des deux topologies signifie que les ensembles

{x £ C ; / (x )  < a}, a £ R,
sont fermés dans C, donc dans B, vu que C est fermé et faiblement fermé d’après 
la proposition 3.15.5. Ces ensembles étant convexes, la même proposition permet 
de conclure. La dernière assertion résulte de (2.37.7) et de la proposition 2.37.4.

Q.E.D.

Théorème 3.16.18 Soient E  un espace de Banach réflexif, C une partie convexe 
fermée, bornée et non vide et soit f  : C —> M une fonction convexe s.c.i., alors 
f  est bornée inférieurement et atteint sa borne inférieure sur une partie convexe 
fermée et non vide de E.
Preuve La fonction /  est s.c.i. pour la topologie affaiblie et C est faiblement re­
lativement compact (corollaire 3.16.13) et faiblement fermé (proposition 3.15.5), 
donc compact. D’après la proposition 2.33.10, /  est bornée inférieurement et at­
teint sa borne inférieure. Soit a £ C tel que f(a) = i n f ^ c  /(x ) , alors /  atteint 
sa borne inférieure sur l’ensemble

{x G C-, f(x)  = f{a)} = {x G C; f(x) < f(a)}
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qui est bien convexe et fermé. Q.E.D.
Voici un exemple de fonctionnelle convexe s.c.i. Soit E  un espace normé et 

soit a £ E  ; la fonction x  ||x — a\\ de E  dans M est convexe et continue, donc 
s.c.i. et par conséquent on a le
Corollaire 3.16.19 Soient E un espace de Banach réflexif, a £ E et C une partie 
convexe fermée et non vide, alors il existe un point Xq £ C tel que

d(a,C) =  ||ar0 -  o||.
Preuve Le convexe C n’étant pas supposé borné, on considère un point b £ C et 
le convexe C "  =  C fl B'(a\ | |a — 6||) qui est fermé, borné et non vide. On applique 
alors le théorème précédent à ce convexe et à la fonction f(x)  =  ||a; — a||. Q.E.D.

On vient de démontrer, grâce à un raisonnement de compacité faible, que dans 
un Banach réflexif tout point admet une projection sur un convexe fermé (voir la 
remarque 2.33.1).

On peut généraliser ce corollaire de la façon suivante. Étant donné une partie 
convexe non vide C d’un espace normé E y considérons la fonction x d(xyC) 
de E  dans M. Cette fonction est continue (exemple 2.13.1), donc s.c.i. ; vérifions 
qu’elle est convexe. Pour tout x yy e E, u,v £ C et 0 <  t < 1, on a, C étant 
convexe,
d(tx + ( l - t ) y ,C )  < \\tx + ( l - t ) y - t u - ( l - t ) v \ \  < t\\x-u\\ + ( l- t ) \ \y -v \ \  
et on conclut en prenant la borne inférieure sur u et v.

Corollaire 3.16.20 Soient E  un espace de Banach réflexif, C\ et C2  deux convexes 
fermés non vides dont l’un est borné, alors il existe des points ai £ Ci tels que

||ai -  0 2 1| =  d(Cl tC2) = inf ||æ -  y||.
xeC  1 ,y£C2

Preuve Supposons le convexe C\ borné. On applique alors le théorème 3.16.18 
en prenant C =  C\ et f(x)  =  d(xy C2 ) ; il existe un point a\ £ Ci tel que 
d(a\yC2 ) =  d(C\,C 2 ) et, d’après le corollaire précédent, il existe 0 2  G C2  tel 
que ||ai -  a2|| =  d(aïy C2). Q.E.D.

On comparera ces résultats au corollaire 2.33.13. Ici, il n’y a pas d’hypothèse 
de compacité forte, mais des hypothèses de convexité. On obtient ainsi des théo­
rèmes infiniment plus performants : rappelons que, dans un espace de Banach de 
dimension infinie, les compacts sont tout petits (ils sont d’intérieur vide) ; il n’en 
est pas du tout de même des compacts faibles !

Exercice 3.16.3 Soit C  un convexe non vide et complet d’un espace uniformément convexe (exer­
cice 3.14.10), montrer que tout point a  de E  admet une unique projection sur C  [pour vérifier l ’exis­

tence d’une projection, considérer une suite (xn) de C  telle que lim n -»oo ||a — xn \\ =  d ( a } C )  et 
montrer que cette suite est de Cauchy].

Exercice 3.16.4 Théorème de Milman Cet exercice a pour objet de démontrer que tout espace de 
Banach uniformément convexe (exercice 3.14.10) est réflexif.

Soit xn 6  En, ||æ/ , || =  1, et soit e >  0, on note 6 >  0 le nombre associé à e par la convexité 
uniforme.
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1. Montrer qu’il existe x' E B7 tel que >  1 — 6 / 2, puis en utilisant la proposition 
3.16.14, x E B  tel que \(j(x) — æ//)(a;/ )| <  <5/2.

2. Montrer que \\xn — j  (æ) || <  e en raisonnant de la façon suivante : on suppose que 
\\x" ~ j ( x )\\ >  £» montrer en utilisant à nouveau la proposition 3.16.14 qu’il existe y  E B  tel 
que 10'(y) -  æ//) (a?,)l <  <5/2 et ||rc -  y|| >  e ; en déduire que ||(rc +  y)/2\\ > 1 - 5 .

3. En déduire que j (B)  =  B n et conclure.

3.17 Métrisabilité, compacité séquentielle
Il est évidemment très utile de disposer de critères de métrisabilité des parties 
compactes de E'a. La proposition 3.12.5 permet d’établir un tel critère.

Voici d’abord un lemme préliminaire ; rappelons que dans un e.l.c. une partie 
A est dite totale si le sous-espace vectoriel engendré par A  est partout dense.

Lemme 3.17.1 Soit E un e.Lc. admettant une partie totale dénombrable, alors E  
est séparable.
Preuve Soit A une partie totale dénombrable et soit F  l’ensemble des combinai­
sons linéaires d’éléments de A à coefficients dans Q si K = R, dans Q +  iQ si 
K =  C. Les ensembles A et Q étant dénombrables, on vérifie aisément que F  
est dénombrable : l’ensemble des parties finies de A  est en effet dénombrable et, 
si B  est une partie finie de A , l’ensemble des combinaisons linéaires de la forme 
YlxeB Qxx> où Qx £ Q ou Q +  îQ, est dénombrable, un produit fini d’ensembles 
dénombrables étant dénombrable ; on conclut en utilisant le fait qu’une réunion 
dénombrable d’ensembles dénombrables est dénombrable. Par ailleurs, Q étant 
dense dans R, F  est dense dans le sous-espace vectoriel engendré par A  et il est 
donc dense dans E. Q.E.D.

Proposition 3.17.2 Soit E un espace normé séparable et soit A une partie for­
tement bornée de E ', alors sur A la topologie cr(E', E) est métrisable. Récipro­
quement, si la boule unité B' de E ' est métrisable pour la topologie a(Ef ,£■), 
Vespace E est séparable.
Preuve 1. Si E  est séparable, il existe une partie dénombrable D de E  partout 
dense. Soit A une partie fortement bornée de E \  c’est-à-dire équicontinue d’après 
la proposition 3.12.1. Utilisons alors la proposition 3.12.5 en prenant F = K ; sur 
A , la topologie 7S =  a (E \ E) coïncide avec la topologie T/), topologie qui est 
définie par une famille dénombrable de semi-normes et qui est donc métrisable. 
Ceci prouve que sur A la topologie cr(£,/, E) est métrisable.

2. Réciproquement, supposons la boule B' métrisable pour la topologie faible 
a(E',E).  L’origine admet alors un système fondamental dénombrable de 
voisinages dans B \  soit (Vn). Chacun de ces voisinages Vn est de la forme 
Vn = B ' fl Wn où Wn est un voisinage de 0 dans E'a ; il existe donc une par­
tie finie An de E  telle que Wn D {x’ E E ' ; supx£An |x '(x)| <  1}. Montrons que 
l’ensemble dénombrable A = IJ^Lo An est une partie totale ; ceci démontrera le
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résultat voulu d’après le lemme préliminaire. A cet effet, montrons que toute forme 
linéaire et continue x ' G E f nulle sur le sous-espace vectoriel engendré par A est 
identiquement nulle (corollaire 3.13.8). Grâce à une homothétie, on peut supposer 
que x' appartient à B' ; on a alors x '(x) = 0 pour tout x G A, d’où x 1 G Vn pour 
tout n et il en résulte bien que x ' = 0, l’intersection de tous les voisinages Vn étant 
réduite à 0. Q.E.D.

Corollaire 3.17.3 Soit E  un espace normé séparable, alors le dual faible E'a est 
séparable.

Preuve On peut écrire E ' =  U^Li B'n °ù B ’n = i x ' € E ' ; ||a:, || <  n} est faible­
ment compact (théorème 3.16.2) et métrisable d’après la proposition précédente ; 
B'n est donc un sous-espace séparable de E*a : il existe une partie dénombrable 
Dn de B'n telle que B fn C Dn (adhérence dans E'a) ; l’ensemble dénombrable 
U Z i Dn est alors dense dans E fa. Q.E.D.

Corollaire 3.17.4 Soit E  un espace de Banach séparable, alors toute partie fai­
blement relativement compacte de E ’a est métrisable.
Corollaire 3.17.5 Soit E  un espace de Banach séparable et soit (x'n) une suite de 
E' telle que, pour tout x  G E, supn \x'n(x)\ < oo, alors il existe une sous-suite 
(x'nk) faiblement convergente : il existe x 1 G E' tel que la suite (x'nk (x)) converge 
vers x f(x) pour tout x e E.

Étudions de même la métrisabilité des parties faiblement compactes de Ea ; 
de la proposition 3.17.2, on va déduire la
Proposition 3.17.6 Soit E un espace normé, si le dual fort E'b est séparable, sur 
toute partie bornée de E la topologie affaiblie est métrisable. Réciproquement, 
si la boule unité B est métrisable pour la topologie affaiblie, le dual fort Eb est 
séparable.
Preuve Soit A une partie bornée de E , alors j(A)  est borné dans E " ; sur j (A ), 
la topologie <r(E '\ E') est métrisable d’après la proposition 3.17.2 et A est donc 
métrisable pour la topologie o(E, E 1).

Réciproquement, supposons la boule unité B  métrisable pour la topologie 
o(E , E') et soit (V^) un système fondamental de voisinages de l’origine dans B 
pour cette topologie induite. Pour tout n, il existe une partie finie An de E ' telle 
que Vn D B  fl Wn où

Wn = {x G E; sup \x'(x)\ < 1 } .
x’€An

L’ensemble A =  (Jn est dénombrable ; montrons que le sous-espace vectoriel 
F  engendré par A est dense dans Eb ; ceci démontrera le résultat voulu (lemme 
3.17.1). Si F  n’est pas dense dans Eb, il existe une forme linéaire et continue 
Xq G E " nulle sur F  et non identiquement nulle ; bien entendu, on peut sup­
poser que Xq appartient à B"  et, cette forme n’étant pas identiquement nulle, il 
existe x'0 G E'  tel que x 'q( x '0 ) = 1. Considérons dans B  le voisinage de l’origine
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V = {x € B] |Xq(x)| <  1/2} ; ce voisinage contient un Vn. D’après la densité 
de j (B)  dans B n pour la topologie <j {Eu y E '), il existe xq e B  tel que

sup \x'q(x ') -  x'(xo)\ < 1 et \xq(x'0) -  ^o(x0)| <  1/2.
x ' € A n

La forme Xq étant nulle sur An, la première inégalité signifie que xo appartient à 
Vn ; étant donné que x$(xq) = 1, la seconde inégalité prouve que \x'0 (xo)\ > 1/2, 
c’est-à-dire xq $ V , ce qui est absurde, V  contenant Vn. Q.E.D.

On en déduit le
Théorème 3.17.7 Dans un espace de Banach réflexif dont le dual fort est sépa­
rable, toute partie bornée de E, c'est-à-dire toute partie faiblement relativement 
compacte, est métrisable pour la topologie affaiblie.
Sous ces hypothèses, toute suite bornée de E  contient une sous-suite faiblement 
convergente. Ce résultat subsiste sans hypothèse de séparabilité du dual fort. Pour 
démontrer ce théorème, nous utiliserons les résultats suivants.
Proposition 3.17.8 Soit E  un espace de Banach réflexif alors tout sous-espace 
fermé F est un espace de Banach réflexif
Preuve D’après le théorème de Hahn-Banach, toute forme linéaire et continue sur 
F  est la restriction à F  d’une forme linéaire et continue sur E  ; il en résulte que 
la topologie a(EyE f) induit sur F  la topologie a (F, F ') . D’après le théorème 
3.16.16, on sait d’autre part que la boule unité Be de E  est faiblement compacte ; 
F  étant faiblement fermé (proposition 3.15.5), Be H F, c’est-à-dire la boule unité 
de F , est compacte pour la topologie a(E , E '), donc pour la topologie a(Fy F f) et 
on en déduit que F  est réflexif d’après le théorème 3.16.16. Q.E.D.
Corollaire 3.17.9 Un espace de Banach est réflexif si, et seulement si, son dual 
fort est réflexif
Preuve Supposons E  réflexif ; notons j E l’isométrie canonique de E  sur E n et 
soit T  un élément du bidual de E 'b, c’est-à-dire une forme linéaire et continue sur 
l’espace de Banach E ”. Alors, x ' = T  o jE est une forme linéaire et continue sur 
E  et pour tout xn € E " on a, en posant x  =  j f ^{xn),

T(x") = ( T o j E)(x) = x'(x) = x"(xf)y
ce qui prouve que E'  est réflexif et que j E* est l’application x f »->> x f o j ~ l .

Réciproquement, si E'h est réflexif, alors E " fort est réflexif d’après ce qui 
précède et E , isométrique à un sous-espace fermé de E ", est donc réflexif d’après 
la proposition précédente. Q.E.D.
Proposition 3.17.10 Un espace normé E dont le dual fort est séparable est sépa­
rable.
Preuve Soit (x'n) une suite partout dense dans E'b ; d’après la définition de la 
norme dans Ebi il existe xn G E  de norme 1 tel que ||x^|| < 2\x'n(xn)\. Montrons 
que le sous-espace vectoriel F  engendré par la suite (xn) est dense dans E  ; ceci 
démontrera la proposition d’après le lemme 3.17.1. A cet effet, montrons que toute
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forme linéaire et continue x ' G E' nulle sur F  est identiquement nulle ; il existe 
une sous-suite (x ^  ) convergeant vers x ' ; on a alors

>  K*' =  K * C O I  >  ( i / 2 ) | |< j |
et ceci prouve que la suite (x'nk) converge vers 0, d’où x 1 =  0. Q.E.D.

Voici alors le théorème annoncé.
Théorème 3.17.11 Soit E  un espace de Banach réflexif, alors toute suite bornée 
de E contient une sous-suite faiblement convergente.
Preuve Soit (xn) une suite bornée de E  et soit F  le sous-espace vectoriel fermé en­
gendré par cette suite. Alors, F  est un espace de Banach réflexif séparable d’après 
le lemme 3.17.1 et la proposition 3.17.8. Il en résulte que l’espace de Banach F" 
est séparable et F{£ est donc séparable d’après la proposition 3.17.10. Vu le théo­
rème 3.17.7, il existe une sous-suite (xnk) faiblement convergente dans Fa ; il 
existe x G F  C E  tel que, pour tout x ' G F \  la suite (xf(xnk)) converge vers 
x '(x) et ceci est a fortiori vrai pour tout x' G E 1. Q.E.D.
Note On peut démontrer que dans ce théorème la réflexivité est nécessaire : soit 
E  un espace de Banach tel que toute suite bornée contienne une sous-suite faible­
ment convergente, alors E  est réflexif (théorème d’Eberlein-Smulyan). Ce résultat 
remarquable montre tout l’intérêt des espaces réflexifs : dans un espace de di­
mension finie, de toute suite bornée on peut extraire une sous-suite convergente ; 
dans un espace de dimension infinie et à condition de substituer à la topologie 
initiale la topologie affaiblie, ceci est encore vrai si, et seulement si, l’espace est 
réflexif. Rappelons que la boule unité d’un espace normé de dimension infinie 
n’est pas compacte pour la topologie initiale ; le théorème 3.17.11 est pour toutes 
ces raisons particulièrement utile dans les applications dès qu’un raisonnement de 
compacité est nécessaire.

Le théorème 3.17.11 affirme que, dans un Banach réflexif, toute partie bornée 
est faiblement séquentiellement compacte. Lorsqu’on ne suppose plus l’espace ré­
flexif, on a alors le résultat remarquable suivant.
Théorème 3.17.12 Eberlein Dans un espace normé E, toute partie faiblement 
compacte est faiblement séquentiellement compacte.
Preuve Soit A une partie de E  faiblement compacte et soit (xn) une suite de A. 
Notons F  le sous-espace vectoriel fermé engendré par cette suite. L’espace F  est 
séparable (lemme 3.17.1) ; le dual faible F£ est donc séparable (corollaire 3.17.3) ; 
soit (Tj ) une suite de F^ partout dense ; chaque forme linéaire Tj est la restriction 
à F  d’une forme linéaire continue sur E  qu’on notera encore T j .

La suite (x n) étant bornée, il en est de même des suites (T j X n ) pour tout j  ; 
par la méthode diagonale, on peut donc construire une sous-suite (xUk ) telle que, 
pour tout j ,  la suite ( T j X n k) converge.

L’ensemble A étant faiblement relativement compact, la suite (xUk) admet une 
valeur d’adhérence x pour la topologie a(EiE') et x appartient h F car F  est 
faiblement fermé ; les formes linéaires Tj étant continues sur E 'a , TjX est une
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valeur d’adhérence de la suite (T j X n k ) (proposition 2.16.2) et il en résulte que
TjX =  lim/j—̂oo TjXnk,

Montrons que la suite (xnk) n’admet qu’une seule valeur d’adhérence ; ceci 
montrera qu’elle converge faiblement (proposition 2 .3 1 .1) .  Si x ,  y  E  F  sont deux 
valeurs d’adhérence, on a TjX =  Tjy pour tout j  d’après ce qui précède, d’où 
T ( x —y)  =  0 pour tout T  £ F'  d’après la densité de la suite (Tj ) et par conséquent 
x  =  y.  Q.E.D.

Lorsque E  est un Banach réflexif, on retrouve le théorème 3.17.11 vu le corol­
laire 3.16.13.

Exercice 3 .17 .1  Soient E  un espace de Banach réflexif, I  un ensemble flltrant et (C * )^ /  une fa­
mille de parties de E  non vides, convexes et fermées. On suppose l ’application i Ci  décroissante.

1. Montrer que l ’intersection C =  f] ieI Ci  est un convexe fermé.
2. Soit a €  Et montrer que C  est non vide si, et seulement si, supieI d(a, Ci)  <  oo [pour 

démontrer que la condition est suffisante, poser r =  supiG / d(a, Ci),  C ' =  fl B f (a; r ), montrer 
que ces ensembles C[ sont non vides, faiblement fermés et utiliser le fait que la boule B f(a-yr)  est 
faiblement compacte].

3. On suppose C  non vide. Soit Xi E  Ci  tel que ||a  — Xi\\ =  d ( a y C i). Montrer que toute valeur 
d’adhérence x de la suite généralisée (rr*)^ / pour la topologie faible a (E y E’) appartient à C  et que

||a — æ|| =  d ( a y C) =  sup d(a , Ci).
i e i

4. Soit (Cn) une suite décroissante de parties non vides, convexes et fermées dont l’intersection 
C =  PlîîLo Cn est non vide. Soit x n  E Cn tel que \\a — x n \\ =  d ( a y Cn), montrer qu’il existe une 
sous-suite (xnk ) convergeant faiblement et, si x  est la limite faible d’une telle sous-suite, que

||a -  æ|| =  d ( a yC )  =  su p d (o , Cn ).
n

Exercice 3 .1 7 .2  Soient X  un espace compact et E =  Cu ( X ; M) l ’espace de Banach des fonctions 
continues sur X  pour la norme de la topologie de la convergence uniforme.

1. Étant donné deux fonctions quelconques ipyip : X  —> K, montrer que

=  { f  e  E \ i p<  f  < ip)

est une partie convexe fermée.
2. On suppose qu’il existe dans X  un point a non isolé et, pour tout voisinage V de a, on pose

CV =  { /  €  E\ <  f  <  U ^ }

où U{a} et H-v désignent les fonctions caractéristiques de { a }  et V. Montrer que les convexes Cy  
sont non vides et que l’intersection fVev(a) est vide.

3. En déduire, grâce à l’exercice 3.17.1, que l ’espace E n’est pas réflexif.

Exercice 3.17.3 Théorème de Banach-Mazur On se propose d’établir le théorème de Banach- 
Mazur : si E est un espace de Banach séparable, il existe une isométrie linéaire de E  sur un sous-espace 

vectoriel de l’espace Cu ( [0 ,1]). On procédera de la façon suivante : pour x E Ey on considère la forme 

linéaire continue sur E'a j(x) : x' ■-» xf(x) et on pose k(x) =  j(x) |^ / E Qu(Bf) ; montrer que 

k : E Qu(B') est une isométrie linéaire sur un sous-espace vectoriel de Çu(B')y puis utiliser 
l’exercice 2.40.12.
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3.18 Orthogonalité, transposition
Soient E  et F  deux espaces vectoriels (réels ou complexes) en dualité ; on note 
< •, • > le crochet de dualité et on munit E  et F  des topologies faibles associées 
à cette dualité.

Soit G un sous-espace vectoriel de E , on définit l’orthogonal de G par la for­
mule
(3.18.1) G0  =  {y G F] < x, y >=  0 pour tout a; G G}.
De même, si H  est un sous-espace vectoriel de F, on définit l’orthogonal de H  par
(3.18.2) H° = {x G F ; <  x yy >= 0 pour tout y G H}.
Ceci permet de définir le biorthogonal G0 0  d’un sous-espace vectoriel G de E  
comme étant l’orthogonal de G0.
Note On observera que G, par exemple, et son orthogonal G0 ne sont pas contenus 
dans le même espace. Une structure supplémentaire est nécessaire pour donner 
un sens à l’orthogonalité de deux vecteurs d’un même espace ; ces notions seront 
étudiées ultérieurement dans le cadre des espaces de Hilbert.
Proposition 3.18.1 Soient E  et F  deux espaces vectoriels en dualité et soit G un 
sous-espace vectoriel de E.

1. U orthogonal G0  de G est un sous-espace fermé de F pour la topologie 
<j(F, E) et G0 =  (G)0.

2. On a G00 =  G.
Preuve 1. G0 est l’intersection des hyperplans (si x ^  0) fermés 

{y e F] <  x, y >= 0} lorsque x  décrit G,
ce qui prouve que G0 est un sous-espace fermé de F. Montrons que 
G0 =  (G)0 ; étant donné que G C G, on a évidemment (G)0 C G0 ; d’autre 
part, si y G G0 la forme linéaire et continue x  i - x  x ,y  >  est nulle sur G ; elle 
est donc nulle sur G et ceci prouve que y G (G)0, d’où G0 C (G)0.

2. D’après les définitions mêmes, on a G C G00, donc G C G00. Montrons que 
G =  G00, c’est-à-dire que toute forme linéaire et continue T  sur E  nulle sur G est 
nulle sur G00 ; il existe donc y G F  (proposition 3.15.3) tel que Tx =< x , y > =  0 
pour tout x G G, ce qui signifie y G G0, d’où <  x % y > =  0 pour tout x G G00 et 
ceci prouve que T  est nulle sur G00. Q.E.D.
Corollaire 3.18.2 Un sous-espace vectoriel G de E  est partout dense si, et seule­
ment si, G0 =  {0}.
Preuve Si G est dense dans E , on a G0 =  (G)0 =  E° =  {0} d’après (3.15.1). 
Réciproquement, si G0 =  {0}, on a G =  G00 =  {0}° =  E. Q.E.D.
Exercice 3.18.1 Polaire Soient E  et F  des espaces vectoriels en dualité. Si M  est une partie de E  
et N  une partie de F , on pose

M° =  {y  G F  ; \ <  x , y  >  \ <  1 pour tout x G M } ,

N° =  {x G E  ; | <  x, y  >  | <  1 pour tout y G M}.
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Les ensembles M ° et N° sont appelés les polaires de M  et N.
1. Vérifier que le polaire d’un sous-espace vectoriel est bien son orthogonal.
2. Montrer que M° et N° sont des convexes équilibrés, fermés pour les topologies cr(F, E) et 

v(E,F).
3. Montrer que le polaire d’un ensemble coïncide avec le polaire de son enveloppe convexe fermée 

équilibrée (exercice 3.14.2).

4. En déduire que M 00, appelé bipolaire de M , est l ’enveloppe convexe fermée équilibrée de M  
[utiliser la proposition 3.14.5].

Exercice 3.18.2 Soit E un e.l.c. métrisable. Cet exercice a pour objet de démontrer que la topologie 
de E peut être définie par une seule norme si le dual fort Eb est métrisable.

1. Si le dual fort Eb est métrisable, montrer que la topologie de Eb peut être définie par une seule 
norme de la forme | |x ' ||B =  supx€B  ^'(aOl où B est une partie bornée de E [utiliser l ’exercice 
3.7.2].

2. En déduire que, pour toute partie bornée A de F , il existe A >  0 tel que XA C B00 (exercice 

3.18.1). Conclure en utilisant l’exercice 3.14.3.

Considérons en particulier la dualité (x,xf) i-> x'(x) entre un e.l.c. séparé et 
son dual E '.

Si G est un sous-espace vectoriel de E , l’orthogonal G0 est un sous-espace 
fermé du dual faible E'a (si E  est un espace normé, ce sous-espace est a fortiori 
fermé dans le dual fort E'b) ; le biorthogonal G00 est l’adhérence de G dans E  
pour la topologie affaiblie et c’est aussi l’adhérence de G pour la topologie initiale 
d’après la proposition 3.15.5.

Si H  est un sous-espace vectoriel de E ', l’orthogonal H° est sous-espace fermé 
de E  (fermé pour la topologie initiale ou pour la topologie affaiblie, c’est équi­
valent) ; le biorthogonal H 00 est l’adhérence de H  dans le dual faible E'a.
Remarque 3.18.1 Lorsque E  est un espace normé, on peut également utiliser la 
dualité (x',x") i-> x"(x') entre E ' et E n. Si H  est un sous-espace vectoriel de 
E \  notons comme précédemment H° l’orthogonal dans E  pour la dualité (E , E ') 
et notons H'° l’orthogonal dans E n pour la dualité (E \ E "). D’après les défini­
tions mêmes, on a j(H°) = j{E) fl H ,0y j  désignant l’injection canonique de 
E  dans E n. Le biorthogonal H ' 0 0  pour la dualité (E \ E") est l’adhérence de H  
dans E f fort ou pour la topologie affaiblie a(E '\ E') ; on a donc H m  C H 00 et 
l’inclusion est stricte en général. Par contre, lorsque E  est un Banach réflexif, on a 
j(H°) = H f0  et H ' 0 0  = f f 00, la topologie a (E \ E") coïncidant avec la topologie 
a(E\E) .

Les considérations précédentes sont très utiles, comme nous allons le voir, dans 
l’étude de la transposition.

Rappelons d’abord comment est définie la transposée d’une application li­
néaire du seul point de vue algébrique. Si E  et F  sont deux espaces vectoriels 
et T  : E F  une application linéaire, pour toute forme linéaire y* G F*, y* o T  
est une forme linéaire sur E  et l’application linéaire lT  : y* y* o T  de F* dans 
E* est appelée la transposée de T  ; on a donc

<lT y * > ( e *,e )=< y*,Tx > (f *,f ) pour tout x G E,y* £ F *,
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où < •, • >(e \ e) et <  •, • désignent les crochets de dualité entre F* et
E  d’une part et entre F* et F  d’autre part.

Lorsque E  et F  sont des e.l.c. séparés, on souhaite substituer aux duals algé­
briques les duals topologiques ; T  désignant toujours une application linéaire de 
E  dans F , si, pour tout y ' G F ',  la forme linéaire y' o T  est continue sur F , on 
peut définir une application linéaire lT  : y' i-> yf o T  de F ' dans F ' qu’on appelle 
la transposée de T  ; on a alors
(3.18.3) <lT y \x  > ( £ ' , £ ) = <  y \T x  > ( F ' ,F )

pour tout a; G F  et tout y1 G F '.
Pour qu’une application linéaire admette une transposée, il est nécessaire de 

faire une hypothèse sur cette application linéaire ; pour exprimer cette hypothèse 
voici une définition.

Définition 3.18.1 Soient E  et F des e.l.c. séparés, une application linéaire 
T : E  F  est dite faiblement continue si T  est continue lorsque E  et F sont 
munis de leur topologie affaiblie.
Proposition 3.18.3 Soient E  et F  des e.l.c. séparés, une application linéaire 
T : E F admet une transposée si, et seulement si, T  est faiblement conti­
nue ; Vapplication transposée lT  : F ' —> F ' est alors linéaire et continue de F'a 
dans E'a.
Preuve 1. Supposons T  faiblement continu et soit y ' une forme linéaire et continue 
sur F , alors y' est une forme linéaire et continue sur Fa (corollaire 3.15.4) ; il 
en résulte que y' o T  est une forme linéaire et continue sur Ea et ceci prouve 
que y1 o T  appartient à F ' et par conséquent T  admet une transposée. Récipro­
quement, si T  admet une transposée, T  est faiblement continue : en effet, soit 
p : y i-> | <  y', y >  |, yf G F ',  une des semi-normes définissant la topologie de 
Fa, alors

(poT)(x)  =  | <  y \T x  > |  =  | < * ïy ,x  > \
est l’une des semi-normes définissant la topologie de Ea, ce qui prouve le résultat 
voulu.

2. Vérifions que lT  est continue de F^ dans E fa ; nous savons (remarque 
3.15.1) que le dual faible de E'a (resp. F^) est isomorphe à Ea (resp. Fa) ; modulo 
ces isomorphismes, la formule (3.18.3) nous apprend que l’application lT  admet 
pour transposée l’application T  ; il résulte alors de 1. que lT  est continue de F'a 
dans E fa. Q.E.D.
Note On observera que la transposition est une notion qui ne dépend que des to­
pologies des espaces F  et F  et on peut même remplacer ces topologies par des 
topologies pour lesquelles les duals sont les mêmes (par exemple les topologies 
affaiblies) : on ne modifie pas alors la transposée d’une application linéaire.

Remarque 3.18.2 Une application linéaire continue T : E  —» F  est faiblement 
continue ; en effet, une telle application admet une transposée vu que, pour tout
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y' G F \ y1 o T  est une forme linéaire continue sur E. La réciproque est in­
exacte sans hypothèse supplémentaire. On observera en outre que la transposée 
lT  : Fb E'b est continue lorsqu’on munit les espaces E f et F 7 de la topologie 
de la convergence uniforme sur tout borné de E  et F  : en effet, si B  est un borné 
de E , on a

l W | U  =  su p ||( î/ o D ( x ) | |<  sup \\y'(y)\\ = y \ \ T(B)
xeB yeT(B)

où T(B)  est un borné de F.
Exercice 3.18.3 Soient E , F  des e.l.c. séparés, T  : E  —► F  une application linéaire continue de E  
muni de sa topologie initiale dans Fa .

1. Montrer que T  est faiblement continu.
2. Lorsque E  et F  sont des espaces de Fréchet, montrer que T  est continu de E  dans F  pour les 

topologies initiales [utiliser T exercice 3.11.3].

Exercice 3.18.4 Soient E  un e.l.c. métrisable et F  un e.l.c. séparé, montrer que toute application 

linéaire T  : E  F  faiblement continue est continue [soient (Vn)n>\  un système fondamental 

décroissant de voisinages de 0 dans l’espace E  et ( |M |t ) t€ / une famille de semi-normes définissant la 
topologie de F , si T  n’est pas continu, montrer qu’il existe une suite (xn ) de E  telle que xn E Vn et 
J e ? ( / ) , r  >  0 tels que ||Tæn || j  > n r  ; en déduire une contradiction en utilisant l ’exercice 3.16.1].

L’application T  i-» 1T  de £  (Ea ; Fa ) dans £  (Ft£ ; E fa ) est évidemment linéaire. 
D’autre part, soient E , F , G des e.l.c. séparés, S  G £>(Ea\Fa ), T  G £ (F a ; Ga), 
on a alors T o S e C{EG\Ga) et
(3.18.4) t ( T o S ) = tS o tT.
On a en effet, pour tout z1 G G7,

\ T  o S)z7 = z ' o ( T o S )  = ÇTz*) o S  = t5 ( tT ^7).
Proposition 3.18.4 Soient E , F des e.l.c. séparés et T  G £>(Ea\Fa)t alors
(3.18.5) K erlT  = (Im T )° e t K e r T =  ( /m 4T )0,
(3.18.6) (Ker  tT)° =  Im T (adhérence dans F),
(3.18.7) (Ker T )° =  I m lT  (adhérence dans E fa).
Preuve Vérifions (3.18.5). Soit y7 G K ereT, c’est-à-dire *Tyf = 0 ; d’après
(3.18.3), on a <  y \ T x  >=  0 pour tout x  G E, soit y7 G (Im T )0. Réci­
proquement, soit yf G (Im T )0, alors <  y \T x  >= 0 pour tout x € E, d’où 
^Ty 'y  x  > =  0 et y7 G Ker lT  ; ceci prouve la première relation. La seconde s’en 
déduit en remplaçant T  par *T, T  étant la transposée de lT  comme nous l’avons 
indiqué dans la démonstration de la proposition 3.18.3.

Les relations (3.18.6) et (3.18.7) résultent de (3.18.5) et de la caractérisation 
du biorthogonal. Q.E.D.

Corollaire 3.18.5 Soit T  G C(Ea\Fa), alors
(3.18.8) T  est à image dense dans F lT  est injectif.
(3.18.9) tT  est à image dense dans E fa T  est injectif.
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Preuve En effet, (Ker *T)0 =  F  si, et seulement si, Ker lT  =  {0} ce qui prouve
(3.18.8) ; (3.18.9) se prouve de la même façon. Q.E.D.

Remarque 3.18.3 On notera que dans (3.18.7) il s’agit de l’adhérence dans le 
dual faible E£ et que dans (3.18.9) il s’agit de la densité dans E'a. Si lT  est à 
image dense dans Eb, lT  est a fortiori à image dense dans E ; la réciproque est 
en général inexacte, mais si E  est un espace de Banach réflexif, les topologies 
cr(E\ E) et a(E \ E") coïncident et l’adhérence d’un sous-espace vectoriel est la 
même pour ces deux topologies, ainsi que pour la topologie forte ; si E  est un 
Banach réflexif, on a donc

(3.18.10) (Ker T)° =  ïin*T  (adhérence dans E'),

(3.18.11) lT  est à image dense dans E' <=-=> T  est injectif.

Lorsque £  et F  sont des espaces normés, la situation se simplifie grâce à la

Proposition 3.18.6 Soient E  et F  des espaces normés, une application linéaire 
T  : E  -> F est continue si, et seulement si, elle est faiblement continue. La 
transposée : F* —> E ' est alors continue lorsqu*on munit E ' et F ' de leur 
topologie d ’espace de Banach de dual fort et ||tT,|| =  ||T||.

Preuve 1. Rappelons que dans E  et F  une partie bornée pour la topologie initiale 
est bornée pour la topologie affaiblie et réciproquement (proposition 3.16.9). Si T  
est faiblement continue, l’image de tout borné est bornée, ce qui prouve que T  est 
continue pour les topologies initiales.

2. On a, pour tout y' G F ', ||*7y  || =  \\y' o T\\ < \\yf\\ ||T ||, ce qui prouve que 
%T  est continue de Fb dans Eb et que ||*T|| < ||T||. On a d’autre part (corollaire 
3.13.12) ||Tx|| =  supuyii^i \ < y \ T x > \  et

| < y \ T x  > |  =  | < * T ^x  >  | <  I W H  |M| <  ||*T|| lli/H ||x||,

d’où ||Tx|| < I^TII ||x|| et par conséquent ||T|| < |\lT\\ ce qui permet de conclure.
Q.E.D.

Lorsque E  et F  sont des espaces normés, la transposée d’une application li­
néaire continue T  : E  —>• F  est donc une application linéaire : F' —> E' qui 
est continue de F'a dans ££, de Fb dans E'b, donc pour les topologies affaiblies 
o(F\  F") et o{E \ E").

En utilisant la dualité entre E ' et E n d’une part et entre F ' et Fn d’autre part, 
on peut définir la transposée de l’application lT  : c’est une application linéaire 
et continue UT  : E" -* F " qu’on appelle la bitransposée de T  et qui est donc 
caractérisée par

(3.18.12) < ttT x ' \ y / xu *Ty' >(e",E’)
pour tout x” e E"  et tout y' G F '. Il existe un lien très simple entre T  et UT  : le 
diagramme suivant est commutatif (je et jf désignant les injections canoniques
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de E  dans E"  et de F  dans F")
E  — F

3K 3F

t l r p

E" — F"
autrement dit,
(3.18.13) ttT o j E = j F oT.
En effet, pour tout x  e E, y' e F', on a d’après la définition de j E et j f

< uT(jE(x)), y' >(F"tF') =< 3 e (x), lTy' >(&',&) d’après (3.18.12)

= <  trF y \x  >(E',e )
=< y \ T x  >(F'iF) d’après (3.18.3)

= <  3 F { T x ) , y f > ( f " ,F ')

et ceci prouve le résultat voulu. Si on identifie E  et F  à des sous-espaces de E" et 
F" au moyen des injections j E et Jf , (3.18.13) signifie simplement que T  est la 
restriction de UT  à E.

Voici une première application de ce qui précède, application utile en analyse 
spectrale.
Proposition 3.18.7 Soient E, F des espaces de Banach, alors une application li­
néaire et continue T  : E  —> F est un isomorphisme si, et seulement si, lT  est un 
isomorphisme de F ’ sur E 1 (pour les topologies fortes) et on a alors 
(*T)_1 =  t (T~1).
Preuve Étant donné que lIE =  Ies  si T  est un isomorphisme, on a 
t (T~ 1 o T) = lT  o t (T~1) = IE> et, de même, t (T~1) o lT  — IEf ; ceci prouve 
que fT  est un isomorphisme et la formule voulue.

Réciproquement, si lT  : F'  -» E'  est un isomorphisme, il résulte du corollaire
3.18.5 que T  est injectif et à image dense. Si on démontre que T  est à image 
fermée, T  sera une bijection linéaire et continue et on pourra donc conclure avec 
le théorème de Banach (corollaire 3.11.3).

A cet effet, utilisons l’application UT  qui est un isomorphisme de E " sur F"  en 
tant que transposée de l’isomorphisme lT. On a alors jF(T(E)) =uT(jE{E)) ; 
E  étant un Banach, j E{E) est complet, donc fermé dans E n et il en résulte que 
uT(3 e {E)) est fermé dans F" ; T(E)  est alors l’image réciproque de ce fermé 
par l’application j E et est donc bien fermé. Q.E.D.

Exercice 3.18.5 Soient E  et F  des espaces de Banach isomorphes, montrer que E  est réflexif si, et 
seulement si, F  est réflexif.

Exercice 3.18.6 1. Soient E un espace normé, F un sous-espace vectoriel et soit i : F ->  E 
l’injection canonique de F dans E . Montrer que la transposée l i : E1 —» F1 est surjective, de noyau 
F0. En déduire un isomorphisme de E'b/ F0 sur Fb.
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2. Soient E  un espace normé, F  un sous-espace fermé de E  et 7r : E  —> E / F  la surjec- 
tion canonique de E  sur E/F .  Montrer que la transposée t7r : (E/F)'  —► E'  est injective, que 

Im tn =  F0 et en déduire un isomorphisme de (E/F)'b sur F0 muni de la topogie induite par le dual 
fort E'b.

La proposition 3.18.4 peut être précisée pour des opérateurs à image fermée. 
Avant d’énoncer le résultat essentiel dû à Banach, voici deux lemmes prélimi­
naires.
Lemme 3.18.8 Soient E, F des espaces de Banach, T  G £(£*; F), si Vopérateur 
lT  : F' E ' est injectif et à image fermée dans E'b, Vopérateur T  est surjectif
Preuve On raisonne par l’absurde, si T  n’est pas surjectif, l’application T  n’est 
pas ouverte et d ’après le lemme 3.11.2 on a donc

(3e >  0)(V£ >  0)(BF(0;ô) <£ T(BE(0;e))).
En prenant ô = 1/n, on peut donc construire une suite (yn) de F  telle que 

lim yn =  0 et yn g T(BE(0;e)).
n —>oo

L’ensemble T(BE(0;e)) est un convexe fermé équilibré contenant l’origine, il 
existe donc (proposition 3.14.5) une suite (y'n) de F' telle que

< y'n> Vn > > 1 et I <  y'n, Tx > | <  1 pour tout x  G BE(0; e).
Il en résulte que | < ^ y '^ x  >  | < 1 pour ||z|| <  e, d’où <  e ; ceci
prouve que la suite (*Ty„) est bornée. Notons d’autre part que l’opérateur lT  
induit une bijection de F ' sur Im fT  et, cette image étant fermée, un isomorphisme 
d’après le théorème de Banach. Il en résulte que la suite (y 'n ) doit être bornée et 
ceci est absurde car

i < < y 'n,yn >< W J  ||Vn||
où la suite (yn) converge vers 0. Q.E.D.

Lemme 3.18.9 Soient E, F des espaces de Banach, T  : E F une application 
linéaire continue telle que Im T  soit fermé, alors

(3c > 0)(Vy G Im T)(3x G E)(y = Tx et ||æ|| <  c ||t/||).

Preuve Soit S  : E /K er T  -> Im T  l’application linéaire telle que T = S  on,  
7r désignant la surjection canonique de E  sur E / Ker T. Cette bijection linéaire et 
continue est un isomorphisme d’après le théorème de Banach, Im T  étant fermé 
donc complet : il existe une constante c > 0 telle que

11(11 < c ||5 (|| pour tout (  G E /Ker T.
D’après la définition de la norme de l’espace quotient E / Ker T, il existe x G E  
tel que tt( x ) = (  et ||x|| <  2 ||(||. Posons y = =  T x , on a alors ||a:|| <  2c ||y||,
ce qui prouve le lemme. Q.E.D.

On a alors le

Théorème 3.18.10 Banach Soient E, F des espaces de Banach, T  G L(E; F), 
les propriétés suivantes sont équivalentes
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1. Im  T  est fermét
2. I m T = ( K e r tT)°,
3. Im  lT  est fermé dans Eb,
4. Im  lT  = {Ker T)°.

Preuve 1 <=> 2 d’après (3.18.6).
1 => 4 D’après (3.18.7), il s’agit de démontrer que (Ker T)° C  Im *T. Soit 

x f G (Ker T)°, c’est-à-dire soit x ' G E ' tel que
(3.18.14) (Vx G E)(Tx = 0 =>< x \ x  >= 0).
On définit une forme linéaire y' sur Im T  en posant <  y ',y > = <  x \ x  >  si 
y — Tx, < x \ x  >  ne dépendant pas du choix de x G E  tel que y — Tx  
d’après (3.18.14). D’après le lemme 3.18.9, on peut choisir x  tel que ||x|| <  c IMI> 
d’où | <  y ',y  >  | <  c ||x '|| ||y||, ce qui prouve que y ' est une forme linéaire et 
continue sur Im T, qu’on peut prolonger (Hahn-Banach) en une forme linéaire et 
continue sur F  que nous noterons encore y'. On a alors <  y ',T x  > = <  x \ x  > 
pour tout x G E, d’où x ' =  fTyf G Im lT 9 ce qui prouve 4.

4 => 3 D’après 4, Im lT  est fermé dans ££ , donc dans Eb.
3 => 1 On pose G =  Im T  et on note 7 \ : E G l’opérateur x  »-> Tx  ; 

il s’agit de démontrer que T\ est surjectif. Utilisons le lemme 3.18.8 : montrons 
que l’opérateur ÉTi est injectif à image fermée. L’opérateur est à image dense, 
d’après (3.18.8) l’opérateur lT\ : G' —> E f est donc bien injectif.

On peut écrire T  = i o T\ où i : G —> F  désigne l’injection canonique, 
d’où lT  =  lT\ o ti d’après (3.18.4). L’application H : F' -» G1 est simplement 
l’opérateur de restriction y' h* y'|<s, opérateur surjectif d’après le théorème de 
Hahn-Banach et, par conséquent Im lT\ = Im lT  est fermé, ce qui prouve le ré­
sultat voulu. Q.E.D.

Ceci permet de démontrer la réciproque du lemme 3.18.8, soit 
Corollaire 3.18.11 Soient E, F des espaces de Banach, T  : E  F une applica­
tion linéaire et continue, alors les conditions suivantes sont équivalentes

1. Vopérateur T  est surjectif
2. Vopérateur lT  : F' ->• E' est injectif et à image fermée dans E'b,
5. il existe une constante c > 0 telle que ||y'|| <  c I^Ty'H pour tout y' G F'. 

Preuve 1 => 2 En effet, si T  est surjectif, l’opérateur lT  est injectif d’après (3.18.8) 
et à image fermée d’après l’implication 1 =$> 3 du théorème 3.18.10.

2 => 3 Si lT  est injectif à image fermée, l’opérateur lT  : F* -» Im lT  est 
un isomorphisme d’après le théorème de Banach et 3. exprime la continuité de 
l’application réciproque.

3 => 2 Si 3. est vérifié, lT  est injectif et l’opérateur %T  : F' -» Im lT  est un
isomorphisme, il en résulte que Im lT  est complet, donc fermé. Q.E.D.

Remarque 3.18.4 Le critère 3. de surjectivité est à l’origine des méthodes dites 
de majoration a priori. Pour démontrer la surjectivité de T, on démontre que toute 
solution y' G F' de l’équation *Ty' =  x 1 peut se majorer par c ||a:, || où c est une
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constante indépendante de x 1 et yf : on observera qu’on ne fait aucune hypothèse 
sur l’existence éventuelle d’une telle solution y
Remarque 3.18.5 Nous laissons au lecteur le soin de vérifier que le même co­
rollaire subsiste en permutant le rôle des opérateurs T  et 4T, la démonstration est 
similaire.



D -  Famille sommable

3.19 Série convergente et absolument convergente

La définition de la convergence d’une série de nombres réels utilise d’une part la 
structure de groupe additif de M, d’autre part sa structure topologique. Il n’est donc 
pas difficile de définir une notion analogue dans tout espace vectoriel topologique 
et même dans tout groupe topologique.

Soit G un groupe topologique abélien, la loi de composition étant notée additi- 
vement, et soit (xn) une suite de G à laquelle on associe la suite (sn ) des sommes 
partielles sn =  ]T)p=o xv• dit que la série de terme général xn est convergente 
et de somme s si la suite (sn) converge vers s et on écrit alors s =  xn » on 
dit aussi que la série X^Lo xn est convergente. La somme d’une série convergente 
n’est bien définie que si la topologie est séparée : dans la suite nous supposerons 
toujours les espaces séparés. Une série est dite divergente si elle ne converge pas.

Si la série X^£Lo xn est convergente, la suite (xn) tend vers 0 : on a en effet 
xn =  sn -  Sn- 1  pour ri > 1. On exprime cette propriété en disant que le terme 
général d’une série convergente tend vers 0.

Si xn est une s^ e convergente dans un e.l.c., la suite des sommes par­
tielles est de Cauchy et on a donc la

Proposition 3.19.1 Critère de Cauchy Soit E un e.l.c. séparé, pour qu'une série 
de terme général xn soit convergente il faut (et il suffit si E est séquentiellement 
complet) que

L’image par une application linéaire continue d’une série convergente est une 
série convergente et plus précisément

f (VF G V(0))(3n G N)(Vp G N)(V« G N) 
\  ( n <p <q = >  E?=pa;i e V)

et, lorsque E  est un espace normé, cette condition s’écrit

(3.19.2)
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Proposition 3*19*2 Soient E et F des e.v.t. séparés, T  : E  —> F une applica­
tion linéaire et continue et xn une série convergente dans E, alors la série 
Y ^= o ^xn est convergente dans F et

oo oo
(3.19.3) T C £ x n) = '£ / Txn.

n =0 n=0
Preuve On a T ( ^ ^ =0 xn) =  J2n=o T xn d’après la linéarité de T  et on conclut 
grâce à la continuité de T. Q.E.D.

Proposition 3.19.3 Soit E  =  Y\iÇ:i Ei un produit d* e.v.t. séparés, une série 
£ ~ 0 x n de E est convergente si, et seulement si, pour tout i  € I, la série 

Pr i (x n) est convergente dans Ei ; on a alors
oo oo

(3.19.4) ^ 2 xn = ( y ^ p r i i x n ) ) . ■
n=0 n= 0 / î € /

Preuve Les projections pr, : E  -> E , étant linéaires, la caractérisation des suites 
convergentes dans un espace produit montre que la série est conver­
gente si, et seulement si, pour tout i ,  la série converge et alors
m {Y ,n = 0  xn) = £ n = 0  Wi{xn)- Q.E.D.
Corollaire 3.19.4 Soient £ ^ L 0 Xn et £ ^ = o  Vn deux séries convergentes dans un 
e.v.t. séparé, alors les séries Y^=o(xn + y,x) et Xxn, où \  est un scalaire, 
sont convergentes et

oo oo oo oo oo
(3.19.5) ^  XXn Vn) = ^  y x n  H- ^   ̂2/n> ^  ] Xxn =  À ^   ̂X n .

n = 0 n=0 n=0 n=0 n = 0

Preuve D’après la proposition précédente, la série ^ L 0(a;n , yn) est convergente 
et de somme (X^Lo xn> Yl^Lo 2/n) et il suffit d’en prendre l’image par l’applica­
tion linéaire et continue (xy y) h* x  +  y de E  x E  dans E  pour obtenir le premier 
résultat. La seconde assertion s’obtient en prenant l’image de la série Y ^ = o x n 
par l’application linéaire continue x  i-* Xx. Q.E.D.

Dans un espace normé, on peut introduire la notion de série absolument conver­
gente.
Définition 3.19.1 Dans un espace normé, une série de terme général xn est dite 
absolument convergente si la série X ^L 0 Iknll de R+ est convergente.

Une série convergente n’est pas nécessairement absolument convergente, même 
sur R : par exemple, xn = (—1 )n/n. En outre, une série absolument convergente 
n’est pas nécessairement convergente ; on a en effet le résultat suivant. 
Proposition 3.19.5 Dans un espace normé E, pour que toute série absolument 
convergente soit convergente, il faut et il suffit que E soit un espace de Banach. 
Preuve Soit xn le terme général d’une série absolument convergente dans un es­
pace de Banach ; pour tout p < </, on a || Ylt=pxi\\ ^  Ylï=p \\x i\\ et ceci montre 
que le critère de Cauchy (3.19.2) est vérifié, vu qu’il l’est pour la série X^Lo Iknll-
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Réciproquement, supposons que toute série absolument convergente est conver­
gente et montrons que E  est complet. Soit (xn) une suite de Cauchy dans E  et soit 
YïkLo £k une s^ e convergente où les ek sont des nombres > 0. En utilisant le 
fait que la suite (xn) est de Cauchy, on construit par récurrence une sous-suite 
(xnfc) telle que ||znA;+1 — xnk || <  £k pour tout k > 0. La série de terme général 
xnk+1 — xnk est absolument convergente, donc convergente d’après l’hypothèse 
faite et on a

i
] ^  ( • * ' * * * + 1 “  x nk) =  x m+i ~  x n0 
k=0

il en résulte que la sous-suite (xnk ) est convergente ; la suite xn est donc conver­
gente d’après le corollaire 2.18.4, ce qui prouve le résultat voulu. Q.E.D.

Dans un espace normé non complet, il existe donc des séries absolument conver­
gentes non convergentes ; dans de tels espaces, la notion de série absolument 
convergente ne présente donc a priori aucun intérêt.

Au contraire, lorsqu’on doit étudier une série dans un espace de Banach, on 
commence d’abord par examiner si cette série est absolument convergente ; on est 
donc amené à étudier une série à termes positifs, ce qui est un problème en principe 
plus simple. Bien entendu, si la série ne converge pas absolument, on ne peut rien 
en conclure quant à l’éventuelle convergence de la série.

Étant donné que || Ylp=o x p \\ — Z)p=o \\x p \\> on notera Que Pour toute série 
absolument convergente dans un espace de Banach

oo oo

(3.19.6) l l £ z « l l < X > n | | .
71=0 n=0

Voici une application importante de ces notions concernant l’étude des élé­
ments inversibles dans une algèbre de Banach.
Définition 3.19.2 Une algèbre E est un espace vectoriel muni d'une loi de com­
position interne notée mutiplicativement (#, y) G E  x E xy G E  qui est 
associative et bilinéaire.

Une algèbre normée est une algèbre munie d'une norme vérifiant
(3.19.7) \\xy|| <  ||z|| Hj/II pour tout x ,y  €  E.
Une algèbre normée complète est appelée une algèbre de Banach.
Voici quelques remarques concernant ces définitions. Une algèbre est dite commu­
tative si xy  =  yx  pour tout x, y ; on dit qu’elle admet un élément unité s’il existe 
un élément e G E  tel que ex = xe =  x pour tout x : cet élément unité e est alors 
unique. Par exemple, soient E  un espace normé et £(E)  l’espace vectoriel des en­
domorphismes (continus) de E  ; la composition des applications (T, S) T  o S  
induit sur £(E)  une structure d’algèbre non commutative (si E  est de dimension 
>  2) et qui admet un élément unité, à savoir l’application identique /^ .  Cette 
algèbre est en outre une algèbre normée d’après (3.10.7) et c’est une algèbre de 
Banach lorsque E  est un espace de Banach.
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On notera que la propriété (3.19.7) signifie simplement que l’application bili­
néaire (x , y) xy de E  x E  dans E  est continue et de norme <  1. Si E  admet 
un élément unité e, en prenant x = y = e, on constate que ||e|| >  1 ; la norme de 
e n’est pas en général égale à 1.

Considérons alors une algèbre de Banach A admettant un élément unité e et 
soit G l’ensemble des éléments inversibles (pour la multiplication) ; la multiplica­
tion de l’algèbre induit sur cet ensemble G une structure de groupe ; nous allons 
montrer que ce groupe est un ensemble ouvert dans A.

Voici d’abord une proposition préliminaire. Les notations utilisées sont les sui­
vantes : soit x G A, on définit xn pour n G N par récurrence en posant 

x° =  e et x n + 1  = x xn pour n  > 1.
Proposition 3.19.6 Soit A une algèbre de Banach admettant un élément unité e et 
soit x G A tel que ||ar|| <  1. Alors e — x est inversible et

oo
(e — a:)-1 =  ^  a:71, série de Neumann,

n —0
où la série xn est absolument convergente.
Preuve La série Y^= ox<n est absolument convergente car ||a:n || <  ||a;||n ; elle 
est donc convergente ; vérifions que sa somme y est l’inverse de e — x. On a 
(e -  x)y = y — xy ; l’application z i-> xz  étant linéaire continue,

oo oo

* Œ > ” )  =  £ * “+1'
n = 0 n=0

d’où (e -  x)y =  xU ~ xn+1 =  e* ^ ec* Prouve 9ue (e ~  x )y = e \ 
de plus,

y(e -  x) = y -  yx = y -  xy = (e -  x)y = e 
vu que yx = xy et, par conséquent, e — x est inversible et (e — a:)” 1 =  y. Q.E.D.
Corollaire 3.19.7 Soit A une algèbre de Banach admettant un élément unité e, 
alors l'ensemble G des éléments inversibles de A est ouvert dans A et l'application 
x x~ l est un homéomorphisme de G sur G.
Preuve Soit x = a — h où a G G et h G A \ on nx = a(e — a~lh) et d’après la 
proposition précédente x  est inversible dès que ||a-1 ft|| <  1 et a fortiori dès que 
\\h\\ < Ha-1 !!-1 . Ceci montre que G contient la boule ouverte centrée au point a 
et de rayon ||a—11| — 1 : G est donc un ensemble ouvert.

Montrons que la bijection x x - 1  est continue au point a. Posons y = a~lh, 
si \\h\\ < ||a~1 K-1 on a

oo
x~l = (a — h)~l = (e — a~1 h)~1 a~ 1 = ( y ^ y n)a~1y

n = 0

d’où x ~ 1 -  a~ 1 = Q Z ^ li yn)a -1 et
OO OO

II*-1 -  a - 1!! <  ||y»||) lia -1!! <  ( £  ||y ||») \\a-'\\
n —1 n = 1
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et par conséquent

\\x 1 -  a x| < M i1 - NI
, - n

< m
r~l\

et cette inégalité prouve que rr-1 —a -1 tend vers 0 lorsque h tend vers 0. L’applica­
tion x x~x est donc continue et c’est un homéomorphisme vu qu’elle coïncide 
avec son application réciproque. Q.E.D.

En prenant pour algèbre de Banach l’algèbre £ (F )  où E  est un espace de 
Banach, on obtient le

Théorème 3.19.8 Étant donné deux espaces de Banach E  et F , Vensemble 
Isom(E\ F) des isomorphismes de E  sur F est un sous-ensemble ouvert de 
£ (F ; F) et Vapplication u h* u~l est un homéomorphisme de Isom(E ; F) sur 
Isom(F\ E ).

Preuve Le théorème est évident lorsque Isom(F; F) est vide ; on peut donc sup­
poser Isom(F; F) non vide. Soit h un isomorphisme de F  sur F , l’application 
<p : il i—y h o y, est un isomorphisme de £ (F ; F) sur l’algèbre de Banach £ (F )  qui 
applique l’ensemble Isom(F; F) sur l’ensemble des éléments inversibles de £ (F ) . 
D’après le corollaire précédent, Isom(F; F) est ouvert et l’application u u~x 
est continue vu la formule u~x = ip{u)~l o h. Q.E.D.

Lorsque F  et F  sont de dimension finie, si l’ensemble Isom(F; F ) n’est pas 
vide, F  et F  sont nécessairement de même dimension. Prenons F  =  F , le choix 
d’une base dans F  induit un isomorphisme (d’algèbre) de £ (F )  sur l’algèbre 
Mn (K) des matrices carrées d’ordre n et un isomorphisme (de groupe) du groupe 
Isom(F) des automorphismes de F  sur le groupe des matrices inversibles de 
Mn (K), c’est-à-dire sur le groupe linéaire GL(n, K). Ce groupe linéaire est donc 
ouvert dans Mn(K) : une démonstration élémentaire de ce résultat s’obtient aisé­
ment en utilisant la caractérisation des matrices inversibles en terme de détermi­
nant.
Exercice 3.19.1 Soient E  un espace de Banach, E  /  {0 }, F  l ’espace vectoriel de toutes les suites 
x =  (xn) de E  telles que les sommes partielles sn =  xp soient bornées ; on munit F  de la
norme

11*11

On note G l ’ensemble des suites x =  (xn ) telles que la série de terme général xn converge.
1. Montrer que F  est un espace de Banach et que G  en est un sous-espace vectoriel fermé [utiliser 

l’application
tp : x =  (xn) e  F h  s =  (Sn) €  J °°(N ;E)

et l ’exercice 2.27.6].
Étant donné une suite (An ) de K, on note T  l’application linéaire qui, à toute suite x =  (xn) de 

E  associe la suite Tx  =  (An æn ).
2. On se propose d’abord de caractériser les suites (An ) telles que l’image par T  de toute série 

convergente soit une série convergente.
a. On suppose donc T(G)  C G. En utilisant le théorème du graphe fermé, montrer que 

l’application linéaire T  : G  -*  G  est continue. En déduire qu’il existe une constante c >  0 telle que
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pour tout n  6  N et tout x  E G

lly^ l ̂
p =0

En utilisant la transformation d’Abel
n

^   ̂Ap X p  — (Ao — A i)so  H" • •
p = o

montrer que l^ n + i — An | <  oo : on dit que la suite (An ) est à variation bornée.
b. Réciproquement, si la suite (An ) est à variation bornée, montrer que T(G)  c  G  en 

utilisant la transformation d'Abel

fc-M
T ,  A pXp =  (A* -  Afc+i ) s fc>0 +  . . .  +  (Afc+i- 1  -  \k+i )skti - i  +  a  fc+iSfc,*
p = k

c sup
nGN1

n

IlE ;
p = 0

• + (An—1 An)Sn— 1 + AnSn»

OÙ S k J  =  S k + j  -  Sfc-1*
3. Montrer que T(F)  c  G si, et seulement si, la suite (An ) est à variation bornée et

lim An =  0.n—►oo

Exercice 3 .1 9 .2  Soit E  un sous-espace vectoriel de l’espace J S(N; K ), on suppose que E  est muni 
d’une structure d’espace de Fréchet telle que l ’injection canonique de E  dans K)  soit continue ; 
on note (IMIOtg /  une famille dénombrable de semi-normes définissant la topologie de E.

Soit apq E K, (p, q) E N2, une suite double de scalaires, on considère le système linéaire à une 
infinité d’inconnues oo
(3.19.8) 5 3  av<ix <i =  Vu - P G N >

<ï=o
et on suppose que, pour tout y  =  (yp) E E , ce système admet une unique solution a: =  (xq) : ceci 
signifiant qu’il existe une unique suite x =  (xq) telle que les séries Y^Lo a>pqXq convergent et soient 
de somme yp.

On note F  l’ensemble des suites x =  (xq ) telles que, pour tout p  E N, la série yp =  Y%Lo apqxq 
converge et y — (yp) appartienne à E.  On définit sur F  une structure d’e.l.c. en prenant comme semi- 
normes d’une part

oo
M i  = llvlli où 2/p = 53 <*P«Z<J. * € I ,

<7=0

d’autre part
q

||æ||p =  sup  V a p r x J ,  p E  N.
1

1. Montrer que les formes linéaires sur F x h* xn sont continues [on notera que, pour tout q, il 
existe p tel que apq ^  0].

2. Montrer que F  est un espace de Fréchet.

3. On note x =  Ty  la solution de (3.19.8), montrer que T  est un isomorphisme de E  sur F  ; en 

particulier les formes linéaires sur E y  »->• xq sont continues.

Exercice 3.19.3 On considère l’espace c des suites convergentes x =  (xn)n>i  d'éléments de K, 
espace de Banach pour la norme ||æ|| =  supn > x |æn | (exercice 2.27.6).

1. On pose
e° =  (<5")n>i et. pourm  >  1, em =  (< C )n > i
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OÙ S{ =  0 si i ^  j  et 8\ =  1. Soit x  =  (xn )n> i €  c, si æ0 =  limn->oo xn> montrer que la série 
J2m= 1 (Xm ~  * o )e m est convergente dans Pespace c et que

oo
x =  xoe° +  ^ 2  (x™ “  xo)em . 

m= 1
2. En déduire qu’à tout endomorphisme T  G £ (c ) ,  on peut associer une suite double a™ G K, 

(m ,n )  G N x  N*, telle que y = Tx = {yn)n> 1 s ’écrive

(3.19.9)
oo

Un =  ^   ̂ X m  , ^  ^  1,
m = 0

avec les propriétés suivantes
oo

(3.19.10) sup  |a™ | <  oo,
n—1 m=0

(3.19.11) pour tout m  >  1, la limite a m =  a™ existe,

oo
(3.19.12) la limite a°  =  lim  a™ existe.n—Kx> ^ ' m=O

3. Réciproquement, soit a™ G K, (m , n) G N x  N*, une suite double vérifiant les propriétés 
(3.19.10), (3.19.11) et (3.19.12). Montrer que la formule (3.19.9) définit un endomorphisme T  de 
Pespace c e t  que

oo
lim  yn =  a°xo  +  Y *  a m (xm ~ x0).

n -¥  oo m=1
4. Étant donné des réels pn >  0, n  >  1, étudier la suite

Vn = P\X\  +  . . . +  pnXn
, X =  (xn ) G C.

P l  +  • • • +  Pn

En déduire une condition nécessaire et suffisante pour que limn_>oo xn =  limn_̂ oo yn quel que soit 
ï G c ,

3.20 Famille sommable et absolument sommable
La notion de série fait intervenir de façon essentielle la relation d’ordre total sur 
N dans la définition des sommes partielles sn. On ne peut pas en général modi­
fier arbitrairement l’ordre des termes : plus précisément, si la série est
convergente et si 7r : N -> N est une permutation de N, la série x„(n) n’est 
pas en général convergente et, si elle l’est, sa somme n’est pas nécessairement 
égale à xn . Comme nous le verrons cette difficulté ne se présente pas pour 
les séries absolument convergentes, mais la convergence absolue est une notion 
trop restrictive dans les applications (par exemple, dans l’étude des sommes hil­
bertiennes), la notion que nous allons définir est intermédiaire entre la convergence 
et la convergence absolue.

Outre la difficulté ci-dessus, on souhaite étudier la convergence de séries mul­
tiples : si (Æm,n)(m,n)GN2 est une suite double, peut-on donner un sens à la somme 
double Y2(myn)eH2 xmyn ? L’ordre naturel sur N2, à savoir l’ordre produit, n’étant
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pas un ordre total, il n’y a pas de façon naturelle et priviligiée de définir des 
sommes partielles bien que l’ensemble N2 soit dénombrable.

Ces difficultés conduisent à prendre pour ensemble d’indices un ensemble ab­
solument quelconque qui ne sera en général ni dénombrable, ni ordonné.

Étant donné un groupe topologique abélien séparé G et un ensemble / ,  on 
considère une famille (Xi)iej d’éléments de G. Pour toute partie finie J  de / ,  on 
peut définir la somme de la sous-famille j ,  soit

(3.20.1) Sj =  ^ i i 6 G , J e  ? ( / ) ,

en convenant que s j  = 0 si J  =  0, 0 désignant évidemment l’élément neutre du 
groupe. Grâce à cette convention, on a sjx\jj2 =  s jx -b sj 2 dès que J\ et J 2 sont 
des parties finies disjointes. On définit ainsi une application
(3.20.2) f  : J  G ? ( / )  s j  £  G .

Ordonnons J(I)  par inclusion, on obtient un ensemble filtrant (exemple 2.8.8) et 
on peut donc considérer sur J(I)  le filtre des sections associé ; rappelons que ce 
filtre admet pour base de filtre l’ensemble !B des sections

S{J0) = {J  G J (J )  ; J D Jo } où J 0 décrit J (J ) .

On peut alors donner la
Définition 3.20.1 Soit G un groupe topologique abélien séparé, une famille 
( x i ) i e I  d'éléments de G est dite sommable et de somme s si l'application

f :  J e  J ( J )  ^  SJ e G
admet s pour valeur limite suivant le filtre des sections de l'ensemble filtrant J ( / ) .  
On écrit alors S — E t€ /  X i .

Limitons nous dans la suite à des familles dans des e.v.t. séparés ; si 
est une famille d’éléments d’un e.v.t. séparé E y la définition précédente s’écrit de 
la façon suivante
(3.20.3) (VF € V(0))(3Jo G J ( /) ) (V J  G £F(J))(J D J 0 => s j  G s +  F ) 
et, lorsque E  est un espace normé,
(3.20.4) (Ve >  0)(3J0 G y (I))(V J G 3r( / ) ) ( J  D J 0 => ||* -  8 j\\ < e).
Remarque 3.20.1 Supposons tous les X i  nuis sauf un nombre fini d’entre eux, 
alors la famille (x.i)i^j est sommable et, si J  =  {i G /  ; Xi ^  0}, la somme de la 
famille est égale à Yliej • La notion de famille sommable généralise la notion 
de somme finie !

Vérifions de suite la propriété de commutativité suivante 
Proposition 3.20.1 Dans un e.v.t. séparé, soit ( ^ ) ^ /  une famille sommable de 
somme st alors pour toute bijection n : I  I, la famille (x7r(^)^e / est sommable 
et de somme s.
Preuve Soit F  G V(0), il existe Jo G J'(J) tel que s j  G s +  F  pour toute partie 
finie J  contenant Jo, alors K q = 7r_1(Jo) est une partie finie de I  et, pour toute
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partie finie K  D K o, on a 7r(K) d J 0, d’où x*(i) e  s +  ce qui prouve 
la proposition. Q.E.D.

Pour une famille indexée par N, c’est-à-dire pour une suite (xn), nous parle­
rons de suite sommable. On a alors la
Proposition 3.20.2 Dans un e.v.t. séparé, soit (xn) une suite sommable de somme 
s, alors pour toute bijection ir : N —> N la série x*(n) est convergente et de
somme s : on dit que la série X^Lo xn est commutativement convergente.
Preuve Vu la proposition précédente, il suffit de vérifier que la série xn est 
convergente et de somme s. La propriété (3.20.3) étant vérifiée, notons no le plus 
grand élément de Jo, alors [0, n] contient Jo dès que n est >  no, d’où sn G s +  V  
pour n > no, ce qui prouve que la suite (sn) converge vers s. Q.E.D.
Note Dans un espace normé par exemple, on peut démontrer la réciproque sui­
vante : si une série X^=o xn est commutativement convergente, alors la suite (xn) 
est sommable (exercice 3.20.1).

Dans un e.l.c. séparé, la proposition 3.4.3 fournit une condition nécessaire de 
sommabilité, appelée critère de Cauchy.
Proposition 3.20.3 Critère de Cauchy Dans un e.l.c. séparé E , pour qu'une fa­
mille (xi)i£i soit sommable il faut (et il suffit si E  est complet) que
(3.20.5) (W  G V(0))(3J0 G 5(I))(VK G 5(1 -  J0 ))(sK G V) 
et, lorsque E est un espace normé, cette condition s'écrit
(3.20.6) (Ve > 0)(3J0 G 5(I))ÇiK G 5(1 -  J 0))( ||s* || <  e).
Preuve Écrivons que la base de filtre /(® ) est de Cauchy
(3.20.7) (V V  G V(0))(3J0 G 5(I))(f(S(J0)) -  f (S (J0)) C V ), 

soit
n 20 s') I  (v v  G V(°))(3Jo e m m i  e y(/))(VJ2 e ?(/))
( ’ \  (Ji D Jo et J 2 D Jo S J, -  S j2 € V).
Si K  est une partie finie de I  -  Jo, posons J\ =  K  U Jo et J 2 =  Jo, alors 
sk  =  s j j -  sj 2 G V, ce qui prouve (3.20.5).

Réciproquement, montrons que (3.20.5) implique (3.20.8). Soit V  un voisinage 
de 0, il existe une semi-norme ||*|| continue sur E  et un e > 0 tels que V  contienne 
la boule B(0;2e) associée à cette semi-norme ; posons W  = B(0;e) G V(0), 
d’après (3.20.5), il existe Jo G 5(1) tel que sk  G W  pour toute partie finie de 
/  — Jo ; si J i  et J2  sont deux parties finies contenant Jo, on a alors

sJi ~ SJ2 = sk x -  sk2 avec Ki =  J i -  J 0, K 2 = J 2 -  Jo, 
d’où s j x — s j2 G W  -  W  C V  d’après le choix de W  et ceci prouve (3.20.8).

Lorsque E  est un espace normé, il suffit de prendre V  =  B'(0; e) pour obtenir
(3.20.6). Q.E.D.

La signification de (3.20.6) est la suivante : étant donné e > 0, si on exclut un 
nombre fini de termes de la famille, à savoir ceux qui sont indexés par Jo, toutes 
les sommes partielles de la sous-famille (xi)i^i-j 0 sont alors plus petites que e.
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E x ercice  3 .20 .1  Soit (x n ) une suite dans un espace normé E. Si la série (æn ) est commutativement 
convergente, montrer que la suite (a.’n ) est sommable en raisonnant de la façon suivante.

On pose s =  Xn * montrer que s est un point adhérent à la base de filtre / ( ! B) où /  désigne
l’application J  E ^F(N) s j  e  E  et '15 la base du filtre des sections associé à l’ensemble filtrant 
ÎF(N). Si la suite (xn ) n’est pas sommable, en déduire que cette base de filtre ne peut être de Cauchy. 
En déduire un e >  0 et une suite (K n ) de parties finies disjointes de N telles que ||s/<-n || >  e , ce qui 
permettra de construire une permutation n de N telle que la série de terme général x^(n) ne vérifie pas 
le critère de Cauchy.

Voici les premières conséquences du critère de Cauchy.
Corollaire 3.20.4 Soit (Xi)iej une famille sommable dans un e.Lc. séparé, si I  est 
infini, Vapplication i h-» Xi tend vers 0 suivant le filtre des complémentaires des 
parties finies de I.
Preuve II suffit d’écrire (3.20.5) en prenant K  réduit à un élément. Q.E.D.
Corollaire 3.20.5 Soit (xi)içi une famille sommable dans un e.Lc. métrisable, 
alors Vensemble {i € I  ; Xi jL 0} est dénombrable.
Preuve Soit (Vn) une base dénombrable du filtre V(0). D’après le critère de Cau­
chy, les ensembles In =  {i € I  ; Xi 0  Vn} sont finis et

Remarque 3.20.2 Dans un espace métrisable, pour qu’une famille (xi)i^j soit 
sommable, il est donc nécessaire que { i  € I;Xi ^  0} soit dénombrable ; cette 
condition étant vérifiée, l’étude de la sommabilité de la famille se réduit à celle de 
la sommabilité d’une suite. Bien entendu, l’ensemble dénombrable 
{ i  e I  ; Xi 0} dépend de la famille et dans la pratique cette remarque
n’a qu’un intérêt limité.
Note Dans un espace non métrisable, l’ensemble { i  e I\Xi ^  0} n’est pas en 
général dénombrable : nous donnerons ultérieurement un exemple très simple (re­
marque 3.20.4).
Corollaire 3.20.6 Dans un e.l.c. séparé complet, toute sous-famille d'une famille 
sommable est sommable.
Preuve En effet, toute sous-famille d’une famille vérifiant le critère de Cauchy 
vérifie a fortiori ce critère. Q.E.D.

Les propositions (3.19.2), (3.19.3) et le corollaire (3.19.4) se généralisent ai­
sément.
Proposition 3.20.7 Soient E  et F des e.v.t. séparés, T  : E  —» F une applica­
tion linéaire et continue et ( x ^ Gj une famille sommable de E, alors la famille 
(Txi)iç.j est sommable dans F et

{i 6 / ;  Xi ^  0} =  [ j l n vu que f )  Vn =  {0} ;
n nn

il en résulte que { i  € /  ; z» ^  0} est dénombrable. Q.E.D.

(3.20.9)
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Preuve Pour toute partie finie J  de I, on a en effet

TQ2xi) = Y,Tx*
i £ j  i £ J

d’après la linéarité de T  et on conclut avec le principe du prolongement des iden-

Proposition 3.20.8 Soit E  = YlaeA un produit d*e.v.t. séparés, une famille
(xi)iei de E  est sommable si, et seulement si, pour tout a e A, la famille 
(pra(xi))iei est sommable dans Ea ; on a alors

Preuve En effet, l’application /  : J  h* s j  =  £* admet une valeur limite s
suivant la base de filtre $  si, et seulement si, pour tout a G A, pra o/  admet pra (s) 
pour valeur limite selon la même base de filtre, ce qui permet de conclure vu que 
Vrai^2iÇij  Xi) =  YUz j  W ol{x%)> d’après la linéarité des projections. Q.E.D.
Remarque 3.20.3 Soient X  un ensemble, F  un e.v.t. séparé et 3\s(X; F) l’espace 
de toutes les applications de X  dans F  muni de la topologie de la convergence 
simple. Une famille (fi)iei sommable et de somme /  dans cet espace est dite 
simplement sommable : d’après la proposition ci-dessus, ceci signifie que, pour 
tout x G X,  la famille (fi(x))i^i est sommable dans F  et de somme f(x).
Remarque 3.20.4 Dans l’espace ^ (R jR ) ,  on considère la famille de fonctions 
(fi)ieu où fi(i) =  1 et fi(x) =  0 pour x ^ % \  d’après ce qui précède, cette famille 
est sommable et sa somme est la fonction constante et égale à 1. On obtient ainsi un 
exemple très simple de famille sommable admettant une infinité non dénombrable 
de termes non nuis. Ceci prouve (ce que nous savions déjà) que l’espace 3^(R; R) 
n’est pas métrisable.

Un raisonnement identique à celui fait pour le corollaire 3.19.4 permet de vé­
rifier le
Corollaire 3.20.9 Soient (xi)iej et (yi)iei deux familles sommables dans un 
e.v.t. séparé, alors la famille (Ax  ̂ +  PVi)iei, où A et p sont des scalaires, est 
sommable et

La notion de série absolument convergente se généralise de la façon suivante.

Définition 3.20.2 Dans un espace normé E, une famille (xi)i£l est dite absolu­
ment sommable si la famille de nombres positifs ( ||^ ||)^ G/ est sommable.
Proposition 3.20.10 Dans un espace de Banach E, toute famille (Xi)iGl absolu­
ment sommable est sommable et

tités. Q.E.D.

(3.20.10)

(3.20.11)

(3.20.12)
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Preuve La famille (||x-i||)ie / est sommable, donc vérifie le critère de Cauchy
(3.20.6) dans R ; or, pour toute partie finie K  de / ,  on a

IE**II  ̂ÜCimi.
i e K  i ç K

inégalité qui prouve que la famille {xi)iej vérifie le critère de Cauchy (3.20.6) 
dans E , ce qui permet de conclure. Quant à l’inégalité (3.20.12), elle résulte du 
principe du prolongement des inégalités. Q.E.D.
Remarque 3.20.5 Dans un espace de Banach de dimension finie, nous démon­
trerons que toute famille sommable est absolument sommable. Il n’en est pas de 
même dans un espace de dimension infinie. Considérons par exemple l’espace de 
Banach l°° des suites bornées de nombres réels ; notons Sn = (ô%) la suite ap­
partenant à cet espace Z°° définie par =  1 et =  0 si k ^  n. A toute suite 
(a n) de R on associe la suite (xn) de l°° définie par xn = anôn. Étant donné que 
Iknll =  \& n\>  la suite (xn) est absolument sommable dans l’espace l°° si, et seule­
ment si, la suite (an) est absolument sommable dans R. Quant à la sommabilité de 
la suite (xn), elle signifie simplement que la suite (an) tend vers 0 : en effet, cette 
condition est nécessaire d’après le corollaire 3.20.4 vu que ||æn || =  \an\ ; récipro­
quement, si cette condition est vérifiée, pour tout e >  0, il existe un entier n tel 
que \ap\ <  e pour p > n et il en résulte que, pour toute partie finie K  de [n, oo[, 
\\si<\\ =  Il YlpeK xv\\ =  suPpe/c la pl -  ce montre que le critère de Cau­
chy (3.20.6) est vérifié, d’où le résultat voulu. Il est clair que les deux conditions 
obtenues sur la suite (an) ne sont pas équivalentes.

Indiquons la terminologie utilisée pour des familles de fonctions ; on utilise 
évidemment la même terminologie pour des séries de fonctions.

Les notations étant celles du paragraphe 3.9, soient X  un ensemble, F  un e.l.c. 
et A  une famille non vide de parties non vides de X  ; une famille sommable dans 
l’espace (X; F ) est dite uniformément sommable sur tout ensemble de A .
Une famille sommable dans l’espace ^ ( X ;  F) est dite uniformément sommable. 
D’après la proposition 3.9.6, on a la
Proposition 3.20.11 Soient X  un espace topo logique, F un e.l.c. séparé et 
fi : X  -> F, i € I, une famille uniformément sommable de fonctions continues et 
bornées, alors la somme f  =  Y^iei fi est une fonction continue et bornée.

Lorsque F  est un espace normé, l’espace ^ (X ^ F )  est un espace normé, la 
norme d’une fonction /  G ^ (X ^ F )  étant donnée par supæGX | | / ( æ)|| » ^ re 
qu’une famille {fi)iei de cet espace est uniformément sommable de somme /  
s’explicite ainsi

(3.20.13) f (Ve > 0)(3J0 G y (/))(V J G y (/) )
L (J  D Jo => supæ6X ||/(æ ) -  /i(* )|| <  e)-

Supposons toujours que F  est un espace normé, on peut alors parler de famille 
absolument sommable dans l’espace F) : on dit alors que la famille est nor­
malement sommable ; ceci signifie simplement que la famille (supæ€X \\fi(x)\\)ieI
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de R+ est sommable. Lorsque F  est un espace de Banach, toute famille normale­
ment sommable est uniformément sommable d’après le théorème 3.9.5.

Lorsque X  est un espace topologique, une famille sommable dans l’espace 
3b/x{X;F ) est dite uniformément sommable sur tout compact. Sous les hypo­
thèses de la proposition 3.9.9, la somme d’une famille uniformément sommable 
sur tout compact de fonctions continues est une fonction continue.

3.21 Famille de nombres réels
La notion de famille absolument sommable dans un espace de Banach conduit 
naturellement à l’étude des familles de nombres réels.

Étudions d’abord des familles de nombres positifs. Nous avons alors le critère 
de sommabilité suivant.
Proposition 3.21.1 Critère des sommes partielles majorées Une famille (xi)iGj  
de R+ est sommable si, et seulement si, / ’ensemble des sommes par­
tielles est majoré ; on a alors

y 2 x i=  sup sj.
Tti

Preuve Si la famille (xi)iej est sommable et de somme s , pour tout e > 0, il 
existe une partie finie Jo telle que |s -  s j |  <  e pour toute partie finie J  D Jo. Si 
K  est une partie finie quelconque, K u Jq contient Jo, d’où sk  <  skuj0 <  s +  e, 
ce qui prouve que l’ensemble des sommes partielles est majoré. Réciproquement, 
supposons l’ensemble des sommes partielles majoré et soit s = s\ipJe3r ^ s j .  
Pour tout e >  0, il existe une partie finie Jo tel que s — e < s j0 <  s, d ’où 
s — e <  s j  < s pour toute partie finie J  contenant Jo, ce qui prouve que la famille 
(xi)i£i est sommable et de somme s. Q.E.D.

Considérons plus généralement une famille (x<)<€/  de R+ , adoptons la règle 
de calcul suivante

x  +  (+oo) =  (+oo) +  x = -f-oo pour tout x  G R+
et posons
(3.21.1) Xi = sup s j  G R_|_ où s j  = Xi.

I t i  f t j
La proposition ci-dessus montre que xi est A™ sh et seulement si, la famille 
(xi)iei est une famille sommable de R. L’intérêt de la formule (3.21.1) est le 
suivant : pour démontrer qu’une famille est sommable, il suffit d’effectuer le calcul 
de Yliei xi dans ®+»si on obtient une quantité finie la famille est sommable, sinon 
elle ne l’est pas.
Corollaire_3.21.2 Critère de comparaison Soient (Xi)i€l et {yi)iei deux fa ­
milles de R+ telles que Xi < yi pour tout i G I, alors

X +  ^  J2vi-
iel i€l
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Si la famille (y-i)iei est sommable, la famille est donc sommable.

Preuve Pour toute partie finie J , on a J2ieJ Xi -  j  V*et on conclut en prenant
la borne supérieure sur J. Q.E.D.

Remarque 3.21.1 Ce critère de comparaison et le corollaire 3.3.5 montrent que, 
dans un espace normé E , la notion de famille absolument sommable ne dépend 
pas du choix de la norme définissant la topologie de E  ; il en est de même de 
la notion de série absolument convergente, le critère de comparaison subsistant 
pour des séries d’après le corollaire ci-dessous ou, plus simplement, grâce à une 
vérification directe.

Corollaire 3.21.3 Soit (xn) une suite de K+, les propriétés suivantes sont équi­
valentes.

1. La suite (xn) est sommable.
2. La série xn est convergente.

Preuve 1 => 2 d’après la proposition 3.20.2.
2 ^  1 Si la série xn est convergente, la suite (sn) est convergente, donc 

bornée et, pour toute partie finie J  de N, il existe un entier n  tel que J  C [0, n], 
d’où 0 < s j  < sn ; ceci prouve que l’ensemble des sommes partielles est majoré 
et on conclut avec la proposition 3.21.1. Q.E.D.

On en déduit le
Corollaire 3.21.4 Dans un espace normé, une suite (xn) est absolument som­
mable si, et seulement si, la série de terme général xn est absolument convergente.

Pour des familles de nombres réels, il faut substituer au critère des sommes 
partielles majorées le critère suivant.

Proposition 3.21.5 Soit (xi)iej une famille de nombres réels, les propriétés sui­
vantes sont équivalentes.

1. La famille /  est absolument sommable.
2. La famille (xi)i^i est sommable.
3. L'ensemble (sj)je:F(j) des sommes partielles est borné.

Preuve 1 => 2 d’après la proposition 3.20.10.
2 => 3 Si la famille (xi)i^i est sommable, le critère de Cauchy (3.20.6) est 

vérifié et il en résulte que pour toute partie finie J , \sj\ < e +  Y2iej0 1X%V ce 
prouve 3.

3 => 1 Posons M  = \sj\ et, pour toute partie finie J ,
J+ =  {i e J ; Xi > 0} et J -  = {i e J ; Xi < 0}.

On a alors ^2ieJ \x.i\ =  s j+ — sj_ <  2M  et on conclut avec le critère des sommes 
partielles majorées. Q.E.D.

L’équivalence des deux premières propriétés vaut encore dans un espace de 
dimension finie.
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Corollaire 3.21.6 Soit (xi)iej une famille d'un espace de Banach E  de dimension 
finie, les propriétés suivantes sont équivalentes.

1. La famille (;Xi)iç/ est absolument sommable.
2. La famille (Xi)iei est sommable.

Preuve II s’agit de démontrer que 2. implique 1. L’espace E  étant isomorphe à 
Mn, on peut supposer que E = Rn muni de la norme ||x|| =  J2i<j<n \xj \ ° ù 
x = (Xj)i<j<n. Si la famille (Xi) est sommable, les familles (pi'j(x i)) sont 
sommables (proposition 3.20.8), donc absolument sommables (proposition 3.21.5) 
et, vu que ||xi|| =  Y h < j < n  \Prj{xi)I» la famille (Xi) est absolument sommable 
d’après le corollaire 3.2Ô.9. Q.E.D.

Résumons dans un tableau les relations existant entre les diverses notions ; 
utilisons les abréviations suivantes

C : série convergente
AC : série absolument convergente

S : famille sommable
AS : famille absolument sommable

Famille Suite ou Série
R+ AS <*=> S AS «■ S o  C AC

Espace de A S » S «  AC
dimension AS •O’ S ü-

finie C
Espace AS

de AS =*> S $  => S => C
Banach AC
Espace

S S=>C
normé

3.22 Théorèmes de sommation par paquets
Les familles sommables possèdent de bonnes propriétés d’associativité. Démon­
trons d’abord la
Proposition 3.22.1 Soit (Xi)i€j une famille d'un e.l.c. séparé E  et soit (I\)\eA  
une partition finie de I  telle que les sous-familles (xi)ieix soient sommables de 
somme s\. Alors, la famille (xi)i^i est sommable et de somme J2\ ça c'est-à-
dire
(3.22.1) £ : *  =  E E  Xi, formule de sommation par paquets.

iei xeAieix
Preuve Soit V  un voisinage de 0, il existe une semi-norme ||*|| continue sur E  et 
un e > 0 tels que V  contienne la boule -B'(0; e). Soit n le nombre d’éléments de 
A ; pour tout À, il existe une partie finie J\ de I \  telle que skx £ s\ +  B '(0; e/n)



3.22 SOMMATION PAR PAQUETS 411

pour toute partie finie K \  de I \  contenant J\ ; posons Jq = IJaga et S0lt ^  
une partie finie de I  contenant Jo, on a sk  =  S aga sK\ où K \ = K n l \  est une 
partie finie de I \  contenant J\ , d’où

II** -  -  SAH < n x e / n  = e,
A A

soit
S * €£' ( ( ) ; £)  C F  

A
et ceci prouve la proposition. Q.E.D.

Lorsque l’ensemble A est infini, cette proposition ne subsiste pas en général et 
on a seulement le
Théorème 3.22.2 Soit (Xi)iç.j une famille sommable et de somme s dans un e.l.c. 
séparé E et soit (/a)aga une partition de I  telle que les sous-familles (xi)iejx 
soient sommables de somme s\. Alors, la famille (sa)aga est sommable et de 
somme s, c ’est-à-dire
(3.22.2) ^  Xi =  ^  ^  Xi, formule de sommation par paquets.

iG/ AGA iel\
Preuve Soit V  un voisinage de 0, il existe une semi-norme ||«|| continue sur E  et 
un e > 0 tels que V  contienne la boule £ (0 ; 2 e).

Posons W  =  Æ(0; e), il existe une partie finie Jo de I  telle que
(3.22.3) s j  G s +  W  pour toute partie finie J  contenant Jo.

L’ensemble Ao =  (À E A; I \  fl Jo ^  0} est fini et, pour toute partie finie Ai 
contenant A0, posons K  =  (JagAi proposition précédente montre que la
sous-famille (x ^ e /c  est sommable et de somme J^AeAi Sx » étant donné que 
K  D Jo, il existe J  G J D J 0 tel que s j  G S agAi sa +  W. D’après
(3.22.3) , on en déduit que

y :  s\ = s + s j -  s + ^ 2  s x - s j e s  + W - W ,
AgAi AgAi

vu le choix de W , ceci montre que ICagAi «a £ s +  V  pour toute partie finie Ai 
contenant Ao, d’où le théorème. Q.E.D.

Dans ce théorème, on suppose non seulement que la famille (x*)^/ est som­
mable, mais également que les sous-familles (xi)i^ix sont sommables. La 
première hypothèse est essentielle comme le montre l’exemple de la suite 
xn = ( - l ) n et de la partition N =  U^Lo{^n »^n +  1} : dans ce cas les sous- 
familles (xi)ieix sont sommables ainsi que la famille (sa)aga ^ en Que â famille 
(^î)iG/ ne Pas sommable. Le théorème précédent ne fournit pas de critère de 
sommabilité, il donne une formule sommatoire.

Quant à la seconde hypothèse, rappelons que dans un e.l.c. séparé et com­
plet, toute sous-famille d’une famille sommable est sommable. Dans un tel espace, 
considérons par exemple une suite double sommable (xm,n)(m,n)GN2 i on utilisant
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les partitions
OO oo

N2 =  |J {m} x N =  (J N x {n},
771=0

on obtient les formules de sommation
71=0

(3.22.4) * « ,« =  E E 1
(771,71) G N2 771=0 71=0

00 00

Il y a un cas particulier où un procédé de sommation par paquets fournit un 
critère de sommabilité ; ce cas concerne les familles de nombres >  0 : il s’agit en 
fait d’un cas très important dans la pratique car il donne une méthode d’étude de 
l’absolue sommabilité dans les espaces de Banach.

Proposition 3.22.3 Soient (xi)iei une famille de M+ et ( /a)àga une partition de 
I. Pour que la famille (xi)iej soit sommable il faut et il suffit que les propriétés 
suivantes soient vérifiées.

1. Les sous-familles (x^)^ /A sont sommables de somme s\.
2. La famille (sa)aga est sommable.

Preuve La nécessité de 1. résulte du corollaire 3.20.6 et celle de 2. du théorème 
précédent. Réciproquement, supposons 1. et 2. vérifiés. Soit J  une partie finie de 
/ ,  on a

D’après 1. et la proposition 3.21.1, on a s jx < s \ , d’où s j  <  Z)aga0 5 a et, 
d’après 2. et la même proposition, ceci prouve que s j  <  X)aga sa ; on en déduit 
que la famille (Xi)iei est sommable toujours d’après la proposition 3.21.1. Q.E.D. 

Pour toute famille (x*)^/ de M+ , on a alors

le premier membre est en effet fini si, et seulement si, la famille (xi)i£j est une 
famille sommable de R et le second membre est fini si, et seulement si, les proprié­
tés 1. et 2. de la proposition 3.22.3 sont vérifiées ; cette proposition montre donc 
que, ou bien les deux membres de (3.22.5) sont finis, l’égalité résultant alors de
(3.22.2), ou bien ils sont tous deux infinis et ceci prouve bien la formule voulue.

Voici une application simple de la proposition précédente.

Proposition 3.22.4 Soient E, F et G des espaces de Banach, B : E x  F G une 
application bilinéaire et continue et (Xi)iei et {yj)je j  des familles absolument 
sommables de E  et F respectivement, alors la famille {B(xiiy j ) ) ^ e lx j  est 
absolument sommable dans G et

Sj* où Jx = Ix n  J  et A0 =  {A e  A ; J \ ±  0}.
A€Ao

(3.22.5)

(3.22.6)
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Preuve En considérant la partition I  x J  =  (J te iW  x la proposition précé­
dente prouve que la famille (||xi|| \\yj\\)(i}j)eixj  est sommable. Étant donné que 
\\B{xi^yj)\\ < ||Æ|| ||rci|| \\yj\\, le principe de comparaison montre que la famille 
(B(xi,yj))(ij)ei x j  est absolument sommable, donc sommable. En utilisant la 
partition ci-dessus, la formule (3.22.2) et la proposition 3.20.7, on a

B{xi,yj) =
(i , j ) e i x j

ce qui prouve la formule voulue.

£ £ * ( * « ,  î/j )
iei j€J

t e l  j € J

i € l  j € J

Q.E.D.

3.23 Produit infini

Soit G un groupe topologique abélien séparé, la loi de composition étant notée 
multiplicativement ; une série convergente dans G est appelée un produit conver­
gent et une famille sommable est appelée une famille multipliable. On peut par 
exemple utiliser le groupe multiplicatif R* des nombres réels non nuis et on dis­
pose donc d’une notion de produit convergent ou multipliable de nombres réels non 
nuis ; il est évidemment essentiel d’exclure 0 pour avoir une structure de groupe, 
mais ceci conduit à diverses difficultés dues en particulier au fait que R* n’est pas 
complet pour la distance usuelle. D’autre part, dans les applications à la théorie 
des fonctions holomorphes par exemple, on s’intéresse tout spécialement à l’éven­
tuelle nullité des produits infinis afin de construire des fonctions admettant des 
zéros donnés a priori. Pour toutes ces raisons, nous allons étudier les produits infi­
nis dans des algèbres de Banach.

On se donne donc une algèbre de Banach A réelle ou complexe qu’on suppose 
commutative et admettant un élément unité e. Soit (xn) une suite de A ; posons 
Pn = nu *P ; on dit que le produit infini Yi^Lo xn est convergent et de produit 
p si la suite (pn) des produits partiels converge vers p. De même, si (xi)i€j est une 
famille de A , on définit les produits partiels pj  =  YlieJ Xi pour toute partie finie 
J  et on dit que la famille (Xi)iei est multipliable et de produit p si l’application 
J pj  admet p pour valeur limite selon le filtre des sections de l’ensemble filtrant 
7(1), c’est-à-dire si
(3.23.1) (Ve > 0)(3Jo G J ( /) ) (V J  G 7(I))(J D  J0  => \\p ~ P j \\ < e), 
on écrit alors p =  YlieI x^.

On notera d’abord qu’une famille est multipliable et de produit nul dès que l’un 
des termes x-i est nul : on ne peut donc rien dire du terme général d’une famille mu- 
tipliable. Certains résultats de la théorie des familles sommables subsistent cepen­
dant. Il en est ainsi de la proposition 3.20.1 ; une démonstration similaire permet 
de vérifier que, si une famille (xi)iei est multipliable, alors pour toute bijection
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n : I  - ï  I  la famille (xv^ ) i€l est multipliable et

(3 .2 3 .2 ) n * - n ^ )
i e l  i € l

Il en est de même de la proposition 3.20.2 : si une suite (xn) est multipliable de 
produit p, le produit infini n^Lo X*W est convergent et de produit p pour toute 
bijection ir : N ->> N : on dit que le produit infini xn est commutativement 
convergent.

Dans la suite nous allons nous intéresser à une classe particulière de famille 
multipliable ayant de bonnes propriétés. On note (e +  Ui)içi une famille de l’al­
gèbre A et p j = Yliç j(e  +  Ui)> J  € J ( J )  , les produits partiels. Voici d’abord un 
lemme.
Lemme 3.23.1 Pour toute partie finie J, on a

(3.23.3) WPJ-e \ \ < 11(1 + I N I ) - 1 .
J

Preuve On raisonne par récurrence sur le nombre d’éléments de J . Lorsque 
J = {i}, l’inégalité se réduit à ||u*|| < ||ui||. Supposons l’inégalité démontrée 
pour une partie finie J  et démontrons la pour K  = J  U {ï}, i 0  J . On a

P k  — e =  p j ( e  +  Ui )  -  e =  p j  -  e +  ( p j  -  e ) u i  +  Ui

d’où
\ \ P K ~ e \ \  < \\pj -  e\\ +  \\pj — e|| ||uj|| +  ||ttj||

< ( n ^  + II^ID-O^-HND + INI

<  n a  +  i N D - 1.
j e K

ce qui prouve le lemme. Q.E.D.
Proposition 3.23.2 Soit une famille absolument sommable dans une al­
gèbre de Banachy alors la famille (e+Ui)iei est multipliable ; on dit que la famille 
est absolument multipliable et que le produit infini

i e i
est absolument convergent.
Preuve Étant donné que 1 +  x < ex pour tout réel x , on a d’après le lemme

IlPJ -  e|| <  e x p ( ^ 2  |H |) -  1 <  e x p ( j 2  ||«i||) -  1
i £ j  i € l

et ceci montre que la famille des produits partiels est bornée, posons 
c =  s u p j ||p j ||.

Soit e > 0, la famille (||u j||)je / étant sommable, il existe une partie finie 
Jo telle que llu*ll — £ Pour toute partie finie K  C  I  — Jq. Pour toute 
partie finie J  D J0, on a alors p j -  pJo = pJo (Ui&j - j u(e + uù ~  e), d’où
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Il P J-PJo II < IIP* Il {exP (Eie J- Jo INI) -  !) < c (e£ - !) et>vu que c (e<E ~ 1) 
tend vers 0 avec e, ceci montre que l’image par l’application J  i-> pj  du filtre des 
sections de l’ensemble filtrant £F(/) est une base de filtre de Cauchy et il en résulte 
que la famille (e +  u%) est multipliable. Q.E.D.

On observera que toute sous-famille d’une famille absolument multipliable est 
absolument multipliable ; il n’y a évidemment rien d’analogue pour des familles 
multipliables. On notera également que, la famille (ui) étant absolument som­
mable, l’ensemble {% G I  ; e -I- Ui ^  e} est dénombrable.

Le théorème de sommation par paquets subsiste pour des produits absolument 
convergents et s’écrit de la façon suivante.
Théorème 3.23.3 Soitp = YlieI{e +  u^) un produit infini absolument convergent 
dans une algèbre de Banach et soit ( J a ) a g a  une partition de I, alors, pour tout À, 

le produit infini p\ =  Ylieix (e +  ui) est absolument convergent et le produit infini 
Ü aga est absolument convergent de produit p, c'est-à-dire

(3.23.4) J ] ( e  +  u») =  J ]  I l  (e +  u<)•
iei xeAieix

Preuve 1. Le produit infini p\ =  Yiieix(e +  u%) est absolument multipliable ; 
montrons que le produit infini I I agaPa est absolument multipliable, c’est-à-dire 
que E aga IIpa -  e|| <  oo. Pour toute partie finie J  C I \ ,

\ \pj-e\ \ < exp (% 2  IH I) -  1,
zGJ

d’où IIpa -  e|| < exp(s\) -  1 en posant sa = INI >la famille ($a)aga 
est sommable donc bornée, soit 0 < sa <  M  et, vu que es -  1 < seM pour 
0 < s < M , on en déduit que ||pa — e|| <  csa, c =  eA/, et il en résulte que la 
famille (||pa -  e||)A€A est sommable.

2. Vérifions (3.23.4) lorsque A est fini. Notons n le nombre d’éléments de A 
et soit € >  0, l’application (xa)aga ^  Ü aga xa de An dans A étant continue au 
point (pa)» il existe ô > 0 tel que

ii nqx ~ n pAii -£ d®s que ~ pa u < <*.
aga aga

Il existe une partie finie J\ de I \  telle que \\p k x — P a || <  à pour toute partie finie 
K \  C I \  contenant J\ ; si K  est une partie finie de I  contenant Jo =  U aga A» on 
a alors pK = Ü aga Pkx où^ a =  I<nlx contient J A, d’où ||p/c — Ü aga ^ a|| < £  
et ceci prouve que p =  f l  aga Pa«

3. Dans le cas général, soit e  > 0 ; il existe une partie finie Jo de I  telle que 
||p — p j|| < e  pour toute partie finie J  D  Jo. L’ensemble

A0 =  {A g A; JAn  J o ^ 0 }
est fini ; pour toute partie finie Ai contenant Ao, posons K  = U agAi ^a et 
q = II t€ /r(c +  ui) » d’après 2, on a q =  Ü agAi Pa et, K  contenant J 0, il existe 
une partie finie J  de A" et contenant Jo telle que \\q — pj\\ < e, d’où ||g — p|| <  2 e,
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c’est-à-dire \\p — H aeAi Pa|| <  2e pour toute partie finie Ai contenant Ao et ceci 
prouve le résultat voulu. Q.E.D.
Proposition 3.23.4 Soit p = Y\iei(e+Ui) un produit infini absolument convergent 
tel que tous les termes e +  u\ soient inversibles dans l'algèbre, alors p admet un 
inverse, le produit infini q =  fL e /(e +  u % ) ~ 1 est absolument convergent, q admet 
un inverse et p - 1  = q.
Preuve La famille (Ui) étant absolument sommable, il existe une partie finie J  de 
I  telle que ||v* || <  1/2 pour tout i g J  ; il en résulte (proposition 3.19.6) que pour 
i & J  (e + u - ) - 1 =  E ~ =0( - l ) nu?, d’où

(e + uO-1-e |M lË ( - l)X I I< X ; i
\ \ U i

1 -  \\Uin = l  n = l

et ceci prouve que le produit infini q =  rL e /( e+ wi)_1 est absolument convergent. 
Pour toute partie finie J  de / ,  on a alors pjqj  = e en notant

Pj  = f[(e +u*)et ̂  = ILe + u*)_1
i eJ  i £J

les produits partiels ; d’après le principe du prolongement des identités, on en 
déduit que pq =  e, ce qui prouve que p et q admettent des inverses et que p~ 1 =  q.

Q.E.D.
En prenant pour algèbre A l’algèbre C des nombres complexes, on en déduit 

le
Corollaire 3.23.5 Soit p = j ( l  +  ui) un produit infini absolument convergent 
de nombres complexes, alors p est nul si, et seulement si, l'un des termes 1 +  u\ 
est nul. En outre, si 1 +  est non nul pour tout i, le produit infini +  ui)~ 1
est absolument convergent et

J J (1  +  v>i)~l = ( H ( !  +  ui))
i£l i£l

Pour des produits de fonctions la terminologie utilisée est la suivante. Étant 
donné un ensemble X  et une algèbre de Banach A , considérons l’espace ; A) 
des fonctions bornées de X  dans A  et munissons cet espace de la norme de la to­
pologie de la convergence uniforme ||/ | | =  supæ€X ||/(# )||- On suppose comme 
toujours que l’algèbre A est commutative et admet un élément unité e ; le pro­
duit de deux fonctions étant défini par (fg)(x) =  f(x)g(x), l’espace A)
est une algèbre de Banach commutative admettant pour élément unité la fonc­
tion constante égale à e qu’on notera encore e. Une famille (e +  fi)iei absolu­
ment multipliable dans cette algèbre est dite normalement multipliable et le pro­
duit infini /  =  Y\i£i(e +  fi) est dit normalement convergent : ceci signifie donc 
que Yliei \\fi\\ <  °°. N est clair alors que, Pour tout x  € X, le produit infini 
I l iei (e +  M x )) est absolument convergent et de produit f(x).  Si X  est un espace 
topologique, un produit infini normalement convergent de fonctions continues et 
bornées est encore une fonction continue et bornée d’après la proposition 3.9.6.
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Le corollaire qui précède permet alors de vérifier le
Corollaire 3.23.6 Soit fi  € ^ (X^C) ,  i G I, une famille de fonctions bornées 
telle que le produit infini f  =  ]̂ [i e / (l +  fi) s°it normalement convergent, alors 
rensemble Z(f)  des zéros de f  est la réunion des ensembles Z( 1 +  fi), où 
Z ( 1  +  fi) désigne l'ensemble des zéros de la fonction 1 +  /*. De plus, il existe 
une partie finie J  de I  telle que Z(f)  =  (Ji€ j  +  fi)-
Preuve La famille (/*) étant normalement sommable, il existe une partie finie J  de 
I  telle que ||/i|| <  1 pour tout i $ J  ; les fonctions 1 +fi>i & J, ne s’annulent pas 
et il en est donc de même de la fonction h =  Yliç i- j f i  +  fi) d’après le corollaire
3.23.5. D’après le théorème 3.23.3, on a d’autre part /  =  gh où g =  j ( l + fi)* 
d’où Z(f)  = Z(g) =  U ie j +  /*), ce qui prouve le résultat voulu. Q.E.D.

3.24 Espaces lp

On se propose d’étudier les espaces lp ; ce sont des espaces de Banach dont on peut 
donner une description concrète du dual et il est possible d’expliciter les notions 
de convergence faible, de compacité forte ou faible. A ce titre, ce sont donc des 
exemples intéressants ; en outre, on retrouvera ces espaces sous une forme plus 
générale dans la théorie de l’intégration.

On se donne un espace de Banach E  et un ensemble I. Rappelons d’abord 
que l°°(I;E) désigne l’espace de toutes les applications bornées de I  dans E , 
c’est-à-dire l’espace de toutes les familles x = (xi)i^i d’éléments de E  telles que 
||æ||oo =  supi£j ||xi|| soit fini ; muni de la norme ||# ||o o , l°°(I\E) est un espace 
de Banach.

Si p est un nombre réel tel que 1 < p < o o e t s i x  =  est une famille
quelconque d’éléments de E , on pose

(3.24.1) Il*||p =  (E IW IP) 1/P e [°> +°°]
iE/

et on note lv(I\E)  l’ensemble de toutes les familles x = (xi)iej telles que ||a;||p 
soit fini. Lorsque p — 1, Z1 ( J ;# )  est donc simplement l’ensemble des familles 
absolument sommables de E. Démontrons d’abord que ces espaces lp(I ; E) sont 
des sous-espaces vectoriels de l’espace vectoriel jF(J; E) de toute les applications 
de I  dans E  ; ceci est immédiat pour p =  1. Lorsque p est >  1, notons q le nombre 
réel défini par

(3.24.2) -  +  -  =  1,
P  Q

ce nombre q € ]1, oo[ est appelé l’indice conjugué de p. Nous utiliserons alors le 
Lemme 3.24.1 Soient p > 1 , q l'indice conjugué de p et soient a et b deux 
nombres réels > 0, alors

ap bq
(3.24.3) ab < -----1-----.p q
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Preuve La fonction exponentielle étant convexe, on a
e t x + ( i —t ) y  < j.e x  +  (i _  t)ev p0ur tout x, y G R et 0 <  £ < 1,

et l’inégalité cherchée s’obtient en prenant x  et y tel que ex = ap, =  bg et
t = 1 /p, 1 -  £ =  1 /q. _  Q.E.D.

Adoptons les règles de calcul suivantes dans R+

{x  x (+oo) =  (+oo) x x = +oo si 0 <  x  <  +oo,

0 x (+oo) =  (+oo) x 0 =  0.

On a alors le
Corollaire 3.24.2 Soient (a* )^ / et deux familles de nombres positifs, on
a
(3.24.5) y ^ajbj <  fy ^ a jf )  (inégalité de Hôlder).

iel  *E/
et 1*inégalité de Minkowski

0.24.6) <  ( E “f)1/,,+(£ *r )
ie l  iel iel

Preuve 1. Vérifions l’inégalité de Hôlder. Posons

l/p

<iei <iel
vu les règles de calcul dans M+, on peut supposer ces quantités A et B  finies et 
non nulles. D’après le principe du prolongement des identités, il suffit de vérifier 
l’inégalité lorsque I  est fini. Utilisons l’inégalité (3.24.3) en prenant a = ai /A et 
b = bi/B ; on obtient

ajbj <  1 a? 1 b?
AB ~ p A? + q B*

et en sommant sur i
T a A

AB ~ p + q ’ 
ce qui prouve l’inégalité voulue.

2. De même pour l’inégalité de Minkowski, on peut supposer I  fini ; on a
(ûj + b i ) p =  a i ( ü i  + b i ) p 1 + b i ( ü i  +

et d’après l’inégalité de Hôlder

iel iel

+(d t  r ( 5 > + M * ~ 'r .
iel %ei

iei
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étant donné que q(p -  1 ) =p,  on en déduit

E ( - s  ( (E  <) ‘/P + (E  ',P) ( B * + « ')
1 / P \

iel i e l i e i i e l

ce qui permet de conclure vu que 1 — 1/q =  1/p. Q.E.D.
Note Lorsque p =  q = 2, l’inégalité de Hôlder s’appelle l’inégalité de Cauchy- 
Schwarz.

Six  = (xi)i£i et y = (yi)izi sont deux familles d’éléments d’un espace de 
Banach, l’inégalité de Minkowski prouve que dans M+

(3.24.7) II* +  »IIp<INIp + II»IIp;
on a d’autre part, pour tout À G K,
(3.24.8) ||As||p =  |À| \\x\\p.

Ces formules montrent que, pour tout p > l , l v(I\E)  est un sous-espace vec­
toriel de jF(J; E) et que ||«||p est une norme sur lp{I\ E).

Proposition 3.24.3 Pour tout p G [1, oo], Vespace lp(I ; E) est un espace de Ba­
nach.
Preuve Le résultat étant acquis pour l’espace Z°°(J; E ), on peut supposer p fini. 
Soit (xn) une suite de Cauchy dans l’espace lp(I\E)  ; écrivons x n =  (x ^ n ) et 
soit e > 0, il existe un entier n  tel que, pour l > n  et m  > n, \\xi — x m \\p < e. Vu 
que Ha;^ -  XiiTn\\ <  ||xi -  x m \\p9 pour tout i la suite ( x i iTl) est de Cauchy dans 
E  ; l’espace E  étant complet, elle est donc convergente ; notons Xi sa limite. Pour
toute partie finie J  d e / ,  on a I\x i,i ~ x%m\\PŸ^V <  £ pour l > n e t m  > n,

d’où en faisant tendre m  vers l’infini, (J 2 ie J  llxM “ x i\\p) ^ P ^ £ et> ceci étant 
vrai pour toute partie finie J , on en déduit que \\xi — x\\p < e pour l > n . Ceci 
prouve que xi — x  appartient à lp(I ; E), donc x appartient à lp{I\ E) et la suite 
(xn) converge vers x  dans lp(I\ E ), qui est donc complet. Q.E.D.

L’inégalité de Hôlder se généralise de la façon suivante.
Proposition 3.24.4 Soient p,q>r trois nombres réels de P intervalle [1, +oo] tels 
que l/p  +  l/q  = 1 /r  en convenant que l/oo =  0 et 1/0 =  oo et soient 
a =  (a>i)iei> b = (6*)^/ deux familles de nombres réels ou complexes, on a 
alors dans M+
(3.24.9) \\ab\\r < \\a\\p \\b\\q où ab = (a<6i)<€/ .
Preuve Lorsque l’un des nombres p, q, r est infini, cette inégalité est immédiate à 
vérifier. En effet, lorsque p = q =  r =  oo, elle s’écrit

sup \dibil < sup \üi\ sup \bi\
iel iel iel

et lorsque q =  oo, p =  r G [1, +oo[, elle s’écrit

(X ^ M ilP) /P ^ M P) /P X sup |6*|.
»€/ <€/ *€/
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On peut donc supposer les nombres p, q, r finis ; posons pf = p/r  et qf = q/r , on 
a alors 1/p ' +  l / q 1 2 3 =  1 ; écrivons l’inégalité de Hôlder pour les familles ( |a i|r ) et
( N r)

E < (E wrp')w (E nv)w
i€l iel iel

et on obtient le résultat voulu en élevant cette inégalité à la puissance 1 /r. Q.E.D.
Considérons alors des espaces de Banach E> F  et G et une application bili­

néaire et continue notée multiplicativement (x, y) \-> xy de E  x F  dans G que 
nous supposerons de norme < 1. Si (Xi)iei et (yi)iei sont des familles d’élé­
ments de E  et F  respectivement, on définit une famille d’éléments de G en posant 
xy =  (%iyi)iei et d’après l’inégalité de Hôlder (3.24.9) on a alors dans R+
(3.24.10) \\xy\\r <  |M|p ||y||« où 1 /p  +  l/q  = 1 /r.

Si x appartient à lp(I\ E) et y h lq(I\ F ), cette inégalité prouve que xy appar­
tient à lr(I;G) et que l’application bilinéaire (x,y) »->> xy de
lp(I ; E) x lq(l\ F) dans Zr (/; G) est continue de norme <  1.

Exercice 3 .2 4 .1  Soient E, F et G des espaces de Banach, (xy y) h* xy  une application bilinéaire 
continue de E x F  dans G  non identiquement nulle, 1 <  p, q, r < oo tels que 1 /r  =  1/p  +  l /q , I  
un ensemble infini. Montrer qu’il existe (æ, y)  E lp(I\ E)  x lq(I; F)  tel que xy  0  ls ( I ; G)  quel que 
soit s < r .

Exercice 3 .2 4 .2  Soient 1 <  p, g ,r  <  co tels que 1 /r  =  1 /p  +  l /q  et y =  (yi)i^i une famille 
d’éléments de K, on suppose que, quel que soit x =  (xi)ie j  E lp{I\ K), la famille xy =  (xiyi)i^j 
appartient à / r (7; K).

1. En utilisant le théorème du graphe fermé, montrer que l’application linéaire x ^  xy  de lp dans 
lr est continue.

2. En déduire que y appartient à lq ( /;  K).

Exercice 3 .2 4 .3  Théorème de Schur-Mertens On considère l’espace vectoriel E  des suites réelles 
telles que la série E)ÎÏLo Xn converge, espace de Banach pour la norme (exercice 3.19.1)

1. Montrer que les formes linéaires pn : x  =  (æn ) E E  t-> x n E K sont continues.
Étant donné deux suites réelles x  =  (x n ), y  =  (y n )> on définit une suite z  =  x  * y  en posant 

zn =  E J L o xjVn—j • On suppose donnée une suite y  =  (yn ) possédant la propriété suivante

x  e  E  = >  x * y  e  E.

2. Montrer que l ’application linéaire x £ E * - > x * y E E e  st continue [utiliser le théorème du 
graphe fermé].

3. En déduire qu’il existe une constante c >  0 telle que

||x * p ||  <  c||æ || pour tout x  E E y 

puis que y  appartient à l’espace l 1.

Exercice 3.24.4 Étant donné deux suites réelles x  = (xn ), y  = (yn). on définit une suite z  =  x * y  
en posant zn =  E )£=o xj V n - j • Soient 1 <  p, q <  oo tels que 1 /p  +  l / q  =  1.
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1. Si x 6  lp, y  6  lq, montrer que z  =  x  *  y  appartient à /°° et que l’application bilinéaire

(x,y) £ lp x lq x * y  £ l°°

est continue.
2. Soit y  =  (yn ) une suite réelle telle que x  *  y  appartienne à l°° pour tout x £ lp.

a. Montrer que l’application linéaire x £ lp x * y  £ l°° est continue [utiliser le théorème 
du graphe fermé].

b. En déduire une constante c >  0 telle que
n

Xjyn- j  | <  c ||cc||p pour tout entier n  et tout x £ lp ,
j=o

puis que y  appartient à l’espace lq.

En particulier, si E  est un espace de Banach, prenons F = E \  G =  K et pour 
application bilinéaire le crochet de dualité <  x ',x  > =  x '(x), x £ E, x' £ E ’. 
Soient p £ [1, oo], q l’indice conjugué de p ; si x =  (x * )^ / appartient à Zp(/; E) 
et y =  (yi)i£i à lq(I; E '), la famille (<yi,Xi >)*ej  est sommable ; posons

uv(x ) = ^ 2 < y u xi > ;
i£l

d’après ce qui précède, la forme bilinéaire (x, y) i-> uy(x) sur lp(I\ E) x lq(I\ E 1) 
est continue de norme < 1 : \uy(x)\ < ||x ||p ||2/||9. Il en résulte que l’application 
uy : x uy(x) est une forme linéaire continue sur lp(I;E) de norme <  \\y\\q. 
On en déduit que l’application u : y i-> uy est une application linéaire et continue 
définie sur lq(I ; E f) et à valeurs dans le dual (/p(/; E))' dont la norme est <  1 ; 
nous allons démontrer que cette application est une isométrie lorsque 1 <  p < oo.

Théorème 3.24.5 Soit 1 <  p < oo, pour toute forme linéaire et continue T  sur 
Vespace lp{I\E)t il existe un unique élément =  y = (Vi)%£i appartenant à 
l'espace lq(I ; E ') tel que

Tx  =  < yiy Xi > pour tout x  =  (xi)iei £ lp(I;E) ;
i£l

en outre, ||T|| =  \\y\\q : l'application linéaire $  : T \-ï est une isométrie du 
dual de l'espace lp(l\ E) sur l'espace lq(I\ E').
Preuve 1. Démontrons d’abord que, s’il existe un y = (yi)i^i £ lq(I;Ef) tel que 
Tx  =  Yliei < Vi>xi > Pour tout x = ixi)i£i £ E), alors cet y est unique.
Soit i £ J, notons <p* : E  -» lp(I;E) l’application linéaire définie comme suit : 
Pi (x) = (xj)jçi où Xj = 0 lorsque j  ^  i et Xi =  x. Cette application linéaire est 
continue vu que ||<Pi(x)||p =  ||x||. On a alors T(ipi(x)) =< y ^ x  > , c’est-à-dire 
yi = T  o pi ; ceci prouve l’unicité de y. Remarquons ensuite que y i=  T  o ^  est 
une forme linéaire et continue sur E : yi est bien un élément de E f. Il s’agit alors 
de démontrer que y =  (j/<)<€/ appartient à lq(I ; E*), que Tx  =  £ \ €j <  yu Xi > 
et que ||T|| =  \\y\\q : ceci prouvera le théorème.

2. Montrons d’abord que, pour tout x  =  (Xi)iej appartenant à l’espace Zp(J; E ), 
la famille (Pi(%i))iei est sommable et de somme x. Soit e > 0, il existe une partie
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finie Jo de I  telle que ||#t||p) 1̂ P < £. Pour toute partie finie J  conte­
nant Jo, on a alors

n* -  = ( E  in ip) ,P -  ( E  in ip) /P - e
i£ j  i£l—J iGl—Jo

et ceci prouve le résultat voulu. On en déduit que la famille (T(ipi(xi)))iei est 
sommable dans K  et de somme T x , soit T x  =  ^2ieI < y%,Xi>.

3. Montrons que y  appartient à lq(I\ E 1) et que \\y\\q < ||T||, ce qui prouvera 
l’égalité, l’inégalité opposée étant déjà démontrée.

Lorsque p = 1, on a \\y.i\\ < ||T|| \\<pi\\ =  ||T|| ; ceci prouve que y  appartient à 
l’espace 1°°( J; E') et que ||ÿ ||o o  =  supie / ||y*|| <  ||T||.

Lorsque 1 <  p <  oo, prenons x  de la forme x  =  YlieJ ° “ J  est une
partie finie de / ,  x» €  E  et ||x{|| =  1 , a» =  6j| <  y^X i  >  |9-1 et b, € K, |6j| - 1 
tel que bi < yi, X* > =  | <  yt,Xi >  |. On a alors

T x  = <  yu xi >=  ^ |  <  y^X i  > |9
î€«/ î€t/

et, vu que p(q — 1) =  q,

inIp = ( E i < ^ x‘ > i9) 1/p>
i€J

d’après l’inégalité \Tx\ < ||T|| ||x||p et 1 -  1 /p = l/q , on en déduit que

et, en prenant la borne supérieure sur les Xi de norme 1, (52i£ j  \\yi\\q) < ||T|| ;
ceci étant vrai pour toute partie finie J , on en déduit le résultat voulu. Q.E.D. 
Note En prenant pour I  un ensemble fini et E = K, on en déduit ceci : munissons 
Kn de la norme ||x ||p =  \x i\p)l^p> 1 < P <  oo et soit T  une forme linéaire
sur Kn ; T  peut s’écrire

n

Tx  =  ^ 2  a,iXi où a =  (cii) € Kn ,
i = 1

alors ||T|| =  ||o||g, c’est-à-dire
n

||T|| =  sup |ûi| s ip  =  l e t  ||T|| =  ( y ' | a i |9)1/9 si 1 < p  < oo. 
l<i<n

Corollaire 3.24.6 Soit 1 < p < oo, si l'espace de Banach E  est réflexif, l'espace 
lp(I\ E) est réflexif
Preuve II s’agit de démontrer que l’injection canonique de lp(T,E) dans son 
bidual est surjective. Utilisons l’isométrie u : lq(/;£■') -> (lp(I\E)Y  ; 
soit T e (lp(I]E)Y\  c ’est-à-dire une forme linéaire et continue sur l’espace
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(/p(7; E))f ; alors T  o u est une forme linéaire et continue sur lq(I; E f). D’après 
le théorème précédent, il existe 2  =  (2* )^ / € Zp(7; E") tel que

(T o u)(y) = ^ 2 <  ZùVi >(E",E>)
i(zl

pour tout y =  {ïh)tei G lq{I\E'). L’espace E  étant réflexif, il existe des 
Xi £ E  tels que ||x*|| =  ||zi|| et <  Zi,yt >(E",E')=< y,,Xi >(E',E) ! on a alors 
X =  ( X i ) i € l  G m  E) et (T o «)(») =  £ ie / <  Vu >* autrement dit

< ï \  uiv) (i»y)=<u(y)>x >((py,ir) 
et, u étant surjective, ceci prouve que l’espace Zp(7; E) est réflexif. Q.E.D.

Lorsque p =  1 ou p = 0 0 , l’espace Zp(7; E) n’est pas réflexif si 7 est infini et 
E  {0}. Ceci résulte de la proposition suivante.
Proposition 3.24.7 Les espaces lp(I ; K) sont séparables si I  est dénombrable et 
1 < p <  0 0  ; respace l°°(I; K) /îVsf pas séparable si I  est infini 
Preuve 1. Posons eJ =  où Sj = 0 si i ^  j  et <Jj =  1. Soit
x = (x^ e  lp(I;K) ; au cours de la démonstration du théorème 3.24.5, on a 
vérifié que la suite (<Pi(xi)) est sommable et de somme x ; étant donné que 
<Pi(xi) = ceci montre que la famille dénombrable (e1) est totale dans lp(I; K) 
qui est donc séparable.

2. Montrons que l’espace /°°(7; K) n’est pas séparable si I  est infini. Raison­
nons par l’absurde, supposons qu’il existe une suite (xn) dense dans Z°°(/;K). Si 
A est une partie de / ,  notons la fonction caractéristique de A ; cette fonction 
appartenant à Z°°(/; K), il existe un entier n  =  n(A) tel que \\xn -  lU||oo <  1/2. 
Montrons que l’application A 1-» n(A) de 7(1) dans N est injective (ce qui est 
évidemment absurde si I  est infini). Supposons n(A) =  n(B) =  n, alors

\\xn ~  l / t | |o o  <  1 /2  Ct \\xn —  Ub IIoo <  1/2 ,

d’où || 1a -  H-B||00 < 1 et par conséquent HU  ̂ -  l^Hoo =  0, d’où A = B  ce qui 
prouve le résultat voulu. Q.E.D.

Corollaire 3.24.8 Si I  est infini et si E n ’est pas réduit à {0}, les espaces ll (I; E) 
et l°°(I; E) ne sont pas réflexifs.
Preuve 1. Montrons d’abord que l’espace Z1 (7; K) n’est pas réflexif lorsque I  est 
infini dénombrable. Raisonnons par l’absurde, si cet espace était réflexif, son bi- 
dual serait séparable ; d’après le théorème 3.24.5, il existe une isométrie de ce 
bidual sur le dual de l’espace Z°°(/; K) qui serait donc séparable d’après la propo­
sition 3.17.10. Ceci est en contradiction avec la proposition 3.24.7.

2. Si I  est infini, il existe une partie infinie dénombrable D e l  ; étant donné 
a e  E, a Y1 0, considérons le sous-espace de ll (I;E) constitué des 
x = (Xi) de la forme Xi = ayi où yi £ K  et y* =  0 si i G /  -  D ; on 
vérifie aisément que ce sous-espace est fermé et qu’il est isomorphe à l’espace 
ll (D; K) ; ce sous-espace n’est donc pas réflexif. D’après la proposition 3.17.8, 
l’espace ll (7; E) ne saurait être réflexif.
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3. L’espace K) n’est pas réflexif d’après le corollaire 3.17.9 ; en rai­
sonnant comme ci-dessus on en déduit que l’espace Z°°(7; E) n’est pas réflexif.

Q.E.D.
Exercice 3.24.5 Étant donné un ensemble I  et un espace de Banach E , on considère l ’espace de 
Banach cq(I\ E)  (exercice 3.9.6).

1. En reprenant la méthode utilisée pour démontrer le théorème 3.24.5, montrer qu’il existe une 
isométrie linéaire du dual de cet espace sur l’espace l1 ( / ;  E 1).

2. Montrer que l’espace cq(I ; E)  n’est pas réflexif si I  est infini et E  ^  {0 } .

Exercice 3.24.6 On considère sur l’espace lp =  lp {N; K), 1 <  p  <  oo, l ’opérateur T  : lp -* lp 
défini par

Ax  =  (Aæn+ i ) n e N si x =  (æn )n€N où A G K, |A| >  1.

Vérifier que cet opérateur est hypercyclique (exercice 3.4.4).

Considérons en particulier l’espace l°°(I) =  Z°°(7;K) ; pour tout
y =  (yi ) e Z1 (J) =  Z1 (7; K), l’application uy : x J2ie IXiyi est une forme 
linéaire continue sur Z°°(J) ; si 7 est infini, l’espace Z°°(J) n’est pas réflexif et l’ap­
plication u : Z1 (7) -> (l°°(I)Y ne peut être surjective. Il existe donc des formes 
linéaires continues sur Z°°(7) qui ne sont pas de la forme uy ; une description 
concrète du dual de l’espace Z°°(7) utilisera le lemme suivant.

Lemme 3.24.9 Dans Vespace Z°°(7), / ’ensemble des fonctions caractéristiques 
0 U ) a€îP(/) est total.
Preuve Soit x G l°°(I) et soit e > 0, il existe une partition finie (7?a)àea 
disque {t e K; |£| <  IMloo} par des ensembles dont le diamètre est <  e. Posons 
A \ = on obtient ainsi une partition finie de 7 ; prenons un point i \  dans
chaque A \  non vide et posons x£ = £ ^ \ea : on a al°rs \\x — xe\\oo 5? £>
ce qui prouve le résultat voulu. Q.E.D.

Une forme linéaire et continue T  sur Z°°(7) est alors déterminée lorsqu’on 
connait ses valeurs aux points IL a où A décrit l’ensemble des parties de 7 ; autre­
ment dit, l’application
(3.24.11) $  : T  e (Z°°(7))' h* $ t  € 3r(3>(7); K) où ®t (j4) =  T(1U),
est injective ; décrivons l’image de cette application.

Notons E  l’ensemble de toutes les applications (p e 3r(CP(7); K) vérifiant

(3 24 12) =  +  pour tout A, B  G T(7) tel que
K ; \ A n B  = $
et

{||(^|| =  sup a \V(AX)\est fini, où la borne supérieure 
est prise sur l’ensemble de toutes les familles finies (A\) 
de parties de 7 disjointes deux à deux.

Il est clair que E  est un sous-espace vectoriel de 3r(T(7); K) et que tp ||<̂ || est 
une norme sur cet espace. On a alors le
Théorème 3.24.10 L'application linéaire wne isométrie du dual
de l'espace l°°(I) sur l'espace E.
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Preuve 1. Vérifions d’abord que <&t  appartient à l’espace E. Si A et B  sont deux 
parties disjointes de 7, on a I aub =  1U +  l j 3 » d’où 
$ t (Au B) = T ( I auB) = T (1 a + 1b ) = T (1 a) + T ( Ï b ) = +
ce qui prouve (3.24.12). Vérifions (3.24.13). Il existe oA € K de module 1 tel que

|T ( lAx)| =  a Ar ( l AJ ,
d’où \$t (Ax)\ = axT { l Ax) et £ a€a I<M A a)| =  ï X £ AeA aAl AJ  ; on en 
déduit que

||$T|| = suPt ( 5 > a1Ux) <||T||
AG A

vu que II E a g a  a A | | oo <  1. Ceci prouve que | | $ t || est fini, donc appartient 
à l’espace E  et de plus | | $>t || < ||T||.

2. Démontrons ensuite que l’application $  est surjective. Soit (p € E, construi­
sons d’abord une forme linéaire S  sur l’espace vectoriel A  engendré par l’en­
semble des fonctions 1,4, A décrivant CP(7), telle que ^(ILa ) =  <p(A). Pour effec­
tuer cette construction, on remarque que tout x € A  peut s’écrire

* =  £  ûaIU x
a g a

où ( . Aa ) a g a  est une partition finie de 7. Cette écriture n’est pas unique, mais on 
peut cependant définir une application S  en posant

Sx = Y l  aw ( A*)-
a g a

En effet, soit x = ^  €Af une autre écriture de x vérifiant les mêmes condi­
tions ; alors (A\ fl est une partition finie de A \ , d’où

<p(A\) = ^ 2  <p(Ax n  Bm)
m g m

d’après (3.24.12) et de même

¥>(■8/*) = v(A \ n £m) ;
a g a

on a d’autre part a\ =  b  ̂ si A \  fl B^ est non vide. En tenant compte du fait que 
<p(0) =  0 d’après (3.24.12), on en déduit que

^ 2 a\<p{Ax) = ^ 2 a\<P{Ax n B M) =  ^ b ^ A x  n B (t) =  ^ b ^ B ^ )
A A,/it A ,/x ii

et ceci prouve le résultat annoncé.
Vérifions ensuite que S  est une forme linéaire sur A. Il est clair que

S(\x)  =  A Sx.
Par ailleurs, si x et y sont deux points de A , on peut trouver une partition finie (A\) 
de I  telle que x = '£lX aAl AA et y =  £ A bx^Ax. d’où x  +  y = £ A(aA +  ùA)UAx 
et par conséquent

S(x + y) = £ ( a A +  bxMAx)  = ^ 2  a M A x )  + £  bx<p(Ax) = Sx + Sy,
A A A
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ce qui prouve la linéarité de S.
Montrons enfin que S  est une forme linéaire et continue sur A. D’après la 

définition de S , on a \Sx\ <  E a I°a| |¥>(^a)| <  maxA |aA| x £ A M 4 0 I  et, vu 
que II^Hoo =  maxA |aA|, ceci prouve que \Sx\ < \\<p\\ ||x ||oo - La forme linéaire S  
est donc continue et de norme < ||<p||. Elle se prolonge donc en une forme linéaire 
et continue T  sur l°°(I) de norme <  ||<p|| ; étant donné que

T{ t A) = S(1A) =  tp(A)y
ceci prouve que <p =  et les diverses inégalités démontrées prouvent que
I M  =  imi. q .e .d .

L’espace E , isomorphe au dual de l’espace Z°°, est un espace de Banach. Un 
élément <p de cet espace est une fonction d’ensemble ; on exprime la propriété
(3.24.12) en disant que cette fonction est additive, la propriété (3.24.13) en disant 
qu’elle est à variation bornée. On retrouvera ces notions en théorie de la mesure.

Soit y =  (yi) G ll (I) et soit uy(x) = Yl%xiVi forme linéaire et continue 
associée à y ; on a alors $ Uy(A) =  Vi et l’application y i-> 4>tty est une 
isométrie de Z1 (7) sur un sous-espace fermé (car l1 est complet) de l’espace de 
Banach E  et ce sous-espace est distinct de E.

Étudions les parties fortement compactes des espaces lp. Nous noterons 
Pi  : lp(I\E) E  l’application définie par P i ( x )  =  Xi si x = (x^  ; cette ap­
plication est évidemment linéaire et continue. Lorsque p est fini, on a alors le 
Théorème 3.24.11 Une partie A de lp(I\ E), 1 <  p <  oo, est relativement com­
pacte si, et seulement si,
(3.24.14) pour tout i ç / ,  pi(A) est relativement compact dans E  
et
(3.24.15) ( V e > 0 ) ( 3 J „ e  J(/))(V x  G 4l)( (  £  | N | P)  ^  <  e ) .

iEl—Jo
Preuve 1. Supposons A relativement compact. La propriété (3.24.14) résulte de la 
continuité de p*. Écrivons ensuite que A  est précompact. Il existe une partie finie 
M  de lp telle que A c  \JvGm Æ'(y; £) et> M  étant fini, il existe une partie finie Jq

de I  telle que ( E i6/ - j 0 IM Ip)1/p <  e pour tout y =  (yi) G M.  Pour tout x G A, 
il existe y G M  tel que \\x — y\\p <  e, d’où

( E  i*i')l/’ s ( E «*-»ry"+( E  b.r)1/P<2£
i£l—Jo i€l—Jo iÇîI—Jo

ce qui prouve (3.24.15).
2. Réciproquement, les propriétés (3.24.14) et (3.24.15) étant vérifiées, mon­

trons que A est précompact. Soit x, y G A, on a

(3.24.16) ||x -  y\\p <2e+  ( £  ||a:< -  ÿ i||p) ' /P.
iE Jo

Considérons alors l’application pj 0 : (xi)i€j »-> (xi)içj0 de lp(I\E)  dans E J° ; 
Pj{) (A) est précompact dans cet espace produit E Jo d’après (3.24.14) ; étant donné
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que la topologie produit sur E Jo peut être définie par la norme Ç%2ieJo \\^i\\p)l^p* 
il existe une partie finie M  de A telle que pj0 (A) C \Jy£M B'(y\e). Pour tout 
x  G A, il existe donc y G M  tel que

\\xi — 3/*IIP)  /P <e»
iE Jo

d’où ||x -  y\\p < Se d’après (3.24.16) et ceci prouve que A C -®'(y; %e) ;
A est donc précompact. Q.E.D.

Pour l’espace Z°°(J; K) (on se limite ici au cas où E  =  K), on a

Théorème 3.24.12 Une partie A de Z°°(J; K) esf relativement compacte si, et 
seulement si, les propriétés suivantes sont vérifiées.
(3.24.17) A une partie bornée,

24 18) [Pour tout € > 0» ^ wne partition finie (I\) de I  telle que 
^ '  ydiam f( I \ )  < £ pour tout f  e A et tout A.
Preuve 1. Si A est relativement compact, A est borné. D’autre part, soit G le 
sous-espace vectoriel engendré par l’ensemble des fonctions caractéristiques 
(U j) jG'j>(/) ; ce sous-espace est partout dense (lemme 3.24.9). L’ensemble de 
toutes les boules ouvertes (B(g;e))9^G est un recouvrement ouvert du compact 
A ; il existe donc une partie finie Go de G tel que A  c  (J^Go £ (# ; e) et, Go étant 
fini, il existe une partition finie (I \ ) de I  telle que tout g G Go soit une combinai­
son linéaire des U/A, soit g = a\y9 t i x, a\ y9 G K. Alors, pour tout f  G A, il 
existe g G G0 tel que | | /  -  g\\oo <  £, d’où f ( I \ )  C B 1 {a\ i9 ;e) et par conséquent 
diam f ( I \ )  < 2e, ce qui prouve (3.24.18).

2. Réciproquement, les propriétés (3.24.17) et (3.24.18) étant vérifiées, mon­
trons que A est précompact. Posons r = supfeA | | / | |o o  et soit (Bj)jej  une parti­
tion finie du disque {t G K ; \t\ < r} par des ensembles dont le diamètre est <  e ; 
prenons un point a9  dans chacun de ces ensembles B j . Soit f  G A, le diamètre 
de f ( I \ )  étant <  e, il existe j \  G J  tel que f ( I \ )  C B f(a,jx;2e), c ’est-à-dire 
\\f -  ^jxt Ix\\ioo(Ix) < 2 e, d’où

11/ X ^ ^ a^ /aII00 —
A

Ceci montre que l’ensemble fini des boules fermées de rayon 2e de centre 
h  € «A est un recouvrement de A , ce qui prouve que A est pré­

compact. Q.E.D.
Étudions ensuite la topologie affaiblie des espaces ZP(J; K) et examinons d’a­

bord ce que sont les suites faiblement convergentes dans ces espaces.
Rappelons que pi : Zp(7; K) -» K désigne la forme linéaire et continue 

x = (x^  i-> Lorsque 1 < p < oo, on peut apporter la précision suivante 
au théorème 3.24.5.
Proposition 3.24.13 Soient 1 <  p < oo, q l'indice conjugué de p,
V =  (Vi)iei € lq(I\ K) et T  la forme linéaire et continue sur ZP(/;K) associée
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à y, c’est-à-dire Tx = xiVi- Alors, la famille (ViPi)içi est sommable et de 
somme T  dans l ’espace (Zp( J; K))'.
Preuve Soit J  une partie finie de I, on a alors

i € J  i £ j

< (EM'r(£w*r
%£J i  '

Mp (E n 9)1
■i£«/
1/9

i£j
et ceci prouve que WYliejViPiW ^  ( E îg j \Vi\q)l/q  ̂ Étant donné e > 0, on 
peut trouver une partie finie J 0 de I  tel que ( E îgj \yi\9) ^ q <  £ pour tout 
J  C I  -  Jo- H en résulte que || E i e j  ViPiW <  e Pour toute partie finie J  C I  -  Jo> 
ce qui signifie que la famille (piPi) vérifie le critère de Cauchy dans l’espace de 
Banach (lp(I;K))' ; cette famille est donc sommable dans cet espace. Notons S  
sa somme ; pour tout x  G lp, l’application x' x*{x) étant une forme linéaire 
continue sur (lp) \  la famille (XiPi) est sommable et de somme Sx , d’où S = T.

Q.E.D.
Corollaire 3.24.14 Soit 1 <  p < oo, l'ensemble des formes linéaires (Pi)içi est 
un ensemble total dans (lp(I; K))'.
Note On observera que ce corollaire est faux lorsque p = 1 et I  infini dénombrable, 
l’espace Z°°(J; K) n’étant pas séparable (proposition 3.24.7).

Vu la proposition 3.16.11, on en déduit la 
Proposition3.24.15 Une suite bornée (xn) de l'espace lp(I;K), 1 < p < oo, 
converge faiblement vers x si, et seulement si, en posant xn =  (xn^)iç.i et 
^  = (xi)> la suite (x Uti ) converge vers Xi pour tout i G / .

Corollaire 3.24.16 Soient 1 < p < oo et I  un ensemble dénombrable, alors sur 
toute partie bornée de lp(I; K), la topologie affaiblie coïncide avec la topologie 
de la convergence simple.
Preuve Soit B  une partie bornée de lp ; d’après la proposition 3.17.6, le théorème
3.24.5 et la proposition 3.24.7, la topologie affaiblie induit sur B  une topologie 
métrisable. Quant à la topologie de la convergence simple sur J; K), elle est mé- 
trisable d’après le corollaire 2.22.3. La proposition précédente permet de conclure.

Q.E.D.

Exercice 3.24.7 Soit (æn). xn = (xnti)iei> une suite de l ’espace 1 < p < oo, si la
suite (xn) converge faiblement vers x et si la suite (||xn ||p) converge vers ||æ||p, montrer que la suite 
(xn) converge fortement vers x [noter que pour toute partie finie J  de I, la suite (E ie i - j  |^n,z|p) 
converge vers "fZiei-J

Comme cela a été indiqué ci-dessus, les mêmes raisonnements ne peuvent pas 
être faits pour l’espace Z1 et on a le théorème suivant.
Théorème 3.24.17 Une suite de Z1(7; K) converge faiblement vers x si, et seule­
ment si, elle converge fortement vers x.
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Ce résultat est évidemment très surprenant ; on se gardera bien de croire que la to­
pologie affaiblie coïncide avec la topologie initiale. On peut en effet démontrer que 
sur un espace normé de dimension infinie la topologie affaiblie est non métrisable 
(exercice 3.15.2), donc strictement moins fine que la topologie initiale.

La démonstration de ce théorème est difficile ; bien entendu, on peut supposer 
x = 0. Le théorème résulte du

Lemme 3.24.18 Soit (xn) une suite de Z1 (J; K) qui converge faiblement vers 0, 
alors
(3.24.19) f (Ve > 0)(3J G £F(/))(3n0 G N)

\  (Vn G N)(n >  n 0 => È i €/ - J  læ».<l ^  e)
Indiquons de suite comment on en déduit le théorème. 

Preuve du théorème 3.24.17 Grâce au lemme, on a

IMIi < |̂xn>i| + epourn>n0
i€J

et la suite (xn) convergeant faiblement vers 0, la suite (xn>i) converge vers 0 pour 
tout i ; J  étant fini, la suite \xnA) converge donc vers 0 et ceci montre que
ll^nlli <  2e pour n suffisamment grand, ce qui permet de conclure. Q.E.D. 
Preuve du lemme 3.24.18 On raisonne par l’absurde. On suppose donc que

(3.24.20) f (3e > 0)(VJ <E y(J))(Vm G N)
\  (3n G N)(n > m  et E ie /_ J lxn,i| ^  3e)-

et on va construire une sous-suite (xnfc ) et une suite ( 4 )  de parties finies de I  
disjointes deux à deux telles que pour tout k
(3.24.21) lxn .̂,i| > 2e,

(3.24.22) Y 2  \xnkii \ < £-
iei-ik

On effectue cette construction par récurrence. Dans (3.24.20), prenons 
J  =  0 et m = 0, il existe alors un entier no tel que \xnQyi\ >  3e ; xno 
appartenant à Z1, il existe une partie finie Io telle que Y^iei-i0 \xnoA <  d’où 
è ie /o  \Xn»A -  Les propriétés (3.24.21) et (3.24.22) sont alors bien vé­
rifiées pour k = 0. Supposons ces propriétés vérifiées lorsque 0 < l < k. 
Posons Jk = U/=o h  » Jk étant fini, ^2i€Jk \xn,i\ tend vers 0 quand n tend 
vers l’infini ; il existe donc nh tel que Y ^ i e j k Ix n ti \  < £/2 pour n  >  n*.. Dans 
(3.24.20), prenons J = Jk et m = max(nfc, n'k) ; il existe un entier rik+i > m  tel 
que Y^iei-Jk \xnk+iA > 3e et, x n k + 1  appartenant à Z1, une partie finie 
4 + 1  C I  -  4  telle que E i6/_  j„ulk + 1  l*»*+i.<l ^  £/ 2- d’où

l*nfc+1,i| <  £ et \xnk+ui\ > & -  e/ 2  > 2 e,
i€l — Ik+1 i€lk+i

ce qui achève la construction.
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On définit alors un point y =  (y*) de l’espace Z°°(J; K) comme suit : y* =  0 si 
i&\JkIk  et pour i e h  on choisit y* de module 1 tel que xnfcti yi = \xnkyi\. Il en 
résulte que

I )  ' xrik,iyi\ — ^  1 ^   ̂ ^  £•
i€/ i€h iel-Ik

Ceci montre que la sous-suite (xnk) ne converge pas faiblement vers 0, ce qui est 
contradictoire avec l’hypothèse initiale. Q.E.D.
Note La méthode utilisée dans cette démonstration est appelée la méthode de la 
bosse glissante.

Corollaire 3.24.19 Soit A une partie de Z1(/;K ), les propriétés suivantes sont 
équivalentes.

1. A est relativement compact.
2. A est faiblement relativement compact.
3. A est faiblement séquentiellement compact.

Preuve 1 => 2 vaut pour tout espace e.l.c. séparé. 2 => 3 d’après le théorème 
d’Eberlein 3.17.12 et 3 => 1 d’après le théorème que nous venons de démontrer.

Q.E.D.
Comme nous le savions déjà, ceci implique que l1 n’est pas réflexif si I  est 

infini : en effet, si l’espace £*(/; K) est réflexif, tout borné est faiblement séquen­
tiellement compact (théorème 3.17.11), donc relativement compact d’après le co­
rollaire précédent et l’espace doit être de dimension finie (théorème 3.7.4), donc I  
doit être fini.
Exercice 3.24.8 Soient I un ensemble, (aij)(zj)e/x / une famille double de scalaires telle que

y :  \üij\ <  oo pour tout i e  I. 
j € l

Étant donné une famille (yi)iei de scalaires, montrer que le système d'équations

(3 .24 .23) 'y ^o,jjXj =  y i y i E / ,
i€/

admet une solution x =  (xj ) j^i  e  K) telle que ||æ||oo <  c si, et seulement si,

i € J
y !  — c

j e l  i € J

pour toute partie finie J de I  et tout Xi e K [utiliser l'exercice 3.13.3].

Exercice 3.24.9 Soient E un espace de Banach, I  un ensemble non vide, 0 < p <  1, si 
x =  (Xi)içj est une famille d’éléments de E, on pose

*(iC) =  ll^ill** e [°, +oo).
*6/

1. Montrer que, pour tout x = (xi)içit y =  (yz)zçj et À € K

t(Xx) =  |X\pt(x) en convenant que 0 x oo =  0, t{x +  y) < t(x) +  t(y).
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2. On pose
lp =  <p( / ;  B) =  {x =  ; t(x)  <  oo}.

Montrer que lp est un sous-espace vectoriel de l ’espace vectoriel fS(I\ E).
3. On pose c/(x, y) =  t(x — y ), montrer que cl est une distance sur lp et que muni de la topologie 

associée à cette distance lp est un e.v.t.
4. Montrer que l’espace lp est complet.
5. Soit 0 <  p < q <  oo, montrer que lp C lq avec une injection canonique continue. Lorsque I  

est infini et E  ^  {0 } , montrer que la topologie de l ’espace lp est strictement plus fine que la topologie 
induite par celle de lq et que les inclusions

( J  l* C lp c  f )  lq
0<q<P Q>P

sont strictes [utiliser des séries de terme général na (log ri)P].
6. Soit 0 <  p  <  1, montrer que, pour toute forme linéaire continue T  sur lp(I\ E ), il existe un 

unique élément y  =  (yi ) ie i  €  / ° ° ( / ;  E1) tel que

Tx  =  <  yiyXi >  pour tout a; =  (£«)«€/ E lp(I\E).
i € l

Montrer que l’application T  t-* y  est une bijection linéaire de (lp(I\ E))'  sur Z°°(/; E')  [reprendre la 

démonstration du théorème 3.24.5].

Exercice 3.24.10 Suite à décroissance rapide Six = (æn )n > i  est une suite de K  et k un entier 
>  0, on pose

||æ||fc =  sup  |n fcx „ | €  (0, +oo]
n > l

et on dit que la suite x est à décroissance rapide si \\x\\k est fini pour tout k. On note s l ’ensemble des 
suites à décroissance rapide.

1. Montrer que s est un sous-espace vectoriel de l’espace vectoriel et que (IM U) est
une famille de semi-normes sur s qui définit une structure d’espace de Fréchet.

On dit qu’une suite y =  (yn )n> 1 de K est à croissance lente si

(3fc €  N )(3 c  >  0)(V n >  l ) ( |y n | <  cn k).

On note om l ’espace vectoriel de toutes les suites à croissance lente.
2. Soient x e  s et y  e  o m * montrer que la série xnyn est absolument convergente, que

l’application
oo

Ty : x  H* xy =  ^  xnyn
n = 1

est une forme linéaire continue sur s et que l’application linéaire y  i-> Ty de om dans s/ est injective.
3. On pose ep =  (tf£)n > ! E s où <5.£ =  0 si p  ^  n  et ô% =  1. Si x appartient à s, montrer que la 

suite (a:n en ) est sommable de somme x. En déduire que, pour toute forme linéaire continue T  E s', 

il existe un unique y  E om tel que T  — Ty \ l’application y  »-> Ty est donc une bijection linéaire de 

om surs'.

Exercice 3.24.11 Déterminer les points extrémaux (exercice 3.14.10) de la boule unité de l’espace 

J1 (J; K).
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3.25 Le théorème de Stone-Weierstrass
Étant donné un espace compact X , on considère l’algèbre de Banach GU(X;K) 
des fonctions continues sur X  pour la norme de la topologie de la convergence 
uniforme. Une sous-algèbre A  de cette algèbre est un sous-espace vectoriel tel 
que le produit de deux fonctions de A  appartienne encore à A. Le théorème de 
Stone-Weierstrass caractérise les sous-algèbres partout denses. Supposons d’abord 
K = R, on a alors le

Théorème 3.25.1 Théorème de Stone-Weierstrass réel Soit X  un espace com­
pact, une sous-algèbre A de QU(X]R) est partout dense si, et seulement si, les 
propriétés suivantes sont vérifiées
(3.25.1) pour tout a € X y il existe f  G A tel que f(a) ^  0.
(3.25.2) pour tout a, b e X, a ^ 6, il existe f  e A tel que f(a) ^ /(£>).

On observera que (3.25.1) est vérifié dès que A  contient les fonctions constantes. 
Lorsque (3.25.2) est vérifié, on dit que A  sépare les points de X.

Pour démontrer ce théorème, nous utiliserons les lemmes suivants.

Lemme 3.25.2 II existe une suite (Pn) de fonctions polynômes d'une variable 
réelle t qui converge uniformément sur [-1,1] vers la fonction \t\.
Preuve On définit la suite (Pn) par récurrence en posant Po = 0 et

Pn+l{t) = Pn{t) + \ { t 2 -P l{t ) ) .

Montrons par récurrence que cette suite (Pn) est croissante et que 
0 < Pn{t) <  |t|. On suppose 0 < Pn(t) <  |t|, alors

|t| -  Pn+1 (t) =  (|t| -  Pn(t))( 1 -  i ( | t |  +  Pn(t)))

où 0 <  1 -  \t\ < 1 -  ±(|i| +Pn(t)) < 1, d’où 0 < |t| -  Pn+1 (t) < \t\ -  Pn(t), ce 
qui prouve le résultat annoncé. La suite (P„) converge simplement vers une limite
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/  et en passant à la limite dans la relation de récurrence, on obtient

c’est-à-dire f(t) = |t|. On remarque enfin que la convergence est uniforme d’après 
le théorème de Dini 2.31.15. Q.E.D.

Lemme 3.25.3 Soit A  une sous-algèbre fermée de GU(X;R) et soit f ,g  G A, 
alors m ax(/, g) £ A  et m in( / ,  g) G A.
Preuve Étant donné que

m ax(/, g) =  ( /  +  g) / 2  + \ f -  g\/2 , m in(/, g) =  ( /  +  g) / 2  -  | /  -  g\/2 ,
A  étant un sous-espace vectoriel de e u(X; R), il suffit de vérifier que | / |  G A  dès 
que /  G A. Bien entendu, on peut supposer /  ^  0. D’après le lemme précédent, 
pour tout e  > 0, il existe un polynôme P  tel que

|P(t) — |t|| <  e  pour tout t G [—1,1],
d’où |P(0)| < e et |Q(t) -  \t\\ <  2e en posant Q(t) =  P(t) — P(0). Notons ||«|| 
la norme de la topologie de la convergence uniforme et posons g = f/\\f\\ ; la 
fonction Q o g appartient à A  car Q(0) =  0 et \\Q o g — \g\ || <  2e ; ceci prouve 
que la fonction \g\, donc | / | ,  appartient à A  = A. Q.E.D.

Lemme 3.25.4 Supposons vérifiées les propriétés (3.25.1) et (3.25.2), alors pour 
toute fonction f  G CW(X; R) et tout a, b G X, il existe une fonction f a^  G A telle 
que f a,bip) =  /(a )  et /a,&(6) =  f(b ) .
Preuve Lorsque a =  6, il existe d’après (3.25.1) une fonction u G A  telle que 
u(a) ^  0 ; la fonction / a>a =  f(a)u/u(a) possède les propriétés voulues.

Lorsque a ^  6, montrons d’abord qu’on peut trouver une fonction u £ A  telle 
que
(3.25.3) u(a)u(b)(u(a) — u(b)) ±  0.
D’après (3.25.2), il existe une fonction v G A  telle que v(a) ^  v(b) ; si v(a) et 
v(b) sont tous deux non nuis, on peut prendre u =  v. Sinon, on a par exemple 
v(a) = 0 et v(b) ^  0 ; alors d’après (3.25.1), il existe une fonction w  G A  telle 
que w(a) ^  0 ; pour e  ±  0 suffisamment petit, la fonction u =  v +  e w  vérifie 
alors (3.25.3). On cherche alors la fonction / a>& de la forme ru +  su2 où r, s G R, 
u vérifiant (3.25.3). Il s’agit de satisfaire à

f(a) = ru(a) +  su2 (a) et f(b) = ru(b) + su2 (b)
et ce système linéaire par rapport aux inconnues r  et s est un système de Cramer 
d’après (3.25.3), ce qui démontre le lemme. Q.E.D.

Venons-en à la démonstration du théorème 3.25.1.
Preuve du théorème 3.25.1
1. Démontrons d’abord que les conditions sont suffisantes. Soient 

/  G GU(X;R),  pour tout e  > 0 nous allons construire une fonction g £ A  telle 
que | | /  -  g\\ < e  ; ceci prouvera bien que A  est partout dense.
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Étant donné un point a de X,  pour tout b € X  considérons l’ensemble
Ob = {x € X  ; f a,b(x ) > f ( x ) ~ £} !

cet ensemble Ob est ouvert et contient b. La famille (Ob)bçx est donc un recouvre­
ment ouvert de l’espace compact X  ; soitJO&Jie/ un sous-recouvrement fini. La 
fonction f a = maxi6/ f a,b, appartient à A  d’après le lemme 3.25.3 : en effet, I  est 
fini et A est une sous-algèbre fermée de Gu (X ; IR). On a en outre f a (x ) > / ( * ) - £  
pour tout x e X  et f a(a) = f(a).

Considérons ensuite l’ensemble Ofa =  {x e X  ; f a(x) < f(x)  +  e} ; cet 
ensemble est ouvert et contient a. La famille (0'a)aex  est donc un recouvre­
ment ouvert de l’espace compact X  ; soit (0'a.)jeJ un sous-recouvrement fini. 
La fonction g = m i n j  f aj appartient à A  d’après le lemme 3.25.3 et on a 
f (x) -  € < g(x) < f(x)  +  € pour tout x G X,  ce qui prouve le résultat voulu.

2. Montrons ensuite que les conditions sont nécessaires. On suppose la sous- 
algèbre A  partout dense. Soit u la fonction constante et égale à 1 ; toute fonction 
de A  suffisamment voisine de u ne s’annule pas, ce qui prouve (3.25.1). D’autre 
part, si a et b sont deux points distincts de X , tout espace compact étant normal, 
il existe d’après le théorème d’Urysohn 2.36.1 une fonction continue u : X  —>> R 
telle que u(a) = 0 et u(b) =  1 ; toute fonction de A  suffisamment voisine de u 
possède la propriété 3.25.2. Q.E.D.

Pour des fonctions à valeurs complexes, le théorème de Stone-Weierstrass 
s’énonce de la façon suivante.
Théorème 3.25.5 Soit X  un espace compact, une sous-algèbre A de Qu (X  ; C) est 
partout dense si, et seulement si, les propriétés (3,25.1) et (3.25.2) sont vérifiées 
ainsi que
(3 25 4) {Pour toute fonction f  de A, la fonction conjuguée f  appartient

l à  lyadhérence de A.
Preuve 1. Montrons que les conditions sont suffisantes. Considérons l’adhérence 
A  de A  ; A  est une sous-algèbre de l’algèbre GU{X; C). L’application ip : f  f  
de CU(X ;C ) dans lui-même étant continue, ona p(A) C (p(A), d’où <p(A) C  A  
d’après (3.254) et ceci prouve que l’algèbre A  est stable par conjugaison. Il^en 
résulte que A  = *B +  où !B désigne l’ensemble des fonctions réelles de A. Il 
est clair que est une sous-algèbre réelle de l’algèbre QU(X;R).  Montrons que 
cette sous-algèbre est dense dans CW(X; R) ; il en résultera que A  est dense dans 
QU(X; C). Il s’agit de démontrer que $  vérifie les propriétés (3.25.1) et (3.25.2). 
Soit a G X,  il existe f  G A  tel que f(a)  ^  0, d’où 5fte f(a) ^  0 ou 5 m  f(a) ^  0 
et, vu que ces fonctions /  et 5 m  /  appartiennent à $ ,  ceci prouve que !B vérifie 
la propriété (3.25.1). Un raisonnement analogue montre que !B vérifie la propriété
(3.25.2).

2. La nécessité de (3.25.1) et (3.25.2) se vérifie comme dans le cas réel ; quant 
à la nécessité de (3.25.4), elle est évidente. Q.E.D.
Exercice 3.25.1 Soient X , Y des espaces compacts, montrer que l ’espace vectoriel 
C(X;K) <g> e (y ;K ) des fonctions de la forme Y ï i q i  u i ( x ) v i ( v )  où 1 est un ensemble fini,
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Ui G e (X ;  K) et Vi G C(Y; K), est dense dans e w( I x y ; K ) .

Exercice 3.25,2 Soit X  un espace compact, cet exercice a pour objet de démontrer que l ’espace de 
Banach QU(X\ K) est séparable si, et seulement si, X  est métrisable.

1. Pour prouver que la condition est suffisante, si (Bn) est une base dénombrable de la topologie 
de X , utiliser les fonctions x d(x, X  — Bn) et le théorème de Stone-Weierstrass.

2. Pour la condition nécessaire, si ( / n ) est une suite dense dans la boule unité de ÇU(X\K), 
montrer que l’application

<p : x € X  t-t ( / „ ( * ) )  € Dn,
où D = {t G K ; \t\ < 1}, est une injection continue en utilisant le théorème 2.36.1.

Exercice 3.25.3 Soit X  un espace localement compact dénombrable à l’infini (exercice 2.35.10) et 
métrisable, montrer que l’espace de Fréchet (propositions 3.9.8 et 3.9.9) Cc (X ; R) est séparable en 
raisonnant de la façon suivante.

Il existe (exercice 2.35.10) une suite (On) d’ouverts relativement compacts telle que On C On+i 
et X  =  U.~=o On . puis, pour tout entier n , une suite (/nm)m€N dense dans (^ (O njR ) (exercice 
3.25.2), prolonger ces fonctions à X  en utilisant l ’exercice 2.36.5 et vérifier que l ’ensemble de toutes 

les fonctions ainsi obtenues est dense dans ec(X; IR).

Exercice 3.25.4 1. Soient X  un espace compact, a G X , A une sous-algèbre de l’algèbre Ca (X )  
des fonctions continues de X  dans R s ’annulant au point a munie de la norme de la topologie de la 
convergence uniforme telle que

Vx, y  G X , x ^  y y 3 f  G A  tel que f(x)  ^  f(y) .

Montrer alors que A  est dense dans 6a(X)  [on pourra introduire la sous-algèbre engendrée par A  et 
les fonctions constantes].

2. On note eoo([0, oo[) l’algèbre des fonctions continues /  : [0, oo[ —> R telles que

(lhn /(t) = °

que l ’on munit de la norme de la topologie de la convergence uniforme. Montrer que l ’espace vectoriel 
engendrée par les fonctions 1 1-> e~nt où n  décrit N* est dense dans Coo([0, oo[).

3.26 Les théorèmes d’approximation de Weierstrass
Les théorèmes d’approximation polynomiale et trigonométrique se déduisent aisé­
ment du théorème de Stone-Weierstrass de la façon suivante.

Soit X  un espace compact et soit S  une partie de l’algèbre GU(X\K)  séparant 
les points de X  et stable par conjugaison. Considérons la sous-algèbre A s  engen­
drée par S  et les fonctions constantes, c’est-à-dire l’ensemble des fonctions qui 
s’écrivent comme des polynômes à coefficients dans K par rapport aux fonctions 
de S. Le théorème de Stone-Weierstrass montre que A s  est dense dans CU(X; K).

En prenant pour X  une partie compacte de Rn et pour S  l’ensemble des pro­
jections pri : x h* Xi, on obtient le
Théorème 3.26.1 Théorème d ’approximation polynomiale de Weierstrass Soit 
X  une partie compacte de Rn, l'algèbre des restrictions à X  des fonctions poly­
nômes à coefficients dans K est dense dans GU( X ; K).
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Autrement dit, l’ensemble des fonctions (x“ )aeN» où
Xa = i " 1 X ... x a£“ , x  = ( x i , . . . , x n), a  = ( a i , . . .  , a n), 

est total dans l’algèbre £U(X;K) des fonctions continues. Cette algèbre est donc 
séparable.

Voici une autre application du procédé décrit ci-dessus. Considérons le cercle 
unité S1 =  {(x, y) G R2  ; x2 +  y 2 = 1} et l’algèbre de Banach £u(S1; C) ; notons 
ip l’application identique de S1, alors l’ensemble S = {p,Tp} sépare les points de 
S1 et est stable par conjugaison ; il en résulte que l’algèbre des polynômes en 2  

et ~z est dense dans CU(S1 ;C). Le langage des fonctions périodiques permet de 
transcrire ce résultat sous une forme qui sera utile dans l’étude des séries trigono- 
métriques. Considérons l’algèbre 6 2  ̂(R;C) des fonctions continues /  : R —> C 
périodiques et de période 2 tt ; cette algèbre est une sous-algèbre fermée de l’al­
gèbre de Banach e&(R, C) et c’est donc une algèbre de Banach pour la norme
(3.26.1) ll/ll =  sup | / ( f) |  =  sup \f(t)\, a G R.

t £  IR a < t < a + 27r

Considérons alors l’application /  1-^ /  de CU(S1;C) dans G27r(R;C) définie par 
f(t)  =  f (eu ). Cette application est une isométrie linéaire respectant les structures 
d’algèbre ; étant donné que ip(t) = ext et Tp(t) = e~%t, on en déduit le 
Théorème 3.26.2 Théorème d’approximation trigonométrique de Weierstrass
Dans l'algèbre de Banach 6 2 ^ (R; C), l'algèbre des polynômes trigonométriques, 
c'est-à-dire l'ensemble des fonctions

n
(3.26.2) cpeipt, où n G N, cp G C,

p=—n
est partout dense.
Autrement dit, la famille de fonctions (exnt)nez est totale dans l’algèbre e 27r (M; C). 
Remarque 3.26.1 Si on souhaite travailler uniquement avec des fonctions à va­
leurs réelles, on constate que, dans l’algèbre £2 *(R; R), la sous-algèbre des poly­
nômes trigonométriques, c’est-à-dire l’ensemble des fonctions

n
üpCospt +  bpsinpt) où n G N et ap, bp G R,

p = 0

est partout dense.
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3.27 Espaces préhilbertiens
Définition 3.27.1 Soit E  un espace vectoriel sur K  (=  M ou C), une application 
B  : E  x E —> K est appelée une forme sesquilinéaire si, pour tout x, y, x\, X2 , 
Vif y2 de E et tout \ \ ,  À2 de K
(3.27.1) B( A1X1 +  A 2 X2 , y) = \ iB (x i , y )  + A 2 B(x 2 ,y),
(3.27.2) B(x,  Aij/i +  \ 2 y2) =  AiB(x,yi)  +  X2 B(x,y2).
On dit que B est une forme hermitienne si on a de plus, pour tout x, y de E,
(3.27.3) B ( x , y ) = B f a x ) .
La propriété (3.27.1) signifie que l’application £ (• , y) est, pour tout y , une forme 
linéaire sur E  ; on exprime la propriété (3.27.2) en disant que l’application B(x> •) 
est, pour tout x, semi-linéaire. Lorsque K = R, une forme sesquilinéaire est sim­
plement une forme bilinéaire ; une forme hermitienne est simplement une forme 
bilinéaire symétrique.

La propriété (3.27.3) montre que Æ(x, x) est réel pour tout x ; autrement dit, 
une forme hermitienne est réelle sur la diagonale de E. Lorsque K  =  C, cette 
propriété caractérise les formes hermitiennes.
Proposition 3.27.1 Soit E un espace vectoriel complexe, alors toute forme ses­
quilinéaire réelle sur la diagonale de E est hermitienne.
Preuve On a B(x +  y ,x  +  y) = B(x,x)  +  B(x,y)  +  B(yyx) +  B(y,y)  ; 
il en résulte que a =  B(x>y) +  B(y,x)  est réel et, en remplaçant x par ix , 
b = i(B(x , y) — B(yy x)) est également réel. On en déduit que 

B(xyy) = ( a - i b ) / 2 e t £ ( y , x )  =  (a + ib) / 2
et ceci montre que B(xyy) et B(yyx) sont des nombres complexes conjugués.

Q.E.D.
Définition 3.27.2 Une forme hermitienne B  : E  x E K est dite positive si 
B(xy x) >  0 pour tout x G E et elle est dite définie positive ou positive non 
dégénérée si B(xy x) >  0 pour tout x  E E — {0}.
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Proposition 3.27.2 Soit B une forme hermitienne positive, alors pour tout 
x ,y  G E, on a l'inégalité de Cauchy-Schwarz
(3.27.4) \B(x,y ) \ 2 < B(x,x)B(y,y),  
et l'inégalité de Minkowski
(3.27.5) B(x + y ,x  + y ) 1 / 2  < B(x ,x ) 1 / 2  + B(y,y)1/2.
Preuve La forme B  étant sesquilinéaire, on a

B(x  +  A  y,x + A  y) =  B(x, x) + XB(y, x) +  XB(x, y) + | A| 2 B(y, y) 
et B  étant hermitienne

B(x  +  Xyy x +  Aî/) =  £(:r, z) +  2 5Re (A£(x, ?/)) +  |A|2Æ(y, 2/).
Prenons A =  aB(x) y) avec a  réel, alors

B(x  +  A y,x + A y) =  £ ( x ,x )  +  2 a |B (x ,y ) |2 +  a 2 \B(x,y)\2 B(y,y) 
et ce trinôme en a  étant positif quel que soit a , nécessairement 

\B(x,y ) \ 4  -  \B(x,y)\2 B(x,x)B(y,y)  < 0, 
ce qui prouve l’inégalité de Cauchy-Schwarz.

Quant à l’inégalité de Minkowski, on a
B(x + y,x + y) = B(x> x) +  29fte B(x, y) 4- B(y , y) 

et 3leB(x,y) < \B(x,y)\ < B(x,x) l^2 B(y,y ) 1 ^ 2  d’après Cauchy-Schwarz, 
d’où

B(x  +  y, x +  y) < B(x,x)  +  2 B(x,x) l/ 2 B(y,y ) l / 2  +  B(y,y), 
ce qui prouve l’inégalité voulue. Q.E.D.

Un espace vectoriel E  muni d’une forme hermitienne B  définie positive est 
appelé un espace préhilbertien. La forme hermitienne sera notée (•!•) et est appelée 
un produit scalaire sur E. Sur un espace préhilbertien, on peut définir une structure 
d’espace normé ; l’application
(3.27.6) x  ^  ||x|| = ( x | x ) 1/2
est en effet une norme sur E  : l’inégalité triangulaire (Ni) est simplement l’in­
égalité de Minkowski, (N2 ) résulte du caractère sesquilinéaire du produit scalaire 
et (N3 ) est vérifié car la forme hermitienne (*|.) est définie positive. Un espace 
préhilbertien sera toujours muni de cette structure d’espace normé. On peut alors 
donner la définition suivante.
Définition 3.27.3 Un espace préhilbertien complet est appelé un espace de Hil­
bert.

Un espace de Hilbert est donc un espace de Banach.
D’après la définition de la norme d’un espace préhilbertien, l’inégalité de Cauchy- 
Schwarz s’écrit
(3.27.7) Nv)l<INIIIvll-
Cette inégalité prouve la continuité du produit scalaire sur E  x E  : le théorème
3.10.3 concernant la continuité des applications multilinéaires subsiste évidem­
ment pour des applications sesquilinéaires. Il en résulte que les applications
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x  »-> (x\y) et y i-> (x\y) sont des formes linéaires et semi-linéaires continues 
sur F . Comme nous le montrerons ultérieurement ces formes linéaires permettent 
de donner une description complète du dual d’un espace de Hilbert.

Remarque 3.27.1 Isomorphisme d ’espaces préhilbertiens Soient E  et F  deux 
espaces préhilbertiens sur le même corps K  ; notons (•!•)£ et (.|.)p les produits 
scalaires sur E  et F . Une bijection linéaire T  : E  -* F  est appelée un isomor­
phisme d’espaces préhilbertiens si T  préserve le produit scalaire, c’est-à-dire si 
( T x \ T îj) f  =  (x\y) e  pour tout x, y de E  ; on dit alors que E  et F  sont isomorphes 
en tant qu’espaces préhilbertiens. La définition (3.27.6) de la norme associée à un 
produit scalaire montre qu’une telle application T  est une isométrie, donc un iso­
morphisme d’e.v.t. Inversement, remarquons qu’une application qui préserve la 
norme préserve le produit scalaire : on a en effet, si K = C

Exercice 3 .2 7 .1  Soient E , F  des espaces préhilbertiens réels et / : £ ? —> F  une application telle 

que /(O ) =  0 et ||/(æ ) -  f{y)\\ =  ||æ -  y  || pour tout x , y  E E.  Montrer que /  est linéaire [noter que 

/  préserve le produit scalaire, puis calculer ||/(æ  +  y) -  f (x)  -  f ( y ) ||2 et ||/(À :r) -  A /(æ )||2].

Remarque 3.27.2 Sous-espace Soit F  un sous-espace vectoriel d’un espace pré­
hilbertien E  ; la restriction à F  x F  du produit scalaire sur E  est évidemment un 
produit scalaire sur F  qui se trouve donc muni d’une structure préhilbertienne : 
on dit que F  est un sous-espace préhilbertien de E. Il est clair que la norme asso­
ciée à ce produit scalaire est la restriction à F  de la norme de E : F  est donc un 
sous-espace normé de E. Il en résulte que tout sous-espace complet d’un espace 
préhilbertien, ainsi que tout sous-espace fermé d’un espace de Hilbert, est muni 
d’une structure d’espace de Hilbert.

Remarque 3.27.3 Complété d’un espace préhilbertien Soient E  un espace pré­
hilbertien et E  le complété de E  (remarque 3.16.2). Notons B  le produit scalaire 
de E  ; pour tout y de F , la forme linéaire et continue x B(x,y) se prolonge 
en une forme linéaire et continue sur E  que nous noterons x B'(x,y). Le 
principe du prolongement des identités montre que, pour tout x G F , l’applica­
tion y h-» B'(x,y) est une forme semi-linéaire sur F  et, d’après le principe du 
prolongement des inégalités, |F /(x, î/)| <  ||x ||^  \\y\\E  pour tout x G F  et tout 
y G E. Ceci montre que la forme semi-linéaire y ^  F '(x , y) est continue ; elle se 
prolonge donc à F  en une forme semi-linéaire que nous noterons y h-> F " ( x , y). 
Le principe du prolongement des identités montre que B" est une forme hermi­
tienne sur F  et que B "(x , x) =  \\x\\2̂ ; il en résulte que B" est un produit scalaire
sur F  et que ||*||^ est une norme d’espace de Hilbert. Le complété d’un espace 
préhilbertien est donc un espace de Hilbert.

(x +  y\x +  y) -  ( x - y \ x - y )

+i(x +  iy\x +  iy) -  i(x -  iy\x -  iy)
et, si K = R, 
(3.27.9) 2 (x|y) = (x +  y\x + y )~  (x|x) -  (y\y).
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Remarque 3.27.4 Produit fini d ’espaces préhilbertiens Soit (Ei) ieI une fa­
mille finie d’espaces préhilbertiens ; notons indifféremment (*|.) et ||«|| les pro­
duits scalaires et normes sur ces espaces. La topologie produit sur E  =  ]JieI Ei 
peut être définie par la norme ||x|| =  (X)iei IW I2 ) 1^2 où x — (Xi)iei ; cette 
norme est en fait associée au produit scalaire (x\y) =  Yliei(x i\yi)> V =  
ce qui confère à E  une structure préhilbertienne. En outre, si tous les espaces Ei 
sont des espaces de Hilbert, E  est un espace de Hilbert.

Remarque 3.27.5 Identité du parallélogramme La norme d’un espace préhil­
bertien vérifie une identité remarquable, dite identité du parallélogramme

qui résulte de l’identité (x  ±  y\x ± y) = (x\x) +  (y\y) ±  2$te(x\y). On peut 
démontrer (exercice 3.27.2) que cette identité caractérise les normes associées à 
un produit scalaire. On observera que, d’après les formules (3.27.8) et (3.27.9), si 
une norme provient d’un produit scalaire (on parle alors de norme hilbertienne), 
ce produit scalaire est déterminé de façon unique.

Exercice 3.27.2 Montrer que la norme d'un espace normé est associée à un produit scalaire si, et 
seulement si, elle vérifie l’identité du parallélogramme [lorsque K =  R, vérifier que (3.27.9) définit un 

produit scalaire ; traiter ensuite le cas complexe].

Exercice 3.27.3 Montrer qu’un espace préhilbertien est uniformément convexe (exercice 3.14.10). 
D ’après l ’exercice 3.16.4, tout espace de Hilbert est réflexif (corollaire 3.29.4).

L’existence d’un produit scalaire sur un espace vectoriel permet de définir une 
notion d’orthogonalité, notion sans équivalent en général dans un espace normé, 
et qui, comme nous le verrons, joue un rôle essentiel dans l’étude des espaces de 
Hilbert.
Définition 3.27.4 Dans un espace préhilbertien E , on dit que deux vecteurs x et 
y de E  sont orthogonaux si (x\y) = 0.
Cette relation est symétrique d’après (3.27.3) et on a le

Proposition 3.27.3 Théorème de Pythagore Soit (xi)i<i<n une famille finie de 
vecteurs orthogonaux deux à deux, alors

Preuve Lorsque n = 2, le théorème résulte de l’identité
(xi + x2\xi + x2) =  (xi\xi) +  (^2 ^ 2) +  2 SRe (xi\x2).

On raisonne ensuite par récurrence sur n en utilisant l’orthogonalité de xn et de 
x i résulte du caractère sesquilinéaire du produit scalaire. Q.E.D. 

Si M  est une partie non vide d’un espace préhilbertien E , on note M 1- l’en­
semble des vecteurs de E  orthogonaux à tout vecteur de M , soit

M l = {x e E; (x\y) =  0 pour tout y G M};

(3.27.10) H* +  y ||2 +  II* -  y \\2 = 2 ( | | * | | 2 +  ||j/||2)

n n
(3.27.11)
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s’appelle l’orthogonal de M .  Si M  est réduit à un point a, on a simplement 
{a} -1 =  {x G E\ (x\a) = 0} ; autrement dit, {a}x est le noyau de la forme 
linéaire et continue x (x\a) ; c ’est donc un sous-espace fermé de E  : si a =  0, 
ce sous-espace est en fait E  lui-même et si a ^  0, ce sous-espace est un hyperplan 
fermé. Vu que M 1- =  PiyeAiiv}'1* ce Qui précède montre que M x est un sous- 
espace fermé de E  en tant qu’intersection de sous-espaces fermés.

La linéarité et la continuité de l’application x  «->• (x\y) montrent que l’ortho­
gonal de M  coïncide avec l’orthogonal du sous-espace fermé engendré par M .

Notons M ±A- le biorthogonal de M ,  c’est-à-dire l’orthogonal de M 1- ; tout 
vecteur de M  étant orthogonal à M L, on a évidemment M  C  M ± -L . L’égalité ne 
peut avoir lieu que si M  est un sous-espace fermé de E  ; nous verrons en fait que 
l’égalité a lieu dès que M  est un sous-espace complet de E .

Donnons deux exemples d’espaces de Hilbert, l’exemple le plus important dans 
la pratique, à savoir l’espace L2, fait appel à la théorie de l’intégration et sera étudié 
ultérieurement.
Exemple 3.27.1 Soit B  une forme sesquilinéaire sur un espace vectoriel E  de 
dimension finie ; soit (e*)i<*<n une base de E , on a alors

n n  n

B(x,y) = Y  B{euej )xiÿj si x = Y x*ei> V =  Y Vieu
i,j= 1 i=l i= 1

soit
n

(3.27.12) B(x,y) = Y  aijx iÿj> oùo*j =  B{eu ej).
i j = 1

A la forme sesquilinéaire B , on associe ainsi une matrice n x n  A = (a^) et, réci­
proquement, étant donné une telle matrice, la formule (3.27.12) définit une forme 
sesquilinéaire sur E. Si la forme B  est hermitienne, on dit que la matrice A est 
hermitienne : ceci signifie donc que a.^ =  âji pour tout i, j. Si B  est hermitienne 
positive (resp. définie positive), on dit que la matrice hermitienne A est positive 
(resp. définie positive) : ceci signifie que Y^ij=i CLijXiXj > 0  (resp. >  0 ) pour 
tout (Xi)i<i<n € K n — {0}. De plus, si la matrice hermitienne A  est positive, elle 
est définie positive si, et seulement si, dét A ±  0  : en effet, la forme hermitienne 
positive B  est dégénérée si, et seulement si, il existe x ^  0 tel que B(x,x) =  0, 
c’est-à-dire B(x, y) =  0 pour tout y G E  d’après l’inégalité (3.27.4) de Cauchy- 
Schwarz ; d’après (3.27.12), ceci signifie donc qu’il existe (Xi) G Kn -  {0} tel 
Que S IL i aijxi — 0 Pour 1 < j  < n, c’est-à-dire dét A — 0. La donnée d’une 
forme hermitienne définie positive définit alors une structure préhilbertienne sur 
E  et en fait une structure d’espace de Hilbert, un espace normé de dimension fi­
nie étant complet. On peut prendre par exemple pour matrice A la matrice unité, 
c’est-à-dire le produit scalaire Y%=i norme associée étant alors la norme
euclidienne ||æ|| =  (X^=i \xi\2)1/2-
Exemple 3.27.2 On considère l’espace Z2(/;K) des familles x =  (xi)i£i de K  
telles que la famille {\x-i\2 )i^j soit sommable. D’après la proposition 3.24.3, cet es-
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pace est un espace de Banach lorsqu’on le munit de la norme 
Iklk  =  Œ l i e i  \x i \2) ^ 2- Cet espace est en fait un espace de Hilbert, la norme 
||»||2 étant associée au produit scalaire

( x \ y )  =  o ù x  =  ( x i ) i € l , y  =  (y i ) i£ l;
i € l

on notera que la famille (x iÿ ^ ^ i  est bien sommable d’après l’inégalité de Cauchy- 
Schwarz (3.24.5).

3.28 Le théorème de projection
Soit A une partie non vide d’un espace métrique X  et soit x un point de X> rap­
pelons (remarque 2.33.1) que tout point xo G X  vérifiant d(x,xo) =  d(x, A) est 
appelé une projection de x  sur A ; nous avons montré (corollaire 3.16.19) que, 
dans un espace de Banach réflexif, tout point admet une projection sur une partie 
convexe fermée et non vide. Nous allons démontrer que ce résultat subsiste dans 
un espace de Hilbert ; ceci nous permettra de démontrer ultérieurement que tout 
espace de Hilbert est réflexif.

Voici d’abord un théorème d’unicité.
Proposition 3.28.1 Soit C une partie convexe non vide d'un espace préhilbertien 
E, si un point x G E admet une projection sur C, cette projection est unique. 
Preuve Posons d = d(x, C ) et considérons deux points xo et x\ de C tels que 
d = \\x — xo || =  ||x — xi ||. D’après l’identité du parallélogramme, on a

ll^o — £ i ||2 =  | | ( x - x 0 ) - ( x - x i ) | | 2

=  2 (\\x -  x0 ||2 +  ||x -  x i | |2) -  ||2 x -  (x0 +  x i) ||2,
d’où ||xo -  x i ||2 =  4c?2 -  4||x -  (xo +  x i ) /2 ||2 ; d’après la convexité de C, on a
(xo +  x i ) / 2  G C , d’où ||x -  (xo +  x \ ) / 2 \\ > d et par conséquent

||xo — rri ||2 < 4d2 — 4d2  =  0 ,
d’o ù x o = £ i .  Q.E.D.

L’hypothèse de convexité est évidemment essentielle ; il est également essen­
tiel de supposer E  muni d’une structure préhilbertienne comme le montre l’exemple 
suivant : prenons E = R2, C = [—1,1] x {0} et munissons E  de la norme 
||x|| =  m ax(|xi|, |x2 1) ; alors le point (0 , 1 ) est à la distance 1 de tout point de C. 

En ce qui concerne l’existence, on a le
Théorème 3.28.2 Soit C une partie convexe complète et non vide d'un espace 
préhilbertien E, alors tout point x de E admet une unique projection sur C. 
Preuve Soit (xn) une suite du convexe C telle que limn_>oo ||x — xn\\ =  d où 
d =  d(x,C). montrons que cette suite (xn ) est de Cauchy. D’après l’identité du 
parallélogramme, on a pour tout p, q G N

Il Xp ~  Xq 112 = 2(||x -  Xp||2 + ||x -  x j 2) -  ||2x -  (Xp + X q )\\2
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et, C étant convexe, le point (x p +  x q)/2  appartient à C, d’où
\\x -  (xp + x q)/2\\ > d 

d’après la définition de d ; il en résulte que
||xp -  x q \\2 < 2 (||x -  x v \\2 +  \\x -  xq\\2) -  4d2,

inégalité qui prouve que la suite (xn) est de Cauchy. Le convexe C étant complet, 
cette suite converge vers un point xo de C et on a évidemment d = \\x — xo||.

Q.E.D.
La notion de projection est une notion liée à la structure d’espace métrique qui 

dépend bien sûr du choix de la distance. Dans un espace préhilbertien, on peut en 
donner une caractérisation utilisant le produit scalaire, ce qui permettra de préciser 
le théorème 3.28.2 lorsque C est un sous-espace vectoriel.
Proposition 3.28.3 Soit C un convexe non vide d'un espace préhilbertien E  et 
soient x  un point de E, xo un point de C, alors les propriétés suivantes sont équi­
valentes.

1. Le point x admet une projection sur C et cette projection est le point xq.
2. 5ie (x -  xo\y -  xo) < 0 pour tout y G C. 

et, si C est un sous-espace vectoriel de E,
3. Le vecteur x  — xo est orthogonal à C.

Preuve 1 => 2 Notons l’identité
(3.28.1) ||x — y ||2 =  ||x - x 0 ||2 +  ||y -  x0 ||2 -  23îe(x -  x0\y -  x0);
si ||æ -  xo|| =  d(x,C ) 9 alors \\x -  xo|| <  ||æ -  y || pour tout y G C, d’où 
2SRe(x — xo\y — x q ) < ||y — Xo \ \ 2 et cette inégalité étant vérifiée pour tout y 
de C qui est convexe, on peut substituer à y le point (1  — t)xo +ty  avec 0 < t < 1, 
ce qui donne 2 t$ie (x -  xo\y -  xo) <  2̂||y — #o ||2 î en simplifiant par t et en 
faisant tendre t vers 0  on obtient l’inégalité voulue.

2 => 1 Si 2 est vérifié, l’identité (3.28.1) montre que \\x — xo|| <  lk  — y|| Pour 
tout y G C, ce qui prouve que x  admet une projection sur C, à savoir xo-

Il est évident que 3 => 2  ; vérifions que 2  => 3. Étant donné que C est un sous- 
espace vectoriel, tout point de C peut s’écrire y — xo où y G C et par conséquent 
Sfte (x -  xo\y) < 0 pour tout y G C. En remplaçant y par (x — xo\y)y, on obtient 
\(x — xo\y) \ 2  < 0, d’où (x — xo\ y) = 0 pour tout y G C e t ceci montre que x — xo 
est orthogonal à C. Q.E.D.
Note L’interprétation géométrique de la condition 2 est la suivante lorsque E  est 
un espace préhilbertien réel. Si a; et y sont deux vecteurs non nuis de E , on définit 
l’angle 6  G [0, n] de a; et y en posant

cos d = (x |ÿ )/||x || ||y||.
La condition 2. signifie alors que l’angle des vecteurs x  — xo et y -  xo est >  7t/2 .

Corollaire 3.28.4 Soit C un convexe non vide d'un espace préhilbertien E  tel que 
tout point x G E admette une projection sur C notée Pcx, alors l'application 
Pc : E  C est continue et || Pcx — Pcy\\ <  II# — y II pour tout x yy G E.
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Preuve On a x — y = Pcx -  PcU + zo ù z  = x — Pcx — (y — Pcy)> d’où 

\\x -  v \\2  =  Il Pcx -  P c y f  +  INI2 +  23îe (z\Pc x -  Pcy)
et (z\Pcx — Pcy) =  — {x — Pcx\Pcy — Pcx) — (y — Pc y\Pc x -  Pcy) a une 
partie réelle positive d’après la proposition précédente, ce qui prouve l’inégalité 
voulue et le corollaire. Q.E.D.

Lorsque F  est un sous-espace vectoriel de E, la projection Pfx  sur F  d’un 
point x  de E t si elle existe, est appelée la projection orthogonale de x sur F , le 
vecteur x — Pfx étant orthogonal à F. D’après le théorème 3.28.2, on a donc le
Théorème 3.28.5 Si F est un sous-espace vectoriel complet d'un espace préhil­
bertien E, tout point de E admet une projection orthogonale sur F.
On peut apporter des précisions importantes au théorème précédent. Nous suppo­
serons plus généralement que F  est un sous-espace vectoriel tel que tout point x  de 
E  admette une projection orthogonale Pfx  sur F  ; on définit ainsi une application 
P f  : E  ->* F  qu’on appelle le projecteur orthogonal de E  sur F. On a alors le
Théorème 3.28.6 Soit F un sous-espace vectoriel d'un espace préhilbertien E tel 
que le projecteur orthogonal Pf de E sur F existe.

1 . L'espace E est alors la somme directe topologique de F et F 1- ; l'appli­
cation Pf est le projecteur de E sur F associé à cette décomposition en somme 
directe ; cette application Pf est donc linéaire et continue de noyau F1- ; en outre, 
PF est de norme 1 si F ^  {0 } (si F  =  {0 }, Pp est l'application identiquement 
nulle).

2. Le projecteur orthogonal de E sur F 1- existe et est égal à Ie — Pf -
3. Enfin, F coïncide avec son biorthogonal, soit F — F ±J~.

Preuve 1. Montrons d’abord que F  et F 1- sont des supplémentaires algébriques. Il 
est clair que F  D F 1- =  {0}, le seul vecteur orthogonal à lui-même étant le vecteur 
nul. D’autre part, tout xde E  peut s’écrire

x = y + zo ù y  = Pfx G F  et 2  =  x -  Ppx G F L,
ce qui prouve le résultat voulu et le fait que Pp est le projecteur de E  sur F  asso­
cié à cette décomposition en cette somme directe. Ce projecteur Pp étant continu 
d’après le corollaire 3.28.4, cette somme directe est une somme directe topolo­
gique. Plus précisément, d’après le théorème de Pythagore, on a

||x ||2 =  \\PFx f  + ||x -  PFx II2,
d’où ||PFx|| <  ||x||, ce qui prouve que Pf est continu de norme < 1 , donc de 
norme 1 si F  ^  {0}, la restriction de P f  à F  étant l’application identique de F.

2. Il s’agit de vérifier que x -  (x -  PFx) est orthogonal à P x , ce qui est évident 
vu que PFx € F.

3. On sait déjà que F  C P x x . Soit x  € F x x , alors PFx  €  F  c  P x x , d’où
x  -  PFx  e  F xx  ; étant donné que ce vecteur x -  PFx appartient aussi à F x , il 
est nécessairement nul et il en résulte que x  =  PFx appartient à F , ce qui prouve 
l’inclusion F xx  c  F . Q.E.D.
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Remarque 3.28.1 Ces deux théorèmes prouvent que, dans un espace préhilber­
tien, tout sous-espace vectoriel complet admet un supplémentaire topologique. En 
particulier, dans un espace de Hilbert, tout sous-espace fermé admet un supplé­
mentaire topologique. Ce résultat peut être en défaut dans un espace de Banach.
Exercice 3.28.1 Soit E  un espace préhilbertien.

1. Soit F  un sous-espace vectoriel de E  tel que tout point de E  admette une projection sur F  ; si 
P  est le projecteur orthogonal de F  sur E , montrer que

(3.28.2) P 2 =  P  et {Px\y) =  (x \Py ) pour tout x , y  e  E.

2. Réciproquement, soit P : E —» E une application vérifiant (3.28.2), montrer que P est linéaire, 
que tout point de E admet une projection sur Im P et que P est le projecteur orthogonal de E sur Im P.
Exercice 3.28.2 Soient E un espace préhilbertien et P : E E une application linéaire continue 
telle que

P 2 =  P e t  ||P || <  1.

Montrer que P est le projecteur orthogonal de E sur Im P.
Exercice 3.28.3 Soient E un espace préhilbertien, I  un ensemble filtrant et (Ci)i^i une famille de 
parties de E non vides, convexes et complètes. On suppose l’application i C< décroissante.

1. Montrer que C =  PIîg /  ^  est une convexe complète de E.
2. Soit a e E, montrer que C est non vide si, et seulement si, supi e /  d(at Ci) <  oo et si C  est 

non vide, montrer que la suite généralisée (P ^ û,) converge vers Pc a [lorsque supi€ /  d(a} Ci) est 
fini, montrer que la suite généralisée ( P ^  a) est de Cauchy en utilisant l’identité du parallélogramme].

Exercice 3.28.4 Soient E un espace préhilbertien, C un convexe complet, non vide et borné et 
/  : C —> R une fonction convexe s.c.i. Montrer que /  est borné inférieurement et atteint sa borne 
inférieure sur un convexe complet et non vide de E sans utiliser le théorème 3.16.18, mais en raisonnant 
de la façon suivante : poser a =  in fc  /  C [—oo, +oo[ et, (an ) étant une suite de M strictement 
décroissante convergeant vers a, Cn = {x G C ; f(x) < an} ; utiliser alors l’exercice 3.28.3

Exercice 3.28.5 Déterminant de Gram Soient x i , . . . ,  xn n vecteurs d’un espace préhilbertien E , 
on pose gij = (xi\xj), 1 <  i, j  <  n, et G(xi , . . . ,  xn) =  dét gij (déterminant de Gram).

1. Montrer que la matrice (gij ) est hermitienne positive et qu’elle est définie positive si, et seule­
ment si, la famille (xi) est libre.

2. On note F le sous-espace vectoriel engendré par x \ , . . . ,  xn- Montrer que, pour tout x € Ey

G(x,x 1, . . .  yxn) = d(xy F)2 x G(xi , .. . >xn).
[on peut supposer la famille (x^ libre, on posera Ppx =  2Z?=i %̂xi et ° n montrera que 
(d(x} F)2, Ai , . . . ,  An ) est la solution d’un système de Cramer]

3. On définit le volume du parallélépipède

f nPn =  P(x 1 , . . . , Xn) =   ̂ ^   ̂XiXi ; 0 <  Xi <  1 
1

par récurrence sur n en posant

vol Pi =  ||a?i || et vol Pn+ i =  vol Pn x d(æn+ i,  Fn) 

où Fn est le sous-espace vectoriel engendré par x \ , . . . ,  xn. Montrer que

vol Pn =  G(xi , . . .  ,x n ) 1/2.

Voici quelques conséquences des théorèmes précédents.
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Corollaire 3.28.7 Dans un espace de Hilbert E, un sous-espace vectoriel F est 
partout dense si, et seulement si, son orthogonal est réduit à {0 }.
Preuve D’après les théorèmes 3.28.5 et 3.28.6, E  est la somme directe de F  et 
(F)-1- ; F  est donc dense dans E  si, et seulement si, (F)1- = {0} ; le corollaire en 
résulte vu que F 1- =  (F)-1. Q.E.D.

L’orthogonal d’une partie quelconque coïncidant avec l’orthogonal du sous- 
espace vectoriel engendré par cette partie, on en déduit le 
Corollaire 3.28.8 Dans un espace de Hilbert, une partie est totale si, et seulement 
si, son orthogonal est réduit à {0 }.
Corollaire 3.28.9 Soit F un sous-espace vectoriel complet d'un espace préhilber­
tien F, alors la norme sur l'espace quotient E /F  est une norme hilbertienne et 
cet espace quotient E /F  est un espace préhilbertien isomorphe à F ±.
Preuve Utilisons la proposition 3.6.12 ; si ir désigne la surjection canonique de 
E  sur E /F , l’application p = tt\f ± est un isomorphisme d’e.v.t. de F 1- sur 
E /F . Montrons que p est une isométrie. Soit £ G E /F , rappelons que 
IICII =  infse»- i(£) ||æ|| ; alors si x  G F^~, on a ||p(x)|| =  inf ||y|| où la borne 
inférieure est prise sur l’ensemble des y G E  vérifiant 7v(y) = p(x), c’est-à-dire 
y —x e F , soit y =  x+ xf avec x 1 G F  ; x  appartenant à F*~, cette borne inférieure 
est tout simplement égale à ||x|| et ceci prouve que ||p(x)|| =  ||z||. L’application p 
est donc une isométrie ; ceci prouve que la norme sur l’espace quotient E /F  est 
associée au produit scalaire (£\rj) =  {p~l (Q\p~1 {r})) î les espaces E /F  et F 1- 
sont alors isomorphes en tant qu’espaces préhibertiens. Q.E.D.

3.29 Représentation du dual
Soit E  un espace préhilbertien, pour tout y £ E, l’application x «->• (x\y) est une 
forme linéaire et continue sur E. Lorsque E  un espace de Hilbert, nous allons 
démontrer qu’on obtient ainsi toutes les formes linéaires et continues sur E. On a 
d’abord la
Proposition 3.29.1 Soit E un espace préhilbertien, considérons l'application 
tp : y G E  i-> (py G E* où <py désigne la forme linéaire et continue x (x\y), 
alors l'application (p est une application semi-linéaire continue injective et

\\v(.y)\\E' =  llî/lls-
Preuve Pour x, y, z G E  et A, n € K, on a

<P\y+nz(x) = (x\Xy + fiz) =  \{x\y) +  ~p(x\z) = \<py(x) + ]2<pz(x), 
c’est-à-dire tp\y+tJLZ =  \ipy -h jü(pz> ce qui prouve que <p est semi-linéaire.

Montrons ensuite que H^Hæ' =  \\y\\E  • ceci prouvera que p  est continue et 
injective. D’après l’inégalité de Cauchy-Schwarz, on a

IKII =  sup |(x|y)| <  sup (||z || ||y||) =  ||y||, 
ll*ll<i IWI<i
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d’où \\(py\\ < ||y||. Lorsque y =  0, on a nécessairement l’égalité et, si y ^  0 , en 
prenant x =  y/\\y\\ qui appartient bien à la boule unité de E , on a

IIM > \(v/\\y\\ lv)l = llvll
ce qui démontre le résultat voulu. Q.E.D.

Théorème 3.29.2 Théorème de représentation de F. Riesz Soit E  un espace 
préhilbertien, alors l'application ip : E  —> E f est surjective si, et seulement si, E  
est un espace de Hilbert. Autrement dit, si E  est un espace de Hilbert, pour toute 
forme linéaire et continue T  G E*, il existe un unique point y de E  tel que
(3.29.1) Tx  =  (x\y) pour tout x G E.
Preuve Si l’application (p est surjective, c’est une isométrie de E  sur E 1 et, par 
conséquent, E  est complet vu que E f l’est. Réciproquement, soit T  une forme li­
néaire et continue sur E  que nous pouvons supposer non nulle (si T  est nulle, on 
satisfait à (3.29.1) en prenant y =  0). Pour satisfaire à (3.29.1), il faut nécessaire­
ment choisir le point y dans l’orthogonal du noyau de T. Or, ce noyau F = Ker T  
est un hyperplan fermé de E  et son supplémentaire orthogonal est donc de dimen­
sion 1. Cherchons donc y de la forme y = Xyo où yo ±  0 est un point de F ±. Tout 
x se décompose sous la forme x =  x f +  x n où

x' = x -  (:Tx/Tyo) y0  G F, xn =  (Tx/Ty0) yo G F ± i 
d’où (x\Xy0) =  (x''\\yo) =  X(Tx/Ty0 )\\yo\\2 et on satisfait donc à (3.29.1) en 
prenant A =  Ty0 /\\yo\\2- Q.E.D.

L’isométrie semi-linéaire cp entre un espace de Hilbert et son dual permet de 
munir ce dual d’une structure hilbertienne de la façon suivante.
Corollaire 3.29.3 Si E est un espace de Hilbert, alors E f est un espace de Hilbert, 
la norme de E 1 étant associée au produit scalaire
(3.29.2) (£|v)e ' =  P°ur tout t*7! G E ' •
Preuve D’après le caractère semi-linéaire de p, on constate que la forme (•|*)£/ 
est une forme sesquilinéaire hermitienne sur E 7 et

«IOb* = = y - ' r n l  = lieill'.
ce qui permet de conclure. Q.E.D.

Lorsque K = R, l’application p  est un isomorphisme d’espace de Hilbert de 
E  sur E 1. Lorsque K =  C, (p est semi-linéaire et transforme le produit scalaire de 
deux vecteurs en le conjugué du produit scalaire des transformés de ces vecteurs : 
on dit que (p est un semi-isomorphisme ; nous l’appellerons le semi-isomorphisme 
de F. Riesz.

Remarque 3.29.1 Le dual d’un espace préhilbertien E  est également un espace de 
Hilbert. En effet, soit Ê  le complété de E  (remarque 3.27.3), toute forme linéaire et 
continue T  sur E  se prolonge de façon unique en une forme linéaire et continue T  
sur Ê  et l’application T  T  de E' dans Ê ' est une isométrie linéaire (proposition
3.10.2) ; ceci prouve que la norme sur le dual E ' est bien une norme hilbertienne
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et que toute forme linéaire et continue T  G E' est de la forme Tx = (x\y)Ê où
y g Ê.

Corollaire 3.29.4 Tout espace de Hilbert est réflexif. En outre, T injection cano­
nique de E dans E n est égale à p e * ° Ve si p E et (pE* désignent les semi- 
isomorphismes de Riesz de E  sur E f et de E' sur E".

Preuve Soient x G E, x \ y '  G E \  on a <  (pE'(x,)yy' > =  (y'\x')E' et en posant 
V = Vis'(v*) Ie corollaire 3.29.3 montre que

<  VE'{<PE(x)),y' > =  (y'\vE(x))E' = (x\y)E = <  y!,x  > , 
et ceci montre que (pE* o  p E est bien l’injection canonique de E  dans E" ; cette 
application étant surjective, l’espace de Hilbert E  est réflexif. Q.E.D.

Exercice 3.29.1 Montrer qu’un espace préhilbertien est complet si, et seulement si, l ’orthogonal de 

tout hyperplan fermé n’est pas réduit à {0 }  [pour démontrer que la condition est suffisante, vérifier 

comme dans la démonstration du théorème 3.29.2 de F. Riesz que l’application y  : E  —> E 1 est 
surjective].

Exercice 3.29.2 Soient E  un espace de Hilbert réel, T  G E '  et C  un convexe fermé non vide de 

E .  Montrer que l'application / ( x )  =  ||æ||2 — T x  est bornée inférieurement sur C  et atteint sa borne 
inférieure en un unique point de C.

En ce qui concerne la topologie faible sur un espace de Hilbert, le théorème de 
Riesz permet d’énoncer le

Corollaire 3.29.5 Soit E  un espace de Hilbert, une suite (xn ) de E converge fai­
blement vers x  si, et seulement si, pour tout y G E, la suite ((xn \y)) converge vers
(*l y)-
On peut en outre apporter la précision suivante.

Corollaire 3.29.6 Dans un espace de Hilbert, soit (xn) une suite convergeant fai­
blement vers x  et telle que la suite (||xn ||) converge vers ||x||, alors la suite (xn) 
converge fortement vers x.
Preuve On a en effet

II® -  ®n||2 = ||®||2 + ||®n||2 -  2 $ te (x \ x n ), 

le corollaire précédent montre que limn^oo \\x -  xn\\2 =  2 ||x ||2 -  2 ||rc||2 =  0 .
Q.E.D.

Les notions d’orthogonalité et de transposition étudiées au paragraphe 3.18 
peuvent se traduire dans le cadre des espaces de Hilbert de la façon suivante.

Soient E  un espace de Hilbert, G un sous-espace vectoriel de E  et H  un sous- 
espace vectoriel de E' ; rappelons que

G0 =  {x f G E' ; <  x \  x  > =  0 pour tout x  G G} 
et

H° = {x G E  ; <  x \  x >= 0 pour tout x 1 G H }
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où < •, • >  désigne le crochet de dualité entre E ' et E. Si p e  : E —ï E f désigne 
le semi-isomorphisme de Riesz, le théorème de Riesz montre que
(3.29.3) G0  = <pE(Gx ) et H° = <p~e\ H ) X.

Étant donné deux espaces de Hilbert E , F  et une application linéaire et conti­
nue T  G L (E ; F)y la transposée de T  est une application linéaire et continue de 
F' dans E ' ; les semi-isomorphismes de Riesz pe  : E —> E' et pp  : F  —» F f 
permettent d’en déduire une application de F  dans E, appelée l’adjoint de T, en 
posant
(3.29.4) T* =tpË1 ° tT o(PF.
On a alors la
Proposition 3.29.7 Soient E  et F des espaces de Hilbert, T  G L(E\F), alors 
T* : F E est une application linéaire et continue, ||T*|| =  ||T|| et, pour tout x 
de E et tout y de F, on a
(3.29.5) (Tx\y)F = (x\T*y)E.
Preuve La linéarité et la continuité de T* résultent de celles de lT  (proposition
3.18.6). Quant à la norme de T*, pp  et p F étant des isométries, d’après la défini­
tion de T* on a ||T*|| < ||tT,|| et l’inégalité opposée résulte de même de la formule 
%T  =  pe  o T* o p~l . Vérifions (3.29.5) ; posons y' = PF(y) € F \  on a d’après 
les définitions

(Tx\y)p = < y \T x  > (f ',f )= <  lT y \x  > ( e ',e )

= {x\<PEl {tTy'))E =  (x| T*y)s
ce qui prouve la formule voulue. Q.E.D.
Note Rappelons que la transposée lT  ne dépend que des topologies des espaces 
E  et F. Par contre, l’adjoint T* dépend essentiellement du choix des produits 
scalaires sur E  et F.

On observera que la formule (3.29.5) caractérise l’adjoint de T  ; il en résulte 
en particulier que T** =  T. D’autre part, l’application T  H  T* de L(E]F) 
dans £ (F ; E) est une isométrie évidemment semi-linéaire. Si E y F  et G sont des 
espaces de Hilbert et si 5  G £ ( £ ;F ) ,  T  G L(F;G), on a d’après (3.18.4), ou 
comme on peut le vérifier directement,
(3.29.6) (ToS)* = S*oT*.

D’après la proposition 3.18.7, on a la
Proposition 3.29.8 Soient E  et F  des espaces de Hilbert, une application linéaire 
et continue T  : E  —» F est un isomorphisme si, et seulement si, T* : F —ï E  est 
un isomorphisme et on a alors (T * ) - 1  =  (T -1 )*.

La proposition 3.18.4 se transcrit de la façon suivante.
Proposition 3.29.9 Soient E, F des espaces de Hilbert et T  G &(E\ F), alors
(3.29.7) Ker T* = {Im T)x et Ker T  =  (7m T*)x ,
(3.29.8) (KerT*)x =  TmTet {KerT )x =  TinT*.
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Preuve D’après la définition de T*, on a en effet Im T* =  <pEl (Im tT) ; d’après 
les formules 3.29.3 et la proposition 3.18.4, on en déduit que

(Im T * ) -1 =  ^ 1((Im tT))± = (Im *T)° =  KerT
et ceci prouve la première formule (3.29.7) ; la seconde s’en déduit en remplaçant 
T  par T* et (3.29.8) s’obtient à partir de (3.29.7) en prenant l’orthogonal. Q.E.D. 

On en déduit le
Corollaire 3.29.10 Soit T  € £ (F ;F ) ,  alors
(3.29.9) T  est à image dense dans F  <=> T* est injectif.
(3.29.10) T* est à image dense dans E  T  est injectif
Exercice 3.29.3 Soient E , F  des espaces de Hilbert, T : E  -»  F  et S : F -> E  des applications 
telles que {Tx\y)p =  (x\Sy)e  pour tout x E E,y  E F. Montrer, en utilisant le théorème du graphe 
fermé, que T  et 5  sont des applications linéaires et continues.
Exercice 3.29.4 Soient E  un espace de Hilbert, F  un sous-espace vectoriel fermé et T  G £(E)  tels 
que

||Tæ|| =  ||a:|| pour a; G F elTx = 0 pour a: G F 

Montrer que T* o T  est le projecteur orthogonal sur F.

3.30 Somme hilbertienne
Nous venons de voir comment la donnée d’un sous-espace vectoriel complet F  
d’un espace préhilbertien E  permettait de décomposer cet espace E  en la somme 
directe topologique de F  et de son orthogonal F 1- : tout vecteur de E  se décom­
pose continûment en la somme de deux vecteurs orthogonaux, l’un appartenant à 
F , l’autre à F-1.

Dans les applications à la théorie des séries de Fourier et plus généralement à 
l’analyse spectrale, il est essentiel d’étudier la situation plus générale où l’on se 
donne une famille (finie ou infinie) de sous-espaces vectoriels complets orthogo­
naux deux à deux.

Le résultat de base est le suivant.
Théorème 3.30.1 Soient E  un espace préhilbertien et (F * )^ / une famille de 
sous-espaces vectoriels complets orthogonaux deux à deux. Notons Pi le projec­
teur orthogonal de E  sur Ei et, pour tout x de E, posons x\ =  PiX.

1. Pour tout x  € F, la famille (\\xi\\2)içi est sommable et

(3.30.1) 5 ^ I W |2 ^  IM|2> inégalité de Bessel.
i € l

2. Si V est le sous-espace vectoriel fermé engendré par la réunion des Ei, les 
propriétés suivantes sont équivalentes.

a. x  G V.
b. La famille (Xi)ie i  est sommable et de somme x.
c. \\x\\2 =  Yliei  \\x i\\2> relation de Parseval.
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3. Pour tout x ,y  G V, la famille {(xi\yi))iei> où yi = Piy, est sommable et
(*l v) =  £<e/(*<l»)-
Preuve 1. Pour toute partie finie J  G 5F(J), notons E j  le sous-espace vecto­
riel engendré par la réunion de la sous-famille (Ei)iej. Pour tout x  de E , po­
sons Pjx  =  YlieJ xî » ês esPaces Ei étant orthogonaux deux à deux, le vecteur 
x -  P jx  est orthogonal à Ei lorsque i e J ,  donc à E j  et ceci prouve que Pj 
est le projecteur orthogonal de E  sur E j. D’après le théorème de Pythagore et le 
théorème 3.28.6, on a donc

£ M 2 = ||JV*II2<MI2
ieJ

et ceci prouve 1.
2. Montrons d’abord l’équivalence de a. et b. Si x appartient à V , pour tout 

e > 0, il existe une partie finie J  G $(I) et y G E j  tels que \\x — y || <  e. D’après 
la définition d’une projection, on a

||z -  P jx  II <  ||x -  y\\ < e
et, pour toute partie finie K  contenant J, Ek  D Ej , d’où

\\x -  Pkx  II < ||x -  P jx  II <  E,
ce qui prouve que la famille (x.j) est sommable et de somme x. Réciproquement, 
si la famille (a:*) est sommable et de somme x, les sommes partielles P jx  appar­
tiennent à V , donc x appartient à V  car V  est fermé. Ceci prouve l’équivalence de
a. et b.

Quant à l’équivalence de b. et c., elle résulte simplement de l’identité

ii* - £ * « ii2 = imi2 - £ i n i2-
ieJ ieJ

3. Soient x ,y  € V ,  on a |(x<|î/i)| <  ||Xi|| ||ÿj|| <  ^(||a;* ||2 +  ||?/i||2) ; les fa­
milles (||x i||2) et ( ||î/i||2) étant sommables, ceci prouve que la famille {{xi\yi)) est 
sommable. En utilisant le fait que le produit scalaire est sesquilinéaire et continu, 
on a

(*iv) = (£ *<i£  vi) = £  (*ii £  vl) >
te / j€ / te / j&i

où (*<l H jaiV j) = 1 2 je i(xi\Vj) : (x i\Vi) vu que ( x ^ )  = 0  si i ± j  ; il en 
résulte que (x|y) =  £ ie / (x<|jfc). QE.D.

Le cas F  =  E  est particulièrement intéressant, ce qui conduit à la définition 
suivante.
Définition 3.30.1 On dit qu'un espace de Hilbert E  est la somme hilbertienne 
d'une famille (Ei).ieI de sous-espaces fermés orthogonaux deux à deux si l'espace 
vectoriel engendré par la réunion des Ei est dense dans E ; on écrit alors

E = ^ E i.
iGl

Le théorème 3.30.1 se précise alors de la façon suivante.
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Théorème 3.30.2 Soit E  un espace de Hilbert somme hilbertienne d ’une famille 
(E i)i a  de sous-espaces orthogonaux deux à deux. Notons Pi le projecteur ortho­
gonal de E  sur Ei.

1. Soient x G E, Xi = PiX, alors la famille (x^)^ / est sommable de somme x 
et IWI2 =  E * e / Ikill2- En outre, (x\y) = £ i6 / (xi|î/i) si y e E ,y i  = Pty.

2. Réciproquement, soit ( x ^ ) ^ /  une famille de E telle que Xi G E i et 
^ 2 i e i  \\x i \ \ 2 <  °°> alors la famille (x * )* G/  est sommable et, si x  désigne sa somme, 
on a Xi = PiX pour tout i.
Preuve Le point 1. résulte du théorème précédent. Quant à 2., d’après le théo­
rème de Pythagore, on a || J2 i e j x i \\2  — Y^itj \\xi\\2 pour toute partie finie J  
de I  et ceci montre que la famille (x*)^/ vérifie le critère de Cauchy, la famille 
( IN I2) * /  étant sommable par hypothèse. L’espace E  étant complet, la famille 
( x i ) i e i  est donc sommable et, si x  désigne sa somme, le caractère linéaire et 
continu des projecteurs montre que x« =  P * x . Q.E.D.
Exercice 3.30.1 Somme hilbertienne externe 1. Soit (Ei)i e i  une famille d’espaces de Hilbert, on 
note indifféremment (#|#) le produit scalaire sur Ei.  On note E  l’ensemble des 
x =  (%i)iei £  Yliei  Ei tels que ^2ieI  ||æ* ||2 <  oo. Montrer que E  est un sous-espace vectoriel de 
l ’espace n iG/ Ei , que pour tout x =  (xi)i e i e E, y  =  (yi)i^i e E , la famille {(xi\yi))i e j  est 
sommable et que

(x\y) =

définit une structure d’espace de Hilbert sur E.  On dit que E  est la somme hilbertienne externe des Ei 
et on note cet espace © iG/  Ei.

2. On note Fi C E  les sous-espaces Fi =  { x  e  E  ; X j  =  0 pour tout j  7 H } .  Montrer que ces 

sous-espaces Fi sont isomorphes aux espaces Ei et que E  est la somme hilbertienne (interne !) de la 

famille (Fi)i e I .

3.31 Base hilbertienne
On peut utiliser les résultats précédents lorsque tous les sous-espaces Ei sont de 
dimension 1 , ceci conduit à la terminologie suivante.
Définition 3.31.1 Dans un espace préhilbertien E, une famille d ’éléments (e*)i€ / 
est appelée une famille orthonormale si (e*|ej) =  Sij pour tout i , j  G I, ô^ 
désignant le symbole de Kronecker ; une famille orthonormale totale est appelée 
une base orthonormale ou une base hilbertienne de E.

Une famille orthonormale est nécessairement libre : en effet, supposons qu’il 
existe une relation de liaison Yliçj ^ iei =  0 » d’après le théorème de Pythagore, 
on a alors J2i€J |Ai|2 ||e i ||2 =  0, d’où |Ài|2 =  0 pour tout i G J  vu que ||ei|| =  1. 
Lorsque l’ensemble d’indice I  est fini, il en résulte qu’une base orthonormale est 
une base algébrique : l’espace vectoriel engendré par une telle famille est en effet 
de dimension finie, donc fermé, et étant dense par hypothèse, il coïncide avec E  
(qui est donc de dimension finie). Lorsque I  est infini, une base orthonormale n’est 
pas une base algébrique.
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Étant donné une famille orthonormale (e*)^/, nous noterons Ei le sous-espace 
vectoriel de dimension 1 engendré par le seul vecteur e*. On obtient ainsi une 
famille ( ^ ) zg/ de sous-espaces complets orthogonaux deux à deux, à laquelle on 
peut appliquer le théorème 3.30.1. Les projecteurs Pi : E  - ï  Ei s’explicitent de la 
façon suivante : soit x G E, alors

Xi PiX £i&i OU £i —
le vecteur x -  étant orthogonal à e* vu que

(x 0.
D’après le théorème 3.30.1, la famille (&)*£/ appartient à l’espace Z2 (7; K) et on 
a l’inégalité de Bessel
(3.31.1) £ | & I 2 < I M I 2.

iE/
En outre, le théorème 3.30.1 fournit des conditions nécessaires et suffisantes 

pour qu’une famille orthonormale soit une base hilbertienne, ceci signifiant sim­
plement V = E. On obtient ainsi les critères suivants, le dernier critère résultant 
du corollaire 3.28.7.
Proposition 3.31.1 Soit (e*).jG/ une famille orthonormale d'un espace préhilber­
tien E, les propriétés suivantes sont équivalentes.

a. La famille (ei)iej est une base hilbertienne.
b. Pour tout x de E , la famille (^e*) <€/ est sommable et de somme x.
c. Pour tout x de E, on a la relation de Parseval

(3.31.2) M 2 =  X > | 2-

Si E  est un espace de Hilbert, ces conditions sont équivalentes à
d. Soit x G E tel que (x\ei) =  0 pour tout i G I, alors x =  0.
De plus, si (ei)iç.i est une base hilbertienne, le produit scalaire de deux vec­

teurs se calcule par la formule

(3.31.3) (x|y) =  où& =  (x| e j  et % =  (y|e<).
i€/

Exemple 3.31.1 Considérons l’espace de Hilbert Z2 (7; K) et posons 
ei =  {àij) € Z2 (7;K). La famille (e*)^/ est évidemment une famille orthonor­
male. Montrons que c’est une base hilbertienne : en effet, soit 
x =  (xi)iej G Z2 ( / ;K) ; on a alors & =  (x|e*) =  Xi et le critère c. de la 
proposition 3.31.1 est vérifié d’après la définition même de la norme de l’espace 
Z2 (7;K).

On peut alors interpréter la relation de Parseval de la façon suivante. 
Corollaire 3.31.2 Soit (ei)iej une base hilbertienne d'un espace préhilbertien E , 
l'application p  : x h* (&)*€/, où & =  (x|e*), est un isomorphisme d'espace 
préhilbertien de E sur un sous-espace dense de Z2 (7; K). Si E  est un espace de 
Hilbert, ip est un isomorphisme de E  sur Z2 (7; K).
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Preuve L’application ip est évidemment linéaire et, d’après la relation de Parseval, 
<p est une isométrie sur un sous-espace de Z2 (/;K ) ; ce sous-espace est partout 
dense car l’image de la base (e*) est la base de l’espace Z2 (J; K) définie ci-dessus 
(exemple 3.31.1). Lorsque E  est complet, ce sous-espace est donc complet ; étant 
dense, il est nécessairement égal à E . Q.E.D.

Nous allons montrer que tout espace de Hilbert possède une base hilbertienne ; 
il en résultera que tout espace de Hilbert est isomorphe à un espace Z2 (7; K).
Théorème 3.31.3 Tout espace de Hilbert E  ^  {0} admet une base hilbertienne. 
En outre, toute famille orthonormale est contenue dans une base hilbertienne.

Ce théorème est une conséquence immédiate du théorème de Zorn vu les deux 
lemmes suivants.
Lemme 3.31.4 Soit E un espace de Hilbert et soit A  Tensemble des parties or­
thonormales de E ordonné par inclusion. Soit A € A, les propriétés suivantes 
sont équivalentes.

1. A est une base hilbertienne de E.
2. A est un élément maximal de A.

Preuve Ce lemme est simplement une reformulation de l’équivalence des proprié­
tés a. et d. de la proposition 3.31.1. Q.E.D.

Lemme 3.31.5 Dans un espace préhilbertien E  ^  {0}, T ensemble A des parties 
orthonormales ordonné par inclusion est inductif.
Preuve L’ensemble est non vide : en effet, soit x  G E  — {0}, alors 
{x/\\x\\} G A.  D’autre part, si (Ai)iç.i est une famille totalement ordonnée de 
A , il est évident que la réunion de cette famille est une famille orthonormale qui 
majore la famille (Ai).  Q.E.D.

Corollaire 3.31.6 Tout espace de Hilbert est isomorphe à un espace de la forme 
l2 (I;K).
Remarque 3.31.1 Un espace préhilbertien ne possède pas nécessairement de base 
hilbertienne ; on peut cependant affirmer que tout espace préhilbertien E  est iso­
morphe à un sous-espace d’un espace de la forme Z2(/; K) : en effet, si E  désigne 
le complété de E  (remarque 3.27.3), E  est isomorphe à un sous-espace (dense) de 
E  et il suffit d’appliquer le corollaire précédent à cet espace de Hilbert.

Les espaces de Hilbert admettant une base hilbertienne dénombrable se carac­
térisent simplement.
Proposition 3.31.7 Méthode d’orthonormalisation de Schmidt Soit E  un es­
pace préhilbertien et soit (an) une suite libre de E. Il existe une unique suite 
orthonormale (en) telle que

1. pour tout p G N, les sous-espaces vectoriels engendrés par (an)o<n<p et 
(en)o<n<p coïncident,

2. pour tout n G N, (en\an) est un nombre réel >  0.
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Preuve On raisonne par récurrence. Le vecteur eo est nécessairement de la forme 
tao, d’où (e0 |a0) =  £||a0 ||2 et ||e0|| =  \t\ ||a0|| ; t doit donc être réel >  0 , d’où 
t = l/ ||ao || et eo =  ao/llao||- Supposons construits les vecteurs (ei)o<»<n et no­
tons Vn le sous-espace engendré par ces vecteurs, sous-espace qui coïncide avec 
le sous-espace engendré par les vecteurs (a<)o<»<n* Le vecteur en+i est nécessai­
rement proportionnel au vecteur b = an +1  — Pyitan+1, vecteur non nul d’après 
l’indépendance des vecteurs (ai)o<i<n+i- Si en+i =  tb> on a 

(en+ i|a n+i) =  f(6 |an+i) =  £||à||2

et ||en+i|| =  Kl \M et comme précédemment on en déduit que nécessairement
cn+i =  b/\\b\\. Q.E.D.
Corollaire 3.31.8 Un espace préhilbertien E  admet une base hilbertienne dénom­
brable si, et seulement si, E est séparable.
Preuve Si E  admet une base hilbertienne dénombrable, E  est séparable d ’après le 
lemme 3.17.1. Réciproquement, supposons E  séparable ; il existe une suite (xn) 
partout dense. On note no le plus petit entier tel que xno soit ^  {0}, puis nk+i 
le plus petit entier >  nk tel que xU k + 1  n’appartienne pas au sous-espace vectoriel 
engendré par les points (xni)o<i<k- On construit ainsi une sous-suite (éventuelle­
ment finie) (xnk ) qui est libre et qui engendre le même sous-espace vectoriel que 
la suite (xn). Cette suite (xUk) est donc totale et la proposition précédente per­
met d’en déduire une suite orthonormale totale, c’est-à-dire une base hilbertienne 
dénombrable de E. Q.E.D.
E x erc ice  3 .31 .1  Soit E  un espace préhilbertien séparable de dimension infinie, si E  n’est pas com­
plet, montrer qu’il existe une famille orthonormale qui n’est contenue dans aucune base orthonormale 

de E  [utiliser l’exercice 3.29.1].

E x erc ice  3 .3 1 .2  Soient E  un espace préhilbertien séparable de dimension infinie et (en )n eN une 

base hilbertienne de E. On pose an =  e2 n> bn =  n +  ( l / ( 2 n  +  l) )e 2 n + i  et on note A et B  les 
sous-espaces vectoriels fermés engendrés par les suites (an ) et (bn) respectivement. Montrer que dans 

le sous-espace F =  A  +  B, A et B  sont des supplémentaires algébriques, mais que ce ne sont pas des 

supplémentaires topologiques.

E xerc ice  3 .3 1 .3  Dimension hilbertienne 1. Soit E  un espace de Hilbert. Si ( /  et (f j ) j q j  
sont des bases hilbertiennes de E , montrer que Card I =  Card J  : ce cardinal est appelé la dimension 
hilbertienne de E  [lorsque I  et J sont infinis, montrer que J  =  U zg/

Ai =  { j e J ; ( e i \fj ) Ï O }  

et utiliser le lemme 1.9.4 et le théorème 1.9.9].
2. Montrer que deux espaces de Hilbert sont isomorphes si, et seulement si, ils ont même dimension 

hilbertienne.

E x erc ice  3 .3 1 .4  Soient E  un espace de Hilbert séparable de dimension infinie, (en )nGz  une base 
hilbertienne de E. On note B  et S  la boule et la sphère unité de E.

1. Montrer qu’il existe une unique application linéaire et continue u : E  —» E  telle que 
u(en) =  en + i pour tout n  E Z. Montrer que u est une isométrie.

2. On pose f(x)  =  (1 /2 )(1  — ||x ||)eo  H- u(x), montrer que /  est un homéomorphisme de S  sur 
S  et de B  sur B.
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3. Montrer que l’application f \ s  n’admet pas de point fixe.
4. Soit a: €  B , montrer que la demi-droite ouverte d’origine f ( x)  passant par x rencontre S  en un 

unique point g{x). Montrer que g : B -> S  est continu et que g\s =  I s  (on dit que S  est un rétracte 
de la boule B).
Note Le théorème de Brouwer affirme que toute application continue de la boule unité de Rn dans 
elle-même admet un point fixe ; pour une démonstration de ce théorème, consulter n'importe quel 
ouvrage de topologie algébrique, par exemple C. Godbillon, Éléments de topologie algébrique, Her­
mann, Paris 1971. L’exercice précédent montre que ce théorème ne subsiste pas en dimension infinie ; 
cette construction élémentaire est due à S.Kakutani, Topological properties o f the unit sphere in Hilbert 
space, Proc. Imp. Acad. Tokyo, 1943, p. 269-271.



G -  Opérateurs compacts

3.32 Définitions et propriétés élémentaires
Soit E  un espace de Banach sur K  (=R ou C) et soit T  G £{E) une application 
linéaire et continue de E  dans lui-même. On se propose d’étudier l’opérateur

T\ = XIe — T  où À G UC
On dit que A G UC est une valeur régulière si T\ est un isomorphisme d’e.v.t. 

de E  sur E  ; on observera que, d’après le théorème de Banach (corollaire 3.11.3), 
T\ est un isomorphisme topologique dès que T\ est un isomorphisme algébrique. 
L’ensemble p(T) des valeurs régulières est appelé l’ensemble résolvant de T  et si 
À est une valeur régulière, l’opérateur R(A; T) =  (XIe -  T ) - 1  s’appelle la résol­
vante de T  au point A. Le complémentaire cr(T) de l’ensemble résolvant s’appelle 
le spectre de T  ; un scalaire A appartenant au spectre est appelé une valeur spec­
trale de l’opérateur T  : ceci signifie simplement que T\ n’est pas une bijection. Si 
T\ n’est pas injectif, on dit que A est une valeur propre : ceci signifie que le noyau 
de Ta

Ker Ta =  {x G E  ; Xx — Tx = 0}
n’est pas réduit à {0} : le sous-espace vectoriel Ker T\ s’appelle le sous-espace 
propre associé à la valeur propre A.

Remarque 3.32.1 Lorsque E  est de dimension finie, toute valeur spectrale est une 
valeur propre. Il n’en est rien en dimension infinie, un opérateur injectif n’est pas 
nécessairement surjectif. Considérons par exemple un espace de Hilbert séparable 
E  de dimension infinie et soit (en) une base hilbertienne de E. Pour tout x  de E , 
on a x = J2^Lo £«e„ OÙ £„ =  (x\en) ; posons Tx - £ ^ L 0 £ne«+i- On définit 
ainsi un opérateur T  G £(E)  injectif car ||Tx|| =  ||æ||, mais qui n’est pas surjectif 
vu que T(E) = {eo}±. Autrement dit, 0 est une valeur spectrale de T  mais n’est 
pas une valeur propre.

Remarque 3.32.2 Si (Aï)ie/ est une famille de valeurs propres distinctes de T, 
Xi G Ker TAi, Xi ^  0, des vecteurs propres associés à ces valeurs propres, alors la 
famille (Xi)iei est libre. Sinon, on pourrait trouver une partie finie J  de I  telle
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que la famille (Xj)jej  soit libre et un i G I  -  J  tel que x^ =  
fij 0 ; en appliquant l’opérateur T, on aurait alors \{Xi = Y j ^ j  d’où
Y j e À ^ j  -  Ai)fjLjXj =  0 et par conséquent (Xj -  X^pj = 0 pour j  G J , ce qui 
est absurde.

Voici un premier résultat élémentaire.
Proposition 3.32.1 Soient E  un espace de Banach et T  £ £(E), Vensemble ré­
solvant p(T) est un ouvert de K et le spectre cr(T) est compact ; en outre, lorsque 
ce spectre est non vide
(3.32.1) r(T)=  sup |À| <  ||T||.

AGcr(T)

Preuve L’application (p : A G K  i-> Ta G L(E)  est continue et p(T) est 
l’image réciproque par p  de l’ensemble ouvert Isom (E\E)  (théorème 3.19.8) ; 
ceci prouve que l’ensemble résolvant est ouvert. Le spectre est donc fermé. D’autre 
part, si |A| >  ||T||, on a Ta =  X(Ie  — A~lT) où ||A_ 1T|| <  1 et la proposition
3.19.6 montre que T\  est inversible dans L(E)  ; ceci prouve la formule (3.32.1) et 
la proposition. Q.E.D.
Note La quantité r(T) s’appelle le rayon spectral de T.

Exercice 3.32.1 Soient E  un espace de Banach et T  G £(£), montrer que l ’application 

À G p(T) \-> ft(A ;T ) G £ (E)  est continue.

Exercice 3.32.2 Soient E  un espace de Banach et Tn G £{E)  une suite d’opérateurs convergeant 
vers T  G £(E)  dans l ’espace de Banach L(E).  Montrer que, pour tout compact K  c  p (T ), il existe 

un entier no tel que K  C p(Tn) pour n  >  no et que la suite de fonctions R(»;Tn) : K —y £>(E) , 
n  >  no, converge uniformément vers /?(•; T ).

Étant donné des espaces de Banach E , F  et une application linéaire T  : E  F, 
on dit que T  est une application compacte ou que T  est un opérateur compact si
(3.32.2) pour tout borné B  de E , T(B)  est relativement compact.
Il en résulte que l’image par T  de toute partie bornée est bornée ; T  est donc 
nécessairement continu. La définition (3.32.2) est évidemment équivalente à

(3 32 3 ) / toute su*te k°rn^e (Xn) on Peut extraire une sous-
 ̂ “ ' \suite (xnk) telle que la suite (Txnk) converge.

On observera que, dans la définition (3.32.2), on peut se contenter de prendre 
pour B  la boule unité de E  ; de même dans (3.32.3), on peut supposer que (xn) 
est une suite de la boule unité de E .
Exercice 3.32.3 Soient E , F  des espaces de Banach et T  : E  -»  F  une application linéaire.

1. Si T  est compact, montrer que, pour toute suite (xn) de E  faiblement convergente vers 0, la 
suite (T xn ) converge fortement vers 0 [raisonner par l ’absurde : en extrayant une sous-suite, on peut 
supposer que ||Tæn || >  c >  0, noter que la suite (Txn) converge faiblement vers 0 (proposition 
3.18.6), puis utiliser le fait que la suite (xn ) est bornée (proposition 3.16.10) et la compacité de T  pour 
obtenir une contradiction].

2. Montrer que la réciproque est vraie si E  est réflexif [utiliser le théorème 3.17.11].
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Exercice 3.32.4 On considère un espace de Hilbeit E  admettant une base hilbertienne dénombrable 
(en)y un espace de Banach F  et une application linéaire continue T  : E  —> F  tels que la série 

l l ^ n l l2 soit convergente, montrer alors que T  est un opérateur compact [utiliser l'exercice 
3.32.3 : si (Xj  ) est une suite de E  convergeant faiblement vers 0 , on pourra écrire pour p G N

p oo

T x 5 =  ^ 2 ( x j \ e n ) T e n +  ^ 2  (x j \ en ) T e n
7 1 = 0  7 l = p + l

et majorer le dernier terme grâce à Cauchy-Schwarz].

Exercice 3.32.5 Soient En (n =  1 ,2 ,3 )  des espaces de Banach de norme || •  ||n tels que 
Ei  C £ 2  C Ez,  l’injection canonique i : E\  -*  E 2 étant compacte et l’injection canonique 
j  : E2 —> E3 continue. Montrer que, pour tout e >  0, il existe C£ >  0 tel que

IMI2 <  e ||a;|| 1 +  Ce ||æ | | 3  pour tout x e E \ .

[on pourra raisonner par l ’absurde, c ’est-à-dire supposer qu’il existe e >  0 et une suite (x n ) de la 

sphère unité de E\  telle que e +  n ||æ | | 3  <  ||æn ||2 ].

Exercice 3.32.6 Soit T  : E —> F  un opérateur compact, E  et F  étant des espaces de Banach, 
l’espace E  est supposé réflexif. On note || •  || la norme de l'espace E  et on considère sur E  une autre 
norme || •  ||; définissant une topologie moins fine que la norme || •  ||. Montrer que, pour tout e >  0, il 
existe Ce tel que

||Tæ|| <  € ||æ|| +  C€ I M 7 pour tout x e  E.

[on pourra raisonner par l’absurde, on suppose qu'il existe e >  0 et une suite (æn ) de la sphère unité 

de (E , || •  ||) telle que e +  n||æ n ||' <  ||Tæn || ; utiliser alors le théorème 3.17.11 et l'exercice 3.32.3]

Proposition 3.32.2 7. L'ensemble X(E; F) des applications compactes de E  dans 
F est un sous-espace vectoriel fermé de &{E\ F).

2. Soient E , F, G des espaces de Banach, S  G £ (F ;  F) et T  e  £ (F ; G) ; si 
l'une des applications 5 , T  est compacte, l'application T  o S est compacte.

3. Soient T  G X  (E; F), Eq un sous-espace fermé de E  et Fo un sous-espace 
fermé de F contenant T(£o), alors l'application T \e0 : F o —> Fo esî compacte.
Preuve 1. Soit B  la boule unité de F , si T  : E  F  est une application compacte, 
T(B)  est relativement compact ; pour tout scalaire À, (ÀT)(B) = \T (B)  est re­
lativement compact, ce qui prouve que l’opérateur À T  est compact. Si S : E  —» F  
est une autre application compacte, l’inclusion (S +  T)(B) C S(B)  +  T(B)  
montre que (S +  T) (B) est relativement compact, ce qui prouve que 5  -h T  est un 
opérateur compact et que X (F; F ) est un sous-espace vectoriel de £ (F ; F ). Mon­
trons que ce sous-espace est fermé. Soit (Tn) une suite de X (E ; F ) convergeant 
dans l’espace £ (F ; F ) vers une application T  G £ (F ;  F ). Étant donné e > 0, il 
existe un entier n tel que ||T  — Tn || <  e ; Tn(B) est relativement compact, donc 
précompact : il existe une partie finie A C F  telle que Tn(B) C e)- Il
en résulte que T(B)  c  \Jv£a -®(î/î 2e) et ceci prouve que T(B)  est précompact, 
donc relativement compact (F  est complet) ; l’opérateur T  est donc compact, ce 
qui prouve le résultat voulu.

2 . se vérifie aisément, l’image par une application linéaire et continue de tout 
borné (resp. relativement compact) étant bornée (resp. relativement compacte).
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3. Si B  est la boule unité de E, B 0  = B  n E0  est la boule unité de E0. On a 
alors

(T\Eü)(B0) = T(B  H Eo) C T(B)  f l T(E0) C T(B) n F 0 c K n F 0  

où K  =  T(B)  est une partie compacte de F. Le sous-espace F0  étant fermé, 
K  fl Fo  est compact et ceci prouve que ( T | ^ 0)(5 o ) est relativement compact dans 
F o , d’où le résultat voulu. Q.E.D.

Un opérateur T : E  F  est dit de rang fini si l’image T(E)  est de dimen­
sion finie. Tout opérateur (continu) de rang fini est évidemment compact ; toute 
limite d’opérateurs de rang fini est donc compacte. Banach avait conjecturé que 
réciproquement tout opérateur compact est limite d’opérateurs de rang fini ; on 
sait maintenant (Enflo, 1972) que cette conjecture est fausse. On a cependant la 
Proposition 3.32.3 Si F et un espace de Hilbert, le sous-espace des opérateurs 
de rang fini est dense dans X  (E; F).
Preuve Soit B  la boule unité de E  et soit e > 0 ; si T : E  F  est un opérateur 
compact, T(B)  est précompact : il existe une partie finie A c  F  telle que

T(B)  C  ( J  B(y,e).
yeA

Soit G le sous-espace de dimension finie engendré par A et soit P  le projecteur 
orthogonal de F  sur G. L’opérateur P o  T  : E  F  est de rang fini et pour tout 
x de B  il existe y G A  tel que ||y -  Tx\\ <  e, d’où d(Tx, G) < e, c’est-à-dire 
||Tx — P(Tx)  || < e et ceci prouve que \\T -  P o  T\\ < e. Q.E.D.

La notion d’opérateur compact permet de reformuler le théorème 3.7.4 de 
Riesz sous la forme suivante.
Proposition 3.32.4 Soit E  un espace de Banach, Vapplication identique 
I e  : E  —» E est compacte si, et seulement si, E  est de dimension finie.

Lorsque E = F, on pose X(E)  =  X(E; E).
Corollaire 3.32.5 Soit T  G X  (E) un opérateur compact, alors le noyau de Vap­
plication Ie -  T  est de dimension finie.
Preuve Le noyau N  = Ker (Ie — T) est un sous-espace fermé de E  et Tx  =  x 
pour x G N  : autrement dit, la restriction de T  à N  est égale à l’application 
identique de N. D’après la proposition 3.32.2, cette application identique Ipj est 
compacte et il en résulte que N  est de dimension finie. Q.E.D.
Corollaire 3.32.6 Soit T  G X(E) un opérateur compact, si E  est de dimension 
infinie, 0  est une valeur spectrale.
Preuve En effet, si 0 est une valeur régulière, T  est un isomorphisme de E  sur E  ; 
d’après la proposition 3.32.2, l’opérateur Ie = T  o T " 1 est compact et E  est donc 
de dimension finie. Q.E.D.

Quant à l’image de Ie -  T, on a la
Proposition 3.32.7 Soit T  G X(E) un opérateur compact, alors Ie — T  est à 
image fermée.
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Preuve Posons T\ =  Ip  — T, F = Ker T\ ; ce sous-espace F  de dimension finie 
(corollaire 3.32.5) admet un supplémentaire topologique G (corollaire 3.13.13) et 
T i\g : G —»• Ti (E ) est une bijeclion linéaire et continue. Nous allons montrer que 
la bijection réciproque est continue ; ceci prouvera que T i(F ) est isomorphe à G 
et, G étant complet (car fermé), que T i(F ) est complet, donc fermé. Il s’agit de 
démontrer l’existence d’une constante c >  0 telle que ||a;|| <  c \\Tix\\ pour tout x 
de G. Raisonnons par l’absurde : supposons qu’il existe une suite (xn) de G telle 
que

||xn || =  1 et lim T\xn =  0 .
n —too

L’opérateur T  étant compact, modulo l’extraction d’une sous-suite on peut sup­
poser que la suite (Txn) est convergente : notons y sa limite. Étant donné que 
xn =  Txn +  T ixn, la suite (xn) converge vers y. On a alors ||y|| =  1, y G G 
(G est fermé) et Ty  =  y , c’est-à-dire y £ F, d’où y =  0 , F  et G étant des 
supplémentaires, ce qui est contradictoire avec \\y\\ = 1. Q.E.D.

En résumé, si T  G % (E) est un opérateur compact, l’opérateur Ti = Ip  — T  
a un noyau de dimension finie et une image fermée. Il s’agit là de deux propriétés 
fondamentales des opérateurs compacts. Par dualité, on pourra alors étudier plus 
précisément le spectre de T  grâce au théorème suivant.

Théorème 3.32.8 Schauder Soient E , F des espaces de Banach et T  G L (E ; F), 
alors T  est un opérateur compact si, et seulement si, lT  est un opérateur compact.
Preuve 1. Supposons l’opérateur T  compact et soit (y'n) une suite de la boule unité 
de F ' : | | ^ | | f ' < L Si B e désigne la boule unité de E ,K  = T(Be ) est compact ; 
posons un = y'n\K ; on définit ainsi une suite (un) de l’espace QU(K]K) et cette 
suite est relativement compacte d’après le théorème d’Ascoli : on a en effet, pour 
tout entier n  et tout y, z G K ,

M s /)  I ^  lls/ll et M i / )  -  M * ) l  <  Ils/ -  *11-
Il existe donc une sous-suite (uUk ) qui converge uniformément vers une fonction 
u G eu(F ; K) ; étant donné que

SUP K iC  o T )(x ) -  (uoT)(x)\ < sup \y'nk(y) -  u(y)|,
xÇBis  y € K

la suite (yfnk o T) de E ' converge uniformément sur la boule unité de E  ; elle est 
donc convergente dans F ' et il en résulte que *T est un opérateur compact vu que

2 . Réciproquement, supposons l’opérateur %T  compact, alors l’opérateur 
UT  : F "  -> F "  est compact. D’après (3.18.13), l’application jp  ° T  est donc 
compacte : jp(T(BE))  est relativement compact dans F "  et, jp  étant une isomé­
trie sur un sous-espace fermé de F " , T(Bp)  est relativement compact dans F , ce 
qui prouve que T  est un opérateur compact. Q.E.D.

Remarque 3.32.3 Étant donné que t (XlE -  T) = XIpf -  les opérateurs T  et 
lT  ont le même spectre d’après la proposition 3.18.7, soit a(T) = a(*T).
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Exercice 3.32.7 On suppose 1 <  p < q <  oo, montrer que l’injection canonique de lp(N; M) dans 

lq(N; R) (exercice 3.24.9) n’est pas compacte [utiliser la suite (en ) où en =  =  0 si
m  n e t  ô% =  1].

Exercice 3.32.8 Soit X  un espace métrique compact et soit 0 <  /z' <  /* <  1, montrer que 

c  C0,Ai(X ; R) (exercice 3.9.6) et que l’injection canonique est compacte [si ( / n ) est 
une suite bornée dans l ’espace &°>P ( X ; R ) ,  on vérifiera d’abord, en utilisant le théorème d’Ascoli, 
qu’il existe une sous-suite convergeant uniformément vers une fonction /  e  Q ° t P( X ] R )  ; on mon­
trera ensuite que cette sous-suite converge vers /  dans l ’espace 6°*^ (X ; R)].

3.33 Analyse spectrale des opérateurs compacts
Nous utiliserons les lemmes suivants ; le premier est un lemme d’algèbre élémen­
taire.

Lemme 3.33.1 Soient E et F deux espaces vectoriels en dualité, un sous-espace 
vectoriel M  de F est de dimension finie si, et seulement si, le sous-espace vectoriel 
M° est de codimension finie ; on a alors

dim M  =  codim M°.
Preuve 1. Si M  est de dimension finie n, montrons que E  se décompose en une 
somme directe de la forme E  =  M° 0  G où G est de dimension n.

Soit (yi)i<i<n une base de M  et soit ip : E  IKn l’application linéaire 
ip(x) =  (< x yyi >)i<i<n-Cette application est surjective car toute forme linéaire 
sur Kn nulle sur tp(E) est identiquement nulle (corollaire 3.13.8) : en effet, soit 
F  Z  =  X i Z \ ,  Z  — (<Zi)l<i<n G K n une telle forme linéaire ; alors

n n
0  =  ^  Ài < x } yi >=< x , ^  Xiyi >  pour tout x e E,

i=  1 i = l

d’où Y17=i ^»2/t = 0  et> les Vi étant linéairement indépendants, À* =  0  pour tout 
i £ l .

Il existe donc Xj G E  tel que < Xj,yi > =  ôij pour tout i , j ,  où ôy =  0 si 
i j  et Su = 1 . Ces Xj sont linéairement indépendants : une relation de liaison 
Y%=iHxj = 0 implique en effet 0 =  < xjiVi > =  IM- Soit G le
sous-espace vectoriel de dimension n  engendré par ces n  points Xj ; montrons que 
G est un supplémentaire algébrique de M°. Tout x  de E  s’écrit d’une manière 
unique x  = y + z où y £  M° et z = Z)£=i N xj £ G : on a nécessairement 
Pj = <  x y yj >  et y = x  -  i fJLj xj appartient bien alors à M°.

2. Réciproquement, on suppose M ° de codimension finie p. Montrons que M  
est nécessairement de dimension finie. Raisonnons par l’absurde, supposons M  de 
dimension infinie. Il existe alors un sous-espace vectoriel N  de M  de dimension 
p +  1 ; on a N° D M°  où N° est de codimension p +  1 d’après 1. et M°  de 
codimension p : ceci est absurde. Q.E.D.
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Lemme 3.33.2 F. Riesz Soient E un espace de Banach et F  un sous-espace fermé 
distinct de E, alors, pour tout e G]0,1[, il existe x G E -  F tel que ||x|| =  1 et 
d(x, F) > e.
Preuve Soit a e E -  F, F  étant fermé d(a, F) =  a  >  0 et il existe b G F  tel que 
||a — 6 || <  ae~l . Montrons que le point x = \\a — 6 ||-1 (a — b) convient. Il est 
clair que x G E -  F, \\x\\ = 1 et, pour tout y de F , x — y = ||a -  6 ||_1(a -  z) où 
z = b+ ||a -  b\\y appartient à F , d’où \\x -  y || >  ||a -  6 ||_1a  >  e, ce qui prouve 
que d(x, F) > e. Q.E.D.

Le résultat fondamental est alors le suivant.

Théorème 3.33.3 Soient E un espace de Banach, T  G X(E) un opérateur com­
pact et T\ = XIe -  T, lT \  =  XIe 1 -  tT  où X G K est supposé différent de
0 .

1. L’opérateur T\ est injectif si, et seulement si, il est surjectif Toute valeur 
spectrale non nulle est donc une valeur propre.

2. Les sous-espaces Ker T\ et Ker lT \ sont de dimension finie, les sous-espaces 
Im T\ et Im lT  \  sont fermés, de codimension finie et
(3.33.1) dim Ker T\ =  dim Ker tT \  =  codim Im T\ = codim Im tT \,
(3.33.2) Im Ta =  (KerlT xf  et I m ^ x  = {KerTx)°.

3. Toute valeur propre non nulle est isolée dans le spectre. Par suite, le spectre 
(T (T) est une partie compacte dénombrable dont 0 est le seul point d’accumulation 
éventuel.
Preuve Pour la démonstration de 1 et 2 on peut supposer A =  1 .

l,a. Montrons d’abord que, si est injectif, 7 \ est surjectif. On raisonne par 
l’absurde : supposons Tx non surjectif. Posons Fn = T f (F )  pour n  >  1. On peut 
écrire T f  =  Ie — Sn où l’opérateur Sn est compact d’après la proposition 3.32.2 ; 
d’après la proposition 3.32.7, Fn est un sous-espace fermé de E. Par ailleurs, on 
a pour n  > 1 Fn+X c  Fn ; montrons que toutes ces inclusions sont strictes : en 
effet, si Fn =  Fn+i, pour tout y G E il existe a: G F  tel que T[ly = T™"1"1#, 
d’où Ti(TiX -  y) = 0, soit T\x — y d’après l’injectivité de Tx et Tx serait donc 
surjectif contrairement à l’hypothèse. On peut donc utiliser le lemme 3.33.2 ; soit 
0 < e < 1, il existe xn G Fn — Fn+X tel que ||xn || =  1 et d(xn , Fn+X) > e. Pour 
tout p, q > 1 , on a

TXp T  Xp+g — Xp ^p,q
où xp>q = Xp+q +  T\xp -  TiXp+q appartient à Fp+X et par conséquent

\ \ T X p - T x p+q\\ >  £.

Ceci montre que la suite (Txn) n’admet aucune sous-suite convergente et, la suite 
(xn) étant bornée, ceci contredit la compacité de T.

l,b. Montrons ensuite que, si Tx est surjectif, Tx est injectif. D’après (3.18.8), 
l’opérateur *TX est injectif ; cet opérateur étant compact (théorème 3.32.8), il est 
surjectif d’après l,a. et (3.18.9) montre alors que Tx est injectif.
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2,a. Les sous-espaces Ker T\ et Ker lT\ sont de dimension finie d’après le 
corollaire 3.32.5. Les sous-espaces Im T\ et Im *Ti sont fermés d’après la pro­
position 3.32.7 ; (3.33.2) résulte alors du théorème 3.18.10 et, d’après le lemme 
3.33.1, Im Ti et Im *Ti sont de codimension finie et
(3.33.3) codim Im Ti =  dim Ker *Ti,
(3.33.4) codim Im *T\ =  dim Ker Ti.

2,b. Démontrons ensuite que
(3.33.5) codim Im Ti <  dim Ker Ti.
Posons d =  codim Im Ti, df =  dim Ker Ti et supposons d > df. D’après les 
corollaires 3.6.13 et 3.13.13, Ker Tx et Im Ti admettent des supplémentaires to­
pologiques, soit E  =  Ker Ti 0  F = Im Ti 0  G ; G est un sous-espace de 
dimension finie égale à d. Notons P : E  Ker Ti le projecteur linéaire associé 
à la première somme directe. Étant donné que d! <  d, il existe une application 
linéaire injective Q : Ker Ti ->• G et cette application ne peut être surjective. 
Considérons alors l’opérateur R\  =  Ie — R  où R = T  — Q o P. L’opérateur 
Q o P  est de rang fini, donc R  est compact. Vérifions que Ri  est injectif : suppo­
sons R\x  =  Tix +  Q(P(x)) =  0  ; on a T\x £ Im Ti et Q(P(x)) £ G, d’où 
Tia: =  Q(P(x)) =  0, c’est-à-dire x £ Ker Ti et Px  =  0 (Q est injectif) et par 
conséquent x = 0. D’après 1., i î i  est donc surjectif ; or, R\ = T\ +  Q o P , donc 
Ri(E)  C Im Ti 0  Im Q et, Q n’étant pas surjectif, P i  ne peut pas être surjectif. 
L’hypothèse d '< d  est donc absurde : ceci démontre (3.33.5).

2,c. D’après (3.33.3) et (3.33.4), on en déduit que 
dim Ker 4T i < dim Ker Ti,

d’où en remplaçant Ti par *Ti
dim Ker uTi  < dim Ker *TX <  dim Ker Ti.

D’après (3.18.13), on a Ker Ti =  ^ ( K e r  t4T i), d’où 
dim Ker Ti < d i m K e r ttTi

et il en résulte que dim Ker Ti =  dim Ker 4T i, ce qui prouve (3.33.1).
3,a. Montrons que toute valeur propre A ^  0 est isolée. Raisonnons par l’ab­

surde. Supposons qu’il existe une suite An £ a(T ), An ^  À, Àn ^  0 et Ap ^  Xq 
si p ^  q, telle que À =  limn_>oo An. Soit xn ^  0  un vecteur propre associé à la 
valeur propre An . La suite (xn) est libre, donc le sous-espace vectoriel En engen­
dré par les points (xP)i<P<n est de dimension n. L’inclusion P n_i C En étant 
stricte, on peut appliquer le lemme 3.33.2 ; soit 0 <  e <  1, il existe yn £ En, 
||yn || =  1 tel que d(yny £ n- i )  >  £• Pour p >  2  et q >  1 , on peut écrire

Typ _

AP+<?
— Vp+q Zpyq

où zPA appartient à Ep+q- \  : en effet, Typ/ \ p £ Ep car T(EP) c  
Typ/ \ p Ç. Ep+q- 1 et, si yp+q = Yn=i IHXu on a

P+Q- 1

Typ+q  ~  ^p+qVp+q =  ^   ̂ — ^p+q)y>ix i £  -®p+g—1>
i=  1

Epy d’où
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d’où Typ+q/ \ p+q -  yp+q G Æp+g-i. Ceci prouve que zPtQ appartient à Ep+q- i, 
d’où

IlTyp+q/\p+q — Typ/Xp\\ >  e
et il en résulte que la suite (Tyn/Xn) ne contient aucune sous-suite convergente, 
ce qui est contraire à la compacité de l’opérateur T, la suite (yn/^n)  étant bornée. 

3,b. On en déduit que le spectre est dénombrable, car
oo

* ( r )  -  W  =  U
71=1

où An =  <j (T) fl {A € K ; |A| > 1/n} est compact et discret, donc fini. Q.E.D.
Remarque 3,33.1 L’alternative de Fredholm Considérons l’équation d’incon­
nue x  G E
(3.33.6) Xx — Tx = y, À G K.

Si À G p(T), cette équation admet une unique solution quel que soit y e E, à 
savoir x =  i?.(À; T)y.

Si À G a (T), A ^ O , l’ensemble des solutions de l’équation homogène, c’est- 
à-dire pour y = 0, est un sous-espace vectoriel de E  de dimension finie n > 0 
et l’ensemble des solutions de l’équation Xy' — tTyf = 0  est un sous-espace vec­
toriel de E'  de même dimension n  d’après (3.33.1). D’après (3.33.2), l’équation
(3.33.6) admet alors des solutions si, et seulement si, <  y \  y > =  0 pour tout yf 
solution de Xy' -  lTyf = 0 , c ’est-à-dire si y vérifie n conditions linéaires, linéai­
rement indépendantes ; l’ensemble des solutions de (3.33.6) est alors de la forme 
xo +  Ker T\  où a?o est une solution particulière, il s’agit d’un sous-espace affine 
de dimension n.

Remarque 3.33.2 Opérateur à indice Soient E  et F  des espaces vectoriels et 
T : E -> F  une application linéaire. On dit que T  admet un indice ou que T  est 
un opérateur de Fredholm si le noyau de T  est de dimension finie et si l’image de 
T est de codimension finie ; on définit alors l’indice de T  ainsi

X(T) =  dim Ker T  — codim Im T  G Z .

Si T  G %(E) est un opérateur compact, le théorème précédent montre que T\> 
X 7̂  0, est un opérateur à indice et d’indice nul. Dire que l’indice est nul signifie 
que le nombre de conditions linéairement indépendantes que doit vérifier y pour 
que l’équation (3.33.6) admette des solutions est égal à la dimension de l’espace 
des solutions ; il s’agit là d’une propriété tout à fait remarquable des opérateurs 
compacts.

Lorsque E  est un espace de Hilbert, dans l’énoncé du théorème 3.33.3, on 
peut substituer à l’opérateur lT\  l’adjoint de l’opérateur T\ , c’est-à-dire l’opéra­
teur Tj = XIe -  T*, la formule (3.33.2) s’écrivant alors Im T\ = ( Ker T^)-1. 
Lorsqu’il existe des propriétés supplémentaires de l’opérateur T  liées à la structure 
hilbertienne de E , le théorème 3.33.3 peut être précisé comme nous allons le voir 
pour des opérateurs normaux ou hermitiens.
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Exercice 3.33.1 Soient F  un espace de Banach, Tn G %(E)  une suite d’opérateurs compacts 

convergeant vers T  G % (E)  dans l’espace de Banach £ ( F )  et soit An G <r(Tn). Montrer que toute 

valeur d’adhérence de la suite (An ) appartient au spectre de T.

Exercice 3.33.2 Soient 1 <  p, q, r  <  oo tels que 1 / r  =  1 /p  +  1 /q , y  G lq(N; K) et 
T  : /P(N; K) -*  F  (N; K) l’application linéaire continue x »-> xy.  Montrer que T  est un opérateur 

compact si, et seulement si, lim n ->oo yn =  0 (condition toujours vérifiée si q est fini) [pour démontrer 
que la condition est nécessaire lorsque q =  oo, utiliser le théorème 3.33.3 ; pour la condition suffisante, 
vérifier que T  est la limite d’une suite d’opérateurs de rang fini].

Exercice 3.33.3 1. Soient E , F  des espaces vectoriels, T  : E F  une application linéaire et soit 
Eo un sous-espace vectoriel de E  de codimension finie. On pose 7o =  T \e0 ■ Eq F.

a. Montrer que Ker Tb =  Ker T  fl Eq.
b. Dans l ’espace vectoriel Ker T , soit E\  un supplémentaire algébrique de Ker 7o. Montrer qu’il 

existe un sous-espace vectoriel E2 de E  tel que E  =  Eo © E\  ©  È2 (somme directe algébrique).
c. Montrer que Im T  =  Im 7b © T ( F 2 ).
d. En déduire que T  est de Fredholm si, et seulement si, 7o est de Fredholm et que

X (T ) =  A (7o) +  codim Eo.

2. Soient F , F , G des espaces vectoriels, T  : E  F y S  : F G  deux opérateurs de Fredholm. 
Soit Eo un supplémentaire algébrique de Ker T  : E  =  Ker T  ©  Eo. En écrivant l’opérateur

(S o T)\e 0 : Eo ->  G

comme le composé des opérateurs T \e0 : Eo —> Im T  et 5 | i m T : Im T  ->  G, montrer que S  o T  
est de Fredholm et que

X (S oT )  =  X(S) +  X(T).
3. Soient E , F  des espaces vectoriels et T : E  —> F  une application linéaire. Soit Fo un sous- 

espace vectoriel de dimension finie de F , on note 7  : E  x  Fo ->  F  l’application linéaire

7  : (x, y)  G E  x  Fo y — Tx  G F.

Montrer que T  est de Fredholm si, et seulement si, 7  est de Fredholm et que

X(7) =  X(T)  +  dim F0.

Exercice 3.33.4 Soient F  et F  des espaces de Banach.
1. Soit T  G £ ( F ;  F )  un opérateur de Fredholm.

a. Soit Eo un supplémentaire topologique de Ker T  et soit Fo un supplémentaire algébrique
de Im T

E =  K e r T © F 0 e t F  =  I m T © F 0 .

Montrer que l ’application
7  : (x, y) G Fo x  Fo »-> y  — Tx  G F  

est un isomorphisme topologique.
b. En déduire que T  est à image fermée (pour un résultat plus général dans le cadre des 

espaces de Fréchet, voir l’exercice 3.11.6).
2. En utilisant le théorème 3.18.10, montrer qu’un opérateur T  G £ ( F ;  F )  est de Fredholm si, et 

seulement si, l’opérateur lT  G £ ( F ';  F ')  est de Fredholm ; on a alors

X{T)  +  X(tT ) =  0.

3. a. Soit T  G £ ( F ;  F )  un opérateur de Fredholm et soit S  G £ ( F ;  F ). Les sous-espaces F o et 
F0 ayant la même signification qu’à la question l,a., montrer qu’il existe € >  0 tel que, pour ||£ || <  e, 
l’opérateur

U : (x,y) € Eo x Fo - ï  y  — (T +  S)(x)  G F
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est un isomorphisme.
b. En utilisant l’exercice 3.33.3, en déduire que l’ensemble Fredh (E; F)  des opérateurs de Fred- 

holm est ouvert dans L(E\ F)  et que l ’application

X : T  G Fredh (E\ F)  i-> X (T ) G Z

est continue.

c. En raisonnant de façon similaire, montrer que T  +  S  est de Fredholm si T  G Fredh (E ; F)  est 
de Fredholm et S  G X(E\ F)  compact ; de plus X (T  +  S) =  X (T ).

3.34 Opérateurs compacts normaux et hermitiens
Soit E  un espace de Hilbert, un opérateur T  G £ ( £ )  est dit normal s’il commute 
avec son adjoint, c’est-à-dire si TT* = T*T ; il est dit hermitien (lorsque K  =  R 
on dit que T  est symétrique) si T  =  T * .  Un opérateur hermitien est évidemment 
normal.

Si T  est un opérateur hermitien, (Tx\x) étant réel pour tout x G E, on dit que 
T  est positif si (Tx\x) > 0 pour tout x et que T  est défini positif si (Tx\x) > 0 
pour tout x ±  0. Si T  est un opérateur hermitien positif, la forme hermitienne 
(x, y) i-> (Tx\y) est positive et, d’après l’inégalité de Cauchy-Schwarz, on a donc
(3.34.1) \(Tx\y) \ 2 < (Tx\x)(Ty\y) pour tout x, y G E .
Il en résulte qu’un opérateur hermitien positif est défini positif si, et seulement si, 
il est injectif.

Exercice 3.34 .1  Soit E  un espace de Hilbert, sur £ (E)  montrer que la relation «T  — S  est un 

opérateur hermitien positif» est une relation d’ordre qui sera notée S  <  T.  En particulier, T  >  0 

signifie que T  est un opérateur hermitien positif.

Exercice 3 .3 4 .2  Soient E  un espace de Hilbert et T  G &{E) un opérateur hermitien positif, montrer 

que, pour tout entier k G N, T k est un opérateur hermitien positif [distinguer selon la parité de &]. Si 
P G R+ [X] est un polynôme à coefficients positifs, P (T) est un opérateur hermitien positif.

Exercice 3.34.3 Soient E  un espace de Hilbert et (Tn ) une suite croissante (pour la relation d’ordre 

définie à l’exercice 3.34.1) d’opérateurs hermitiens, si cette suite est bornée dans £{E) ,  montrer qu'elle 

converge simplement vers un opérateur hermitien T  G £ (E)  [montrer que la suite ((Tn æ|æ)) converge 

et, si TPtq = T q —Tp, p < q, majorer \(TPtqx\y)\ grâce à Cauchy-Schwarz]. Si les Tn sont positifs, 
il en est de même de T.

Exercice 3.34.4 Soient E  un espace de Hilbert et T \ , T2  G £ (E)  deux opérateurs hermitiens posi­
tifs tels que 7\2 =  T |  et qui commutent, montrer alors que T\ =  T2  [noter que

(T i + T 2)(T i - T 2) =  0

et, si y =  (Ti -  T2 )x , que (T\ +  T2 )y =  0 ; en déduire que (Tiy\y) =  0, i  =  1,2, puis Tiy  =  0 et 

(Ti -  T2 ŸX =  0 ; conclure].

Pour étudier le spectre des opérateurs hermitiens, nous utiliserons le lemme de 
Lax-Milgram. Voici d’abord une définition.
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Définition 3.34.1 Un opérateur T  G £(E) est dit coercif s'il existe une constante 
c>  0  telle que
(3.34.2) \(Tx\x)\ > c\\x \\2 pour tout x G E.
Proposition 3.34.1 Lemme de Lax-Milgram Soit E  un espace de Hilbert, un 
opérateur coercif T  G £(E) est un isomorphisme de E sur E  et ||T _1|| <  c“ \  
c>  0 étant la constante figurant dans (3.34.2).
Preuve On a d’après Cauchy-Schwarz

c ||x ||2 <  |(Tx|x)| <  ||Tx|| ||x||,
d’où c ||x || <  ||Tx||. Il en résulte que T  est injectif et que T - 1  : T(E)  -» E  
est continu ; ceci prouve que T(E)  est isomorphe à E , donc fermé car complet. 
Pour conclure, il suffit de vérifier que l’orthogonal de T(E)  est réduit à {0}. Or, si 
x G T(E)±i on a (Ty\x) = 0 pour tout y G E  et en particulier pour y = x> d’où 
(Tx\x) =  0. Vu la coercivité de T, on en déduit x  =  0 et le résultat voulu. Q.E.D.

Proposition 3.34.2 Soit T  G E(E) un opérateur hermitien, alors le spectre de T  
est réel et
(3.34.3) ||Æ(A;T)|| <  l^m AI” 1 si A g  R.
En outre, si E ^  {0}, en posant

a  =  inf (Tx\x), fi = sup (Tx\x),
ll*ll = 1 \ \ x \ \= l

on a a(T) c  [a , fi] et a e cr(T), fi G cr(T).
Preuve 1. Soit A =  a + i r  avec r  ^  0 ; (Tx\x) étant réel,

|(TAx|x)| =  |A||x||2 - ( T x | x ) | > | r |  ||x||

D’après le lemme de Lax-Milgram, T\ est un isomorphisme, soit A G cr(T) et la 
norme de la résolvante est <  13m A|_1.

2. Montrons que fi appartient au spectre de T. D’après la définition de /?, 
l’opérateur hermitien Tp est positif, d’où \(Tpx\y) \ 2 < (Tpx\x)(Tpy\y) d’après 
Cauchy-Schwarz et, vu que ||T^x|| =  sup^n^! \(Tpx\y)\, il existe une constante 
c > 0 telle que ||T^a:||2 <  c (Tpx\x) pour tout x de E. Il existe d’autre part une 
suite (xn) de E  telle que

||xn || =  l e t  lim (Txn\xn) = fi]
n —> oo

l’inégalité précédente montre que la suite (Tpxn) converge vers 0  et, si fi était 
dans l’ensemble résolvant, la suite (xn) convergerait vers 0 , ce qui est absurde. 
Ceci prouve que fi appartient au spectre.

3. Tout réel A >  fi appartient à l’ensemble résolvant. On a en effet
(T\x\x) > c ||a;||2 oùc  =  A -  / ? > 0

et on conclut avec le lemme de Lax-Milgram.
4. En remplaçant T  par —T, on en déduit que a  appartient au spectre et que 

tout réel A < a  appartient à l’ensemble résolvant. Q.E.D.
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Cette proposition montre que, si E ±  {0}, le spectre d’un opérateur hermitien 
n’est pas vide. On en déduit également que le spectre d’un opérateur hermitien 
positif est contenu dans la demi-droite [0 , +oo[.

Voici une formule très simple donnant le rayon spectral d’un opérateur hermi­
tien.
Proposition 3.34.3 Soit T  e £ (£ ) , E  ^  {0}, un opérateur hermitien, alors
(3.34.4) r(T) = ||T|| =  sup |(Tx|x)|.

Il*ll=i
Preuve D’après la proposition précédente, on a

sup |(Tx|x)| =  m ax(|a |, |/3|) =  r(T ) 
ll*ll=i

et il s’agit de vérifier que ||T|| =  sup ||æ||=1  |(Tx|x)|. Notons A cette borne supé­
rieure, on a \(Tx\x)\ <  ||T|| ||x ||2, d’où A <  ||T||. D’autre part, la forme (Tx\y) 
étant hermitienne, on a

4îïe (Tx\y) = (T(x +  y)\x +  y) -  (T{x -  y)\x -  y ),
d’où

4|Sfte (Tx\y)\ <  A(||x +  y f  +  ||x -  y f )  = 2A(\ \xf  + ||y ||2).
Lorsque y est différent de 0, remplaçons y par ||a:||/||y|| y, on obtient 
|Sfte(Tx|y)| < A||x|| ||y|| et, en prenant y =  Tx, ||T x ||2 <  i4||x|| ||Tx||, d’où 
||Tx|| < A\\x\\ et ||T|| < A. Q.E.D.
Remarque 3.34.1 Si T  est un opérateur hermitien, il existe donc une valeur spec­
trale de module ||T||. Si T  est un opérateur normal et si K =  C, on peut démon­
trer (en utilisant la théorie des fonctions holomorphes) que ce résultat subsiste : le 
spectre est non vide et r (T) =  ||T ||. Ceci est en défaut sur M car le spectre peut être 
vide comme le montre l’exemple suivant. On considère l’espace E = R2  muni de 
sa structure euclidienne usuelle et la rotation d’angle 7t/ 2 , T  : (x, y) ■-* ( - y ,  x) ; 
on vérifie aisément que T* =  - T  et par conséquent T  est normal ; dans la base 
canonique de R2, T  a pour matrice représentative la matrice

C V )
et cette matrice n’a pas de valeur propre réelle, ce qui prouve que le spectre de T  
est vide.
E x erc ice  3.34.5 Soient E  un espace de Hilbert et T  un opérateur hermitien positif tel que 

||T || <  1, montrer que l’opérateur I e  -  T  est un opérateur hermitien positif et que \\Ie  -  T\\ <  1 
[utiliser la proposition 3.34.3].

E x ercice  3.34.6 Racine carrée des opérateurs hermitiens positifs Soient E  un espace de Hilbert 
et T  un opérateur hermitien positif, on se propose de démontrer qu’il existe un unique opérateur her­
mitien positif S  tel que S 2 =  T  ; cet opérateur sera noté T 1/ 2. En outre, cet opérateur commute avec 
tout opérateur qui commute avec T .

1. On définit une suite (P n ) de polynômes en posant

Po{t) — 0, Pn+l(t) —PiW + t pour n  >  0.
2
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Vérifier que les coefficients de ces polynômes, ainsi que ceux des polynômes Pn+i  — Pn , sont positifs 
et que Pn ( l )  <  1.

2. On suppose ||T || <  1. Montrer que la suite (Pu(Ie  — P))  converge simplement vers un 
opérateur hermitien positif de norme <  1 que nous notons I& — S  [utiliser les exercices 3.34.2,3.34.3  
et 3.34.5]. Vérifier que S  est un opérateur hermitien positif, que S 2 =  T  et que S  commute avec tout 
opérateur qui commute avec T .

3. Quant à P unicité, si U est un opérateur hermitien positif tel que U2 =  T , noter que U commute 

avec T  et utiliser l’exercice 3.34.4.

Exercice 3 .3 4 .7  Soient E> F  des espaces de Hilbert, T  e  £ ( F ;  F ) , montrer qu’il existe un opéra­
teur S  E  £ ( F ;  F)  tel que ||5 || <  1 et

T  =  S (T * T )1/2 et (T * T )1/2 =  S*T

[vérifier d’abord que ||(T *T ,) 1/ 2æ|| =  ||T:r|| pourtoutæ E F  et en déduire que ||T || =  ||(T ,*,T ) 1/ 2 || ; 
définir ensuite S  sur G  =  Im (T*T ) 1/ 2 en posant Sy =  Tx si y =  T*T)lt2x , prolonger S  à G 
puis à F  en prenant S = 0 sur G± et utiliser l ’exercice 3.29.4]. En déduire que l’opérateur T  est 
compact si, et seulement si, l’opérateur (t * T )1/ 2 l ’est.

Pour étudier le spectre des opérateurs normaux, on a besoin des résultats pré­
liminaires suivants.

Lemme 3.34.4 Soit E  un espace de Hilbert et soit T  E £(E), alors le spectre de 
T* est Vimage du spectre de T  par Vapplication À h-» A.

Preuve En effet, l’adjoint de T\ est l’opérateur Tj- ; on conclut avec la proposition 
3.29.8. Q.E.D.

Proposition 3.34.5 Soit T  € £ (£ ') un opérateur normal, alors KerT =  KerT* 
et KerT\ =  Ker Tj-. Pour tout \ , / i  e K, \  ^  p, les sous-espaces KerT\ et 
Ker Tp sont orthogonaux.

Preuve 1. Soit x E KerT, on a T(T*x) = T*(Tx) = 0, d’où T*x E K erT  ; 
autrement dit, T*(Ker T) C  Ker T. On a d’autre part Ker T  =  (Im T * ) - 1 d’après
(3.29.7), d ’où T*(Ker T) C ( I m T * ) - 1 et il en résulte que T*(Ker T) =  {0}. 
Ceci prouve que Ker T  C Ker T* ; en remplaçant T  par T*, qui est évidemment 
normal, on obtient l’inclusion opposée et par conséquent Ker T  =  Ker T*.

2. L’opérateur T\  est un opérateur normal admettant pour adjoint l’opérateur 
; d’après 1., on a donc Ker T\  =  Ker Tj.
3. Soient x,y e E  tels que Tx  =  Àa; et Ty  =  py, alors T*y =  py d’après 2.,

d’où (Tx\y) = X(x\y) et (x\T*y) =  p{x\y) et il en résulte que (A -  p)(x\y) = 0, 
d’où (x\y) =  0 vu que A ^  p. Q.E.D.

Lemme 3.34.6 Soient E  et F des espaces de Hilbert et T  E £>{E\ F), alors T T * 
et T*T sont des opérateurs hermitiens positifs et
(3.34.5) ||TT*|| =  ||T*T|| =  ||T ||2 =  ||T*||2.

Preuve On a (TT*)* =  T**T* =  TT* et
(TT*x\x) = (T*x\T*x) = \\T*x\\2 > 0
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ce qui prouve que TT* est hermitien positif. On a en outre
IIT^H2 =  (TT*x\x) <  ||TT*|| H 2,

d’où
l i m 2 <  l|3T*|| <  ||T|| ||T*|| =  ||T * | | 2

et par suite ||TT*|| =  ||T * | | 2 ; on conclut en remplaçant T  par T*. Q.E.D.
Exercice 3.34.8 Un opérateur T  G L(E)  est dit unitaire si TT* = T*T  = IE. Montrer que 
||T|| =  ||T* || =  1 et que le spectre de T  est contenu dans le cercle unité {À G C ; | A| =  1}.

Nous allons vérifier la propriété mentionnée à la remarque 3.34.1 lorsque T  est 
un opérateur compact, soit
Proposition 3.34.7 Soient E  ^  {0} un espace de Hilbert complexe et T  £ X(E) 
un opérateur compact normal, alors le spectre de T  est non vide et r(T) = ||T|| : 
autrement dit, il existe une valeur spectrale de module ||T||.
Preuve On peut supposer T  ^  0 et par homothétie ||T|| =  1 . L’opérateur T*T est 
compact, hermitien positif et de norme 1 (lemme 3.34.6) ; il en résulte que 1 est 
une valeur propre de T*T. Soit

F = {x £ E  ; x -  T*Tx = 0}
le sous-espace propre associé ; ce sous-espace est de dimension finie >  0. On 
remarque alors que F  est stable par T  et T* : en effet, si y =  Tx  avec x e  F, 
on a y -  T*Ty =  T(x — T*Tx) = 0 car T  et T* commutent ; ceci montre que 
T (F) C F  et on vérifie de même que T* (F)  C F.  Il en résulte que les restrictions 
de T  et T* à F  sont des opérateurs de F  dans lui-même ; il est clair que l’adjoint 
de T\p, en tant qu’opérateur de F  dans F , est l’opérateur T*\p. Il en résulte que 
T\p  est un opérateur normal. L’espace F  étant de dimension finie, l’opérateur T\p 
admet au moins une valeur propre À d’après le théorème de D’Alembert (exercice 
2.33.11) ; soit x  G F , x ^  0, un vecteur propre associé à cette valeur propre. On a 
donc X x - T x  = 0, d’où \ x  -  T*x = 0 d’après la proposition 3.34.5 ; d’après la 
définition de F , on en déduit que x = T*Tx = \\\2 x, d’où |À| =  1 et ceci montre 
que T  admet une valeur propre de module 1. Q.E.D.

Étant donné un opérateur T  £ £(E)  et un scalaire A, nous noterons E\(T)  le 
noyau de l’opérateur T\ et P\ le projecteur orthogonal de E  sur ce sous-espace 
fermé. On a alors le
Théorème 3.34.8 Soient E  un espace de Hilbert et T  £ X(E) un opérateur com­
pact symétrique si K = R, normal si K = C.

1. Alors E est la somme hilbertienne des sous-espaces (E\(T))\e<J(T)
(3.34.6) E =  ©  E\(T).

A6 <t(T)

2. Les familles (XP\)xec(r) et (\P\)\€a(T) sont sommables dans L{E) et de 
somme T et T* respectivement
(3 .3 4 .7 ) T  =  XP\ et T* =  ^  ÀPA.

ÀGcr(T) AG<t(T)
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Preuve 1. Il s’agit de démontrer que le sous-espace F  engendré par U ae<t(t ) (T) 
est dense dans E , c’est-à-dire que F 1- =  {0}. Remarquons d’abord que E\(T)  est 
stable par T  et T* : en effet, supposons Ax - T x  =  0, alors XTx -  T(Tx) = 0 
et AT*x — T(T*x) = T*(Xx -  Tx) = 0 car T  et T* commutent. Le sous-espace 
F  est donc stable par T  et T*. Il en est de même de F 1- : en effet, soit x  G F ±i 
y G F, alors (Tx\y) =  (x\T*y) = 0 car T*y G F  et (T*x\y) =  (x\Ty) =  0 car 
Ty  G F. Il en résulte que l’opérateur S  =  T\F± G £ (F -L) est un opérateur com­
pact (proposition 3.32.2) dont l’adjoint 5* est évidemment T *\F± ; il en résulte 
que S  est symétrique si K =  R et qu’il est normal si K = C.

Montrons que S  n’admet pas de valeur spectrale non nulle. Une valeur spec­
trale À ^  0 de S  est une valeur propre : il existe donc x G F ± 9 x ^  0, tel que 
S \x  =  0, soit T\x = 0  ; A est donc une valeur propre de T  et x un vecteur propre 
associé, ce qui est absurde, x appartenant à F -1 .

Si F 1- n’est pas réduit à {0}, le spectre de S  n’est pas vide (proposition 3.34.7 
lorsque S  est normal), d’où a(S) =  {0 }, r(S) = ||5|| =  0  et par conséquent 
5  =  0, c’est-à-dire F ± C Ker T  ce qui est absurde d’après la définition de F. 
Ceci démontre le résultat voulu : F 1- =  {0}.

2. Soit x G F , posons x \  =  P\x  G E\(T). La famille (x \) \ea(T) est som­
mable de somme x  ; étant donné que T x \  =  Xx\ 9 la famille (Axa) est sommable 
et de somme Tx. Soit A une partie finie de a(T) ; d’après la relation de Parseval, 
on a

||Tx - ] T àxa ||2 =  |A|2||xa ||2 <  sup |A|2 £  I M 2,
A€A A6ct(T )-A  \€<j(T)-A  A €a(T )-A

d’où ||T  —S a€A APa|| < supA6<7(T)_A |A|.
D’après le théorème 3.33.3, pour tout € > 0, il existe une partie finie Ao de 

a(T) telle que, pour toute partie finie A D  Ao, supAe<r(T)-A |^ | 5? £, d’où

Il t - £ apa| | < £
A€A

et ceci prouve que la famille (APa) est sommable et de somme T.
Quant à l’opérateur T*, il est compact, symétrique si K =  R, normal si 

K = C comme l’opérateur T, son spectre est le conjugué de celui de T  et 
Ej(T*) = E\(T)  ; la seconde formule (3.34.7) résulte donc de la première.

Q.E.D.
La somme hilbertienne (3.34.6) est appelée la décomposition spectrale de E  

relative à l’opérateur T. En choisissant une base hilbertienne dans chaque sous- 
espace propre E \(T ), on obtient une base hilbertienne de vecteurs propres ; une 
telle base diagonalise l’opérateur T.

Remarque 3.34.2 Lorsque T  est un opérateur hermitien compact, on a

(T x|x) =  £  A||xa ||2
A Ga(T)
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et ceci montre que T  est un opérateur positif si, et seulement si, le spectre de T  est 
contenu dans la demi-droite [0 , + 0 0  [.

Exemple 3.34.1 On considère l’espace de Hilbert Z2 =  Z2 (N; K) ; on note (en) 
la base hilbertienne de cet espace définie à l’exemple 3.31.1. Si a =  (an) est une 
suite bornée de K, on définit un opérateur T  G L (Z2) en posant

On définit bien ainsi une application linéaire et continue de Z2 dans lui-même, la 
suite (anxn) appartenant à l’espace Z2 et

d’où ||T|| <  ||a ||oo  ; étant donné que ||Ten || =  |an |, on a ||T|| >  \an\ pour tout n, 
d’où ||T|| >  IM U et ||T|| =  IMIoo. ___ _____

Montrons que le spectre de T  est le compact K  =  I J ^ o W } -  Tout point an 
est une valeur propre de T, donc a (T) contient K . Montrons que tout 
À ^  K  est une valeur régulière, ceci prouvera le résultat voulu. L’équation 
T\x  =  y s’écrit Xxn -  anxn =  yn où xn =  (x|en), yn =  (y|en), et on a néces­
sairement xn =  (À — an)~lyn ; À n’appartenant pas à K , il existe une constante 
c>  0  telle que |À -  an\ > c, d’où \xn\ < c~l \yn\ et ceci prouve que la suite (xn) 
appartient à l’espace Z2 et par conséquent T\ est bijectif. On a donc a(T ) =  K . 
On en déduit en particulier que toute partie compacte de K est le spectre d’un 
opérateur T.

Soit X G K  une valeur spectrale, si À est l’un des an, A est une valeur propre. 
Si À t£ an pour tout 7i, À n’est pas une valeur propre : l’équation T\x  =  0 s’écrit 
en effet Xxn =  anxni d’où xn = 0  et x = 0 .

Vérifions que l’opérateur T  est compact si, et seulement si, la suite (an ) tend 
vers 0. Considérons les opérateurs de rang fini Tnx = Ylp=oaPxPeP' on a 
l |T - T n || < supp>n |ap|, ce qui prouve que la condition est suffisante. Récipro­
quement, supposons l’opérateur T  compact ; pour tout e > 0, posons
A =  {n £ N; \an\ > e}y alors A =  \JneA{an} est une partie finie de a (T) 
d’après le théorème 3.33.3 et, pour tout À G A, le sous-espace propre E\(T)  est 
de dimension finie ; étant donné que en G E\(T)  si À =  an, nécessairement A est 
fini, ce qui prouve le résultat voulu.

L’adjoint de T  est donné par la formule T*x =  ânxnen ; T  est donc un 
opérateur normal et il est hermitien lorsque les an sont réels.

La décomposition spectrale de E  permet de résoudre complètement l’équation

oo
Tx  =  ^ 2  anxnen où x € Z2, xn - (x|en).

n = 0

n = 0

(3.34.8) fix — Tx  =  y où \i G K  et y G E.
Cette équation est équivalente à
(3.34.9) \ix\ -  Xx\ =  y\ pour tout A G a(T)
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OÙ XX =  P \X ,  yx  =  Pxy-
Lorsque n & a(T) U {0}, fi appartient à l’ensemble résolvant et l’équation

(3.34.8) admet une solution unique

(3.34.10) x =  Y
[1 — A

X ea (T) p

Lorsque /i G (j(T), ^  /  0, c’est-à-dire lorsque /x est une valeur propre non 
nulle, l’équation (3.34.9) pour A — [x s’écrit yfi = 0  et par suite l’équation (3.34.8) 
admet des solutions si, et seulement si, yfl = 0  et la solution générale s’écrit

(3.34.11) x  = x„+ Y
A6<r(T),A#/t ^

On notera que la condition 2/^ =  0 signifie bien y G (Ker T^ ) - 1 vu que
KérT/i = KerTf

Lorsque {x =  0, il s’agit d’étudier l’équation
(3.34.12) Tx = y 
équivalente à
(3.34.13) Xx\ =  y\ pour tout À G a  (T).

Lorsque 0 n’est pas valeur propre, xo = yo =  0 et la seule solution éventuelle 
de (3.34.12) est donnée par x \  = y \ / \  pour A ^  0. D’après le théorème 3.30.2, 
on a donc

(3.34.14) T(E) = {y e E - ,  Y  <  <*>}
Xe<r(T)yX^0 * '

et, si y G T(E), l’équation (3.34.12) admet l’unique solution

(3.34.15) x  =  Y  T '
AG(7(T),A^0 a

Lorsque 0 est valeur propre, pour A =  0 (3.34.13) s’écrit yo = 0 et par consé­
quent

(3.34.16) T(E) = { y e E ; y o  = Oet Y  % S "  <  °°}>
AGcr(T),A^0 1 1

la solution générale de (3.34.12) s’écrit alors

(3.34.17) x = x0 + Y  y  où x0 G Ker T.
AG<t(T),A^0 a

Lorsque T  est un opérateur hermitien compact, le théorème 3.34.8 permet 
d’établir des formules utiles donnant les valeurs propres de T. On sait déjà (propo­
sition 3.34.2) que la plus grande valeur propre est donnée par la formule 
Ai =  sup ||æ||=1  (Tx\x). Nous allons nous intéresser aux valeurs propres positives ; 
on a des résultats analogues pour les valeurs propres négatives, résultats qu’on ob­
tient en remplaçant T  par - T .  Notons (An)n>i la suite décroissante de toutes les 
valeurs propres strictement positives de T, chaque valeur propre étant répétée un
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nombre de fois égal à la dimension du sous-espace propre associé ; bien entendu, 
cette suite peut être finie (et même vide !). Notons (en)n>i une suite orthonormale 
de vecteurs propres associés : on a donc
(3.34.18) 0  <  An+i <  Àn et Ten =  Anen .
Notons F  le supplémentaire orthogonal de ® n > 1  Ken ; on a alors
(3.34.19) (Tx\x) <  0 pour tout x G F\
en effet, d’après le théorème 3.34.8 (Tx\x) = X^àe<7(T),a<o ^II^aII2-

La formule indiquée ci-dessus donnant la première valeur propre se généralise 
comme suit.
Proposition 3.34.9 On pose E0  =  {0} et En =  ® £ =1 Kep pour n > 1, alors
(3.34.20) An =  max (Tx\x) = min (Tx\x).

x € E Ï _ ly\\x\\=l xZEni\\x\\=lK

Preuve Soit x G E, ||x|| =  1 ;

x = ^ 2  xnen +  y où x„ = (x\en) et y e  F,
n>  1

d’où
(Tx|x) =  ^ 2  A„|xn |2 +  (:Ty\y) où (Ty\y) < 0.

n >  1

1. Si x appartient à E^_ ly c’est-à-dire si xp =  0 pour l < p < n - l ,  on a

(Tx\x) = J 2  Ap|xp |2 +  (Ty\y) <  An ^  |xp |2 <  An
p >n  p>n

et ceci prouve la première formule (3.34.20) vu que (Ten |en) =  An.
2. Si x  appartient à Eni c’est-à-dire si xp = 0 pour p > n et y =  0, on a

n n

(Tx\x) = ^  ] Ap|xpf >  An ^   ̂ |xp| =  An ,
P= 1 P= 1

d’où la seconde formule (3.34.20) étant donné que (Ten |en) =  An . Q.E.D.
Les formules (3.34.20) font intervenir les sous-espaces propres de l’opérateur ; 

on peut éliminer ces derniers de la façon suivante.

Proposition 3.34.10 Notons Qn Vensemble des sous-espaces de E de dimension 
n, alors
(3.34.21) An min max (Tx\x) = max min (Tx\x).

G€Qh- i xÇG1-,||æ ||=l æEG,||a;||=l

Preuve 1. Vérifions la première formule (3.34.21 ). Observons d’abord que la borne 
supérieure de (Tx\x) sur la sphère unité de G -1 est atteinte. Pour x e  G-1, on a en 
effet (Tx\x) =  (Sx\x) où S  = P o T  oi, P  désignant le projecteur orthogonal 
de E  sur Gx et i l’injection canonique de G -1 dans E. Cet opérateur S £ £ (G-1-) 
est compact (proposition 3.32.2) et hermitien vu que S* =  i* o T  o P* où i* =  P  
et P* = i. Il en résulte que la borne supérieure de (Tx\x) sur la sphère unité de
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G1- est simplement la plus grande valeur propre de S  et cette borne supérieure est 
atteinte pour x  vecteur propre de norme 1 .

D’après la première formule (3.34.20), il s’agit de vérifier que 
Xn <  max (Tx\x) pour tout G G S n -i,

æeCr-L)||a;|| =  l

c’est-à-dire de trouver un x  G G -1 de norme 1 tel que Àn <  (Tx\x) et, d’après 
la seconde formule (3.34.20), il suffit de vérifier que G± fl F n n’est pas réduit 
à { 0 } .  Pour démontrer ceci, considérons une base ( fq ) i< q<n - i  de G et soit 
x = Ylp= i xPep un élément de En ; alors x  appartient à G -1 si, et seulement 
si,

n

^2 ,x p{ep\fq) =  0  pour 1 <  q < n -  1 ; 
p= i

on obtient ainsi un système linéaire homogène de n — 1 équations à n inconnues. 
Un tel système linéaire admet toujours des solutions non nulles et ceci prouve donc 
que G1- fl F n ^  {0}.

2. Pour la seconde formule (3.34.21), on observe que la borne inférieure de 
(Tx\x) sur la sphère unité de G est atteinte car cette sphère est compacte. D’après 
la seconde formule (3.34.20), il s’agit de vérifier que An > minæG(̂ )||a.||=1(Tx|a;) 
pour tout G G 9n- Un raisonnement analogue à celui qui vient d’être fait montre 
que G fl E^-i  n’est pas réduit à {0}, ce qui permet de conclure. Q.E.D.

3.35 Opérateurs de Hilbert-Schmidt
Nous allons étudier un sous-espace de l’espace 9C(F; F) de tous les opérateurs 
compacts de E  dans F, le sous-espace des opérateurs de Hilbert-Schmidt ; lorsque 
les espaces F  et F  sont des espaces L2, ces opérateurs sont simplement des opéra­
teurs intégraux dont le noyau est de carré intégrable et, pour cette raison, il s’agit 
d’une classe importante d’opérateurs compacts.

On se donne deux espaces de Hilbert F et F et on note (ei)iGj et (f j ) j e J  des 
bases hilbertiennes de ces espaces.
Lemme 3.35.1 Soit T  G £(F; F), alors

(3.35.1) IIITHI =  ( £ | | T e i ||2) 1 /2  =  Ç £ \ \ T * fd 2 ) 1 / 2  e  [0.+OO].
i € l  j€J

Preuve D’après la relation de Parseval, on a

E im 2 = E E = E E \&\T* m 2 = E irai3-
i e i  i e i  j e J  j&J i ç i  j e j

Q.E.D.
Ce lemme montre en particulier que la quantité |||T ||| ne dépend pas du choix 

des bases hilbertiennes de E  et F  et que 11 |T| 11 =  11\T* \ 11.
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Lemme 3.35.2 Soient 5, T  G L(E;F), \  £ K, on a alors en convenant que 
0  x oo =  0

(3.35.2) IIIATIH =  |A| x |||T ||| et |||5 +  T ||| <  |||5||| +  |||T |||,
(3.35.3) ||T|| <  |||T |||.
Preuve La première relation (3.35.2) est évidente. Quant à la seconde, on a, en 
utilisant l’inégalité de Minkowski,

IH5 +  TIH =  ( ^ | | 5 e i +  Te j ||2) 1 /2

iel

< (E(ii5e*n + iiTe*ii)2) 1/2
iel

< ( ^ | | S e , | | 2) V2 +  ( ^ | | T e , | | 2) ,/2 ,
■iel iel

d’où || |5  +  T ||| <  |||5 ||| +  |||T |||.
Par ailleurs, pour tout =  (x|e*), on a

iitxii = iiE ^ h < Eî niTe*ii ̂  (£&i2) 1/2 * (Eim 2)172,
iel iel iel iel

d’où ||Tx|| <  lim il x ||x||, soit ||T|| <  |||T |||. Q.E.D.
On dit alors qu’un opérateur T  G £(E\F)  est de Hilbert-Schmidt si |||T ||| 

est fini ; le lemme précédent montre que l’ensemble !K(E; F) des opérateurs de 
Hilbert-Schmidt est un sous-espace vectoriel de &(E\ F) sur lequel |||«||| est une 
norme, dite norme de Hilbert-Schmidt ; cette norme, plus fine que la norme usuelle 
des opérateurs est associée au produit scalaire (S\T) = Y2iei(Sei\Tei). Notons 
également qu’un opérateur est de Hilbert-Schmidt si, et seulement si, son adjoint 
est de Hilbert-Schmidt.
Lemme 3.35.3 Soient E, F, G des espaces de Hilbert, S G &(E;F) et 
T G £ (F ;G ), alors

| | |T o 5 | | | < | | T | | x | | | 5 | | | ^ | | |T o 5 | | | < | | |T | | | x | | 5 | | .
Preuve Notons (9 k)keK une base hilbertienne de G, alors

IIIToSIH =  ( £ | |T ( S e , ) | | 2 ) 1 /2  <  ||T|| ( £ l l ^ H 2 ) 1/2  =  ||T|| x |||5 ||| 
iel iei

et

|||T o 5 ||| =  (E ||S*(T*5 fc)H2) 1 /2  <  ||5*|| (E ir <?fc||2) 1/2 =  ||5||x|||r|||.
keK kei<

Q.E.D.
Il en résulte que l’opérateur T  o 5  est de Hilbert-Schmidt dès que l’un des 

opérateurs T, S  est de Hilbert-Schmidt. On en déduit le
Corollaire 3.35.4 Soit T  G Oi(E) un opérateur de Hilbert-Schmidt tel que Ie ~ T  
soit inversible, alors (I e — T ) - 1  =  Ie — S où S  est de Hilbert-Schmidt.
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Preuve On a (IE -  T){IE -  S) =  IE, d’où 5  =  - T  +  T  o S  ce qui permet de 
conclure. Q.E.D.
Exercice 3 .3 5 . 1  Soient E , F  des espaces de Hilbert, montrer qu’un opérateur T e £ ( F ;  F )  est 
de Hilbert-Schmidt si, et seulement si, l ’opérateur (T * T ) * / 2  l’est et que || |T || |  =  | | |(T * T )1/ 2 ||| 
(utiliser l’exercice 3.34.7).

Proposition 3.35.5 L'espace J£(£l; F) muni de la norme |||*||| est un espace de 
Hilbert.
Preuve Soit (Tn) une suite de Cauchy dans %(E\ F). D’après (3.35.3), elle est a 
fortiori de Cauchy dans l’espace C(E] F), donc convergente dans cet espace ; soit 
T  sa limite. Pour tout e  > 0, il existe un entier n tel que ||Tpe$ Tqei \\2  <  € 
pour p,q > n, d’où \\TPei -  Te*||2 < e pour p > n et ceci prouve que 
Tp -  T, donc T, appartient à j f  (E; F) et que la suite (Tn) converge vers T  pour 
la norme de Hilbert-Schmidt. Q.E.D.

Voici un premier exemple d’opérateurs de Hilbert-Schmidt.
Proposition 3.35.6 Tout opérateur de rang fini est de Hilbert-Schmidt.
Preuve Soit T  G £ ( E; F)  un opérateur de rang fini. Choisissons la base hil­
bertienne (fj)jeJ  de F  de telle sorte Que T  s°it engendré par la sous-famille 
finie (fj)jeK  où K  est une partie finie de J . On a alors, pour tout x  de E , 
(x\T*fj) = (T x \f j) =  0 si j  G J  -  K,  d’où T*fj = 0 pour j  G J  -  K  et
im i = (Ei6*lirVill2)1/a<oo. Q.e.d.

Vérifions enfin que les opérateurs de Hilbert-Schmidt sont compacts.
Proposition 3.35.7 Les opérateurs de Hilbert-Schmidt sont compacts. En outre, 
le sous-espace des opérateurs de rang fini est dense dans !K(£; F) pour la norme 
de Hilbert-Schmidt.
Preuve II suffit de vérifier la dernière assertion. Soit T  G !K(E;F) ; pour tout 
e > 0 , il existe une partie finie J  de I  telle que J2iei-j  l l^ i l l2 ^  £• Considérons 
l’opérateur de rang fini Tjx  =  S ie  j ( x \ei)Tei ; on a alors

i r - T j | | |2= ||Tei||2 < e
i e i - J

et ceci prouve que l’ensemble des opérateurs de rang fini est dense dans (E; F) 
pour la norme de Hilbert-Schmidt et a fortiori pour la norme de &(E\ F). Q.E.D.

On observera que l’ensemble des opérateurs de rang fini est dense dans chacun 
des espaces C(E\ F) et Jf(E ; F) pour les normes ||«|| et 111*111 respectivement.

Le théorème 3.34.8 permet de donner une caractérisation des opérateurs nor­
maux qui sont de Hilbert-Schmidt.
Proposition 3.35.8 Soit T  G X(E) un opérateur compact symétrique si K = R, 
normal si K = C ; notons n\ la dimension du sous-espace propre associé à une 
valeur propre À non nulle (n\ est fini), alors
(3.35.4) lim i| =  ( £  haIAI2)1/ 2.

AE<t(T),à^0
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L'opérateur T  est donc de Hilbert-Schmidt si, et seulement si, cette quantité est 
finie.
Preuve Soit ( e * ) ^ /  une base hilbertienne de vecteurs propres, on a alors 

limi|2 = E l Ail2 ^ T e i =  Xi e i ,
i € l

ce qui prouve (3.35.4). Q.E.D.
E xerc ice  3 .3 5 .2  Opérateurs nucléaires Soient E, F  des espaces de Hilbert, un opérateur 
T  G L(E]F)  est dit nucléaire s ’il existe des suites (an )n > i  de E,  (6n )n > i  de F  et (An )n > i  
de K telles que

IKII = i. IIMI = i. £  lA"l < 00
71=1

et
oo

(3.35.5) Tx  =  An (x\an ) bn pour tout x G E.
71=1

On notera N(.E; F)  l’ensemble de tous les opérateurs nucléaires de E  dans F  et, lorsque E  =  F, 
N(£) = N (E ;E ).

1. Vérifier que la série X )^L i An (æ|an ) bn est absolument convergente.
2. On définit la norme nucléaire de T , ||* ||/ / ,  comme la borne inférieure des quantités Y ^ = i  l^n| 

pour toutes les représentations de T  de la forme (3.35.5). Montrer que ||T || <  ||T || w .
On montrera ci-dessous que N (£ ;  F)  est un sous-espace vectoriel de £(£?; F)  et que \\»\\n  est 

une norme sur cet espace vectoriel.
3. Montrer que tout opérateur de rang fini est nucléaire et que tout opérateur nucléaire est compact 

[vérifier que tout opérateur nucléaire est la limite d’une suite d’opérateurs de rang fini].
4. Soient E } F, G, H  des espaces de Hilbert, T  G £(E; F), S  G N (F ; G) et R e  L(G\ H),  

montrer que RST  G J<{E\H) et que ||A S T ||N <  ||i*|| | |S ||n  ||T ||.
5. Soient T  G 'N(E) et (e * ) ^ /  une base hilbertienne de E , montrer que la famille ((Tei\ei)) içj  

est sommable et que
oo

Y^(Tei\ei)  =  ^ A n (6a |a „ ) .
i€l  7 i= l

Ceci montre que la quantité S z 6 / ( ^ ei l e i)  ne dépend pas du choix de la base hilbertienne 
(ei)iei  ; on définit alors la trace de T  par

T r(T ) =  ^ ( T e i |e<).
i e i

6. Soit T  G N ( £ ) ,  montrer que |Tr (T )| <  ||T ||;v .
7. Lorsque E  est de dimension finie, montrer que Tr (T ) est la trace usuelle de l ’endomorphismeT.
8. Soit T  G X(E)  un opérateur compact symétrique si K =  M, normal si K =  C et soit ( e * )^ /  

une base hilbertienne de vecteurs propres : Te* =  Aiei. L’opérateur T  est nucléaire si, et seulement 
si, la famille (Ai ) ie j  est sommable ; on a alors

T r ( T ) = £ > e t | | T | | w = 2 > i |
i e l  i€l

[pour vérifier que la condition est nécessaire, considérer l’opérateur ST  où S  G £{E)  est défini par

5* =  £  ï t ï M *)*]-
iei,\iïo |Ai|

En déduire que, si T  est nucléaire, alors T  est de Hilbert-Schmidt [utiliser la proposition 3.35.8].
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9. Soit T  e  £ ( F ;  F ) , montrer que T  est nucléaire si, et seulement si, (T ^ T )1/ 2 est nucléaire 
(exercice 3.34.6) et que ||T ||jv =  ||(T * T )1 /2 ||iv [utiliser l’exercice 3.34.7]. En déduire que tout 
opérateur nucléaire est de Hilbert-Schmidt.

10. Soit T  E £ ( F )  un opérateur hermitien positif.
a. Montrer que T  est compact si, et seulement si, T 1/ 2 est compact [si T  est compact, soit 

(ei)iei  une base hilbertienne de vecteurs propres : Te* =  À je* ; vérifier que

T 1/2x  = 5 Z \- /2(z| eitei], 
tel

b. Montrer que T  est nucléaire si, et seulement si, T 1/ 2 est de Hilbert-Schmidt. On a alors 
| |T |U  =  ll^,1/ 2̂ llh s  en notant IMIh s  la norme de Hilbert-Schmidt.

c. Soit (ei)ieI une base hilbertienne de F , montrer que T  est nucléaire si, et seulement si, la 
famille ((Tei\ei))i e j  est sommable [condition suffisante : utiliser b.].

11. Soient F , F , G des espaces de Hilbert, T2 G X{E\ F) et T\  G % (F ; G) des opérateurs de 
Hilbert-Schmidt, montrer que l’opérateur T  =  T\T^ F  G est nucléaire et que 
i m u  <  ||Ti ||h s  11̂ 2 II h s  [en utilisant l’exercice 3.34.7, montrer qu’il existe un opérateur 
S  G £ ( F ;  F ) , ||5 || <  1, tel que T2 =  (T2 T2  ) 1/ 25*  ; étant donné une base hilbertienne (ei)ieI  de 
vecteurs propres de ^ T ^ ) 1/ 2, (T2T ^ )1/ 2ei =  vérifier que

T x = ^2X i{x \Se i)T1eii 
i e i

en déduire que T  est nucléaire et une majoration de ||T ||w ].
12. Soit T  G N (F ; F )  un opérateur nucléaire, montrer qu’il existe des opérateurs de Hilbert-

Schmidt T i e  X (JS;*1). T2 6  X (E-,E) tels que T  =  T\T2 et \\Ti\\Hs  =  ||T | |} /2 [U existe 
(exercice 3.34.7) S  e C(E-, F), ||S || <  1, tel que T  =  S(T*T)1/ 2 ; on pose R  =  (T-T)1̂  nuis 
T i =  S R 1/ 2, T2 =  A 1/ 2]. V

13. Montrer que N (E ; F)  est un sous-espace vectoriel de l’espace £(E\  F)  et que | | . |] N est une 
norme sur cet espace vectoriel [soient 7 i ,T2 G N ( F ; F ) ,  T  =  ((T i +  T2)*{T\  +  T2))1/ 2 et
s  6  £ ( £ ) ,  ||Sj| <  1. tels que T  =  S * (T i +  T2) ; en utilisant 10,c„ montrer que T  est nucléaire et 
que

P i  +  Î 2 ||jv <  |Tr (S * T i) | +  |Tr (S*T 2)|;

pour majorer |T r(5*T i)|, écrire T i =  S ^ T ^ T i)1/2 où S i € £ (£ ), ||5i|| <  1. U =  (T fT i)1/ 2, 
V =  t / 1/ 2, vérifier que |Tr(S*T i)| <  ||V ||^g et noter que ||V ||^S =  ||Ti||w].



H -  Corrigés des exercices

3.36 Exercices du chapitre 3.A

EXERCICE 3.1.1

D’après la continuité de l ’addition r  : (x yy ) -» x  +  y, si V est un voisinage de 0, il 
existe un voisinage W de 0 tel que r(W  x  W) c  V , soit W +  W c  V. De même, la 
continuité de l ’application (xy y) —► x — y montre qu’ il existe un un voisinage Wf de 0 tel 
que W'  — W’ C V.
EXERCICE 3.1.2 ENSEMBLE ABSORBANT
1. Soit V un voisinage de 0, l ’application À h-» Xx de K dans E  étant continue au point 
À =  0, il existe e >  0 tel que Xx e V dès que |À| <  e, ce qui prouve que V  est absorbant.

2. Soient V un voisinage de 0 et æ G E, il existe e >  0 tel que Xx e V  pour tout 
|À| <  € ; il en résulte que x appartient à Àn V dès que |Àn | >  l/e ,  c’est-à-dire dès que n  
est suffisamment grand et ceci prouve le résultat voulu.

EXERCICE 3.1.3

Si F est d’ intérieur non vide, il existe un point a € F  tel que F soit un voisinage de a ; 
les translations étant des homéomorphismes, on en déduit que F est un voisinage de 0. Soit 
x e E, F étant absorbant (exercice 3.1.2), il existe À >  0 tel que Xx G F , d’où x e F et 
par conséquent E  =  F contrairement à l ’hypothèse.

EXERCICE 3.2.1

Soient x , y  € F  : ||a;|| =  ||j/|| =  0. On a ||a: +  j/|| <  ||x|| +  ||2/|| et ||Aæ|| =  |A| ||æ||, 
d’où ||x +  y|| =  0 et ||Aa;|| =  0, soit a: +  y  6 F  et Xx € F  et ceci prouve que F  est un 
sous-espace vectoriel de E.
EXERCICE 3.2.2

1. La fonction 7 est définie sans ambiguité pour t = U et 7(U) =  x%. La restriction 
7i = 7|(ti,ti+ i] est continue ; si F est une partie fermée de F , 7^ ( F )  est une partie 
fermée de [Uy U+i], donc de [0, 1], et il en résulte que 7- 1(F ) =  U™=17î~1(F ) est fermé, 
ce qui prouve la continuité de 7.

2. Il est clair que b => c=> a. Quant ka=> 6, soit x  un point de O et soit A l ’ensemble 
des y G O tels qu’ il existe une ligne polygonale 7 : [0,1] -» O joignant x et y. Notons
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d’abord que A est non vide car x G A : prenons en effet n  =  1, x\  =  X2 = x> 11 =  0, 
£2 =  1 ; on a alors 7(£) =  x  pour tout 0 <  £ <  1.

Montrons ensuite que A est ouvert. Soit y G A, il existe une suite (æ i)i< i<n+ i de 
points de O avec x\ =  x  et xn+i =  y telle que la ligne polygonale définie par ces points 
soit tracée dans O, c’est-à-dire telle que [xi,Xi+1] C  O pour 1 <  i < n. Il existe un 
voisinage convexe de y contenu dans O, soit V  ; alors V C A : en effet, soit z  G V,  posons 
xn +2  =  z,  alors [æn + i ,æ n + 2 ] C V c  O et la ligne polygonale associée à la suite de 
points (xi)i<i< n +2 est tracée dans O, ce qui prouve que A est un voisinage de chacun de 
ses points.

Montrons enfin que A est fermé dans O. Soit 2 G A f l  O, si V est un voisinage convexe 
de 2 contenu dans O, il existe y G A n  V et une ligne polygonale tracée dans O reliant x 
et y ; comme précédemment, on en déduit une ligne polygonale tracée dans O reliant x  et 
2 et ceci prouve que 2 appaitient à A , donc que A est fermé dans O.

L’ensemble non vide A est à la fois ouvert et fermé dans O qui est supposé connexe et 
par conséquent A =  O, ce qui prouve le résultat voulu.

EXERCICE 3.2.3

L’ensemble F = {x G E  ; ||æ||i =  0 pour tout i G 1} est fermé d’après la continuité des 
semi-normes ||•||^ et contient 0, donc {0 } C F . Inversement, soit x G F  ; toute boule 
ouverte Bj(x\r)  contient 0 vu que ||x ||j =  0, ce qui prouve que x  est un point adhérent 
à {0 } et l ’ inclusion F  C {0 }, d’où l ’égalité. D ’après la proposition 3.2.9, l ’espace E  est 
séparé si, et seulement si, F = {0 }, ce qui signifie que {0 } est fermé.

EXERCICE 3.3.1

Soit || «|| l ’une des semi-normes définissant la topologie de F, alors p : x  i-> ||Tæ|| est une 
semi-norme sur E  et ||Trc|| =  p(x), ce qui prouve la continuité de T  (théorème 3.3.3).

EXERCICE 3.3.2

Si T  est continu en un point a G E, pour tout voisinage V  de 0 G F , il existe un voisinage 
W  de 0 G E  tel que T(a - f W)  C  Ta  -h V,  c’est-à-dire (d’après la linéarité de T) 
T(W)  C  V  et ceci prouve la continuité de T  en 0 et le résultat voulu.

EXERCICE 3.3.3

La condition est évidemment suffisante. Réciproquement, supposons que la topologie de E  
puisse être définie par une norme ||«||. D ’après le corollaire 3.3.4, il existe une partie finie 
J  de I  et une constante c\ > 0 telle que
(3.36.1) ||æ|| <  c i ||æ||j pour tout a; G E
et, pour tout i G / ,  il existe une constante c* >  0 telle que ||æ||i <  c* ||æ|| pour tout x G E, 
d’où une constante C2 >  0 telle que
(3.36.2) ||æ|| j  < C2 \\x\\ pour tout x G E.
Les inégalités (3.36.1) et (3.36.2) signifient que la norme ||*|| et la semi-norme ||* ||j sont 
équivalentes ; la semi-norme ||#|| j  est donc une norme définissant la topologie de E.
EXERCICE 3.3.4

1. La quantité \\f\\A,a est finie car /  est une fonction continue, donc bornée. Il est alors 
immédiat de vérifier que || • || a ,a est une semi-norme sur E. Cette semi-norme est une norme
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si ||/|U ,a  =  0 implique /  =  0, c’est-à-dire si /  =  0 sur A implique /  =  0 sur [0,1] et 
ceci signifie que A est partout dense.

2. Lorsque fo G A, on a a(to) |/(£o)| <  ||/IU ,a  ce qui prouve la continuité de la 
forme linéaire /  i-> f(to).

Lorsque to & A , montrons que cette forme linéaire n’est pas continue. On raisonne par 
l ’absurde : on suppose qu’ il existe une constante c >  0 telle que |/(fo )| <  c ||/|U ,a  pour 
tout /  G E. Soit € >  0, il existe une partie finie B  de A telle que YlteA-B a (0  <  £ et un 
Ô >  0 tel que [fo -  to +  £] f l  B = 0. On peut alors construire une fonction /  G E  telle 
que

0 <  /  <  1, f ( t 0) = 1 et supp /  C [to -  <5, t0 +  ô].
L’ inégalité |/(fo )| <  C | | / | |a ,a implique alors 1 < ce. Ceci étant vrai quel que soit e >  0 
on obtient une contradiction.

3. Il est clair que les conditions indiquées sont suffisantes. Réciproquement, si les semi- 
normes ||*|U,a et ||«|| a ',a' sont équivalentes, on observe d’abord que A = A' d’après 2. 
En outre, il existe C2 >  0 tel que

a>(*) I M I  ^  C2 5 Z  “ (*) 1/(01 P°ur tout /  € E.
t ÇA t e A

Soit to G A, on a alors

a'{to) |/( to )| <  c2 £ > ( * )  |/(<)| pour tout /  e E.
t ^ A

et, en raisonnant comme dans 2., on peut construire une fonction /  G E  telle que 

o <  /  <  1, /( to )  =  1 et a(t) | / ( t ) |  <  e,

d’où a '(fo ) <  C2 [a(fo) +  e], soit a '(to ) <  C2 a(fo) et ceci prouve que a '( f)  <  C2 a(t) 
pour tout t G A. De même, on démontre qu’ il existe une constante c\ >  0 telle que 
ci Oi(t) < a'(t) pour tout t G A et on peut donc conclure.

EXERCICE 3.3.5

1 ,a. On raisonne par récurrence sur n. Soit c =  (a +  b)/2 , on a 

| |c - o || =  | | c - 6 || =  i ||o - fc ||,
d’où (a +  6)/2 G B\.  Par ailleurs, soit x G Bu  alors (a + b — x) — a = b — æ et 
(a +  b -  x) — b =  a -  x  ; il en résulte que a +  b -  x G B\.  Ceci prouve la propriété pour 
n  =  1.

La propriété étant démontrée pour n  -  1, soit y G Bn- 1, alors ||c -  y\\ = \  ||z -  y|| 
o u z  = a + b -  y appartient à Bn- \  d’après l ’hypothèse de récurrence. Il en résulte que 
||c — 2/|| <  \  diam Bn-1 et ceci prouve que (a +  6)/2 G Bn. Enfin, soit rr G Bnt montrons 
que z = a + b -  x appartient à Bn. On note d’abord que z G Bn-1 (hypothèse de 
récurrence) et, si y G Bn- 1, z - y  = a + b - y - x o ù a  + b - y e  Bn- \  (hypothèse de 
récurrence) et a; G Bnt d ’où \\z - y \ \ < \  diam Bn-1 ce qui permet de conclure.

b. Le point (a +  6)/2 appartient à l ’ intersection f]“ =1B n et vu que 
diam Bn < \  diam J5n_ i, cette intersection est réduite à ce point (a +  b)/2.

2. On note Bn les parties de E  construites à partir des points a et b selon le procédé 
décrit en 1. et de même Cn les parties de F  construites à partir des points /(a )  et f(b). On
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remarque, /  étant une isométrie, que C n = f(Bn), d’où
oo oo oo
f ] C n = f ] f ( B n ) D f ( f ] B n)

n =  1 n = 1 n = 1

et par conséquent
f ^ a + b^ _  /(a ) + / ( 6)

Pour b = 0, on obtient /(a /2 ) =  / ( a ) /2, d’où /( (a  + 6)/2) =  /(a  H- 6)/2 et par 
conséquent f(a + b) = f(a) + f(b). On en déduit que f(\a)  =  A/(a) pour tout rationnel 
A, donc pour tout réel A d’après la continuité de / .

3. L’application z\->z vérifie toutes les hypothèses ; elle est M-linéaire, mais n’est pas 
C-linéaire.
EXERCICE 3.3.6

1. L’application sx étant un homéomorphisme, l’ensemble sx(A) est maigre. Il en est donc 
de même de A U sx(j4) qui est d’intérieur vide, l’espace E étant un espace de Baire. Cet 
ensemble ne peut donc contenir la boule ouverte B(x\r).

Il existe donc y G E tel que
y G B(x\r),y qLAtlyg  sx(i4).

Il en résulte que sx(y) g A et ceci prouve que z = 2x -  y G B(x\r) n’appartient pas à A 
et on a bien x = (y + z)/2 .

2,a. résulte de la continuité en 0 de la fonction T \ e - a  en supposant que 0 G E  — A. 
b. On choisit r >  0 tel que B(x'\ r) C £(0; 5). D’après 1., on peut écrire x'  sous la 

forme x ’ =  (y +  z ) /2 où y,z  G B(x';r) -  A et, y, z appartenant à la boule B(0; s), on 
en déduit que

I M < E d l + I M  <

L’application linéaire T  est bornée sur la boule £(0; s), donc continue.
Ceci suppose 0 G E -  A. Dans le cas général, soit a G E — A ; la relation 

Tx = T(x + a) -  Ta montre que la restriction de T  à E -  r -a(A) est continue et 
0 G E — r -a(A)t d’où la continuité de T.
EXERCICE 3.4.1 APPLICATION UNIFORMÉMENT CONTINUE
l,a. Si /  est uniformément continue, prenons V = ^ (0 ;  e), alors il existe un voisinage W 
de 0 dans E tel que

Il f(x) -  f(y)\\i ^  £ pour x, y e A , x - y € W  
et on obtient (3.4.6) en remarquant que W  contient une boule de la forme B'K (0 ; (5).

b. Réciproquement, si (3.4.6) est vérifié, un voisinage V de 0 G F contient une boule
£i,(0î£)» B £ J), e > 0. Pour chaque j  G L, il existe Kj G J ( /) ,  Sj > 0, tels que

/(*) -  f(y) e Bj(0;e) pouræ,2/ e A, x -  y e B'Kj (0 ;<S,) 
et on obtient (3.4.5) en prenant K = \JjeL Kj et Ô = min^L ôj.

c. Lorsque les espaces E,F sont métrisables, on peut définir leur topologie par des 
distances d invariantes par translation ; soit Bf(0\e)t e > 0, une boule fermée centrée à 
l’origine de 0, alors il existe un voisinage W de l’origine de F, donc une boule fermée 
B'(0] Ô) de l’espace F, telle que

/(*) -  f{y) € B'{0;e) pour a;, y S A, x -  y € B'(0;<5),
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c’est-à-dire
d(f(x) , f (y))  < e pour x , y  € A, d(x,y) < 5.

L’application /  est donc bien uniformément continue pour les structures d’espace métrique 
définies sur F  et F  par des distances invariantes par translation.

2,a. On écrit la continuité de T  à l ’origine. Soit V un voisinage de 0 G F , il existe un 
voisinage W  de 0 G F  tel que T(W)  C V ; si x -  y G W,  on a alors 
Tx -  Ty  =  T(x -  y) G V, d’où la continuité uniforme de T.

b. Si ||«|| est une semi-norme continue sur F , pour tout £ >  0, il existe un voisinage V 
de 0 G F  tel que ||æ|| <  e pour x  G V,  d’où | ||æ|| -  ||p|| | <  \\x -  y\\ < e pour x — y €  V, 
ce qui prouve le résultat voulu.

EXERCICE 3.4.2

1. On observe que T _1(Fn) est un sous-espace fermé, d’ intérieur vide si T _1(Fn) /  F . 
Si T ~ 1 (Fn) E  pour tout n, il en résulte que F  =  U^Lo F _1(Fn) serait maigre, ce qui 
est absurde, F  étant un espace de Baire non vide.

2. On considère T  comme une application linéaire continue de F  dans G = T(E).  Si 
G est de dimension dénombrable, il existe une suite (Gn) de sous-espaces de dimension 
finie telle que G = IJ^Lo et, G étant séparé, ces sous-espaces sont fermés et il suffit 
d’appliquer 1.

EXERCICE 3.4.3

Notons encore T  tout prolongement de T  à F . Si un tel prolongement était continu, il 
existerait une constante c >  0 et un entier qo tel que \Tx\ < c ||æ ||qo pour tout x  G F  et a 
fortiori \Tx\ <  c ||x||n pour n  >  qo, d’où

ÀPtq < c ||ep><ï||n pour tout p, q et tout n>qo.
En prenant n = q > qo, on en déduit

Plkp.fllU <  c llep,<ïlU pour tout p et tout q >  qo.
Ceci implique ||ePl9||Q ^  0, d’où p <  c, ce qui est absurde.

EXERCICE 3.4.4 OPÉRATEUR HYPERCYCLIQUE

1 ,a. Vu que lim^-^oo S ky = 0, on a évidemment lim^-K» Zk =  x . Étant donné que 
T  o S  = Ie * on a d’autre part

T kzk = T k(x + S ky) =  T kx + (Tk o S k)(y) = T kx + y 
et on en déduit que limfc-too T kzk =  y. 

b. On en déduit que pour k suffisamment grand zk G U et T kzk £ V, d’où
T k(U) n V j i f ) .

2. Il s’agit de vérifier que, pour tout ouvert non vide U C E,
oo
( J ( r * ) -1 ( O ) n [ / ^ 0 .
k= 1

Or, d’après 1., pour k suffisamment grand T k(U) f l  O ^  0, d’où (Tk)~l (0)  f l  U ±  0, ce 
qui permet de conclure.

3. résulte du théorème de Baire, F  étant un espace de Fréchet.
4. Un point x  appartient à A si, et seulement si,

Vn >  0, 3k >  1, T kx  G On
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et, ( O n )  étant une base de topologie, ceci signifie précisément que l ’orbite de x  est dense, 
ce qui permet de conclure.

EXERCICE 3.5.1

1. Lorsque n = 1, la fonction / i  n’est pas identiquement nulle et il suffit de choisir x\ e X  
tel que f i (x\ )  ^  0. Raisonnons ensuite par récurrence. On suppose construits n  — 1 points 
Xj £ X, 1 < j  <  n — 1, tels que dét (( fi(xj))i<i,j<n-i) #  0. Supposons alors que, 
pour tout xn £ X t on ait dét (( /î(® j) ) i< i, j< n )  ^  0.11 existerait alors des réels Ai(æn), 
1 <  i  <  n, non tous nuis tels que

n

Y  Ai(xn) fi(xj)  =  0 pour 1 <  j  < n.
i=1

Vu l ’hypothèse de récurrence, An (æn) est non nul. On en déduit, par division, des réels 
fj>i(x-n), 1 <  i < n — 1, tels que

n — 1

f n ( X j )  =  1 <  j  <  n .
i= 1

Ces équations pour 1 < j  < n - 1 montrent, vu l ’hypothèse de récurrence, que les fonctions 
Hi(xn) sont indépendantes de xn, soit /m = fj>i(xn) ; pour j  =  n, on en déduit que

n —1

f n ( x )  =  Y 2 fJ'i P°Ur t0Ut X  € -X’* 
i=1

ce qui contredit l ’ indépendance des fonctions (fi)i<i<n-
2. Soit (fi)i<i<n une base de E  ; on choisit les points Xj G l , l < j < n ,  conformé­

ment à 1. On définit une norme sur E  en posant ||/|| =  sup1<J<n \f(xj)\ ; il s’agit en effet 
d’une semi-norme et, si ||/|| =  0 où /  =  ^  fi  ^  on a f (x j )  =  0, c’est-à-dire

n

Y  A i f i(xj) = 0 pour tout 1 <  j  < n,
i= 1

d’où A» =  0 d’après le choix des Xj. D ’après le corollaire 3.5.9, cette norme est équivalente 
à la norme de la topologie de la convergence uniforme supx€X |/(x ) | ,  ce qui prouve le 
résultat voulu.

EXERCICE 3.5.2 COMPLÉTÉ D’UN E.L.C. MÉTRISABLE
La topologie de E  peut être définie par une distance invariante par translation. D ’après 
l ’exercice 2.27.7, on peut donc supposer que E  est un sous-espace métrique partout dense 
d’un espace métrique complet Ê  ; on notera d la distance de Ê.

1. On définit une structure vectorielle sur Ê  de la façon suivante. Les applications 
r  : (x, y) e E  x E  i-> x +  y  G E, h \  : x  G E Xx G E, A G K, 

sont linéaires continues. D’après le théorème 3.5.4, ces applications se prolongent en des 
applications continues f  : È  x  Ê  Ê, h\  : Ê  -» Ê  ; on pose

x + y = f ( x y y) et Xx = h\(x)  pour x, y G Ê t A G K.
On vérifie aisément qu’on définit ainsi une structure vectorielle sur Ê. Par exemple, on 
a x  +  2/ =  2/ +  x  Pour tout x , y  € E, donc pour tout x ,y  G Ê  car les applications 
(æ, y) »-> x  +  yy (x, y) ■-» y -b x  de Ê  x Ê  dans Ê  sont continues et coïncident sur E  x  E  
qui est dense dans Ê x Ê. Toutes les autres propriétés se vérifient selon le même procédé.

On obtient ainsi une structure vectorielle sur Ê  qui prolonge celle de E  : E  est un 
sous-espace vectoriel de Ê.
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2. La continuité de f  et h\  signifie que Ê  est un e.v.t. La distance d est invariante 
par translation sur E , donc sur Ê  d’après le principe du prolongement des identités ; ceci 
prouve que Ê  est un e.v.t. métrisable complet.

3. Lorsque E  est un espace normé, montrons que la topologie de E  est une topologie 
d’espace de Banach. L’application ||#|| : E -> R est uniformément continue, donc se 
prolonge en une application continue ||«|| : Ê  -> R et on a d(x)y) = \\x — y || pour tout 
x ,y e E , donc pour tout x }y e Ê  d’après le principe du prolongement des identités. 
En utilisant ce principe et le principe du prolongement des inégalités, on vérifie aisément 
que II *|| est une norme sur Ê. La topologie de Ê  est donc bien une topologie d’espace de 
Banach.

4. Lorsque E  est un e.l.c. métrisable, soit (||*||n) une suite de semi-normes définissant
sa topologie ; choisissons sur E  la distance définie dans la preuve du théorème 3.4.6 
(3.36.3) d(æ,y) = max(an x m in(||x -  y \|n , 1)), x ,y  e E.n£N
Les semi-normes ||*||n : E R sont uniformément continues (exercice 3.4.1), donc se 
prolongent en des applications continues ||«||n : Ê —> R et on vérifie aisément que ce sont 
des semi-normes. Montrons alors que la formule (3.36.3) vaut encore pour tout x ,y  e Ê  : 
ceci prouvera que les semi-normes ||*||n définissent la topologie de Ê. Compte tenu du 
principe du prolongement des identités, il s’agit de vérifier que l ’application 

/  : x h-» max(an x min(||:c||n, 1))

est continue sur E. Vérifions la continuité en un point x e Ê. Soit (Xk) une suite de Ê  
convergeant vers x  et soit e >  0, il existe des entiers no et n i,  no <  n i,  tels que 

f (x) = ano x min(||.T||no, 1) e tan <  f (x)  +  e pourn >  n i.
Il en résulte que, pour tout entier k>

an x min(||a;fc||n , 1) <  f (x)  +  € pourn >  n i ; 
vu que la suite maxo<n<m (an x  min(||æfc||n , 1)) converge vers

max (an x min(||æ||n , 1)),0<n<ni
c’est-à-dire vers f(x)  car n i >  no, il existe un entier j  tel que

max (o „ x min(||a;jt||„, 1)) € [/(æ) -  e, f (x)  + e] pour k > j0<n<ni
et ceci prouve que f(xk)  6 [f{x) -  e, f (x)  +  e] pour k > j y d’où le résultat voulu.

5. Soient Ë\  et Ê2 deux espaces de Fréchet (resp. de Banach) tels que E  soit isomorphe 
(resp. isométrique) à un sous-espace dense de Ê% : notons fi  : E fi(E)  c  Êi ces 
isomorphismes. Les isomorphismes

9 1 = h o  / f 1 : h ( E )  -> h ( E )  et 3 2  =  f i  °  / 2_ 1  : M E )  -¥  f i(E)  
se prolongent en des applications linéaires et continues

gi : Ê\ —> £ 2, 92 • Ê2 Êi
Le principe du prolongement des identités montre que g\ et 92 sont deux applications réci­
proques l ’une de l ’autre ; ce sont donc des isomorphismes. Lorsque E  est un espace normé, 
les applications gi sont des isométries et il en est donc de même des applications toujours 
d’après le principe du prolongement des identités.
Note Lorsque E  est un espace normé, on notera que le plongement de E  dans {E\R) 
utilisé dans l ’exercice 2.27.7 n’est pas linéaire (exercice 3.9.2). Une autre méthode de com- 
plétion d’un espace normé consiste à plonger l ’espace dans son bidual (remarque 3.16.2) ; 
cette méthode utilise essentiellement le théorème de Hahn-Banach.
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Note On peut plus généralement compléter un e.l.c. séparé non nécessairement métrisable 
(exercice 3.6.5).

EXERCICE 3.5.3

1. On suppose que E  admet une base infinie dénombrable (en)n> i et on note Fn le sous- 
espace vectoriel de dimension n  engendré par (ep) i< p<n. Ces sous-espaces sont fermés 
(corollaire 3.5.10) et d’ intérieur vide (exercice 3.1.3). Étant donné que F = U ^ L i En, E  
est maigre dans lui-même, donc d’ intérieur vide (E  est de Baire) et ceci est absurde.

2. Raisonnons par l ’absurde, supposons E  de dimension infinie ; on peut alors trouver 
une suite croissante Fn de sous-espaces vectoriels de dimension n. La réunion 
F = IX L i  En est un sous-espace de dimension infinie dénombrable ; ce sous-espace F  
étant fermé, F  est un espace de Fréchet de dimension infinie dénombrable, ce qui contredit 
1.

EXERCICE 3.6.1

L’application r  : (x,y) G E  x  E  i-> x +  y G E  est continue et A +  B = r(A  x  B) 
où A x  B  est compact Ofychonoff) ; l ’espace E  étant séparé, on conclut avec le théorème 
2.31.10.

EXERCICE 3.6.2

L’ensemble 33 =  (V -  A)veV(x) est un ensemble non vide de parties non vides et 
(Vï — A) n  (v2 -  A) d Vi n  v2 -  A ;

il s’agit donc bien d’une base de filtre. De plus, le point x étant adhérent à A +  B> pour tout 
V G V(x), il existe a G A, b G B tel que a + b G V et par conséquent 
B D (V — A) 7̂  0. Étant donné que B est compact, la trace sur B de cette base de filtre 
admet un point adhérent b G B ; pour tout V  G V(0), on a donc b G (æ + V) -  A et en 
particulier (6  + V)  fl ^(x -h V) -  Â j ^ 0 ,  c’est-à-dire (6 + V -  V) fl (x -  A) ^  0. Vu 
l’exercice 3.1.1, ceci montre que b e x -  A = x — A, d’où x G A + B.
EXERCICE 3.6.3
Si T  n’est pas surjective, T(E)  est un sous-espace strict de K n, donc T(E)  n’est pas un 
ouvert de IKn et T  n’est pas une application ouverte.

Si T  est surjective, considérons l ’espace quotient E /K e rT , la surjection canonique 
tt : E  —y E /Ker T  et l ’unique application linéaire S  : E /K e r T  -> Kn telle que T  = Son. 
L’application n est ouverte (proposition 3.6.2) ; S  est une bijection linéaire, la bijection 
réciproque S~ l est continue d’après le corollaire 3.5.11, ce qui signifie que S  est une ap­
plication ouverte et il en résulte que T  est une application ouverte.

EXERCICE 3.6.4

Soit 7r : E  E / F  la surjection canonique de E  sur E /E , vérifions d’abord que 
F  +  G =  7r“ 1(7r(Cr)). Soit x e E, dire que x  appartient à n~l {n(G)) signifie qu’ il 
existe y G G tel que n(x) = 7r(y), c’est-à-dire que x — y G E , soit x  G E  +  G. Ceci 
prouve l ’égalité annoncée.

L’espace quotient E /E  est séparé (proposition 3.6.4) ; n(G) est un sous-espace de 
E /E  de dimension finie, donc fermé (corollaire 3.5.10) et E  +  G est l ’ image réciproque
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par l ’application continue 7r de ce sous-espace fermé, ce qui prouve que F  +  G est fermé. 

EXERCICE 3.6.5

1. Il s’agit de vérifier que ||rr||i =  \\y\\i lorsque 7Ti(x) = m(y)y c’est-à-dire lorsque 
\\x -  y\\i = 0. On a en effet \\x\\* <  \\x -  y\\i +  \\y\\i = \\y\\i et de même \\y\\i < \\x\\i.

2. L’application p  est linéaire. Lorsque ip(x) = 0, on a \\x\\i =  0 pour tout i, d’où 
x  =  0 l ’espace E  étant séparé, ce qui prouve que p  est injective.

La continuité de p  équivaut à la continuité des applications x e E  ni(x) e Ei/Fi 
qui résulte de la continuité de 7r* et de la continuité de l ’ injection canonique de E  dans Ei.

Quant à la continuité de p~ l : p(E)  -»• E y on a d’après 1. \\x\\i = |||7Tt(x)|||i pour 
tout x  G E  et ceci permet de conclure car la topologie produit de l ’espace YlieI Ei/Fi 
peut être définie par les semi-normes y »-» |||2/<|||<, î/ =  (2/0- Ceci prouve que /  est un 
isomorphisme de E  sur p(E).

3. Il en résulte que E  est isomorphe à un sous-espace de l ’espace produit YlieI Ei/Fi. 
Lorsque E  est métrisable, on peut supposer /  dénombrable et E  est donc isomorphe à un 
sous-espace d’un produit dénombrable d’espaces normés.

4. D’après 3., E  est isomorphe à un sous-espace d’un produit l i ie z  d’espaces nor- 
més. Notons Gi le complété de Gi (exercice 3.5.2) ; les Gi sont des Banach, E  est iso­
morphe à un sous-espace du produit G = ü te z  ^  et cet esPace G est un e-l.c. séparé 
complet (théorème 3.5.6). On peut donc supposer que E  est un sous-espace de G : il suffit 
alors de prendre pour Ê  l ’adhérence de E  dans G.

Lorsque E  est métrisable, on peut supposer /  dénombrable ; G est alors métrisable 
(proposition 3.5.5) et a fortiori E.

Quant à l ’unicité du complété à un isomorphisme près, elle se démontre comme dans 
l ’exercice 3.5.2.

EXERCICE 3.6.6

Notons F = Ker T  le noyau de T  ; ce noyau est évidemment fermé si T  est continu. 
Réciproquement, supposons le sous-espace F  fermé. Considérons l ’espace quotient E / F 9 

la surjection canonique tt : E  —> E / F  et l ’application linéaire S  : E / F  K n telle que 
T  =  S  o 7T. L’espace E / F  est séparé (proposition 3.6.4) et de dimension finie car S  est 
une injection ; d’après le corollaire 3.5.11, l ’application S  est continue et il en est donc de 
même de T  = S  o 7r.
EXERCICE 3.7.1

Soit (||.||0z€Z une famille de semi-normes définissant la topologie de E. Si B  est une partie 
bornée de E  et si (xn) est une suite de B y on a

||Ana;n ||i =  |À| ||#n||z ^  c|An |, 
ce qui prouve que l i m 7WOo Anæn =  0 si l i m n _>oo An =  0.

Réciproquement, si B  n’est pas une partie bornée de E , il existe i tel que 
suPx€B IMI* =  + ° °  » on Peut d°nc construire une suite (xn) de B  telle que ||æn||i >  n  ; 
prenons An =  1/n, on a alors ||\ nxn\\i > 1, ce qui prouve que la suite (Xnxn) ne converge
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pas vers 0  bien que limn->oo An = 0 . 
EXERCICE 3.7.2
1. On pose 

on a alors

An = max(l, max apny max anp)y
0 < p <n  0 < p <n

Q>pq ^  - ^ m a x (p ,q )  ^  Ap Aq C a r  An ^  1 .

2. Soit (||«||q) une suite de semi-normes définissant la topologie de E , les quantités 
apq = supxeBp ||x||q sont finies, les ensembles Bp étant bornés. On pose ep = l/Ap, 
alors

sup ||a:||q = epapq < Aqy
xÇSpBp

d’où supx€B ||x||q < Aq où B = U£lo €p^ p : cec* prouve que B est borné.
EXERCICE 3.7.3
Avec les notations de la proposition 3.5.1, on a en effet

sup ||æ ||i = sup | | / a (œ ) | |<  = sup | |y || i .
x € A  x e A  ye f c*( A)

EXERCICE 3.7.4

L’espace J 5 (X ; K) étant séparé, toute partie relativement compacte est bornée (proposition
3.7.3). Réciproquement, soit A une partie bornée ; notons prx : /  f(x) la projection 
d’ indice x e X  ; alors prx(A) est borné dans K  (proposition 3.7.2), donc relativement 
compact et le théorème de Tychonoff prouve que A est relativement compact.

EXERCICE 3.7.5

Posons K  = {x e F ; \\x -  a\\ < ||a||}, cet ensemble est non vide (0 G K)t fermé et 
borné, donc compact, F étant de dimension finie. D’après le corollaire 2.33.13, il existe 
donc un point x G K  tel que ||a -  æ|| =  d(ayK). Ceci prouve le résultat voulu car 
d(ay K) = d(ay F) : en effet, pour y G F, y & K  on a ||a -  y\\ > ||a|| >  d(ay F).

Il n’y a évidemment aucun théorème d’unicité sans hypothèse supplémentaire. Par 
exemple, prenons F = R2 muni de la norme ||(æi,X2)|| = max(|æi|, |a?21), E = R x  {0 } 
et a = (0 ,1) ; on a alors d(ay F) = 1 et ||a-æ|| =  d(ay F ), x = (x\ , 0), signifie \x\| <  1.
EXERCICE 3.7.6

La condition est évidemment nécessaire. Réciproquement, supposons la sphère unité 
S  =  {x  G E \ ||æ|| =  1} compacte. Montrons que la boule unité B  est compacte, le 
théorème 3.7.4 permettra de conclure. Montrons que toute suite (xn) de B  admet une sous- 
suite convergente. Ceci est évident s’ il existe une infinité d’entiers n  tels que xn = 0. On 
peut donc supposer tous les xn ^  0. Posons alors yn =  (xn/\\xn\\, ||®n||) E S  x [0,1] ; 
l ’espace S  x [0,1] étant compact, il existe une sous-suite (ynk ) convergente et il en résulte 
que la sous-suite xUk = (xnk/\\xnk ||) x  \\xnk || converge, ce qui prouve le résultat voulu.

EXERCICE 3.7.7
1. Il existe une boule ouverte Bj(a\r)  ne rencontrant pas B  ; alors V = Bj(0\r/2)  
convient : en effet, si (A + V) n  (B + V) était non vide, il existerait a e A, b e B et
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ut v G V  tels que a +  u =  b +  v, d’où b = a H- w où w = u — v G Bj(0\ r) et par 
conséquent B  D Bj(a; r) serait non vide.

2,a. On remarque que B = (B +  V) v ev(o) est une base de filtre d’après la proposition 
2.8.3 vu que

(.B +  V i) n  (B +  V2) D B  +  Vi D V2.
Supposons A f l  (B +  V) ^  0 quel que soit V  G V(0), alors B admettrait une trace sur A 
et, A étant compact, le filtre induit admettrait un point adhérent a G A. Ce point serait a 
fortiori adhérent au filtre de base B et (a +  V) H (B +  V) serait donc non vide quel que 
soit V G V(0), ce qui contredit 1.

b. D’après a., il existe une boule ouverte B j ( 0; r )  telle que 
A n(J3  + B j(O ;r)) =  0.

Montrons alors que V = Bj(0\r/2)  convient. Raisonnons par l ’absurde. Supposons que 
(A +  V) f l  (B +  V) ^  0 ; alors, il existe a G A, b G B t lu ^ v  G V  tels que a + u =  6 +  u, 
d’où a = b +  w où w =  v — u G Bj(0\ r) et par conséquent A O (B A- B j ( 0; r ) )  est non 
vide, ce qui est absurde.

EXERCICE 3.8.1

1. On considère l ’application h : u G E  i-» tu +  (1 — t)y G E. Cette application est 
un homéomorphisme tel que h(x) = z et par conséquent h(C) est un voisinage de z. 
L’ensemble C étant convexe h(C) C C, ce qui prouve que C est un voisinage de 2, soit
z e C .

2. On considère l ’homothétie k : E  -» E  de centre 2 qui transforme x  en y ; k est de 
la forme u h» Xz +  (1 -  \ )u  où A est déterminé par la condition \ z  +  (1 -  X)x =  y, soit 
A =  1/(1 -  t). Alors, k(C) est un voisinage ouvert de y qui rencontre donc C : il existe 
a G C tel que k(a) G C. On a Xz +  (1 — A)a =  k(a), soit

2 =  +  (1 -  t )û =  ta H- (1 -  t)k(a)
A A

et d’après 1. on en déduit que z e C.
3. Soient x, y G C, d’après 1. ]æ, y[ C C, ce qui signifie que C est convexe.

4. Étant donné que C  c  C, il s’agit de démontrer que C c  C. Soit y G C, il existe 
a; G C e t d’après 2., ]æ ,y [c  C. Soit Bj(y\r)  une boule ouverte centrée au point y et 
soit z = tx + (1 -  t)y> on a \\z -  y\\j =  t \\x -  y\\j , d’où 2 G Bj(y\r)  pour t > 0 
suffisamment petit, ce qui prouve que y  est adhérent à C  et ceci prouve l ’ inclusion voulue.

11 s’agit de vérifier l ’ inclusion Ü C  C. Soit a; G C e t soit B j(x \ r ) une boule ouverte 
centrée au point x  telle que Bj(x\  r) C C. Étant donné que x G C C C = Ct cette boule 
rencontre C : il existe y G Bj(pc\r) D C. Posons z = 2x -  y, soit x =  (y +  z ) / 2. On a 
alors ||2: - a ; | | j  =  \ \y - x \ \ j  <  r , c’est-à-dire 2 G Bj(x\r),  d’où 2 G C et, vu que y G C,
2. montre que x G C, ce qui prouve le résultat voulu.

EXERCICE 3.8.2

1. Supposons la fonction /  continue ; soit a G C, il existe un voisinage ouvert O de a 
contenu dans C  tel que /(O )  c  [/(a ) -  1 , / ( a )  -h 1], d’où / ( x )  <  /(a )  H-1 pour tout
x e O.

Réciproquement, on suppose qu’ il existe un ouvert non vide O C C  tel que f (x)  < M  
pour x e O.
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Montrons d’abord que /  est continu en tout point de O ; par translation, on peut suppo­
ser qu’ il s’agit de l ’origine et que/(O) =  0. I l existe alors une boule ouverte Bj(0;r) c  O, 
r  >  0, soit / ( x )  < M  pour ||x ||j <  r. Soit 0 <  e < 1, on a pour ||x||./ <  r  ( /  étant 
convexe)

f(ex) < ef(x) +  (1 -  e)f{0) <  eM et 0 <  /(e x )  +  / ( - e x ) ,  
d’où |/(e x )| <  eM pour ||x ||j <  r  et par conséquent | /(x ) |  <  eM pour ||x ||j <  er, ce 
qui prouve la continuité de /  à l ’origine.

On vérifie ensuite que /  est majoré au voisinage de tout point x e C. Comme précé­
demment, on suppose 0  G O et \f(z)\ < M pour z e O. Le convexe C étant ouvert, il 
existe t >  1 tel que y = tx € C. Utilisons l ’homothétie h : u x +  (1 -  1 /t)u de 
centre y qui transforme 0 en x ; h(0) est un voisinage ouvert de x contenu dans C et, pour 
2 G h(0)y on a

* = ?  +  (1 - ï ) fc" 1(*>.
d’où f (z ) < (1 /t)f(y) +  (1 -  1 /0  A f, ce qui prouve que /  est majoré sur h(0 ).

2. Lorsque E  est de dimension finie n, on peut trouver n  +  1 points (®t)o<<<n de C 
tels que l ’ouvert convexe

n n
O = {x = i 0 <  Ai <  1 et Ai =  1}

i = 0 i = 0
soit non vide. Pour x G O, on a alors

/ ( * ) < x > / ( * o < è /(**)»
z = 0  t = 0

ce qui prouve que /  est majoré sur O, donc continu d’après 1.

EXERCICE 3.9.1
1. On asupx6X \f(x)\ = +oo et pour G M, À /  jti,

di ( A / , / i / )  =  sup |A /(x ) -  At/(x)| =  |A -  n\ x  sup |/(x )| =  +oo,
x e x  x £ X

d’où d2(A /, y,f) =  1. Ceci montre que sur la droite engendrée par /  la topologie 7U induit 
la topologie discrète.

2. Si E  est un sous-espace vectoriel de l ’espace £F&(X;R) de toutes les fonctions bor­
nées, la topologie est une topologie d’e.v.t. et même d’espace normé. Réciproquement, 
si E  muni de la topologie 7 U est une topologie d’e.v.t. et s’ il existe une fonction /  G E  non 
bornée, la topologie discrète sur la droite engendrée par /  serait une topologie d’e.v.t., ce 
qui est absurde.

EXERCICE 3.9.2
Il est clair que /(O) =  0, l ’application /  est bornée et préserve les distances (exercice
2.27.7). Comparons / ( 2x) et 2 f(x), c’est-à-dire

y i->- ||2x -  3/|| -  ||y|| et y >-¥ 2 ||x -  j/|| -  2 ||j/||.
Les valeurs de ces fonctions au point y = x sont respectivement 0 et — 2||æ||, d’où 
f(2x) ^  2f(x) si x ^  0 : l ’application /  n’est pas linéaire. Ceci n’est nullement contra­
dictoire avec le résultat de l ’exercice 3.3.5 qui suppose /  surjective.

EXERCICE 3.9.3 POLYNÔME DE MEILLEURE APPROXIMATION
l,a. Si xo =  6, on a -||p || <  g{x) < ||^|| pour tout a < x < b et il existe donc Ô > 0 tel



3.36 EXERCICES DU CHAPITRE 3.A 493

que -JM | +  S < g(x) ^  ||p||. Si Q = P + 6/2, on a | | /  -  Q|| =  ||9 -  ô/2\\ =  ||s || -  6/2 
et ceci est en contiadiction avec le fait que P  est un polynôme de meilleure approximation.

b. D après la définition de xo et le fait que g(xo) >  0, il suffit de remarquer que, pour
a < x < x0, -||p || <  g(x) <  ||s||.

c. La fonction Q ne s annule pas sur [a, £i [ ; vu que Q(xo) >  0, elle est >  0 sur 
cet intervalle. Si 6 >  0 est suffisamment petit, g(xo) — âQ(xo) >  0. Il en résulte que 
g(yo) -  SQ(yo) > 0, donc yo =/ car g(Ç\) — Q(ii)  =  0 et par conséquent Q(yo) >  0. 
On en déduit que

a<l<x€ l(fl(a;) -  * ? ( * ) )  <  9(yo) <  llflll-
Il existe par ailleurs ij >  0 tel que g{x) > - ||<?|| +  v  sur [a, f t ] ,  d’où 

et par conséquent

a<x<si ^ ^ æ) “  àQ(x )) ^  “ IMI +  rç/2 pour S > 0 suffisamment petit.

Ceci prouve que, pour 6 >  0 suffisamment petit,

^  <  N I -

Considérons ensuite l ’ intervalle [Çz, £ i+ i]. Pour fixer les idées, supposons g(xî) >  0, 
c’est-à-dire i pair. Il en résulte que Q (æi) >  0 et, sur l ’ intervalle [&, & + i],Q n e  s’annulant 
qu’aux points &  et £i+1, Q est >  0 sur ]& , & + i [. En choisissant un point yi € [&, £i+ i ]  tel 
que

g(Vi) ~ ôQ(yi) = max g(x -  6Q(x))£i<x<£i+i
et, en raisonnant comme précédemment, pour 6 >  0 suffisamment petit on obtient 

max (g{x) -  SQ(x)) < g(Vi) < ||g||.€i<æ<$i + 1
Vu que la fonction g ne prend pas la valeur — ||p|| sur l ’ intervalle [£ i,£ i+ i], il existe rj > 0 
tel que g(x) >  -||(/|| +  rj sur [& ,£ i+ i] et le raisonnement se poursuit comme dans le cas 
précédent.

Nous laissons le soin au lecteur de s’assurer que tous les autres cas se traitent de la 
même façon.

2. Soit 0 <  À <  1, alors

11/ -  (APi +  (1 -  A ) ft ) | |  <  A ||/ -  P i|| +  (1 -  A )||/ -  f t | |  =  <Kf,En).
En prenant A =  1/2, on obtient

c’est-à-dire

| ( / ( X i )  -  ( * 0 )  +  ! ( / ( * < )  -  =  ± 11/  -  P I
Étant donné que \ f(xi) -  Pj(xi)\ < \\f -  P||, on a nécessairement 

f(Xi) -  Pl(Xi) = f(Xi) -  P2 (Xi)y
d’où Pi(xi) =  P-2(xi) pour 1 <  i < n, soit P i =  P2 vu que ce sont des polynômes de 
degré <  n.
EXERCICE 3.9.4

On a \an f ( x n)\ <  ||/|| x  |an |, la série an f ( xn) est donc absolument convergente 
et |T ( /) |  <  l l/ ll  0 lan|- Ceci montre que T  est une forme linéaire continue de norme
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<  o \an\- Montrons que la norme de T  est en fait égale à X)^=o lûnl* Soit £ >  0, ù 
existe une partie finie A de N tel que Yln£A lûn l — €- L’espace X  étant séparé, il existe 
pour n G A des voisinages Vn de xn disjoints deux à deux. L’espace X  étant normal, 
il existe (théorème 2.36.1) des fonctions continues f n : X  ->■ [0,1], n G A, telles que 
fn ( xn ) =  1 et f ( x )  = 0 pour x E X  -  Vn. Posons en =  1 si an >  0 et en = - 1  si 
an <  0, puis /  =  £ n € /t  eft/n . Alors, f  e E, ||/|| =  1 et

T f  =  l ° n |  +  Rn OÙ |Æn| <  ^  M  ^  
n£A n£A

d’où oo
\'i'f\ >  la«l ~  e ^  X )  ia«i “  2e-

n£A n=0

Ceci prouve que ||T|| >  S^°=o la»l “  et ceci étant vra* Pour tout 6 >  0, on en déduit 
que ||T|| >  |an |, d’où le résultat voulu.
Note Une forme linéaire et continue sur E est appelée une mesure de Radon, on a ici un 
exemple particulier d’une mesure de Radon sur un espace compact.

EXERCICE 3.9.5
l,a. Montrons d’abord que toute fonction /  G co(X\ E) est bornée. Dire que /  appartient 
à l ’espace cq(X\E)  signifie que, pour toute partie finie J  de I  et tout e >  0, il existe un 
compact K  C X  tel que

x e X - K = > \ \ f ( x ) \ \ j < e
et il suffit d’écrire cette condition pour les J  réduits à un élément, une réunion finie de 
compacts dans un espace séparé étant compacte. Pour i G / ,  il existe donc un compact 
I< C  X  tel que ||/(a;)||i <  1 pour x G X  -  K  ; la fonction continue /  étant bornée sur 
le compact K , il existe une constante M  > 0 telle que \\f(x)\\i < M  pour x e K,  d’où 
suPxex \\f(x )\U <  m ax(l, M ), ce qui prouve que /  est borné.

b. Vérifions que co(X\ E) est un sous-espace vectoriel de l ’espace 6b(X; E). Soient 
f i , h  £ co(X\ E)y A i, À2 E K  ; soient i E / ,  e >  0, il existe des compacts K\  et K 2 de 
X  tels que

||/i(aOI|î <  e pour a; E X  -  I<i et | |/2(a;)||i <  epourx G X  -  K 2.
Alors K  = K\  U K 2 est compact et

| |(A i/ i 4- X2f 2)(x)\\i <  (|À i| -I- |à 2|)£  pour tout x  E X  -  K,  
ce qui prouve que A1/1 +  A2/2 appartient à l ’espace c0(X\E).

c. Montrons enfin que co(X; E) est fermé danx l ’espace Qb(X; E ). Soit /  G Gb(X\E) 
une fonction adhérente à co(X\E). Pour tout i G /  et tout e >  0, il existe donc 
g E co(X\E) tel que supxex \\f(x) -  g(x)\\i < e et il existe un compact K  C  X  
tel que supxeX_K \\g(x)\\i < e, d’où supxex_K \\f(x)\\i <  2e, ce qui prouve que /  
appartient à l ’espace co(X\ E) qui est donc fermé.

d. Quant à l ’espace Co(X; E), si /  : X  -» E  est une fonction continue à support 
compact, /  est nul sur X  — supp ( / ) ,  donc /  appartient à l ’espace co(X\E)  et par consé­
quent Qo(X\E) C co(X\E).  En outre, Co(X\E) est un sous-espace vectoriel de l ’espace 
cq{X\E)  car

supp (A /) =  supp ( / )  si A G K , A ^  0, et supp ( /  +  g) c  supp ( / )  U supp (g), 
la seconde inclusion résultant simplement du fait que

/ ( * )  =  9 (x) = 0 =» ( /  +  g)(x) =  0
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et de ce que supp (/) u supp (g) est fermé, car compact.
2. Soit /  G co(X; E) et soit e >  0, il existe un compact K  de X  tel que ||/(æ)|| <  e 

pour a; e X  —K.  D ’après le corollaire 2.36.6, il existe une fonction <p G Co(X; [0,1]) telle 
que ip(x) = 1 pour x  G K.  Considérons alors la fonction ipf ; c’est une fonction continue à 

support compact et \\f(x) — (ipf)(x)\\ <  £ pour tout a; G X ,so it \\f — y>f\\oo <  e en notant 
11*1100 la norme de la topologie de la convergence uniforme. Ceci prouve que Co(X;E)  est 
dense dans cq{X\E).
EXERCICE 3.9.6

1. résulte du fait que les parties compactes de 7 pour la topologie discrète sont les par­
ties finies de 7. D ’après l ’exercice 3.9.5, co(7;F) est un sous-espace fermé de l ’espace 
l°° (7; F ) ; si E  est un espace de Banach, l ’espace Z°°(7;F) est un espace de Banach 
d’après le théorème 3.9.5 et il en est donc de même du sous-espace fermé co(/; E).

2. L’application linéaire /  t-> f(cj) de Cu(7; E) dans E  est continue car
| | / M | | < s u P  | | / ( i ) | |  =  | | / | |

iei
et F  est le noyau de cette application : F  est par conséquent un sous-espace vectoriel fermé 
de l ’espace Gu(7; E ).

3. 11 est clair que l ’application $  : /  /  de Z°°(7;F) dans Z°°(7;F) est linéaire,
injective et que ||/|| =  ||/||.

Lorsque /  appartient à l ’espace co(7; E ), montrons d’abord que /  appartient à F , c’est- 
à-dire que /  est continu. Toute fonction de 7 dans E  est continue en tout point de 7 car les 
points de 7 sont des ensembles ouverts. Il s’agit donc de vérifier la continuité de /  au point 
à l ’ infini u. Or, l ’ensemble des voisinages du point u  coïncide avec l ’ensemble des parties 
de la forme 7 — J  où J  décrit l ’ensemble des parties finies de 7 ; la continuité de /  au 
point uj signifie précisément que /  appartient à l ’espace co(7; E). Ceci montre en outre que 
l ’application $  de co(7; E) dans F  est surjective et $  est donc bien une isométrie linéaire 
de co(7;F) sur F .

4. A est relativement compact dans co(7; E) si, et seulement si, $>(A) est relativement 
compact dans F , donc dans 6^(7; F ) vu que F  est fermé dans cet espace. D ’après le théo­
rème d’Ascoli, ceci signifie donc que A vérifie a. et que &(A) est équicontinu. Les points 
de 7 étant ouverts, tout ensemble de fonctions de 7 dans E  est équicontinu en tout point de 
7. Quant à l'équicontinuité au point à l ’ infini cj, vu la structure des voisinages de ce point 
on constate qu’ il s’agit exactement de la propriété b. Ceci prouve le résultat souhaité. 

EXERCICE 3.9.7 ESPACE DES FONCTIONS HÔLDÉRIENNES
1. Toute fonction ^-hôldérienne est continue d’après l ’ inégalité

ll/(«) -  f (y)Il < cd(x,yy
et il est immédiat de vérifier que C°tfl(X\E)  est un sous-espace vectoriel de l ’espace 
e (X ;F ) .

2. On vérifie aisément que ||*||a est une norme : en particulier, | |/ ||a =  0 implique 
f(a) = 0 et /  constante, donc /  =  0. Toutes ces normes sont équivalentes : en effet, soit 
a>b e X,  on a

l l / ( a)ll <  11/(6)11 +  d(a,br  ~
a (a, b y

d’où ||/||« <  C ll/ll»  où C =  1 +  d(a, &)<*.
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3. Soit ( / n) une suite de Cauchy dans l ’espace C0,M(X ; E) :
(Ve > 0)(3n G N)(Vp,g G N)((p > net g > n) => \\fp -  f q\\a < e).

Il en résulte que la suite ( /n(a)) est de Cauchy dans E et ceci étant vrai quel que soit a, la 
suite ( / n ) converge simplement ; notons /  sa limite. On a, pourp >  n  et q >  n,

Il fp(x ) -  fq{x) ~ (fp(y) ~  fq(y))Il <  ed{x ,yY  
et en faisant tendre q vers l ’ infini

II/p(*) -  /(*) -  (fP(y) -  /(*)) Il < ed(x,yy,
ce qui prouve que fp -  f  appartient à l ’espace C0,M(X ; E), d’où /  G G0,̂ (X; E), et que 
la suite ( / n) converge vers /  dans e0,M(X ; E1).

4. Si X  est un espace métrique borné, notons d son diamètre. On a alors

ll/(*)ll < ll/OOII + ll/(*) -  /(«)ll < vïz d(y,zy
d’où supl€ X  ||/(a;)|| <  m a x ( l,d ,‘ ) ||/||a , ce qui prouve le résultat voulu.

EXERCICE 3.9.8

1. Soit (||* ||t)i€ / une famille de semi-normes définissant la topologie de F. Une fonction 
/  : X  x Y  -> F  appartient à l ’espace Jb,Axs(X x  Y-, F) si, et seulement si, pour tout 
i € I  et tout A x  B  ç . A x 'B ,

11/lli.Axs =  sup | | / ( * ,ÿ ) | | i
(x,y)ÇAxB

est fini. Quant à la fonction $(f)(x) =  f (x , .) , elle appartient à l ’espace 3b,v(Y-, F) si, et 
seulement si,

||$(/)(a;)||i,i9 =  sup ||/(x ,î /) || i
y€B

est fini pour tout i et tout B e  ; la topologie de l ’espace (Y ; F) étant définie par ces 
semi-normes IM Ii.s, la fonction $ ( / )  appartient alors à l ’espace ^ a (X; (F ; F)) si,
et seulement si,

||4>(/)||i,/l,B =  SUp SUP | |/ (x ,ÿ ) || i
xEA yÇB

est fini. Étant donné que la famille de semi-normes ||•||^>̂ xB  (resp. ||•||^,.4,B) définit la 
topologie de l ’espace Jb,Axx(X x Y \ F )  (resp. ^ a {X\ 3tbt3 (y \ F))), la relation

\\f\\i,AxB = \mf)\\i,A,B
prouve que $  est un isomorphisme entre ces deux espaces.

2. Soient Xx > Xy  et X x x y  l ’ensemble des parties compactes non vides de X , Y  et 
X  x  y  respectivement, on a Xx  x  Xy  C  X x x y  et tout compact K  de X  x  Y  est contenu 
dans un compact de la forme K\ x  K2 G Xx  x  Xy  : les espaces X  et y  étant séparés, 
il suffit de prendre Ki = pn(K).  Ceci montre que les espaces J b,xXxY(X  x  Y; F) 
et 3r6,Xxx3cy (X  x  y  ; F) coïncident et que les familles de semi-normes définissant la 
topologie de ces espaces sont équivalentes. Le résultat demandé résulte alors de 1.

EXERCICE 3.9.9

1. Notons qx l ’application y h*  f(x,y) ; cette application est continue : gx G C(Y;F). 
Montrons que l ’application x gx de X  dans GC(Y ; F) est continue en tout point a G X .

Soient (||* ||t)t€/ une famille de semi-normes définissant la topologie de F, J  une partie 
finie de /  et e > 0. Pour tout y G y , il existe un voisinage ouvert Vb x  Wb de (a, b) tel que 

\\f(x,y) -  /(a ,b ) ||j < e pour (x,y) eVb x Wb.
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Étant donné un compact K (le Y, le recouvrement ouvert {Wb)beK de K  contient un sous- 
recouvrement fini (Wb)b€L, L partie finie de K. On pose V =  Oter, H  € V(a) ; si 
(x,y) € V x K, il existe b e K  tel que (x,y) eV b x Wb, d’où

ll/(æ,2/) -  / ( a , 6) ||j < eet \\f(a,y) -  f(a,b)\\j < e, 
soit || f(x,y) -  f(a, y) || j  < 2 e et par conséquent

Ils* "  Sa || j,/c = sup \\f(x,y) — /(a , j/)|| j  < 2e pour tout x e V,
y€K

ce qui prouve la continuité au point a de l’application x •—> gx*
2. Soient (a, b) e X  x Y, J  une partie finie de /, € > 0 et K  une partie compacte de 

Y . D’après la continuité au point a de l’application x *-> gx de X  dans 6 c(y ; F), il existe 
un voisinage V € V(a) tel que

x e V  ^  sup || f(x,y) -  f(a,y)\\j < e 
y€I<

et l’application y f(ayy) étant continue au point 6, il existe un voisinage W G V(b) tel 
que

y € W => ||f(a,y) -  / ( a , 6) ||j < e.
On en déduit que

(®,y) G V x ( WHK)  =» \ \ f ( x , y) - f (a,b) \ \ j  < 2e-
En prenant b G K, ceci montre que la restriction de /  à X  x K  est continue au point (a, b) 
et en prenant pour K un voisinage compact de b (l’espace Y  est localement compact) on en 
déduit que /  est continu au point (a, b).

3. D’après l’exercice 3.9.8, l’application $  est un isomorphisme de x  V; F)
sur 3r6>ac(-X’î3r6,Dc(y;F)). D’après 1. et 2 ., <3> induit une bijection de 6 (X x Y\F) sur 
Ç(X]£C(Y]F)) et il en résulte que $  est un isomorphisme de £C(X x Y\ F) sur
ec( x ;ec(y ; F)).
EXERCICE 3.9.10

L’espace X  peut s’écrire comme la réunion d’une suite (On) d’ouverts relativement com­
pacts telle que On C On+i (exercice 2.35.10). D’après la proposition 2.36.5, il existe des 
fonctions continues (pn : X  [0,1] telles que <pn = 1 sur On et ipn =  0 sur X -  On+1 ; 
on notera que y>n est à support compact, car contenu dans On+i. Soit /  G £(X ; E), alors 
la fonction fn = <fnf est continue à support compact et la suite ( /n) converge vers /  
uniformément sur tout compact : en effet, si K  est un compact de X, il existe un entier no 
tel que I< C On pour n > no, d’où supx€K |( /  -  f n)(x)\ = 0  et ceci prouve le résultat 
voulu.

3.37 Exercices du chapitre 3.B

EXERCICE 3.10.1 APPLICATION MULTILINÉAIRE CONTINUE

a. Vérifions d’abord l ’équivalence des propriétés 1., 2. et 3.
1 => 2 est clair.
2 => 3 L’application T  étant continue à l ’origine, il existe une constante c >  0 telle que 

\\T(xiy. . .  ,a:n)|| <  c si \\xi\\ < 1 pour tout 1 <  i < n. Supposons les Xi non nuis, on en
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déduit
||T (xi/||a :i||) ...,a;„/||a;„||)|| < c,

d’où ||T(a?i,... ,xn)\\ < c ||xi|| x . . .  x ||xn || d’après le caractère multilinéaire de T.
3 => 1 Montrons que T  est continu au point a = ( a i , . . . ,  an) G E. On a la formule

A = T(ai + x i , . . .  ,an + xn) -  T (a i,. ..  yan) =
i

où I  décrit l ’ensemble des parties non vides de [1, n] et yi désigne le point de E  
yi =  Xi si i G / ,  yi =  ai si i G [1, n] — / .

Soit 0 <  e <  1, supposons ||xi|| <  e, on a alors

mv/Jll^niWIxe^c'e
i£I

où p > 1 est le nombre d’éléments de / ,  d’où ||A|| <  c" e et ceci prouve la continuité de T  
au point a.

b. On munit l ’espace E de la norme ||x|| =  m ax i< i< n ||œ<||. Il est évident que
P ’II =  sup ||Ta:||

est une norme sur l ’espace £ ( E i }. . . ,  En\F). La topologie ainsi définie sur 
L(E \ , . . . ,  En\ F) est la topologie de la .A-convergence où A  désigne l ’ensemble des par­
ties bornées de E. En effet, si A est une partie bornée de E , il existe r > 0 tel que 
A C £ '(0 ; r) = {x G E  ; ||æ|| <  r }  et on en déduit que

sup H'7’x|| < sup ||Tæ|| =  rn ||T||.
x € A  | |x | |< r

c. On vérifie ensuite que £>(E\,. . . ,  En\F)  est un sous-espace fermé de l ’espace 
<2btA(E\F). Le raisonnement est analogue à celui fait pour prouver le théorème 3.10.1. 
Soient x  G E, yi G Ei et A , fi G les applications de <Zb,A F) dans F

1 i ^ i  (a? i j . . . ) X%— i , \x% +  fJ>yiy , . . . , Xn)
et

T  h-» AT(x)  +  fiT(xi , . . . , X i-i , yi.Xi+i , . . . ,  xn)
sont continues car la topologie de la .A-convergence est plus fine que la topologie de la 
convergence simple (proposition 3.9.1) et coïncident sur £ (ü a , . . . , E n\F),  donc sur son 
adhérence d’après le principe du prolongement des identités, ce qui prouve que tout point 
adhérent à £ (Z ? i,. . . ,E n;F) pour la topologie de la .A-convergence est une application 
multilinéaire continue. Ceci montre que £ ( E i , . . .  ,£?n ;F )  est fermé dans Gb,A(E\F). 
Lorsque F est un Banach, il en résulte que £(Ei , . . . ,  En\F) est un Banach d’après la 
proposition 3.9.4.

EXERCICE 3.10.2
Notons (ej)jeJit Ji fini, une base de Eiy tout Xi G Ei s’écrit

Xi — XijSj y Xij G IK) 
jeJi

et par conséquent

1 ( X \ , . . . , X n )  — ^   ̂ . • • y  ] X i  j x x  . . .  X X n  j n 1 (<€ j 1 , . . . , Cjn  ) .  
i l € J l  jritJn

Les projections {x\ , . . . ,  xn) Xi de n ? = i Ei dans Ei sont continues, les formes linéaires 
Xi G Ei i-» x^  G K ( j e  Jî) sont continues ; F étant un e.v.t., la continuité de T  résulte
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simplement de la continuité de l ’application multilinéaire S  : K n —> K définie par 
$(2/i> • • • >2M) = î/i x . ..  x 2/n ,

continuité qu’on peut vérifier directement ou déduire du théorème 3.10.3.

EXERCICE 3.10.3
1 => 2 est clair.
2 => 3 Soit (IM IO ie/ une famille de semi-normes définissant la topologie de G et soit 

V  =  Bj(0\r), J  G 5(7), r  >  0, un voisinage de 0 G G. 11 existe des voisinages A et B 
de l ’origine dans E et F respectivement tels que

(x, y) G A x B => T(a + æ, b + y) — T(a, 6) G K 
On peut alors écrire

T(x, y) = T(a + x,b + y)~  T(a, b) -  T(a, y) -  T(x, b)
OÙ

T(a, y) =  T(a, b +  y) — T(a, 6) G K et T(x> b) =  T(a +  æ, 6) — T(ay b) e V  
lorsque (x>y) e A x B,  d’où T(xyy) G JBj(0;3r), ce qui prouve la continuité de T  en 
(0, 0).

3 => 1 Si T  est continu en (0,0), montrons que T  est continu en tout point 
(a, b) e E x F. Soit V =  Bj(0\r) un voisinage de 0 G G, il existe des voisinages A 
et B de l ’origine dans E et F respectivement tels que T(A x B) C V. Il existe À >  1 tel 
que a G XA et b G AJ3, on a alors

T(ayy) =  T(a/XyXy) G V  si Xy e B
et de même T(xy b) G V si Xx G A. En prenant A et B convexes, on a d’autre part 

(Xx G A et Xy G B) => (xy y) G A x By 
d’où T(xyy) e V si Xx e Ay Xy e B. Vu que

T(a + Xy b -f y) -  T(a, b) = T(a, y) + T(xy b) + T(xy y)y
on en déduit

T(a-\-Xyb +  y) - T ( a , 6 )  G V + V + V =  Bj(0;3r) pour (xyy) G (1 /A )(A  x B)y 
ce qui prouve le résultat voulu.

EXERCICE 3.10.4
L’application <I>(T) est évidemment linéaire et on a \ \ T ( x y y ) \ \  <  ||T|| ||æ|| ||2/||, d’où 
\ \T(X y *)|| <  ||T|| ||æ|| ; ceci prouve que $ (T ) est continu de norme <  ||jr||. Il en résulte 
que l ’application linéaire <Ê> est de norme <  1.

Définissons une application #  : £ (£? ;£ (F ; G)) -> L(EyF;G)  en posant, pour 
S G £ (F ;£ (F ;G )),

(S) : (Xy y) G E x F -> (Sx)(y) G G.
Cette application \I/(S ) est évidemment bilinéaire et elle est continue car

||®(5)(*,»)||<||5|||N| \\y\\,
inégalité qui montre en outre que # ( S ) est de norme <  ||5||. Il en résulte que l ’application 

évidemment linéaire, est continue de norme <  1.
On remarque ensuite que $  et ^  sont des applications réciproques, soit 

^  O $  =  l£(E,F,G) et $  O ^
On en déduit que 1 =  ||\l>o$|| <  ||\I>|| ||<ï>|| et, vu que ||^|| <  1, ||<Ê>|| <  l,ceci montre que 
||^|| =  ||$|| =  1. Les applications $  et #  sont donc des isométries linéaires réciproques
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l ’une de l ’autre.

EXERCICE 3.11.1

L’ injection canonique i : F  - *  F  est linéaire continue et ne peut être ouverte (exercice
3.1.3) ; d’après le théorème de l ’application ouverte (théorème 3.11.1), i(F) =  F est donc 
maigre dans E.
EXERCICE 3.11.2

Le sous-espace G est fermé dans E , donc dans F ; i l en résulte que E  et F induisent sur G 
deux topologies d’espaces de Fréchet ; ces topologies étant comparables, elles coïncident 
d’après le corollaire 3.11.4.

EXERCICE 3.11.3

1. Il s’agit de démontrer que la condition est suffisante. On suppose l ’application S  o T  
continue. Soit (xn) une suite de E  convergeant vers 0 telle que la suite (Txn) converge 
vers y . Alors, la suite ((S  o T)(æn)) converge vers 5(0) et S  (y) ; l ’espace G étant séparé, 
5(0) =  5 (y ), d’où y = 0 d’après l ’ injectivité de 5. L’application T  est donc continue 
d’après le théorème du graphe fermé.

2. Si 7i désigne la topologie de F  et si T2 est une topologie séparée moins fine que T i, 
on applique 1. en prenant pour 5  l ’application identique If : (F, T i)  —» (F, T2).

EXERCICE 3.11.4

1 => 2 Soit 5  G £ ( F ;F )  un inverse à droite, alors T  est surjective car y = T(Sy).  
Montrons que E  est la somme directe topologique de Ker T  et Im 5. Soit x  G Ker TH Im  5, 
on a Tx = 0 et x =  Sy , y G F , d’où y = T(Sy)  =  Tx  =  0 et par conséquent x = 0 : 
Ker T  D Im 5  =  {0 }. Tout x  de E  peut s’écrire x = S(Tx) -h z où S(Tx)  G Im 5  et 
z — x — S(Tx)  appartient au noyau de T  car Tz = Tx — (T o S)(Tx) = 0. Ceci prouve 
le résultat voulu, le projecteur x S(Tx)  étant continu.

2 => 1 Notons G un supplémentaire topologique de Ker T  ; G est un sous-espace fermé 
de F, donc un Fréchet. La restriction de T  à G est une bijection linéaire et continue de G 
sur F , donc un isomorphisme d’après le théorème de Banach ; posons 

So = ( ï ’ |g ) _ 1  : F -> G et S  =  i o S0,
i : G -» E  désignant l ’ injection canonique de G dans F. On définit ainsi une application 
linéaire et continue 5  : F  -> F  qui est un inverse à droite de T.

EXERCICE 3.11.5

1 => 2 Soit 5  G £ (F ; F ) un inverse à gauche, alors Tx  =  0 implique x = S(Tx)  =  0, 
d’où l ’ injectivité de T. On montre ensuite comme dans l ’exercice 3.11.4 que F  est la somme 
directe topologique de Ker 5  et Im T> le projecteur de F  sur Im T  étant simplement T  o 5.

2 => 1 L’opérateur T  induit une bijection linéaire continue de F  sur Im T  et ce sous- 
espace Im T  admettant un supplémentaire topologique est fermé ; cette bijection est donc 
un isomorphisme d’après le théorème de Banach ; notons So : Im T  -» F  la bijection 
réciproque. Soit G un supplémentaire topologique de Im T  et P : F -» Im T  le projecteur 
linéaire associé à la somme directe F  = Im T  0  G. On pose 5  = So o P g £ (F ; F) ; on 
a alors

(5 o T)(x) = S0 (P(Tx)) = S0 (Tx) = x
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car P(Tx) =  Tx. Ceci prouve que S est un inverse à gauche de T.
EXERCICE 3.11.6
On vérifie d’abord que 7  est une bijection. Tout z € F peut s’écrire d’une manière unique 
y — y1 où y E Fo, y* E Im T  et S étant une bijection de F /K e rT  sur Im T, il existe un 
unique £ E E /Ker T  tel que y* = S£ ; 7 est donc bien une bijection, évidemment linéaire.

Le sous-espace Fo étant fermé dans F  est un espace de Fréchet ; il en est de même de 
E /Ker T  (théorème 3.6.7), donc de E /K er T  x  Fo (corollaire 3.5.7). D ’après le théorème 
de Banach, 7 est un isomorphisme et Im T  =  T (F /K e r T  x {0 }) est donc fermé dans F.
EXERCICE 3.11.7

l. Soit ( / n) une suite de F  convergeant uniformément vers 0 telle que la suite (T fn) 
converge uniformément vers g, alors un théorème classique de calcul différentiel affirme 
que g = 0. Les espaces F  et F  étant des espaces de Banach, l ’application T  est continue 
d’après le théorème du graphe fermé.

2. Il existe donc une constante c >  0 telle que \\Tf\\ <  c ||/|| pour tout /  E F , soit
sup |/'(a :)| <  c sup |/(æ )|.

0< x < l  0 < x < l
Si B est la boule unité de F , on a par conséquent

sup |/'(s t)| <  c pour tout /  E B y
0< x < l

d’où (théorème des accroissements finis)
i / ( * ) - / ( » ) i  <  c \x — y\ pour tout x, y E [0,1] 

et ceci prouve que B est équicontinu.
3. D’après le théorème d’Ascoli, B est relativement compact dans F , donc dans F  car 

F  est fermé et, vu le théorème 3.7.4 de F. Riesz, F  est donc de dimension finie.

EXERCICE 3.12.1

On suppose que C n’est pas maigre et on vérifie alors que C = F. Notons B l ’ensemble 
des x tels que la suite (Tnx) soit bornée ; on a C C F , donc B n’est pas maigre ; d’après 
la proposition 3.12.7, la suite (Tn) est équicontinue. Étant donné que C est un sous-espace 
vectoriel, il en est de même de C et, si C était différent de F , C serait d’ intérieur vide 
(exercice 3.1.3) et C serait donc maigre. Ceci montre que C est nécessairement partout 
dense et le corollaire 3.12.6 permet de conclure.

EXERCICE 3.12.2

1. La continuité des formes linéaires ôx résulte du fait qu’une suite de F  convergente pour 
la norme ||*|| converge simplement.

2. Soit /  E F , on a
A = {ôx( f ) ; x e X }  = f (X)

et f (X)  est une partie bornée de K car /  est continu et X  compact.
3. D’après le corollaire 3 .12.9, A est borné dans F ' ; ceci signifie qu’ il existe c >  0 tel 

que
ll^x ||e ' < c pour tout x E X y 

soit
\f(x)\ < c ||/|| pour tout i E l ,
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c’est-à-dire ||/||oo =  maxie x  \ f(x)\ < c\\f\\. Ceci prouve que les normes ||«|| et II.Hoo 
sont comparables, donc équivalentes vu que ce sont des normes d’espace de Banach (corol­
laire 3.11.4).

EXERCICE 3.12.3 ESPACE TONNELÉ
1. Soit V un tonneau de E, un tonneau étant absorbant, on a E = ( J ^ i  n V  (exercice 
3.1.2). Si E est un espace de Baire, V est donc d’ intérieur non vide. Soit a G V, alors 
V — a est un voisinage de 0 et V — a C  2V : en effet, soit x G V, on a -a  G V (V est 
équilibré) et (x -a ) /2 e V (V est convexe). Ceci prouve que 2V, donc V, est un voisinage 
de 0. Tout e.l.c. séparé de Baire est donc tonnelé.

2,a. Soit A une partie simplement bornée de £(E; F) et soit V =  E /c (0 ;r) une boule 
fermée centrée en 0 G F  : de telles boules constituent un système fondamental de voisinages 
de 0. Montrons que W = Otça T _1(10 est un tonneau : il en résultera que W est un 
voisinage de 0  G E et que T(W) C  V pour tout T  G A.

L’ensemble V étant convexe et fermé, W est convexe et fermé en tant qu’ intersection 
de convexes fermés.

Montrons que W est équilibré. Soit x G W et soit À G Ky |À| <  1 ; on a Ta? € V9 
d’où T(Xx) = XTx G V (V est équilibré), soit Xx e W ce qui prouve le résultat voulu.

Vérifions enfin que W est absorbant. Soit x G Ey A étant simplement borné, il existe 
e >  0 tel que ||Ta?||/c <  r/e  pour tout T  G A, d’où Xx € W  pour |À| <  e.

b. La suite (Tn) est simplement bornée, donc équicontinue d’après 2,a. et on conclut 
avec le corollaire 3.12.4.
Note Tout espace de Baire est tonnelé. La réciproque est fausse : i l existe des espaces 
tonnelés qui ne sont pas de Baire. On peut démontrer par exemple que tout produit d’espaces 
tonnelés est tonnelé, alors qu’un produit d’espaces de Baire n’est pas nécessairement de 
Baire (voir toutefois les exercices 2.28.1 et 2.35.5).

EXERCICE 3.12.4 PRINCIPE DE CONDENSATION DES SINGULARITÉS
l,a. Supposons d’abord que, pour tout entierp, il existe a? G .E tel que la suite (Tpqx)qen 
ne soit pas bornée. Alors, la suite (Tpq)qen n’est pas simplement bornée, elle n’est donc 
pas équicontinue ; d’après la proposition 3.12.7, l ’ensemble

Bp = {x G E\ la suite (Tpqx)qen est bornée } 
est maigre. Il en résulte que U£Lo c’est-à-dire E — B,  est maigre.
Note Si E est un espace de Baire, E — B  est d’ intérieur vide, B  est partout dense, donc 
non vide. Autrement dit, si, pour tout p, il existe x e E (dépendant de p) tel que la suite 
(Tpqx)q£n ne soit pas bornée, alors il existe des x  G E  tels que, pour tout p, la suite 
(Tpqx)q£K ne soit pas bornée et l ’ensemble de ces x est même partout dense, 

b. On suppose que, pour tout entier p, l ’ensemble
Cp = {x G E  ; la suite (Tpqx)q€N converge } 

est différent de E , alors Cp est maigre (exercice 3.12.1). L’ensemble U£lo c’est-à-dire 
E — C, est donc maigre.

2. On considère les formes linéaires Tpq : E  -> K définies par

l pqX — ^   ̂QPrXr, X — (a^) E. 
r=0

Les projections x h-» xn de J 5(N;1K) dans K étant continues, les formes linéaires sur E
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ï H ï n  sont a fortiori continues. Il en résulte que les formes linéaires Tpq sont continues 
et les conclusions résultent de 1.

EXERCICE 3.12.5 INTERPOLATION DE LAGRANGE
1. Il est clair que Pn{f) est un polynôme de degré <  n  et que Pn(f)(ani) =  f (a ni) pour 
0 <  i < n ; ces n  +  1 conditions étant linéairement indépendantes, Pn( f ) est le seul 
polynôme de degré <  n les vérifiant.

2. Si /  est un polynôme de degré q, on a Pn( f ) =  /  dès que n >  q \  ceci prouve que 
la suite (Pn ( / ) )  converge vers /  dès que /  est un polynôme et l ’ensemble des polynômes 
est dense dans E  (théorème 3.26.1).

3. On a évidemment

|P»(/)(*)|< (X > m (* ) l )  X H/ll,
i- 0

d’où la continuité de Pn et
n

||P»IU(B) <  sup Y'|<?ni(a:)|.

Pour démontrer l ’égalité, choisissons un point xo G [0,1] tel que
n  n

y 'k m (a :o ) |=  sup y)kni(a:)|.
t a

et soit fo G E  la fonction affine sur chaque intervalle [ani ,a n z+i] (0 <  i < n -  1) telle
que

On a alors ||/o|| =  1 et

/o(ûni) —{
+ i
- i

si qni(xo) >  0,
si Qni(xo) < 0.

n

llPnll > l|P«(/o)|| > |P»(/o)(*o)| =  E lM * o ) l ,
z=0

d’où l ’égalité voulue.
4. On vérifie aisément que

-  I  1 _
2 X i\ (n — i) ! X |i

n (->•

Par ailleurs, la fonction
(n- l ) l

z! (n — z)!
est croissante et vaut 1 pour n =  z +  1, d’où 

1 >  1
z! (n — z)! (n -  1)!

, n  >  z +  1, 

pour 1 <  z <  n — 1

et

qnî h )
1 ( 2 -  \ )  x  . . .  x  (n  -  | )

^  4 X (n  -  1)!
5. On en déduit que

1 n_1 1
||Pn|U(£) > ^ X ^ T ,

i= 1
d’où l im n ->oo ||Pn|U(E) =  OO. La suite (Pn ) n’est pas équicontinue (proposition 3.12.1) ; 
il en résulte (proposition 3.12.7) que l ’ensemble des f  € E  tels que supn€N ||P n(/)|| <  oo
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est maigre ; a fortiori l ’ensemble des /  G F  tels que la suite (Pn( f  )) converge uniformé­
ment est maigre.
Note Si la suite (Pn(f  )) converge uniformément vers g, on observera que /  =  g. En effet, 
soit x G [0,1], il existe une suite (an i(n)) convergeant vers x ; d’après l ’exercice 2.33.14, 
la suite (P n ( / ) ( a n i(n ))) converge vers g{x) ; or, Pn(f)(ani(n)) =  / ( a n i(n )), en passant 
à la limite on obtient f(x) =  g{x).
EXERCICE 3.12.6 BASE DE SCHAUDER
1. Il est clair que les applications A t-> ||A||i sont des semi-normes sur F. On peut écrire

n  7i—l

|| An#n || i A pXp A pXp
p= 0  p = 0

< 2 1 ^ .

D’après l ’unicité de la représentation x = £ ^ L 0 Ana?n. les xn sont non nuis ; n étant fixé, 
il existe donc i e I  tel que ||xn ||i ^  0 et par conséquent |An | <  2  ||a?n|| — 1 ||A||i; ceci 
prouve la continuité des formes linéaires A «-» An.

2,a. Vérifions que l ’espace F  est séparé. Supposons ||A||i =  0 pour tout i G / ,  c’est-à- 
dire || X)p=o ^ pxp\U =  0 Pour tout i € I  et tout n. L’espace E  étant séparé, on en déduit 
£ ” =0 ApXp = 0 pour tout n, d’où

n  n —1

A nXn — A pXp ^   ̂A pXp —— 0
p= 0  p= 0

et An =  0 vu que xn ^  0. Ceci prouve que F  est séparé, donc métrisable, l ’ensemble I  
pouvant être pris dénombrable.

b. Montrons ensuite que F  est complet. Soit (Afc) une suite de Cauchy de F , 
Afc =  (An)- D’après 1., la suite (\n)ken est de Cauchy pour tout n, donc convergente ; 
on pose An =  lim^-^oo A£ et A =  (An). Nous allons démontrer que A appartient à l ’espace 
F  et que la suite (Afc) converge vers A dans F.

La suite ( \ k) étant de Cauchy, pour tout i G I  et tout € >  0, il existe un entier k tel que 
l ,m > k= >  ||A* — Am||i <  e,

c’est-à-dire 71 n
[ y :  AlpXp — ^ 2  A™æp|| <  e pour tout n.

p= 0  p= 0  1

En faisant tendre l vers l ’ infini, on obtient
n  n

(3.37.1) m >  k =$■ X> pXp -  Y 2  X™xp ||. <  e pour tout n.
p= 0  p= 0  1

La série £ £ L 0 Xpxp étant convergente, il existe d’après le critère de Cauchy un entier q tel 
que

q < r  < s => | | £  A p æ p | <  e,

p = r  1

d’où d’après (3.37.1) s
Ç ^  T* ^  S ^  | |ApiCp11 ^  3 £

p = r *

et ceci prouve que la série Xpxp vérifie le critère de Cauchy ; l ’espace E  étant com­
plet, elle est convergente. La suite A =  (An) appartient donc bien à l ’espace F  et, d’après
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(3.37.1), ||A -  Am||i <  e  pour m  >  k  : la suite (Xk ) converge vers A. Ceci prouve que 
l’espace F  est complet.

3. L’application T  : F  E  définie par TA =  An x n est une bijection linéaire,
continue car

n

l£ ;p —0

d’où n
||TA||i <  bupE ^ p =  WMU-

D’après le théorème de Banach, T  est un isomorphisme. L’application T -1  qui à x  G E  
associe l’unique suite A =  (An) telle que x  =  Xn x n est donc continue ; vu 1., la
forme linéaire sur E y x'n : x  An est continue et on a

oo
x  =  ^ 2  x n ( x ) x n pour tout x  e  E .

n = 0

4,a. Étant donné que
n

x  =  lim V  x J x ) x p,n—►oo *
p = 0

l’espace vectoriel engendré par la suite (x n) est partout dense, ce qui signifie que la suite 
(x n) est totale.

b. La suite ( J 2 P=o  x p (x ) x p ) est convergente, donc bornée.
c. Étant donné que

oo
Xq =  y  An x n avec Xq =  1 et An =  0 si n 7̂  <7,

? i= 0

on a bien x fp ( x q) =  ôpq.

5. On considère les applications linéaires et continues s n : E  E  définies par
n

Sn(x) = 'Y ,̂x'p{x)xv.
p — 0

L’hypothèse 4,b. signifie que la suite (s n) est simplement bornée, donc équicontinue (pro­
position 3.12.8). On a d’autre part

n
S n ( Xq )  =  y  X p ( X q ) x p =  X q Si Tl >  q\

p = 0

on en déduit que la suite ( s n ( x ) )  converge vers x  pour les x  appartenant à l’espace vectoriel 
G  engendré par la suite (x n) ; vu le corollaire 3.12.6, la suite (sn) converge simplement 
vers une application linéaire et continue s  ; on a s ( x )  =  x  pour tout x  G G ,  donc pour tout 
x  e  E  et ceci prouve que x  =  x'n ( x ) x n.

Pour conclure, il faut vérifier que la représentation obtenue est unique, c’est-à-dire que 
^nXn =  0 implique An =  0 pour tout n. En effet, on a alors

/  OO \  OO

X p  |  ^  ̂An X n  j — ^  ̂An X p { X r i>) 0,
\ i = 0  '  n =O

c’est-à-dire Ap =  0 d’après 4,c.
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3.38 Exercices du chapitre 3.C

EXERCICE 3.13.1

Si T  est continu, d’après la continuité de l’application die : z G C h* dlez G R, 
S = die T est continu. Réciproquement, supposons S  continu. On a (lemme 3.13.3) 
Tx = Sx — iS(ix) ; l’application x »-> ix de E  dans E  étant continue, les applications 
x h-» Sx et x h* 5(iæ) sont continues, ce qui permet de conclure, C étant un e.v.t.
EXERCICE 3.13.2

Soit F un sous-espace de E  de dimension n, ce sous-espace étant séparé est isomorphe à Kn 
et le dual F ' est donc de dimension n. Soit (2i)i<t<n une base de F ' ; d’après le théorème 
de Hahn-Banach, il existe des formes linéaires et continues T» G E ' qui prolongent rl \ . Ces 
formes linéaires Cl\)i<i<n sont linéairement indépendantes, car toute relation de liaison 
induirait par restriction à F une relation de liaison entre les formes T*. Ceci montre que le 
dual E ' est de dimension > n, donc de dimension infinie, ceci étant vrai quel que soit n.
EXERCICE 3.13.3

1. La condition est évidemment nécessaire, car

Ai/(a?i)| < \\T\\ ||X ] Ajæi|j.
2=1  2=  1 i= 1 i—1

Réciproquement, notons F le sous-espace vectoriel engendré par A et soit x e F. Si
n  p

X = X  *i x i = X! °ù Xi , Vj G A , Aiyfij  g K,
i=1 j = l

on a d’après (3.13.2)
n  P n  p

| < c |^ A iæ i  -  =  0.
2 =  1 j =  1 2=1 J= 1

On peut donc définir une application S : F -» K en posant
n n

SX = X] SIX = J2
2=1 2=1

Cette application est linéaire : en effet, soient x =  Y%= 1 2/ =  X^=i Mjî/j deux
éléments de F et A, fx e K, on a

n P
S(Xx + ny) = ^ 2  ^  = XS(x) + nS(y).

2 =  1 j = l
L’hypothèse (3.13.2) implique que S  est une forme linéaire et continue de norme < c et il 
suffit d’invoquer le théorème de Hanh-Banach pour conclure.

2. résulte de 1. en prenant A = et f ( x*) = ai-
EXERCICE 3.13.4

1. Étant donné que ||e|| = 1, on a d = d(e, F) < 1. Montrons qu’on a l’égalité en raison­
nant par l’absurde. Supposons d < 1, alors il existe a; G F  tel que \\e -  x\\ < 1 -  e où 
e > 0, c’est-à-dire \xn — 1| < 1 -  e pour tout n, ce qui implique xn > e et x ne saurait ap­
partenir au sous-espace F. La proposition 3.13.10 affirme l’existence d’une forme linéaire 
et continue T  ayant les propriétés requises.
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2, a. Soit x  =  (xn) une suite convergeant vers 0 et soit e >  0, il existe un entier no tel 
que \xn\ <  s pour n  >  no. Considérons alors la suite y =  (yn) définie par yn =  xn pour 
0 <  n <  no et yn =  0 pour n >  no ; on a ||x -  y\\ < e et ceci prouve que x est un point 
adhérent à F.

b. Soit x = (xn) une suite convergente de limite l. La suite x —le converge vers 0, d’où 
T(x — le) =  0 vu que T  est nécessairement nul sur F  ; on en déduit que Tx = ITe = l> 
SOlt lim n—yoo =  L IM n—̂oo

3, a. On pose y =  x -  (||x||/2)e, alors ||y|| =  ||x||/2 (car les xn sont positifs) et 
Ty  =  Tx  -  ||x||/2 ; étant donné que \Ty\ <  ||T|| ||?/|| =  ||2/||, on en déduit que

\Tx — ||x||/2| <  ||x||/2,
d’où Tx  >  0.

b. On pose yn = supp>n x p, la suite y =  (yn) converge vers lim  supn_>00 x n et 
xn <  2M, d’où Tx  <  Ty  d’après 3,a. Ceci prouve que

L IM  xn <  lim supxn
71—>CO 71—> 0 0

et on obtient l ’ inégalité portant sur la limite inférieure en remplaçant xn par —x n . 

EXERCICE 3.14.1
Si C est un voisinage ouvert convexe de l ’origine, alors (lemme 3.14.1) C coïncide avec 
l ’ensemble des x tels que jc(x) < 1 ; si x e C et |A| <  1, on a donc en supposant que la 
jauge j e  est une semi-norme

jc(Xx) = \\\jc(x) < 1

et ceci prouve que Xx appartient encore à C. Ceci prouve que C est équilibré. Le raisonne­
ment est identique lorsque C est fermé.

EXERCICE 3.14.2
1. Soit A  une partie équilibrée et soit T (A ) l ’enveloppe convexe de A. Soit x  G T (Â ), alors 
x  peut s’écrire comme une combinaison convexe d’éléments de A , soit x = J^iei ^ iX i• ^  
|À| <  1, on a alors Xx — Yliei ^  iy% où les yi =  Xxt appartiennent à A, A  étant équilibré ; 
ceci prouve que Xx appartient à r ( A )  et, par conséquent, cet ensemble est équilibré.

2. est clair d’après la définition 3.14.1 d’un ensemble équilibré.
3. Il en résulte que l ’ intersection B  de toutes les parties équilibrées contenant A  est 

le plus petit ensemble équilibré contenant A. Si x  appartient h A, on a Xx e B  pour tout 
|A| <  1 ; il en résulte que A A c  B , d’où U |a|< i  ^  c  B  et on a en fait l ’égalité, 
l ’ensemble U |a|< i ^  ^tant équilibré.

4. L’ intersection de toute famille de parties convexes (resp. fermées) équilibrées étant 
convexe (resp. fermée) équilibrée, il existe un plus petit convexe (resp. fermé) équilibré 
contenant une partie A qu’on appelle l ’enveloppe convexe (resp. fermée) équilibrée de A.

Si C est l ’enveloppe convexe équilibrée de A , C étant équilibré contient U|A|<i ^  et

étant convexe contient donc r ^ U |A(<1 AA^ ; ce dermier ensemble étant équilibré en tant, 

qu’enveloppe convexe d’un ensemble équilibré, on a en fait l ’égalité C = r ^ U |Aj<1 AÀ'j.

Quant à l ’enveloppe convexe fermée équilibrée de A, elle est égale à r^ (J |A |< i AA^, 
car elle contient nécessairement cet ensemble qui est convexe fermé et équilibré en tant 
qu’adhérence d’un convexe équilibré.
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5. Si A est une partie bornée, vérifions d’abord que U|A|<i ^  est une partie bornée. 
Soit ||«|| l ’une des semi-normes définissant la topologie de E , il existe une constante c > 0 
telle que ||a,*|| <  c pour tout x E A, d’où ||Aa;|| <  c pour tout x  E A  et |À| <  1, ce qui 
prouve le résultat annoncé.

Vérifions ensuite que l ’enveloppe convexe de tout borné B  est bornée. Tout x  E T (B) 
peut s’écrire x = J2ieitiXi où ^ est Xi e B, 0 <  U <  1, ^2ieJ U =  1. On a alors

IN I <  y ^ U  \\xi\\ <  sup ||.r|| <  oo. 
i€/ X€B

Enfin, l ’adhérence de tout borné est bornée d’après la continuité des semi-normes défi­
nissant la topologie de l ’espace E.

Ceci permet de conclure.

EXERCICE 3.14.3

On raisonne par l ’absurde. Soit (Vn) une base décroissante du filtre des voisinages de 0, si 
B  n’est pas un voisinage de 0, (1 /n)Vn <£ B  pour tout n  >  1. Il existe donc une suite (xn) 
de E  telle que xn G Vn et xn g nB. Cette suite (æn) converge vers 0 ; d’autre part, soit 
A >  0, alors pour n  >  1/À, Xxn & B  car B  est équilibré et ceci contredit l ’hypothèse, 
d’où le résultat voulu.

EXERCICE 3.14.4
Le compact C étant d’ intérieur non vide, par translation on peut supposer que 0 G C ; C est 
alors un voisinage convexe fermé de l ’origine dont la jauge est bien définie (lemme 3.14.1). 
La fonction /  est donc continue en tout point x  ^  0. On a d’autre part \\f(x)\\ = j c ( x ), 
quantité qui tend vers 0 lorsque x  tend vers 0 d’après la continuité de la jauge en 0. Ceci 
prouve la continuité de / .

Étant donné un point a E Sn_1, considérons la demi-droite Da =  {Aa ; A >  0}. On a 

/(Aa) =  ic(Ao)p ĵj- =  Ajc(a)a

et ceci prouve que /  induit sur Da une homothétie de rapport j e  (a). Observons que 
j e  (a) ^  0 : en effet, jc(x)  =  0 signifie x e XC pour tout A >  0, d’où, C étant borné, 
une constante M  >  0 telle que \\x\\ < M  A et par conséquent x = 0. On remarque en­
fin que Aa E D a H C signifie Ajc(p) < 1 d’après le lemme 3.14.1 et ceci montre que 
f (D a f l  C) =  Da f l  B. Autrement dit, l ’application /  induit une bijection continue de C 
sur B , donc un homéomorphisme d’après la compacité de C.
EXERCICE 3.14.5
1. Soit a; E D +, alors y = 2b-x  appartient à D-  car Ty  =  2Tb-Tx = 2a—Tx < a. Ce ci 
prouve que s(D+) C D -  ; de même, on vérifie que s(D-)  c  D + , d’où s(D±) = DT vu 
que s = s” 1.

2. Si T  est continu, D+ et D_ sont évidemment fermés. Réciproquement, supposons 
par exemple D+ fermé ; s étant un homéomorphisme, D_ =  s(D +) est également fermé 
et par conséquent H  =  D+ D D -  est fermé, ce qui prouve que T  est continu (proposition 
3.6.11).

3. On suppose T  continu et on considère les demi-espaces ouverts E± =  D± -  H . 
On a D± =  E± U H  (réunion disjointe) et E± C D±. Montrons que tout point de H  
est un point frontière de D± : ceci prouvera que E± = D± et que H = Fr(D±). On
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considère donc un point b G E tel que Ta = b. Il s’agit de démontrer que tout voisinage 
de b rencontre à la fois E+ et E-. Soit h E E tel que Th soit différent de 0 ; supposons 
Th > 0 pour fixer les idées. On a alors T (b ± eh) = a ± eTh, d’où T (b + eh) G £ +  et 
T(b — eh) G E- si e > 0. Or, V étant un voisinage de 6, il existe e > 0 tel que les points 
b ±  eh appartiennent à V et ceci permet de conclure.

EXERCICE 3.14.6
Vérifions que l ’ensemble C, évidemment fermé, est convexe. Soient
(æ,2/ ,2), ( x \ y \ z ' )  G CetO <  t <  1, il s’agit de vérifier que

(tz +  (1 -  t ) z ) 2 < (tx +  (1 -  t )x )  (ty +  (1 -  t)y)\ 
en développant, on constate qu’ il suffit de vérifier que 2zz' <  xyf +  x'y , ce qui est immé­
diat.

Un hyperplan H passant par la droite D et évitant l ’origine admet une équation de la 
forme ax +  z =  1 ; H rencontre C car

H D C = {(æ, y, 1 -  ax) G K3 ; 0 < x et (1 -  ax) 2 < xy}.
Ceci montre que le théorème 3.14.8 ne subsiste pas pour des convexes fermés.

EXERCICE 3.14.7

D’après l ’exercice 3.7.7, il existe une boule ouverte V =  Bj(0;r)  telle que 
(A + V) fl (B + V) =  0 ; A + V et B + V sont deux ouverts convexes, non vides 
et disjoints ; d’après le théorème 3.14.9, il existe un hyperplan fermé séparant A +  V et 
B- h y  et un tel hyperplan ne rencontre ni A +  V, ni B +  V, ce qui permet de conclure.

EXERCICE 3.14.8
l. Soit x G W, x -  W est un voisinage de a,\ d’où (x -  W) C\W ±  0 ; il existe donc 
uj v G W tels que x — u = v, d’où æ = w + u G W + W CV. Ceci prouve l'inclusion 
W  C V. Tout voisinage de 0 contient donc un voisinage fermé de 0.

2. L’application h : (À, x) h-»- Xx de K x E dans E est continue au point (0,0) ; pour 
tout voisinage V de 0, il existe donc a  >  0 et W G V(0) tels que

(|A| <  a et £ G W) => Xx eV.
Il en résulte que V contient U|A|<a voisinage équilibré de 0.

3. Soit V un voisinage de 0, d’après 1., l ’hypothèse et 2., il existe des voisinages de 
0, Vi fermé, V2 convexe et V3 équilibré tels que V3 C V2 C Vi C V. Il en résulte que 
V contient Va = r(Vfc) où Va est un voisinage de 0 convexe, fermé et équilibré d’après 
l ’exercice 3.14.2, la proposition 3.8.4 et le lemme 3.14.3.

Notons (Vi)iei l ’ensemble de tous les voisinages de 0 qui sont fermés, convexes et 
équilibrés, on vient de vérifier que cet ensemble est un système fondamental de voisinages 
de 0. Notons ||«||i la jauge de Vt ; cette jauge est une semi-norme (lemme 3.14.2). Notons 
Ti la topologie de E et T2 la topologie définie par la famille de semi-normes (IMIO^/- 
Il s’agit de vérifier que ces deux topologies coïncident. Si V est un voisinage de 0 pour 
la topologie Ti, V contient un ensemble V* et Vi = Bi(0; 1) d’après le lemme 3.14.1 ; 
ceci prouve que V est un voisinage de 0 pour la topologie T2. Réciproquement, si V est 
un voisinage de 0 pour la topologie T2, il existe une partie finie J de I et r > 0 tels que 
Bfj ( 0 ; r ) c V e t

B 'j(0 -,r) =  r f ] V i  
ieJ



510 CHAPITRE 3 ESPACES LOCALEMENT CONVEXES

est un voisinage de 0 pour la topologie T i, il en est donc de même de V  et ceci prouve le 
résultat souhaité.

Un e.v.t. est un e.l.c., c’est-à-dire sa topologie peut être définie par une famille de semi- 
normes si, et seulement si, l ’origine admet un système fondamental de voisinages convexes.

EXERCICE 3.14.9 HYPERPLAN D’APPUI
1. Sur Cy la forme linéaire et continue T  est bornée et atteint ses bornes. Soit a =  m axc T , 
l ’hyperplan H  : T x  =  a rencontre C et C est contenu dans le demi-espace fermé T x  < a : 
H  est un hyperplan d’appui de C. De même, si b = m ine T 9 l ’hyperplan T x  = b est un 
hyperplan d’appui : il existe donc au plus deux hyperplans d’appui parallèles à l ’hyperplan 
homogène T x  = 0.

2. Soit a un point frontière de C, alors a 0  C et C est convexe (exercice 3.8.1). D’après 
le théorème 3.14.8 de Hanh-Banach, il existe un hyperplan fermé H  passant par a et ne 
rencontrant pas C. Notons D le demi-espace fermé défini par H  qui contient C ; d’après 
l ’exercice 3.8.1, on a C =  C C ce qui prouve que H  est un hyperplan d’appui. 

EXERCICE 3.14.10 THÉORÈME DE KREIN-MILMAN
1. Si a est un point intérieur de K t il existe une boule B j ( a \ r )  C K  ; soit x  G B j( a ; r ) ,  
x  ^  a, on a alors a  =  (l/2)æ  +  (1/2) (2a -  x )  où les points x  et 2a — x  appartiennent 
à B j ( a ; r ) y  donc à K t et sont différents de a  : il en résulte que a  ne peut être un point 
extrémal de K. Ceci prouve que les points extrémaux de K  appartiennent nécessairement à 
la frontière de K.

2. Montrons que tout point a de la sphère unité est un point extrémal. On suppose donc
a =  t x  +  (1 -  t ) y  où ||a|| =  1, ||æ|| <  1, ||y|| <  1 et 0 <  t < 1.

Pour fixer les idées, supposons par exemple 1/2 <  t  < 1. On peut alors écrire 
a = (x +  x')/2  où xf =  2a -  x appartient à la boule unité ; étant donné que ||a|| >  1 -  S 
quel que soit ô > 0, la convexité uniforme montre que ||æ — x'\\ < e  pour tout e > 0, d’où 
x =  x' et par conséquent x = y = a.

3. Soit a = (ai) e l°° tel que |a*| =  1 pour tout i et supposons
a = t x  H- (1 -  t ) y  où ||æ|| <  1, ||2/|| <  1, 0 <  t  < 1.

On a ai =  tx% +  (1 -  t)yi9 d’où as» =  2/» =  a» : en effet, dans K  les points extrémaux de la 
boule {z € K  ; W <  1} sont évidemment les points de la sphère {z G K ; \z\ =  1}. Il en 
résulte que x  =  y = a et qu’un tel point a est un point extrémal.

Lorsqu’ il existe j  G /  tel que \ ü j \  < 1, a n’est pas un point extrémal. On peut en effet 
écrire

a =  t x  -h (1 -  t ) y  avec ||æ|| <  1, ||2/|| <  1, 0 < £ < l e t æ ^ a ,  y  ^  a : 
il suffit de prendre Xi — y i  = ai  pour i ^  j  et d’écrire que a j  n’est pas un point extrémal 
de la boule {z G K ; \z\ <  1}.

4. a. On observe d’abord que J  est non vide car K e T. Considérons ensuite une 
famille totalement ordonnée de J, soit (Ai)iei t montrons que l ’ intersection A  =  f]ieI Ai 
appartient à J . Cette intersection est fermée, elle est non vide : sinon, K  étant compact, 
il existerait une sous-famille finie d’ intersection vide, donc un A i  vide, la famille étant 
totalement ordonnée. Il est d’autre part évident que A  est une partie extrémale de K. Ceci 
prouve que la famille (Ai) est majorée : J  est inductif.

b. L’ensemble non vide A  étant compact, la forme linéaire T  atteint sa borne supé­
rieure sur A  et l ’ensemble B  est donc non vide. Montrons que l ’ensemble B  évidemment
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fermé est une partie extrémale de K . Soient x yy G K  tels que a = tx +  (1 — t)y G B  
(0 <  t <  1), alors a G A, d’où, A  étant une partie extrémale, x ,y  G A  ; étant donné que

Ta = tTx  +  (1 -  t)Ty = sup Tz,
zeA

on a nécessairement Tx  =  Ty = sup26A Tz,  c’est-à-dire x ,y  G B. Ceci prouve le résultat 
voulu.

c. Soit A un élément maximal de J . Supposons qu’ il existe deux éléments distincts 
a, b G A, a ^  b. D’après le corollaire 3.13.7, il existe une forme T  R-linéaire continue 
telle que Ta  ^  Tb. L’ensemble B = {x G A; T x  = supyeATy}  est alors une partie 
extrémale fermée d’après b., contenue dans A et différente de A, ce qui contredit le caractère 
maximal de A. Ceci prouve que toute partie extrémale fermée est réduite à un point.

d. D ’après a. et le lemme de Zorn, toute partie extrémale fermée contient donc un 
point extrémal et en particulier K  admet au moins un point extrémal.

5. On raisonne par l ’absurde : supposons qu’ il existe un point a e K  n’appartenant pas 
à l ’enveloppe convexe fermée K'  =  T(EX(K)). Grâce à une translation, on peut supposer 
que K* contient l ’origine ; d’après la proposition 3.14.4, il existe une forme T  M-linéaire 
et continue telle que

Ta  >  1 e tT x  <  1 pour a? 6 K *.
D’après 4,b., B = {x e K  ;T x  = sup yeKTy}  est une partie extrémale fermée de K  
disjointe de EX(K), ce qui est absurde, toute partie extrémale fermée contenant un point 
extrémal d’après 4,d.

EXERCICE 3.14.11

D’après la proposition 2.33.10, K ' est un compact non vide. Soient x yy G K, 0 <  t < 1 
telsquea =  t x + ( l - t ) y  G K '> d’après la convexité d e / o n  a / (a )  <  t f(x) + ( l - t ) f ( y )  
et, /  atteignant sa borne supérieure au point a, on a nécessairement x y y G K \  ce qui prouve 
que K'  est une partie extrémale de K .

EXERCICE 3.14.12
1. Lorsque x  G K> d =  0 et x  est l ’unique projection de x  sur K. Lorsque x $ K, 
soit y € K  une projection de a; sur K  et soit z =  tx +  (1 -  t)yy 0 <  t < 1. On a 
\\z — y\\ = t llæ “  VII =  td et, pour tout y' G K, on a

\\z -  y\\ > \\x -  y || -  \\x -  z\\ > d -  (1 -  t)d = td.
Ceci prouve que y est une projection de 2 sur iC, montrons que c’est la seule. On montre 
que

B'(z\ td) C B(x\ d) U { y };
ceci prouvera que B \z \  td) f l  K  — {y}. Vu que B(z\ td) C B{x\ d), il s’agit de vérifier 
ceci :

si y ^  y \  \\z -  y\\ =  td alors \\x -  y\\ < d.
On raisonne par l ’absurde. Étant donné que

\\x -  y || <  \\x -  z\\ +  \\z -  y\\ < (1 -  t)d + td = dy
on suppose que

y ^ y , II* -  y \I = t d tt ||æ -  y II = d.
On pose y" = y + (1 /t)(y' -  y ), alors ||æ -  y"\\ =  d car

y" -  x = y -  x  +  j ( y  - y )  = - j ( z  -  y) +  j ( y  - y )  = j ( y  -  z ),
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d’où ||y" -  x\\ =  (l/t)\\y' -  z\\ = d. Les trois points y , y \ y n de la sphère S(x\d) sont 
alignés et distincts, ce qui est absurde, tout point de cette sphère étant un point extrémal de 
la boule B \x \  d) d’après l ’exercice 3.14.1Û2.

En prenant une suite (£n), 0 <  tn <  1, convergeant vers 1 , on obtient une suite (zn) 
de A convergeant vers æ, ce qui prouve que A est dense dans E.

2. Soient x G A, y la projection de x sur K  et e >  0. Si K  C B (y \e /2), on a 
diam I<s(x) <  diam K  < e. Lorsque K  <£_ B(y\ e /2 )„ on pose

d£ = d(x, K  — B(y\e/2)).
Notons que d < d£ : on ne peut avoir d =  de car le point x admettant une projection sur 
le compact K  — B (y \e /2) admettrait deux projections sur K. Prenons 0 < ô < d£ — d, 
on a alors K&(x) C B (y; e/2), d’où diam Ks(x) < e, soit x G Oe. Réciproquement, soit 
x  G f\>o et s° ient 2/>z deux points de K  tels que d(x, y) =  d(x, z) =  d. Pour tout 
e > 0, il existe 8 > 0 tel que diam Ks(x) < e ; vu que y, z e Ks(x), on en déduit que 
d(y, z) < e , d’où y = z ceci valant pour tout e >  0.

3. On remarque d’abord que d ' < d +  \\x — x'\\. Soit y G K & (æ), on a

\\x -  y\\ < ||æ -  x'\\ H- \\x' -  y\\ <  \\x -  x\\ + d! + 8' < 2 \ \ x -  x'\\ +  d +  8\  
d’où \\x -  y || <  d +  <5 dès que 2 \\x -  x'\\ +  ô' <  ô, ce qui prouve que y G #$(# ).

Vérifions que Fe = E — Oe est fermé. Soit (xn) une suite de F£ convergeant vers x. 
On a Ks(x) D /C$/(æn) si 2 ||æ -  xn \\ + ô' < 8 ; étant donné ^ >  0, on peut choisir 
n  et 8' pour qu’ il en soit ainsi. On a d’autre part diam Ks>(xn) > s car xn € Fe, d’où 
diam Ks(x) > e et ceci prouve que x  G Fe qui est donc bien fermé.

4. Les ensembles Fe sont par ailleurs d’ intérieur vide d’après 1. et 2. et on a
oo

E - A =  (JFi/bi
71= 1

ce qui prouve que E — A  est maigre.

EXERCICE 3.15.1 THÉORÈME DE MAZUR

Soit C l ’adhérence de C pour la topologie initiale ; cet ensemble est convexe (proposition
3.8.4), donc faiblement fermé (proposition 3.15.5). Il en résulte que C est aussi l ’adhérence 
de C  pour la topologie affaiblie. Le point x  appartenant à l ’adhérence faible de C, donc à 
C, on conclut en utilisant le fait que E  est métrisable.

EXERCICE 3.15.2

La topologie affaiblie a (F , E') est définie par la famille de semi-normes pxt : x  i-> \x'(x)\ 
où x' décrit E f ; si cette topologie est métrisable, il existe (théorème 3.4.6) une suite (x 'n) 
de E ' telle que la suite de semi-normes (px't ) soit équivalente à la famille ( /v )x 'e £ '-  Ceci 
signifie que, pour tout x ' G E \  il existe un entier n et une constante c >  0 tels que

\x(x)\ < c \xj(x )\ pour tout rc G E.

Il en résulte que æ' (x) = 0 pour 0 <  j  < n  implique x \x )  =  0 ; d’après le lemme 
3.15.2, x' est une combinaison linéaire des formes (xj)o<j<n• Ceci montre que la suite 
(x'n) engendre l ’espace E 1 ; la dimension de E ' est donc dénombrable. L’espace E ' étant 
un espace de Banach, donc de Baire, l ’exercice 3.5.3 montre que E' est nécessairement de
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dimension finie et il en est donc de même de E d’après l ’exercice 3.13.2.

EXERCICE 3.15.3

I ,a. Si E est de dimension dénombrable, soit (xn) une base dénombrable de E. Tout x G E 
peut s’écrire x =  o ^ôxô * so^ x ' € E \  on a alors

n
\x(x)\ < c maxn |x'(æ.,)| où c =  ^  |A*|;

-° -n j=o
ceci montre que la suite de semi-normes x ' h* \x'(xn)\ définit la topologie faible sur E'a 
qui est donc métrisable.

b. Réciproquement, si cette topologie faible est métrisable, il existe une suite (x n) 
de E telle que la suite de semi-normes x1 i-> \x'(xn)\ définisse cette topologie. Pour tout 
x G Ey il existe donc un entier n et une constante c >  0 tels que

\x(x)\ < c max \x (xj)\ pour tout x G E'.0<j<n
II en résulte que la forme linéaire sur E ' x' i-> x'(x) est nulle dès que les formes linéaires
x' x '(x j ), 0 <  j  <  n, sont nulles. D ’après le lemme 3.15.2, il existe des scalaires Au­
tels que

x (x) = x l ^  AjXj J pour tout x  G E \  
o '

d’où (corollaire 3.13.7) x = Y^j=o ^ jxj * cec* montre que la suite (xn) engendre l ’espace 
E qui est donc de dimension dénombrable.

2,a. Si E est de dimension finie, Efa =  E'b est un espace de Banach. 
b. Réciproquement, supposons E de dimension infinie. Un voisinage V de 0 G E'a 

pour la topologie faible contient un ensemble de la forme
{x G E' ; max \x (xj)\ <  1} où Xj G E.0 <j<n

Notons F le sous-espace vectoriel de dimension finie engendré par (xj)o<j<n ; F est un 
sous-espace fermé différent de E ; d’après le corollaire 3.13.8, il existe une forme linéaire 
continue xf G E' nulle sur F non identiquement nulle. Il en résulte que le voisinage V 
contient la droite Kx* et ceci prouve que la topologie a (E / , E) ne peut être définie par une 
norme.

EXERCICE 3.15.4

1. La topologie de E  étant définie par les semi-normes px : /  \Sx(f)\, x  décrivant X ,
les formes linéaires ôx sont continues (on observera que Sx est simplement la projection 
d’ indice x).

2. Soit T  G E d’après la continuité de T , il existe une famille finie (æ i)i< i<n d’élé­
ments de X  et une constante c > 0 telles que

\Tf\ <  c max |< M /) I-l<t<n
D’après le lemme 3.15.2, il existe des constantes d  G K telles que T  = Yli=i et cec* 
prouve que T  appartient à l ’espace vectoriel engendré par (6x)xex-

3. La topologie affaiblie sur E  est définie par l ’ensemble des semi-normes

P a ,c : /  h* Cxôx(f)
x € A
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où A décrit l ’ensemble des parties finies de X  et c =  (cx)xeA € Vu que 
PA,c(f) <  M  maxpx(f), M  =  max \cx |,xÇ:A x€A

cette famille de semi-normes est équivalente à la famille (px)xex et ceci prouve que la 
topologie affaiblie et la topologie initiale coïncident.

EXERCICE 3.15.5
1. Soit a G P, a ^  0 ; il existe une forme linéaire T  G E * tel que Ta ±  0, alors 
p : x  i->> \Tx\ est une semi-norme sur E telle que p(a) ^  0, ce qui prouve que la topologie 
de E est séparée.

2,a. est immédiat
b. Si l'application identique de Ea dans E est continue, il existe des formes linéaires 

continues Tj G E \  1 < j  < k, et une constante c >  0 telle que 
||x|| <  c ^maxk \Tjx\ pour tout x £ E.

Il en résulte que {0 } =  f ï jL i  Ker ce Quiest absurde car E est de dimension infinie alors
que cette intersection est de codimension finie. Ceci montre que l'application identique de 
Ea dans E n’est pas continue et par conséquent la topologie affaiblie est strictement moins 
fine que la topologie initiale.

EXERCICE 3.15.6
1. Si <  P, Q >= 0 pour toute série formelle Q> en prenant Q = x \  on constate que 
pj = 0, d’où P  =  0. De même, si <  P, Q >= 0 pour tout polynôme P, on vérifie que 
Q =  0. L'application bilinéaire (P, Q) P, Q >  définit une dualité entre les espaces E 
et F.

2. Posons qj =  T(æJ), on alors T (P ) =  S J l0Pj^=<P*Q> où Q =  Y%Lo ce 
qui prouve la continuité de T.

3. L’espace E étant séparé, il induit sur En une topologie séparée et, ce sous-espace 
étant de dimension finie, cette topologie est nécessairement sa topologie canonique.

4. Si B  est une partie bornée de P n, B  est borné dans E d'après la continuité de 
l ’ injection canonique de En dans E.

Réciproquement, soit B une partie bornée de E. Supposons B <£ En pour tout n. 
Construisons alors par récurrence une suite Pk G B  telle que degré Pk <  degré Pfc+i. On 
prend pour Po n’ importe quel polynôme appartenant à P  (P  est non vide !). Supposons le 
polynôme Pk construit ; si rik désigne son degré, P  n’étant pas contenu dans Enk, i l existe 
un polynôme P^+i G P  dont le degré est >  n^, ce qui achève la construction.

On construit ensuite une série formelle de la forme Q =  SfcLo te^e Que 
| <  Pfc,Q >  | >  /c pour tout k. On construit les qk par récurrence. Pour k =  0, on 
prend qo =  0. Supposons construits 40, •••»?*• On a alors <  Pfc+i,Q > =  pqk+i +  r 
où p est le coefficient de xnk+1 dans le polynôme Pfc+i et r  G K. On en déduit que 
| <  Pfc+i, Q > | >  \p\ |<7fc+i | -  |r| et, vu que p est non nul, il suffit de choisir qk+1 >  0 
suffisamment grand.

Ceci montre que la suite (Pk) n'est pas bornée et a fortiori P  n’est pas borné, ce qui 
contredit l ’hypothèse. Par conséquent, il existe n  tel que P  C En et P  est borné dans En 
vu que En est muni de la topologie induite par celle de E.

5. Les conditions sont suffisantes d'après la continuité de l ’ injection canonique de En 
dans E. Réciproquement, si la suite (Pk) converge vers 0 dans P , elle est bornée ; d’après
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4. il existe n  tel que Pk G En pour tout k et la suite (Pk) converge vers 0 dans En d’après
3.

6. Soit (Pk) une suite de Cauchy de F , cette suite étant bornée, il existe n  tel que 
Pk G En pour tout k et la suite (Pk) est de Cauchy dans F n, donc converge dans En et a 
fortiori dans E.

7. Supposons E  métrisable, alors E  serait un espace de Baire d’après 6. On a d’autre 
part E = (XLo E n  où les sous-espaces En sont fermés car de dimension finie et d’ intérieur 
vide (exercice 3.1.3). Ceci prouve que E  serait maigre, ce qui est absurde, E  n’étant pas 
réduit à {0 }.

EXERCICE 3.15.7

1. La topologie To =  <t (F ', E )  est définie par les semi-normes x'  h-» \x'(x)\ où x décrit 
E  et la topologie T i induite par la topologie a ( E \ E )  est définie par les semi-normes 
x'  h-» |æ/(æ)| où x  décrit F .  La topologie To est donc plus fine que la topologie T i

2. Si ces deux topologies coïncidaient, pour tout x  G E  — F , il existerait une constante 
c >  0 et une famille finie ( x i ) i e i  d’éléments de F  telle que

|æ/ (æ)| <  c max pour tout a/ G E ' .
i € l

11 en résulte que
x ( x i )  =  0 pour tout i G I  = >  x1 (x) = 0.

D’après le lemme 3.15.2, la forme linéaire x ' h-» x'(x) est une combinaison linéaire des 
formes linéaires x ' h*  x'(xi), soit

x ( x )  = ^  Xi x  ( x i )  pour tout x  G E ' .
»€/

D’après le théorème de Hahn-Banach, on en déduit que x  = Y 2 i e i  ^*®*» d’où x  G F , ce 
qui est contradictoire avec le choix de x.

EXERCICE 3.16.1 THÉORÈME DE BANACH-MACKEY

1. Il s’agit de vérifier que toute semi-norme y \y'(y)\, y' G F ', définissant la topologie 
de Fa est bornée sur T(A). Or,

sup \y(y)\ =  sup \y (Tx)\ = sup |a/(æ)|
y e T { A ) x E A  x £ A

où x' = y' o T appartient à E' ; l ’ensemble A étant faiblement borné, la semi-norme sur E 
x i-> \x'(x) \ est bornée sur A, ce qui permet de conclure.

2,a. L’application identique I e  : E  -» E i  est linéaire continue ainsi que la surjection 
canonique 7n ; si A  est faiblement borné, n i ( A )  = (m o I e ) ( A )  est faiblement borné dans 
Ei/Fi d’après 1.

b. Toute partie bornée de E  est faiblement bornée d’après la continuité de l ’applica­
tion identique Ie ’ E  —» Ea. Réciproquement, si A est une partie faiblement bornée de 
F , iri(A) est faiblement borné dans Ei/Fi et, Ei/Fi étant un espace normé, Tti(A) est 
fortement borné d’après la proposition 3.16.9. Ceci signifie qu’ il existe une constante c >  0 
telle que
(3.38.1) in f ||x||i <  c pour tout £ G in(A).

7Ti(x)=S
Étant donné que 7r*(a;) =  iti(y) signifie \\x -  y\\i = 0, donc implique ||x||i =  ||î/||i,
(3.38.1) s’écrit simplement infa-eA ||æ||i <  c : la semi-norme \\.\\i est donc bornée sur A,
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ce qui prouve que A est borné pour la topologie initiale.
EXERCICE 3.16.2 PROPRIÉTÉ DE MONTEL
1.11 ne s’agit que d’une reformulation du théorème 3.7.4 de F. Riesz.

2. Soit A une partie bornée de E , son adhérence A pour la topologie initiale est com­
pacte ; la topologie affaiblie étant séparée et moins fine que la topologie initiale, elle coïn­
cide sur A, donc sur A> avec la topologie initiale.

3. La topologie affaiblie étant séparée et moins fine que la topologie initiale, toute partie 
compacte de E est faiblement compacte.

Réciproquement, soit A une partie de E faiblement compacte, alors A est faiblement 
borné, donc borné d’après la théorème de Banach-Mackey (exercice 3.16.1) et, vu 2., A est 
compact pour la topologie initiale.

4. Toute suite convergente est faiblement convergente.
Réciproquement, soit (xn) une suite faiblement convergente vers x. Alors

oo
A  =  |J {® „}U  {a:}

71=0
est faiblement compact, donc compact ; sur A> la topologie initiale et la topologie faible 
coïncident : la suite (xn) converge donc fortement vers x.
Note II existe des exemples importants d’espaces ayant la propriété de Montel : espace des 
fonctions 6°°, espace des fonctions holomorphes, espace S de L. Schwartz des fonctions 
C°° à décroissance rapide, etc.
EXERCICE 3.16.3
Posons d = d(a, C). On peut supposer d /  0 : lorsque d = 0, c’est-à-dire lorsque a e  C, 
le théorème est évident.

1. Vérifions d’abord l’unicité. Soient x, y e ^  y, tels que ||a—x\\ = ||a—y\\ = d, 
on a alors I a — x|| _  || a — y || _   ̂

et
IIP - g  _ a -  y  II _ ||g - y || _ . n
Il d d II II d II

D’après la convexité uniforme, il existe ô > 0 tel que
|  a -  | < (1 -  5)d < d

ce qui contredit la définition de d, le point x + y) /2 appartenant à C.
2. Quant à l’existence, il existe une suite (xn) de C telle que limn-»oo ||a -  xn\\ = d. 

Montrons que cette suite est de Cauchy. Ceci prouvera le résultat voulu : C étant complet, 
cette suite (xn) convergera vers un point x tel que ||a — x\\ = d.

Soit e > 0 et soit S > 0 le nombre associé à e d’après la convexité uniforme ; on peut 
supposer 0 < S < 1. Il existe un entier no tel que

||a -  xn\\ < d( 1 + ô) pour n > no.
Posons yn = (a — xn)/d( 1 +  S), alors ||2/n || < 1 pour n > no et 

\\yv +  y g \\ = 1 IL _  s? + xq II 1
Il 2 II d(l +  ô) Il 2 11“  1 +  5*

Étant donné que 1/(1 + 5) > 1 -  5, on en déduit que

\\Vp -  %ll =  d (! “  *«11 ^  e Pour P> Q >  no,
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d’où ||xp -  x q|| <  2de et ceci prouve le résultat souhaité.

EXERCICE 3.16.4 THÉORÈME DE MILMAN

Il s’agit de démontrer que l ’ injection canonique j  : E —> En est surjective, c’est-à-dire que 
j(B) — B"- Soient xn g E''y ||æ,,|| =  1, € >  0 et ô >  0 le nombre associé à e d’après la 
convexité uniforme.

1. Étant donné que
1 =  H a:" || =  sup \x"{x)\,

x ’ e B '

il existe x' € B ' tel que |æ"(ar,)| >  1 -  8/2. L’ensemble
Oi = {y" € E" ; \(y" — x ,,) (x ,)| <  6/2}

est un voisinage ouvert de x" pour la topologie a(E", E 1) et, j(B)  étant dense dans B" 
pour cette topologie (proposition 3.16.14), il existe x  € B  tel que
(3.38.2) \(j(x ) -  * " ) ( * ') !  <  <5/2.

2. La boule B'(j(x)\ e) est compacte pour la topologie cr(E", E 1) (théorème d’Alao- 
glu), donc fermée pour cette topologie ; si \\x" -  j(x ) | |  >  e, l ’ensemble

0 2 = {y" € E " - , \ \ y " - j ( x ) \ \> e }
est un voisinage ouvert de x"  ; en utilisant de nouveau la proposition 3.16.14, on en déduit 
que 0 \  D 0 2 rencontre j(B)  : il existe y  e B  tel que 
(3-38.3) \ ( j (y ) -x " ) ( x ' ) \< 6 /2 ,
(3.38.4) l l i ( î / ) - i ( a ; ) | |  >  e.
On peut alors écrire

2x"(x’) =  x" (x )  -  x{x )  + x ' ( x )  -  x'(y) + x'(x  +  y) 
où x'(x) = j(x)(x') et x'(y) =  j(y)(x'), d’où d’après (3.38.2) et (3.38.3)

2|x"(x')| < 6 +  |x'(x + J/)| < <5 + ||æ +  y||.
Vu que | x 'V ) l  >  1 -  6/2, on en déduit ||(x +  y)/2 || > 1 - 5 ,  d’où ||x -  y|| <  e d’après 
le choix de 6 et ceci contredit (3.38.4), j  étant une isométrie.

3. On a donc démontré que, pour tout x" appartenant à la sphère unité de E" et tout 
e >  0, il existe x  € B  tel que \\x" — j(x)  || <  e. Par homothétie, ceci vaut encore pour tout 
x" e B" : autrement dit, j(B)  est dense dans B"  pour la topologie forte de E"  ; E  étant 
un espace de Banach et j  une isométrie, j(B )  est complet, donc fermé et par conséquent 
j{B)  =  B", d’où j(E)  =  E"  et ceci prouve le résultat souhaité.

EXERCICE 3.17.1

1. est immédiat, une intersection de convexes (resp. de fermés) étant convexe (resp. fermée). 
2. Si C est non vide, étant donné que C c  Ci, on a d(a, Ci) < d(a, C), d’où

sup d(a, Ci) < d(a, C) < oo. 
i€J

Réciproquement, supposons r  =  supie Id(a,Ci) fini. Posons C ' =  Ci f l  B '(a ;r ) ,  
ces ensembles Cî sont non vides car il existe x( e Ci tel que ||a -  Xj|| =  d(a,Ci) < r 
(corollaire 3.16.19). La boule B'(a;r) est faiblement compacte (théorème 3.16.16) et les 
convexes C- sont fermés, donc faiblement fermés. Si l ’ intersection C' =  H ie r c î était 
vide, il existerait une sous-famille finie (C ')3€J d’ intersection vide et, l ’ensemble I  étant 
filtrant, il existerait i tel que i > j  pour tout j  e J, et C- c  f ) ^ . /  C3 serait vide. Ceci 
prouve que C ' est non vide et a fortiori C  est non vide.
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3. On note d’abord que Xi appartient à la boule B ' (a; r )  qui est faiblement compacte ; 
la suite généralisée (Xi)iei admet au moins une valeur d’adhérence x  G B \a \r )  pour la 
topologie cr(E, E').

Montrons que x appartient à C. D’après la définition d’une valeur d’adhérence, si V  est 
un voisinage de x  pour la topologie faible, pour tout i il existe j  > i  tel que Xj G V  ; étant 
donné que Xj G Cj C Ci, V  f l  Ci est non vide et ceci montre que x  est un point adhérent 
à Ci, d’où x G Ci, Ci étant faiblement fermé. Ceci prouve que x  appartient à C.

Étant donné que x G C f l  B'(a\ r ) , on a
d(a, C) < \\a -  x\\ <  r = sup d(a, Ci) < d(a> C ), 

i€l
d’où

|| a — x || =  d(a, C) = sup d(a, C*).

4. La suite (xn) est bornée car xn C B ' (a; r) où r =  supn d(a, Cn) < oo. D ’après le 
théorème 3.17.11, il existe une sous-suite faiblement convergente et on conclut grâce à 3. 

EXERCICE 3.17.2
1. est immédiat.

2. Voici d’abord une remarque préliminaire. Lorsque tous les points de X  sont isolés, 
l ’espace X  est un espace compact discret, donc fini, et E  est isomorphe à un espace Rn , 
donc réflexif.

Dans la suite, on suppose qu’ il existe dans X  un point a non isolé.
Vérifions que les convexes Cy sont non vides. Un espace compact est normal, il existe 

donc (théorème 2.36.1) une fonction continue /  : X  -»• R telle que f(a) =  1 et f(x)  =  0 
pour x  G X  -  V, cette fonction appartient à Cy  qui est donc non vide.

L’ intersection de tous les voisinages de a étant réduite au point a (proposition 2.17.1), 
la seule fonction /  : X  —> R vérifiant U{a} <  /  <  Uv pour tout V  G V(a) est la fonction 
l { a}, fonction non continue car a n’est pas isolé. Ceci montre que l ’ intersection de tous les 
convexes Cy est vide.

3. On munit l ’ensemble V(a) de la relation d’ordre opposée de l ’ inclusion ; on obtient 
ainsi un ensemble filtrant et l ’application V  »-> Cy  est décroissante : V  C W  implique 
Cy  C Cw- D’après 2. et l ’exercice 3.17.1, l ’espace E  ne peut être réflexif.

EXERCICE 3.17.3 THÉORÈME DE BANACH-MAZUR
On notera d’abord que la boule unité B ' est compacte pour la topologie cr(E\ E) (théorème 
3.16.2) ce qui permet de munir l ’espace Q(B') de la norme de la topologie de la convergence 
uniforme. On a alors k(x) G ( ^ ( B ')  et, d’après le corollaire 3.13.12,

P ( * ) l l  =  m axla.-'^)! =  ||ar||.
I tD

Ceci montre que l ’application k : E  -» GU(B'), évidemment linéaire, est une isométrie.
On observe ensuite que la boule B' est métrisable (proposition 3.17.2) ; cette boule 

étant par ailleurs connexe et localement connexe par arc, on peut utiliser l ’exrcice 2.40.12 : 
il existe une surjection continue <p : [0,1] —► B'. Considérons alors l ’application linéaire 

x e E k { x ) o p e  ett([o, 1]).
Cette application est une isométrie d’après la surjectivité de y?, ce qui prouve le théorème. 

EXERCICE 3.18.1 POLAIRE
1. Supposons par exemple que M  soit un sous-espace vectoriel de E. Si <  æ, y > =  0 pour
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tout x G M, on a évidemment | <  y > \ <  1 pour tout x G M. Réciproquement, si
| <  x,y > | <  1 pour tout x G M , en remplaçant x par x/e> e >  0, on constate que 
j <  x, y >  | <  £y d’où <  x, y >= 0.

2. On remarque que M° peut s’écrire M °  =  P U m I * } 0 où

{æ}° =  { y 6 F ;  | < x , y >  \ <  1}
est convexe fermé et équilibré : {.x'}° est simplement la boule fermée centrée à l ’origine et 
de rayon 1 pour la semi-norme y *-> \ < x , y  > \. Toute intersection de convexes fermés 
équilibrés étant convexe fermée équilibrée, ceci permet de conclure.

3. Rappelons (exercice 3.14.2) que l ’enveloppe convexe fermée équilibrée de M  s’écrit

c = r( (J a m).
V i<i

La topologie cr(E ,F) étant définie par les semi-normes x  t-> | <  x yy > |, y  G F ,  la 
continuité de ces semi-normes montre que le polaire d’un ensemble coïncide avec le polaire 
de son adhérence.

Vérifions ensuite que le polaire d’un ensemble coïncide avec le polaire de son enve­
loppe convexe. On a évidemment F (M )°  C  M °. Par ailleurs, si y  appartient à M °, on a 
| <  x>y > | <  1 pour tout x  G M , donc pour tout x  G T (M ) : en effet, un tel x  peut 
s’écrire ^2i£ I  U x i  où I  est fini, Xi G M , 0 < U <  1 et U =  1, d’où

I < x ,y  > ^   ̂tj ^  Xi y y ^  ^   ̂tj — 1. 
i6/ i£l

Ceci prouve que T(M)° = M°.
Pour conclure, il suffit d’observer que M °  =  ^U|A|<i • En effet,

| < rr, 2/ > | < 1 pour tout x G M  équivaut à | < \x ,y  > \ < 1 pour tout x 6 M et 
tout |À| <  1.

4. D’après 3., il s’agit de vérifier que M  = M 00 lorsque M  est un convexe fermé 
équilibré. On a évidemment M C M 00. D ’autre part, si a n’appartient pas à M , il existe 
d’après la proposition 3.14.5 une forme linéaire et continue sur E , c’est-à-dire un y G F, 
telle que

< a , 2/ > >  l e t | < r c , 2/ > |  <  1 pour tout x e M;
autrement dit, y G M° et par conséquent a ÿ. M 00, ce qui prouve que M 00 C M  et le 
résultat voulu.

EXERCICE 3.18.2
1. L’espace E'b étant métrisable, il existe une suite (Bn) de parties bornées telle que les 
semi-normes ||«||^,A • où

Ik 'llf i, . =  sup |æ'(x)|,
xe Btl

définissent la topologie de E'b. D ’après l ’exercice 3.7.2, il existe une suite en > 0 telle que 
B  =  IX = o  £nBn soit encore une partie bornée de E. On a alors ||a,’'||e,4£ „ =  en II^H b » 
et ||a;'||£ =  supn ||a;, ||en£n , d’où Hæ'Hb^ <  e ~ l \\x '\\b . Ceci prouve que la topologie de 
Eb peut être définie par la seule semi-norme ||*||b , qui est donc une norme.

2. Pour tout borné A de E , il existe donc une constante A >  0 telle que 
AIIoj'IIa <  \\x '\\b  pour tout x  G Eb.

Si x1 appartient au polaire B° de B, on a | <  x ' ,x  > \ < 1 pour tout x e B, c’est- 
à-dire IIx 'Hb <  1, d’où IIAx'H/i <  1, ce qui signifie que \ x '  G ^4°. Ceci prouve que



520 CHAPITRE 3 ESPACES LOCALEMENT CONVEXES

B° C A-1 A0, d’où B00 D Ai400 3  AA
Toute suite de F  convergente étant bornée, l ’exercice 3.14.3 montre que l ’ensemble 

équilibré (d’après l ’exercice 3.18.1) B 00 est un voisinage de 0 G E  et ce voisinage étant 
borné (exercice 3.14.2), la topologie de E  peut être définie par une seule norme d’après la 
proposition 3.7.1.

EXERCICE 3.18.3
1. Soit y ' G F 1 y alors y ' est une forme linéaire continue sur Fa ; si T  est continu de E  
dans Fa, y1 o T  est donc une forme linéaire continue sur E. Ceci prouve que T  admet une 
transposée ; T  est donc faiblement continu d’après la proposition 3.18.3.

2. La topologie affaiblie sur F étant séparée et moins fine que la topologie initiale, T  
est continu de E  dans F  dès qu’elle est continue de E  dans Fa d’après l ’exercice 3.11.3.

EXERCICE 3.18.4
Si T  n’est pas continu, il existe un voisinage de 0 G F  qu’on peut supposer de la forme 
B j(0; r) où J  G 3(1)  et r >  0 tel que

T(Vn/ri) ÇL Bj(0;r) pour tout n  >  1.
Il existe donc des points xn tels que
(3.38.5) xn € Vn et \\Txn \\j > nr.
La suite (xn) converge vers 0 dans l ’espace E pour la topologie initiale, donc pour la to­
pologie affaiblie. Il en résulte que la suite (Txn) converge faiblement vers 0 dans l ’espace 
F  ; cette suite est donc faiblement bornée et par conséquent bornée pour la topologie ini­
tiale d’après l ’exercice 3.16.1. Ceci prouve que la suite (||Ta:n | | j)  est bornée, ce qui est 
contradictoire avec (3.38.5).

EXERCICE 3.18.5

Notons T  un isomorphisme de E  sur F , alors UT  : E" -> F "  est un isomorphisme 
(proposition 3.18.7) et la formule (3.18.13) UT  o j E = j F o T  montre que la surjectivité de 
Je équivaut à celle de jp-
EXERCICE 3.18.6
1. L’ injection i : F -» E est linéaire continue, donc admet une transposée H G £(F£; Fb) 
(proposition 3.18.6) ; si x' G F ', ti(x') = x '\f • Cette application est donc surjective 
d’après le théorème de Hahn-Banach et son noyau est l ’orthogonal F 0 de F . Il existe donc 
une unique application linéaire (p : F ' / F °  - *  F ' telle que H = (p on.  L’application 
ip : E'b/F 0  F{, est une bijection linéaire, continue d’après la continuité de fi. L’espace
E'b/F 0 est un espace de Banach d’après le théorème 3.6.7, F 0 étant fermé, car faiblement 
fermé ; d’après le théorème de Banach, y? est donc un isomorphisme de Eb/F° sur Fb.

2. L’application n : F  -» F / F  est linéaire continue et surjective, sa transposée 
*7T : ( F /F ) '  —> F ' est par conséquent injective. D ’après (3.18.7),

Im^Tr =  (Kervr)0 =  F 0.

Montrons plus précisément que Im *7r =  F 0. Soit æ' G F 0, c’est-à-dire soit x f G F ' tel 
que x '\f = 0. Il s’agit alors de construire une forme linéaire continue T  G ( F /F ) '  telle 
que T  o 7r =  x'. Soit £ G F /F ,  posons =  x'(x) o ù x  e E  est tel que tv(x) =  £ : x'(x) 
ne dépend pas du choix d’un tel x  car x \x )  =  x* (y) si x — y G F . On définit ainsi une
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forme linéaire T  sur E/F  telle que T o n  = x ' ; elle est donc continue d’après la continuité 
de x'. L’application ln induit par conséquent une bijection linéaire continue de (E/F)'b sur 
F0 c  E'b, donc un isomoiphisme d’après le théorème de Banach.

3.39 Exercices du chapitre 3.D

EXERCICE 3.19.1
1. L’application ip : F —> Z°°(N; E) est une isométrie linéaire, ce qui prouve que F  est un 
espace de Banach, et y(G) =  c(N; E ), ce qui prouve que G est un espace de Banach vu 
l ’exercice 2.27.6.

2,a. Montrons que le graphe de T  : G —► G est fermé. Soit (x k) une suite de G 
convergeant vers 0 telle que la suite (Txk) converge vers y dans l ’espace G ; posons 
xk =  (x k) et y = (yn). On remarque que l ’application linéaire x xn de F  dans E  
est continue car

||œn || = IlSn -  Sn— 11| < 2||æ||.
Il en résulte que la suite (xk)kew converge vers 0 dans l ’espace E  et que la suite (Anxk)ken 
converge vers yn et par conséquent yn =  0. D ’après le théorème du graphe fermé, l ’appli­
cation linéaire T  : G -» G est continue : il existe c >  0 tel que pour tout entier n  et tout
x e G

(3.39.1) y !  APæP
p=0

<  c sup
n€N E s

p=o
On peut écrire (Abel)

n

^  ^ ApXp — (Ao A i)$ 0  “H ♦ • • H~ (A n —1 A n )3 n — 1 +  An S n  j
p=0

choisissons un vecteur e G E  de norme 1, Sj = a^e, aj e  K , \a,j\ = 1, tel que 
(Aj -  \j+i)aj = |Aj — AJ+i|  pour 0 <  j  < n — 1

et Sj =  0 pour j  >  n  ; en posant Xj = Sj — Sj-i  (s - i  = 0), on définit bien une suite 
x = (xn) appartenant à G vu que Xj = 0 pour j  > n. L’ inégalité (3.39.1) devient alors

n —1

y  |Aj -  AJ+i| < c
3 = 0

et ceci prouve que la suite (An) est à variation bornée.
b. Réciproquement, supposons la suite (An) à variation bornée et soit xn une 

série convergente ; il s’agit de vérifier que la série Anæn est convergente, c’est-à-dire 
vérifie le critère de Cauchy. On peut écrire (Abel)

fc+i
(3.39.2) ^ 2  ApXp = (Xk -  Afe+ i)sfe,o +  • • • +  (Afc+*_i -  \k+t)skti-i  +  Xk+iSkti

P=k
où Skj = Sk+j -  Sk- 1  = xn- On a alors

fc+i n
ApÆp <

p=k
l^ ‘ “  A j+ i| -h sup X S k

où Sk = sup^^o \\sk,j\\ tend vers 0 quand k vers l ’ infini d’après le critère de Cauchy, la 
série o xn étant convergente.
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Note Si on s’ intéresse à des séries absolument convergentes, on peut démontrer (exercice 
3.24.2) que l ’ inclusion TÇl1) C l1 équivaut à À =  (Àn) E l°° ; la réponse est différente !

3,a. Si T(F) C G, a fortiori T(G) C G, la suite (An) est nécessairement à variation 
bornée. De plus, soit e e E  de norme 1 ; prenons xn = ( - l ) ne, alors x = (xn) appartient 
à F y donc la série X ^ L o (“ l ) n^ne converge et il en résulte que le terme général doit tendre 
vers 0, soit lim n-^oo An =  0.

b. Réciproquement, si la suite (An) est à variation bornée et tend vers 0, soit 
x  =  (xn) E F. On a d’après (3.39.2)

fc+i II ✓ OO v
V  ApXp < ( ^ 2  -  Vu1 + sup |Aj| ) x 2||x||
£ k  II /

car || =  ||Sk+j — Sk-i || <  2||æ|| et le second membre tendant vers 0 quand k tend vers 
l ’ infini, le critère de Cauchy permet d’affirmer que la série ^nXn est convergente, 
c’est-à-dire que T x  E G .

EXERCICE 3.19.2
1. Le système (3.19.8) admettant une unique solution quel que soit y E E, pour tout q il 
existe p =  p(q) tel que apq ^  0. On a alors

||®||p(o) ^  |aP(o)oæo|
d’où |xo| < |aî>(o)or1 ||x||p(o), ce qui prouve la continuité de la forme linéaire x  i-> xo-

Montrons par récurrence qu’ il existe une partie finie Jq c  N et une constante cq > 0 
telles que

\xq| <  cq max ||æ||p.p£J<i
On a

IMIp(«) —
Q

^  ] ap(q)rXr > 
r=0

d’où

\a p ( q ) q X q\ ^  IM Ip (g ) +

g - 1

Û p(g)r
r= 0

g-1
— II35llp(g) "I" lQp (g )r  | x  Cr H ja x  ||æ ||p  

r = 0  P € J r
où ap(q)q ^  0, ce qui permet de conclure.

2. La topologie de F  est séparée, en effet si ||æ||i =  0 pour tout i t on a apgxQ =  0 
pour tout p, d’où x =  0, le système (3.19.8) n’admettant qu’une solution. La topologie de 
F  est donc métrisable.

Montrons que F  est complet. Soit (xk) une suite de Cauchy de F , x k =  (xq)qen- 
D’après 1., la suite (xq)ken est de Cauchy, donc converge ; on pose xq = lim fc->oo#J 
et x = (xq). Soit e >  0 et p E N, il existe un entier k tel que, pour Z,m >  k t on ait 
||æ* -  xm\\p < £y c’est-à-dire

a p r  ( x r  — X ™  ) <  e pour tout q E i

et en faisant tendre l vers l ’ infini
Q

(3.39.3) y  ^ (LprjXr Xr )
r=0

<  e pour tout q € N, m  >  k.
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On peut écrire pour j  < q
q

^   ̂ CLprXr <
q

^   ̂ Q>pr ( X r - 4 ) +
q

CLprXy
r = j  + 1 r = j  +  l r = j  + 1

<

q
/  GbprjXr xr ) 4 -

3

^Jûpr (*t/7' X-p ) +

q
^  1  CLprXr

•r=0

0IIt- r = j + 1

< 2e +
Q

^   ̂ CLprXr  

r = j  + 1

et, la série 0 étant convergente, il existe (critère de Cauchy), un entier j 0 tel que
| E r= i+ 1  apr4\ < £ POUr j  > j 0, d’OÙ

Q
^   ̂ CLprXr 

r = j + l

<  3e pour j 0 < j  < q.

D’après le critère de Cauchy, la série yp = apqxq est donc convergente. Posons

yk =  J2T=o av<ixq' alors Vp = Vp - en effet, en faisant tendre q vers l ’ infini dans
(3.39.3) on obtient \yp -y™  | <  e pour m >  k.

Enfin, la suite (yk) est de Cauchy dans E  (car la suite (x k) est de Cauchy pour les semi- 
normes ||*||i ), elle converge donc dans E , soit 2 =  lim ^-x»  y k• La topologie de E  étant 
plus fine que celle induite par celle de 5F5(N ;K ), les formes linéaires sur E y yp sont 
continues ; il en résulte que zp = lim fc->oo 2/p et ceci montre que y = z. On en déduit que y 
appartient à E , donc x appartient à F. D ’après (3.39.3), on a ||æ — x m || <  e pour m >  k ; 
compte-tenu du fait que la suite (yk) converge vers y dans E , lim^-K» \\x -  xk\\i =  0 et 
ceci montre que la suite (æfc) converge vers x dans F.

3. L’application linéaire T  : E F  est une bijection, la bijection réciproque T ~ l est 
continue car

\\T-1x\\i = \\y\\i = \\x\\i siy = T - 1x.
D’après le théorème de Banach, T  est un isomorphisme et on déduit en particulier que les 
formes linéaires y i-> (Ty)q =  xq sont continues.

EXERCICE 3.19.3
1. On a

m

||a; -  xoe° -  -  xo)ep\\ =  sup \xq -  æo|
P=i «>m

et la suite (æn) convergeant vers xo> cette quantité tend vers 0 lorsque m  tend vers l ’ infini, 
ce qui prouve le résultat demandé.

2. Si T  est un endomorphisme de c, on en déduit que
00

y = T x  = x q  Te0 4- (xm — x q  )Tem
m=1

et en posant Tem = (<C)n>i> m, e  N,
00

2 /n  =  Q>nx O 4" ^  ^ CLn (Xm,  * ^ o )j 

m = l

Montrons que la série $Dm=i \an I est convergente. Dans la formule précédente, prenons 
xm =  0 pour m > k et x m tel que |xm| =  1 et a™Xm =  |a„ | pour 1 <  m < k. On a
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alors Xo = 0, ||x|| = 1 et y„ = E l= i  \an |. d’où

E  ici * iiwii  ̂ imi 11*11 = iitii>
m= 1

ce qui prouve le résultat voulu.
Ceci permet d’écrire yn sous la forme yn = Z)m=o a n x m ,  n  > 1, où 

= a® -  E  a» et =  a« Pourm > 1.
m=1

Vérifions alors les propriétés (3.19.10), (3.19.11) et (3.19.12).
L’entier n > 1 étant fixé, prenons d’abord xm = 0 pour m > k et xm tel que 

\ x m \  =  1 et a % X m  =  \ocn\ pour 1 <  m <  k ; on obtient alors comme précédem- 
ment yn =  E™=i ICI. d’où E™=i ICI < l|T||. Ceci prouve que la série E“=o ICI 
est convergente. Prenons ensuite xm tel que |æm| = 1 et a j ' i m = |a™| pour 0 < m < k 
et xm = xo pour m >  k, alors ||æ|| = 1 et

Vn = E  ICI1 + ( E  C  ) Xo>
m=0 \n=fc-{-l

d’où fc oo oo
E i c i <Iîmi + E  ic i< im i + E  ici
m=0 m=A:+l m=fc+l

et en passant à la limite \a ™\ -  PII» d’oùoo
(3.39.4) sup E  IC I < P'II-

Ceci prouve (3.19.10).
Quant à (3.19.11), pour m > 1 on a a™ = a„ = (Tem)„ ; étant donné que Tem 

appartient à c, on en déduit que la limite lim„_>oo <C existe, ce qui prouve (3.19.11).
Enfin, en prenant tous les xm égaux à 1, on a yn = Em=o a”  et> (îm) appartenant à 

c, on obtient (3.19.12).
3. La série E “ =o C*m est absolument convergente d’après (3.19.10) car 

f ) |C * m |<  ( X > " l )  X N I
m—0 'm=0 '

et de plus

||y|| < fsup Ê  I C  l) X ||ar|| ;
'n—1 m==0 /

ceci prouve que (3.19.9) définit une application linéaire continue T  de c dans Z°°, de norme 
sup„>i E » = 0  I C  I d’après (3.39.4).

Montrons que T(c) C c. Notons d’abord que la série ]£m =i a m est absolument 
convergente : on a en effet X)m=i lQ™l — PII Pour tout > 1 et tout k > 1, d’où 
Sm = 1 \aTn\ ^  PII* 0n peut donc écrire

2/n = E Û" ($ro -  $°) + ( E a" )X0
7 7 1 = 1 ^m=0 '
OO °° /  OO \

=  ^  (a™ — a m)(a?m — #o) +  ^ o : m(xm — a?o) +  ( J#o.
771=1 m = l  ''771=0  '
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Le dernier terme converge vers a°xo.
Montrons que le premier terme converge vers 0. On peut écrire

oo k oo
£ • • •  =  £ ■ ■ ■ +  £  -
m= 1 m=l m = k + 1

. Choisissons k tel que \xm — a,*o| <  e pour m  > k, on a alors
oo I /  OO V

£  < ( X)(KI + l«m|))e < 2||T||e.
n=k+l * 'm= 1 '

Quant à la somme £ ^ =1 (a n -  otm)(xm -  #o), elle tend vers 0 lorsque n  tend vers l'in fin i 
d’après (3.19.11). Ceci prouve le résultat annoncé.

On en déduit que la suite (yn) converge et que
oo

lim  yn = a°x0 + Y '  am(xm -  x0).
11-+00 ' m=l

4. On a yn = J2m=o anXm avec
= 0 pour n  >  1,

cC
_ Pm pour 1 <  m  <  n,

Pl  +  • • • “h Pm

K l  =  le t
= 0 pour n  <  m.

am II 3 p 32 II I I Pm Pm
n-*oo n—>oo pi + . . . + pn p

où p =  Pn, c’est-à-dire a m =  0 si la série Pn diverge. Enfin, on a a 0 =  1. 
Les propriétés (3.19.10), (3.19.11) et (3.19.12) sont donc vérifiées. La suite (yn) est donc 
convergente et sa limite vaut

oo
2/0 = #0 + ^   ̂OLmiXm CCq).

Lorsque la série Yl^Li Pn converge, ceci peut s’écrire

limn—» oo
PlXi “H . . • H- Pn&n _ n=l

Pl +  . . . +  Pn
£ P n
n— 1

et en prenant une suite (xn) dont les premiers termes sont nuis (xn =  0 pour 1 <  n < no) 
et xn = xo pour n >  no, on construit des suites x  G c telles que x q  ^  yo.

Par contre, lorsque la série J2n=i Pn diverêe» on a æ0 =  yo quel que soit la suite x e c. 
Par exemple, pour pn =  1, on obtient la méthode de sommation, dite de Césaro.

EXERCICE 3.20.1

l. Dire que le point s est adhérent à la base de filtre /(Æ ) signifie que, pour tout e >  0 et 
toute partie finie J0 de N, il existe une partie finie J  D J0 telle que \\s -  s j|| <  e. La série 
£ ~ = o  xn étant convergente et de somme s, il suffit de prendre J  de la forme [0, n] avec n 
suffisamment grand.
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2. Un filtre de Cauchy admettant un point adhérent convergeant, on en déduit que /(!B) 
ne peut être de Cauchy si la suite (xn) n’est pas sommable. Il existe donc e > 0 tel que

(VJ E 3*(N))(3K = K(J) E J(N -  J ) ) ( |M | > e).
On définit par récurrence une suite (Kn) de parties finies de N en posant

Jo = 0 et I<o = K (J0), puis Jn+i — Jn U Kn et Kn +1 = K(Jn+\).
Ces ensembles Kn sont disjoints deux à deux et || skti || > e.

3. On construit ensuite une bijection tt : N —> N telle que, pour tout n, /ir~1 (Kn) soit 
une suite d’entiers consécutifs. On procède de la façon suivante. On pose

pn = Card Kn et Nn = max Kn,
oo

An = {p e N ; p < Nn et p g ( J  Kj |  et qn =  Card An.
j = 0

Il existe des bijections
TTo : [0,PO -  1] ->• Ko, 7Tq : [po,Po +  qo -  1] -► A0,

puis par récurrence des bijections
rn -1

7Tn
r n - l  n— 1

: +  Qi),  +  < l i ) + P n -  1 - *  K n ,
U =0  2=0
r n - l  n

K n  : +  Qi) +  P n ,  ^ ( p *  +  Qi) ~  1 “ > A n -
i= 0  2=0

L’application 7r : N -> N dont la restriction aux intervalles
n —1 n —1 n —1 n

[ % 2 ( P i  +  Qi)> Y l ( P i  +  ^  + P n ~ l ] e t  [ 5 2 +  $ 0  +  P n ,  ] £ ( P *  +  "  l ]
2=0 2=0 2=0 2=0

vaut respectivement 7rn et 7r^, est une bijection possédant la propriété désirée.
4. On considère la suite yn =  æff(n) ; on a alors

T ;  yp > e  pour tout n.

La série X)^Lo Pn ne vérifiant pas le critère de Cauchy ne peut converger ce qui est contra­
dictoire avec l ’hypothèse, à savoir que la série Y^=o xn est commutativement convergente.

EXERCICE 3.24.1
Il existe (e, / )  E E x  F tel que g =  e f  E G soit ^  0. L’ensemble I  étant infini, i l existe 
une injection : N -> / .  Lorsque i =  <p(n) avec n  >  2, on pose

Xi = n~l/p (logn)~2/p eetyi = n~1/q (logn)~2/q f  ; 
pour les autres valeurs de i, on prend Xi=y% = 0. On définit ainsi des familles x =  (xi)i^i 
et y =  (yi)i£i d’éléments de E et F  respectivement.

La série de terme général n~1 (logn) ~ 2 étant convergente, (æ, y) E lp(I\ E)xlq(I\ F). 
On a d’autre part pour i =  y>(n), n  >  2,

Xfî/i =  n -1 /r  (logn)~2,Tg ;
lorsque s <  r ,  la série de terme général n -s /,r(logn)~2â r diverge et par conséquent 
x y ï l a(I-,G).
EXERCICE 3.24.2
1. Soit (x n ) une suite de lp convergeant vers 0 telle que la suite (x ny )  converge vers z dans 
lr. Posons x n =  (Xi,n ) i € i ■ Alors, i e I  étant fixé, la suite ( x i<n) converge vers 0 et la suite
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(xitnVi) converge vers Zi ; il en résulte que Zi = 0. D ’après le théorème du graphe fermé, 
l ’application linéaire x t-* xy de lp dans lr est donc continue.

2. Il existe donc une constante c >  0 telle que ||æy||r <  c ||x||p pour tout x G lp.
Si p =  oo, donc q =  r , en prenant tous les Xi égaux à 1, on obtient ||î/||r =  ||y||p <  c, 

d’où y G lq.
Si q = oo, donc p =  r ,  prenons a;* =  1 et Xj =  0 pour j  ^  i, alors |yi| <  c, soit 

lll/lloo <  c e t 2/ G /°°.
Enfin, si p et q sont tous deux finis, soit J une partie finie de I  ; prenons 

Xi =  \yi\q/p pour i G J et Xi =  0 pour i ^  J.
On obtient alors |œ<2/»| =  |2/i|g/p+1 =  |2/i|9 /r, d’où

( E N M  < M E n m

(  Y /qet, vu que l / r  -  1/p =  l/q, ( Y^ieJ \Vi\q J <  c ; il en résulte que y appartient bien à 

lq.
EXERCICE 3.24.3 THÉORÈME DE SCHUR-MERTENS

1. On a |æo| =  |so| <  IN I et, pour n  >  1, \xn\ =  |sn -  sn_ i| <  2 ||æ||, ce qui permet de 
conclure.

2. On utilise le théorème du graphe fermé. Soit xk =  (xk) G E une suite de E telle 
que

xk — v 0 et xk * z — > z dans E.
D’après 1., zk = Yïj=o x j V n - j  tend vers 0 lorsque k tend vers l ’ infini et ceci prouve que 
zn = 0, d’où 2 =  0, ce qui permet de conclure.

3. On en déduit une constante c > 0 telle que \\x * y\\ < c ||æ|| pour tout x e E. On a 
alors

n  k

soit

Sn — zk — Xk-jyj — yj Xk-j) ,
fc=0 k= 0  j = 0  j= O k=j

n  n

Sn ~  y  ^ y j S n —j  OU S n  =  ^  ^ X j .
j = 0 j = 0

On en déduit que n
sup\52yjSn-j\ < c s u p | s fc|. 
n€Nl“  1 ken

L’entier n étant fixé, prenons x e  E  tel que
yjSn-j = |yj | pour 0 < j  < n et Sk =  0 pour k> n.

On obtient ainsi que Ŷ j=o \Vô I < c et, ceci valant pour tout n, ceci montre que la série 
YfjLo \Vi \ est convergente, c’est-à-dire y G l1.
EXERCICE 3.24.4
1. D’après l’inégalité de Hôlder, on a

w  < ( i > r ) 1/p x ( Ê N - i i , ) 1/* ^  n*iipii»ii*.
i=o j=o



528 CHAPITRE 3 ESPACES LOCALEMENT CONVEXES

d’où S U p neN  \zn\< 00  et \\x *  y\\oo < IH Ip IM If-
2,a. On utilise le théorème du graphe fermé. Soit (x k) une suite de lp convergeant vers 

0 telle que la suite (xk ★  y) converge vers 2 dans /°°. On pose x k =  (x k ), y =  (yn) et 
2 =  (2»), on a alors

n
Zn =  lim  =  0

j=0
car lim/k-^oo x k =  0 pour tout j. Ceci prouve que 2 =  0, d’où la continuité de l ’application 
x e l p t-> x * ye l°°  d’après le théorème du graphe fermé,

b. On en déduit une constante c >  0 telle que
n

|y ;  Xjyn- j  | <  c ||æ||p pour tout entier n  et tout x  G lp.
3 = 0

L’entier n  étant fixé, choisissons x  G lp tel que
Xj = £j\yn- j \ q~ l pour 0 <  j  < n  et Xj = 0 pour j  > n

où £j = 1 si yn- j  > 0 et £j = - 1  si yn- j  <  0. On obtient ainsi

j =0 j  =0
et, vu que p(q -  1) = q, 1 -  1/p =  l/q,

1 1/9
(2 > r )
j=0

et ceci étant vrai pour tout entier n, on en déduit que y appartient à l ’espace lq.

EXERCICE 3.24.5

Rappelons que la norme sur l ’espace co(/; E )  est définie par ||æ|| =  supi6 / ||æt||.
l,a. Soit i G / ,  on note pi : E  —> co (I \E )  l ’application linéaire définie par 

ipi(x) =  y avec yi =  x  et 7/j =  0 pour j  ^  i. Cette application linéaire est continue 
vu que \\<Pi(x)\\ =  ||œ||.

b. On note ensuite que, pour tout x =  (X i ) i e i  E c o (/ ; E ) y la famille (<Pi(xi))iei est 
sommable de somme x  : en effet, soit Jo  une partie finie de I  telle que supi€ /_ Jq \\xi\\ < £, 
alors pour toute partie finie J  D Jo

U - y  Vi(xi) =  sup ||œ<|| <  sup \\xi\\<£.
N “  N iei-J  iei-Jo

c. Soit T  une forme linéaire continue sur co(/; E ), il résulte de b. que

Tx =  ^ ( T  o <pi)(xi) =  ^2  <  y^Xi >  V* = T ° W e E - 
iei iei

On définit ainsi une famille y = (yi)iei d’éléments de E '.
d. Montrons que y appartient à l ’espace /a(/ ;  E'). Prenons x  G co(/; E) de la forme

x — Y^ieJ où J  est une partie finie de I . X i Z E  et ||æ<|| =  1 et choisissons les
scalaires a* tels que

\ai\ =  le t  ai <yi,Xi > =  | < y itXi > |.

T x = y 2 1 < y u x i  > iet imi= n  ii®<ii = l
On a alors
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D’après la continuité de T , on en déduit que ^2ieJ \< yuxt > \ < ||T|| et en prenant la 
borne supérieure sur les Xi décrivant la sphère unité de E , on en déduit que 
Y^ieJ M H  <  ||2'||. Ceci montre que y appartient à l ’espace l l (I\ E') et que

(3.39.5) M | i  <  \\T\\.
e. Inversement, à tout y = (y%)iei de l ’espace Z1 (J; E f), on peut associer une forme 

linéaire continue sur co(/; E) en posant

Tyx = ^  <  yi,Xi > . 
iei

En effet, la famille (<  >)iei est sommable car | <  yi,Xi >\ <  ||2/*|| ||o?||, donc Tyx 
est bien défini. De plus,

PW <£lw ll INI = ll»lli INI,
i€ /

ce qui prouve la continuité de la forme linéaire Ty et ||Ty || <  ||j/||i. D ’après (3.39.5), on en 
déduit ||TV|| =  Hî/lli : ceci prouve que l ’application linéaire y i-» Ty est une isométrie de 
ll (I\ E') sur le dual de l ’espace co(/; E).

2. Si l ’espace co(/; E) était réflexif, il en serait de même de son dual fort (corollaire 
3.17.9), donc de l ’espace Z1 ( / ;  E') qui lui est isomorphe, ce qui n’est pas le cas (corollaire
3.24.8).

EXERCICE 3.24.6
On observe d’abord que l ’espace lp est un espace de Banach séparable. L’ensemble de suites 

X  =  { (x n) ; il existe un entier p tel que xn = 0 pour n > p} 
est dense dans lp et T kx = 0 si k > p. On définit une application S  : lp —► lp en posant

(Sx)0 =  0, (Sx)n = jX n - 1  pour n > 1.

On a évidemment T  o S  =  h v  et | | £ fex | |p  =  (1 /À fc)||x||p, d’où limfc —y oo S  ' x  — 0. Les 
hypothèses de l ’exercice 3.4.4 sont satisfaites, ce qui permet de conclure.

EXERCICE 3.24.7
Pour toute partie finie J de / ,  on peut écrire

||œ-®n||p <  \Xi\pS) *
\ ç j  '  \ e i - j  J \ e i - j  '

Par hypothèse, la suite ( 5 2 i e l  |æn,*|p) converge vers J 2 i e i  \X̂ \P• Par ailleurs» les applica­
tions x h* Xi étant des formes linéaires continues sur lp et la suite (xn) convergeant faible­
ment vers x, on a ^  =  lim n_+oo xn,i et ceci montre que la suite (J^i€J |x’n,i|p) converge 
vers \X i \P• H en résulte que la suite lœn,*|p) converge vers \x i\P-

Étant donné e > 0, il existe donc une partie finie J de I  telle que
/  \ 1/p
( £  M p ) < e ,
\ e i - J  '

puis un entier no tel que
/  \
( £  i*».iip)
\ e i - J  '

< 2 e pour n > no
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et enfin un entier ni > no tel que
/ \ 1 / p

(z - /  \Xi~ XnÀP) < e p o u r n > n i .

Il en résulte que ||x -  xn\\p < 4e pour n > m , ce qui prouve que la suite (xn) converge 
vers x dans lp.
EXERCICE 3.24.8
Posons ai = (ciij)j(zi G ll(I\K). Si x = (Xj)jei appartient à l’espace Z°°(/;K), notons 
T  la forme linéaire et continue sur l1

z = (zj)j£i
jei

D’après le théorème 3.24.5, ||T|| =  ||x||oo. Le système d’équations (3.24.23) s’écrit alors 
Tdi =  2/z, i G I  et, d’après l’exercice 3.13.3, ce système admet une solution T  G (Z1)7 
telle que ||T|| < c si, et seulement si,

îVi
i£j

<  C y  ̂Kai
ieJ

pour toute partie finie J et tout Ai G K, c’est-à-dire
i

T .
îG J - c 2 ^

jei 2 .iej
A %Oi%‘

EXERCICE 3.24.9
1. La première identité est évidente. Quant à l’inégalité t(x 4- y) < t(x) -h t(y)> il suffit de 
vérifier que (a +  b)p < ap + bp pour tout a, b > 0, c’est-à-dire (1 + 1)p < 1-f tp pour tout 
t > 0. Considérons la fonction

y>(t) =  l  +  t p - ( l  +  t ) p ;
on a y>(0) = 0 et =  p[tp~l -  (1 + f)p_1] > 0 pour tout t > 0 carp -  1 < 0. La 
fonction y? est croissante, donc > 0 ce qui permet de conclure.

2. résulte de 1.
3. Il est clair que d(x, y) = d(y, x) et que d(x> y) = 0 signifie x = y.
Quant à l’inégalité triangulaire, on a pour x,y>z G lp

d(x , z) =  t(x -  z) =  t(x -  y H- y -  z) < t(x -  y) +  t(y -  z ), 
d’où d(xy z) < d(x, y) +  d(yy z).

Montrons ensuite que lp est un e.v.t. Vérifions la continuité de l’addition (æ, y) h-» x+y  
de lp x lp dans lp en un point (æo, 2/o). Sur l’espace produit lp x Zp, on peut prendre comme 
distance de deux couples (x, y) et (xo, yo)

d((x,2/), (x0,2/o)) = d(xyx0) + d(y,yo).
On a alors

d(x + y yx  o +  yo) = t ( x - x 0 + y -  yo) < t(x -  x0) H-1 (y -  y0)

< d(xyx0) + d(yyy0)y
ce qui prouve la continuité de l’addition.

Vérifions ensuite la continuité de l’application (A, x) i-» Ax de K  x lp dans lp. Soient 
(xn) une suite de lp convergeant vers x et (An) une suite de scalaires convergeant vers A, 
on a

Ax Anxn — An(x Xn) H" (A An)xy
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d’où
d (À ® , XnXn) *Cn)) ”l“ ^((<^ ^ n ) ® )

OÙ
t(An(a; -  Xn)) = |An |Pd(æ,æ») eti(An(x -  £„)) = |A -  Xn\Pt(x) 

tendent vers 0, ce qui prouve que la suite (Anæn) converge vers Xx.
4. La preuve que l ’espace lp est complet est identique à celle de la proposition 3.24.3.
5, a. Si 0 <  p < q <  oo, soit x =  (xi)iei appartenant à la boule B'(0; 1) de lp, 

c’est-à-dire tel que J2iei \\Xi\\P <  1. On a alors ||xi|| <  1, d’où \\xi\\q <  ||æi||p car p < q 
et il en résulte que
(3.39.6)

«€/
Ceci montre que x  appartient à lq ; par homothétie, on en déduit que lp c  lq et l ’ inégalité
(3.39.6) montre que l ’ injection canonique est continue en 0, donc partout.

b. Lorsque 0 < p < q = oo, on a pour tout x  =  (Xi)iei £ lp
i . R . < 5 > r

i€l
ce qui prouve l ’ inclusion lp C l°° et la continuité de l ’ injection canonique.

c. Montrons que la topologie de lp est strictement plus fine que la topologie induite 
par celle de lq lorsque I  est infini et E =£ {0 }. On choisit un vecteur e G E  de norme 
1 et, pour tout entier n  >  1, une partie In de I  à n  éléments. On définit une suite (æn)> 
xn = (&«,*)*€/»en posant

xn,i =  n -1 /pe si i G In et xn,i =  0 si i e I  — In-
On a alors

E  iiæ".*np = !> E  i m * = n ( p ~ q)/p et imi~ = n_1/p ;
iei iei

cette suite (æn) appartient à tous les espaces F ; elle converge vers 0 dans lq quel que soit 
q > p, mais ne converge pas vers 0 dans l ’espace lp et ceci prouve le résultat souhaité,

d. Ceci prouve que
I J  l q C lp C f |  l q .

0< q < p  q > p

Montrons que la seconde inclusion est stricte. Soit e G E  de norme 1 et soit /  : N —> I  une 
injection. On pose Xi =  n~l/pe si i  =  / ( n ) ,  n  >  1, et æ* =  0 pour les autres valeurs de i. 
Alors

E iia:iiip = E 1/n = 00
i£l 7i=l

et
00

y :  l l^ i l l9 =  ^ 2  n ~q/p <  OO si q> p,
iEl 7i=l

d’où x £ lp et x e  lq quel que soit q > p.
Quant à la première inclusion, on prend Xi =  n~l^p(logn)~'2̂ Pe s i i  =  f(p), n  >  2, 

et Xi = 0 pour les autres valeurs de i. On a alors

E mp =
i e i

E
71=2

1
n(logn) 2

< 0 0
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et

]C lN I ~ J l n,/p (iognyq/v = 00
lorsque q < p, soit x  G lp et x  £  lq pour q <p.

6,a. On note ipi : E  Zp( / ;  £ )  l ’application <pt(x) = (Xj)jeI  avec Xi = x  et Xj =  0 
pour j  ^  i  Vu que t(<Pi(æ)) =  ||z||p, cette application linéaire est continue en 0, donc 
partout.

b. Notons ensuite que, pour x = (xi)ieI e  Zp, la famille (vi(xi))iei est sommable 
de somme x. En effet, soit e >  0, il existe une partie finie J 0 de I  telle que j  ||Xi ||p, 
d’où pour toute partie finie J  contenant Jo

= Y  Y  IKI|P<^.
ieJ iel-J  i€l-J0

ce qui prouve le résultat annoncé.
c. Si T  est une forme linéaire continue sur /p, on a alors x  =  ]T \€ / d’où

Tx = J 2 ( T  o <pi)(xi) =  ^  <  yiyXi > où yi =  T  E '.
i€ / ie /

Montrons que p =  (yi)iei appartient à l ’espace Z°°(/; E '). D’après la continuité de T  en
0, il existe <5 >  0 tel que t(x) < S => \Tx\ <  1. Prenons x = ô1/ptpi(h) où h € E, 
||/i|| <  1 ; on a

t(x) = =  stfaCh)) = S\\h\\p < Ô,
d’où \T(Ô1/P<pi(h))\ <  1, soit | <  yiyh >  | <  Æ“ 1/p et ceci montre que WïhWe ' <  6~1/p 
et on a bien y = (yi)iei G /° ° ( I; E ').

d. Vérifions qu’ il n’existe qu’un seul y  =  (yi)iei G /°°(J; £ ')  tel que

1  x  y  ] ^  2/î j ^  *
i€l

On observera que cette famille est sommable car \ < yt,Xi > \ < ||2/||oo ||^i|| et 
x  G lp(I\E)  c  Z1( / ; ^ )  d’après 5. En prenant alors x  =  (pi(h), h G E, on a 
(T  o <pi)(/i) = <  y i ,h > y c’est-à-dire yi = T  o (pit ce qui prouve le résultat voulu.

e. Quant à la surjectivité, soit y =  (yi)iei G Z°°( / ; £ ' ) ,  la formule
Tæ =  X )ie / <  Vuxi >  définit une forme linéaire continue sur l1(I;E)i donc a fortiori 
sur lp{I\ E).
EXERCICE 3.24.10 SUITE A DÉCROISSANTE RAPIDE
1. Il est clair que les ||•||fc sont des semi-normes sur s. Muni de ces semi-normes, s est un
e.l.c. séparé (car ces semi-normes sont des normes), donc métrisable. Montrons que l ’espace 
est complet. Soit (xi), xi = (xnii)n> 1, une suite de Cauchy

(V* G N)(Ve >  0)(3 I G N)(V»,i G N )((t >  l et j  > l) =* \\Xi -  X j \ \ k < e), 
c’est-à-dire
(3.39.7) |nk(xn,i -  xnj)\ < £ pour tout n > 1.
Ceci montre que, pour n  fixé, la suite (xUti) est de Cauchy dans K, donc convergente. On 
pose xn =  lim ^cso^n.i, x  =  (æn). En faisant tendre i vers l ’ infini dans (3.39.7), on 
obtient |n/e(a;n — xUyj)\ <  £ pour tout n  >  1 et j  > l : ceci prouve que x — Xj appartient 
à s, donc que x  appartient à s, et que la suite (xi) converge vers x  dans l ’espace s.

2. Il existe un entier k et une constante c >  0 tels que \yn\ < cn k ; il existe d’autre 
part c' >  0 tel que \nk+2xn\ <  c', d’où \xnyn\ < cc‘/n 2. La série Tyx =  xnVn
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est donc absolument convergente ; l ’application Ty est évidemment une forme linéaire sur 
s et

OO OO / C O  ^  \

\TVX\ < Y  \xnVn\ < c Y  I” *®»! -  C($Z 2̂ ) llXllfc+2>
n —1 71=1 \ i = l  '

ce qui prouve la continuité de Ty.
Vérifions l ’ injectivité de l ’application y Ty. Posons ep = (<D'£)ti> i G s où ô% = 0 

si p ^  n et ô% = 1. Supposons Tv =  0, alors Tyep = yv =  0, d’où y =  0.
3,a. On a

# —V ^a ;pep =  sup \nkxn\
Il p = i  ^  n > n o

et il existe c > 0 tel que |nfe+1a;n| <  c pour tout ?z, d’où

n n0
x — ^ 2  xpep\\ < c/(no + 1) ;

p = i

étant donné e > 0, il existe donc un entier no tel que

x - J 2 xpep <e
P=i k

et, pour toute partie finie J  D [1, no], on a a fortiori

æ —^ x pep <  £,
PÏJ k

ce qui prouve que la suite (xnen) est sommable et de somme x dans l ’espace s. 
b. Si T  est une forme linéaire continue sur s, on en déduit que

OO

Tx = Y2 XnVn où y™ = Ten-
71 =  1

Montrons que la suite y =  (yn) est à croissance lente. D ’après la continuité de T , vu que 
||*||fc <  IMU+i, il existe c >  0 et un entier k tels que |7’a;| <  c ||æ||fc pour x G s, d’où 

llfe| =  r i ,cn |< c | |e n ||fc =  c » t l
ce qui prouve le résultat voulu. L’application y ■-» Ty de om dans sf est donc surjective et 
il s’agit donc bien d’une bijection linéaire.

EXERCICE 3.24.11
Nous allons démontrer que les points extrémaux de la boule unité de l ’espace l1 sont les 
points a  =  (a ^ )^ / de la sphère unité tels qu’ il existe un j  G I  tel que \a,j\ = 1 et par 
conséquent a* =  0 pour i /  j.

1. Soit a un point vérifiant la condition précédente et soient G B'(0; 1) tels que 
a = tx H- (1 — t)y où 0 <  t < 1. On a alors aj = txj +  (1 — t)yj9 d’où Xj = yj =  a,j 
(dans K, tous les points de la sphère unité sont des points extrémaux de la boule unité). Il 
en résulte que Xi =  ^  =  a* =  0 pour i ± j , d’où x =  y =  a et ceci montre que a  est un 
point extrémal.

2. Réciproquement, soit a  G l1 tel que ||a||i =  1 et |ûi| <  1 pour tout i. Montrons 
qu’un tel point n’est pas un point extrémal. Il existe des indices j ,  k G I , j  ^  ky tels que 

0 <  \a,j\ < l e t 0 <  \ak\ < 1.
Notons 0j et 6 k des réels tels que

dj = et$j \dj | et dk = ez6k |afc|.
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Choisissons ensuite un e tel que 0 < e < min(|o3|, |ofc|) et définissons deux points 
x,y  € l1 par

Xi = yi = <h pour i <£ {j, k}

Xj = eiei{\aj\ -  s) et % = ei9>(|ty| +e) ,

Xk =  ei9fc(|afc| +  e) et yk = -  e).
On a alors ||x||i =  ||j/||i =  ||ai || =  1 et a = (x + y)/2, ce qui prouve que a n’est pas un 
point extrémal.

3.40 Exercices du chapitre 3.E

EXERCICE 3.25.1
On observe que Q(X\K)  0  C(Y;K) est une sous-algèbre de GU(X  x Y;K) contenant 
la fonction 1, stable par conjugaison et séparant les points d’après le théorème d’Urysohn
2.36.1. Le théorème de Stone-Weierstrass permet de conclure.

EXERCICE 3.25.2
1. Supposons l ’espace X  métrisable, alors X  est séparable (proposition 2.33.1) et, vu la 
proposition 2.10.7, X  admet une base de topologie dénombrable (Bn). On considère les 
fonctions f n(x) = cl(x,X -  Bn) en ne conservant que les Bn ^  X.  L’ensemble S  de 
ces fonctions est stable par conjugaison. Vérifions que S  sépare les points de X  : soient 
û ,6e I , o / 6, alors X  — { 6}  étant ouvert, il existe un entier n  tel que a G Bn et b ^  Bn> 
d’où f n(a) 0 et f n(b) =  0. Ceci montre en outre que, pour tout a € X y il existe un n  tel 
que f n{p) 7̂ 0. D ’après le théorème de Stone-Weierstrass, la sous-algèbre A  engendrée par 
S est dense dans l ’espace eii(X;K). L’ensemble des fonctions qui s’écrivent comme des 
polynômes à coefficients dans <Q> ou Q  + i<Q par rapport aux fonctions de S  est également 
dense dans eu(X ; K) qui est donc séparable.

2. Réciproquement, on suppose l ’espace GU(X\K)  séparable. La boule unité B  de cet 
espace est donc séparable : il existe une suite ( / n) dense dans B. Pour tout x  G X ,  on a 
alors / n (æ) G D et on peut définir l ’application

¥> : X é X h  ( /n(x)) 6 Dn.
Cette application ip est continue d’après la continuité des / n . Montrons qu’elle est injective 
en raisonnant par l ’absurde. Supposons qu’ il existe x t y G X, x ^  y> tel que ip(x) =  <p(y), 
c’est-à-dire f n(x) = fn(y) pour tout n . D’après la densité de la suite ( / n), on en déduit 
que f(x) = f(y) pour tout /  G B. Ceci est absurde car, d’après le théorème d’Urysohn
2.36.1, il existe une fonction continue /  : X  [0,1] telle que f (x)  = 0 et f (y)  =  1 et 
cette fonction appartient bien à B.

Ceci montre que (p : X  -» Dn est une injection continue et, X  étant un espace com­
pact, /  est un homéomorphisme de X  sur <p(X) : l ’espace Dn étant métrisable (corollaire 
2.22.3), ceci montre que X  est métrisable.

EXERCICE 3.25.3
Les espaces de Banach £u(Qn\ K) sont séparables d’après l ’exercice 3.25.2 ; il existe donc 
bien une suite (fnm)men partout dense. D’après le théorème de Tietze-Urysohn, il existe
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des fonctions continues gnm E G(X\R) qui prolongent ces fonctions / nm.
Montrons que l ’ensemble dénombrable de toutes ces fonctions gnm est dense dans l ’es­

pace GC(X\R). Soit /  G ec(X ;R ), pour tout entier n > 1, il existe un entier ra(?i) tel 
que

s u p _ |( / -p „ m(n))(a;)| < 1 /n.
xeo7l

Vérifions que que la suite (gn m(n)) converge vers /  uniformément sur tout compact. Soit 
K un compact de X , il existe un entier no tel que K  C On pour n >  no, d’où 

sup | ( /  -  0nm(n))(æ)| <  1 /n  pour n  >  no,
x £ l <

ce qui prouve que le résultat voulu.

EXERCICE 3.25.4
1. Soit A' la sous-algèbre engendrée par A et les fonctions constantes, c’est-à-dire l ’en­
semble des fonctions de la forme t f(t) +  c où /  G A, c G R. D’après le théorème de 
Stone-Weierstrass, cette sous-algèbre est dense dans QU(X) : en effet, A' contient .A et les 
fonctions constantes.

Étant donné CU(X) et e > 0, il existe g G A et c G R tels que | | /  -  (g + c)||oo < £• 
Si f(a) = 0, on en déduit |c| <  £, d’où \\f -  g \\o o  < 2 e et ceci prouve le résultat voulu.

2. Posons E = CoodO, oo[) et F = èoo([0, oo]). Soit $  : E -» F l ’application définie 
par

[ f(t) si 0 <  t < oo,
* (/)(* )=  n .

( 0 si t =  oo.
Cette application est une isométrie et un isomorphisme d’algèbre. L’espace vectoriel A 
engendrée par les fonctions t •-> e- n t , n  >  1, est une sous-algèbre de E et son image 
$(.A) est dense dans F. En effet, si on pose fi(t) =  e” *, la fonction $ ( / i )  est injective et 
on peut utiliser 1. Il en résulte que A est dense dans E.

3.41 Exercices du chapitre 3.F

EXERCICE 3.27.1

L’application /  préserve la norme : ||/(æ)|| = ||æ||. On en déduit que /  préserve le produit 
scalaire. En effet, d’après (3.27.9), en changeant y en —y, on a

2(*|î/) = INI2 + lli/ll2 -  ||x -  y f
et par conséquent

2(/(*)i m )  =  \ \ m \ \ 2 +  m y ) f - \ \ f ( x ) - m f

=  ll*lls + llwll2 - | | * - » l l 2 = 2(*|»)
et ceci prouve que

(f(x)\f(y)) = (x \v) pour tout x, y e E.
On a alors

ll/(æ + y )  - / ( * ) -  f ( y ) \ \ 2 ll/(* +  y )  -  f(x ) \ \ 2 + ||/(y)||2
- 2 (f(x + y)\f(y)) + 2 (f(x)\f(y))

||(a; + y) -  x f  + ||j/||2 -  2(x + y\y) + 2{x\y) = 0.
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ll/(Aœ) -  A/(æ)||2 =  ||/(Az)||2 +  |A|2||/(a;)||2 -  2 A ( /(A * ) | /( * ) )

= ||Ax||2 +  |A|2||x||2 — 2A(Ax|æ) =  0
et ceci prouve que /  est linéaire.
Note Dans le cadre des espaces normés, le même résultat subsiste en supposant /  surjective 
(exercice 3.3.5), cette hypothèse n’étant pas superflue (exercice 3.9.2).

EXERCICE 3.27.2

Soit E  un espace normé dont la norme vérifie l ’ identité du parallélogramme.
1. On suppose d’abord que K = R. Si la norme est induite par un produit scalaire, 

celui-ci est nécessairement donné par la formule (3.27.9), c’est-à-dire

4(*|y) = 2 ( \ \X  + y \\2 -  INI2 -  IMI2)  = II* + y \\2 -  ||* -  y||2.
Montrons qu’on définit bien ainsi une forme bilinéaire symétrique, définie positive telle que 
(x\x) =  ||æ||2. Le seul point méritant une démonstration est la bilinéarité et, vu la symétrie, 
on peut se contenter de vérifier la linéarité de l ’application x y-> (x\y).

Vérifions d’abord que
(®i + x2 \y) = (xi\ y) + (x2\ y),

c’est-à-dire
||* i+ * 2+»||2 - ||* i+ * a ||2 - |M |2 = ll*i +î/||2 -  ||*iII2 -  IMI2

+\\x2 + y \\2 - \\x 2 \\2 - \ \ y f ,  
soit

11*1 + X2 + y \\2  +  | | * 11|2 +  ||*21|2 +  IMI2 =  11*1 + y \\2 +  | | * 2  +  ÿ||2 +  11*1 + * 2 ||2 . 

Or, d’ après l ’ identité du parallélogramme, on a

2(||*il|2 + 11*21|2) = ||*i + * 2||2 + ||*i -* 2 ||2,

2 (||a;i +  * 2  +  y \\2 +  IMI2)  =  ||*i +  * 2  + 2 y \\2 + ||*i +  *2 1|2,

| |* i +*2 +  2j/||2 +  ||a;i - * 2||2 =  2 ( | |* i  + y | |2 +  ||*2 + î / | |2) ,

et il suffit d’additionner ces trois identités pour obtenir la formule voulue.
Vérifions ensuite que (Ax |î /) =  A(æ|î/) pour tout réel A. Vu la continuité de l ’applica­

tion A 1—̂ (Aæ|2/), il suffit de le faire lorsque A est rationnel, soit A =  p/qt p E Z, q G N*. 
D ’après l ’additivité, on a (x\y) +  ( - x \y ) =  (0 y) = 0, d’où (additivité)

2. Lorque K =  C, on pose (formule (3.27.8))
4(z|y) = \\x -I- y \\2 -  \\x -  y \\2 +  i\\x +  iy \\2 -  i\\x -  iy\\2.

On a
4(x\x) =  4 ||s ||2 +  »(|1 +  i |2 -  |1 -  i\2) ||z||2 =  4||æ||2.

Il est clair que (y\x) =  (x\y). Quant au caractère sesquilinéaire, on remarque que 
(x\y) = (x\y)n +  i(x\iy)iL où 4(æ|y)R =  \\x - f y \\2 -  \\x -  y \\2 ; ( . |* )r est d’après 
1. une forme E-bilinéaire symétrique ; il en est donc de même de la forme (•!•). Soit 
A =  a 4- ib E C, on a alors

(Ax|y) =  (ax +  ibx\y) =  a(x\y) +  b(ix\y)



3.41 EXERCICES DU CHAPITRE 3.F 537

où ( i x \ y )  =  i ( x \ y )  d’après la définition même de ( x \ y )  et ceci prouve que 
( Xx \y )  =  X ( x \ y ) .  Le caractère semi-linéaire de l’application y  h* ( x \ y )  s’en déduit en 
utilisant le caractère hermitien.
EXERCICE 3.27.3

Soient x ,  y  E E  tels que ||æ|| <  1, ||î/|| <  1 et ||(x +  y)/2|| > 1 - £ où0<<5<1.  D’après 
l’identité du parallélogramme, on a

II* -  y f  =  2 (||z ||2 +  |M |2) -  Ils +  y \ \ 2 <  4 -  4(1 -  S ) 2 =  45(2 -  5) 
et, pour 6  suffisamment petit, 4 6 ( 2  — 6)  <  e2, d’où ||a; —1/|| <  e, ce qui prouve que l’espace 
est uniformément convexe.
EXERCICE 3.28.1

1. Si P  est le projecteur orthogonal de E  sur F , on a P \ f  =  / f , d’où P 2 =  P .  D’autre 
part, le vecteur y - P y  étant orthogonal à F , ( P x \ y  -  P y )  =  0, d’où ( P x \ y )  =  ( P x \ P y ) .  
De même, x  — P x  étant orthogonal à F , ( x  — P x \ P y )  =  0 et ( x \ P y )  =  (P x \ P y ). Ceci 
prouve que

( P x \ y )  =  ( P x \ P y )  =  ( x \ P y ) .

2. Réciproquement, soit F  : E  —► E  une application vérifiant (3.28.2). Une telle 
application est nécessairement linéaire. On a en effet

( P ( X x  +  f i y ) \ z )  =  ( X x  +  /Jiy\Pz)  =  X ( x \ P z )  H- n ( y \ P z )

=  X ( P x \ z )  H- y > (Py \ z )  =  (AP x  +  y , P y \ z )  
et ceci étant valable quel que soit 2 , on en déduit que

P ( X x  +  f i y )  =  X P x  +  fxPy .
Montrons que x  -  P x  est orthogonal au sous-espace Im F  : ceci prouvera que F  est le 

projecteur orthogonal de E  sur F . On a d’après (3.28.2)
( x  -  P x \ P y )  =  ( P x  -  P 2x \ y )  =  ( P x  -  P x \ y )  =  0 

ce qui prouve le résultat voulu.
EXERCICE 3.28.2

1. Montrons d’abord que Im F  =  Ker ( I e  —  F). Si x  =  Fæ, x  G Im F . Réciproquement, 
si x  appartient à l’image de F , il existe y  E E  tel que x  =  P y , d’où P x  =  P 2y  =  P y  et 
par conséquent x  =  P x .

2. On a P x  =  x  -h P x  — æ, d’où
HPzIl2 =  \ \ x f  +  | | P x  -  x||2 +  2Sfte ( x \ P x  - x ) <  ||x||2, 

soit
Il P x  — x \ \2 -I- 25te (æ|Fæ -  x )  <  0.

Dans cette inégalité, remplaçons x  par x  -  y  où y  e  Im F  ; étant donné que y  =  P y , on 
obtient

d’où
11^® -  x \ \ 2 +  2&e ( x  -  y \ P x  -  x )  <  0,

Il P x  -  x \ \ 2 +  25Re ( x \ P x  - x ) <  23îe  ( y \ P x  -  x ) .  
Remplaçons x  par t x , t  >  0, divisons par t  et faisons tendre t  vers 0, on obtient 

23fte ( y \ P x  -  x )  >  0 pour tout y E Im F  
et en remplaçant y  par y  — P x ,  qui apartient encore à Im F

( x  — P x \ y  — P x )  <  0 pour tout y E Im F
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et ceci prouve que P x  est la projection de x  sur Im P  d’après la proposition 3.28.3. 

EXERCICE 3.28.3

1. est immédiat.

2. Si C  est non vide, on a C  c  C*, d’où d ( a ,  Ci) <  d(a, C) et ceci prouve que 
supi€ / d ( a , C i )  est fini.

Réciproquement, supposons do =  supi 6 j  d(a> C i )  fini. Notons Xi  la projection de a  
sur C i  et di  =  ||a -  Xi\\. Étant donné un e  >  0, il existe i  e  I  tel que do — e  <  d i  <  do,  
d’où |do — d j \  <  e  pour j  >  i  : ceci prouve que la suite généralisée ( d i )  converge vers do. 
On a d’autre part, pour j  > i t i k > i 9 d’après l ’identité du parallélogramme

= 2(df + 4 ) - 4 | | a:- ï i ± ^ | | 2

<  4^do -  (do  -  e ) 2) ,  

car le point (Xj  + X k ) /2 appartient à C i, donc

Xj ~|~ Xk Ia; — ^  di ^  do — s.

Ceci prouve que la suite généralisée ( x i ) i e i  est de Cauchy. Choisissons un indice io  G /  ; 
la sous-suite (x i)i> i0 est de Cauchy et appartient au convexe complet C i0 ; elle est donc 
convergente, soit x  e  C i 0 sa limite. Pour tout i  >  i o , la sous-suite ( x j ) j > i  converge a 
fortiori vers x  et, vu que Xj  e Cj C C i pour j  >  i  où C i est complet, donc fermé, le 
point x q  appartient à C i, donc à l’intersection des convexes (C i)i> i0, c’est-à-dire à C . Ceci 
prouve que C  est non vide.

Montrons que x  est la projection de a  sur C. On a d(a, C) >  d(a, C i) quel que soit i , 
donc d(a, C) >  do. D’autre part,

||a — æ|| =  lim \\a — Xi|| =  lim di =  do.

Il en résulte que \\a — æ|| <  d(a, C) et on a donc l’égalité, ce qui prouve le résultat voulu.

Note On pourra comparer ces résultats avec ceux de l’exercice 3.17.1 qui se place dans le 
cadre des espaces de Banach réflexifs. L’exercice 3.17.1 utilise essentiellement un argument 
de compacité faible et ne suppose pas que la projection æ de a sur C  est unique. Si on 
fait cette hypothèse supplémentaire, la suite généralisée ( x ^  converge faiblement vers x  

car cette suite appartient à un compact faible et n’admet qu’une seule valeur d’adhérence 
faible, à savoir x.  Dans le cadre des espaces de Hilbert (on peut évidemment supposer E  

complet en le complétant éventuellement), des arguments beaucoup plus simples suffisent, 
essentiellement le théorème de projection.

EXERCICE 3.28.4

Les ensembles Cn sont convexes d’après la convexité de / ,  fermés d’après la semi-continuité 
inférieure de / ,  donc complets car fermés dans C , ils sont non vides car a  <  a n et 
constituent une suite décroissante. Le convexe C  étant borné, l’exercice 3.28.3 montre 
que C ' =  n ~ 0 C n  est un convexe complet non vide, ce qui permet de conclure vu que
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C  =  {x € C ; f(x) -  a}.
EXERCICE 3.28.5

1. La matrice { g i j ) est évidemment hermitienne et, si x  =  A»a;*, A, €  K, on a
n

ll*c ll =  ^   ̂ 9 i j X i X j  ^  0-
i j  = l

Elle est donc positive et elle est définie positive si, et seulement si,
n

ÀïÆi =  0 => A* =  0 pour tout
2=1

c’est-à-dire si la famille (a;*) est libre.
2. Lorsque la famille (X i ) est liée, on a G(x> x \ , . . . ,  x n ) =  <3(a:i, . . . ,  æn) =  0 et on 

peut donc supposer que la famille (X i ) est libre.
La projection PFx  =  Yh =i de x  sur Ie sous-espace F  engendré par x \

vérifie
/  n
| 31 ^   ̂X%X% x j ^ =  0 pour 1 <  j  <  n,

soit
' 2=1 

n
y !  Xi(Xi\Xj) ■= (x \ x j ) pour 1 <  j  <  n.

On a d’autre part
2=1

d ( x y F ) 2 =  (x -  P f x \x ) =  (x\x) -  ^  Xi(xi \x)}

soit
1— x

n
d ( x ,  F ) 2 + ^ ^ X i ( x i \ x )  =  (x\x).

i = 1

Ceci montre que (d(x , F )2, Ai, . . . ,  An) est la solution du système linéaire 

d(xj F )2 +  y^ X i ( x j \ x )  = (æ|æ)
< <n1

^ 2 \ i ( x i \ x j )  = (x\xj) ,  1 < j <  n.
> î=î

Le déterminant de ce système vaut G (x i , . . . , x n ) ^  0 ; ce système est donc un système 
de Cramer et, d’après les formules de Cramer, on a donc

d ( x , F ) 2  =  G ( x , x i , . . .  , x n ) / G ( x i , . . .  ,æ n ),

ce qui prouve le résultat voulu.
3. Pour n =  1, on a bien ||a?i|| =  G ( x i) 1/2. On raisonne ensuite par récurrence, si 

le volume de Pn est donné par la formule G ( x i , . . . , x n ) l / 2 > 2. montre que le volume de 
Pn+i est donné par la formule G ( x i,. . . ,  x n + i ) 1/2- 

EXERCICE 3.29.1

1. Soit H  un hyperplan fermé d’un espace de Hilbert E .  On a alors H  ^  E  et E  =  H ® H ± , 
d’où H ± ^  {0}.

2. Réciproquement, soit E  un espace préhilbertien tel que l’orthogonal de tout hyper- 
plan fermé ne soit pas réduit à {0}. Montrons que l’application ip : E  - >  E '  définie dans la 
proposition 3.29.1 est surjective : ceci prouvera que F , isométrique à F ', est complet.
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Soit T  une forme linéaire continue sur F , il s’agit de trouver un y G E  tel que 
Tx  =  (x\y) pour tout x G E. On peut supposer T  non identiquement nulle, alors 
H  =  Ker T  est un hyperplan fermé de E. Choisissons un point yo G H 1- -  {0 } ; le rai­
sonnement effectué dans la preuve du théorème 3.29.2 montre que Tx = (x\Xyo) lorsque 
A =  Tyo/\\yo\\2, ce qui prouve le résultat voulu.

EXERCICE 3.29.2
D’après le théorème 3.29.2, il existe x q  G 
f(x)  =  ||x||2 -  (x\x0) et

N I2 -(* |* o ) + IM 2 _
4

E  tel que Tx (x\xo)> d’où

Il en résulte que

f(x )  =
2 IM 2

4
et par conséquent

in f /  =  d(x0/2,C)  -  - M .

Ceci montre que /  est borné inférieurement et que /  atteint sa borne inférieure au point de 
C qui est la projection du point xo/ 2  sur le convexe C.
EXERCICE 3.29.3
1. Vérifions d’abord que T est linéaire. Pour æ, y G E, z G F  et A, fi G K, on a 

(T( Xx +  fjty) | z) =  (Xx +  y.y\Sz) =  À (x |S2) +  fi(y\Sz)
= X(Tx\z)  4- v (T y \ z )  = (XTx  +  f iTy\ z) 

et ceci permet de conclure. On vérifie de même que S  est linéaire.
2. Quant à la continuité de T  par exemple, utilisons le théorème du graphe fermé. Soit 

(xn) une suite de E convergeant vers 0 telle que la suite (Txn) converge vers y, alors 
||y||2 = lim (Txn\y) = lim {xn\Sy) = 0,?i—̂oo n—>oo

soit y  = 0 et le résultat voulu.
EXERCICE 3.29.4
On vérifie d’abord que, pour tout x e E, (T*T)x G F. Soit y G F±, on a 

(Çl*T)x\y) =  (Tx\Ty) = 0 car Ty = 0,
ce qui prouve le résultat annonçé. On vérifie ensuite que, pour x G E, x — (T*T)x G : 
en effet, soit y G F, alors (x -  (T*T)x\y) = (x\y) -  (Tx\Ty) et, si x = x' + x" avec 
x' G F  et x" G F1-, (x\y) = (x'\y) et Tx = Tx't d’où

(* -  (T*T)x\y)  = (x'\y) -  (Tx ' \Ty)  = 0 
car T \ f  préservant la norme préserve le produit scalaire, ce qui permet de conclure. 
EXERCICE 3.30.1 SOMME HILBERTIENNE EXTERNE
l,a. Si x  appartient à F ,  il est clair que Xx appartient encore à E  quel que soit A G UC. 
D’autre part, soit x , y  G F , alors x  + y  G F  car

II*. + Î/.II2 < (IN I + IN I)2 < 2(||xi||2 + Hî/iii2).
Ceci montre que F  est un sous-espace vectoriel de l’espace vectoriel produit Yliei ^ i- 

b. Soit Xj y G F , on a
|(xi|yi)| < IM  N I < (1/2) (IN I2 + ||j/j||2).
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La famille ((Xi\yi))iei est donc sommable. Il est clair que la somme de cette famille est un 
produit scalaire sur E , la norme associée étant

/ „  \ 1/2
I M I = ( £ l M I 2 )  •

c. Montrons que E  est complet. Soit (xn) une suite de Cauchy, xn =  (xnti)i€i . Pour 
tout e >  0, il existe un entier n  tel que

5 3  II®?»* — ®g, * \ \ 2 ^  6  Pour tout P>Q>n- 
iei

Il en résulte que, pour i fixé, la suite (xn,i) est de Cauchy dans l ’epace Eu donc conver­
gente ; on pose = limn_>oo xn,i et x = (a?*). Pour toute partie finie J de I  et tout 
Pi q >  n, on a

5 3  — ®0»»ll — €>
i£ J

d’où en passant à la limite

5 3  II®» “  xqA \2 <  6 Pour tout Q >  n
ieJ

et, ceci étant vrai pour toute partie finie J,

5 3  II®» ~  xgA\2 <  € pour tout q > n.
*€/

Ceci montre que x — xni donc x , appartient à E  et que la suite (xn) converge vers x  dans 
l ’espace E.

2. On note fi : Ei -» E  l’application définie par fi(x) = yoùy = (yj)jei> Vi = xe t 
yj = 0 lorsque j  ± i. Il est clair que fi est un isomorphisme de Ei sur Fu Ces sous-espaces 
Fi sont donc fermés ; ils sont évidemment orthogonaux deux à deux. Montrons que E  est la 
somme hilbertienne de ces sous-espaces : il s’agit de démontrer que le sous-espace vectoriel 
F  engendré par la famille (Fi) est dense dans E. Soient x e E  et e > 0, il existe une partie 
finie J de I  telle que ll®»l|2 < £2- Notons z le vecteur de F  défini par Zi = Xi si
i G J et Zi = 0 si i e I — J, on a alors ||æ -  z\\ <e et ceci prouve le résultat voulu.
EXERCICE 3.31.1

D’après l ’exercice 3.29.1, il existe un hyperplan fermé H dont l ’orthogonal est réduit à 
{0 }. Soit B une base hilbertienne de H (corollaire 3.31.8), alors B n’est pas une base 
hilbertienne de E  car H est fermé dans E  et, l ’orthogonal de H étant réduit à {0 }, B est un 
élément maximal de l ’ensemble des parties orthonormales de E , ce qui prouve que B n’est 
contenu dans aucune base orthonormale de E.
EXERCICE 3.31.2

1. Montrons que A et B sont des supplémentaires algébriques, c’est-à-dire que 
A f l  B = {0 }. On remarque que les vecteurs an sont orthogonaux deux à deux et de même 
pour les vecteurs bn. D’après le théorème 3.30.1, tout x  de A s’écrit J2 ^Lo(x\e2n)e2n et 
tout x de B s’écrit ^2^LQ(x\bn)bn/\\bn\\2> Si x  appartient à A  f l  JB, on a (x|e2n + i) =  0, 
d’où
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et, en effectuant le produit scalaire avec e2n+ i, on en déduit {x\e2n) =  0 et ceci prouve 
que x = 0.

2. Considérons la suite xn =  bn -  an E F . On a xn = e2n + i/ ( n  +  1)» la suite (xn) 
converge donc vers 0. Si la somme directe F = A ® B était topologique, la suite (an) 
devrait converger vers 0 d’après la continuité du projecteur de F sur A et ceci n’ayant pas 
lieu, on en déduit que A et B ne sont pas des supplémentaires topologiques.

EXERCICE 3.31.3 DIMENSION HILBERTIENNE

1. Lorsque l ’un des ensembles 7, J  est fini, l ’espace E est de dimension finie et toute base 
hilbertienne est une base algébrique ; 7 et J  sont nécessairement équipotents.

Lorsque 7 et J  sont infinis, posons Ai =  {j  e J  ; (e<|/,-) ^  0}. Ces ensembles 
sont dénombrables car \(eAfj) \ 2 < On observe ensuite que J  = (JiG/ : 
tout j  6 J  appartient nécessairement à l ’un des Ai vu que ^2ieI \(fr\fj) \ 2 =  1- Étant 
donné que Card Ai <  Card 7, le lemme 3.7.7 montre que Card J  <  Card ( 7 x 7 ) ,  d’où 
Card J  < Card 7 d’après le théorème 3.9.4. On a de même Card 7 <  Card J, d’où l ’égalité 
Card 7 =  Card J.

2. Deux espaces de Hilbert isomorphes ont même dimension hilbertienne car l ’ image 
par un isomorphisme d’une base hilbertienne est une base hilbertienne. Réciproquement, si 
E et F sont deux espaces de Hilbert ayant la même dimension hilbertienne, ils admettent 
des bases hilbertiennes (ei)iei et (fiel) indexées par le même ensemble 7 ; ils sont donc 
tous deux isomorphes à /2(7; K ), donc isomorphes entre eux.

EXERCICE 3.31.4

l. On a x =  J2nez£nen °ù fn  =  (x\en) et on sait que f  =  (Çn) e  l2 (Z). S’ il existe 
une application linéaire continue u : E -» E telle que u(en) =  en+ i, on a nécessai­
rement u(x) =  £nen+1 ; on définit bien ainsi une application linéaire de E dans
E. Cette application est une bijection, la bijection réciproque étant donnée par la formule 
w_1(* )  =  £ nez£ n e „- i. En outre,

N *)II2 = £ K » I 2 = M 2’

l ’application u est donc une isométrie.
2. On observera d’abord que l ’application f  : E -> E est continue.
Si ||æ|| =  1, f(x) =  u(x) ; /  est une isométrie, donc un homéomorphisme de S sur S. 
Si ||æ|| <  1, on a

l l/ ( * ) l l  <  5(1 - 11* 11) +  M * ) l l  <  <  1,
donc f(B) c  B.

Montrons que /  est un bijection de B sur B et déterminons la bijection réciproque. 
On a d’abord /(O) =  e o / 2  et l ’équation f(x) = e o / 2  s’écrit u(x) = | | x | | e o / 2 ,  d’où 
II®Il = ||u(æ)|| = | |æ | | / 2  et par conséquent x = 0. Lorsque x 6  B est différent de 0, on 
constate que les trois points alignés 0,æ et x/\\x\\ ont pour image les points e o / 2 , f(x) et 
f ( x/ IM I) et que ces points sont alignés et plus précisément si
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c’est-à-dire si A =  ||æ||, alors

/(*)_v (m ) + (1- a)/(0>-
Ceci montre que pour déterminer l ’ image réciproque d’un point y G B, y ±  eo/2, il faut 
procéder de la façon suivante. On cherche l ’ intersection z =  </?(y) (nous allons démontrer 
qu’elle est unique) de S et de la demi-droite D  d’origine eo/2 passant par y. On détermine 
À tel que l ’on ait
(3.41.1) y = Xz + (1 — À)e0/2.
L’ image réciproque a; de y est alors donnée par la formule

x = Xu~l (z/\\z\\).
La demi-droite D  a pour équation (3.41.1) où À décrit ]0, +oo[ ; en posant y  =  1/A, on 
obtient en effet z = eo/2 +  y(y — eo/2) et ce point 2 appartient à £  si, et seulement si,

Il y -  e0/2|| V 2 + 9le (e0|y -  e0/2  )y - 3 / 4  = 0 
et cette équation admet une unique solution y, =  y(y) >  0, le trinôme étant <  0 pour 
y =  0. La fonction y  : B — {eo /2} -»]0, +oo[ est continue vu les formules de résolution 
des équations du second degré. Posons A (y) =  1 /y(y), on constate que A (y) tend vers 
0 lorsque y tend vers eo/2 ; la fonction A se prolonge donc en une fonction continue sur 
toute la boule B. On a alors pour y e B -  {e0/2 }  x = f~ l (y) =  \{y)u~l (z/\\z\\) avec 
2 =  eo/2+/L*(y)(y-eo/2).Ceci montre que l ’application f~ l est continue sur B - {e o /2 } ,  
donc sur B vu que | | / - 1 (y)|| <  |A(y)|. Ceci prouve que /  est un homéomorphisme de B 
sur B.

3. Montrons que / | b n’admet pas de point fixe. Raisonnons par l ’absurde, supposons 
que f(x) = x oùx = £nen e B. On a alors £n =  f n - i  pour 0 et il en résulte 
que £0 =  £n pour tout n > 0 et f _ i  =  £_n pour tout n < - 1, d’où £n =  0 quel que soit 
n et x =  0, ce qui conduit à une contradiction étant donné que /(O ) =  eo/2.

4. La demi-droite D ' d’origine f(x) passant par x est bien délinie, /  n’admettant pas 
de point fixe ; elle a pour équation y =  f(x) H- X(x -  f(x)) où A décrit ]0, +oo[. On a 
||y|| =  1 lorsque

II® -  /(* )fA 2 + 23*e (f(x)\x -  /(*)) A -I- ||/(æ)||2 -1  = 0 
et cette équation admet une unique solution A =  X(x) >  0 : le trinôme est en effet <  0 
pour A =  0 et si A =  0 est une racine, f(x) e  S  d’où x e  S  et la seconde racine est 1. 
Posons g(x) = f(x) +  A(æ)(æ — f(x)). On obtient ainsi une application continue (d’après 
la continuité de la fonction A) g : B S  telle que g\s = Is-

3.42 Exercices du chapitre 3.G

EXERCICE 3.32.1

L’application R(*\T) est la composée de l ’application évidemment continue A XIe —T
de K dans C(E) et de l ’application u •-> u~l de Isom (E \E ) dans lui-même qui est 
continue d’après le théorème 3.19.8. Ceci prouve la continuité de R{•; T).
EXERCICE 3.32.2 
Soit A e  I<y on a

XIe -  Tn = XIE -  T  + T -  Tn =  (XIE -  T)(IE +  R(A; T)(T -  Tn))
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et ceci montre que À appartient à l ’ensemble résolvant de Tn si ||T — Tn || < || R(A; T) || 1 
et par conséquent K  C  p(Tn) dès que \\T -  Tn\\ < \ /c  où c =  supA€K ||Æ(A; T)II» cette 
borne supérieure étant finie d’après la continuité de la résolvante (exercice 3.32.1). Ceci 
prouve le résultat voulu.

EXERCICE 3.32.3

1. Soit (x n ) une suite de E convergeant faiblement vers 0 ; si la suite ( T x n) ne converge 
pas fortement vers 0, il existe c >  0 et une sous-suite que nous noterons encore (x n) telle 
que ||T*a;n || >  c. L’application T  étant faiblement continue (proposition 3.18.6), la suite 
( T x n ) converge faiblement vers 0 dans l ’espace F. La suite (xn) étant bornée (proposition 
3.16.10) et l ’ opérateur T  étant compact, il existe une sous-suite (xnk) telle que la suite 
( i  X n k )  converge fortement dans F. Posons y  =  l im ^ c o  T x nk , on a alors ||̂ /|| >  c et 
y  = 0 car la suite ( T x nk ) converge faiblement vers 0 : ceci est absurde.

2. On suppose l ’espace E réflexif et que l ’ image par T  de toute suite faiblement conver­
gente est une suite fortement convergente. Considérons alors une suite bornée de E , soit 
(xn) ; d’après le théorème 3.17.11, il existe une sous-suite (xnk ) qui converge faiblement. 
D ’après l ’hypothèse, la suite (T xnk ) converge fortement et ceci prouve que l ’opérateur T  
est compact.

EXERCICE 3.32.4

Posons
p oo

A =  y > | e n)Ten , B = E  (x\en)Ten.
n —0 n=p+l

La suite (||Ten ||) converge vers 0, donc est bornée et par conséquent

P I I  <  c max \(xj\en)\.

On a d’autre part

\ \ B \ \ < ( i t  l l ^ l l 2) 1/2( E  P ^ I I 2) 1 /2< I I ^ I I (  e  l|Te „||2) 1/2.
n = p + 1 n = p + 1 n = p + l

La suite (x j )  convergeant faiblement vers 0 est fortement bornée, d’où une constante c >  0 
telle que

0° 1/2 
| | 5 | | < c (  E  P M 2) •

n = p + 1

Soit e > 0, vu l ’hypothèse il existe un entierp tel que ||£|| <  e et, la suite (xj) convergeant 
faiblement vers 0, il existe un entier k tel que ||j4|| <  e pour j  > k, d’où \\Txj  || <  2e pour 
j  > ky ce qui permet de conclure.

EXERCICE 3.32.5
On raisonne par l ’absurde. On suppose qu’ il existe e > 0 et une suite (xn) de la sphère 
unité de E\ telle que

£  +  î i | | x n ||3 <  \\Xn\\2 -

L’ injection i étant compacte, il existe une sous-suite (ænfc) qui converge vers x  dans E 2 et 
a fortiori dans E3 . L’ inégalité précédente montre que la suite (nfc||ænfc ||3) est bornée ; on a
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donc nécessairement x = 0 et, vu que £ < ||æn*. Ih, ceci conduit à une contradiction. 
EXERCICE 3.32.6
On raisonne par l’absurde. On suppose qu’il existe £ > 0 et une suite (æn) de E telle que 
||æn || = 1 et

£ + n\\xn\\' < \\TxnII-
D’après le théorème 3.17.11, il existe une sous-suite (xnk) qui converge faiblement vers 
x dans (E, ||#||). L’injection canonique de (E, ||.||) dans (E , II#!!') étant continue, donc 
faiblement continue, cette suite (xnfc) converge faiblement vers x dans (25, ||#||/). D’autre 
part, l’opérateur T  étant compact, la suite (‘Txnk) converge fortement vers Tx d’après 
l’exercice 3.32.3. D’après l’inégalité nk\\xnk ||' < \\Txnie ||, la suite (xnie) converge forte­
ment vers 0 dans (E , ||*||/). Ceci prouve que x = 0 ; la suite ('Txnfi) converge donc vers 
0 et ceci contredit l’inégalité e < \\Txnk ||- 
EXERCICE 3.32.7
On raisonne par l’absurde : on suppose l’injection canonique de lp dans lq compacte et on 
considère la suite (en) de lv définie par en = (£m)m€N où <% = 0 si m ^  n et = 1. 
Cette suite appartient à la boule unité de Zp, il existe donc une sous-suite (enk) convergeant 
dans lq, notons x = (æm) la limite d’une telle sous-suite. On a alors

xm = lim e”fc = 0,k—* 00
ce qui prouve que la suite (enk ) ne peut converger que vers 0 et ceci est absurde vu que
l|eBfcL  = 1-
EXERCICE 3.32.8
1. Vérifions d’abord que toute fonction /i-hôldérienne est //-hôldérienne. On a en effet

I f(x) -  f(y) | < cd(x,yY < cc d(x,yy‘ 
où f

c' =  sup d(x, — (diam X ) 11-11
x,y€X

est fini, l’espace X  étant borné.
2. Rappelons ensuite que l’espace G0 ,p,(X\R) est muni de la norme

i / " .  =  i i / w i + g p | / ( g . ; ^ ll)"
où a est un point quelconque de X  ; changer de point a remplace la norme ||«||a par une 
norme équivalente.

a. Soit ( f n) une suite bornée de l’espace e0,p(X ; R) ; montrons qu’il existe une sous- 
suite convergeant uniformément : autrement dit, l’injection canonique de e0,M(X; R) dans 
Cn(X;R) est compacte. Utilisons le théorème d’Ascoli. Notons d’abord que, pour tout 
a e  X, la suite (/n(a)) est bornée. Il existe d’autre part une constante c > 0 telle que 

| f n(x) -  f n(y) | < cd{x,yY  pour tout net tout x, y G X.
Le point x étant fixé et £ > 0 étant donné, cette inégalité montre qu’il existe £ > 0 tel que 

| f n(x) — fn(y)| < £ pour tout n dès que d(x,y) < S 
et ceci prouve l’équicontinuité de la suite ( /n). Cette suite est donc relativement com­
pacte dans l’espace CU(X; R) : il existe une sous-suite, que nous noterons encore ( /n), qui 
converge uniformément ; notons /  sa limite. Étant donné que\fn(x)~ f n (y) \ < cd(a’, 2/)p, 
on a encore |/(œ) -  f(y) \ < c d(x, yY  : autrement dit, /  G e°’p(X; R) c  e°’p' (X; R).
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b. Montrons que la suite (/„) converge vers /  dans l’espace C0,M (X ; R), c’est-à-dire
que

A - , , m \ \ fn ( x ) - f ( x ) - ( fn( y ) - f ( y m  
xïv d(x,yy

tend vers 0 lorsque n tend vers l’infini. Soit ô > 0, on peut écrire An =  max(BniCn) où
n _lin « /» ( * ) - / ( * ) - ( /» ( » ) - / ( » ) ) «JDn — & up 37 r~ ,

r  _  ,im ll/n(s) -  f(x) -  (fn(y) -  f(y))\\

La suite ( /  -  / n) étant bornée dans l’espace e0,/i(X ; R), il existe une constante c >  0 telle 
que Bn < et on peut donc choisir S > 0 tel que Bn <e pour tout n. Quant à Cn,
lorsque d(æ, y) > ô, on a d(x, y)~M < S~p et par conséquent

Cn<c sup | fn(x) -  f(x)\ OÙ C = 2Ô~P . 
xex

La suite ( /n) convergeant vers /  uniformément, il existe un entier n tel que Cp < e pour 
p > n, d’où < 2 e pour p > n et ceci prouve le résultat voulu.
EXERCICE 3.33.1
Soit À une valeur d’adhérence de la suite (Àn) ; modulo l ’extraction d’une sous-suite, on 
peut supposer que la suite (An) converge vers A.

1. Supposons d’abord A ^  0 ; on peut alors supposer tous les An non nuis. D ’après 
le théorème 3.33.3, ces An sont des valeurs propres : il existe des xn € E , ||xn || =  1, 
tels que Tnxn = \ nx n. L ’opérateur T  étant compact, on peut extraire de la suite (xn) une 
sous-suite, que nous noterons encore (xn), telle que la suite (Txn) converge ; notons y sa 
limite. La suite (Tnxn) converge alors vers y car
(3.42.1) \ \T x n -  TnXnW < || T  -  T n || ||æn || <  Il T  -  T n \\.
Il en résulte que la suite xn = T xn/Xn converge vers y / A ; la suite (Txn) converge donc 
vers T y / A. Il en résulte que Ty = A y et, y étant non nul car ||2/|| =  |A|, A est une valeur 
propre, ce qui prouve le résultat voulu.

2. Lorsque A =  0 et si E  est de dimension infinie, {0 } est une valeur spectrale (co­
rollaire 3.32.6). Si E  est de dimension finie, toute valeur spectrale est une valeur propre ; 
il existe donc des xn G E , ||æn || =  1, tels que Tnxn = Xnxn et, E  étant de dimension 
finie, la suite (xn) admet une sous-suite convergente, notons la encore (æn) ; soit y sa l i ­
mite. L’ inégalité (3.42.1) montre que la suite (Tnxn) converge vers Ty  et, par conséquent, 
Ty = Xy où \\y\\ = 1. Ceci prouve que A est une valeur propre.

EXERCICE 3.33.2
1. Pour démontrer que la condition est nécessaire, on peut supposer q = oo, donc 
r = p. Cherchons alors les valeurs propres de T  : lp -» lp. L’équation Tx = Xx s’écrit 
Xnpn = Xxn \ les valeurs propres sont donc les yn et les sous-espaces propres associés 

EVll = {x =  (Xj) ; Xj = 0 lorsque y, /  yn}.
Si l’opérateur T  est compact, EVn doit être de dimension finie lorsque yn ^  0 (théorème 
3.33.3) et 0 étant le seul point d’accumulation éventuel du spectre, la suite (yn) tend néces­
sairement vers 0.

2. Réciproquement, si la suite (yn) tend vers 0, montrons que l’opérateur T  est compact 
en tant que limite d’une suite d’opérateurs de rang fini. On note Tn : lp -> lr l’opérateur
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de rang fini
(Tnx)j =  Xjyj si 0 <  j  < n  et (‘Tnx)j =  0 si j  > n.

Calculons la norme de l ’opérateur T  -  Tn dans l ’espace £(Zp;Zr ). Soit x  un point de la 
boule unité de lp> si r est fini, on a d’après l ’ inégalité de Hôlder

Iiczi - ï ’n )(* ) ||r  =  ( £  \xkVk\r) l/r <  ( £  M " ) 1' 9,
k>n k>n

d’où
r - 7 ’n | i < ( ^  m * ) 1 *

k>n
quantité qui tend vers 0 quand n  tend vers l ’ infini car y appartient à lq.

Si r est infini,
||(T  -  r„)(aO||oo =  SUP \x kVk\ <  sup \yk\,k>n k>n

d’où || jf’ — Tn || <  supfc>n \yk \ quantité qui tend vers 0 d’après l ’hypothèse.

EXERCICE 3.33.3 
l,a. est évident.

b. Soit Ei  un supplémentaire algébrique de Ker 7o dans K erT , soit 
Ker 7’ =  Ker 7o 0  E\.  Montrons que Eo  f l  E \  =  {0 }. Soit x  G Eo f l  Ei ,  on a alors 
x G Eo fl Ker T  =  Ker 7’0, d’où x  G Ei  fl Ker 7b et æ =  0. La somme E 0  +  E \  est donc 
une somme directe ; on note E 2  un supplémentaire algébrique de E 0  0  E \  ; on a alors 
E  =  Eo 0  E\  0  E 2>

c. 11 en résulte que
Im T =  T ( E 0) +  T ( E i )  +  T ( E 2) = Im T0  +  T ( E 2).

Montrons que cette somme est directe. Soit y G ImTo  fl T ( E 2) t il existe xo G Eo et 
x 2 G E 2  tel que y = T x o =  T x 2, d’où x q  — x 2 e  Ker T  C Eo 0  Ei .  La décomposition 
en somme directe E  =  E 0  0  Ei  0  E 2  prouve que x 2 =  0, d’où y = T x 2 = 0. On a donc 
bien Im T  =  Im 7o 0  T ( E 2).

d. Les sous-espaces Ei  et E 2  étant de dimension finie, les formules
Ker T  = Ker 7b 0  E x, Im T  =  Im 7b 0  T(E2) 

montrent que T  est de Fredholm si, et seulement si, 7o est de Fredholm et que 
dim Ker T  = dim Ker 7o +  dim E i , 

codim Im T  — codim Im 7o — dim T(E2).
L’application T \ e2 étant injective (car KerT C  Eo  0  E i ), d i m T ( E 2) = dim E 2  et par 
conséquent

X(T)  =  X(7o) +  dim Ei  +  dim E 2  = X(T0) +  codim £ 0.
2. L’opérateur 5 |Im T : Im T G est de Fredholm d’après 1. et 

X(S)  =  X(S'|im T ) H- codim Im 7’.
L’opérateur 71| ^  ->• Im T  étant un isomorphisme, l ’opérateur (S  o T)\Eo est de Fredholm 
et

X((S o 7 ’) |Eo ) =  *(S) ~  codim Im T.
D’après 1., l ’opérateur S  o T  est de Fredholm et

X(S  o T )  =  X( (S  o T)\Eü) +  dim Ker 7\
soit

X(S  o T )  =  X(S)  +  X(T).
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3. Déterminons le noyau et l ’ image de 7. On a
K er7  =  { (x , y)  E F  x Fo  ; y  — T x  =  0} =  { ( x yT x)  ; x  E T - 1 (F o ) } .

Le noyau est donc isomorphe à T ~ 1 (Fo). Notons E0 un supplémentaire algébrique de 
K er!/1 :
E  =  Ker T  ® Eq. L’opérateur T \e0 : Eq ->> Im T  étant un isomorphisme,

T - \ F 0) =  (T|.e()) _1(Im T  f l  Fo) ®  Ker T.
Si Ker T  est de dimension finie, cette formule montre que T ~ l (Fo), donc Ker T, est de 
dimension finie et

dim Ker 7  =  dim Ker T  +  dim (Im T  f l  F0).
Réciproquement, si T ~ l (Fo) est de dimension finie, a fortiori 

Ker T  =  ï ’-1 ({0 })  C T ~ 1 (Fo)
est de dimension finie.

Quant à l ’ image de T, on a
Im 7  = Im T +  F0 ;

il en résulte que Im 7  est de codimension finie si, et seulement si, Im T  est de codimension 
finie. Ceci prouve que T  est de Fredholm si, et seulement si, 7  est de Fredholm. Calculons 
alors la codimension de Im T. Notons Fi un supplémentaire algébrique de Im T  f l  F0 dans 
Fo , on a alors Im T  =  Im T  ®  F i ,  d’où

codim Im 7  = codim Im T  — dim F\ 
et

X(7) =  X(T) +  dim (Im T  f l  Fo ) +  dim F i  =  X (T) +  dim F o , 

ce qui prouve le résultat voulu.

EXERCICE 3.33.4
1. Le raisonnement est identique à celui de l ’exercice 3.11.6. On vérifie que 7  est une 
bijection : tout z e F  s’écrit d’une manière unique z =  y — z' où y G Fo et z' G Im T  et, 
T\eü : Fo —» Im T  étant bijectif, il existe un unique z E Fo tel que z' =  Tx.

Le sous-espace F o  est fermé en tant que supplémentaire topologique ; Fo est complet 
en tant que sous-espace de dimension finie. Il en résulte que Eq x  F o est un espace de 
Banach et, vu le théorème de Banach, la bijection linéaire continue 7  est un isomorphisme 
topologique.

b. On remarque que Im T  =  7(Eo x  {0 }).
2. Si T  ou trT  est de Fredholm, Im T  ou Im lT  est fermé d’après 1. Vu le théorème 

3.18.10
Im T  = (Ker lT )0 et Im *T =  (Ker T)°

et le lemme 3.33.1 montre que T  est de Fredholm si, et seulement si, lT  est de Fredholm. 
De plus,

codim Im T  = dim Ker lT  et codim Im lT  = dim Ker T, 
soit X(T) -F X(tfT) =  0.

3, a. L’opérateur 7  : (xyy) e E0 x F0 y -  Tx e F  est un isomorphisme ; 
d’après le théorème 3.19.8, l ’opérateur U est encore un isomorphisme si la norme de S  est 
suffisamment petite, soit ||5|| <  e.

b. Pour IIFH <  e, on a donc X(U) = 0. D ’après la question 3. de l ’exercice 3.33.3, 
(S  -h T ) \ e 0  est de Fredholm et

X( (S  +  T ) \ e0) =  -d im  F 0 ;
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d’après la question 1. du même exercice, on en déduit que
X(S +  T) =  codim E q — dim Fo = X(T).

Ceci prouve que l ’ensemble Fredh(F; F) des opérateurs de Fredholm est ouvert dans 
L(E\ F) et que l ’ indice est localement constant, donc continu.

c. Lorsque S est un opérateur compact, l ’opérateur (x,y) ■-» —Sx de E q x Fo dans 
F est compact ; l ’opérateur I t  est donc la somme d’un isomorphisme et d’un opérateur 
compact ; d’après le théorème 3.33.3, U est d’ indice nul et on peut conclure comme précé­
demment.

EXERCICE 3.34.1
Seule l ’antisymétrie mérite une démonstration. On suppose T  < S  et S  >  T, c’est-à-dire 
((T -  S)æ|æ) =  0 pour tout x E E. Posons R = T — S, alors R est un opérateur hermitien 
tel que (Rx\x) =  0 pour tout x. D’après l ’ inégalité de Cauchy-Schwarz 

\(Rx\y) \ 2 < (Rx\x)(Ry\y) pour tout x,y e  F , 

on en déduit (Rx\y) = 0, d’où Rx = 0 en prenant y =  Rx et ceci prouve que R = 0, soit 
S = T, ce qui permet de conclure.

EXERCICE 3.34.2
On observe déjà que Tk est hermitien car (Tk)* = (T*)k = Tk. Lorsque k =  21, on a 
(T21 x\x) = (Tlx\Tlx) = ||T*æ||2 > 0. Lorsque k = 2l + l,

( r 24+1æ|a0 =  (T(Tlx)\Tlx) = (Ty\y) >  Ooùy = Tlx.

EXERCICE 3.34.3
Posons c =  supneN ||7n||. L’opérateur hermitien Tn+\ — Tn étant positif,

((Tn+l -  Tn)x\x)  >  0

et ceci prouve que la suite ((Tnx\x)) est croissante. Elle est majorée vu que 
\(Tn x\x)\ < c ||a;||2, donc convergente. Nous utiliserons le fait qu’elle est de Cauchy. 

D ’après l ’ inégalité de Cauchy-Schwarz, on a
\(fFptqx \y)\ < (lpiQx\x) ( l Piqy\y) ,

d’où en prenant y = TP}Qx
Pp,qx ||4 < (Tp>qx\x) | | ^ l9||3||a;||2 < (2c)3 ( rM x\x) ||a;||2 

et ceci prouve que la suite (Tnx) est de Cauchy, donc convergente.
On pose Tx = lim ï^oo  Tnx. L’application T  est évidemment linéaire et un passage 

à la limite dans l ’ inégalité \\Tnx\\ < c ||æ|| montre que T  est continu. De même, l ’ iden­
tité (Tnx\y) =  (x\Tny ) permet de vérifier que T  est hermitien. Si les Tn sont positifs, 
(Tnx\x) > 0 et un passage à la limite prouve que T  est positif.

EXERCICE 3.34.4
Les opérateurs rl \  et rl \  commutant

(Ti + ï 'a)(Ti -  Ta) =  2? -  Ï\T 2  +  T2 Ï \ -  ï f  =  ï f  -  T22 =  0.
Si y  — (T i -  rDt)x9 on a (rl \  +  7 2)2/ =  0 d’après l ’ identité précédente. Étant donné que 
Q\y\y) >  0, on en déduit que ^l\y\y) =  0. D ’après l ’ inégalité de Cauchy-Schwarz, 

l(T »y|*)|2 <  ( T iy \y )  ('l \ z \ z ) =  0,
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d’où (Tiy\z) =  0 pour tout z et, par conséquent, Tiy =  0. On en déduit que 
('1\ -  T 2 ) 2x  =  ('1\ -  T2)y = 0,

d’où
||(Ti -  ï 2)x \\2 = (('1\ -  T2f x \ x )  =  0 

et ceci prouve que (71 -  72)® =  0, soit rl \  — T2 = 0 et le résultat voulu. 

EXERCICE 3.34.5
11 est clair que l ’opérateur I e  — T  est hermitien. On a d’autre part

({Ib -  T)x\x) =  (*|a:) -  (Tx\x) >  0 car (2Vr|*) <  ||T|| ||æ||2 <  ||x||2.
Ceci prouve que l ’opérateur I e -  T  est positif. L’ inégalité précédente prouve également 
que {{Ie — T)x\x) <  (æ|æ), d’où {{Ie — T)x\x) < 1 si ||a;|| =  1 et, vu la proposition
3.34.3, on en déduit que \\Ie -  T\\ <  1.

EXERCICE 3.34.6 RACINE CARRÉE DES OPÉRATEURS HERMITIENS POSITIFS
1. 11 est immédiat de vérifier par récurrence que les coefficients des polynômes Pn sont 
positifs et que Pn{ 1) <  1. Quant aux polynômes Pn+1 -  Pn , on a P\{t) -  Po{t) =  t / 2, 
puis par récurrence on utilise l ’ identité

Pn+l(t) -  Pn(t) = i ( F „ ( t )  +  Pn- l ( t ) ) ( P n(t) -  P n - l( t) ) .

2. En substituant à T  l ’ opérateur T/X  où A >  ||7*||, on peut effectivement supposer 
im i <  1. D ’après l ’exercice 3.34.5, l ’opérateur Ie — T  est hermitien positif de norme 
<  1. Vu l ’exercice 3.34.2, les opérateurs Pu{Ie — T) sont hermitiens positifs, la suite 
{Pu{Ie -  T)) est croissante car les polynômes Pn+1 -  Pn sont à coefficients positifs et 
cette suite est bornée car, pour ||æ|| <  1, ik^ - ï > ii <  le t

IlPn{{lE ~  T ) X ) \ \  <  Pn{\\{lE ~  T)x\\) <  Pn{ 1) < 1.
Il en résulte (exercice 3.34.3) que la suite {Pn{lE — T)) converge simplement vers un 
opérateur hermitien positif de norme <  1 noté I e -  S  ; vu l ’exercice 3.34.5, S  est un 
opérateur hermitien positif. On a

Pu+i {Ie - T ) P 2 (Ie -  T) + IB -  T  
2

et en passant à la limite

d’où S 2 =  T.
I e - S  =

{Ie -  S ) 2 +  Ie -  T  
2

Par construction, il existe une suite {Qn) de polynômes telle que la suite 
{QnCO) converge simplement vers T 1/2. Si R est un opérateur qui commute avec T , on 
a RQn{T) =  Qn{T)R, d’où RT 1̂ 2 =  7l l ^2P  en passant à la limite, ce qui prouve que 
7ll/2  commute avec R.

3. Soit U un opérateur hermitien positif tel que U2 =  7 ’, alors U commute avec T  car 
UT = U3 = TU. Il en résulte que les opérateurs T 1/2 et U commutent et, par conséquent, 
U = T 1 / 2  d’après l ’exercice 3.34.4.

EXERCICE 3.34.7
On observe d’abord que l ’opérateur T*T  est hermitien positif, sa racine carrée est donc 
bien définie d’après l ’exercice 3.34.6 et l ’opérateur Ç_p*T) l / 2  est hermitien positif. On a 
par ailleurs, pour x e E,

\\(T*T)1/2x f  =  ({T T )l/2x\(T*TŸ/ 2 x) =  ((T*ï')a;|a:) =  ||ï'x ||2



3.42 EXERCICES DU CHAPITRE 3.G 551

et ceci prouve que ||(T *T )1/2a;|| =  \\Tx\\. En prenant la borne supérieure sur la boule unité 
de E , on en déduit que ||T|| =  ||(T *T )1/2||.

Posons G = Im (T * T )1/2 et
Soy =  T x  si y = (T*T)1/ 2x.

On vérifie que So : G -» F  est bien défini, c’est-à-dire ne dépend pas du choix de x  E E 
tel que y =  (T*T)l/2x  : en effet, si (T*T)1/2x  =  0, Tx = 0 d’après ce qui précède. On 
vérifie aisément que So est linéaire ; en outre

IISwII = p’*|| = \\(t *t ) 1 /2 x \\ =  IMI
et ceci montre que So est linéaire continu. Cet opérateur se prolonge par continuité en un 
opérateur So : G -» F  linéaire continu. Soit P  : E —> G le projecteur orthogonal de E sur 
<2, posons S  = So o P : E -> F. On obtient ainsi un opérateur linéaire continu de norme 
<  1 tel que ||Sx|| =  ||x|| pour a; G G.

Par construction, on a T  =  S(^T*T)1̂ 2. D ’autre part, on peut appliquer l ’exercice
3.29.4 : S*S  est le projecteur orthogonal sur G. Il en résulte que 

S*T  =  S* S(T*T ) 1/2  = (T*T)1/2, 
ce qui prouve le résultat voulu.

La dernière assertion résulte de la proposition 3.32.2.

EXERCICE 3.34.8
D’après le lemme 3.34.6, on a

u n i2 =  i r f  =  r r r  y =  u /*n  =  i ,
d’où ||T|| =  ||T*|| =  1. Le spectre de T  est donc contenu dans le disque |À| <  1.

Montrons que tout À de module <  1 est dans l ’ensemble résolvant. On peut écrire
XIE -  T  = XTT* -  T  = T(\T*  -  IE)

où || AT* || =  |À| <  1 ; l ’opérateur À T* -  IE est donc inversible et T  étant inversible 
(d’ inverse T *), ceci prouve que XIE -  T  est inversible.

EXERCICE 3.35.1
L’équivalence résulte de l ’exercice 3.34.7. En outre, d’après le lemme 3.35.3

l im i |< | | 5 | | | | | ( T * ï ’) 1/2| l l< l l l ( 2 '* ,-',) 1/2|ll-
De même, en utilisant la formule (t * T )1/2 =  S*T  et le fait que ||£*|| =  ||5|| <  1, on 
vérifie que ||KT*'-/1) 1/ 2!|| <  |||T|||.

EXERCICE 3.35.2 OPÉRATEURS NUCLÉAIRES 

1. et 2. On a

|| An (%\an) bn || <  |An | \\x\\
71 =  1 71 =  1

et ceci prouve que la série (x\an) bn est absolument convergente et que
im i< E r = i iA n i . d ’o ù im i< n T iiN .

3. Si T  est de rang fini, soit (ei)i< i<„ une base hilbertienne de T ( E ) . On a
n

Tx = ^ 2  y*ei où Vi =  (Tx\ei),
7 =  1

d’où Vi =  (x\T*ei) = Xi(x\üi) où ^  =  ||T*Ci||, <h = T *c </||2 1*c<|| si T*ei ?  0 et, 
lorsque T*ei =  0, on prend pour ai n’ importe quel vecteur de norme 1. Ceci prouve que T  
est nucléaire.



552 CHAPITRE 3 ESPACES LOCALEMENT CONVEXES

Soit T  G N(E; F), posons
n

On a alors

I n X  — ^  ̂\ p  (x|ûp) bp.

P =  1

l l ( r - T w)* ||<  Ê  |AP||N |,
p=n+1

d’où ||T -  Tn || < I^pI» quantité qui tend vers 0 lorsque n tend vers l’infini. Les
opérateurs Tn étant de rang fini, ceci prouve que T  est un opérateur compact.

4. On a oo
Sy — ^   ̂An(y|ùn)cn

71=1
où bn G F ,  ||6n || = 1, Cn G C, | |cn|| = 1 et l^n| < oo. On en déduit que

oo
(RST)x = ^2  \ n(x\T*bn)Rcn pour X  G E.

71=1
Posons

RCn —  y>nd>n OU dn G H , | |< in || — 1 6 t fin — ||i? C n ||>

F bn = VnQ>n OU CLn G E , ||u.n || = 1 et Un = \\1 bn\\>
On a alors oo

(RST)x = ^ 2  ^nlinVn(x\an)dn pour a; G E
71=1

et |A„^ni/„| < ||-R|| An ||T|| et ceci prouve que l’opérateur RST  est nucléaire et que 
\\RST\\N <\\R\\\\S\\N \\T\\.

5. On a (Te»|ei) =  £^°=i A„ (e<|a„) (6„|ej), d’où
OO

E  i(*,««i*)i ^  E  E  ia« i i(e* K ) (M * )i
i e l  i € l  7 i= l

où
E  l(e*l°») (M e*)l < (|(ei|on)|2) 1/2 (|(^n|ei)|2) 1/2 =  ||a„|| ||6„|| =  1
ie i

et, par conséquent,

E  \(T e i \ ei) \  < E  lAnl < 00
iei 7 i= i

Ceci prouve que la famille ((Tei\ei))i^i est sommable et que
00 00 00

Ec*’e»ie») = E A»E(e«io(6»ie*)= E An E ^ ^ k i *) = E A«(Mo„),
i e l  7 i= l  i€/ 7 i= l  i £ l  7 i= l
ce qui prouve le résultat voulu.

6. Vu que |(6n|an)| < 1, on a
oo

|Tr (T)| < E  lA«l =  P ’IIjv-
71=1

7. Soit (ei)i<i<n une base hilbertienne de E et soit A = (ap,q)i<p,q<n la matrice 
représentative de T  dans cette base. On a Teq = Y^=\ aP,qeP> d’où

X > e , K )  = E = Tr ( ^ ) = Tr ( n
q= 1 9=1
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d’où le résultat voulu.
8. On notera d’abord que

Tx = ^  Xi(x\ei)ei.

Si la famille (A * )^ / est sommable, l ’ensemble {i G I  ; Ai ^  0} est dénombrable et la 
formule précédente montre que T  est nucléaire et que

T r(7 ') =  ^ A i  e t p ' I U ^ I A , ! .
i e i  i e i

Réciproquement, supposons T  nucléaire et posons

Sx=  £  ÏT Ï^ M e i-

On observe que Sx  est bien défini vu que la famille ((æ |e*))^/ appartient à l2(I) et on a

l l^ ll2 =  £  KxleOI2 < IN I2,
« € / ,  A i# 0

ce qui prouve que S  est linéaire continu de norme <  1. On a alors

(ST )x=  £  ^ - ( T x \ ei)ei =  £  |A»| (x\ei)ei.
i6 /,A i# o l ** iG/.Ai^O

L’opérateur ST  est nucléaire et la formule précédente montre que ((ST)ei\ei) =  |A*| ; par 
conséquent, Tr (ST) =  ]T \G/ |A*| < oo. Ceci prouve que la famille (Ai)iei est sommable 
et, vu que

Tr (ST) < | |S T ||„  <  ||T||n ,
que J2iei |A»| <  IITIIjv, d’où l ’égalité, ce qui permet de conclure.

Si T  est nucléaire, la famille (Ai)iei appartient à l ’espace ^ (Z ), donc à l ’espace l2(I) 
(exercice 3.24.9s) et, vu la proposition 3.35.8, on en déduit que T  est un opérateur de 
Hilbert-Schmidt.

9. D’après l ’exercice 3.34.7, il existe S  G £>(E\ F), ||S|| <  1, tel que T  =  S(T*T)l/2 
et (T *T )1/2 =  S*T. Ces formules prouvent que T  est nucléaire si, et seulement si, 
(T*T)1/2 l ’est. En outre

im k  < IISII ||(7’*T)1/2||jv < m " T )1/2\\N et | |Ç r r ) 1/2||N < \\S*\\ ||2’lk  < P ’Ik , 
ce qui permet de conclure.

Si l ’opérateur (T*'!')1/2 est nucléaire, il est de Hilbert-Schmidt d’après 8. et, vu l ’exer­
cice 3.35.1, T  est de Hilbert-Schmidt.

10. a. Si 7,1/2 est compact, T  =  7 ,1/2T 1/2 est compact d’après la proposition 3.32.22. 
Réciproquement, si T  est compact, soit (ei)iç.j une base hilbertienne de vecteurs propres, 
T a  =  X i d .  On pose

Sx  =  y ^ f r l e Q e , .  
i e i

On observe que Sx  est bien défini car la famille (A*/2 (æ|ei))ie / appartient à l ’espace l2(I), 
le spectre de T  étant borné. De plus, il existe une constante c >  0 telle que 

||Sx||2 =  £ A i |(x|ei )|2 < c | |x | |2,
i e i

ce qui prouve que S  est linéaire continu. On constate que cet opérateur S  est hermitien 
positif car

(Sx|j/) =  £ A î1/2(x |eM Â Z) = (x\Sy) et (Sx|x) =  £  \ 1/2|(* |e ,)|2 >  0.
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On a d’autre part

S 2x = 2 2  \ ] /2 (Sx\ei)ei =  2 2  Xi(x\ei)ei = Tx
iei i€l

et ceci prouve que S  est simplement la racine carrée de T. On vérifie enfin que S  est 
compact en tant que limite d’opérateurs de rang fini. Si J  est une partie finie de / ,  on pose

=  £ \ 1/2( * h ) e i-
*€ J

On définit ainsi des opérateurs de rang fini et

11(5 Y ,  Ai|(x|ej)|2 < sup Ai IN I2,
iei-J  te i-J

soit ||5 -  S j  ||2 <  supiG/_ j  Xi. Ceci permet de conclure car, pour tout e >  0, il existe une 
partie finie J  de I  telle que supiG/_ j  Xi < e2, d’où ||S -  Sj\\ < e.

b. D’après a., on peut supposer que T  et T 1/2 sont compacts. Conservons les no­
tations de a., d’après 8., T  est nucléaire si, et seulement si, ||T||n  =  ^2ieI Xi <  oo. 
On note ensuite que (e * )^ / une base hilbertienne de vecteurs propres de T 1/2 et que 
T 1/2ei = X y 2ei ; d’après la proposition 3.35.8, T 1̂ 2 est de Hilbert-Schmidt si, et seule­
ment si, \\T\\2H3 =  Xi <  oo. Ceci prouve le résultat voulu.

c. La condition est nécessaire d’après 5. Réciproquement, si la famille ((Tei\ei))i^i 
est sommable, il s’agit de vérifier d’après b. que l ’opérateur T 1/2 est de Hilbert-Schmidt. 
On a en effet

(Z’ei|ei) =  (T 1/2e<| r 1/2ei) =  ||7,1/2ei||2 
et, par conséquent, ||T1/2ei||2, ce qui permet de conclure.

11. D ’après l ’exercice 3.34.7, il existe S  G £(F\ E ) tel que 
| | 5 | | < le t T 2* =  5 (T 2T2* )1/2(

d’où ï 2 =  (T272 ) 1/25*. L’opérateur hermitien positif (72T2 ) 1/2 étant compact d’après 
10,a., soit (ei)i€j une base hilbertienne de vecteurs propres de cet opérateur

(ï>2r * ) 1/2ej =  Xid.
On a

Tx = T i (T2T2 )1/2S*x = Ti Xi(S* x\ei)e2j = 2 2  Xi(x \Sei)T^ i-
' i£l <€/

Posons ai = Sei/\\Sei\\ lorsque Sei ^  0, bi =  Tiei/\\Tiei\\ lorsque Tie* ^  0 et 
J  =  {i G /  ; Sei 7̂  0) TiCi ^  0 et Xi ^  0}.

Cet ensemble J  est dénombrable et

Tx = Y Xi I I ^ H  (x la i)6i
ieJ

OÙ J/2 2

E i€ j  ^  ||5ei|| \\Tiei\\ < J2ieJ Ai ||'iie i|| <  ( E ieJ A?) (E ie J  P ie i | |2) 1/2

<  ( E i €jA ? ) I / 2 i r A ik s

et, d’après l ’exercice 3.35.1

( £ a2) 1/2 = ( E M M f  < W ^ Ÿ '^ s  = I|t2*||hs =  \\t2\\hs.
i e j  ieJ

Ceci prouve que T  est nucléaire et que ||T||n  -  \\Ti \\h s \\T2 \\h s -
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12. L’opérateur R  est hermitien positif, nucléaire d’après 9. et R 1/2 est de Hilbert- 
Schmidt d’après 10,b. De plus

P ' I I a, =  ||(2 -* ï ’) 1 / 2 I U  =  l l f l l k  =  \\R1/2\\h s , 
d’où ||7’2| | „ s = P ’IIÎ/2 et IIï ’iIIhs = l|5iî1/2||//s < ||*1/2||«s = ||7’||î,/2 ; 
d’après 11., on a ||7 j|N <  ||2 i ||h s HÏ2||h s . d’où ||7 j|} /2 < ||T i||»s  et par conséquent 
||Ti ||//s =  | | Ï ’||J/2, ce qui permet de conclure.

13. Soient T  G N (F ;F )  et A G K, il est clair que XT G N (F ;F )  et que 
||AT||jv =  |A| | | T | | S i  |\T\\n = 0, alors T  =  0 vu que ||T|| <  \\T\\N.

Étant donné 7 i ,T 2 G N (F ; F ), il s’agit de vérifier que rl \  +  rL\ est nucléaire et que 
p l  -I- Cf 2 ||iV <  11̂ 1 II AT +  p 2||iV. Posons

T  =  ( ( ï ’i +  7 ’2)* (7 i +  7 ’2) )1/2 € £(E).
D’après 9., il s’agit de vérifier que T  est nucléaire, c’est-à-dire d’après 10,c. que la famille 
((Tei\ei))iei est sommable, (e i)i€ / étant une base hilbertienne de E  ; d’après 8., on aura 
alors

II7 '1 + 7’2|U  =  ||T||jv =  Tr T  = Y^(Tei\ei).
i £ l

D’après l ’exercice 3.34.7, il existe 5  € L(E),  ||5|| <  l ,  tel que T  =  5 * (T, +  T2), d’où

(ï î i h )  =  (S*T' e*\ei) + (S T a e ih )
et, les opérateurs S  I i ,  S  12 étant nucléaires, ceci prouve que T  est nucléaire et 

p i  +  7à||jv =  Tr (5 * 7 \)  +  Tr (5 *7 2) <  |Tr (5 *7 ’i) |  + |Tr (5 *7 ’2)|.
Afin de majorer |Tr (5 *7 1)|, l ’exercice 3.34.7 permet d’écrire

i /2 =  5 l (7 i*7 i ) 1/2 où 5 i e L(E),  ||5 i|| <  1.
Posons U =  Ci\’ ï i ) 1/2, V = f/V 2 on a alors 7 \ =  5 ( V 2, S*Ti =  S *5 (V 2, d’où

Tr(5 Ti)  -  ^ ( 5 * 5 1*V2ei |ei) =  V (V e i|V 5 iS ei)
*€/ rrt

et, d’après Cauchy-Schwarz,

|Tr (5*71)| <  ||V||HS \\VSlS \\HS < ||K||2HS =  WU1' 2^ , .
Vu 10,b. et 9.,

Ceci prouve que |Tr (S 1 
de conclure.

' r i i i< r . ii" s = i |y | |N = ||T i | |N -
-  P ’x lk  et de même iTr 15*7même |Tr (5 *T 2)| <  117211jv, ce qui permet
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