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Chapitre 1

THEORIE DES ENSEMBLES






Sommaire

Ce chapitre expose la théorie axiomatique des ensembles de Zermelo-Fraenkel.
Le systtme d’axiomes de Zermelo-Fraenkel comprend habituellement les cing
axiomes énoncés au paragraphe 1, I’axiome de I’infini énoncé au paragraphe 7
et un schéma d’axiomes, appelé axiome de substitution, que nous n’avons pas
énoncé, cet axiome n’étant pas utilisé dans la suite de cet ouvrage. Ce dernier
axiome, qui implique I’axiome de compréhension (ZF5), est utile dans la théo-
rie des cardinaux par exemple : il permet de définir ’ensemble Card X (remarque
1.8.1), il permet la construction de treés grands cardinaux, etc. Signalons par ailleurs
que nous utiliserons I’axiome de choix énoncé au paragraphe 2 chaque fois que
cela sera utile. Le lecteur qui souhaiterait en savoir plus sur 1’axiomatisation de
la théorie des ensembles pourra consulter le livre de A. Fraenkel, Y. Bar-Hillel
et A. Levy [13] ; il y trouvera une analyse fort intéressante des divers systémes
d’axiomes proposés depuis Cantor.

Le plan de ce chapitre est le suivant. La partie A expose les principales notions
qui se définissent dans la théorie de Zermelo-Fraenkel, I’objectif essentiel étant de
fixer une fois pour toutes les notations utilisées dans la suite de cet ouvrage. La
partie B est consacrée a I’étude des ensembles ordonnés ; apres avoir rappelé le
vocabulaire utilisé dans ce domaine, on établit le lemme de Zorn (théoréme 1.5.1).
Il s’agit d’un théoréme fondamental dont la démonstration est difficile, mais dont
Iutilisation ne présente pas en général de difficultés. L’existence d’une base dans
tout espace vectoriel # {0} (théoréme 1.6.1) est une premiére application intéres-
sante de ce théoreme. La partie C est consacrée a I’étude des propriétés les plus
simples des ensembles infinis. Apres avoir établi que la relation Card X < Card Y
est une relation d’ordre total sur la collection des cardinaux, nous donnons les pro-
priétés constamment utilisées des ensembles dénombrables et des ensembles ayant
la puissance du continu. Signalons enfin le théoréme 1.9.9 dont la démonstration
s’appuie sur le lemme de Zorn et qui permet de définir la dimension de tout espace
vectoriel.






1.1

A — Axiomes de la théorie
des ensembles

Les axiomes de Zermelo-Fraenkel

Ce chapitre est un exposé élémentaire de la théorie axiomatique des ensembles ;
la construction d’une théorie mathématique, telle que la théorie des ensembles,
s’effectue selon des régles trés précises ; un exposé systématique de ces régles
ne saurait trouver leur place ici, vu les objectifs de ce cours. Nous allons nous
contenter de quelques remarques assez naives.

La construction d’une théorie mathématique T utilise des lettres et des signes.
Les lettres représentent des objets ou des relations ; dans chaque théorie, les objets
recoivent des appellations particuliéres : par exemple, en théorie des ensembles
les objets sont appelés ensembles, éléments, parties, applications, etc. Les signes
comportent des signes logiques et des signes spécifiques a la théorie étudiée. Il y a
trois signes logiques de base (non, ou, J) et deux signes spécifiques a la théorie des
ensembles (=, €). En écrivant les uns 2 la suite des autres des lettres et des signes,
on construit des assemblages. Ces assemblages ne doivent pas étre construits de
facon quelconque ; on ne s’intéresse qu’aux assemblages qui, dans I’interprétation
naive de la théorie, représentent soit des objets, soit des relations. En d’autres
termes, il faut décrire les constructions qui sont autorisées et il faut donner des
régles permettant de reconnaitre si un assemblage est un objet ou une relation. Ces
reégles ne sont que des regles de syntaxe, permettant de dire si ce que 1’on écrit a,
ou n’a pas, de sens ; vu nos objectifs, il ne nous semble pas utile d’expliciter ces
regles, I’expérience et le bon sens étant en général suffisants.

Considérons en particulier les signes logiques de base. Si A est une relation,
(non A) est une relation qu’on appelle la négation de A. Si A et B sont des rela-
tions, (A ou B) est une relation qu’on appelle la disjonction de A et B. Enfin, si R
est une relation, (3z)R est une relation qui se lit «il existe z tel que R» et le signe
logique 3 s’appelle un quantificateur existentiel. En itérant ces régles, on congoit
qu’on puisse construire des relations de plus en plus complexes ; dans un but de
simplification et de compréhension, il est indispensable d’introduire des abrévia-
tions. Par exemple, la relation (non((non A) ou (non B))) est notée (A et B) et
s’appelle la conjonction de A et B ; la relation ((non A) ou B) se note (A = B),
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se lit <A implique B» et le signe logique = s’appelle I’'implication. La relation
((A = B)et (B = A))senote (A & B), se lit «A équivaut a B» et le signe lo-
gique < s’appelle I’équivalence. Enfin, la relation non(3z)(non R) se note (Vz)R,
se lit «quel que soit z, R» et le signe logique V s’appelle un quantificateur univer-
sel.

Nous n’avons parlé jusqu’a présent que de la formation des relations et des
objets de la théorie. Il s’agit ensuite de définir la notion de relation vraie. Pour
cela, on se donne une famille de relations qu’on appelle axiomes et on dit qu’une
relation est vraie si elle peut se déduire des axiomes par une démonstration ; une
relation est dite fausse si sa négation est vraie. Cette définition nécessite quelques
commentaires et en particulier qu’entend-on par démonstration ? Une définition
précise de ce terme nécessiterait de longs développements qui ne sauraient trouver
leur place ici, le lecteur de cet ouvrage étant supposé familiarisé avec le raisonne-
ment mathématique.

Remarque 1.1.1 Une théorie mathématique T est dite contradictoire si il existe
une relation A telle que les relations A et (non A) soient toutes deux des théo-
rémes ; si B est une relation quelconque de T, la relation (A = B) est vraie car la
prémisse A est fausse et, la relation A étant vraie, B est donc vraie d’apres la régle
du syllogisme. Ceci prouve que dans une théorie contradictoire toute relation est a
la fois vraie et fausse ; une telle théorie est évidemment dénuée de tout intérét et il
est donc essentiel de savoir si une théorie est contradictoire ou non. Les résultats
obtenus dans ce sens sont assez décevants : K. Godel a en effet montré en 1931
qu’il ne saurait exister de démonstration de la non-contradiction de I’arithmétique,
et plus généralement de toute théorie contenant cette derniére, comme la théorie
des ensembles par exemple.

Parmi les axiomes de la théorie étudiée, on distingue d’abord les axiomes qui
ne concernent que les signes logiques. La théorie obtenue en n’utilisant que les
deux signes (non, ou) s’appelle le calcul des propositions ; I’utilisation des quanti-
ficateurs conduit au calcul des prédicats. On trouvera une présentation axiomatique
de ces théories dans les ouvrages de N. Bourbaki [3], S.C. Kleene [16] et P.S. No-
vikov [21].

Le signe =, appelé signe d’égalité, permet de construire de nouvelles rela-
tions ; si z et y sont deux ensembles (c’est-a-dire deux objets de la théorie des
ensembles), I’assemblage x = y est une relation, dite relation d’égalité, qui se lit
«z est égal a y». La négation de cette relation, c’est-a- dire la relation non(z = y),
se note  # y et se lit «z est différent de y». Le signe d’égalité est assujetti au
systeme d’axiomes (1.1.1) et (1.1.2) qui suivent.

Quels que soient les ensembles z, y et 2

T =2z,
(1.1.1) (x=y) e (y=2),
(z=y)et(y=2) = (z=2).
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Si R(z) et T'(z) sont respectivement une relation et un ensemble dépendant de
I’ensemble z (ceci signifie simplement que la lettre z figure dans les assemblages
R et T), alors les relations suivantes sont des axiomes

(z =y) = (R(z) & R(y)),

(z=y) = (T(z) = T(y)).

Les axiomes qui précédent sont conformes a I’interprétation intuitive du signe
égalité : dire que z est égal a y signifie intuitivement que les objets x et y sont les
mémes ; aucune propriété ne permet de les distinguer.

Venons-en maintenant au signe €, appelé signe d’appartenance. Soient x, X

deux ensembles, 1’assemblage z € X est une relation, dite relation d’apparte-
nance, qui se lit “z appartient 2 X ou “z est un élément de ’ensemble X”. La
négation de cette relation sera notée x ¢ X.
Note Le lecteur observera que I’objet X a été appelé ensemble et que 1’objet = a
été appelé élément : ces appellations sont relatives a la relation z € X. Un méme
objet peut étre a la fois élément et ensemble : par exemple,siz € X et X € X,
I’objet X est un ensemble contenant I’élément z et c’est un élément de I’ensemble
X. La distinction entre élément et ensemble n’est qu’une commodité de langage
qui est nécessaire pour faciliter I’interprétation intuitive des théorémes.

Nous allons indiquer maintenant les axiomes auxquels est assujetti le signe
d’appartenance ; ce systéme d’axiomes comprend les cinq axiomes figurant dans
ce paragraphe et I’axiome de I’infini qui sera énoncé ultérieurement ; on obtient
ainsi la théorie des ensembles de Zermelo-Fraenkel notée (ZF') en abrégé. Indi-
quons dés maintenant que nous utiliserons un autre axiome ; il s’agit de I’axiome
de choix qui, pour des raisons historiques, est étudié séparément ; on obtient alors
la théorie des ensembles de Zermelo-Fraenkel avec axiome de choix notée
(ZF) + (C).

Soient X et Y deux ensembles égaux ; en prenant pour relation R(X) la re-
lation z € X, ’axiome (1.1.2) montre que les relations £ € X et x € Y sont
équivalentes ; autrement dit, on a le théoréme
(1.1.3) (X=Y)=>Vz)(zeX & zeY)

Si X est égal a2 Y, ceci prouve que tout élément de X est élément de Y et
tout élément de Y est élément de X : deux ensembles égaux ont donc les mémes
éléments. La réciproque nécessite un axiome, appelé axiome d’extensionalité, qui
s’énonce comme suit.

(ZF)) Vz)(zeXezeY)=> (X =Y).

(1.1.2)

Compte tenu de cet axiome, deux ensembles sont égaux si, et seulement si, ils
ont les mémes éléments.

La relation d’inclusion se définit a partir de la relation d’appartenance de la
fagon suivante. La relation (Vz)(z € A = z € X) seranotée A C X. Si cette
relation est vraie, on dit alors que A est une partie ou un sous-ensemble de X ;
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on dit également que A est contenu dans X ou que X contient A. La négation de
cette relation sera notée A ¢ X.

Quels que soient les ensembles X, Y et Z, on a évidemment
{ XcX,

(1.1.4)
(XcYetYC2Z)= (X C2).

Le signe d’inclusion permet d’écrire (1.1.3) sous la forme
(X=Y)=>(XCYetY C X)
et I’axiome d’extensionalité sous la forme
(XCcYetYCX)=>(X=Y);
on a donc le théoreme
(1.1.5) (XCcYetYCX)& (X=Y).

Pour énoncer I’axiome suivant, il est commode d’introduire la notion suivante.
Soit R(z) une relation, si la collection des ensembles x ayant la propriété R
constitue un ensemble, on dit que la relation R est collectivisante en z. Dans ce
cas, il existe un ensemble X et un seul d’apres I’axiome d’extensionalité tel que
(Vz)(R(z) < z € X) ; cet ensemble sera noté X = {z; R}. S’il existe un seul
ensemble x vérifiant la relation R, on dit que la relation R est fonctionnelle en z ;
ceci signifie qu’il existe un ensemble a tel que (Vz)(R(z) & z = a).

L’axiome de compréhension s’énonce alors comme suit.

(ZF) Soient X un ensemble, R une relation et z une lettre ne figurant pas dans
2} \ X, alors la relation (z € X et R) est collectivisante en x.

11 existe donc un ensemble A constitué des éléments de X qui vérifient la
relation R, soit z € A & (x € X et R) ; ce sous-ensemble de X sera noté
A={z e X; R}

Remarque 1.1.2 Le paradoxe de Russel Dans I’axiome de compréhension, on
astreint ’objet x a appartenir & un ensemble X donné, cette restriction est tout a
fait essentielle. Il est en effet facile de donner des exemples de relation non collec-
tivisante. Montrons que la relation (z ¢ z) n’est pas collectivisante ; raisonnons
par I’absurde, si cette relation était collectivisante, il existerait un ensemble A tel
que (Vz)(z € A & = ¢ x) et, en substituant A a z, on obtiendrait alors le théo-
reme (A € A& A ¢ A), ce qui est absurde. Ceci prouve que la relation (z ¢ x)
n’est pas collectivisante. Autrement dit, la collection des ensembles qui ne sont
pas éléments d’eux-mémes n’est pas un ensemble : appliquer les théorémes de la
théorie des ensembles a cette collection conduit a une absurdité appelée paradoxe
de Russel.

Remarque 1.1.3 Le paradoxe de Cantor Voici un autre exemple de relation non
collectivisante : la relation (Vz)(x € X) n’est pas collectivisante en X. Si elle
Iétait, elle serait en effet fonctionnelle en X d’apreés I’axiome d’extensionalité ; il
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existerait donc un ensemble X tel que tout ensemble z soit élément de X et, vu
I’axiome de compréhension, toute relation serait collectivisante ce qui est absurde
d’apres la remarque précédente. Ceci prouve que la relation (Vz)(z € X) n’est
pas collectivisante en X . Autrement dit, la collection de tous les ensembles n’est
pas un ensemble : affirmer le contraire conduit & une absurdité appelée paradoxe
de Cantor.

Voici quelques conséquences de I’axiome de compréhension. Soient X un en-
semble et A une partie de X ;1’axiome (Z F3) permet de définir le complémentaire
de A par rapport a X

X-A={ze X;z¢A}.
Si R est une relation, on a alors {z € X ; non R} = X — {z € X ; R} et, en pre-
nant pour relation R la relation z ¢ A, on obtient le théoréme A = X — (X — A).
Voici un exemple important de relation fonctionnelle.

Proposition 1.1.1 La relation (Vz)(z ¢ X) est fonctionnelle en X.

Preuve Notons d’abord que, pour tout ensemble Y, ona (Vz)(z ¢ Y —Y), puisque
larelation (x € Y —Y) s’écrit (x € Yetz ¢ Y), relation qui est fausse. Par
ailleurs, si X et X' sont deux ensembles tels que (Vz)(z ¢ X) et (Vz)(z € X'),
la relation (Vz)(z € X < = € X') est vraie car les relations x € X etz € X’
sont fausses et, vu I’axiome d’extensionalité, on a donc X = X', ce qui prouve le
résultat voulu. Q.E.D.

11 existe donc un ensemble, et un seul, appelé ensemble vide, que I’on note @,
tel que (Vz)(z ¢ 0). Intuitivement, I’ensemble vide est un ensemble n’admettant
aucun élément.

Larelation = € () étant fausse, on a les théorémes, R désignant une relation
(1.1.6) (Vz)(z € 0 = R) etnon(3z)(z € D et R).

En prenant pour relation R la relation x € X, le premier théoréme prouve
que @ C X ; on dit que @ est la partie vide de X. On notera en outre les deux
propriétés évidentes X — @ = X et X — X = (. On dit qu’un ensemble est
non vide si X # 0 ; d’aprés la définition de I’ensemble vide cela signifie que
non (Vz)(z ¢ X), c’est-a-dire (3z)(z € X).

Nous avons précédemment dit ce qu’il fallait entendre par partie ou sous-
ensemble d’un ensemble X. On peut évidemment s’intéresser a la collection de
toutes les parties de X ; ’axiome de I’ensemble des parties dit que cette collection
est un ensemble.

(ZF3) Pour tout ensemble X, la relation A C X est collectivisante en A.

Il existe donc un ensemble noté P(X), appelé ensemble des parties de X, tel
que (A C X & A € P(X)). Les propriétés de I’inclusion, a savoir X C X et
0 C X, montrent que X € P(X) et € P(X) ; d’apres (1.1.4), on a d’autre part
(X CY) e (P(X) CP(Y)) et par conséquent

(X =Y) & (P(X) =P(Y)).
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Etant donné deux ensembles a et b, I’axiome de la paire affirme 1’existence
d’un ensemble dont les seuls éléments sont a et b.

(ZFy) {Soient a et b des ensembles, la relation (x = aouz = b) est
collectivisante en .
Il existe donc un unique ensemble tel que
(Vz)(z € X & (x =aouz =1b));

cet ensemble sera noté {a,b}. Si a # b, on dit que X est un ensemble 2 deux
éléments. Si a = b, on a en fait (Vz)(z € X & (z = a)) ; on dit alors que X
est un ensemble a un élément ou qu’il est réduit a I’élément a ; on note {a} un tel
ensemble. On a donc, par définition, {a} = {a,a}.

Donnons quelques exemples. La seule partie de I’ensemble vide étant la partie
vide, P(0) est un ensemble a un élément et P(P) = {0}. Soit X un ensemble et
a un élément de X ; la relation (z € X etz = a) définit une partie de X dont
a est le seul élément. Il faut évidemment soigneusement distinguer I’élément a de
la partie de X réduite a 1’élément a : on a en particulier a € X, {a} € P(X) et
a € {a}.

L’axiome de compréhension permet de définir la réunion et I’intersection de
deux parties A et B d’un ensemble X en posant

AUB={ze€eX;z€Aouze B}, ANB={ze€X;z€ Aetz € B}.

Considérons plus généralement un ensemble d’ensembles, c’est-a-dire un ensemble
X dont les éléments sont eux-mémes des ensembles (ceci signifie simplement que
X étant un élément de X, on va s’intéresser aux éléments de X). On peut d’abord
s’intéresser a la collection de tous les éléments de tous les ensembles appartenant
a X ; I’axiome de réunion affirme que cette collection est un ensemble.
(ZF5) {Pour tout X, la relation (3X)(X € Xetz € X) est collectivi-
sante en .

Cet axiome assure I’existence de I’ensemble, appelé réunion des ensembles de
xa
(1.1.7) U X ={z; @X)(X e Xetz € X)}.

Xex

On notera que tout ensemble de X est une partie de cet ensemble réunion ;
I’axiome de réunion assure donc I’existence d’un ensemble Y tel que tout en-
semble de X soit une partie de Y ; en d’autres termes, tout ensemble d’ensembles
peut étre considéré comme un ensemble de parties d’un ensemble Y.

Voici des cas particuliers de cette notion de réunion.

Si X est ’ensemble vide, la relation (3X)(X € X) est fausse et par suite
Uxep X = 0.

Soient A et B deux ensembles ; prenons pour X ’ensemble 2 deux éléments

{A, B}. Larelation (3X)(X € Xetz € X) est alors équivalente 2 la relation
(xr € Aouz € B). D’apres ’axiome de réunion, il existe donc un ensemble,
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appelé réunion des ensembles A et B, qui sera noté A U B tel que

AUB = U X ={z;z€ Aouz € B}.
X€e{A,B}

Cette définition est évidemment consistante avec celle donnée pour deux parties
d’un ensemble.

On vérifie que la réunion est une loi commutative et associative : soient A, B
et C des ensembles, on a alors

AUB=BUA, AU(BUC)=(AUB)UC,

ce qui permet d’écrire cet ensemble AU B U C. Plus généralement, on peut définir
la réunion de n ensembles A, ..., A, par récurrence au moyen de la formule

AjU...UA, = (AIU...UAn_l)UAn.
En particulier, étant donné n ensembles a1, . . . , a,,, on peut considérer la réunion
des n ensembles {a1}, ....{arn} que nous noterons

{al)"-’a’n} = {al}UU{a“n}>
cet ensemble admet pour éléments les n ensembles ai,...,a, ; on constate donc
que, grice a ’axiome de réunion, il existe un ensemble, et un seul, dont les élé-
ments sont les n ensembles ay,. . .,a, et ceux-1a seulement.

La définition de I’intersection ne nécessite pas d’axiome supplémentaire. On
s’intéresse maintenant aux éléments qui appartiennent a tous les ensembles de X ;
on s’intéresse donc 2 la relation (VX)(X € X = z € X). Cette relation est
collectivisante en z si, et seulement si, X est non vide. En effet, si X est vide, cette
relation est vraie quel que soit z et, comme nous I’avons vu, la collection de tous
les ensembles n’est pas un ensemble. Au contraire, si X est non vide, soit A un
ensemble de X ; la relation précédente est alors équivalente a la relation

(reAet (VX)X € X = z € X))

qui est collectivisante d’aprés I’axiome de compréhension. Si X est non vide, on
peut donc définir I’intersection des ensembles de X par la formule

(1.1.8) (| X={z; VX)X eX=>zeX)}, X#0.

XeXx
Soient A et B deux ensembles et X = {A, B}. La relation
VX)X eX=>zeX)
est équivalente  la relation (x € A et x € B) ; on pose alors

AnB= (]| X={z;z€cActzc B}
Xe{A,B}

et on constate que cette définition est celle que nous avons donnée lorsque A et B
sont deux parties d’un ensemble. On dit que A rencontre B si AN B # (et que A
et B sont disjoints ou sans élément commun si AN B = .

L’intersection est une loi commutative et associative : soient A, B et C des
ensembles, alors

ANB=BNA, An(BNC)=(ANB)NC;
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on a d’autre part les formules de distributivité suivantes
AU(BNC)=(AUB)N(AUC), AN(BUC)=(ANB)U(ANCQC);

en outre, si A et B sont des parties d’un ensemble X, on vérifie que

X-(AuB)=(X-ANX-B), X—(ANB)=(X-A)U(X - B).

Produit de deux ensembles, applications,
axiome de choix

Etant donné deux ensembles z et Y, On pose

(@,v) = {{z}, {z,y}}
et on dit que (z,y) est le couple des ensembles z et y ; x (resp. y) est appelé la
premiére (resp. seconde) projection ou coordonnée du couple. Si z = (z,y), on
utilise les notations x = priz ety = praz.
On a la propriété essentielle qui suit

Proposition 1.2.1 Soient (z,y), (z',y') deux couples, alors (z,y) = (z',y') si,
et seulement si, t = x' ety = v'.

Preuve Si z = z’ et y = ¢/, il est clair que (z,y) = (z’,%’). Réciproquement,
supposons {{z}, {z,y}} = {{z'},{2',¥'}}. On a alors, ou bien {z} = {z'},
ou bien {x} = {z’,y'} ; dans le premier cas z = 2’ et dans le second cas
z =z’ = y'. Dans tous les cas, on a donc z = z’ et par conséquent

{{z} {z,y}} = {{z}, {=.¢'}}.

Notons alors que deux paires de la forme {a,b} et {a, b’} ne peuvent étre égales
que si b = b’. On a donc nécessairement {z,y} = {z,y'}, d’od y = y'. Ceci
prouve quez =z’ ety = y’. QED.

Soient X et Y des ensembles, x un élément de X et y un élémentde Y. On a
{z} c X cXUYet{zr,y} C XUY,dod (z,y) € P(P(XUY)) ; d’apres
I’axiome de compréhension, la relation

Bz)Fy)(z = (z,y)etz e Xety€Y)

est collectivisante en 2. On peut donc considérer I’ensemble des couples (z,y)
lorsque x décrit X et y décrit Y, soit

XxY={z;z=(z,y)etz e Xetye Y}
Cet ensemble est appelé€ le produit de X et Y ; ’ensemble X (resp. Y) est appelé
le premier (resp. second) ensemble facteur du produit. Notons que cet ensemble
produit est I’ensemble vide si, et seulement si, I’un des ensembles facteurs est vide,
soit
(1.2.1) XxY=0&X=00uY =0).
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Remarque 1.2.1 Etant donné trois ensembles 1, T2 et x3, on définit le triplet de
ces ensembles par la formule (z1,x2,z3) = (1, (z2,3)) et plus généralement,
on définit par récurrence la notion de n-uple

(z1y. ..y 20) = (21, (22,- .., Zp))-
La proposition 1.2.1 se généralise comme suit : deux n-uples (z1,...,Z,) et
(y1,---,Yn) sont égaux si, et seulement si, ; = y; pour tout i € {1,...,n}.

Le produit de n ensembles X;,...,X,, est alors par définition ’ensemble des n-
uples (z1,...,2Zy) lorsque z; décrit X; ; cet ensemble sera noté X; X ... x X,.
On a donc

Xix..xXp={z;z=(21,...,z0) etz € X1t ... etz, € Xp}.

Soient X et Y des ensembles et R(z,y) une relation binaire. Considérons le
sous-ensemble G du produit X x Y défini comme suit

G ={(z,y) € X xY; R(z,9)};

I’ensemble G, appelé graphe de la relation R, est donc I’ensemble des couples
(z,y) tels que R soit vraie. La relation (R(z,y) etz € Xety € Y) est alors
équivalente 2 la relation (z,y) € G. Inversement, & toute partie G de X X Y,
on peut associer une relation binaire dont le graphe est G : il suffit en effet de
considérer la relation (z,y) € G.

La relation R(x,y) est dite fonctionnelle en y € Y dans I’ensemble X, si,
pour tout z € X, il existe un unique élément y € Y tel que la relation R(z,y) soit
vraie, autrement dit si

Vre X)By e Y)(Vz € Y)(R(z,2) & (z = y)).

Le graphe f C X x Y d’une relation fonctionnelle est dit fonctionnel en y ;
on dit aussi que f est une application de X dans Y ou que f est une fonction
définie sur X et prenant ses valeurs dans Y. Pour tout z € X, on note alors f(z)
I’'unique élément y de Y qui est tel que R(z,y) soit vraie, c’est-a-dire qui est tel
que (z,y) € f ; par définition, la relation (z,y) € f est donc équivalente 2 la
relation y = f(x) ; I’élément f(x) est appelé I'image de x par I’application f qui
sera alors notée x — f(x). Dans la pratique, une application f de X dans Y sera
notée en abrégé f : X — Y ; I’ensemble X sera appelé ensemble de départ ou de
définition de I’application f et Y ensemble d’arrivée.

Note Conformément a un usage bien établi, il nous arrivera fréquemment de par-
ler du graphe d’une application bien qu’il n’y ait pas lieu de distinguer la notion
de graphe fonctionnel et la notion d’application si on s’en tient aux définitions
données.

D’apres I'axiome de compréhension, la relation «f est une application de X
dans Y'» est collectivisante en f puisque cette relation implique f € P(X x Y) ;
on peut donc parler de I’ensemble de toutes les applications de X dans Y ; cet
ensemble sera noté F(X;Y) ou YX.

Donnons quelques exemples.
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Exemple 1.2.1 Prenons pour ensemble X 1’ensemble vide, on aalors X xY = 0
et le seul graphe contenu dans X x Y est ’ensemble vide ; ce graphe est fonc-
tionnel en y € Y d’apres (1.1.6). Il existe donc une application (et une seule) de
dans Y qu’on appelle I’application vide et qui est notée 0.

Exemple 1.2.2 Soit X un ensemble ; la diagonale de X x X est par définition
le graphe Ax = {(z,z); ¢ € X} ; ce graphe est un graphe fonctionnel qui
définit une application de X dans X appelée application identique de X que nous
noterons Ix. Par définition, on a Ix(z) = z pour tout z € X.

Afin de fixer les notations qui seront utilisées dans la suite de cet ouvrage,
rappelons diverses notions concernant les applications.

Deux applications f et g de X dans Y sont égales si les graphes fonction-
nels f et g sont égaux, c’est-a-dire si les relations (z,y) € f et (z,y) € g sont
équivalentes. Ceci signifie simplement que f(z) = g(z) pour tout z € X.

Etant donné deux applications f : X — Y etg:Y — Z, on définit le graphe
go f C X x Z par la formule

gof=A{(z,2) €eXxZ; (Fy)yeYet(r,y)€ fet(y,2) € g)};
il est clair que ce graphe est fonctionnel ; 1’application g o f est appelée la compo-
sée des applications f et g ; larelation z = (g o f)(x) est équivalente 2 la relation
z = g(f(x)) comme le montre la définition de g o f.

Une application f : X — Y est dite injective (on dit aussi que f est une
injection) si deux éléments quelconques mais distincts de X ont des images par f
distinctes, c’est-a-dire si

(Vz € X)(V2' € X)(f(z) = f(z') =z =1).
Exemple 1.2.3 Soit A une partie d’un ensemble X, le graphe
{(z,y) e Ax X; 2=y}

est un graphe fonctionnel ; il définit par conséquent une application de A dans X
qui est évidemment injective ; on I’appelle I’injection canonique de A dans X ;
notons lai: A — X ;onai(z) = z pour tout z € A. Si f est une application de
X dans Y, I’application composée f oi : A — Y est appelée la restriction de f
a A ; nous la noterons f| 4. Etant donné deux applications f et g de X dans Y, si
les applications f|4 et g|4 sont égales, on dit que f et g coincident dans A. Enfin,
étant donné une application f de X dans Y et une application g de A dans Y, si
les applications f| 4 et g sont égales, on dit que f est un prolongement de g ou que
f prolonge g.

Soient f une application de X dans Y et A une partie de X. On appelle image
(directe) de A par f le sous-ensemble de Y f(A) = {f(z); = € A}. Si B estune
partie de Y, on définit I’image réciproque de B par f comme le sous-ensemble
de X f~Y(B) = {z € X; f(z) € B}. Une application f : X — Y est dite
surjective si I'image de X par f estégalea Y, c’est-a-dire si f(X) =Y.
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Exemple 1.2.4 Soient X et Y deux ensembles non vides. Les applications
pri + z — pri(z),i = 1,2, de X x Y dans X et Y respectivement sont des
surjections appelées premigre et seconde projection.

Exemple 1.2.5 Soit R(z,y) une relation d’équivalence sur un ensemble X, c’est-
a-dire une relation réflexive, symétrique et transitive, soit

(Vz € X)R(z, z),
(Vz € X)(Vy € X)(R(z,y) = R(y,)),

(Vz € X)(Vy € X)(Vz € X)((R(z,y) et R(y, 2)) = R(z,7)).
Pour tout z € X, on appelle classe d’équivalence de x I’ensemble
Az ={y € X; R(z,y)}
et on appelle ensemble quotient de X par larelation R I’ensemble X/ R des parties

A, de X lorsque z décrit X. L’application z — A, de X dans X/R est une
surjection dite canonique.

Etant donné un graphe f C X x Y, on définit le graphe réciproque

1 ={y,2) €Y x X ; (z,9) € f};

si f est une application de X dans Y, alors f~1 est une application de Y dans X
si, et seulement si, f est injective et surjective ; on dit alors que f est bijective ou
que f est une bijection ; I’application f~! est appelée I’application réciproque ou
inverse de f ; il est clair que f~! est une bijection de Y sur X etque f~1of = Iy,
foft=1Iy.
Exercice 1.2.1 Soit f : X — Y une application, montrer que, pour tout A € P(X),
A C f~Y(f(A)) et que, pour tout B € P(Y), f(f~1(B)) C B.
Exercice 1.2.2 Soit f : X — Y une application, montrer que

1. f est injective <= VA € P(X), f~1(f(A)) = A.

2. f est surjective <= VB € P(Y), f(f~1(B)) = B.

Exercice 1.2.3 Soit f : X — Y une application, on note g : P(Y) — P(X) I’application
A — f~1(A). Montrer que f est injective (resp. surjective) si, et seulement si, g est surjective (resp.
injective).

Exercice 1.2.4 Soient f : X — Y, g : Y — Z des applications, h : X — Z I’application

composée h = g o f. Montrer que
1. h surjective = g surjective.

2. h injective = f injective.

Exercice 1.2.5 Soient X, Y des ensembles non vides, montrer qu’une application f : X — Y est
injective si, et seulement si, il existe une application g : Y — X telleque go f = I'x.

Pour terminer ce paragraphe, énongons 1’axiome de choix.
Soient X et Y des ensembles et soit f une application de X dans

(C) < P(Y) — {0}, il existe alors une application g : X — Y, dite fonction
de choix associée a f, telle que g(z) € f(z) pourtout z € X.
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Considérons en particulier un ensemble X non vide et I’application identique

de P(X) — {0} ; d’apres I’axiome de choix, il existe une application
[:PX)-{0} - X

telle que f(A) € A pour toute partie non vide de X. Il est donc possible de choisir

un élément dans toute partie non vide de X, un tel choix étant fait simultanément

pour toutes les parties non vides de X.

L’axiome de choix affirme I’existence d’une application vérifiant certaines pro-
priétés ; il s’agit donc d’un axiome permettant de démontrer I’existence de cer-
tains objets. Comme nous le verrons ultérieurement, I’axiome de choix, par I’in-
termédiaire du lemme de Zorn, permet effectivement de démontrer des théorémes
d’existence ; de tels théoremes ne peuvent pas en général s’obtenir sans 1’axiome
de choix qui se trouve étre pour cette raison un outil extrémement puissant en
analyse.

Exercice 1.2.6 Soient X, Y des ensembles non vides, montrer qu’une application f : X — Y est

surjective si, et seulement si, il existe une application g : Y — X telleque fog = Iy.

Exercice 1.2.7 Soient X, Y, Z des ensembles non vides, f : X — Y, h : X — Z des applica-

tions, montrer qu’il existe une application g : Y — Z telle que h = g o f si, et seulement si,
pourtoutz,z’ € X, f(z) = f(z') = h(z) = h(z').

Si f est surjective, montrer que g est unique.

Exercice 1.2.8 Soient X, Y des ensembles non vides et f : X — Y une application.
1. Montrer que la relation R : f(z) = f(z') est une relation d’équivalence sur X.

2.Onnote 7 : X — X/R la surjection canonique, montrer qu’il existe une application et une
seule g : X/R — Y telle que f = g o  [utiliser I’exercice précédent]). Montrer que g est injective.

Famille d’ensembles : réunion, intersection, produit

Soient I et X des ensembles ; une application f : I — X s’appelle également

une famille d’éléments de X. On utilise alors des notations indicielles : I s*appelle
I’ensemble d’indices, I'image f () de I’indice ¢ € I par f se note z; et la famille f
est notée simplement (z;);cr. Si J est une partie de I, la restriction a J de I’appli-
cation f = (z;)icr est appelée la sous-famille ayant J pour ensemble d’indices ;
on la note (z;);cy.
Exemple 1.3.1 Si I est I’ensemble N (I’ensemble des entiers naturels sera défini
ultérieurement), une famille (2, ),en d’éléments de X est appelée une suite (d’élé-
ments) de X ; une telle suite sera notée plus simplement (z,,) lorsqu’il ne sera pas
utile de préciser I’ensemble d’indices N.

Exemple 1.3.2 L’application identique Ix : X — X définit une famille d’élé-
ments de X indexés par X que nous appelerons la famille de tous les éléments de
X ; étant donné que Ix(z) = x pour tout z € X, cette famille doit étre notée

("D)xex-
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Dans la définition générale des familles, substituons 2 X un ensemble d’en-
sembles noté X. Une application f : I — X sera appelée une famille d’ensembles ;
en posant f(i) = X; une telle famille sera notée (X;);cs. Lorsque X est I’en-
semble P(X) des parties d’un ensemble X, nous parlerons de famille de parties
de X.

Etant donné une famille d’ensembles (X:)ier, on définit la réunion de cette
famille par la formule

(13.1) UZXi={z; @) eTetz e Xi)};
iel
cette formule définit bien un ensemble : on notera en effet que la relation
(F)(i € Tetz € X;) est collectivisante en z car elle implique z € Uycy X.
Notons que |J;¢; Xi = 0 lorsque I = 0.
Lorsque I’ensemble d’indices est non vide, la relation
Vi))ielI=>ze€ X))
est collectivisante en x ; on peut donc définir I’intersection de la famille d’en-
sembles (X;);er par la formule

(13.2) () Xi={z; Vi)(ie I =z e Xi)}.

i€l
Note Prenons en particulier la famille (X) xex de tous les ensembles appartenant
a X, alors les définitions (1.1.7) et (1.3.1) d’une part, (1.1.8) et (1.3.2) d’autre part
coincident.

Remarque 1.3.1 Lorsque la famille (X;);cs est une famille de parties d’un en-
semble X, la réunion et I’intersection (si I # 0) de cette famille sont également
des parties de X ; on peut donc écrire

(133) UXi={zeX;@i)ieletzeXy)},
i€l
(13.4) NXi={zeX;(Vi)icI=>zeX)},sil#0.
i€l

Lorsque I’ensemble I est I’ensemble vide, on constate que (1.3.4) conserve un sens
(alors que (1.3.2) n’en a pas) et que ﬂ,iel X; = X si I = 0. Etant donné un en-
semble Y contenant X, toute famille de parties de X peut étre considérée comme
une famille de parties de Y. La réunion et I’intersection, si I est non vide, d’une
telle famille coincident qu’elle soit considérée comme une famille de parties de X
ou comme une famille de parties de Y. Mais si I’ensemble I est vide, I’intersection
de la famille sera égale soit 2 X, soita Y.

Indiquons les propriétés les plus fréquemment utilisées en ce qui concerne ces
notions de réunion et d’intersection ; les démonstrations sont aisées, le lecteur les
fera a titre d’exercices.

Associativité de la réunion et de ’intersection Soit (X;);c; une famille de
parties d’un ensemble X et soit (Iy)aca une famille de parties de I de réunion I.
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On a alors
(13.5) Ux=U(U Xi)etﬂx,:ﬂ(ﬂ Xi).
i€l AEA i€l i€l XeA i€l

Distributivité Soient (X;);c; une famille de parties de X et (Y;);ec une fa-

mille de parties de Y. Les applications
(5,5) » X5 UY;, (5,5) = XinYjet(4,5) = X; X Y;

définissent respectivement une famille de partiesde X UY, X NY et X x Y. On
a alors

(13.6) (Ux)n(U¥)= U @xiny,
i€l

jeJ (4,5)EIXJT
(Nx)u(NY¥)= () (X:UY;)siIetJ sontnon vides,

el jed (,G)elxd
(Ux)x(U¥n)= U xixvy),
iel jeJ (i,j)eIxJ
(ﬂ X,-) x (ﬂ Yj) = [\ (XixY;)siletJ sontnon vides;
iel jeJ (id)eIxJ

la derniére formule se simplifie lorsque I = J en
(n Xi) X (ﬂ Yi) = ﬂ(Xi x Y;) si I est non vide.
i€l i€l i€l

Complémentaire d’une réunion ou d’une intersection
Soit (X;)ics une famille de parties d’un ensemble X, alors

X-UXi=Nx-x)etx - N x: = Jx - Xo).
i€l i€l i€l i€l
Image par une application Soient f : X — Y une application, (X;);cs et
(Yi)ier des familles de parties de X et Y respectivement. On a

f(UIxi) = sy es(NX:) € ) £(x0),
i€ i€l

i€l el

HUx) =Usr @ eas (%) =N .
i€l i€l i€l i€l
Exercice 1.3.1 Etant donné une application f : X — Y, montrer I’équivalence des propriétés
suivantes
1. f estinjective,

2. pour toute famille (A;)icr, I # 0, de parties de X, F(Nier Ai) = Nier F(A0),

3. pour tout A, B € P(X), f(AN B) = f(A4) N f(B),

4.pourtout A, B € P(X), ANB =0 = f(A)N f(B) =0,

5.pourtout A, B € P(X), A C B=> f(B — A) = f(B) — f(A),

6. pour tout A € P(X), f~1(f(A)) = A.

Exercice 1.3.2 Soit (X;,j)¢:,j)erxs une famille de parties d’un ensemble X, montrer que
User Njes Xis € Njes User Xa,; et que cette inclusion peut étre stricte.
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Apres avoir défini le produit de deux ensembles, nous sommes maintenant en

mesure de définir le produit d’une famille d’ensembles (X;);cr. Une telle famille
peut toujours étre considérée comme une famille de parties d’un ensemble X.
On considere alors I’ensemble des applications £ = (z;)icy de I dans X telle
que z; € X; pour tout i € I ; cet ensemble s’appelle le produit de la famille
(Xi)ier et se note [],c; X;. L'ensemble X; s’appelle I’ensemble facteur d’in-
dice i ; I’image z; de ¢ par I’application x s’appelle la projection ou coordonnée
d’indice 4 de z et I'application pr; : x — z; de [[,c; X; dans X; s’appelle la
projection d’indice . Si A est une partie de ’ensemble produit, son image pr;(A)
par I’application pr; s’appelle évidemment la projection d’indice ¢ de A. On notera
que A C [];¢; pri(A), pour tout A C [],; Xi.
Remarque 1.3.2 Supposons qu’il existe un ensemble X tel que X; = X pour
touti € I. On a alors [];c; Xi = F(I; X) ; cette remarque est importante ; elle
montre que 1’ensemble de toutes les applications de I dans X est un produit d’en-
sembles ; or nous apprendrons ultérieurement a construire des structures produits,
par exemple des produits de structure topologique ; ceci permettra de munir 1’en-
semble F(I; X) d’une structure topologique a partir d’une topologie donnée sur
X.

Remarque 1.3.3 La notion de produit d’une famille d’ensembles généralise celle
de produit de deux ensembles. Considérons en effet deux ensembles X; et X ;
posons I = {1,2} et considérons la famille d’ensembles (X;);cs. L application
qui, a tout = (z;);es de [ ;¢ Xi, associe le couple (z1,z2) de X; x X est une
bijection, dite canonique, de Hie 7 Xisur X3 x Xo.

Voici une propriété importante des ensembles produits.

Proposition 1.3.1 Dans la théorie des ensembles (ZF'), I’axiome de
choix est équivalent a I’énoncé suivant

pour toute famille d’ensembles (X;);cy, I'ensemble produit
(1.3.7) {Hie 1 Xi est non vide si, et seulement si, tous les espaces fac-

teurs sont non vides.
Preuve 1. Montrons que I’axiome de choix implique (1.3.7). On peut supposer que
(X)ier est une famille de parties d’un ensemble X . Supposons tous les ensembles
X; non vides et notons f : I — P(X) — {0} I'application telle que f(i) = X;
pour tout ¢ € I ; d’aprés I’axiome de choix, il existe une application g : I — X
telle que g(7) € X; pour tout i € I ; il en résulte que g € [],<; Xi, ce qui prouve
que cet ensemble est non vide. Réciproquement, supposons I’ensemble [, ; X;
non vide ; il existe donc (z;);e; € Hie! X; et par suite z; € X, ce qui prouve
que X; est non vide.

2. Réciproquement, soit f : I — P(X) — {0} une application ; posons
X; = f(i), X; est non vide ; d’apres (1.3.7), I’ensemble produit [ [;c; X est non
vide, il existe donc un élément z = (z;);cs dans cet ensemble produit ; I’appli-
cation z est alors une fonction de choix associée a f et ceci prouve la réciproque.

Q.E.D.
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Exercice 1.3.3 Soit (X; ;)(;,j)e1x une famille d’ensembles, si J est non vide, montrer que

N T %) =TI Xea).

j€J i€l i€l jeJ

Exercice 1.3.4 Soient I un ensemble non vide, (J;)ier une famille d’ensembles non vides et, pour
tout i € I, (X;,5) ey, une famille d’ensembles. On pose A = [, Ji, démontrer les formules de
distributivité

I-Mier(Uje s, Xij) = Usea(Nier Xi,a)

2. Uier(Njey; Xi,5) = NaeaUser Xia)

3. TLier(Ujey; Xi,5) = Usea(Tier Xivat))»

4 TLier(Njey; Xi5) = NacaTlicr Xia(0)-

Soit (X;)ics une famille de parties d’un ensemble X. Si J est une partie de
I, on peut considérer la sous-famille (X;)ic s et le produit [ ], ; X; de cette sous-
famille. On appelle alors projection d’indice J  IPapplication
pry : [Lier Xi = [1;cs X qui a tout élément (x;);ier de [];c; X associe I’élé-
ment (z;);cs de [];c; Xi (pry associe donc a I’application (z;);cs de I dans X
sa restriction a J). On a alors la

Proposition 1.3.2 Si tous les ensembles X; sont non vides, !’application
ory ¢ [lier Xo = [liey Xi est surjective.

Preuve En effet, soit f : J — X une application telle que f(z) € X; pour tout
i € J. D’apres I’axiome de choix, il existe une application

g:I-J—-X

telle que g(i) € X; pour tout i € I—J. Considérons alors ’application h : I — X
telle que hl; = f et h|;—y = g; il est clair que h € [];c,; X; et que pry(h) = f,
ce qui prouve le résultat désiré. Q.E.D.

En particulier, les projections pr; : [];c; Xi — X; sont surjectives lorsque
tous les ensembles X; sont non vides.

Terminons ce paragraphe par une remarque concernant les applications 2 va-
leurs dans un produit d’ensembles. Soit (X;);esr une famille d’ensembles et f
une application définie dans un ensemble X et a valeurs dans 1’ensemble produit
[;c; Xi. L'application

fi=priof: X - X,
est appelée application composante d’indice i ; ces applications permettent de
construire une famille (f;);er d’applications de X dans X;. On définit ainsi une
application f — (f;)ier de F(X;[[;c; X:) dans [[,c; F(X; X;) ; cette applica-
tion est une bijection, dite canonique, vu que
f(z) = (fi(z))ser pour tout = € X.

Dans la pratique, on identifie au moyen de cette bijection les ensembles
F(X;T1ier Xo) et [1ier F(X; X5), ce qui permet d’écrire f = (f;)ier.
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B — Ensembles ordonnés

Relation d’ordre

Sur un ensemble X, une relation R(z,y) est appelée une relation d’ordre si elle
est réflexive, antisymétrique et transitive, soit

(Vz € X)R(z,z),

(Vz € X)(Vy € X)((R(z,y) et R(y,z)) = = =1y),

(Vz € X)(Vy € X)(Vz € X)((R(z,y) et R(y,2)) = R(z,z)).
On dit alors que X est un ensemble ordonné par la relation R ; une telle relation
sera notée simplement x < y ou y > x et se lit «x est inférieur a y» ou «zx
est plus petit que y» ou «y est supérieur & z» ou encore «y est plus grand que
x». Pour éviter d’éventuelles confusions, il est parfois nécessaire de préciser la
relation d’ordre ; nous utiliserons alors des notations de la forme z < y (mod. R),

etc. Larelation (z < y etz # y) sera notée £ < y ou y > et se lit «x est stricte-
ment inférieur a y», etc. Signalons la propriété évidente

<y e (z<youz=y).
La relation z < y est appelée une relation d’ordre strict ; cette relation S(z,y)
vérifie

(Vz € X)(Vy € X)((S(z,y) = = # ),

(Vz € X)(Vy € X)(Vz € X)((S(z,y) et S(y, 2)) = S(z, 2)).
Réciproquement, une relation .S possédant ces propriétés est la relation d’ordre
strict associée 2 la relation d’ordre (S(z,y) ou z = y).

Soient x et y deux éléments de X,siona (z < youy < z),onditquex ety
sont comparables. L’ensemble X est alors dit totalement ordonné si deux éléments
quelconques de X sont comparables ; on dit aussi que la relation d’ordre est une
relation d’ordre total. Lorsqu’il est utile de préciser que 1’ordre n’est pas total, on
parle de relation d’ordre partiel et d’ensemble partiellement ordonné.

Etant donné une partie A d’un ensemble ordonné X, la relation

(xreAetyec Aetz <y)
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est une relation d’ordre sur A ; I’ordre ainsi défini sur A est dit induit par I’ordre
de X. Notons qu’un ordre total sur X induit un ordre total sur toute partie de X .

Exemple 1.4.1 Sur I’ensemble vide X = @, il n’y a qu’un seul graphe, a savoir
la partie vide de X x X = 0 ; ce graphe définit une relation d’ordre total ; bien
entendu, on note ) cette relation d’ordre.

Considérons une famille (X;);e; d’ensembles ordonnés ; alors la relation
(Vi)(z € I = z; < y;) entre deux éléments £ = (z;)icr et y = (Yi)ier de
I’ensemble produit [],.; X; est une relation d’ordre sur cet ensemble, appelée
produit des relations d’ordre des ensembles facteurs X;. En particulier, considé-
rons I’ensemble F(X; Y) de toutes les applications définies sur un ensemble X et
a valeurs dans un ensemble ordonné Y ; étant donné que F(X;Y) = ]‘[ze x Yz
avec Y; = Y pour tout z € X, on peut munir cet ensemble de la relation d’ordre
produit correspondante : si f et g sont deux applications de X dans Y, cette rela-
tion f < g signifie simplement (Vz € X)(f(z) < g(z)).

Exemple 1.4.2 Soit X un ensemble. Sur I’ensemble P(X), larelation A C B est
une relation d’ordre (partiel dés que X admet deux éléments distincts) ; on dit que
P(X) est ordonné par inclusion. Nous aurons fréquemment 2 utiliser cette relation
d’ordre lorsque X est lui-méme un ensemble de parties. Plus précisément, on peut
ordonner P(P(X)) par inclusion : si X et Y sont des parties de P(X), c’est-a-
dire des ensembles de parties de X, la relation X C Y signifie par définition de
I'inclusion que (VA € P(X))(Ae X = A€ Y).

Revenons a I’étude des ensembles ordonnés.

Définition 1.4.1 Soit X un ensemble ordonné. Un élément a € X est appelé un
élément maximal (resp. minimal) de X si, pour tout x € X, x > a implique © = a
(resp. z < a implique T = a).

En d’autres termes, un élément ¢ € X est un élément maximal s’il n’existe
pas d’élément strictement plus grand. On notera que deux éléments maximaux
différents ne peuvent &tre comparables.

Un ensemble ordonné n’admet pas nécessairement d’élément maximal ou mi-
nimal et il peut également admettre plusieurs éléments maximaux ou minimaux.
Considérons par exemple ’ensemble P(X) — {0} ordonné par inclusion ; les élé-
ments minimaux sont les parties de X réduites a un seul élément et par suite, si
X est I’ensemble vide il n’y a pas d’élément minimal, si X est un ensemble a un
élément il y a un seul élément minimal 2 savoir X et si X admet au moins deux
éléments distincts il y a plusieurs éléments minimaux.

Définition 1.4.2 Soit X un ensemble ordonné. Un élément a € X est appelé un
plus grand élément de X (resp. plus petit élément de X ) si, pour tout x € X, on a
z < a(resp. z > a).

Si X admet un plus grand élément a, ce plus grand élément est évidemment
unique ; nous dirons donc que a est le plus grand élément de X ; on le note max X.
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Le plus petit élément, s’il existe, sera noté min X. Si A est une partie d’un en-
semble ordonné, on peut munir A de I’ordre induit et on peut donc parler du plus
grand et du plus petit élément de A lorsqu’ils existent : on les note évidemment
max A et min A.

Notons que si X admet un plus grand (resp. plus petit) élément a, alors a est

I’unique élément maximal (resp. minimal) de X. Remarquons également que dans
un ensemble totalement ordonné, les notions de plus grand élément et d’élément
maximal coincident et il en est évidemment de méme des notions de plus petit
élément et d’élément minimal.
Définition 1.4.3 Soit A une partie d’un ensemble ordonné X. On dit qu’un élé-
ment a € X est un majorant (resp. minorant) de A si, pour toutx € A,onaz < a
(resp. x > a). Si l’ensemble des majorants (resp. minorants) de A est non vide, on
dit que A est majorée (resp. minorée) et si cet ensemble admet un plus petit (resp.
plus grand) élément, cet élément est appelé la borne supérieure (resp. inférieure)
de A et on dit que A est bornée supérieurement (resp. inférieurement).

La borne supérieure (resp. inférieure) de A lorsqu’elle existe est unique en tant
que plus petit (resp. plus grand) élément ; nous la noterons sup x A (resp. infx A).
Par définition, la borne supérieure de A, lorsqu’elle existe, est le plus petit majo-
rant de A ; cette borne supérieure est donc un majorant de A ; elle n’appartient
pas nécessairement a A et il est d’ailleurs immédiat de vérifier que A est bornée
supérieurement et que sa borne supérieure appartient a A si, et seulement si, A
admet un plus grand élément auquel cas on asupy A = max A.

Si A est une partie non vide admettant une borne supérieure et une borne
inférieure, étant donné que, pour tout £ € A, infy A < < supy A, on a
infx A < supy A. Cette propriété est en général fausse lorsque A = 0 : en effet,
supy @ (resp. infx 0) existe si, et seulement si, X admet un plus petit élément
(resp. plus grand élément) auquel cas on a supy ) = min X et inf x ) = max X.

Rappelons la caractérisation d’une borne supérieure dans un ensemble totale-
ment ordonné (cette caractérisation est constamment utilisée sur R par exemple).
Proposition 1.4.1 Soit A une partie d’un ensemble totalement ordonné X, la
borne supérieure de A, si elle existe, est I’'unique élément a de X tel que
(14.1) {a est un majorant de A et pour tout x < a, il existe y € A tel

que z < y.

Considérons maintenant une application f : X — Y d’un ensemble X dans
un ensemble ordonné Y. Une telle application est dite majorée (resp. minorée)
si f(X) est majorée (resp. minorée) ; elle est dite bornée supérieurement (resp.
inférieurement) si f(X) est borné supérieurement (resp. inféricurement) et on pose

sup f(z) = sup f(X), inf f(z) = inf f(X);
lorsque f(X) admet un plus grand (resp. plus petit) élément, on dit que f atteint
sa borne supérieure (resp. inférieure) et on écrit
max f(z) = max f(X), mi f(z) = min f(X).
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Lorsque f est une famille (z;);c; d’éléments d’un ensemble ordonné X, on utilise
la méme terminologie et les mémes notations, soit sup;¢r Ts, infie; 2;, max;e s z;
et mingey ;.

Lorsqu’on doit itérer I’opération borne supérieure, le résultat suivant est trés
utile

Proposition 1.4.2 Soit (A;)icr une famille de parties bornées supérieurement
dans un ensemble ordonné X. Alors, 'ensemble A = Uie 1 A; est borné supé-
rieurement si, et seulement si, la famille (sup x A;):c1 est bornée supérieurement,
auquel cas on a

(1.4.2) sup A = supsup A;.
X iel X

Preuve Montrons que I’ensemble des majorants de A est égal & ’ensemble des
majorants de la famille (sup x A;);ec;. Or ce dernier ensemble est égal 4 I’ensemble
des z € X tels que x > supy A; pour tout ¢ € I, c’est-a-dire a ’ensemble des
x € X qui majorent A; pour tout ¢ € I et ceci signifie précisément que x majore
A Q.E.D.

Corollaire 1.4.3 Soit f : X — Y une application définie dans un ensemble X et
a valeurs dans un ensemble ordonnéY et soit (A;)ic1 une famille de parties de X
de réunion A. On suppose que la borne supérieure sup, 4. f(x) existe pour tout
i € L. Alors, sup,¢ 4 f(x) existe si, et seulement si, Sup;c 1 SUp,c 4. f(x) existe,
auquel cas

(1.43) sup f(z) = sup sup f(z).
T€EA i€l z€A;

Preuve On applique la proposition 1.4.2 & la famille de parties (f(A;))ics en
remarquant que f(A) = U, f(4i). Q.E.D.
Corollaire 1.4.4 Soit f : X x Y — Z une application & valeurs dans
un ensemble ordonné Z telle que sup,c x f(x,y) existe pour tout y € Y. Alors,
SUP(z y)exxy f(@,Y) existe si, et seulement si, sup,cy sup,cx f(z,y) existe,
auquel cas

(1.4.4) sup  f(z,y) = sup sup f(z,y).
(z,y)EXXY YyeEY z€X

Preuve On remarque que X x Y = UyGY(X x {y}) et on applique le corollaire
1.4.3 en substituant 3 X I’ensemble X x Y et a la famille (A4;);c; la famille

(X x {y}yey- QED.
On a évidemment des résultats semblables pour les bornes inférieures.

Le lemme de Zorn

Un ensemble ordonné n’admet pas nécessairement d’élément maximal. Nous nous
proposons de donner dans ce paragraphe une condition suffisante d’existence d’él¢-
ments maximaux ; pour exprimer cette condition simplement introduisons la défi-
nition suivante.
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Définition 1.5.1 Un ensemble ordonné X est dit inductif si toute partie totalement
ordonnée de X est majorée.

La partie vide de X est une partie totalement ordonnée qui est majorée si,
et seulement si, X est non vide ; un ensemble inductif est donc non vide. Dans
la pratique, pour démontrer qu’un ensemble ordonné est inductif, il est vivement
conseillé de vérifier avant toutes choses que I’ensemble est non vide.

Tout ensemble ordonné admettant un plus grand élément est évidemment in-
ductif. On notera qu’un ensemble totalement ordonné est inductif si, et seulement
si, il admet un plus grand élément.

Nous nous proposons de démontrer le

Théoréme 1.5.1 Lemme de Zorn Tour ensemble ordonné inductif admet un élé-
ment maximal.

Dans la pratique, on utilise le lemme de Zorn sous la forme suivante

Corollaire 1.5.2 Soit X un ensemble inductif, alors pour tout a € X, il existe un
élément maximal m > a.
Preuve Considérons I’ensemble Y = {z € X ; z > a} ; muni de ’ordre induit
par celui de X, Y est alors un ensemble inductif : en effet, soit A une partie to-
talement ordonnée de Y, alors A est une partie totalement ordonnée de X, donc
majorée dans X, donc majorée dans Y d’aprés la définition de Y. Le lemme de
Zorn montre que Y admet un élément maximal m € Y ; la définition de Y montre
que m est également un élément maximal de X etonam > avuquem € Y.
Q.E.D.

Avant de donner la démonstration du lemme de Zorn, il est nécessaire d’intro-
duire les notions qui suivent.

Définition 1.5.2 Un ensemble ordonnné X est dit bien ordonné si toute partie non
vide de X admet un plus petit élément ; on dit alors que la relation d’ordre est une
relation de bon ordre.

On notera que tout ensemble bien ordonné est totalement ordonné, toute par-
tie 2 deux éléments admettant un plus petit élément. Notons également que toute
partie d’un ensemble bien ordonné est bien ordonnée.

Exemple 1.5.1 Sur ’ensemble vide, la relation d’ordre () (exemple 1.4.1) est une
relation de bon ordre.

Exercice 1.5.1 Principe de récurrence transfinie Soit R(z) une relation sur un ensemble bien
ordonné X telle que, pour tout z € X, on ait

(Vy € X)(y < £ => R(y)) => R(x)(hypothese de récurrence).
Montrer alors que la relation R(zx) est vraie quel que soit z € X [considérer I’ensemble
A = {z € X; non R(z)}].
Définition 1.5.3 Dans un ensemble ordonné X, une partie S de X est appelée un

segment si
(Ve e S)(Vye X)(y<z=>y€SI).
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Dans un ensemble ordonné X, tout intervalle de la forme
| z[={ye X; y<z}
est un segment que nous noterons .S;. Si X est totalement ordonné, on observera
que (Sz = Sp» = x = z’). Réciproquement, on a le

Lemme 1.5.3 Dans un ensemble bien ordonné X, tout segment S # X s’écrit
d’une maniére unique Sy et on a x = min(X — S).

Preuve Notons que z est bien défini, X — S étant non vide. Soit y € S, c’est-
a-dire y < z, alors y € S d’apres la définition de z et ceci prouve que S, C S.
D’autre part, soit y € S, alors y < z, c’est-a-dire y € S; : en effet, on ne peut
avoir y > x car, S étant un segment, ceci impliquerait x € S. Ceci prouve que
S=.85;. Q.E.D.
Examinons ensuite comment on peut recoller des relations d’ordre.

Proposition 1.5.4 Soit (X;)icy une famille d’ensembles de réunion X et soit R;
une relation d’ordre sur X;. On suppose que

{pourtouti €el,jel,ona(X;C XjouX; C X;)etR;=R;
(1.5.1)

sur X; N X;.

Alors, il existe une unique relation d’ordre R sur X telle que R = R; sur X; pour
tout i € I. Si les R; sont des relations d’ordre total, R est une relation d’ordre
total. Si les R; sont des relations de bon ordre, R est une relation de bon ordre si
on suppose en outre que, pour tout i € I, j € I, X; est un segment de X; ou X
est un segment de X;; X; est alors un segment de X.

Preuve 1. Soient = et y deux éléments de X ; d’apres (1.5.1), il existe ¢ € I tel que
x et y appartiennent tous deux a X ; s’il existe une relation d’ordre R vérifiant
les exigences voulues, on a nécessairement R(z,y) si, et seulement si, R;(z,y).
On définit bien ainsi une relation binaire R sur X, car cette définition ne dépend
pas du choix de I’indice i € I tel que z,y € X; d’aprés I’hypothése (1.5.1). Cette
hypothese prouve en outre que R est une relation d’ordre (total si les R; sont des
relations d’ordre total), car un nombre fini d’éléments de X appartiennent a un
méme X;.

2. Supposons que les relations R; soient des relations de bon ordre et soit A
une partie non vide de X. Il existe i € I tel que AN X; # 0 ; soit a le plus petit
élément de AN X; dans X;. Montrons que a est le plus petit élément de A dans X
Raisonnons par I’absurde : soit z € A tel que < a (mod. R) ; il existe j € I tel
quez € Xjet X; C X; ;onaalors z < a (mod. R;), d’ol z € X; vu que X; est
un segment de X; ; il en résulte que z < a (mod. R;) ce qui contredit la définition
de a. Ceci prouve que R est une relation de bon ordre. Vérifions enfin que X; est
un segment de X . Soitz € X; ety € X tel que y < x (mod. R) ; il existe j € I
telquey € X; et X; C X; ;onay <z (mod. R;) d’od y € X; vu que X; estun
segment de X;, ce qui prouve le résultat voulu. Q.E.D.
Preuve du théoréme 1.5.1 Soit A une partie de X, un majorant m de A est appelé
un majorant strict si m ¢ A ; on note A I’ensemble des parties de X admettant un
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majorant strict. D’aprés I’axiome de choix, il existe une fonction f : A — X tel
que, pour tout A € A, f(A) soit un majorant strict de A. On désigne alors par &
’ensemble des couples (4, R) vérifiant

(152) {A € P(X), R est un bon ordre sur A et tout segment S de A,
o S # A, appartienta A et S = S, od z = f(S).
Précisons que dans les conditions précédentes S est un segment de A pour la rela-
tion de bon ordre R ; d’aprés le lemme 1.5.3, on sait alors que S est de la forme
Sz ; les conditions (1.5.2) exigent que S € A et que z = f(S).
Considérons alors deux éléments (A;, R;), ¢ = 1,2, de €. Si x € A;, notons
8¢ le segment {y € A;; y < z (mod. R;)} et posons

(15.3) S={r€AiNAy; Sl =52etR, = Rysur Si}.

1. Montrons que S est un segment de (A4;, R;). Soitz € S,y € A,y <z
(mod. R;).Onay € S, d’od y € S2; ceci prouve que y € A; N Aj et que
8i C Si,d’ob S} = S2et Ry = Ry sur Si, soity € S.

2. Montrons que R; = Ry sur S. Soitz,y € S tel que z < y (mod. R;), alors
TE S;, d’ouz € S,f, c’est-a-dire £ < y (mod. R2). On vérifie de méme que z < y
(mod. Ry) implique < y (mod. R;).

3. Montrons que S = A; ou S = A,. Raisonnons par 1’absurde, supposons
S # A;; dapreés 1. et (1.5.2), S = St avec = f(S) ; d’aprés 2. on en déduit
quez € S,d’od z € SL ce qui est absurde.

Soit ((Ai, Ri))ier I'ensemble de tous les éléments de € ; considérons I’en-
semble A = J,c; Ai. D’aprés 1.,2.,3. et la proposition 1.5.4, il existe une unique
relation de bon ordre R sur A telle que R = R; sur A;.

4. Montrons que (A, R) € €. Soit S un segment de 4, S # A. D’aprés le
lemme 1.5.3, S = S,. ll existe i € I tel que € A; ; montrons que S = S : ceci
prouvera que .S est un segment de A; tel que S # A;,donc S € Aetz = f(S).
Soit y € S, c’est-a-dire y < = (mod. R), il existe j € I tel que y € A; et
A; C Aj,d’ody € A; vu que A; est un segment de A; et ceci prouve que y € S,
d’od S C S% ce qui permet de conclure, I’inclusion opposée étant triviale.

5. Montrons que A n’admet pas de majorant strict. Sinon A € A, posons alors
m = f(A) ; sur '’ensemble A’ = A U {m}, on définit une relation de bon ordre
R’ enposant R’ = Rsur A etz < m (mod. R') pour tout z € A. Il est alors clair
que (A', R') € &, ce qui est absurde d’apres la définition de A vu que m & A.

6. L'ordre R sur A coincide avec I’ordre induit par I’ordre Ro de X. En effet,
soit z,y € A tel que y < z (mod. R), c’est-a-dire y € S, (segment de (4, R)) ;
d’apres (1.5.2),onax = f(S;),d’od y < z (mod. Ry) d’apres la définition de f.
L’ordre R étant total, ceci suffit pour conclure.

7. L’ensemble X étant inductif et A étant totalement ordonné, A est majoré ;
soit m un majorant de A. Montrons que m est un élément maximal de X . En effet,
tout > m est un majorant strict de A ce qui est absurde d’aprés 5. ; ceci achéve
la démonstration du lemme de Zorn. Q.E.D.
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Remarque 1.5.1 Comme le montre le dernier point de la démonstration, on peut
améliorer I’énoncé du lemme de Zorn : tout ensemble ordonné tel que toute par-
tie bien ordonnée soit majorée admet un élément maximal. Dans la pratique on
n’utilise que I’énoncé 1.5.1.

Exercice 1.5.2 Théoréme de Krull Soit A un anneau commutatif admettant un élément unité et soit
M I’ensemble des idéaux de A ditférents de A. Un élément maximal de I’ensemble M ordonné par
inclusion est appelé un idéal maximal. Montrer que tout idéal différent de A est contenu dans un idéal
maximal.

Notons (Z,) I'énoncé que constitue le lemme de Zorn ; nous avons en fait dé-
montré que dans la théorie des ensembles (ZF'), ’axiome de choix (C) implique
(Z,)- Nous allons démontrer que ces deux énoncés sont en fait équivalents. Plus
précisément, notons (Z.) I’énoncé suivant, appelé théoréme de Zermelo.

(Ze) Tout ensemble peut &tre bien ordonné.

On a alors le

Théoréme 1.5.5 Dans la théorie des ensembles (ZF), les énoncés (C), (Z,) et
(Ze) sont équivalents.

Preuve Comme indiqué ci-dessus, nous savons déja que (C) = (Z,). Il est d’autre
part facile de vérifier que (Z.) = (C) : en effet, considérons une application
f: X — P) — {0} ; munissons Y d’une relation de bon ordre et posons
g(z) = min f(z) ; on obtient ainsi une fonction de choix associée a f.

Il s’agit donc de démontrer que (Z,) = (Z.). A cet effet, considérons I’en-
semble € des couples (A, R) o A € P(X) et R est une relation de bon ordre sur
A. Cet ensemble € est non vide vu que (0, 0) € €. On définit une relation d’ordre
sur € en notant (4, R) < (B, S) larelation
(1.5.4) A C B, R = Ssur Aet Aestun segment de B.

Il est clair qu’on définit ainsi une relation d’ordre sur €.

1. Montrons que & est inductif. Soit ((A;, R;)):cr une famille totalement or-
donnée de & ; la proposition 1.5.4 montre que, sur A = |J,c; A;, il existe une
unique relation de bon ordre R telle que R = R; sur A; ; on obtient ainsi un
majorant (A, R) de la famille, car A; est un segment de A toujours d’aprés la
proposition 1.5.4. Ceci prouve que € est inductif.

2. Considérons alors un élément maximal (A, R) de €. On a nécessairement
A = X, ce qui prouve (Z.) : en effet, si A # X soita € X — A ; on construit une
relation de bon ordre R’ sur A’ = AU {a} en posant R’ = R sur A etz < a pour
tout x € A ; A est un segment de A’ d’ot (A4, R) < (A’, R'), ce qui contredit le
fait que (A, R) est un élément maximal. QE.D.
Exercice 1.5.3 On dit que deux ensembles ordonnés X et Y sont isomorphes s’il existe une bijection
f + X — Y, croissante ainsi que la bijection réciproque, c’est-a-dire telle que

Vz € X,Vy €Y,z <y<+= f(z) < fy)
1. Soit X un ensemble ordonné ; pour tout z € X, on pose T = {y € X;y < z}eton

note Y C P(X) I'ensemble |, x {T:}. L’ensemble Y étant ordonné par inclusion, montrer que
I’application & — T est un isomorphisme de X sur Y.
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2. En déduire que, dans la théorie des ensembles (Z F'), le lemme de Zorn est équivalent 2
(M) pour tout ensemble X, tout ensemble X de parties de X ordonné par inclusion
qui est inductif admet un élément maximal.

Exercice 1.5.4 Lemme de Tukey Soit X un ensemble non vide de parties d’un ensemble X vérifiant
la propriété suivante :

une partie A de X appartient a X si, et seulement si, toute partie finie de A appartient 2 X.

Montrer que I’ensemble X ordonné par inclusion admet un élément maximal [utiliser le lemme de
Zorn].
Exercice 1.5.5 Dans la théorie des ensembles (ZF'), montrer que le lemme de Tukey (exercice
précédent) implique I’axiome de choix en procédant de la fagon suivante.
Soient X, Y des ensembles et f : X — P(Y) — {0} une application. On considere 1’ensemble
X des parties I" C P(X x Y') vérifiant la propriété
il existe A € P(X) tel que I" soit le graphe d’une application g : A — Y telle
que g(z) € f(x) pour tout z € A.
L’ensemble X étant ordonné par inclusion, montrer que tout élément maximal de X est le graphe

d’une fonction de choix associée a f et conclure avec le lemme de Tukey.

Applications aux espaces vectoriels

Nous considérons dans ce paragraphe des espaces vectoriels sur un corps K sur
lequel aucune hypothése particuliére n’est nécessaire pour ce qui va suivre. Les
propriétés élémentaires des espaces vectoriels sont supposées connues.

Si ()i est une famille finie d’éléments d’un espace vectoriel E, la somme
des éléments de cette famille est notée ) ;. ; x;. On convient que ) ;o z; = 0
afin d’avoir la formule Ziel. T + Z,ie,_z Ty = Ziehuh x; dés que I; et I, sont
des ensembles finis disjoints. .

Si (z;)ier est une famille finie d’un espace vectoriel E et si (\;);er est une
famille de scalaires (\; € K), I’élément de £ © = Eie 7 A est appelé une
combinaison linéaire (finie) de la famille (x;);e;.

Si M est une partie de F, ’ensemble de toutes les combinaisons linéaires
d’éléments de M, c’est-a-dire I’ensemble des >, ; Aix; ol I est fini, \; € Ket
x; € M, estun sous-espace vectoriel F'de E contenant M ; il est clair que F estle
plus petit (pour I’inclusion) sous-espace vectoriel contenant M ; on I’appelle pour
cette raison le sous-espace vectoriel engendré par M et on dit que M engendre F'.

On dit qu’une partie L d’un espace vectoriel est une partie libre si, pour toute
famille finie (z;);cs d’éléments distincts de L et toute famille de scalaires (\;)ic1,
larelation ), ; Aiz; = 0implique A; = O pour tout i € I. On dit que les éléments
d’une partie libre sont linéairement indépendants.

Une partie L d’un espace vectoriel, qui n’est pas une partie libre, est dite liée ;
ceci signifie qu’il existe une famille finie (x;);c; d’éléments distincts de L et
une famille (\;);c; de scalaires non tous nuls (ceci implique I # () tels que
Y ier Aii = 0 ; une telle relation est appelée une relation de liaison et on dit que
les éléments de la famille (z;);c s sont linéairement dépendants.
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Nous pouvons poser la définition suivante.

Définition 1.6.1 On appelle base d’un espace vectoriel E toute partie libre qui
engendre E.

Si B est une base de E, tout élément x de E s’écrit comme une combinaison
linéaire d’éléments de B ; cette écriture est unique au sens suivant : soit (2;)icr
la famille de tous les éléments de B, il existe alors une partie finie et une seule J
de I et une famille de scalaires et une seule (\;);cJ tous différents de O tels que
T = Zie J Aiti. La vérification de cette propriété est immédiate, une base étant
une partie libre.

Nous nous proposons de démontrer que tout espace vectoriel non réduit a 0
admet une base. Plus précisément, on a le

Théoréme 1.6.1 Soient E un espace vectoriel non réduit a 0 et L une partie libre
de E. Alors, il existe une base de E qui contient L.

Ce théoreme résulte tres facilement du lemme de Zorn, compte tenu de la pro-
position suivante.

Proposition 1.6.2 Soient E un espace vectoriel, L I’ensemble des parties libres
de E ordonné par inclusion et soit B une partie de E. Les propriétés suivantes
sont équivalentes

1. B est une base de E.

2. B est une partie libre maximale, c’est-a-dire un élément maximal de L.

Preuve Soit B une base de E, alors B est une partie libre de F et, pour tout
z € E — B, BU {z} n’est pas une partie libre ; il en résulte que B est une partie
libre maximale.

Réciproquement, soit B une partie libre maximale ; montrons que B engendre
E. Soitz € E — B, alors B U {z} n’est pas une partie libre ; il existe donc une
famille finie (z;)ics d’éléments distincts de B, une famille de scalaires (\;)ier
et un scalaire A tels que Az + Y, ; Az = 0 ; de plus, on peut supposer que A
et les A; ne sont pas tous nuls. Il en résulte que A n’est pas nul (sinon on aurait
une relation de liaison dans B) et on en déduit que = = — Y, A" Az, ce qui
prouve le résultat désiré. Q.E.D.
Preuve du théoréme 1.6.1 Montrons que ’ensemble £ des parties libres de E
ordonné par inclusion est inductif : la proposition qui précede et le corollaire
1.5.2 permettent de conclure. Notons d’abord que £ est non vide car, pour tout
z € E — {0}, la partie {z} est une partie libre de E. Considérons une famille
(La)aca totalement ordonnée de parties libres, posons L = UO‘E 4 Lo et mon-
trons que L est une partie libre ; ceci prouvera que L est un majorant de la famille
(La)aca- Supposons qu’il existe une relation de liaison dans L, c’est a dire une
famille finie (z;)ics d’éléments distincts de L et une famille (\;);cr de scalaires
non tous nuls tels que ) ;. ; Ayz; = 0. Or I étant fini et la famille (Ly)oe 4 étant
totalement ordonnée par inclusion, il existe a € A tel que z; € L, pour tout
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i € I ; il en résulte que la relation Zie 1 Aiz; = 0 est une relation de liaison dans
L, ce qui est absurde vu que c’est une partie libre. Q.E.D.

Remarque 1.6.1 Soit E un espace vectoriel non réduit a 0, alors toute partie M de
E qui engendre E contient une base de E. Grace 4 des raisonnements analogues
a ceux qui précedent, on vérifie en effet que I’ensemble £’ des parties libres de E
contenues dans M est inductif et que tout élément maximal de £’ est une base de
E.

Donnons une application du théoréme 1.6.1 concernant la notion de supplé-
mentaire. Etant donné un espace vectoriel E et deux sous-espaces vectoriels E et
E5 de E, on dit que E est somme directe de E et Ey, et on écrit E = E; & E si
tout z s’écrit d’une maniere et d’une seule sous la forme
(1.6.1) T =21+ T2, obx; € E;.
On dit alors que E; et E» sont des supplémentaires algébriques. On notera que
cette définition est équivalente a la suivante : E; N Ey = {0} et E; U E; en-
gendre E. L'unicité de la décomposition (1.6.1) permet de définir des applications
pi : E = E;, i = 1,2), telles que p;(z) = z; ; il est clair que p; est une ap-
plication linéaire surjective ; on I’appelle le projecteur de E sur E; associé a la
décomposition de E en somme directe E = E; & E».

Nous allons prouver la

Proposition 1.6.3 Dans un espace vectoriel E, tout sous-espace vectoriel E; de
E admet un supplémentaire algébrique.

Preuve On peut supposer E; # {0}, vu que E est un supplémentaire du sous-
espace vectoriel {0}. D’aprés le théoréme 1.6.1, I’espace vectoriel E; admet une
base B; qui constitue une partie libre de E' ; d’aprés le théoréme 1.6.1, il existe
donc une base B de F telle que B D By. Si B = B, alors E = E; et le sous-
espace vectoriel {0} est un supplémentaire de E;. Si B # B;, posons
B, = B — Bj et soit Ey le sous-espace vectoriel engendré par Bs. Il est clair
que E> est un supplémentaire de Ey. Q.E.D.
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C — Ensembles infinis

L’axiome de I’infini

Pour construire 1’ensemble des entiers naturels, il est nécessaire d’introduire un
nouvel axiome dans la théorie des ensembles, appel€ axiome de I’infini qui s’énonce
de la fagon suivante.

(ZFy) I existe un ensemble A tel que @ € A et
6 (VX)(X € A= XU{X} € A).

Si X est un élément de A, X’ = X U {X} est un élément de A appelé le
successeur de X ; on noteraque X € X' et X C X’ : X est a la fois un élément
et une partie de X’. Notons également que I’ensemble A admet pour éléments 0,
0 =0u0{0} = {0}, {0} = {0} U {{0}} = {0,{0}}, etc.

L’axiome de I’infini permet de définir I’ensemble des entiers naturels.

Théoréme 1.7.1 1l existe un ensemble et un seul N tel que
1.0 eN
2. (VX)X eN= XU{X}€eN)
3. Tout ensemble vérifiant 1. et 2. contient N.

Preuve D’aprés I’axiome de I’infini, il existe un ensemble A vérifiant les condi-
tions 1. et 2. Considérons alors I’ensemble B des parties B de A vérifiant 1. et 2. ;
posons N = [\ gcg B. Cet ensemble posséde manifestement les propriétés 1. et
2. ; de plus, si Y est un ensemble vérifiant 1.et 2., alors Y N A vérifie 1. et 2., d’od
Y NA € Betparconséquent N C YN A ce qui prouve que N C Y : I’ensemble N
posseéde donc la propriété 3. Quant a la propriété d’ unicité, elle résulte évidemment
de 3. Q.ED.

Les éléments de N sont appelés des entiers naturels et N s’appelle 1’ensemble
des entiers naturels. On utilise les notations § = 0, {0} = 1, etc ; si n est un entier
naturel, le successeur n’ de n est noté n + 1.

La définition de N implique immédiatement la
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Proposition 1.7.2 Principe de démonstration par récurrence Soit R(n) une re-
lation telle que R(0) et (Vn € N)(R(n) = R(n + 1)), alors (Yn € N)R(n).
Preuve Posons A = {n € N; R(n)} ; les hypotheses signifient que A vérifie les
propriétés 1. et 2. du théoréme 1.7.1, donc contient N et par conséquent A = N.
Q.E.D.

Ce principe de démonstration est a la base d’un trés grand nombre de démonstra-
tions en arithmétique ; dans la pratique, on démontre d’abord R(0), puis R(n+1)
en supposant R(n) vrai (hypothése de récurrence). En particulier, on peut faire un
exposé systématique des propriétés élémentaires de 1’ensemble des entiers natu-
rels ; on peut par exemple démontrer que la relation (m € n oum = n) est une
relation de bon ordre sur N, bien entendu il s’agit de la relation d’ordre usuelle !

Un ensemble X est dit fini s’il existe un entier n € N et une bijection de X
sur I'intervalle |0, n] ; cet entier n, qui est unique, est appelé le cardinal de X : on
écrit Card X = n. Par exemple, Card X = O signifie X = {). Les propriétés des
ensembles finis s’établissent aisément en utilisant le principe de démonstration
par récurrence ; nous ne reviendrons pas sur ces questions, que nous supposons
acquises.

Ensembles équipotents

Comme nous venons de le dire 1’étude des ensembles finis est élémentaire. La
situation est bien différente quand on étudie des ensembles infinis ; certains théo-
rémes de base sont difficiles a obtenir et leurs démonstrations nécessitent parfois
le lemme de Zorn.
Etant donné deux ensembles X et Y, nous dirons que X est équipotent 2 Y’
s’il existe une bijection de X sur Y. Cette relation sera notée
(1.8.1) Card X =Card Y.
La relation «X est équipotent a Y'» étant évidemment une relation d’équivalence
dans la collection de tous les ensembles, on a les propriétés
Card X = Card X,
(Card X =Card Y et Card Y = Card Z) = (Card X = Card Z),
(Card X =CardY) & (Card Y = Card X).
La relation «il existe une injection de X dans Y'» sera notée
(1.8.2) Card X <CardY ouCardY > Card X.

Remarque 1.8.1 Lorsque X est un ensemble fini, nous avons défini le terme
Card X ; les définitions qui ont été données sont conformes & (1.8.1) et (1.8.2).
Lorsque X est un ensemble infini, nous ne définirons pas le cardinal de X en tant
qu’ensemble bien que ce soit possible (modulo un axiome supplémentaire) ; pour
la suite cela ne nous serait d’aucune utilité. Nous ne nous intéresserons qu’aux
deux seules relations (1.8.1) et (1.8.2) et on ne cherchera pas a donner une signifi-
cation aux termes Card X et Card Y pris isolément.
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Nous allons donner les propriétés essentielles de la relation (1.8.2) ; montrons
que cette relation jouit de toutes les propriétés d’une relation d’ordre total. En
considérant 1’application identique de X, on constate que Card X < Card X ; la
composée de deux injections étant une injection, on a évidemment

(Card X < CardY etCard Y < Card Z) = (Card X < Card Z).
Pour démontrer I’antisymétrie, c’est-a-dire
(Card X <CardY etCardY < Card X) = (Card X = CardY),

nous utiliserons le lemme suivant
Lemme 1.8.1 Soit X un ensemble ordonné tel que toute partie non vide admette
une borne inférieure. Soit f : X — X une application telle que

1. il existe x € X tel que f(z) < z,

2. f est croissante, c’est-a-dire

(Vz € X)(Vy € X)(z <y = f(z) < f(v)).

Alors, f admet un point fixe : il existe a € X tel que f(a) = a.
Preuve L'ensemble A = {z € X ; f(z) < z} est non vide d’apres 1., donc A
admet une borne inférieure a. Pour tout x € A, on a donc a < z d’ou
f(a) < f(z) < = d’aprés 2. et la définition de A ; il en résulte que f(a) < a. On
en déduit f(f(a)) < f(a) d’apres 2. et par suite f(a) € A, d’od a < f(a). Ceci
prouve que f(a) = a. Q.E.D.
Théoréme 1.8.2 Bernstein Soient X et Y deux ensembles. S’il existe une injec-
tion f de X dans 'Y et une injection g de Y dans X, alors il existe une bijection
de X surY.

Preuve Nous allons démontrer qu’il existe une partie A de X telle que, en posant
B = f(A),onait g(Y — B) = X — A ceci permet de construire une bijection de
X sur Y et démontre le théoreme. Or la condition précédente s’écrit F/(A) = A
ol F: P(X) — P(X) est I'application
Ars X - g(Y - f(A)).
On peut alors appliquer le lemme 1.8.1 en prenant pour ensemble X 1’ensemble
P(X) ordonné par inclusion et pour application f I’application F’ qui est effective-
ment croissante ; I’hypothese 1. est vérifiée car P(X) admet un plus grand élément.
Q.E.D.
Exercice 1.8.1 Voici une autre démonstration du théoréme de Bernstein. On peut se ramener a la
situation suivante : X est un ensemble, Y est une partie de X et f : X — Y une injection. On pose
A=Y - f(X)et B =Unryf™(A)ob fO(A) = Aet fr+1(A) = f(f*(A)) pourn > 0.
Montrer que I’application g : X — Y définie par

glz) =zsiz € Betg(z) = f(z)size X - B
est une bijection [noter que B = A U f(B)] et conclure.

Le théoréme de Bernstein est non seulement un résultat théorique important,
mais également un outil extrémement utile pour démontrer que deux ensembles
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sont équipotents ; dans la pratique, il est évidemment plus facile de construire des
injections que des bijections : nous en verrons des exemples ultérieurement. Dans
le méme ordre d’idées, voici un résultat utile.

Proposition 1.8.3 Soient X et Y deux ensenibles non vides. Les propriétés sui-
vantes sont équivalentes.

1. 1l existe une injection de X dans'Y .

2. ll existe une surjectiondeY sur X.

Preuve Montrons que 1. implique 2. Soit f une injection de X dans Y ; cette ap-
plication est une bijection de X sur f(X) ; notons g : f(X) — X la bijection
réciproque ; on construit alors une surjection h de Y sur X en choisissant un élé-
ment a de X et en posant h(y) = g(y) siy € f(X)eth(y) =asiy €Y — f(X).
Réciproquement, soit f : Y — X une surjectionde Y sur X. Pour toutz € X,
I’ensemble f~1({z}) est non vide. D’aprés I’axiome de choix, il existe donc une
application g : X — Y telle que g(z) € f~!({z}), pour tout z € X ; cette
application est injective vu que f~({z}) et f~1({z'}) sont disjoints si z et z’
sont deux éléments distincts de X . Q.E.D.
Montrons enfin que la relation (1.8.2) est une relation d’ordre total.

Théoréme 1.8.4 Etant donné deux ensembles X etY, il existe soit une injection
de X dans Y, soit une injection de 'Y dans X.

Preuve Considérons I’ensemble € des triplets (A, B, f) ol A est une partie de X,
B une partie de Y et f une bijection de A sur B. Munissons cet ensemble € de la
relation d’ordre suivante : soient (A, B, f) et (A’, B, f') deux éléments de € ; la
relation (A, B, f) < (A’, B, f') signifiera par définition que A C A/, B C B’ et
/" prolonge f. Cette relation est bien une relation d’ordre sur £ ; montrons que €
est inductif. Notons d’abord que & est non vide vu que (0,0, 0) € €. En outre, soit
((Aj, B, fi))ies une famille totalement ordonnée de & ; posons A = Uier Ais
B = |J;¢; B: et définissons une bijection de A sur B de la fagon suivante. Pour
tout z € A, il existe i € I tel que € A;, posons alors f(z) = fi(z). On définit
bien ainsi une application de A dans B ; en effet, f;(z) est indépendant du choix
de I’indice i € I vérifiantz € A; :siz € A; N Aj, onaoubien A; C Aj, ou bien
Aj C A; et, vu la définition de la relation d’ordre, on a donc fi(2) = f;(z). On
vérifie aisément que f est une bijection ; on obtient ainsi un majorant de la famille
((As, By, fi))ier- Ceci prouve que € est inductif. D’aprés le lemme de Zorn, €
admet un élément maximal, soit (A4, B, f).

Montrons que A = X ou B = Y. Raisonnons par I’absurde ; supposons
A# XetB # Y. Alors, ilexistea € A—Xetb € Y — B ; considé-
rons le triplet (A U {a}, B U {b},g) od g|A = f et g(a) = b ; il est clair que
g: AU{a} — B U{b} est une bijection et que le triplet construit est un majorant
strict de I’élément maximal, ce qui est absurde.

Nous avons donc A = X ou B =Y. Si A = X, f définit une injection de X
dans Y ;si B =Y, f~! définit une injection de Y dans X. Q.E.D.

Indiquons un dernier résultat dans la théorie des cardinaux.
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Théoréme 1.8.5 Cantor Pour tout ensemble X, on a
Card P(X) > Card X.

Preuve L'application z — {z} de X dans P(X) étant une injection, on a
Card X < Card P(X). Supposons qu’il existe une surjection f de X sur P(X).
Posons A = {z € X ; z & f(x)} ; d’apres la surjectivité de f, il existe a € X tel
que A = f(a). On a alors, soita € A, soita € A.Sia € A,onadonca ¢ f(a),
c’est-a-dire a ¢ A ce qui est contradictoire. Si a ¢ A, on adonc a € f(a), c’est-
a-dire a € A ce qui est également contradictoire. Ceci prouve qu’il n’existe pas de
surjection de X sur P(X) ; le théoréme est donc démontré. Q.ED.

Lorsque X est fini, P(X) est fini et, si Card X = n, on a Card P(X) = 2" ;
le théoreme de Cantor signifie donc dans ce cas particulier que 2" > n pour tout
entier n.

Remarque 1.8.2 L’ensemble P(X) est équipotent a ’ensemble de toutes les ap-
plications de X dans {0,1} : on établit en effet une bijection entre P(X) et
F(X;{0,1}) en associant a toute partie A la fonction, dite fonction caractéristique
de A, 14 : X — {0,1} définie par

11|A =1let llX—A =0.

Exercice 1.8.2 Soit X un ensemble, montrer qu’il existe une partie A C X tel que A ¢ X [raison-
ner par I’absurde et utiliser le théoréme de Cantor].

Exercice 1.8.3 Montrer qu’il n’existe pas d’ensemble X tel que tout ensemble X soit équipotent a
un ensemble A € X (cette propriété signifie que la collection des cardinaux n’est pas un ensemble)
[raisonner par I’absurde et considérer I’ensemble X = (J 4 Al

Ensembles infinis

On dit qu’un ensemble est infini s’il n’est pas fini. Il existe effectivement des en-
sembles infinis grace a I’axiome de I’infini : I’ensemble N est en effet infini (si N
était fini, soit Card N = n, I’inclusion [0,n] C N conduiraitan +1 < n!).

Voici une caractérisation trés simple des ensembles infinis.

Proposition 1.9.1 Un ensemble X est infini si, et seulement si, il existe une injec-
tion de N dans X, soit Card N < Card X.

Preuve 1. Montrons que X est infini si Card N < Card X. En effet, N étant
équipotent a une partie de X, si X était un ensemble fini, N serait un ensemble
fini.

2. Réciproquement, supposons X infini. D’apres 1I’axiome de choix, il existe
une fonction f : P(X) — {0} — X telle que f(A) € A pour tout A C X,
A # 0. Lensemble X étant infini, il est non vide : soit ag un élément de X ;
posons Ag = {ao} et

an = f(X — An-1), An = Ap—1U{an} pourn > 1.
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Un raisonnement par récurrence montre que les ensembles Ay, sont finis et que les
a,, sont bien définis. On construit ainsi une application n — a,, de N dans X qui
est évidemment une injection. Q.E.D.
Le cardinal de N est donc le plus petit cardinal infini. Un ensemble X est dit
dénombrable si Card X < CardN. Si Card X < Card N, X est fini d’apres ce
qui précéde, sinon Card X = Card N, auquel cas on dit que X est un ensemble
infini dénombrable.
Exercice 1.9.1 Montrer qu’un ensemble X est infini si, et seulement si, X est équipotent & une partie
de X distincte de X [condition nécessaire : si D = 52 ,{an} est une patic dénombrable de X,
construire une bijection de X sur X — {ao} ; condition suffisante : si f : X — A est une bijection
ol A € P(X), A# X,etsiag € X — A, utiliser la suite ap4+1 = f(an), n > 0].
Exercice 1.9.2 Montrer qu’un ensemble X est infini si, et seulement si, pour toute application
f : X — X, il existe une partic A de X non vide et différente de X telle que f(A) C A
[condition nécessaire : soit ap € X, on pose an+1 = f(an) pour n > 0, montrer que I’ensemble
A = U2, {an} possede les propriéiés voulues ; condition suffisante : si X est fini, construire une
application f : X — X telle que f(A) ¢ Apourtout A € P(X),A# Det A # X).
Les ensembles dénombrables sont importants en analyse ; en voici les proprié-
tés essentielles.
Proposition 1.9.2 Pour tout entier n > 1, N™ est équipotent a N.
Preuve Il suffit de vérifier que N? est équipotent 2 N, on raisonne ensuite par
récurrence. En effet, 'application f(p,q) = (p+q)(p+q+1)/2+4q, (p,q) € N,
est une bijection de N2 sur N. QED.

Exercice 1.9.3 Montrer que Q est infini dénombrable.

D’autres propriétés des ensembles dénombrables se déduiront des lemmes sui-
vants.
Lemme 1.9.3 Soient (X;)icr et (Yi)ier deux familles d’ensembles telles que
Card X; < CardY; pour tout i € I. Alors
Card || X < Card [ V.
i€l i€l
Preuve Il existe des injections f; : X; — Y; ; I’application
(@i)ier = (fi(2i))ier
est alors une injection de [],.; X; dans [],, Yi. Q.E.D.
Lemme 1.9.4 Soient X un ensemble et (X;);cy une famille d’ensembles telles
que Card I < Card X et Card X; < Card X pour tout i € I. Alors
Card | ) X; < Card (X x X).
i€l
Preuve Il existe des surjections f; : X — X, ; considérons I’application
fiIxX = Uier X définie par f(i,2) = f;(x) ; cette application est sur-
jective, d’od Card |J;c; Xi < Card (I x X) et on conclut avec le lemme 1.9.3.
QED.
Compte tenu de la proposition 1.9.2, on en déduit les propositions suivantes.



38 CHAPITRE 1 THEORIE DES ENSEMBLES

Proposition 1.9.5 Le produit d’une famille finie d’ensembles dénombrables est un
ensemble dénombrable.

Proposition 1.9.6 La réunion d’une famille dénombrable d’ensembles dénom-
brables est un ensemble dénombrable.

Le théorgme de Cantor 1.8.5 montre que le cardinal de P(N) est strictement supé-
rieur au cardinal de N. D’un ensemble équipotent & P(N), nous dirons qu’il a la
puissance du continu.

Proposition 1.9.7 Le produit d’une famille dénombrable non vide d’ensembles
ayant la puissance du continu est un ensemble ayant la puissance du continu.

Preuve Soit (X;);cs une telle famille ; les ensembles X; sont équipotents & P(N)
et on peut supposer I équipotent a N. L’ensemble [],.; X; est donc équipotent
a F(N; P(N)). Etant donné que P(N) est équipotent 3 F(N; {0,1}) d’apres la
remarque 1.8.2, il s’agit de montrer que F(N; F(N;{0,1})) a la puissance du
continu. Or, on établit une bijection entre cet ensemble et I’ensemble F(N?; {0, 1})
en associant a toute fonction f : n — f, de N dans F(N; {0,1}) I’application
(n,p) = fn(p) de N2 dans {0, 1}. On conclut avec la proposition 1.9.2. Q.E.D.
Compte tenu du lemme 1.9.4, on en déduit la

Proposition 1.9.8 La réunion d’une famille ayant la puissance du continu d’en-
sembles ayant la puissance du continu est un ensemble ayant la puissance du
continu.

Remarque 1.9.1 Hypothése du continu On peut se demander s’il existe des en-
sembles X tels que Card N < Card X < Card P(N). L’hypothése du continu
consiste a affirmer qu’il n’existe pas de tel ensemble, autrement dit que tout en-
semble infini non dénombrable a au moins la puissance du continu. Depuis les
travaux de K. Godel (1938) et P. Cohen (1963), on sait que I’hypothése du continu
est indécidable : il ne peut exister de démonstration de cette relation, ni de sa né-
gation dans la théorie des ensembles (ZF'). On peut donc adjoindre I’hypothése
du continu ou sa négation aux axiomes de la théorie des ensembles, si la théorie
des ensembles est non contradictoire, la théorie obtenue ne I’est pas non plus.

On peut se demander ce que deviennent les propositions 1.9.2 et 1.9.7 pour des
ensembles infinis quelconques ; dans cette direction nous avons le résultat suivant.

Théoréme 1.9.9 Soit X un ensemble infini, alors
Card X = Card (X x X).

Preuve Il est clair que Card X < Card (X x X). Pour vérifier I’inégalité opposée,
nous utiliserons le lemme de Zorn. Soit D un ensemble infini dénombrable contenu
dans X (proposition 1.9.1) et soit £ I’ensemble des couples (A4, f) od A € P(X),
D C Acet f est une bijection de A sur A x A. Cet ensemble est non vide d’aprés
la proposition 1.9.2. Notons (A4, f) < (A’, f') larelation (A C A’ et f'|4 = f) ;
il est clair qu’il s’agit d’une relation d’ordre sur €.
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1. Montrons que € est inductif. Soit ((A;, f;))ics une famille totalement or-
donnée de €. Posons A = |J;c; 4; et f(z) = fi(z) siz € A; ; on définit bien
ainsi une application de A dans A x A car f;(z) ne dépend pas du choix de I'indice
i € I tel que z € A; ; on vérifie de suite que f : A — A x A est une bijection.
On construit ainsi un majorant (A, f) € € de la famille donnée et ceci prouve que
€ est inductif.

2. Soit (A,f) un élément maximal de &, nous allons vérifier que
Card A = Card X (ceci prouvera le théoréme). Raisonnons par 1’absurde, sup-
posons Card A < Card X. On a alors Card A < Card (X — A) : en effet, si on
avait Card (X — A) < Card A, on aurait

Card A < Card X = Card (AU (X — A)) < Card (A x A),
ce qui est absurde vu que (A, f) € E&. Ceci montre qu’il existe une partie
B c X — Atelle que Card A = Card B. On peut alors écrire
(AUB)x (AUB)=(Ax A)uC

N

ol
C=(AxB)U(BxAYU(B x B)

est équipotent 2 B d’aprés le lemme 1.9.4 ; soit g une bijection de B sur C ;
I’application h : AUB — (AU B) x (AU B) définie par h|4 = f, h|p = g (Aet
B sont disjoints) est une bijection car A x A et C sont disjoints. Il en résulte que
(A, f) < (AU B, h) ce qui est absurde. Q.E.D.
Exercice 1.9.4 Soient X un ensemble infini, A et B deux parties de X telles que X = AU Bet
Card B < Card A, montrer que Card A = Card X.

Exercice 1.9.5 Soient X un ensemble infini, F(X) I’ensemble des parties de X a n éléments
(n > 1) et F(X) ’ensemble des parties finies de X . Montrer que

Card ¥(X) = Card F,(X) = Card X.

Pour illustrer les résultats précédents, nous allons montrer comment on peut
définir la dimension d’un espace vectoriel.

Proposition 1.9.10 Soit E un espace vectoriel sur un corps K et soient By, Bs
deux bases de F, alors Card B, = Card B, ; ce cardinal est appelé la dimension
de E et se note dimgF.

Preuve Pour tout = € E, il existe une partie finie By(x) de B, telle que x s’écrive
comme une combinaison linéaire d’éléments de Ba(x).

1. Montrons que By = |, B, B2(z). Raisonnons par I'absurde ; supposons
qu’il existe y € Bs tel que tout = € B; s’écrive comme une combinaison linéaire
finie d’éléments de By — {y} ; alors, By engendrant E, By — {y} engendrerait E
et ceci est absurde.

2. Si B; est fini, il en résulte que B; est fini et on sait alors que
Card B; = Card B;. Si Bj est infini, on a d’aprés le lemme 1.9.4 et le théoréme
1.9.9, Card By < Card (B; x B;) = Card B ; étant donné que By est infini
(sinon B serait fini d’aprés ce qui préceéde), on a également Card B; < Card By,
d’ou le résultat voulu. Q.E.D.
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D — Corrigés des exercices

Exercices du chapitre 1.A

EXERCICE 1.1.1
1. Démontrons I'inclusion A C f~'(f(A)). Soit z € A, il s’agit de vérifier que
z € f~Y(f(A)) ; or z appartient 3 A, donc son image f(x) par f appartient 2 I'image
f(A) de A et ceci signifie précisément que x appartient & f~*(f(A)), ce qui prouve le
résultat voulu.

2. Vérifions de méme Pinclusion f(f~*(B)) C B. Soity € f(f~1(B)), il s’agit de
vérifier que y € B. ll existe z € f~(B) tel que y = f(x) ; dire que z appartient 2
f~Y(B) signifie que f(x) appartient a B et ceci prouve que y = f(z) € B.

EXERCICE 1.2.2

1. Supposons f injective et soit A € P(X). D’aprés I’exercice 1.2.1, on sait que
A C f7Y(f(A)). Montrons que f~'(f(A)) C A. Soit z € f~(f(A)), c’est-d-dire
f(z) € f(A), il existe donc y € A tel que f(x) = f(y) ; d’apres I’injectivité de f, on a
nécessairement z = y, d’ol € A et ceci prouve le résultat voulu.

Réciproquement, supposons, que pour tout A € P(X), A = f~'(f(A)) et montrons
que f est injective. Soient z,y € X tels que f(z) = f(y). Prenons A = {z}, puis
A = {y} ; on obtient

{e} = 7 (F({=D) et {v} = F ' (F{}))
od f({z}) = {f(z)} = {f®)} = F{y}), dod {z} = {y}, c’est-2-dire z = yet fest
donc injective.

2. Supposons f surjective et soit B € P(Y). D’apres I’exercice 1.2.1, on a
f(f~*(B)) C B.Montrons I’inclusion opposée B C f(f~'(B)). Soity € B, f étant sur-
jectiveil existe z € X telquey = f(z) ;alorsz € f~1(B),d’ody = f(z) € f(f~1(B))
et le résultat voulu.

Réciproquement, supposons que, pour tout B € P(Y), f(f~'(B)) = B ;soity € Y,
prenons B = {y}, alors f(f~'({y})) = {y} et ceci prouve que f~*({y}) est non vide,
donc f est surjective.

EXERCICE 1.2.3

1. Supposons f injective et soit A € P(X), alors f “( f(A)) = A (exercice 1.2.2) , d’od
g(B) = Aen posant B = f(A), ce qui prouve que g est surjective.
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Réciproquement, supposons g surjective et soient 2,y € X tels que f(z) = f(y). 1l
existe B € P(Y) tel que g(B) = {z}, soit f~(B) = {z} ; onaalors f(y) = f(z) € B,
d’oty € f~1(B) = {z} et par conséquent z = , ce qui prouve que f est injective.

2. Supposons f surjective et soient A, B € P(Y') tels que g(A) = g(B), c’est-a-dire
f7Y(A) = f7Y(B). D’aprés I'exercice 1.2.2,ona A = f(f~'(A)) et B= f(f~(B)) et
par conséquent A = B, donc g est injective.

Réciproquement, supposons g injective ; posons B = f(X), alors

X=fNY)=57'(B),
soit g(Y') = g(B), d’od Y = B d’apres I'injectivité de g et ceci signifie que f est surjec-
tive.
EXERCICE 1.2.4
L. Soit z € Z, d’apres la surjectivité de h il existe z € X tel que z = h(z), d’od z = g(y)
ol y = f(x), ce qui prouve la surjectivité de g.

2. Soient z,y € X tels que f(z) = f(y), d’od h(z) = h(y) ; si h est injective, on en

déduit que = y ce qui montre que f est injective.

EXERCICE 1.2.5

La condition est suffisante : s’il existe une application g : Y — X telle que go f = Ix,
I’application I'x étant injective, I’application f est injective d’apres I’exercice 1.2.4.

Réciproquement, supposons I’application f injective. Alors f induit une bijection de
X sur f(X) ; notons ¢ : f(X) — X la bijection réciproque. Choisissons un point a de X
(X est non vide) et définissons une fonction g : Y — X prolongeant o en posant

9() = p(y)siy € f(X)etg(y) =asiy €Y — f(X).
Pour tout z € X, ona f(z) € f(X) d’od g(f(z)) = o(f(z)) = z, soitgo f = Ix.
EXERCICE 1.2.6
La condition est suffisante : s’il existe une application g : Y — X telle que f o g = Iy,
I’application Iy étant surjective, f est surjective d’aprés I’exercice 1.2.4.

Réciproquement, supposons f surjective. Alors, f _1({y}) est non vide quel que soit
y € Y. D’apres I’axiome de choix, il existe donc une application g : Y — X telle que
9(%) € F~'({y}) pour tout y € Y, c’est-a-dire telle que f(g(y)) = v, soit f o g = Iy, ce
qui prouve le résultat voulu.

EXERCICE 1.2.7
1. La condition est nécessaire. En effet, il existe une applicationg : Y — Z telle que
h=go fetsiz,z’ € X sont tels que f(z) = f(a'), alors

h(z) = g(f(2)) = 9(f(z")) = h(z').

2. Réciproquement, f induit une surjection de X sur f(X) ; d’apres I’exercice 1.2.6,
il existe une application ¢ : f(X) — X telle que f o ¢ = Ij(x,. Choisissons un point a
dans Z (Z est non vide) et définissons une application g : Y — Z en posant

9(y) = (hop)(y)siy € f(X)etg(y) =asiy €Y — f(z).
Vérifions que h = go f. Soit z € X, ona g(f(z)) = (ho ¢)(f(z)) = h(z’) od
z' = p(f(z)); vu la définition de ¢, il en résulte que f(z') = f(z), d’oll z = z’ compte
tenu de I’hypothese et ceci prouve g(f(z)) = h(z), c’est-a-dire g o f = h.
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3. Lorsque f est surjective, I’application g est unique. En effet, tout y € Y peut s’écrire
y = f(z) od z € X et par conséquent on a nécessairement g(y) = g(f(z)) = h(z).
L’hypothese
f(z) = f(a') = h(z) = h(a')
dit précisément que la valeur h(z) de g(y) ne dépend pas du choix de z tel que f(z) = y.
EXERCICE 1.2.8

1. La relation R : f(z) = f(z') est trivialement réflexive et symétrique ; en outre, si
F(z) = f(z') et f(z') = f(z"), alors f(z) = f(z"), ce qui montre qu’elle est transitive.
Il s’agit donc bien d’une relation d’équivalence.

2. D’apres I’exercice 1.2.7, il existe une application g : X/R — Y telleque f = gow
si, et seulement si, n(z) = w(z') = f(z) = f(z'), condition effectivement vérifiée
d’aprés la définition m&me de la relation d’équivalence R. Quant a I’ unicité de g, elle résulte
aussi de 1’exercice 1.2.7, I’application  étant surjective.

Vérifions enfin que g est injective. Soient z, 2’ € X /R tels que g(z) = g(2’) ; il existe

z,z' € X tels que z = =w(z) et 2/ = w(z’), d’od g(n(zx)) = g(w(z")), c’est-a-dire
f(z) = f(z') et par conséquent z = z’( mod. R), soit z = 2/, ce qui prouve le résultat
voulu.
Note Posons Z = X/R, I’application g induit une bijection b : Z — g(Z) ; notons
i:9(Z) — Y Pinjection canonique de g(Z) dans Y. On peut alors écrire f sous la forme
f =10 homoliestune injection, m une surjection et h une bijection : cette écriture de f
est appelée la décomposition canonique de f.

EXERCICE 1.3.1

1 = 2Pourtouti € I, (,c; Ai C A, d’0d f((V,; Ai) C f(As) et par conséquent
f(Mier Ai) C ;e f(As). Lorsque f est injective, montrons I'inclusion opposée. Soit
Y € (er F(As) : pour tout i € T, il existe z; € A; tel que y = f(z;). Choisissons un
indice ip € I,onay = f(x:) = f(x:,) quel que soit i € I ; d’apres I'injectivité de f,
®; = 4, et par conséquent Ti, € (¢, As et ceci prouve que y € f((;¢r Ai)-

2 = 3 en prenant pour famille (A;);er la famille réduite aux deux €léments A et B.

3 = 48Si AN Bestvide, f(A) N f(B) = f(0) = 0.

4 = 5 Soit A C B. Notons d’abord que f(B) — f(A) C f(B — A). En effet, soit
y € f(B) — f(A), alors il existe 2 € B tel que y = f(z) et z n’appartient pas 2 A vu
que y n’appartient pas 4 f(A), autrement ditz € B — A, d’od y = f(z) € f(B — A)
ce qui prouve le résultat annoncé. Montrons ensuite 1’inclusion opposée avec 1’hypothese
4.0na AN(B - A) =0,d0d f(A) N f(B — A) = 0 d’apres 4. et par conséquent
f(B — A) C f(B) — f(A), ce qui prouve le résultat voulu.

5 = 6 Notons d’abord que, pour tout A € P(X) et tout B € P(Y), on a toujours
(exercice 1.2.1)

AC T (f(A)) et f(f71(B)) C B.
De la premitre relation, on déduit f(A) C f ( Y f(A))) et en prenant B = f(A) dans
la seconde on obtient I’inclusion opposée : ceci prouve que f(A) = f (f “N(f (A))) pour

tout A € P(X).
Utilisons 5., d’aprés I’inclusion A C f~(f (A)) on adonc

(£ (7)) - 4) = £(57(F(AD) = £(4) = £(A) - F(4) =D
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et ceci montre que f~'(f(A)) — A = 0, d’od f(f(A)) = A, ce qui prouve le résultat
voulu.

6 = 1Prenons A = {2z}, z € X. Alors, f~!(f({z})) = {z} et de méme
7Y f{y}) = {y}. Si f(z) = f(y), on en déduit que = = y, c’est-d-dire que f est
injective.

EXERCICE 1.3.2
Soit  un point de X, notons R;,;(x) la relation z € X; ;. L’inclusion proposée équivaut
alors a I’implication
(3 € I)(Vj € J)Ry,j(z) = (Vj € J)(Fi € I)R;,(x),
implication vérifiée quelle que soit la relation R; j(z).
Montrons par un exemple que I’inclusion peut étre stricte. Prenons
X=R,I=J=%Zet X; =[i,j]sii < j, X;,; =[j,é]sij<i.

On a alors
UNXes=2et (JXuj =R

i€l jeJ jeJier

EXERCICE 1.3.3

On peut supposer que (X;,j)(:,j)erxJ est une famille de parties d’un ensemble X. Soit
z = (Z:)ier, x; € I. Alors, dire que z appartient 2 N;es (TT;es Xi.5) signifie que, pour
toutj € J, 2 € [[;¢; X5, C’est-d-dire que, pourtout j € Jettouti € I,2; € X; ;. Deux
quantificateurs de méme nature peuvent &tre commutés, la relation précédente signifie donc
que, pour tout i € I,z € ;¢ ; Xi,j, soitz € ]—Iie,(ﬂjEJ Xi,;), ce qui prouve le résultat
voulu.

EXERCICE 1.3.4

D’une fagon générale, notons X le terme de gauche et X le terme de droite de chacune
des égalités a démontrer.

1. Soit z € X, alors (Vi € I)(3j € Ji)(xz € X;,;). Pour tout i € I, ’ensemble
{j € Ji;z € X; ;} est non vide ; d’aprés I’axiome de choix, il existe donc une application
o € Atelle que € X; o(;) pour tout ¢ € I, ce qui prouve que z appartient 2 Xo.

Réciproquement, soit z € Xa, alors (Ja € A)(Vi € I)(z € X; a;)) €t par consé-
quent, pour tout ¢ € I, il existe un j € J;, a savoir a(3), tel que z € X;,; ce qui prouve que
z € X1.

2. résulte de 1. en passant au complémentaire.

3. Soit ¢ = (2:)iec1 € X1, alors (Vi € I)(3j € Ji)(z:i € X;,5) ; d’aprés I’axiome de
choix, il existe donc & € A tel que z; € X; q(;) pour lout s € I, soit z € [],c; Xi a(s) €t
z € Xo.

Réciproquement, soit £ = (:)ier € X2, alors il existe o € A tel que z; € X; a0
pourtouti € I,d’ob @; € U, Xij et x € Xa.

4. Soit = (z:)ier € X1, alors pour touti € I ettout j € J;, z; € X;,; et par
conséquent, pour tout @ € A, i € X a(:), d’00 2 € [[;¢; Xiaq) et T € Xa.

Réciproquement, soit £ = (;)ier € Xo, alors pour tout o« € Aettouti € I,
Z; € X o) s étant donné un i € Tetun j € J;, il existe o € A tel que (i) = 7, d’od
x; € X;,j pour tout ¢ € I et tout j € J; ce qui prouve que € X;.
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Exercices du chapitre 1.B

EXERCICE 1.5.1 PRINCIPE DE RECURRENCE TRANSFINIE
11 s’agit de démontrer que I’ensemble A = {& € X ; non R(z)} est vide. Raisonnons par
I’absurde. Si A est non vide, A admet un plus petit élément a, alors R(y) est vrai quel que
soit y < a et par conséquent R(a) est vrai d’aprés I’hypothese, ce qui est absurde et ce qui
prouve que R(z) est vrai quel que soit z.
Note En prenant N pour ensemble bien ordonné, on obtient le résultat suivant : soit R(n)
une relation telle que, pour tout entier n € N, R(n) soit vrai dés que R(p) est vrai pour
tout p < m, alors R(n) est vrai pour tout . On pourra comparer ce résultat A celui de la
proposition 1.7.2.
EXERCICE 1.5.2 THEOREME DE KRULL
Rappelons qu’une partie m de A est appelée un idéal si m est un sous-groupe additif (on
note additivement la loi de groupe pour I’anneau) et si zm C m pour tout & € A, c’est-a-
dire si
(zeAetyem)=>zyem.

Ceci revient a dire que m est une partie non vide de A telle que

(u,v € Aetz,y € m) = uz + vy € m.
Si e désigne I’élément unité de 1’anneau, dire qu’un idéal m est différent de A signifie
simplement que e ¢ m. Montrons que I’ensemble M des idéaux de A différents de A,
ordonné par inclusion, est inductif lorsque M est non vide, c’est-a-dire lorsque A n’est
pas réduit a I’élément neutre {0} pour la loi de groupe, I’ensemble {0} étant évidem-
ment un idéal. Soit (m;):cr une famille de M totalement ordonnée par inclusion, alors
m = J,c; mi est un idéal ; en effet, soient u,v € A et z,y € m, alors la famille (m;)
étant totalement ordonnée, il existe ¢ € I tel que z,y € m; d’ol ux + vy € m; C m. Cet
idéal est différent de A vu qu’il ne contient pas e ; ceci montre que m est un majorant de
la famille (m;):c1. Lensemble M est donc inductif et d’apres le lemme de Zorn tout idéal
est contenu dans un idéal maximal.

EXERCICE 1.5.3

1. Notons f : X — Y I’application z — 1. Cette application surjective par définition est
injective : en effet, soient z, 2’ € X tels que 1% = 1}, alors y < z équivaut 3 y < z’ et il
en résulte que z = z’. Montrons que f est un isomorphisme d’ensembles ordonnés, c’est-
a-dire que f et £~ sont des applications croissantes. Il s’agit de démontrer que z < z’
équivaut 2 1;; C 1% ; supposons z < z’ et soity € 13, alors y < z, d’od y < 2/, soit
y € 1% ; réciproquement, supposons 1y C 1y, alors ¢ € 1y C 1Ly, soit z < 2. Ceci
prouve que f est un isomorphisme.

2. La propriété (M) n’étant qu’un cas particulier du lemme de Zorn (théoréme 1.5.1), il
s’agit de démontrer que (M) = (Z,). Soit X un ensemble inductif, d’apres 1.
f : X — Y est un isomorphisme. Toutes les notions définies uniquement a I’aide de la
structure d’ensemble ordonné sont évidemment invariantes par f ; en particulier, Y est un
ensemble inductif et f induit une bijection de I’ensemble des éléments maximaux de X sur
I’ensemble des éléments maximaux de Y. L'ensemble Y étant un ensemble de parties or-
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donné par inclusion, la propriété (M) montre que Y admet au moins un élément maximal,
il en est donc de méme de X, ce qui prouve le résultat voulu.

EXERCICE 1.5.4 LEMME DE TUKEY

Montrons que X est inductif, la conclusion résultera alors du lemme de Zorn. Soit (A;)icr
une famille totalement ordonnée de X. Montrons que A = |J,¢, A: appartient 2 X, A sera
alors un majorant de la famille (A;). Il s’agit de démontrer que toute partie finie M de A
appartient 2 X, La famille (A;) étant totalement ordonnée par inclusion et M étant fini, il
existe i € I tel que M C A; ; A; appartenant 3 X et M étant une partie finie de A;, on en
déduit que M appartient & X, ce qui prouve le résultat voulu.

EXERCICE 1.5.5

1. Soit I" un élément maximal de X. Alors, il existe une partie A de X telle que I' soit le
graphe d’une application g : A — Y vérifiant g(z) € f(2) pour tout z € A. Montrons
que A = X, ceci prouvera que g est une fonction de choix associée a f. Raisonnons par
I’absurde. Supposons A # X, choisissons un pointa € X — Aetuny € f(a) ; posons
I = ' U {(a,y)}, alors I appartient 2 X et est strictement plus grand que T, ce qui
contredit le fait que I" est un élément maximal.

2. Montrons que X vérifie les hypotheses du lemme de Tukey, c’est-a-dire qu’une partie
I'de P(X x Y') appartient 2 X si, et seulement si, toute partie finie de I" appartient 2 X. On
observe d’abord que, si I" appartient & X, alors toute partie de I' appartient encore a X.

Réciproquement, supposons que toute partie finie de I" appartient 2 X et montrons que
I" appartient a X. Posons

A=priT)oupr: X xY > X
désigne la premiére projection et montrons que I' est le graphe d’une application
g: A=Y, cest-a-dire que
((z,y) eTet(z,y)eN) =z y=19";
or ’ensemble {(z,y), (z,y')} est une partie finie de T, donc appartient 2 X et par consé-
quenty =y’ ety € f(x), ce qui prouve que I" € X.

3. D’apres le lemme de Tukey, X admet un élément maximal et, d’apres 1., tout élément
maximal définit une fonction de choix associée a f. Ceci prouve que dans la théorie des
ensembles (Z F), le lemme de Tukey implique I’axiome de choix ; le lemme de Tukey et
I’axiome de choix sont donc équivalents.

Exercices du chapitre 1.C

EXERCICE 1.8.1 UNE AUTRE DEMONSTRATION DU THEOREME DE BERNSTEIN

1. On peut effectivement se ramener a la situation indiquée dans 1’énonc€. En effet, si
f:X = Yetg:Y — X sontdes injections, posons Z = g(Y), alors g définit une
bijectionde Y sur Z et g o f est une injection de X sur Z, c’est-a-dire sur une partie de X.
Si dans ces conditions on sait construire une bijectionh : X = Z,g" o h: X — Y sera
une bijection et le théoréme de Bernstein sera démontré.

2. Reprenons les notations de I’énoncé et vérifions que I’application g est bijective.
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Montrons que g est surjective. On a, d’apres la définition de g, g(X) = BU f(X — B)

od B = AU f(B) vuque f(B) = J%, f*(A) ; on en déduit que
9(X) = AU f(B)U f(X — B) = AU f(X) = (Y — f(X)) U f(X) =,

ce qui prouve le résultat voulu.

Montror'xs ensuite que g est injective. Etant donné que les restrictions de g A B et 2
X — B sont injectives, il s’agit de démontrer que, siz € X — Betz’ € B, alorsz’ # f(z),
c’est-a-dire (Vz € X)(z & B = f(z) ¢ B), soit

(Vz € X)(f(z) € B =z € B).

Supposons donc f(z) € B, il existe un entier n tel que f(z) € f™(A) et cet entier n ne
peut étre nul, car on aurait f(z) € A =Y — f(X). Ceci montre que f(z) € f(fP(A)) ol
p € N il existe donc y € fP(A) tel que f(z) = f(y) et, f étant injective, z = y, ce qui
prouve que z € fP(A) C B.
Note Cette démonstration présente I’inconvénient (aux yeux de certains) d’utiliser I’en-
semble N des entiers.

EXERCICE 1.8.2

Raisonnons par I’absurde. Supposons que toute partie de X soit un élément de X, alors
P(X) C X, dod Card P(X) < Card X, ce qui est absurde vu le théoréme de Cantor
(théoré¢me 1.8.5).

EXERCICE 1.8.3

On raisonne par I’absurde, supposons qu’il existe un ensemble X tel que tout ensemble X
soit équipotent a un ensemble appartenant & X. Prenons en particulier X = [J, ¢ 4, il
existe B € X tel que Card X = Card B. L’ensemble P(B) est équipotent a un ensemble
C € X. D’apres le théoréme de Cantor, on a

Card X = Card B < Card P(B) = Card C,
d’oil Card X < Card C, ce qui est absurde vu que C C X.
Note Cet exercice montre qu’on ne peut pas parler de I’ensemble des cardinaux. On notera
que ce résultat est plus fin que le paradoxe de Cantor (remarque 1.1.3).

EXERCICE 1.9.1

Si X est un ensemble infini, il existe une injection f : N — X ; posons a, = f(n) et
D = f(N) = U2 o{an}. On construit alors une bijection g : X — X — {ao} en posant
g(z) = zsiz € X — Detg(an) = an41 pour tout entier n > 0. Ceci prouve que X est
équipotent 3 X — {ao}.

Réciproquement, supposons que X soit équipotent & une partie A de X distincte de X ;
notons f : X — A une bijection de X sur A. Choisissons un point ap € X — A et posons
an+1 = f(an) pour tout entier n > 0. On définit ainsi par récurrence une suite (a) de X.
Montrons que I’application n — a, est injective, c’est-a-dire que a, = a4 implique p = g,
ceci prouvera qu’il existe une injection de N dans X, donc que X est infini. Raisonnons par
’absurde, supposons ap = aq 00 0 < p < q. On a alors

£7(a0) = f*(ao) = £7(f**(a0)),

d’od f étant injective ao = f77P(ao) € A et ceci est absurde vu que ao appartient &
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X - A
EXERCICE 1.9.2

Supposons I’ensemble X infini et soit f : X — X une application. Choisissons un
point ap € X (X est infini, donc non vide) et posons ant1 = f(an) pour n > O,
A = U2 {an}. 1l est clair que A est non vide et que f(A) C A. Montrons que A
est différent de X. Si ap n’appartient pas a A, le résultat est acquis et si ag € A, il existe un
entier n > 1 tel que ao = a, et il en résulte que A = |J;_o{a,} ; I'ensemble A est donc
fini et par conséquent différent de X.

Réciproquement, si X est fini, construisons une application f : X — X telle que, pour
toute partie A de X non vide et différente de X, f(A) ¢ A. Si Card X < 1, la propriété
est vérifiée quelle que soit I’application f, vu qu’il n’existe pas de partic A non vide et

distincte de X. On peut donc écrire X sous la forme
n

X = U{a,,}ohnz letap # aqsip # q.
p=0
On définit f en posant
f(ap) = apt15i0 <p < net f(a,) = ao.
Soit A € P(X), A # Det A# X, alors il existe unentier 0 < p < ntelquea, € Aet
ap+1 & A en convenant que an+1 = ao et ceci montre que f(A) ¢ A, ce qui prouve le
résultat voulu.
EXERCICE 1.9.3
OnaN C Q,d’ou Card N < Card Q. Inversement, I’application
(1g) EZXN" = p/geQ
est surjective, d’olt Card Q < Card (Z x N*). Les ensembles Z et N* étant équipotents a N,
I’ensemble Z x N* est équipotent 2 N2, donc A N d’aprés la proposition 1.9.2. Ceci prouve
que Card Q < Card N et on a donc I’égalité : Q est un ensemble infini dénombrable.
EXERCICE 1.9.4
L’ensemble A est nécessairement infini, donc d’aprés le lemme 1.9.4 et le théoréme 1.9.9,
ona
Card X = Card (AU B) < Card (A x A) = Card A,

soit Card X < Card A, d’ol I’égalité vu que A C X.
EXERCICE 1.9.5
1. Soit 7 un entier > 1, dire que A € P(X) admet n éléments signifie qu’il existe une bi-
jectionde [1,n] sur A ; atout A € F,(X), on peut donc associer une injection f4 de [1,7)]
dans X ; on définit ainsi une application A +—  f4 de Fp(X) dans
F([1,n]; X) = X" telle que fa([1,n]) = A ; cette application est donc injective ce qui
prouve que Card F,,(X) < Card X™, d’ob Card F,,(X) < Card X d’apres le théoréme
1.9.9.

Montrons qu’on a en fait I’égalité. D’apres 1’axiome de choix, il existe une application
f: Fa(X) = Xtelle que f(A) € Apourtout A € Fp(X).Posons M = X — f(Fn(X)),
alors M admet au plus n — 1 éléments, sinon M contiendrait un ensemble A & n éléments
et on aurait alors f(A) € A C M, ce qui est absurde. Il en résulte que

Card F,(X) > Card (X — M) = Card X

d’aprés I’exercice 1.9.4. Ceci prouve que Card F,,(X) = Card X.
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2. Notons d’abord que I’application = — {z} est une injection de X dans F(X) et
par conséquent Card X < Card F(X). Etant donné que F(X) C U2, Fn(X), le lemme
1.9.4 et le théoréme 1.9.9 prouvent que

Card F(X) < Card (X x X) = Card X

et ceci prouve que Card F(X) = Card X.



Chapitre 2

TOPOLOGIE






Sommaire

Ce chapitre présente la théorie des espaces topologiques. 11 s’agit essentiellement
de construire une théorie permettant de traiter les problémes de convergence qu’on
rencontre en Analyse. La construction méme de 1’ensemble des nombres réels, en
tant que complété de Q, repose sur des notions de convergence ; il nous a semblé
utile de rappeler cette construction, d’établir les propriétés fondamentales de R
et d’introduire dans ce cadre les premieres notions de la topologie (paragraphe
2.5). Il est utile d’étudier avec soin ces notions et de réfléchir aux démonstrations ;
I’espace R est en effet I’espace topologique le plus simple et constitue donc un
modele fondamental : la démonstration de certains théorémes généraux s’inspire
directement de ce qui peut étre fait sur R, modulo un langage plus sophistiqué.

Une structure topologique est avant tout une structure de convergence et seule
la notion de filtre (définition 2.8.1) introduite par H. Cartan permet d’obtenir une
théorie satisfaisante. Une structure topologique est donc définie en se donnant les
filtres des voisinages de chaque point (définition 2.8.2), c’est-a-dire en se donnant
(remarque 2.11.1) les filtres qui convergent. Un ensemble ouvert est alors par défi-
nition un ensemble qui est un voisinage de chacun de ses points et ceci permet de
donner une définition équivalente des structures topologiques (proposition 2.9.3).
Dans le méme esprit, une fonction continue sera par définition une fonction trans-
formant un filtre convergent en un filtre convergent (définition 2.13.1) ; un espace
séparé sera un espace sur lequel la limite d’un filtre convergent est unique (défini-
tion 2.17.1).

La seule considération des suites ne suffit pas en général pour caractériser cer-
taines propriétés topologiques et des hypothéses de dénombrabilité sont néces-
saires si on veut éviter I’usage des filtres. Le paragraphe 2.12 étudie une classe
d’espaces topologiques de cette nature et qui est importante dans la pratique car
elle contient la classe des espaces métriques (paragraphe 2.7).

Apres avoir introduit les espaces métriques, les paragraphes 2.8 a 2.17 pré-
sentent les notions de base de la topologie ; toutes ces notions sont importantes et
d’un usage constant.

Les espaces métriques complets sont introduits au paragraphe 2.18 : dans un
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tel espace, on dispose d’un critere (le crittre de Cauchy) permettant d’affirmer
qu’un filtre converge sans connaitre a priori la limite. Ces espaces jouent un role
important en analyse ; parmi les applications, signalons le théoréme de prolonge-
ment des applications uniformément continues (théoréme 2.25.2) dont la version
linéaire étudiée ultérieurement est d’un usage constant, le théoreme du point fixe
(théoréme 2.26.1) et une version locale (proposition 2.26.4) qui nous permettra de
démontrer trés simplement le théoréme des fonctions implicites.

Les paragraphes 2.19 4 2.24 sont consacrés aux topologies initiales ou finales.
En particulier, on étudiera avec soin les topologies produits (paragraphe 2.21) ; ces
topologies sont tres importantes. Il est par exemple essentiel de comprendre que la
topologie de la convergence simple étudiée au paragraphe 2.23 est une topologie
produit ; comme nous le verrons, on en déduira des propriétés fondamentales des
topologies faibles.

Le paragraphe 2.28 étudie le théoreme de Baire (théoréme 2.28.1) ; il s’agit
sans aucun doute d’un théoréme plus difficile & comprendre. Ce théoréme est in-
dispensable pour établir par exemple que la limite simple d’une suite de formes
linéaires continues sur un espace de Banach est toujours continue.

La partie C est consacrée a 1’étude des espaces compacts. Ces espaces sont
trés importants dans la pratique car des techniques de compacité conduisent a des
théoremes d’existence en I’absence d’unicité (un exemple élémentaire est explicité
a la remarque 2.33.1).

La notion d’ultrafiltre est introduite au paragraphe 2.30. Le lemme de Zorn
permet d’obtenir de suite le théoréme fondamental 2.30.2 affirmant I’existence
d’ultrafiltre plus fin que tout filtre donné a priori ; on en déduit une caractérisation
(théoreme 2.30.4) des espaces compacts qui est la clef de la démonstration du
théoreme 2.32.5 de Tychonoff.

Toutes les propriétés étudiées au paragraphe 2.31 sont importantes. Signalons
en particulier le corollaire 2.31.12 qui est le seul théoréme de ce chapitre permet-
tant d’affirmer qu’une bijection continue est un homéomorphisme.

Le théoreme de Tychonoff est démontré au paragraphe 2.32 ; on en déduit
(théoréme 2.32.7) la caractérisation des parties compactes pour la topologie de la
convergence simple.

La caractérisation des espaces métriques compacts (théoreme 2.33.4) est fon-
damentale. Elle utilise la notion d’espace précompact ; il s’agit d’une notion trés
utile dans la pratique pour vérifier que des espaces métriques complets sont com-
pacts.

Le paragraphe 2.34 est consacré a la démonstration du théoréme 2.34.5 d’As-
coli caractérisant les parties compactes pour la topologie de la convergence uni-
forme ; la démonstration repose d’une part sur le théoréme de Tychonoff, d’autre
part sur le fait que la topologie de la convergence simple et la topologie de la
convergence uniforme coincident sur une partie équicontinue (proposition 2.34.3).
Il est important de comprendre quelles sont les grandes étapes qui conduisent au
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théoréme d’Ascoli
Zorn = Tychonoft = Ascoli.

Il s’agit en effet d’un théoréme fondamental a I’origine de la caractérisation des
parties compactes de nombreux espaces fonctionnels.

Les espaces localement compacts (paragraphe 2.35) seront utilisés lors de I’étude
des mesures de Radon, en particulier le théoréme 2.36.7 de partition de 1’unité.

Les espaces projectifs présentés au paragraphe 2.38 constituent des exemples
excellents d’espaces compacts et permettent de tester I’efficacité des outils mis en
place.

La partie D présente la théorie élémentaire des espaces connexes ; les proprié-
tés de ces espaces (paragraphes 2.39 2 2.41) s’obtiennent aisément et ne nécessitent
aucun commentaire. Le paragraphe 2.42 s’intéresse a des propriétés plus subtiles
concernant les espaces connexes compacts ; elles nous permettront de caractériser
les ouverts simplement connexes de C, c’est-a-dire les ouverts sans trou (exemple
2.42.1).






2.1

A — Nombres réels

Construction des nombres réels

Rappelons que Q désigne le corps des nombres rationnels, que ce corps est com-
mutatif et que la relation d’ordre usuelle sur ce corps est une relation d’ordre total.
Ces deux structures sur Q, & savoir la structure de corps et la structure d’ensemble
ordonné, sont reliées par les propriétés suivantes : pour tout x,y, 2z de Q, on a

2.1.1) cly=>zc+2<y+z,
2.1.2) 0<z,05y=0<aqay.

On exprime ces propriétés en disant que Q est un corps totalement ordonné.
Toutes les regles élémentaires de calcul sur Q se déduisent de ces propriétés. D’une

facon générale, si K est un corps totalement ordonné, on définit la valeur absolue
de tout z € K en posant |z| = max(z, —z), c’est-a-dire || = zsiz > 0 et

|z| = —x siz < 0 ; pour tout z,y € K, on a alors
2.1.3) |z +y| < |z| + |y| (inégalité triangulaire),
(2.1.4) lzy| = |z| x |y|.

Exercice 2.1.1 Vérifier ces propriétés.

Exercice 2.1.2 Soit K un corps totalement ordonné, montrer que pour tout z,y € K
|12l - 191 < 12— .

La construction de QQ est purement algébrique : si Z désigne 1’anneau des en-
tiers relatifs, Q est par définition le corps des fractions de cet anneau Z qui est
integre. Cette remarque est importante du point de vue des idées car la construc-
tion de R qui va suivre est d’une nature complétement différente.

Introduisons maintenant la notion de suite convergente.

Définition 2.1.1 On dit qu'une suite (z,,) de Q converge vers € Q si
(215 (Vee€Q,e>0EneN)(VpeN)(p>n= |z —1x,| <e).

On dit alors que x est la limite de la suite (x,,) et on écrit x = limy, 00 Tp.
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Si une suite (z,,) est convergente, sa limite est déterminée de fagon unique.
Supposons en effet qu’une telle suite converge vers £ € Qety € Q. Soite € Q,
€ > 0, il existe n; € Netny € Ntel que |z — z,| < €/2 pour tout n > n; et
ly — zn| < €/2 pour tout n > ny, d’od (inégalité triangulaire)

|z -yl =l —2n— (Y —2n)| S |& — Zn| + |y —2n| <€
pour n = max(nq,ny), soit |z — y| < € et on a donc nécessairement x = y.

Exemple 2.1.1 La suite z,, = 1/n (n > 1) converge vers 0. En effet, soit e € Q,
€ > 0, alors € = p/q ob p et g sont des entiers > 0etona 0 < 1/n < p/q d&s que
n > q, ce qui prouve le résultat voulu.

Les suites convergentes de Q possédent une propriété trés importante dont
voici la définition.

Définition 2.1.2 On dit qu’une suite (x,,) de Q est une suite de Cauchy si
{ (Ve € Q, £ > 0)(3n € N)(Vp € N)(Vg € N)

(2.1.6)
(p=netg2n= |z, — 74 <€)

Proposition 2.1.1 Toute suite de Q qui converge est une suite de Cauchy.

Preuve Soit (z,,) une suite de Q qui converge vers z. Soite € Q, € > 0, il existe
n € Ntel que |z — z,| < €/2 pour p > n, d’ou

|Zp = Zg| = |2 = 2p — (2 — )| S & — @p| + [z — 24| <€
pourp > netqg > n. Q.E.D.

Pour vérifier qu’une suite est convergente, la connaissance de la limite est abso-
lument indispensable si |’on s’en tient & la définition 2.1.1. Par contre, pour vérifier
qu’une suite est de Cauchy, il suffit de connaitre les divers termes z,, de la suite ;
ceci explique pour quelles raisons on porte un intérét tout particulier aux suites
de Cauchy. Il est évidemment assez naturel de se demander si la réciproque de la
proposition 2.1.1 est vraie, c’est-a-dire si toute suite de Cauchy de Q est conver-
gente. En fait, cette réciproque est fausse : il existe des suites de Cauchy qui ne
convergent pas.

Voici un exemple de telle suite (la suite que nous allons construire converge en
fait vers le nombre irrationnel /2 ). Pour tout entier n > 1, soit | = I(n) le plus
grand entier tel que 12 < 2n? ; considérons la suite de terme général z,, = I(n)/n,
n > 1. La suite (z2) converge vers 2 : on a en effet [2/n? < 2 < (1 + 1)%/n2 et
n<l<2n,dou

2 _(+1?% 2 241 4n 4
0<2—-—<+—~2 __="_"< ==
-7 n2- n? n? n? " n2 n
et ceci prouve que lim, 0o =2 = 2. La suite (z2) est donc de Cauchy et, vu que
zp, > 1, on en déduit que

_Ixf,—l‘ﬂ 1.2 o
= Sl
ZTp + x4 2

[zp — 24|
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et ceci montre que la suite (z,,) est de Cauchy. Supposons la suite (z,,) convergente
de limite = ; vuque 1 < z,, < 2, on a alors

|22 — 23| = & + 2n| X |2 — 2| < (J2] +2) X |z — 2n]
et il en résulte que la suite (z2) converge vers 22, d’od 22 = 2 ce qui est absurde,
étant donné qu’il n’existe pas de nombre rationnel dont le carré est égal a 2. Ceci
prouve que la suite (z,,), qui est une suite de Cauchy, ne converge pas.

Les considérations précédentes conduisent a considérer ’ensemble X de toutes
les suites de Cauchy de Q. Sur cet ensemble X, on peut définir une structure
d’anneau commutatif de la fagon suivante. Soient z = (z,,) € X ety = (y,) € X
deux suites de Cauchy de Q, on pose z + y = (5, + Y») ; On vérifie aisément que
z + y est une suite de Cauchy vu que

|(zp + ¥p) — (zq + Yg)| < |Zp — gl + [¥p — Val-
Cette loi de composition définit une structure de groupe abélien sur X : I’élément
neutre est la suite dont tous les termes sont nuls, I’opposé de la suite z = (z,,) étant
la suite —z = (—z,). On définit ensuite le produit des suites x et y par la formule
zy = (ZnYn ). Pour vérifier que xy est une suite de Cauchy, nous utiliserons le

Lemme 2.1.2 Toute suite de Cauchy x = (x,) est bornée : il existe M € Q tel
que |x,| < M pour tout n € N.
Preuve Soit 2 = (z,,) € X. D’apres (2.1.6), il existe ng € N tel que
|xp — Tpy| < 1 pour p > ny,
d’od |z,| < max(1 + |Tn, |, |Zol, - - - » [Tne—1])- Q.ED.
Siz = (z,) ety = (yn) sont deux suites de Cauchy, il existe donc M € Q tel
que |z,| < M et |y,| < M pour toutn € N, d’od

|ZpYp — Tl = |Zp(Yp — Yq) + Yq(xp — z¢)| < M(|xp — 24| + |yp — yal)
et il en résulte que la suite zy est de Cauchy. Il est alors immédiat de vérifier qu’on
définit ainsi une structure d’anneau commutatif sur X ; cet anneau posséde un
élément unité, a savoir la suite dont tous les termes sont égaux a 1.

On définit ensuite une relation d’équivalence R sur X :siz = (z,) € X et
suites de Cauchy, on note z = y (mod. R) la relation
2.1.7) (Ve€Q,e>0)(IneN)(VpeN)(p>n= |z, —yp| <€)

Cette relation est trivialement réflexive et symétrique ; quant a la transitivité,

siz =y (mod. R) ety = z(mod. R) ol z = (z,,) € X, pourtoute € Q,e >0, il
existe des entiers n; et na tels que |z, —yp| < €/2 pour p > ny et Jyp — 2p| < /2
pour p > ng, d’ol |z, — 2| < € pour p > max(ny,nz), ce qui prouve le résultat
voulu.
Exemple 2.1.2 Soit z = (z,,) € X et soit! € N, on considere la suite y = (y,),
Yn = Zi+n. Les suites T et y sont équivalentes. En effet, soite € Q, € > 0, il existe
n € Ntelque |z, —z4| < epourp > netqg > n,d’ol |yp—z,| = [Ti4p—2p| < €
et |yp — Yql = |Ti+p — Ti4q| < € pour p > n et g > n, ce qui prouve que y est
une suite de Cauchy équivalente  la suite z. Ceci montre qu’on ne modifie pas la
classe d’équivalence d’une suite en supprimant ses [ premiers termes.
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On notera que deux suites convergentes () et (¥, ) sont congrues modulo R
si, et seulement si, leurs limites z = lim,, 00 Zp, €t y = lim, o Y, sont égales :
en effet, supposons x = y et soite € Q, € > 0, alors il existe n € N tel que
|z — zp| < €/2et |y —yp| < €/2 pour p > n, d’ob [z, — yp| < &, ce qui
prouve que les suites (z,) et (y,) sont équivalentes ; réciproquement, supposons
(zn) = (yn) (mod. R), alorsil existen € Ntelque |z —zp| < €/3, ly—y,| < /3
(convergence des suites) et |z, — yp| < €/3 (congruence des suites) pour p > n,
d’ob |z — y| < e et ceci étant vrai quel que soit € > 0, on a nécessairement = y.
Ceci montre qu’il est naturel d’introduire 1’espace quotient X /R, toutes les suites
de Q qui convergent vers le méme nombre rationnel ayant dans 1’espace quotient
la méme image par la surjection canonique ; en d’autres termes, lorsqu’on passe a
I’espace quotient X/ R la seule information qui est conservée est la valeur limite
des suites convergentes, mais cet espace quotient va étre beaucoup plus riche que
Q, car une suite de Cauchy de Q non convergente n’est congrue a aucune suite
convergente de Q.

L’ensemble quotient X/R noté R est appelé I’ensemble des nombres réels ;
on dit aussi que R est la droite réelle. On notera w : X — R la surjection cano-
nique et, si z € X est une suite de Cauchy de Q, on notera [z] = m(z) sa classe
d’équivalence.

Structure de corps totalement ordonné

Notre premier objectif est de munir R d’une structure de corps commutatif.
Voici un premier lemme.
Lemme 2.2.1 La relation d’équivalence R est compatible avec la structure d’an-
neau de X : soient z, =', y et y' des suites de Cauchy de Q telles que © = z' et
y=1vy' (mod. R), alors x +y =z’ + 3y’ (mod. R) et zy = z'y’ (mod. R).
Preuve Soite € Q, € > 0, il existe n € N tel que
|zp — 5| < €/2et |yp — yp| < /2pourp > n,

d’od [(zp + yp) — (2 + yp)| < €, s0it z +y = 2’ + ¢’ (mod. R). On a d’autre
part pYp — TpYp = Tp(Yp — Yp) + Yp(Tp — z3,) et il existe (lemme 2.1.2) M € Q
tel que |z,| < M et |y,| < M pour tout p, d’od

lzp¥p — 2pYpl < M(lyp — Yyl + |2 — 23]) < Me pourp > n,

ce qui prouve que zy = z'y’ (mod. R). Q.ED.
On peut alors définir la somme et le produit de deux nombres réels £, € R en

posant

(2.1 E+n=[z+y], &n=[zy], odz €&y €,

la classe d’équivalence de = + y et zy ne dépendant pas du choix des représentants
z et y d’apres le lemme 2.2.1.

On vérifie aisément qu’on définit ainsi sur R une structure d’anneau commuta-
tif ; I’élément neutre (noté 0) pour I’addition est la classe d’équivalence de la suite
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(zr) od z,, = 0 pour tout n € N, ’opposé —& d’un nombre réel £ est la classe
d’équivalence de la suite —z = (—z,,) si z = (z,) € & et I'élément unité (noté
1) de I’anneau est la classe d’équivalence de la suite (z,,) ol z, = 1 pour tout
n € N. Vérifions a titre d’exemple 1’associativité de 1’addition : soient &, 1, ¢ des
nombres réels, si z € &, y € 1, z € ¢, on a d’apres les définitions

£+n+0) [z] + ([y] + [2]) = ] + [y + 2]
[z+@+2)]=[z+y)+2]

[z +y] + (2] = ([2] + [v]) + [2]

€ +n)+¢,

ce qui prouve le résultat voulu. Toutes les autres vérifications sont de méme nature
et sont laissées au soin du lecteur.

Nous allons ensuite vérifier que cette structure d’anneau sur R est en fait une
structure de corps, c’est-a-dire que tout nombre réel # 0 admet un inverse.

Lemme 2.2.2 Soité € R, € #0etx = (z,,) €& llexistec € Qe >0,etn €N
tel que I’on ait soit T, > € pour tout p > n, soit T, < —& pour tout p > n.

Preuve Etant donné que £ est non nul, la suite z n’est pas congrue 2 la suite
identiquement nulle, soit
22.2) (Fe € Q, e > 0)(Vn € N)(Ip € N)(p > net |z,| > 2¢).
La suite (z,,) étant de Cauchy, il existe ng € N tel que |z, — 24| < € pour p > ng
et g > ng. D’apres (2.2.2), il existe n, > ng tel que |z,,| > 2¢ ; supposons par
exemple z,,, > 0 donc z,, > 2¢, on a alors pour n > 71y
Ty =Ty — Ty +Tpy > Ty, — |T — Ty | =26 —€=¢;

lorsque z,,, < 0, on vérifie de méme que z, < —e pour n > n;. Q.E.D.

Considérons alors un nombre réel £ # 0, vu le lemme précédent et I’exemple
2.1.2, on peut trouver une suite = (z,,) € £ tel que |z,| > € pour tout n € N.
Posons y, =z}, y = (yn), 0na

|zp — 4 -2
—yol=F—L <e®lz,—z
|yp — vl Tty |zp — 24l

et par conséquent la suite y est de Cauchy. Etant donné que z,y, = 1 pour tout
n, on a [z][y] = 1 d’apres la définition du produit de deux nombres réels et ceci
prouve que £ = [z] admet pour inverse le nombre réel [y]. On a donc bien une
structure de corps sur R.

Plongeons Q@ dans R de la fagon suivante. Si r est un nombre rationnel, soit
z = (z,) la suite constante définie par z,, = r ; on définit alors une application
i: Q — R en posant i(r) = [z].
Lemme 2.2.3 L’application i : Q — R est un homomorphisme injectif de corps,
c’est-a-dire

i(r + 8) = i(r) + i(s), i(rs) = i(r) i(s) pour tout v, s € Q.
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Preuve Soient 7, s € Q, notons = = (z,,) ety = (y») les suites telles que =, =,
Yn = S.

1. L’ application 7 est injective : supposons 7 # s, les suites x et y convergent
vers des nombres rationnels différents, donc ne sont pas équivalentes, ce qui prouve
que i(r) # i(s).

2. On a d’autre part d’apres (2.2.1)

i(r+s) = [z +y] = [z] + [y] = i(r) +1i(s),
i(rs) = [zy] = [z] [y] = i(r)i(s). QED.

L’homomorphisme injectif 7 permet d’identifier Q a un sous-corps de R, 4 sa-
voir ¢(Q) ; autrement dit, on ne distinguera pas le nombre rationnel r et le nombre
réel i(r). Ceci revient en fait a identifier le nombre 7 et la classe d’équivalence de
n’importe quelle suite de QQ qui converge vers 7.

La relation d’ordre sur Q peut étre prolongée a R de la fagon suivante. Si £ et
7 sont deux nombres réels, on note £ < 7 la relation
2.23) pourtout z = (z,,) € &,y = (yn) €, il existee € Q, & > O et

- n € N tel que yp, — x, > € pour tout p > n.
Remarque 2.2.1 La propriété (2.2.3) est vérifiée des qu’elle I’est pour un repré-
sentant
x = (z,) € £ et un représentant y = (y,) € 7. En effet, supposons y, — z, > 3¢
pourp > netsoitz’ = () € &y = (y,,) € n; les suites x et 2/, y et y’ étant
équivalentes, il existe n; € N tel que |z, — zp| < &, |yp — yp| < € pour p > ny,
d’od

Yp—Yp+Yp — Tp + Tp —

Yp — Tp — |Tp — T — ¥ — ¥y
> 3e—-2=¢

pour p > max(n,n;), ce qui prouve le résultat voulu.

Proposition 2.2.4 La relation (¢ < nou = n) est une relation d’ordre total
sur R qui prolonge la relation d’ordre sur Q. Le corps R est un corps totalement
ordonné.

Preuve Soient &, 7 et ¢ trois nombres réels, x = (z,) € &,y = (yn) € net
z = (2,,) € ( des représentants des classes &, 7 et (.

1. Montrons que larelation £ < 7 est une relation d’ordre strict. Si £ < 7, on a
bien £ # 7 : en effet, d’aprés (2.2.3) les suites z et y ne peuvent étre équivalentes.
Quant a la transitivité, supposons § < netn < ¢ ; d’apres (2.2.3), il existe €1 € Q,
€1 > 0,n; € Ntels que y, — , > €1 pour p > n; et de méme, il existe
€2 € Q,e2 > 0,n2 € Nitels que 2, — yp > €2 pour p > ng. On a alors
2p—Tp = 2p—Yp+Yp — Tp > €1 + €2 pour p > max(ny, ny), ce qui prouve que
&<

2. Montrons que I’ordre £ < 7 ainsi défini sur R est total. Si £, n sont deux
nombres réels distincts, il s’agit de vérifier que £ < 5 ou 7 < €. Etant donné que

/ /
Yp —Zp

v
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& —n # 0, il existe, d’apres le lemme 2.2.2,¢ € Q,e > Oetn € Ntel que I’on
ait soit y, — T, > € pour tout p > n, soit T, — yp > € pour tout p > n. Dans le
premier cas, on a { < 1 et dans le second cas 7 < &.

3. Soient r et s deux nombres rationnels tels que r < s ; posons

z = (z,) ety = (yn) avec T, =T, Yy, = S pour tout 7.

Etant donné que y, —, = s —r > 0, on a (remarque 2.2.1) [z] < [y], c’est-a-dire
i(r) < i(s), ce qui prouve que I’ordre sur R prolonge celui de Q.

4. Vérifions enfin les propriétés (2.1.1) et (2.1.2). Supposons £ < 7, c’est-
a-dire (2.2.3). Alors, yp + 2p — (Tp + 2p) = yp — T, > € pour tout p > n,
d’ou € + ¢ < 1+ (. Supposons 0 < £, 0 < 7 ; le nombre réel 0 étant la classe
d’équivalence de la suite identiquement nulle, il existe € € Q, e > Oetn € N tel
que T, > €, Y, = €pour p > n,d’ol Ty, > g2 pour p > n, ce qui prouve que
&n > 0. QED.

Comme sur Q, les régles usuelles de calcul sur R résultent du fait que R est un
corps totalement ordonné : définition de la valeur absolue, inégalité triangulaire,
etc.

Si a et b sont deux nombres réels tels que a < b, on définit I’intervalle ouvert
]a, b en posant Ja,b[= {z € R; a < < b} ; un tel intervalle est évidemment
non vide : il contient par exemple le réel (a + b)/2. Nous allons montrer que
Iintervalle ]a, b[ contient en fait un nombre rationnel : I'interprétation de cette
propriété sera donnée ultérieurement.

Proposition 2.2.5 Soit a,b € R rel que a < b, alors ]a, b[NQ est non vide.
Preuve Soit z = (z,) € 6,y = (yr) € b, il existee € Q, e > 0, et ng € N tel
que yp, — Tp > € pour p > ng. Par ailleurs, il existe n; > ng tel que
|zp — | < &/3et|yp — yq| < €/3 pourp >nietg>ni.

Considérons alors le nombre rationnel ¢ = ,,, + /2. On a pour p > n,

C—Tp=2Tn, —Tp+€E/22¢€/2—|Tpn, —zp| >€/2—¢/3 =¢/6,
d’ol a < ¢ ; de méme,
Yp—C = Yp—Yny +Yn; — Tn, —€/2 2 €= |Yp—Yn,| —€/2 > €/2—€/3 = £/6,
d’ob ¢ < b et ceci prouve que ¢ €]a,b[NQ. Q.ED.

Exercice 2.2.1 La relation d’ordre sur R n’est pas une relation de bon ordre, R n’admettant pas de
plus petit élément. On considere une partie bien ordonnée A de R et on se propose de démontrer que
A est dénombrable.

1. Construire d’abord une application f : A — R telle que, pour tout a € A, a < f(a) et
]a, f(a)[NA = @ [si A admet un plus grand élément a, prendre f(a) = a + 1 par exemple et, si a
n’est pas I’éventuel plus grand élément de A, poser f(a) = min M ot M = {z € A;z > a}].

2. Soita,b € A, a # b, montrer que |a, f(a)[N]b, f(b)[= 0.

3. Conclure en utilisant la proposition 2.2.5 et le fait que Q est dénombrable.
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Suites convergentes de R

Nous allons effectuer sur R la méme analyse que celle faite sur Q et nous consta-
terons qu’une suite est convergente si, et seulement si, elle est de Cauchy ; c’est
ce résultat qui justifie a posteriori la construction précédente de R.

Définition 2.3.1 On dit qu’une suite (z,,) de R converge vers x € R si
(2.3.1) (Ve>0)(In e N)(VpeN)(p > n= |z — 5| <é).
On dit alors que x est la limite de la suite (z,,) et on écrit T = limy,_, 00 T,

Dans cette définition, € est un nombre réel > 0 ; on peut se contenter d’un
€ rationnel : en effet tout intervalle ]0,e[ ob € € R, € > 0, contient un nombre
rationnel d’apres la proposition 2.2.5. Ceci montre que les suites convergentes de
Q convergent sur R vers la méme limite.

Si une suite (z,,) est convergente, sa limite est déterminée de fagon unique. La
démonstration de cette propriété sur QQ ne repose que sur I’inégalité triangulaire et
vaut donc sur R.

Définition 2.3.2 On dit qu’une suite (z,,) de R est une suite de Cauchy si
{ (Ve > 0)(In € N)(Vp € N)(Vq € N)

2.3.2)
(p>netg>n= |z, — x4 <6).

Dans cette définition, € est un nombre réel > 0, mais comme ci-dessus on peut
se contenter d’un € rationnel ; les suites de Cauchy de Q le sont encore sur R. On
vérifie comme sur Q la
Proposition 2.3.1 Toute suite convergente de R est de Cauchy.

Pour démontrer la réciproque, nous utiliserons les résultats suivants.

Lemme 2.3.2 Soit x = (z,,) € X une suite de Cauchy de Q. S’il existe un entier
n € N et des rationnels a,b € Q tels que a < x, < b pour tout p > n, on a alors
a<[z]<b

Preuve Vérifions par exemple que a < [z]. Raisonnons par 1’absurde. Supposons
[z] < a, il existe alors € € Q, e > 0,etn € Ntel que a — z, > € pour tout
p > n,d’od z, < a— ¢ < ace qui contredit I’hypothese. On vérifie de méme que
[z] <b. Q.ED.

Lemme 2.3.3 Soit x = (z,) € X une suite de Cauchy de Q, alors la suite (zy,)
converge vers le nombre réel [z).

Preuve Soite € Q, ¢ > 0, il existe n € N tel que |z, — 4| < € pourp > n et
q > n,c’est-a-dire z,—¢ < z, < z4+€,d’0d (lemme 2.3.2) z,—¢ < [z] < T4+e,
soit |[z] — z4| < € pour ¢ > n, ce qui prouve le résultat voulu. QE.D.
Corollaire 2.3.4 Tout nombre réel est la limite d’une suite de rationnels : on ex-
prime cette propriété en disant que Q est dense dans R.

Théoréme 2.3.5 Toute suite de Cauchy de R converge : on dit que R est complet.
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Preuve Soit (z,,) une suite de Cauchy de R ; d’apres le corollaire précédent, il
existe des rationnels 7, € Q tels que |z, — 75| < 1/(n+1). Lasuite r = (r5,) est
de Cauchy : en effet, soit £ > 0, il existe un entiern € Ntelque 1/(p+ 1) < ¢&/3
pourp > net |z, — z4| < €/3 pour petq > n,d’od
Irp —7rql < lzp —7pl + |Zp — Tg| + |zg — 7l
1/(e+1)+1/(g+1) + |zp — 24

e/3+¢e/3+¢€/3=¢
pour p et ¢ > n. D’aprés le lemme 2.3.3, la suite (r,) converge donc vers le
nombre réel z = [r]. Montrons alors que la suite (z,,) converge vers z : soite > 0,
ilexisten € Ntelque 1/(p+ 1) <e/2et|z —rp| < /2 pourp > n,d’od

|z —2p| < |z —7p| +|2p —1p| S|z —1p| +1/(P+1) <e/2+€/2=¢
pour p > n, ce qui prouve le résultat voulu. Q.E.D.

Ce théoréme fondamental étant établi, il est utile de revenir a la notion de
convergence des suites afin d’examiner les relations existant entre cette structure

de convergence d’une part et la structure de corps ordonné d’autre part.
Notons d’abord que le lemme 2.1.2 vaut sur R avec la méme démonstration.

INIA

Lemme 2.3.6 Toute suite (x,,) de R convergente est bornée : il existe M € R tel
que |z,| < M pour tout n € N,

Proposition 2.3.7 Principe du prolongement des inégalités Soient (z,,) et (y,)
deux suites convergentes telles que x,, < y, pour tout n € N, alors
lim z, < lim y,.
n—o0 n—o0
Preuve Posons z = limp_y00 Zpn, ¥ = limy,_s00 Yn €t raisonnons par 1I’absurde.
Supposons y < z ;s0it 0 < € < (x —y)/2, il existe n € N tel que |z — zp| < eet
|y —yp| < epourp > n,clest-a-direx —e <zp<zt+eety—e<y,<y+e
D’apres lechoixde e,y +e <z —¢,d’ody, <y+e<z—e < zppourp>mn,
soit y, < Tp, ce qui est absurde. Q.E.D.

Proposition 2.3.8 Soient (z,,) et (y,) deux suites de R convergentes. Alors les
suites

(Tn + Yn), (Tayn) sont convergentes ainsi que la suite (z;') si z, # O pour
toutm € N et lim,, 00 Tn, # 0 ; on a en outre

(2.3.3) lim (z, +y,) = lim z, + lim y,,
n—o0 n—>00 n—>00
(2.34) Adim (2ny,) = lim 2, x lim yp,
. AT -1
(2.3.5) r}glgo z, = ( 7}11)1(1’0 zn)" .

Note Ces propriétés signifient, comme nous le verrons ultérieurement, que R est
un corps topologique.
Preuve Posons = = limy, 00 Zp,, ¥ = limy,—00 Y €L s0it € > 0.
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1. Il existe ng € Ntel que |z — z,| < €/2¢et |y — yn| < /2 pour n > ny,
dod |(z+Y) = (@n +Yn)| < |2 —2n|+ |y — yn| < € pour n > ng, ce qui prouve
(2.3.3).

2. Il existe M > O tel que |y,| < M pourtout n € Net |z| < M ; posons

§ = ¢/2M, il existe ng € Ntel que |z — zn| < d et |y — yn| < 8 pour n > ny,
d’oll
|$y —ZTnYn| = |z(y-— Yn) + Yn(T — z5)|
< |:l:| |y_yn| +|Yn| |z — 20| <2Mé =€
pour n > np, ce qui prouve (2.3.4).
3. Il existe ng € Ntel que |z — z,,| < |z|/2 pour n > ng, d’od
[Za] = |z = (z — zn)| 2 |2| — |z — zn| > |2[/2,
d’oll |zz,| > |z|2/2 pour n > ny ; il existe ny > ng tel que |z — z,| < e|x|?/2
pour n > n;, d’ou

1 1 |z — 24| |z]?
—— == — X = epourn >
Iz xnl |zz| =7 |z|2/2 pourn = n1,
ce qui prouve (2.3.5). Q.E.D.

Le théoréeme de Bolzano-Weierstrass

Voici un premier résultat important.

Théoréme 2.4.1 Toute partie de R non vide et majorée (resp. minorée) admet une
borne supérieure (resp. inférieure).
Preuve Soit A une partie non vide de R, supposons A majorée par exemple et
notons M I’ensemble (non vide) des majorants de A. Nous allons faire un raison-
nement par dichotomie. Soit a € A, m € M ; pour tout entier n € N, on pose
ok =a+ m2nakon0§k52".
L’application k — &, j est évidemment croissante :
a= §n.0 < €'n,,1 <...< 6n,2" =m,
par conséquent, si &, ; est un majorant de A, il en est de méme de &, ; pour ! > k ;
étant donné que &, o» est un majorant, il existe un entier k(n) € [0,2"] tel que
énk & M pour k < k(n) et &, x € M pour k > k(n) ; posons T, = &y k(n) : ON
construit ainsi une suite (z,,) de majorants.

Nous allons montrer que cette suite converge, c’est-a-dire qu’elle est de Cau-
chy. Soit p un entier > n ; notons que tout réel &, . (0 < k < 2™) peut s’écrire €y
(0 <l <2P):onaeneffet &, ) = &py sil = 2P~k ; étant donné que z,, € M et
que z, — 2™ ¢ M, on a nécessairement z, — 2~ " < z,, < ,, pour p > n et par
conséquent |z, — 4| < 27™ pour p et ¢ > n, ce qui prouve que la suite (z,,) est
de Cauchy.
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Notons [ la limite de cette suite () ; [ est un majorant de A car, si z € A,
onazx < z, pour lout n, donc z < [ d’apres le principe du prolongement des
inégalités. Notons également que [ < z,, pour tout 7 vu que x, < T, pour p > 7.

Montrons enfin que [ est la borne supérieure de A. Raisonnons par 1’absurde.
Supposons qu’il existe un majorant z de A tel que : < I. Etant donné que x, —2~"
n’est pas un majorant,onax, — 2" <z <l < z,,dou0<!—2x < 27" pour
tout n, ce qui est absurde. Q.E.D.
Note Cette démonstration utilise de facon essentielle le fait que R est complet ; le
théoréme est d’ailleurs faux sur Q.

Remarque 2.4.1 La droite achevée Une partie de R n’est pas nécessairement ma-
jorée ou minorée, car R n’admet ni plus grand élément, ni plus petit élément. Il est
alors commode d’adjoindre & R deux ensembles distincts et n’appartenant pas a R
(de tels ensembles existent d’apres le paradoxe de Cantor) que nous noterons +0o
et —oo ; on obtient ainsi la droite achevée R = RU{+00}U{—00}. On prolonge a
R la relation d’ordre de R en posant —oo < 2 < 400 pour tout € R. On obtient
ainsi un ensemble R totalement ordonné dont toute partie est bornée supérieure-
ment et inférieurement ; de plus, une partie A de R est bornée supérieurement
dans R si, et seulement si, supg A appartient a R, auquel cas supg A_ = supg 4.
Ces remarquent sont trés utiles dans la pratique : par exemple, dans R la formule
(1.4.2) est vraie sans hypothese ; si ’application de cette formule a une partie de
R conduit a une borne supérieure supg A finie, alors A est bornée supérieurement
dans R et supg A = supg A. Cette remarque s’applique également aux formules
(1.4.3) et (1.4.4) lorsque f est a valeurs réelles.

Corollaire 2.4.2 Une suite (x,,) croissante (resp. décroissante) de R converge si,
et seulement si, elle est majorée (resp.minorée) auquel cas

lim z, = sup z,(resp. inf z,).
n—00 n neg n( P neN n)

Preuve Vu le lemme 2.3.6, il s’agit de vérifier par exemple qu’une suite crois-
sante majorée est convergente. D’apres le théoréme précédent une telle suite admet
une borne supérieure | = sup,cy Tn. Pour tout € > 0, il existe n € N tel que
l—e<z,<l,dod!l—¢e <z, <lpourp > n,cequiprouve que la suite (z,)
converge vers [. Q.E.D.
Voici une autre conséquence du théoréeme 2.4.1. Rappelons ce qu’on entend
par intervalle : si a et b sont deux nombres réels tels que a < b, il peut s’agir de
I’intervalle ouvert ]a, b[, de Iintervalle fermé [a, b], des intervalles semi-ouverts
]a, b], [a, b ou bien encore des intervalles illimités | — 00, a}, ] — 00, a(, ]a, +00[,
[a, +oo[ et] — 0o, +00.
On a alors la caractérisation suivante.
Corollaire 2.4.3 Pour qu’une partie I de R soit un intervalle, il faut et il suffit
que, pour tout z,y € I, Uintervalle [x,y] soit contenu dans I.
Preuve La condition est évidemment nécessaire. Pour démontrer la réciproque,
il faut distinguer différents cas selon que I est majoré ou minoré. Si I n’est ni
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majoré, ni minoré, pour tout réel m € R il existe z,y € I'telque z < m < g,
d’od m € [z,y] C I ce qui prouve que I = R. Supposons ensuite I non vide, a
la fois majoré et minoré ; posons a = inf I et b = sup I ; si m €]a, b, il existe
z,y € Itelquea <z <m <y < bdodm € [z,y] C I et ceci prouve que
Ja,b[ C I ; étant donné que I est contenu dans [a, b], I est un intervalle d’extrémité

a et b. On traite d’une fagon analogue tous les autres cas. Q.E.D.
Note On observera que ce corollaire est faux sur Q. Par exemple, I’ensemble
{z € Q z? < 2}

n’est pas un intervalle de QQ bien que le critére du corollaire soit vérifié.

Avant d’énoncer le théoréme suivant, indiquons les notations utilisées pour les
sous-suites. Si (z,,) est une suite d’éléments d’un ensemble X et si k — ny, est une
application strictement croissante de N dans N, la suite (z,, )xen est appelée une
sous-suite (extraite) de la suite (z,,) et elle sera notée simplement (z,,, ). Si (z,)
est une suite de R qui converge vers z, toute sous-suite converge vers z. Si la suite
(zn) ne converge pas, il n’existe pas nécessairement de sous-suite convergente (par
exemple z,, = n). Par contre, on a le

Théoréme 2.4.4 Bolzano-Weierstrass De toute suite bornée de nombres réels,
on peut extraire une sous-suite convergente.

Preuve Soit (z,,) une suite bornée ; posons y, = Sup,>,, Tp, ON construit ainsi
une suite (y, ) décroissante et minorée, donc convergente, notons ! sa limite. Cons-
truisons alors une sous-suite () telle que |l — z,,| < 1/k pour k > 0. On
effectue cette construction par récurrence sur k. Prenons par exemple ng = 0 et
supposons défini ny, ..., n,_1. Alors, il existe n > ng_; tel que |l — y,,| < 1/2k
et, d’apres la définition de vy, il existe n;, > n tel que |y, — =5, | < 1/2k, d’ol
|l =z, | < 1/k. La sous-suite (z,, ) ainsi construite converge vers (. Q.ED.

Ouverts, fermés et compacts de R

Introduisons sur R les premiéres notions de topologie afin d’interpréter certaines
propriétés de R et en particulier le théoréme de Bolzano-Weierstrass.

Etant donné une partie A de R, soit (z,,) une suite de A ; si une telle suite
converge, sa limite n’appartient pas nécessairement 2 A et on est donc conduit 2 la
définition suivante.

Définition 2.5.1 Une partie A de R est dite fermée si la limite de toute suite
convergente de A appartient a A.

Dire que A est fermé signifie donc que, pour toute suite convergente (z,,) de
R, alors limy, o0 Zn, € A dés que z,, € A pour tout n € N. D’apres le principe du
prolongement des inégalités tout intervalle fermé [a, b] est effectivement fermé, il
en est de méme des intervalles illimités | — 00, a), [a, +oo[ et R =] — 00, +00[ ;
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en particulier, les ensembles réduits a un élément {a} = [a, a] sont fermés : on dit
que les points sont fermés.
Voici une premicre utilisation de cette notion d’ensemble fermé.
Proposition 2.5.1 Une partie de R non vide, fermée et majorée (resp. minorée)
admet un plus grand (resp. petit) élément.
Preuve Soit A une partie non vide, fermée et majorée ; A admet une borne
supérieure m (théoréme 2.4.1). Pour tout n € N, il existe z, € A tel que
m —1/(n+1) <z, < m ; on construit ainsi une suite (z,,) de A qui converge
vers m et, A étant fermé, on a m € A, ce qui prouve que m est le plus grand
élément de A. Q.E.D.
Nous noterons O’ I’ensemble de toutes les parties fermées de R ; cet ensemble
O’ possede les propriétés que voici.
Propeosition 2.5.2 Soit O’ I’ensemble des parties fermées de R, on a alors
(01) Toute intersection d’ensembles de O’ est un ensemble de O'.
(O%) La réunion de deux ensembles de O' est un ensemble de O'.
(03) DeO etRe 0.

Preuve 1. Soient (F;);c; une famille de parties fermées, F' = (¢, F; et (z,,) une
suite de F' qui converge vers z. Alors, pour tout ¢ € I, x,, appartient a F;, donc
z € F; vu que F; est fermé et il en résulte que = € F, ce qui prouve (O}).

2. Soient Fy,Fy € O, F = Fy U F; et (z,) une suite de F' qui converge
vers & ; I’un des deux ensembles N; = {n € N; z,, € F;}, i = 1,2, est infini ;
supposons par exemple N infini, alors si n;, désigne le k + 1-ieéme élément de V3,
la sous-suite (z,, ) converge vers z et, F} étant fermé, z € F; C F, ce qui prouve
(03).

3.L’ensemble vide est fermé d’apres (1.1.6) et R est trivialement fermé. Q.E.D.

On notera qu’une intersection quelconque de fermés est fermée, mais que O’
est stable seulement par réunion finie.

Si A est une partie quelconque de R, ’intersection A de tous les fermés conte-
nant A est une partie fermée d’aprés (O7) qui contient A ; A s’appelle I’adhérence
de A et un point de A est dit adhérent 2 A ; ’adhérence de A est donc le plus petit
fermé contenant A et il en résulte que A est fermé si, et seulement si, A = 4.

On peut caractériser les points adhérents comme suit.

Proposition 2.5.3 Soit A une partie de R et x € R. Les propriétés suivantes sont
équivalentes

lLzeA

2. Pour tout € > 0, intervalle ouvert |z — €,z + €[ rencontre A.

3. Il existe une suite (x,,) de A qui converge vers x.

Preuve 1 = 2 Soit z € A ; supposons 2. en défaut. Il existe € > 0 tel que

Jlt —e,z+€[NA =0,
soit A C]—o00,z—€]U[z+¢, +00] ; ce dernier ensemble étant fermé et contenant
A, il contient A et par conséquent = ¢ A, ce qui est absurde.
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2 = 3 D’apres 2., pour tout n € N, il existe
Zp€lz—1/(n+1),z+1/(n+1)[NA;
on construit ainsi une suite de A qui converge vers z. _
3=10nazx, € A,d’odz, € Aet, Aétant fermé, z € A. Q.E.D.
On dit qu’une partie A de R est dense dans R si A = R : le corollaire 2.3.4
signifie bien que Q est dense dans R. La proposition 2.2.5 a également la méme
signification, vu la
Proposition 2.5.4 Une partie A de R est dense dans R si, et seulement si, pour
tout a,b € R, a < b, lintervalle ouvert |a, b[ rencontre A.
Preuve La condition est nécessaire. Si A est dense dans R, le point z = (a + b)/2
appartient 2 A, donc |z — €,z + €[, € = (b — a)/2, c’est-a-dire ]a, b[ rencontre A.
La condition est suffisante, tout point z étant adhérent 2 A d’apres la proposition
précédente. Q.E.D.
Venons-en a la notion importante de partie compacte.

Définition 2.5.2 Une partie A de R est dite compacte si toute suite de A admet
une sous-suite qui converge vers un point de A.

Le théoreme de Bolzano-Weierstrass peut alors s’énoncer comme suit.

Théoréme 2.5.5 Une partie A de R est compacte si, et seulement si, A est une
partie fermée et bornée.

Preuve 1. Toute partie compacte est fermée. En effet, soit () une suite de A qui
converge vers a ; montrons que a € A ; il existe une sous-suite (z,, ) qui converge
vers un point b € A ; or, la sous-suite (z,, ) converge vers a, donc a = b (unicité
de la limite) et ceci prouve que a € A.

2. Toute partie compacte est bornée. Raisonnons par 1’absurde, supposons par
exemple A non majorée ; alors pour tout entier n € N, il existe z,, € A, z, > n ;
on construit ainsi une suite de A qui n’admet aucune sous-suite convergente, car
aucune sous-suite n’est bornée vu que z,,, > ny > k.

3. Réciproquement, soit A une partie fermée et bornée et soit (z,,) une suite de
A. Cette suite est bornée, donc (théoréme 2.4.4) elle admet une sous-suite (z,,, )
qui converge et sa limite appartient 2 A vu que A est fermé et ceci prouve que A
est compact. Q.ED.

Exemple 2.5.1 Les intervalles fermés [a, b], a,b € R, sont compacts.

De la proposition 2.5.1, on obtient le
Corollaire 2.5.6 Toute partie compacte non vide A de R admet un plus grand et
un plus petit élément : il existe a,b € A tel que a < x < b pour tout z € A.
Apres avoir défini la notion de partie fermée, on définit les parties ouvertes :
une partie A de R est dite ouverte si son complémentaire est fermé. Le complé-
mentaire d’un ouvert est donc fermé et le complémentaire d’un fermé est une partie
ouverte.
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Exemple 2.5.2 Tout intervalle ouvert |a, b[ est ouvert, son complémentaire étant
fermé en tant que réunion de deux intervalles fermés ; de méme, les intervalles
illimités | — 00, a[ et Ja, +00[ sont ouverts.

On note O I’ensemble de toutes les parties ouvertes de R ; la proposition 2.5.2
s’écrit alors
Proposition 2.5.7 Soit O I’ensemble des parties ouvertes de R, on a alors
(01) Toute réunion d’ensembles de O est un ensemble de O.
(O2) L'intersection de deux ensembles de O est un ensemble de O.
(O3) DeOetReO.
On notera que O est stable par réunion quelconque et intersection finie.
Note Comme nous le verrons ultérieurement, une structure topologique peut &tre
définie en se donnant une famille O de parties, dites ouvertes, vérifiant les proprié-
tés (01), (O2) et (O3).

La description des ouverts est assez simple.

Proposition 2.5.8 Une partie O de R est ouverte si, et seulement si, pour tout
z € O, il existee > Otel que |z — e,z + €[C O.

Preuve Si O est ouvert et si € O, = n’appartient pas au fermé R — O, donc
x n’est pas adhérent 4 R — O et il existe donc (proposition 2.5.3) € > 0 tel que
|z —€, z+ €[ ne rencontre pas R — O, c’est-a-dire tel que |z —¢€, z + [ soit contenu
dans O.

Réciproquement, s’il existe € > 0 tel que ]z — €,z + €[ soit contenu dans O,
donc ne rencontre pas R — O, la proposition 2.5.3 montre que z n’est pas adhérent
aR — O et ceci prouve que R — O coincide avec son adhérence, donc est fermé et
par conséquent O est ouvert. Q.ED.

Corollaire 2.5.9 Une partie O de R est ouverte si, et seulement si, O est une
réunion d’intervalles ouverts.

Preuve La condition est suffisante d’aprés (O, ), tout intervalle ouvert étant ou-
vert. Réciproquement, si O est ouvert, pour tout z € O il existe €, > 0 tel que
| — €2,z 4+ €2[C O,d’00 0 =, eolz — €2, + €. QED.

Développement par rapport a une base

Nous allons rappeler trés brievement ce qu’on entend par développement décimal
et plus généralement par développement par rapport a une base b. Ces développe-
ments utilisent la notion de série, notion qui sera étudiée ultérieurement dans le
cadre des espaces de Banach ; nous n’avons besoin ici que de considérations trés
élémentaires.

A toute suite (2,) de nombres réels, on associe la suite (s,,) des sommes par-
tielles définies par s, = Z:=o zp et on dit que la série de terme général z,
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est convergente et de somme s si la suite (s,,) converge vers s ; on écrit alors
s= Yo ,Zn eton dit encore que la série > -, z,, est convergente. Lorsque les
T, sont positifs, la suite (s,) étant croissante, la série Zn—o x, converge si, et
seulement si, la suite (s,,) est majorée.

Par exemple, si z est un nombre réel tel que |z| < 1,ona

d’ob lim, 00 Sn = 1/(1—z) ce qui prouve que la série ) >, =™ est convergente
de somme 1/(1 —z). Donnons-nous alors un entier b > 2 (appelé base) et une suite
(an) de nombres entiers tels que 0 < a,, < b — 1. On peut écrire

n n b—1 n—1 b—1 oo
DoaphTP <Y b-1pP=—= bP <= b =1
p=1 p=1 p=0 p=0

et ceci prouve que la série Y o> | a,b~"™ est convergente et que sa somme est un
nombre réel z € [0, 1]. Réciproquement, on a le

Théoréme 2.6.1 Soit b un entier > 2, tout nombre réel x de ’intervalle (0, 1] peut
s’écrire sous la forme

2.6.1) x—Zan ,ona, €N, 0<a, <b-1;
n=1

cette écriture de x, ap, bf)elée développement de x en base b, est unique sauf pour
les x de la forme ), _,anb™™ ot N > 1, an # O, qui admettent un second
développement en base b a savoir

N-1

Zanb "+ (an - 107V + Z (b—1)b7™.

n=N+1
Preuve 1. Montrons d’abord que tout z € [0, 1[ admet un développement de la
forme (2.6.1). On construit les a,, par récurrence de telle sorte que
N
(2.6.2) z=) ab ™ +ayb ™, 000<ay <L
n=1

Pour N =1,0na0 < bz < b ; notons a; = [bz] la partie entiére de bz et posons
z, = bz —ay, soitz = a;b~! + 2;671 00 0 < z1 < 1 ;ceci prouve (2.6.2) pour
N = 1. De la méme fagon, posons ay ;1 = [bzn], TN4+1 = bTN —an41, 0na
alors y = an4107 + zN41b71, d’ob (2.6.2) pour N + 1. Etant donné que

o= e <7

n=1

etque b=" tend vers 0 quand N tend vers I'infini, la série ) > , a,b™" est conver-
gente de somme z.
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2. Supposons que x admette deux développements différents

oo oo
- ! -
x=§ anb"=§ a,b™™;
n=1 n=1

notons N le plus petit entier tel que ay # aly et pour fixer les idées, supposons
aly < an.On peut écrire

N N
T = Zanb_" +ry = Za;b—" + 7N,
n=1 n=1

[eo] oo
0<ry= > apb™ < (b-1)b" VDY P =N,
n=N+1 =0

soit 0 < rf, < b=V ; en outre )y = b~V si, et seulement si, tous les a;, sont

égauxab— 1pourn > N + 1. Onaalors ayb™™ +ry = ajyb=N +rjy, d’od
0<ay—ay=b"(ry—rn)<1

etilenrésulte que ay — aly = 1,1y = b= et ry = 0. Ceci prouve d’une part

que T = 217:1 anb™™ ol ay # 0, d’autre part que

N-1
T = Z anb™™ + (ay = )b~V + 7y
n=1

oy = b~", donc al, = b — 1 pourn > N + 1, ce qui prouve le résultat désiré.

Q.E.D.
On notera que de toute fagon un nombre réel z € [0, 1[ admet un unique déve-
loppement (2.6.1) ou les a,, € {0,...,b—1} ne sont pas tous égaux a b— 1 a partir

d’un certain rang. Quant au nombre 1, il ne peut s’écrire que Y oo ; (b — 1)b™".
Note Un développement en base 2 est appelé développement dyadique, en base 3
développement triadique, en base 10 développement décimal.

Voici une conséquence importante du théoréme précédent

Proposition 2.6.2 L’ensemble R a la puissance du continu.

Preuve Etant donné que R = J,,z[n,n + 1 et que tout intervalle [n,n + 1
est équipotent a [0, 1{, il suffit de démontrer que [0, 1{ a la puissance du continu
d’aprés la proposition 1.9.8. A toute application (a,),en de N dans {0,1}
associons le nombre réel 3°°0 1 a,3~(™*1) ; on obtient ainsi une injection de
F(N; {0,1}) dans [0, 1[ ; il en résulte que

Card [0, 1[ > Card P(N).

Inversement, tout nombre réel z € [0, 1[ admet un développement dyadique et
un seul 32 0 4,2+ ob les a, € {0,1} ne sont pas tous égaux a 1 2 partir
d’un certain rang ; on définit ainsi une injection de [0, 1[ dans F(N; {0,1}), d’od
Card [0,1[ < Card P(N). QELD.

On en déduit que R®, n > 1, a la puissance du continu, que I’ensemble
F(N; R) de toutes les suites (z,,) de nombres réels a la puissance du continu.
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Remarque 2.6.1 On peut considérer R comme un espace vectoriel sur le corps
@, soit B une base de R sur Q. Que peut-on dire du cardinal de B ? D’une fagon
générale, soit E un espace vectoriel sur un corps K et soit B une base de F ; on
définit une surjection f de (J;—; (K™ x B™) sur E en posant

n
fOvz) =) Amiod A = (\i)icicn € K, © = (2:)1<i<n € B™.
i=1
Ici, K = Q est un ensemble dénombrable ; par suite, si on avait Card B < Card N,
on aurait Card R < Card N d’aprés les propositions 1.9.5 et 1.9.6. Ceci montre que

Card B > Card N

et par conséquent, Card N < Card B < Card R ; modulo I’hypothése du continu
(remarque 1.9.1), on a donc dimgR = Card R.

Exercice 2.6.1 Montrer que I’ensemble R — Q des nombres irrationnels a la puissance du continu
[utiliser I’exercice 1.9.4].

Exercice 2.6.2 Ensemble triadique de Cantor De I’intervalle fermé [0, 1], on enleve le tiers cen-
tral ouvert B; = Eq; =]%, %[ L’ensemble [0, 1] — E; est la réunion des deux intervalles fermés

[0, ] et [Z,1] dont on enldve les tiers centraux ouverts Ez1 =)3, 3[ et Ez2 =]F, 5. On pose

E> = E3; U E3; et on procéde de méme avec [0, 1) — E U E». Par récurrence, on définit ainsi, pour
7n—1

toutn > 1, 2"~V intervalles (En;);<;<on-1 ;0npose En = U2, En;et

(>}
C =[0,1] = |J En(ensemble de Cantor.)

n=1

1. Montrer que I’ensemble de Cantor est compact.

2. Tout nombre réel € [0, 1] admet au moins un développement triadique > 50 ; 3™ ™ ol
an € {0,1,2}, qu'on écriraz = 0.a1 ... Qn . ... Si £ admet un développement triadique ne conte-
nant pas le chiffre 1, alors ce développement est unique. Montrer que I’intervalle E,,; est de la forme
10.a1...an-11,0.01...an—12[avec a; € {0, 2} et qu’inversement tout intervalle de cette forme
est un intervalle E,,;. En déduire que = € [0, 1] appartient a C'si, et seulement si, ¢ admet un déve-
loppement triadique ne contenant pas le chiffre 1.

3. En déduire une bijection de I’ensemble {0, 2}”' sur C et que C a la puissance du continu.
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B — Espaces topologiques

Topologie définie par une distance

La définition 2.3.1 d’une suite convergente sur R fait intervenir essentiellement la
distance usuelle d(z,y) = |z — y| de deux nombres réels. Cette distance posséde
des propriétés qui ont été constamment utilisées précédemment telles que 1’inéga-
lité triangulaire ; nous allons prendre ces propriétés comme axiomes d’une dis-
tance sur un ensemble quelconque X, ce qui nous permettra de définir une notion
de convergence sur X. On obtient ainsi la notion d’espaces métriques.
Définition 2.7.1 Sur un ensemble X, on appelle distance une application
d: X x X — Ry vérifiant
(D1) Pour tout z,y € X, d(z,y) = d(y, z).
(D2) Pourtout z,y € X, d(z,y) = 0 si, et seulement si, x = y.
(D3) Pourtout z,y,z € X, d(z,z) < d(z,y) + d(y, 2).

L’inégalité (D3) s’appelle I’inégalité triangulaire.

Un ensemble X muni d’une distance est appelé un espace métrique ; le nombre
d(z,y) est appelé la distance de z et y.

On appelle boule ouverte (resp. boule fermée, sphére) de centre
a € X etderayon r > 0, I’ensemble B(a;7) = {z € X;d(a,z) < r}
(resp. B'(a;7) = {z € X ; d(a,z) <r}, S(a;r) = {x € X; d(a,z) =7}).
Définition 2.7.2 On dit qu’une suite (z,,) de X converge vers x € X si
(27.1) (Ve > 0)(3n € N)(Vp € N)(p > n = d(z,z,) < ¢).
On dit alors que x est la limite de la suite (x,) et on écrit = limy 00 ZTn.

Si une suite () est convergente, sa limite est déterminée de fagon unique. En
effet, si la suite (z,,) converge 2 la fois vers z et y, pour tout e > 0, il existe n € N
tel que d(z,z,) < €/2etd(y,z,) < €/2 pour p > n, d’ob (inégalité triangulaire)
d(z,y) < €et, ceci étant vrai quel que soite > 0, d(z,y) = 0d’od z = y d’apres
(D2).

Exemple 2.7.1 On définit sur R une distance en posant d(z, y) = |z—y| ; ladroite
réelle sera toujours, sauf mention expresse du contraire, munie de cette distance.
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La définition 2.7.2 des suites convergentes sur R pour cette distance coincide avec
la définition antérieure 2.3.1. On notera par ailleurs que

B(a;r) =la—r,a+r[et B'(a;r) = [a — 1,0 + 7).

Exemple 2.7.2 Espace discret Etant donné un ensemble X, on définit une dis-
tance sur X, appelée métrique discréte, en posant d(z,y) = 1siz # y et
d(z,z) = 0. Muni de cette distance, X est appelé un espace discret. Il n’est
pas difficile de caractériser les suites convergentes d’un tel espace. En prenant
0 < € < 1, on constate qu’une suite (z,,) converge vers x si, et seulement si, il
existe n € N tel que , = z pour p > n ; les suites convergentes sont donc les
suites stationnaires a partir d’un certain rang.

Comme nous I’avons fait sur R, on peut définir les notions de parties fermées,
puis de parties ouvertes.

Définition 2.7.3 Une partie A de X est dite fermée si la limite de toute suite
convergente de A appartient a A. Une partie A de X est dite ouverte si son com-
plémentaire X — A est fermé.

Notons O’ ’ensemble des parties fermées de X ; la proposition 2.5.2 vaut en-
core : la démonstration de cette proposition n’ utilise en effet qu’une seule propriété
des suites convergentes, a savoir que toute sous-suite d’une suite convergente vers
z converge aussi vers z. L’ensemble O des parties ouvertes de X posseéde donc les
propriétés (O1), (O2) et (O3) de la proposition 2.5.7.

Voici des exemples importants de parties ouvertes et de parties fermées.

Proposition 2.7.1 Dans un espace métrique, toute boule ouverte est ouverte et
toute boule fermée est fermée ainsi que toute sphére.

Preuve 1. Soit B’(a; ), > 0, une boule fermée. Soit () une suite convergente
vers z telle que d(a,z,) < 7 pour tout n € N ; montrons que d(a,z) < 7,
ceci prouvera qu’une telle boule est fermée. Soit € > 0, il existe n € N tel que
d(z,zp) < €pourp > n,d’od

d(a,z) < d(a,zp) + d(zp,z) < T+,
soit d(a,z) < + € pour tout € > 0, ce qui prouve que d(a,z) < 7.

2. Montrons que toute boule ouverte B(a;r), r > 0, est ouverte. Il s’agit de vé-
rifier que X — B(a, 7) est fermé, c’est-a-dire que pour toute suite (z,,) convergente
vers z telle que d(a, x,) > r alors d(a, ) > 7. Avec les notations précédentes, on
a en effet

r < d(a,z,) < d(a,z) + d(z,zp) < d(a,z) + € pour p > n,
d’ol d(a,z) > 7 — € pour tout € > 0, soit d(a,z) > r, ce qui prouve le résultat
voulu.
3. On en déduit que toute sphere est fermée vu que

S(a;r) = B'(a;r) N (X — B(a;T)). QED.
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Exemple 2.7.3 Si X est un espace discret, on a
B(a;r) = {a}lorsque 0 <7 < 1;
il en résulte que {a} est ouvert ; en utilisant (O;), toute partie de X est donc

ouverte. Autrement dit, O = P(X) et par suite O’ = P(X) : toute partie est a la
fois ouverte et fermée.

On peut alors donner une description des ouverts d’un espace métrique ana-
logue a celle des ouverts de R.

Proposition 2.7.2 Soit O une partie d’un espace métrique X, les propriétés sui-
vantes sont équivalentes.

1. O est une partie ouverte.

2. Pour tout z € O, il existe ry > 0 tel que B(z;7;) C O.

3. O est une réunion de boules ouvertes.

Preuve 1 = 2 Soit O un ouvert de X et soit z € O, montrons que O contient
une boule ouverte (non vide) centrée au point z en raisonnant par 1’absurde. Sup-
posons que, pour tout € > 0, B(z;¢) rencontre X — O ; en prenant e = 1/n
(n > 1), B(z;1/n) N (X — O) est non vide et il existe donc z,, € X — O tel que
d(z,z,) < 1/n ; on construit ainsi une suite (z,) de X — O qui converge vers
et, X — O étant fermé, on a donc £ € X — O, ce qui est contraire a I’hypothése.

2= 3O0naenetfet O = {J,co B(z; 7).

3 = 1 vu la proposition précédente et (O1). QED.

Notons O(z) I’ensemble (non vide) des ouverts de X qui contiennent un point
z. La définition 2.7.2 d’une suite convergente vers z est alors équivalente a

212 (VO € O(x))(3n € N)(Vp > n = z, € O).

En effet, si la suite (x,,) converge vers z et si O € O(x), il existe r; > 0 tel que
B(z;r;) C O d’od B'(z;¢) C B(z;ry) C Osie =171;/2 ;d’aprés (2.7.1), on a
d(z,zp) < € pour p > n, c’est-a-dire z, € B'(z;¢€), d’od z, € O pour p > n.
Réciproquement, supposons (2.7.2) vérifié, en prenant O = B(z;€), on obtient
xp € B(z;¢€) pour p > n,d’ou d(z,z,) < &, ce qui prouve (2.7.1).

Ceci montre que la définition d’une suite convergente vers x n’utilise que les
ouverts qui contiennent . En outre, on constate que la propriété (2.7.2) est encore
vraie si on substitue a ’ouvert O € O(z) toute partie de X contenant un tel ouvert.
Ceci nous amene a la définition suivante.

Définition 2.7.4 Soir X un espace métrique et soit x un point de X. Une partie V
de X est appelée un voisinage de x si V' contient un ouvert O qui contient .

Dire que V est un voisinage de z signific donc que V' contient une boule ou-
verte non vide centrée au point z. On notera V(z) I’ensemble de tous les voisinages
de z. La définition d’une suite convergente vers x peut alors s’écrire

2.17.3) (VW eV(z)(FneN)(Vp=>n=>z, V).

La notion de voisinage permet de caractériser les ouverts de X ; on a en effet
la
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Proposition 2.7.3 Une partie O de X est ouverte si, et seulement si, pour tout &
de O, O est un voisinage de x.

Preuve La condition est nécessaire d’apres la définition méme d’un voisinage du
point z. Réciproquement, supposons O € V(z) pour tout z € O ; alors il existe
un ouvert Uy tel que z € U, C O, d’od O = {J,¢o Uz et, vu (O1), ceci prouve
que O est ouvert. Q.E.D.

Exemple 2.7.4 Si X est un espace discret, on a V(z) = {A C X;z € A}
puisque {z} est ouvert.

A ce stade de I’exposé, il est utile de marquer une pause pour analyser la
construction que nous venons de faire. La donnée d’une distance nous a permis
de définir une notion de suite convergente ; bien entendu, il ne saurait étre ques-
tion de reconstruire la distance a partir de la seule donnée des suites convergentes :
deux distances différentes (par exemple d et 2d) peuvent conduire aux mémes
suites convergentes. En d’autres termes, un espace métrique posseéde une structure
plus fine que la structure définie par la seule donnée des suites convergentes. C’est
pourtant cette derniére structure qui nous intéresse et qui a permis de définir les
parties fermées et, ce qui est équivalent par passage au complémentaire, les par-
ties ouvertes ; enfin, nous avons exprimé la convergence d’une suite uniquement
en termes d’ouverts : c’est la définition (2.7.2). Par conséquent, dans un espace
métrique la donnée des suites convergentes détermine la famille O des ouverts et
réciproquement ; dans des espaces plus généraux, il n’est plus possible de définir
les parties fermées d’une fagon aussi simple. Par contre, les définitions (2.7.2) et
(2.7.3) pourront toujours étre utilisées pour définir la notion de suite convergente.
Ceci conduit a porter une attention spéciale a I’ensemble V(z) des voisinages de =
et il est en fait naturel, pour définir la convergence d’une suite vers x, de s’adresser
a un objet attaché au point . La définition (2.7.3) n’est cependant guere satisfai-
sante du point de vue structural, car elle établit une relation entre deux objets d’une
nature différente, a savoir la suite (), c’est-a-dire une application de N dans X,
et I’ensemble V(x), c’est-a-dire une partie de P(X). En fait, 1’objet de référence
V(z) devrait par excellence converger vers  ; nous verrons qu’il est possible en
effet de développer un formalisme pour lequel les objets susceptibles de converger
et les objets de référence sont de méme nature ; ces objets, appelés filtres, seront
des ensembles de parties : la notion de convergence d’une suite apparaitra alors
comme un cas particulier d’une notion plus générale, celle de convergence des
filtres.

Le filtre des voisinages
Définition 2.8.1 Un filtre sur un ensemble X est un ensemble F de parties de X

vérifiant les propriétés suivantes
(F1) Pourtout A€ Fettout BD A onaBe€G.
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(F2) Pourtout AcFetBeF,onaANBeT.
(F3) 0gFer X €3

11 résulte de (F3) qu’un filtre est un ensemble non vide de parties non vides
de X ; il n’existe donc pas de filtre sur I’ensemble vide. La propriété (F>) montre
que toute intersection finie d’ensembles appartenant 2 F appartient encore a F ;
une telle intersection est donc non vide d’apres (F3).

Exemple 2.8.1 Si A est une partie non vide d’un ensemble X, I’ensemble des
parties de X qui contiennent A constitue un filtre sur X ; en particulier, si X est
non vide, ¥ = { X} est un filtre.

Exemple 2.8.2 Le filtre de Fréchet Si X est un ensemble infini, I’ensemble des
complémentaires des parties finies de X est un filtre sur X. Lorsque X = N, ce
filtre est appelé filtre de Fréchet ; cet exemple est important car il permettra de
faire le lien entre la notion de suite et la notion de filtre.

Exemple 2.8.3 Soit X un espace métrique et soit z € X, alors I’ensemble V(z)
des voisinages de z est un filtre sur X. En effet, soit V € V(z) et W D V il
existe un ouvert O telque z € O C V,d’o z € O C W, ce qui prouve que W
est un voisinage de z ; (F) est donc vérifié. Quant a (F3), soit V1, V2 € V(z), il
existe des ouverts O; telsque z € O; C V3, i =1,2,d’o0z € O N0, C V1NV,
et, O1 N Oy étant ouvert d’aprés (O2), V1 N V2 est un voisinage de z, ce qui
prouve (F). Enfin, il est clair que § ¢ V(z) car tout voisinage de x contient z et
X € V(z) car X est ouvert d’apres (O3).

Exercice 2.8.1 Construire tous les filtres sur un ensemble fini [si F est un tel filtre, remarquer que
Nares M € 5.

Nous sommes maintenant en mesure de donner la définition générale d’une
structure topologique.

Définition 2.8.2 Une structure topologique T sur un ensemble X est définie par
la donnée, pour tout x € X, d’un filtre V(x), appelé filtre des voisinages du point
x, vérifiant les propriétés suivantes

(V1) PourtoutV e V(z),onazx V.

(Vo) Pour tout V. € V(z), il existe W € V(x) tel que, pour tout y € W, on ait
V eV(y).

Si X est muni d’une structure topologique T, on dit aussi que X est muni d’une
topologie T et X est appelé un espace topologique ; les ensembles de V(z) sont
appelés les voisinages du point z.

Voici quelques commentaires sur cette définition. L’axiome (F1) montre que
toute partie contenant un voisinage de z est encore un voisinage de z ; (F2) montre
que toute intersection finie de voisinages de z est un voisinage de = ; (F3) montre
que I’espace X lui-méme est un voisinage de tout point ; I’axiome (V1) lie le filtre
V(z) et le point .
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Quant a I’axiome (V2), il établit un lien entre les filtres des voisinages de points
différents ; cet axiome est évidemment esentiel pour I’obtention d’une structure lo-
cale intéressante. Pour mieux comprendre cet axiome (V2), introduisons la termi-
nologie suivante. Donnons-nous sur un espace topologique X une relation R(z) ;
nous dirons que la relation R(z) est vraie lorsque z est suffisamment voisin d’un
point ¢ € X s’il existe un voisinage V de a tel que R(x) soit vraie pour tout
z € V. L'axiome (V2) peut alors s’exprimer de la fagon suivante : soit V' un voi-
sinage de z, alors V' est encore un voisinage de tout point suffisamment voisin du
point .

Exemple 2.8.4 Une structure topologique est donc définie par la donnée d’une
application V : X — P(P(X)) vérifiant des axiomes de la forme

Vz)(zeX=>..).

Si X est I’ensemble vide, la seule application de X dans P(P(X)), a savoir la
fonction vide (exemple 1.2.1), satisfait a ces axiomes ; il existe donc une topologie,
et une seule, sur ’ensemble vide.

Exemple 2.8.5 Topologie grossiére On définit une topologie sur un ensemble X
en posant V(z) = {X }; cette topologie est appelée topologie grossiére ou topolo-
gie chaotique. Pour cette topologie le seul voisinage d’un point z est donc I’espace
X tout entier.

Exemple 2.8.6 Soit X un espace métrique, montrons que I’application z — V(z)
définit une topologie sur X. Nous savons déja (exemple 2.8.3) que V(z) est un
filtre. La propriété (V1) est trivialement vérifiée. Quant a (V5), soit V € V(z) ;
alors il existe € > 0 tel que B(z;€) C V ; on peut prendre W = B(z;€) vu
que cette boule est ouverte. On définit ainsi une structure topologique sur X ; un
espace métrique sera toujours muni de cette topologie, dite associée a la distance.
Par exemple, la droite réelle R sera toujours munie, sauf mention expresse du
contraire, de la topologie associée 2 la distance d(z,y) = |z — y| ; muni de cette
topologie, R est parfois appel€ la droite numérique. On notera que deux distances
différentes (par exemple d et 2d comme nous I’avons déja indiqué) sur un méme
ensemble peuvent définir la méme topologie, on dit alors que ces distances sont
topologiquement équivalentes, mais tant qu’on ne s’intéresse qu’aux propriétés
topologiques de I’espace, le choix particulier de la distance compatible avec la
topologie (c’est-a-dire définissant la topologie de 1’espace) importe peu.

Exemple 2.8.7 Topologie discréte Soit X un espace discret (exemple 2.7.2). La
topologie associée a la métrique discréte est appelée topologie discréte.

Remarque 2.8.1 Dans un espace topologique, il n’existe pas en général d’outil
pour mesurer la proximité de deux points de I’espace : dire qu’un point y est plus
voisin ou plus prés d’un point x qu’un autre point z n’a a priori aucune signifi-
cation. La notion de distance permet de remédier a ce défaut, mais nécessite de
restreindre la catégorie des espaces étudiés : une topologie donnée ne pourra pas
toujours étre définie par une distance. Par exemple, si Card X > 2, la topologie
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grossiere sur X ne peut étre définie par une distance ; en effet, s’il existait une
telle distance d, prenons deux points z,y € X, z # y, alors 7 = d(z,y) > Oet
la boule ouverte B(z;r) est un voisinage de x distinct de X, ce qui est absurde,
X étant le seul voisinage de z. Ceci conduit a la définition suivante : un espace
topologique sera dit métrisable, si sa topologie peut étre définie par une distance.
Comme nous le verrons a diverses reprises, les espaces métrisables possedent des
propriétés topologiques particuliéres.

La notion de voisinage d’un point se généralise aisément de la facon suivante.

Définition 2.8.3 Soit A une partie non vide d’un espace topologique X, une partie
V de X est appelée un voisinage de A si V est un voisinage de tout point de A.

Nous noterons V(A) I’ensemble des voisinages de A. On a alors la

Proposition 2.8.1 L’ensemble V(A) des voisinages d’une partie non vide A d’un
espace topologique X est un filtre.

Preuve Vérifions (F1). Soient V. € V(A) et W D V, V est un voisinage de
tout point a € A et il en est donc de méme de W vu que V(a) vérifie (F}), ceci
prouve que W € V(A) et il en résulte que V(A) vérifie (Fy). Vérifions (F3).
Soient V;,V2 € V(A), alors pour tout a € A, V; et V, sont des voisinages de
a, donc V3 N V; est un voisinage de a car V(a) vérifie (F3) ; ceci prouve que
Vi NV € V(A) etil en résulte que V(A) vérifie (F3). Enfin, on a @ ¢ V(A) car
tout voisinage de A contient A d’aprés (V1) et X € V(A) car X est un voisinage
de chacun de ses points d’apres (F3). Q.E.D.
Dans I'utilisation pratique des filtres, on peut trés souvent se restreindre a la
considération de sous-ensembles convenables, appelés bases de filtre, dont voici la
définition.
Définition 2.8.4 Soit F un filtre, on dit qu’un sous-ensemble B de F est une base
du filtre F si tout ensemble de F contient un ensemble de ‘B.
La connaissance d’une base B d’un filtre F permet de reconstruire le filtre ; on
aen effet d’apres (Fy)
2.8.1) F={MCX;(3B)(BeBetBC M)}.

Si B est une base du filtre F, on dit que B engendre F. Deux bases de filtre diffé-
rentes B et B’ peuvent évidemment engendrer le méme filtre ; on dit alors que ces
bases de filtre sont équivalentes. Pour qu’il en soit ainsi, il faut et il suffit que tout
ensemble de B contienne un ensemble de B’ et que tout ensemble de B’ contienne
un ensemble de B.

Le filtre défini a I’exemple 2.8.1 admet pour base ’ensemble {A}. Une base
du filtre de Fréchet est constituée par I’ensemble (S(n)),en Ol

(2.8.2) Sn)={peN;p>n}.
Dans un espace topologique, une base du filtre V(z) est appelée un systéme fon-

damental de voisinages de x ; par exemple, pour la topologie discréte, I’ensemble
{z} est un systéme fondamental de voisinages de z.
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Dans un espace métrique, I’ensemble (B(z;7)),->0 des boules ouvertes cen-
trées au point  constitue un syst¢me fondamental de voisinages du point z ; il en
est de méme de I’ensemble des boules fermées (B’(z;7))r>0, Vu les inclusions
B(z;r) C B'(z;r) et B'(z;7/2) C B(z;r). On peut préciser ceci de la fagon
suivante.

Proposition 2.8.2 Dans un espace métrique, I’ensemble dénombrable des
boules ouvertes (B(z;1/n))n>1 et l'ensemble dénombrable des boules fermées
(B'(z;1/n))n>1 constituent des systémes fondamentaux de voisinages du point x.
Preuve En effet, pour tout € > 0, il existe un entiern > 1telque 0 < 1/n < ¢,
d’ou B(z;1/n) C B(z;e) et B'(z;1/n) C B’(x;¢) ; tout voisinage de x contient
donc une boule ouverte de la forme B(z;1/n) et une boule fermée de la forme
B'(z;1/n). Q.ED.

Il est évidemment utile d’avoir une caractérisation des bases de filtre.
Proposition 2.8.3 Soit B un ensemble non vide de parties non vides d’un en-
semble X. Pour qu’il existe un filtre (il est alors unique) sur X dont B en soit
une base, il faut et il suffit que
(2.8.3) lintersection de deux ensembles de B contienne un ensemble de B.

Preuve Observons d’abord qu’une base de filtre est nécessairement un ensemble
non vide de parties non vides d’aprés (F3). Notons ensuite que la condition (2.8.3)
est nécessaire d’apres (F3). Réciproquement, supposons cette condition réalisée ;
s’il existe un filtre F tel que B en soit une base, ce filtre est nécessairement donné
par la formule (2.8.1). Vérifions que cette formule définit bien un filtre F : (F})
est vérifi€ d’aprés la définition méme de F, (F3) résulte de la condition (2.8.3) et
F est un ensemble non vide de parties non vides, car il en est ainsi de B, ce qui
prouve (F3). Il est clair enfin que B est une base de ce filtre F. Q.E.D.

Exemple 2.8.8 Filtre des sections Soit  un ensemble ordonné filtrant, c’est-a-
dire tel que toute partie a deux éléments soit majorée ; supposons en outre I non
vide. Considérons alors I’ensemble des sections
S@)=[i,» [={jel;j>1i}onidécritl.

Vérifions que cet ensemble est une base de filtre sur I : cet ensemble est un en-
semble non vide (car I est non vide) de parties non vides (car i € S(2)) et, étant
donné i,j € I,ilexiste k € I'tel que i < ketj < k,d’ou S(¢) N S(5) D S(k)
ce qui prouve (2.8.3). L’ensemble (S(%));cr est donc une base de filtre engendrant
un filtre appelé filtre des sections associ€ a I’ensemble filtrant 1. On notera que le
filtre de Fréchet est exactement le filtre des sections associé a I’ensemble filtrant N
muni de I’ordre usuel.

Parties ouvertes, parties fermées

Nous avons défini la notion d’espace topologique en introduisant les filtres des voi-
sinages des points ; nous allons introduire maintenant la notion d’ensemble ouvert



2.9 PARTIES OUVERTES, PARTIES FERMEES 81

et montrer comment cette notion permet de donner une définition équivalente des
structures topologiques. Nous prendrons comme définition la caractérisation des
ouverts d’un espace métrique de la proposition 2.7.3 ; dans un espace métrique,
cette définition sera donc cohérente avec la définition antérieure.

Définition 2.9.1 Dans un espace topologique X, une partie O est dite ouverte si
elle est un voisinage de chacun de ses points.

Ceci s’écrit simplement
29.1) (Vz)(z € O = O € V(x)).

Nous noterons O ’ensemble de tous les ouverts de X ; cette famille de parties
posséde les mémes propriétés (O, ), (O2) et (O3) que I’ensemble des ouverts d’un
espace métrique.

Proposition 2.9.1 Soit O I’ensemble des ouverts d’un espace topologique X, on
a alors

(0O1) Toute réunion d’ensembles de O est un ensemble de O.

(O2) L’intersection de deux ensembles de O est un ensemble de 0.

(O3) DeOetX €O.

Preuve Notons d’abord que §) € O d’apres (1.1.6) et que X € O d’apres (F3) :
ceci prouve (O3). Vérifions (O;) : soit (O;);er une famille d’ouverts de réunion
O etsoit z € O, alors il existe ¢ € I tel que z € O;, d’od O; € V(z) car O;
est ouvert et, vu que O D O;, (F) montre que O est encore un voisinage de z ;
ceci prouve que O est un voisinage de chacun de ses points, donc est un ensemble
ouvert. Vérifions enfin (O3) : soient Oy, O deux ouverts et soit £ € O1NOq, alors
O et O, sont des voisinages de z, donc O; N O3 est un voisinage de x d’apres
(F2) et ceci prouve que O; N O est un voisinage de chacun de ses points, donc
est un ensemble ouvert. Q.E.D.

On notera qu’une réunion quelconque d’ensembles ouverts est un ensemble
ouvert, alors qu’une intersection quelconque d’ensembles ouverts n’est pas en gé-
néral un ensemble ouvert : (O2) affirme seulement la stabilit€ de O par intersection
finie.

Nous avons défini la notion d’ensemble ouvert a partir de celle de voisinages ;
la proposition suivante permet de reconstruire le filtre des voisinages d’un point,
et plus généralement d’une partie non vide, connaissant I’ensemble des ouverts.

Proposition 2.9.2 Soit A une partie non vide d’un espace topologique X. Une
partie V de X est un voisinage de A si, et seulement si, V contient un ouvert
contenant A. Autrement dit, ’ensemble des voisinages ouverts de A est une base

du filtre V(A).

Preuve 1. Considérons d’abord un voisinage V' d’un point a et montrons qu’il
existe un ouvert contenant le point a et contenu dans V. Nous poserons a priori
(en fait O est I'intérieur de V) O = {z € X; V € V(z)}. Alors, a € O car
V € V(a). Si z € O, on a par définition V € V(z), d’od x € V d’apres (V}), ce
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qui prouve que O C V. Montrons enfin que O est ouvert, c’est-a-dire que O est
un voisinage de chacun de ses points. Considérons donc un point z de O ; d’aprés
la définition de O, on a V € V(z) ; utilisons alors (V2), il existe un voisinage
W € V(z) tel que, pour tout y € W, on ait V € V(y), c’est-a-direy € O vula
définition de O ; autrement dit, il existe un voisinage W € V(z)telque W C Oeet,
d’apres (F}), il en résulte que O est un voisinage de z, ce qu’il fallait démontrer.

2. Considérons ensuite un voisinage V' d’une partie A non vide. D’aprés 1.
il existe, pour tout a € A, un ouvert O, tel que a € O, C V. Posons alors
O = U,c O ; cet ensemble est ouvert d’apres (O1) et AC O C V.

3. Réciproquement, soit V' une partie de X contenant un ouvert O contenant
A ; alors O étant un voisinage de chacun de ses points, O est en particulier un
voisinage de A et il en est donc de méme de V' qui contient O, car V(A) est un
filtre. Q.E.D.

Nous sommes maintenant en mesure de prouver la

Proposition 2.9.3 Soit O une famille de parties d’un ensemble X vérifiant les
axiomes (01), (O2) et (Os3). Alors, il existe une unique topologie sur X telle que
O soit I’ensemble des ouverts pour cette topologie.

Preuve S’il existe une topologie répondant aux exigences voulues, le filtre V()

des voisinages d’un point z ne peut étre que le filtre engendré par I’ensemble
O(z) ={0O € 0; z € O}.

Ceci prouve donc I’unicité d’une telle topologie.

1. Vérifions avant toutes choses que O(z) est une base de filtre. Or, O(x) est
un ensemble non vide (car X € O(z) d’apres (O3)) de parties non vides (car
tout ensemble de O(z) contient ) qui est évidemment stable par intersection finie
d’aprés (O3). La proposition 2.8.3 montre que O(z) est une base de filtre.

2. Notons V(z) le filtre engendré par O(z) et montrons qu’on définit ainsi une
topologie T sur X. L’axiome (V}) est trivialement vérifié. Quant a I’axiome (V2),
soit V € V() ; il existe donc un ensemble O € O tel que z € O C V ; prenons
W = O et soity € W ; d’aprés la définition de O(y), on a O € O(y), d’ou
V € V(y) d’apres la définition de V(y). Ceci prouve (V2).

3. Montrons que tout O € O est ouvert pour cette topologie 7. Il faut mon-
trer que O est un voisinage de chacun de ses points. Soit z € O, on a alors
O € O(z) C V(z), ce qui permet de conclure.

4. Montrons que tout ensemble U ouvert pour la topologie T appartient a O.
Soit z € U, U est un voisinage de z, donc il existe, d’apres la définition de V(x),
un ensemble O, € O tel que z € O, C U etil en résulte que U = ey Oz
appartient 2 O d’aprés (O1).

Les points 3. et 4. prouvent que O est I’ensemble de tous les ouverts pour la
topologie 7. Q.E.D.

Ceci prouve qu’il est équivalent, pour définir une structure topologique, de se
donner, ou bien le filtre des voisinages de chaque point, ou bien I’ensemble de tous
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les ouverts, le lien entre la notion de voisinage et celle d’ouvert étant assur€ par la
définition 2.9.1 et la proposition 2.9.2.

Pour définir une topologie il n’est pas nécessaire de se donner la famille de
tous les ouverts, il suffit de se donner une sous-famille convenable dont voici la
définition.

Définition 2.9.2 Dans un espace topologique X, un ensemble B de parties ou-
vertes est appelé une base de la topologie de X si tout ouvert est une réunion
d’ensembles de B.

Vu la propriété (O, ), I’ensemble O est alors I’ensemble de toutes les réunions
d’ensembles de B. Il en résulte ceci : sur un ensemble X, soit B un ensemble de
parties ; s’il existe sur X une topologie telle que B en soit une base, alors cette
topologie est parfaitement déterminée, un ensemble sera ouvert si, et seulement
si, c’est une réunion d’ensembles de B ; nous dirons alors que B est une base de
topologie. On a le critere suivant.

Proposition 2.9.4 Soit B un ensemble de parties d’un ensemble X, pour que B
soit une base de topologie il faut et il suffit que
(By1) lintersection de deux ensembles de ‘B soit une réunion d’ensembles de ‘B.
(B2) X = UBE’B B.
Preuve Ces conditions sont nécessaires d’apres (O2) et (O3). Montrons qu’elles
sont suffisantes. Soit O I’ensemble des réunions d’ensembles de B et soit (O;);cr
une famille d’ensembles de O ; on a donc O; = U].GJ; Bj ou B; € B, d’on
Uier Oi = Ujey Bj € 0, avec J = ;¢ J; d’apres (1.3.5) et ceci prouve (04).
Soient 01,02 € O,onadonc O; = UiGI Bi, Oy = UjGJ Bj, ou B;, Bj € B,
d’od O1 N Oy = U(m.)elx‘,B.i N Bj, d’apres (1.3.6) ; en utilisant (B;), puis
I’associativité (1.3.5) de la réunion, on en déduit que O; N O2 € O, ce qui prouve
(O2). Enfin, on a @ = {J;cg Bi € O et X € O d’apres (Bz), ce qui prouve (O3).
Q.ED.

Voici quelques exemples de ces notions.

Si X est un ensemble muni de la topologie grossiére, ona O = {0, X}. Si X
est muni de la topologie discrete, on a O = P(X) et une base de la topologie est
donnée par la famille ({z}).c.x. La proposition 2.7.2 montre que, dans un espace
métrique, I’ensemble des boules ouvertes constitue une base de la topologie ; en
particulier, sur R I’ensemble des intervalles ouverts |a, b[, ob a et b décrivent R,
est une base de la topologie de R.

Indiquons enfin une derniere notion importante.

Définition 2.9.3 Dans un espace topologique, un ensemble est dit fermé si son
complémentaire est ouvert.

Nous noterons O’ I’ensemble des parties fermées de X. On notera que dans
un espace topologique, la partie vide et la partie pleine sont des parties  la fois
ouvertes et fermées ; il peut y en avoir d’autres : par exemple, pour la topologie
discrete toutes les parties sont a la fois ouvertes et fermées.
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D’apres la proposition 2.9.1, I’ensemble O’ posséde les propriétés suivantes.
P

Proposition 2.9.5 Soit O’ I’ensemble des parties fermées d’un espace topologique
X, onaalors
(O1) Toute intersection d’ensembles de O' est un ensemble de O'.
(0%) La réunion de deux ensembles de O' est un ensemble de O'.
0) e eaXel.
D’aprés la proposition 2.9.3, on a le résultat suivant.

Proposition 2.9.6 Soit O’ un ensemble de parties d’un ensemble X vérifiant les
propriétés (01), (03) et (03), alors il existe sur X une unique topologie telle que
O’ soit I’ensemble de tous les fermés pour cette topologie.

Exercice 2.9.1 Montrer que la topologie d’un espace métrique fini est la topologie discrte.

Exercice 2.9.2 Construire toutes les topologies sur un ensemble 4 deux ou trois éléments [on doit en
trouver 4 et 29 respectivement].

Exercice 2.9.3 Topologie de ’ordre Soit X un ensemble totalement ordonné, montrer que I’en-
semble des intervalles ouverts (limités ou non), c’est-a-dire I’ensemble des intervalles |a, b, | <, a/[,
Ja,— [et X, est une base de topologie sur X, dite topologie de I’ordre. Montrer que tout intervalle
fermé est fermé pour cette topologie. La topologie de I’ordre sur R ou R (exemple 2.13.5) est la topo-
logie usuelle.

Exercice 2.9.4 Soit X un espace topologique, montrer qu’un ensemble B de parties ouvertes est une
base de la topologie de X si, et seulement si, pour tout z € X I’ensemble 8; = {O € B; z € O}
est un systéme fondamental de voisinages de z.

Exercice 2.9.5 Soit X un espace topologique, on dit qu’une application f : X — R présente un
minimum local en un point & € X s’il existe un voisinage V de a tel que f(a) < f(z) pour tout
z € V' ; un minimum local est dit strict si f(a) < f(z) pourtoutz € V — {a}.

On suppose que X admet une base de topologie dénombrable.

1. Montrer que I’ensemble A des points a € X ol f présente un minimum local strict est dénom-
brable [soit (B;,) une base de latopologie, pour tout a € Al existe ntel que a € Bp et f(a) < f (z)
pour z € By, # a ; en déduire une injection de A dans N].

2. Soit B I’ensemble des points a € X od f présente un minimum local, montrer que f(B) est
dénombrable.

Intérieur, adhérence

Définition 2.10.1 Soit X un espace topologique et soit A une partie de X.

1. Un point x de X est dit intérieur a A si A est un voisinage de x ; ’ensemble
A des points intérieurs a A s ‘appelle Iintérieur de A.

2. Un point x de X est appelé un point adhérent a A si tout voisinage de x
rencontre A ; I’ensemble A des points adhérents a A s’appelle I’adhérence de A.

L’intérieur de A sera également noté Int A.
Etudions d’abord la notion de point intérieur. Dire que le point z est intérieur
a A signifie qu’il existe un ouvert O tel que z € O C A ; un ouvert étant un
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voisinage de chacun de ses points, tout point de O est intérieur a A et, par suite,
I’intérieur de A est la réunion de tous les ouverts contenus dans A. D’aprés (O1),
Pintérieur de A est un ensemble ouvert et c’est le plus grand ouvert contenu dans
A.

On en déduit de suite les propriétés suivantes.

(2.10.1) AcC B= Ac B, pourtout A, B € P(X).

(2.10.2) Une partie A est ouverte si, et seulement si, A = A.

Proposition 2.10.1 Soit (A;);c1 une famille de parties, on a

(2.103) Int () A; C ()Int A; et | JInt A; C Int | A;.
i€l i€l i€l i€l

En outre, la premiére inclusion devient une égalité lorsque I est un ensemble fini.

Preuve Ces inclusions résultent de (2.10.1) car tout A; contient I’intersection de
la famille et est contenu dans sa réunion. Montrons ensuite que

Int ANnInt B C Int (AN B),

ceci prouvera la derniére assertion. Or, A N B est un ouvert contenu dans A N B,
donc contenu dans I’intérieur de A N B, ce qui permet de conclure. Q.E.D.

Exercice 2.10.1 Donner un exemple (sur R) od P’inclusion A U B C Int (A U B) est stricte.

Nous obtiendrons les premieéres propriétés de 1’adhérence gréce a la proposi-
tion suivante.
Proposition 2.10.2 Pour toute partie A, on a
(2.104) X-A=Int(X-A)et X -IntA=X — A.
Preuve 11 suffit de démontrer la premiére égalité, la seconde s’en déduisant en
substituant X — A & A. Or, dire qu’un point z n’est pas adhérent a A signifie qu’il
existe un voisinage V' de z ne rencontrant pas A, soit V N A = () ou bien encore
V C X — A, ce qui signifie que X — A est un voisinage de z et ceci veut dire
précisément que z est un point intérieur 3 X — A, Q.ED.
On en déduit les propriétés suivantes. L'adhérence de A est I’intersection de
tous les fermés contenant A (sur R, I’adhérence de A avait été définie ainsi) et
c’est le plus petit fermé contenant A. On a, en outre

(2.10.5) AC B= ACB, pourtout 4, B € P(X).
(2.10.6) Une partie A est fermée si, et seulement si, A = A.
(2.10.7) U4icJAet[)Aic (4

i€l il i€l iel

la premiére inclusion devenant une égalité si I est fini.

Définition 2.10.2 Soit A une partie d’un espace topologique X, un point x est
appelé un point frontiére de A si tout voisinage de x rencontre a la fois A et son
complémentaire ; ’ensemble Fr A des points frontiéres s’appelle la frontiére de
A
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Un point frontiére est donc un point adhérent a A et a son complémentaire et
par conséquent FrA = ANX —A = A — A ; 1a frontiére de A est donc un
ensemble fermé. La relation précédente peut s’écrire d’apres (2.10.4)

X-FrA=IntAUInt (X — A);
les ensembles Int A et Int (X-A) étant disjoints, on en déduit la proposition sui-
vante.
Proposition 2.10.3 Soit A une partie d’un espace topologique X, alors la fron-
tiere de A, Uintérieur de A et 'intérieur de son complémentaire constituent une
partition de X.

Note L'intérieur de X — A est appel€ I'extérieur de A.
D’apres la relation Fr A = 4 — A, on notera également que

A=AUFrA

ob les ensembles A et Fr A sont disjoints : un point adhérent est soit un point
intérieur, soit un point frontiere.

Proposition 2.10.4 Soit A une partie d’un espace topologique X, alors A — A
est d’intérieur vide. Si A est un ensemble ouvert ou fermé, la frontiére de A est
d’intérieur vide.
Preuve Soit O I'intérieur de A — A. Supposons cet ouvert O non vide : soit
a € O, alors a est un point adhérent a A et O est un voisinage de ce point, donc O
rencontre A, ce qui est absurde. Ceci prouve que I’intérieur de A — A est vide.

Si A est ouvert, la fronti¢re de A, Fr A = A — A, est donc d’intérieur vide et
il en est de méme lorsque A est fermé, vu que Fr A = Fr (X-A). Q.ED.

Exercice 2.10.2 Soient A et B deux parties d’un espace topologique telles que ANB = ANB = 0,

montrer que AU B = Int (AU B).

Exercice 2.10.3 Soient A et B deux parties d’un espace topologique, si A est ouvert montrer que

ANB C AN B et donner un exemple sur R ol Iinclusion est stricte. En déduire que
ANB=4NB.

Exercice 2.10.4 Famille localement finic de fermés Une famille (A;);c s de parties d’un espace
topologique X est dite localement finie si, pour tout z € X, il existe un voisinage de z ne rencontrant
qu’un nombre fini de A;.

1. Montrer alors que U; ¢ ; As = U, As.

2. En déduire qu’une réunion localement finie de fermés est fermée.
Exercice 2.10.5 Soit A une partie d’un espace topologique, montrer que

Fr (A) C Fr (A) et Fr (A) C Fr (4)

et donner un exemple sur R o ces inclusions sont strictes.

Exercice 2.10.6 Soient A et B deux parties d’un espace topologique.
1. Montrer que

Fr(A) UFr (B) =Fr (AUB)UFr (AN B) U (Fr (A) NFr (B))
et en déduire que Fr (AU B) = Fr (A)UFr (B)siANB =0.
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2. En utilisant I’exercice 2.10.2, montrer que

Fr (AU B) =Fr(A)UFr (B)

dsqueANB=ANB=0.

Exercice 2.10.7 Axiomes de fermeture de Kuratowski Soit X un espace topologique, on pose
a(A) = A, montrer que I’application o : P(X) — P(X) vérifie les propriétés suivantes

1. a(0) =0,

2. pourtout A € P(X), A C a(A),

3. pour tout A € P(X), a(a(A)) = a(A),

4. pourtout A, B € P(X), a(AU B) = a(A) U a(B).

Réciproquement, soient X un ensemble et o : P(X) — P(X) une application vérifiant les
propriétés précédentes, montrer alors qu’il existe une unique topologie sur X telle que a(A) = A

pour tout A € P(X).

Sur un espace métrique la notion de distance permet de donner une caractéri-
sation trés simple des notions de point intérieur, point adhérent et point frontiére.
Etant donné une partie non vide A d’un espace métrique X et un point a de X, on
définit la distance de a a A par la formule

(2.10.8) d(a, A) = 1122 d(a, ).

Proposition 2.10.5 Soit A une partie non vide d’un espace métrique X et soit a
un point de X. Alors

1. Le point a est intérieur & A si, et seulement si, d(a, X — A) > 0.

2. Le point a est adhérent a A si, et seulement si, d(a, A) = 0.

3. Le point a est un point frontiére de A si, et seulement si,

d(a,A) =d(a,X — A) =0.

Preuve Dire que a est un point intérieur a A signifie que A est un voisinage de a,
c’est-a-dire qu’il existe 7 > 0 tel que B(a;7) C A et cette condition équivaut a
d(a,X — A) > r, ce qui prouve 1. Dire que a est un point adhérent a A signifie
que a n’est pas intérieur au complémentaire de A d’aprés (2.10.4) donc que
d(a, A) = 0 d’apres 1. Enfin 3. résulte de 2. d’apres la définition 2.10.2 des points
frontiéres. Q.E.D.
Note On a évidemment B(a;r) C B’(a;r) mais I'inclusion peut étre stricte : pour
la métrique discrete, on a par exemple B(a; 1) = {a} et B’(a;1) = X. De méme,
Iinclusion B(a;r) C Int B'(a;r) peut étre stricte, etc.

Définition 2.10.3 Une partie A d’un espace topologique X est dite dense dans X
ou partout dense si A = X. L’espace X est dit séparable s’il existe une partie
dénombrable partout dense.

On vérifie de suite la proposition suivante.

Proposition 2.10.6 Une partie A de X est partout dense si, et seulement si, tout
ouvert non vide rencontre A.

Exemple 2.10.1 L’espace R est séparable car Q est dense dans R.
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Voici une condition suffisante pour qu’un espace soit séparable, cette condition
étant nécessaire et suffisante dans le cas des espaces métrisables.
Proposition 2.10.7 Un espace topologique X admettant une base de topologie
dénombrable est séparable. La réciproque est vraie si X est métrisable.
Preuve Soit (B, ),cn une base dénombrable de la topologie de X ; on peut sup-
poser ces B, non vides ; en prenant un point z,, dans chaque By, on construit une
suite (z,,) partout dense d’apres la proposition 2.10.6. Réciproquement, supposons
X métrisable et séparable ; soit d une distance sur X définissant la topologie de
X et soit (a,) une suite partout dense. Vérifions alors que ’ensemble des boules
ouvertes B(a,;1/m), o n € N, m € N*, est une base de la topologie. Soit O un
ouvert de X, = € O ; il existe une boule ouverte B(z;r) (r > 0) contenu dans
O. Montrons qu’il existe n € N, m € N* tels que z € B(an;1/m) C B(z;r) :
choisissons d’abord m € N* tel que 1/m < r/2, puis n tel que d(z, a,) < 1/m;
sid(an,y) < 1/m, on aalors

d(z,y) < d(, an) +d(an,y) <2/m <1,

ce qui prouve le résultat annoncé. Il en résulte que I’ouvert O est une réunion de
boules B(ay;1/m) ce qui prouve I’assertion. QE.D.

Pour un exemple d’espace séparable n’admettant pas de base de topologie dé-
nombrable, voir I'exercice 2.17.6.

Définition 2.10.4 Soit A une partie d’un espace topologique X, un point x € A
est appelé un point isolé de A s’il existe un voisinage de x ne rencontrant A qu’au
point x. Un point d’accumulation de A est un point adhérent a A qui n’est pas un
point isolé de A.

En particulier, en prenant A = X, dire qu’un point z est isolé dans X signifie que
{z} est un voisinage de , c’est-2-dire que {z} est un ensemble ouvert.
Exercice 2.10.8 Soit X un espace topologique, on considere les propriétés suivantes

(D1) X admet une base de topologie dénombrable.

(D2) X est séparable.
(D3) Toute partie A de X, dont tous les points sont isolés dans A, est dénombrable.
(D4) Toute famille d’ouverts non vides disjoints deux a deux est dénombrable.

Montrer que (D7) = (D2) = (Da4) et (D1) = (D3) = (Da).
Exercice 2.10.9 Soit X un espace métrique, pour tout » € N* on note A, 1’ensemble des parties
A de X vérifiant la propriété
pourtoutz,y € A,z # y, onad(z,y) > 1/n.

1. Montrer que A, ordonné par inclusion est inductif.

2. Soit A;, un élément maximal de A,,, montrer que | J5>, An est partout dense.

3. En déduire que (D4) => (D2) (exercice 2.10.8) et que dans un espace métrique les propriétés
(D1) 2 (D4) sont équivalentes.
Exercice 2.10.10 1. Soit A une partie d’un espace topologique X, montrer que tout point isolé de
A est un point isolé de A.

2. Soit X la réunion de tous les sous-espaces de X sans point isolé, montrer que X3 est un
sous-espace fermé sans point isolé et que toute partie non vide de X — X; admet au moins un point

isolé.
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Exercice 2.10.11 Ensemble dérivé Soit A une partie d’un espace topologique X, I’ensemble A’
des points d’accumulation de A est appelé I’ensemble dérivé de A. Montrerque A C B = A’ C B/,
A=AUA (AUB) = A’ UB’ et AT = (A)'. En outre, si tout point de X est fermé, A” C A’
et A’ = A’ = (A).

Exercice 2.10.12 Théoréme de Cantor-Bendixon Soit A une partie d’un espace topologique X,
on dit qu’un point z € X est un point de condensation de A si, pour tout voisinage V € V(z), VN A

est non dénombrable. On note A* I’ensemble des points de condensation de A. _
1. Montrer que A C B = A* C B*, A* C A’ (exercice 2.10.11), A* = A*,

(AUB)* = A*UB*et A™ C A*.

2. Si X admet une base de topologie dénombrable, montrer que A — A* est dénombrable ; en
déduire que (A — A*)* = Qetque A* = A**.

3. En déduire que tout espace a base de topologie dénombrable s’écrit comme la réunion disjointe
de deux sous-espaces X1 et X2 ol X est fermé sans point isolé et X2 est dénombrable (théoréme de
Cantor-Bendixon).

Limites

Nous nous proposons de définir une notion de convergence pour un filtre sur un
espace topologique ; les filtres de référence seront les filtres des voisinages des
points et il s’agit donc de comparer des filtres entre eux. Or, un filtre sur un en-
semble X est une partie de P(X) ; on peut donc munir I’ensemble des filtres sur X
de I’ordre induit par I’inclusion entre parties de P(X). Ceci conduit a la définition
suivante.

Définition 2.11.1 Soient F et F' deux filtres sur un ensemble X, on dit que F est
moins fin que F' si F C F, c’est-a-dire si
(2.11.1) (VA(AeF=AeT).

SiF C F, on dit que F' est plus fin que F ; en outre, si F # F, on dit que F est
strictement moins fin que ¥ ou que JF’ est strictement plus fin que F.

Exercice 2.11.1 Soit F un filtre sur un ensemble X tel que MesM = @, montrer que X est
infini et que ¥ est plus fin que le filtre des complémentaires des parties finies de X .

Pour comparer des filtres engendrés par des bases de filtre, on utilisera la pro-
position suivante.

Proposition 2.11.1 Soient B et B’ deux bases de filtre engendrant des filtres F et
F, alors F est moins fin que F' si, et seulement si, tout ensemble de B contient un
ensemble de B'.

Preuve Si F est moins fin que 37, tout ensemble de B appartient 8 F’, donc contient
un ensemble de B’. Réciproquement, si tout ensemble de B contient un ensemble
de B/, tout ensemble de B, et par conséquent tout ensemble de F, appartient 2 F'.

QE.D.
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Exemple 2.11.1 Soit F un filtre sur un espace topologique X, alors I’ensemble
(M) pe3 est une base de filtre sur X (car M NN D M N N d’apres (2.10.7)) qui
engendre un filtre moins fin que F.

Les filtres convergeant vers un point z seront alors les filtres plus fins que le
filtre V(z) des voisinages du point z. Ecrivons explicitement la définition.

Définition 2.11.2 Soit F un filtre sur un espace topologique X. On dit que F
converge vers un point x € X, ou que x est un point limite du filtre F, si F est plus
fin que le filtre V(x) des voisinages du point x. On écrit alors x = lim .

Dire que le filtre F converge vers z signifie donc que tout voisinage V' de x appar-
tienta F.

Remarque 2.11.1 Définir une topologie sur un ensemble X équivaut donc a dé-
finir I’ensemble de tous les filtres qui convergent. La définition 2.11.2 signifie en
eftet que le filtre V() est le plus petit élément de I’ensemble de tous les filtres qui
convergent vers .

Si B est une base du filtre &, on dira bien siir que B converge vers x, ou que
est un point limite de B, si F converge vers x. D’apres la proposition 2.11.1, on a
évidemment la proposition suivante.

Proposition 2.11.2 Soit B une base de filtre sur un espace topologique X. Alors
B converge vers un point x € X si, et seulement si, tout voisinage V de x ap-
partenant a un systéme fondamental de voisinages de x contient un ensemble de
B.

Donnons quelques propriétés et exemples de ces notions. Observons d’abord
que le filtre V(z) lui-méme converge vers z et que tout filtre plus fin qu’un filtre
convergeant vers T converge aussi vers z. Précisons qu’un filtre n’a pas nécessai-
rement de point limite ; par exemple, sur un espace discret les seuls filtres conver-
gents sont les filtres des voisinages des points : en effet, si F est un filtre plus
fin que le filtre V(z), étant donné que {x} appartient a V(z) donc a &, tout en-
semble de F doit rencontrer {x} d’apres (F3), c’est-a-dire contenir le point z, ce
qui prouve que F = V(z).

Précisons également qu’un filtre peut avoir plusieurs points limites ; par exem-
ple, sur un ensemble X muni de la topologie grossiére, tout filtre converge vers
tout point puisque V(z) = {X}. Il faut donc prendre garde 2 la signification de
z = lim ¥ qui dit simplement que x est “un” point limite de F. Lorsque X est un
espace métrisable, de telles pathologies ne se produisent pas ; on a en effet la

Proposition 2.11.3 Soit X un espace métrisable et soit F un filtre sur X, alors F
admet au plus un point limite : on exprime cette propriété en disant que X est un
espace séparé.

Preuve Soit d une distance sur X définissant la topologie de X. Supposons qu’il
existe un filtre F sur X convergeant a la fois vers = et y, £ # y. Posons
r =d(z,y) > 0 ; les boules ouvertes B(z;7/2) et B(y;r/2) sont des voisinages
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de x et y respectivement, donc appartiennent 2 F. Ceci est absurde car I’intersec-
tion de ces boules est vide : s’il existait z € B(z;7/2) N B(y;r/2), on aurait
d(z,z) <r/2etd(y,z) <r/2,doud(z,y) < r, ce qui contredit la définition de
T. Q.E.D.

Pour écrire qu’une base de filtre B converge vers z dans un espace métrique,
on peut utiliser comme systéme fondamental de voisinages du point = 1’ensemble
des boules fermées centrées en ce point ; cette convergence s’écrit donc

(2.11.2) (Ve > 0)(3B € B)(B C B'(z;¢))

Nous venons de définir une notion de convergence pour ce qui concerne les
filtres. Ceci permet d’en déduire une notion de convergence pour des suites. Le
procédé est trés simple ; observons qu’une suite est une application de N dans X
et que sur N nous avons défini un filtre, le filtre de Fréchet ; si nous apprenons
a prendre I’image (directe) d’un filtre par une application, il suffira d’examiner si
I’image du filtre de Fréchet par la suite converge.

Considérons donc deux ensembles non vides X et Y et une application
f X = Y.SiFestun filtre sur X, I'image de F par f, c’est-a-dire ’ensemble
de parties f(F) = {f(M); M € F}, n’est pas en général un filtre sur Y ; si f
n’est pas surjective, Y n’appartient pas a f(F) ; nous allons montrer que f(F) est
une base de filtre. Plus généralement, on a la proposition suivante.

Proposition 2.11.4 Soit B une base de filtre sur X engendrant un filtre F, alors
f(B) est une base de filtre sur Y engendrant un filtre F' qui ne dépend que de F ;
on a en outre

2.11.3) F={McCY; f{(M)e7}.

Le filtre F' est appelé le filtre image du filtre F par I’application f.

Preuve En effet, f(B) est un ensemble non vide (car B est non vide) de parties
non vides (car Y est non vide et tout ensemble de B est non vide) ; en outre, soit
M,N € B,alors il existe P € Btelque MNN D P,d’on f(M)Nf(N) D f(P),
ce qui prouve que f(B) est une base de filtre. Une partic M’ de Y appartient au
filtre engendré F’ si, et seulement si, il existe M € B tel que f(M) C M’, c’est-
a-dire tel que M C f~1(M’), ce qui signifie simplement que f~!(M’) appartient
au filtre F. Ceci prouve la formule (2.11.3) et la proposition. Q.E.D.

Exercice 2.11.2 Soient X et Y des ensembles et f : X — Y une application surjective, montrer
que I’image par f de tout filtre sur X est un filtre sur Y.

Remarque 2.11.2 Si B; et B, sont deux bases de filtre sur X et si B; engendre
un filtre moins fin que By, il est clair que f(B;) engendre un filtre moins fin que

f(B2).

Exemple 2.11.2 Soient X un ensemble, A une partie de X eti: A — X I’injec-
tion canonique de A dans X. Si B est une base de filtre sur A, i(B) est une base
de filtre sur X ; le filtre engendré par i(B) n’est autre que le filtre engendré par B
considéré comme base de filtre sur X.
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Exemple 2.11.3 Filtre élémentaire associé a une suite Soit (z,,) une suite d’€lé-
ments d’un ensemble X et soit f : N — X I’application définie par f(n) = z,.
L’image du filtre de Fréchet par cette application est appelée filtre élémentaire
associé a la suite (z,). Une base de ce filtre est donc donnée par la famille d’en-
sembles

(2.11.4) B, = | J{zp}, od ndécrit N,
p2n

et une partie M de X appartient 2 ce filtre si, et seulement si,

(2.11.5) (In e N)(Vp e N)(p > n =z, € M),

ce qu’on exprime en disant que M contient tous les termes z,, de la suite sauf
peut-étre un nombre fini d’entre eux. Si X est un espace topologique, on dit que la
suite (x,) converge vers z, si le filtre élémentaire associé a la suite (z,,) converge
vers z ; on dit aussi que la suite (z,) tend vers 2 quand n tend vers Iinfini et on
écrit z = lim,_, o T,,. Si 8(x) est un systtme fondamental de voisinages de z,
ceci signifie donc que

(2.11.6) (VV € 8(z))(3n € N)(Vp € N)(p > n = z, € V).

Lorsque X est un espace métrique, on notera que cette définition coincide bien
avec la définition 2.7.2.

Considérons une sous-suite (z,, ) de la suite (z,,), alors le filtre élémentaire
associé€ a cette sous-suite est plus fin que le filtre élémentaire associé a la suite
(zn) comme le montre (2.11.5). Il en résulte que toute sous-suite extraite d’une
suite convergente vers £ converge aussi vers .

Exercice 2.11.3 Filtre intersection 1. Montrer que toute famille non vide (F;);¢ de filtres sur un
ensemble X admet une borne inférieure F = inf;¢ 1 F, appelée filtre intersection de la famille [prendre
F=ierFi={M C X; M € F; pour tout i € I}].

2. Si X est un espace topologique, montrer que a = lim(inf;e 1 F;) si, et seulement si,

a = lim F; pour tout i € I.

Donnons maintenant la définition générale de valeur limite d’une application

suivant un filtre.
Définition 2.11.3 Soit f : X — Y une application définie sur un ensemble X et a
valeurs dans un espace topologique Y et soit F un filtre sur X. On dit qu’un point
y € Y est une valeur limite ou simplement une limite de f suivant le filtre F si la
base de filtre f(F) converge vers y.

On écrit alors y = limg f. Ceci signifie que la base de filtre f(F) est plus fine
que le filtre V(y) ; si B est une base du filtre F et 8(y) un systéme fondamental de
voisinages du point y, ceci s’écrit donc
2.11.7) (VV € 8(y))(AM € B)(f(M) C V).

L’ inclusion f(M) C V étant équivalente 2 M C f~1(V), il est équivalent de dire
que I’image réciproque par f de tout voisinage V' € 8(y) appartient 4 F.
Voici trois exemples particulierement importants de cette notion.
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Exemple 2.11.4 Si X est un espace topologique, dire qu’une suite (z,,) converge
vers z signifie donc que x est une valeur limite de I’application n +— z,, suivant le
filtre de Fréchet.

Exemple 2.11.5 Suite généralisée Dans un ensemble X, une famille d’éléments
(z3)ier indexée par un ensemble filtrant (exemple 2.8.8) est appelée une suite gé-
néralisée. Si X est un espace topologique, on dit qu’une suite généralisée converge
vers z si x est une valeur limite de I’application ¢ — x; suivant le filtre des sections
associé A I’ensembile filtrant I. Si 8(z) est un systéme fondamental de voisinages
de z, ceci signifie vu la définition du filtre des sections

(2.11.8) (VWes)HehViel)(j>i=z; V).

Cette notion de convergence généralise celle de convergence des suites ordinaires.
Nous allons montrer que la connaissance de toutes les suites généralisées conver-
gentes détermine parfaitement la topologie de I’espace. A cet effet, montrons qu’un
point z est adhérent & une partie A si, et seulement si, il existe une suite gé-
néralisée de A qui converge vers . D’aprés (2.11.8), il est clair que la condi-
tion est suffisante. Réciproquement, soit z € A ; pourtout V € V(z), VN A
est non vide ; choisissons un point 2y € V N A. On construit ainsi une suite
généralisée (2v)yvev(z) de A en prenant pour relation d’ordre sur V(z) 1’oppo-
sée de I'inclusion, autrement dit V' < W signifie V. O W ; I’ensemble V(z)
est alors un ensemble filtrant d’aprés (F2) et il est évident que cette suite gé-
néralisée converge vers x, ce qui prouve le résultat annoncé. Ce résultat montre
qu’une partie A est fermée si, et seulement si, elle contient les limites de ses suites
généralisées qui convergent. Il en résulte que la donnée des suites généralisées
convergentes détermine O’, donc O, ¢’est-a-dire la topologie de I’espace. Ce ré-
sultat devient en général faux si I’on se restreint 4 des suites ordinaires. On ob-
tient un exemple en construisant sur un ensemble deux topologies diftérentes pour
lesquelles les suites convergentes sont les mémes. Prenons un ensemble X infini
non dénombrable. On peut définir sur X la topologie discréte T : une suite (z,,)
converge vers z pour cette topologie si, et seulement si, il existe n € N tel que
x, = 2 pour p > n. On construit une autre topologie T2 sur X en prenant pour
ensemble O ’ensemble vide et ’ensemble des complémentaires des parties dé-
nombrables de X ; on vérifie de suite les axiomes des ouverts ; les topologies T3
et T sont différentes car X n’est pas dénombrable. Soit (z,,) une suite conver-
gente vers z pour la la topologie T3 ; posons I = {n € N; z, # z}, I'’ensemble
A =, cr{zn} est dénombrable, donc X — A est un ouvert et, contenant z, c’est
un voisinage de x ; il en résulte qu’il existe n € N tel que z, € X —Apourp > n,
c’est-a-dire T, = T pour p > n et ceci prouve bien que les suites convergentes
pour cette topologie T sont, comme pour la topologie T, les suites stationnaires
a partir d’un certain rang.

Exemple 2.11.6 Soient X, Y des espaces topologiques et une application
f + X — Y.Si f admet une limite y suivant le filtre V(a) des voisinages
d’un point @ € X, on dit que f(z) tend vers y quand z tend vers a et on écrit
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y = limy_, f(z). En notant 8(a) et 8(y) des systemes fondamentaux de voisi-
nages de a et y respectivement, ceci signifie donc

(2.11.9) (VV € 8(y)) (AW € 8(a))(F(W) C V).

On peut aussi exprimer cette convergence en disant que I’image réciproque par f
de tout voisinage de y est un voisinage de a.

Si f(z) tend vers y quand z tend vers a, alors, pour toute suite (z,) de X
convergeant vers a, la suite (f(z,)) converge vers y : en effet, le filtre élémentaire
F associé a la suite (z,,) est plus fin que le filtre V(a), donc le filtre engendré par
f(F), qui n’est autre que le filtre élémentaire associé  la suite (f(z,)) est plus fin
que f(V(a)), donc converge a fortiori vers y.

Exercice 2.11.4 1. Soient B; et B des bases de filtre sur des ensembles X1 et X2, notons F; le
filtre engendré par B;, montrer que By X Bz = {B1 X Bz; B; € B;} est une base de filtre sur
X1 X X2 engendrant un filtre F qui ne dépend que de F; et F».

2.0n prend X1 = X2 = N et, pour filtres F1 et Fa, les filtres de Fréchet ; montrer que
([n, +oo[2)neN est une base du filtre F et que ce filtre est strictement plus fin que le filtre ' des
complémentaires des parties finies de N2,

3. Soit f : N2 — X une application 2 valeurs dans un espace topologique X, on pose
fm,n) =zmmpet f = (Zm,n) (m,n)en2 €st appelée une suite double. Montrer qu’un point x € X
est une valeur limite de f suivant F (resp. F') si, et seulement si,

(VV € V(z))(3n € N)(V(p,q) EN2)(p > netq>n = 2,4 € V)
et respectivement
(YV € V(2))(3n € N)(¥(p,q) € N?)(p > noug>n= Zpq €V)

Exercice 2.11.5 Soit F un filtre sur un ensemble X, on définit une relation d’ordre sur F en posant
M< NsiM>DN.

1. Montrer que F est un ensemble filtrant.

2. Pour tout M € &, soit zps un élément de M ; montrer que le filtre associé 2 la suite généralisée
(znr) mes est plus fin que F.

Espaces a base dénombrable de voisinages

Venons-en a une remarque tout a fait fondamentale qui montrera que pour certains
espaces topologiques la considération des suites est suffisante.

Considérons d’abord sur un ensemble X un filtre F admettant une base dénom-
brable (B, )nen €t posons Cy = Bg et Cp, = Cp—1 N By, pour n > 1 ; on obtient
ainsi une base dénombrable décroissante (Cp,)nen du filtre F dont I’intérét est le
suivant ; choisissons un point x,, dans chaque ensemble C,,, on construit ainsi une
suite (z,,) dont le filtre €lémentaire est plus fin que F, vu que z, € C, C Cy, pour
tout p > n, c’est-a-dire UpZn {zp} C Chy.

En particulier, dans un espace topologique X, si un point a admet un systéme
fondamental dénombrable de voisinages (Vy)nen, qu’on peut supposer décrois-
sant d’aprés ce qui précede, en prenant un point x,, dans chaque V,,, on construit
une suite qui converge vers a.



2.12 ESPACES A BASE DENOMBRABLE DE VOISINAGES 95

Exercice 2.12.1 1. Montrer qu’un filtre 2 base dénombrable est I’intersection (exercice 2.11.3) de
tous les filtres élémentaires plus fins que lui [si 5/ est cette intersection, noter que § < F’ et pour
démontrer 1’égalité raisonner par 1’absurde].

2. En déduire qu’un filtre F 4 base dénombrable sur un espace topologique converge vers un point
a si, et seulement si, toutes les suites, dont les filtres élémentaires sont plus fins que F, convergent vers
a.

Dans un espace topologique X, considérons alors une suite (z,,) convergeant
vers un point a ; si A est une partie de X qui contient tous les points z, le point
a est un point adhérent 2 A : en effet, tout voisinage de a rencontre A puisqu’il
contient tous les x;, sauf peut-étre un nombre fini d’entre eux. Inversement, étant
donné un point a adhérent a A, existe-t-il une suite de A qui converge vers a ?
La réponse est en général négative ; comme nous I’avons vu (exemple 2.11.5),
on obtient une réponse positive en acceptant des suites généralisées. Nous allons
nous intéresser a une classe d’espaces topologiques pour lesquels la réciproque est
exacte.

Définition 2.12.1 Un espace topologique est dit a base dénombrable de voisi-
nages si, pour tout point a, le filtre V(a) admet une base dénombrable.

Tout espace métrisable est a base dénombrable de voisinages d’apres la propo-
sition 2.8.2.

Proposition 2.12.1 Soit X un espace topologique a base dénombrable de voisi-
nages, alors un point a de X est adhérent a A si, et seulement si, il existe une suite
de A qui converge vers a.
Preuve Soit a un point adhérent a A et soit (V,,)nen une base dénombrable dé-
croissante du filtre V(a). Tout voisinage de a rencontrant A, on peut choisir un
point z,, dans V,, N A et on construit ainsi une suite de A qui converge vers a.
QED.
La définition 2.7.3 des parties fermées dans un espace métrique vaut encore
dans un espace a base dénombrable de voisinages, soit

Corollaire 2.12.2 Dans un espace a base dénombrable de voisinages, une partie
est fermée si, et seulement si, elle contient les limites de ses suites convergentes.

Ce corollaire montre que, dans les espaces a base dénombrable de voisinages,
la notion de suite convergente détermine la topologie de I’espace. Plus précisé-
ment, considérons une partie € de F(N; X) x X, c’est-a-dire un ensemble de
couples ((z), ) constitués d’une suite de X et d’un point de X. On peut alors
se demander s’il existe sur X une topologie telle qu’une suite (z,,) converge vers
 si, et seulement si, ((z,),z) € C. Le corollaire précédent montre que s’il existe
une topologie a base dénombrable de voisinages solution de ce probleme, alors
elle est unique : une partie A est fermée pour cette topologie si, et seulement si,

(V((zn),z) € €)((Yn € N)(z,, € A) = z € A).
Rien ne permet d’affirmer qu’il n’existe pas d’autres topologies solutions du pro-
bleme ; on peut simplement dire que ces autres solutions éventuelles ne sont pas a
base dénombrable de voisinages.
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Exercice 2.12.2 Soit A une partie d’un espace X a base dénombrable de voisinages, montrer qu’un
point z € A n’est pas isolé dans A si, et seulement si, il existe une suite (z,) de A convergente vers
z telle que =, # x pour tout n.

Exercice 2.12.3 Montrer que I’ensemble de Cantor C (exercice 2.6.2) est un ensemble d’intérieur
vide sans point isolé [utiliser le développement triadique de = € C pour construire une suite de C—{z}
qui converge vers x].

Exercice 2.12.4 Montrer que tout espace séparable a base dénombrable de voisinages a au plus la
puissance du continu [soit D un ensemble dénombrable partout dense, construire une injection de X
dans DN].

En ce qui concerne la notion générale de valeur limite, on a la caractérisation
suivante lorsque le filtre est a base dénombrable.

Proposition 2.12.3 Soit f : X — Y une application définie sur un ensemble
X et a valeurs dans un espace topologique Y et soit F un filtre sur X a base
dénombrable. Alors, un point y de 'Y est une valeur limite de f suivant le filtre F
si, et seulement si, pour toute suite (z,,) dont le filtre élémentaire est plus fin que
F, la suite (f(z,,)) converge vers y.

Preuve La condition est nécessaire, sans hypothése sur le filtre F, car le filtre
élémentaire associé  la suite (f(z,)) est plus fin que la base de filtre f(F). Pour
démontrer la réciproque, raisonnons par I’ absurde. Soit ( By, ),en une base décrois-
sante du filtre F ; alors, si y n’est pas une valeur limite de f suivant 7, il existe un
voisinage V' de y tel que f(B,) ¢ V, pour toutn € N ; choisissons alors un point
zr, dans chaque By, tel que f(x,) € V ; on construit ainsi une suite (z,,) dont le
filtre €lémentaire est plus fin que ¥ et telle que la suite f(z,,) ne converge pas vers
9. Q.E.D.

Corollaire 2.12.4 Soient X, Y deux espaces topologiques et f : X — Y une
application. Si X est a base dénombrable de voisinages, f(x) tend vers y quand
T tend vers a si, et seulement si, pour toute suite () qui converge vers a, la suite
(f(zp)) converge vers y.

Applications continues

En termes de convergence une application continue sera simplement une applica-
tion transformant les filtres convergents en des filtres convergents.

Définition 2.13.1 Soient X, Y des espaces topologiques. Une application
f+ X = Y est dite continue en un point a € X, si ’image de tout filtre conver-
geant vers a converge vers f(a).

En particulier, la base de filtre f(V(a)) converge vers f(a) et réciproquement,

si cette condition est réalisée, f est continue au point a : en effet, si F est un
filtre sur X convergeant vers a, il est plus fin que le filtre V(a) et par suite la base
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de filtre f(F) est plus fine que f(V(a)), donc converge a fortiori vers f(a). En
d’autres termes, f est continue au point a si, et seulement si, on a (exemple 2.11.6)
f(a) = lim,_,, f(z), c’est-a-dire

(2.13.1) (VV € V(f(a)))(3W € V(a))(f(W) C V).

Pour exprimer la continuité de f au point a, il suffit d’écrire (2.13.1) pour tout
voisinage V' de f(a) appartenant a un systeéme fondamental de voisinages de f(a).
En outre, f est continue au point a si, et seulement si, I’image réciproque par f
de tout voisinage de f(a) appartenant a un systéme fondamental de voisinages de
f(a) est un voisinage de a.

Enfin le corollaire 2.12.4 prouve ceci : si f est continue au point a, I'image
par f de toute suite convergeant vers a est une suite qui converge vers f(a) ;
réciproquement, si cette condition est réalisée et si X est a base dénombrable de
voisinages (par exemple, si X est métrisable), alors f est continue au point a.

Exercice 2.13.1 Soient X et Y des espaces topologiques, montrer qu’une application
f : X = Y est continue en un point a € X si, et seulement si, pour toute suite généralisée (z;);er
qui converge vers a, la suite généralisée (f(z;));cr converge vers f(a).

Exercice 2.13.2 Soient X un espace a base dénombrable de voisinages et Y un espace tel que tout
point soit fermé, montrer qu’une application f : X — Y est continue en un point a de X si, et
seulement si, pour toute suite (z5,) de X convergeant vers a, la suite (f(z,,)) admet une limite.

Nous dirons bien siir qu’une application f : X — Y est continue dans X ou
simplement que f est continue, si f est continue en tout point de X . Nous noterons
alors €(X;Y) I’ensemble de toutes les fonctions continues de X dans Y.

Donnons quelques exemples triviaux d’applications continues. Si X est un es-
pace topologique, I’application identique Iy : X — X est continue. Si X et Y
sont deux espaces topologiques, toute application constante de X dans Y est conti-
nue. Notons enfin que €(X;Y) = F(X;Y) si X est un espace discret ou si Y est
muni de la topologie grossiere.

Vu la définition 2.13.1, on a évidemment le

Théoréeme 2.13.1 Soient X, Y, Z des espaces topologiques, f : X — Y et
g : Y — Z deux applications. Si f est continue en un point a € X et si g est
continue au point f(a), l'application g o f : X — Z est continue au point a. Si
f est continue dans X et si g est continue en tout point de f(X), alors g o f est
continue dans X.

Lorsque X et Y sont des espaces métriques dont les distances sont notées d
(toutes les distances seront notées d lorsqu’aucune confusion ne peut en résulter),
pour écrire la continuité d’une application f : X — Y en un point a € X, on peut
utiliser comme base des filtres V(a) et V(f(a)) ’ensemble des boules fermées
centrées en ces points ; la continuité au point a s’écrit alors

(2.13.2) (Ve > 0)(38 > 0)(Vz € X)(d(z,a) < § = d(f(z), f(a)) < ¢).
L’application f est donc continue dans X si, et seulement si, pour tout a € X
et tout € > 0, il existe un & > 0 tel que ... ; dans cette définition le nombre §



98 CHAPITRE 2 TOPOLOGIE

dépend de ¢ et du point a € X ; on peut donc introduire une notion plus forte que
la continuité.

Définition 2.13.2 Soient X,Y des espaces métriques, une applicationf : X Y
est dite uniformément continue si

{ (Ve > 0)(36 > 0)(Vz € X)(Vy € X)

(d(z,y) <6 = d(f(x), f(y)) < &)
Toute application uniformément continue est évidlemment continue, mais la
réciproque est en général fausse.
On a un théoréme des fonctions composées.
Proposition 2.13.2 La composée de deux applications uniformément continues
est uniformément continue.

(2.13.3)

Voici un exemple d’application uniformément continue.
Exemple 2.13.1 Soit A une partie non vide d’un espace métrique X, I’application

z > d(z, A)
de X dans R est uniformément continue d’apres I’inégalité
(2.13.4) |d(z, A) — d(y, A)| < d(z,y), pour tout z,y € X.

En effet, on a
s < < .
d(z, 4) = inf d(z,2) < inf (d(z,y) +dy,2)) < d@,y) + inf d(y,2),

d’ov d(z, A) < d(z,y) + d(y, A), c’est-a-dire
d(:l:, A) - d(y’ A) < d(IL‘, y) )

de méme, on a d(y, A) — d(z, A) < d(z,y), ce qui permet de conclure. Lorsque
A = {a},a € X, onad(z,A) = d(z,a) ; ce qui précéde prouve donc que
I’application = — d(z, a) de X dans R est uniformément continue.

Les fonctions continues ont ét€ définies en utilisant les filtres des voisinages
des points ; nous allons maintenant caractériser la continuité en utilisant la famille
des ouverts ou des fermés. Nous nous appuierons sur la proposition suivante.

Proposition 2.13.3 Soit f : X — Y une application continue en un point a € X.
Si ce point a est adhérent & une partie A de X, le point f(a) est adhérent & f(A).

Preuve Soit V un voisinage de f(a) ; f étant continue au point a, f (V) est un
voisinage de a qui rencontre donc A ; il existe donc un point = de A dont I’image
par f appartient & V, ce qui prouve que V rencontre f(A). Tout voisinage de f(a)
rencontre donc f(A). Q.E.D.

Théoréme 2.13.4 Soient X, Y deux espaces topologiques et f : X — Y une
application. Les propriétés suivantes sont équivalentes.

1. f est continuedans X.

2. Pour tout A C X, f(A) C f(A).

3. L’image réciproque par f de tout fermé de Y est un fermé de X.

4. L’image réciproque par f de tout ouvert de'Y est un ouvert de X.
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Preuve 1 = 2 d’apres la proposition 2.13.3.

2 = 3 Soit F’ un fermé de Y ; posons F = f~1(F’). D’aprés 2., on a
f(F) C f(F),dou f(F) C F', or F7 = F' car F" est fermé, donc f(F) C F’,
soit F C f~1(F') = F, ce qui prouve que F' est fermé.

3 = 4 Soit O’ unouvertde Y ;ona f~1(0') = X — f~1(Y — O’) ce qui
permet de conclure, le complémentaire d’un ouvert étant fermé et réciproquement.

4 = 1 Soit a un point de X et soit O’ un ouvert contenant f(a), alors f=1(0’)
est un ouvert contenant f(a), donc un voisinage de ce point, ce qui prouve la
continuité de f au point a, car les ouverts contenant f(a) constituent un systéme
fondamental de voisinages de ce point. Q.E.D.

Exercice 2.13.3 Soient X et Y des espaces topologiques et f : X — Y une application, montrer
I’équivalence des propriétés suivantes

1. f est continue. .

2. Pourtout A € P(Y), f~1(A) C Int (f~1(A)).

3. Pour tout A € P(Y), f~1(A4) c f~1(A).

Exercice 2.13.4 Une partie A d’un espace topologique est appelée un G5 (resp. un F,) si A est
une intersection dénombrable d’ouverts (resp. une réunion dénombrable de fermés). Soient X, Y des
espaces topologiques et f : X — Y une application continue, montrer que I’image réciproque par f
d’un G (resp. d’un F,) est un G (resp. un F5).

Exercice 2.13.5 Soient X et Y des espaces topologiques et f : X — Y une application.
1. Si f est continue et sujective et si A est dense dans X, alors f(A) est dense dans Y,

2. Si f est ouverte, c’est-a-dire si I’'image directe de tout ouvert de X est un ouvertde Y, et si B
est dense dans Y, alors f—1(B) est dense dans X

Exemple 2.13.2 La continuité de I’application x — d(x, A) montre que

Ve(A) ={z € X; d(z,A) <7}, (r>0),
est un voisinage ouvertde A ; on dit que V;.(A) est le voisinage ouvert de A d’ordre
T ; de méme, I’ensemble

V)(A) ={z e X;d(z,A) <r}

est un voisinage fermé de A, appelé voisinage fermé de A d’ordre r. Lorsque
A={a},ona

V-({a}) = B(a;7) et V/({a}) = B'(a; 1),
on retrouve donc le fait que les boules ouvertes sont ouvertes et que les boules
fermées sont fermées.

Exercice 2.13.6 Soient A et B deux parties d’un espace métrique tellesque AN B = ANB =0,
montrer que A et B admettent des voisinages disjoints.

Note L’image directe par une application continue d’un ensemble ouvert (resp.
fermé) n’est pas en général un ensemble ouvert (resp. fermé) : considérons par
exemple sur un ensemble X la topologie discrete T et la topologie grossiére To,
I’application identique de (X, T7) sur (X, T2) est continue, toute partie A de X est
a la fois ouverte et fermée pour J7, son image A par I’application identique n’est
ni ouverte, ni fermée si A ¢ {0, X}.
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Dans I’exemple précédent, nous avons une bijection continue dont I’applica-
tion réciproque n’est pas continue ; nous poserons donc la

Définition 2.13.3 Soient X,Y des espaces topologiques,une bijection f: X —Y
continue, ainsi que la bijection réciproque, est appelée un homéomorphisme.

S’il existe un homéomorphisme de X sur Y, on dit que X et Y sont homéo-
morphes ; on définit ainsi une relation d’équivalence sur la collection des espaces
topologiques. Une propriété d’un espace topologique invariante par homéomor-
phisme est appelée une propriété topologique : I’objet essentiel de la topologie est
d’étudier de telles propriétés.

Note Si h est un homéomorphisme de X sur Y, la continuité de A~ montre, vu
le théoréme 2.13.4, que I’image par h de tout ensemble ouvert (resp. fermé) de X
est un ensemble ouvert (resp. fermé) de Y.

Exemple 2.13.3 Transport de structure Soient X et Y deux ensembles et
f + X — Y une bijection. Une telle bijection permet de transporter sur Y toute
structure topologique donnée sur X . En effet, soit 7 une topologie sur X et soit
O la famille des ouverts de X, alors f(O) définit une topologie sur Y d’aprés la
proposition 2.9.3 ; Y étant muni de cette topologie, f est évidemment un homéo-
morphisme de X surY'.

Soient X et Y des espaces métriques, une application f : X — Y conservant
les distances, c’est-a-dire telle que d(f(x), f(y)) = d(z,y) pour tout z,y de X,
est évidemment uniformément continue. Une telle application est injective ; si elle
est surjective, on dit que c’est une isométrie de X sur Y ; I’application f~! est
alors uniformément continue. Toute isométrie est donc un homéomorphisme.

Exemple 2.13.4 Considérons une bijection f : X — Y d’un ensemble X
sur un espace métrique Y ; on définit alors une distance sur X en posant
d(z,y) = d(f(z), f(y)) pour tout z,y € X ; f est alors une isométrie de X
surY.

Exemple 2.13.5 La droite achevée On peut définir une distance sur R en utili-
sant le procédé décrit a I’exemple précédent. Munissons ’intervalle [—1, 1] de la
distance induite par celle de R, soit d(z,y) = |z — y|, =,y € [—1, 1]. On définit
une bijection f : R — [—1,1] en posant
f(@)=2z/(1+|z]) siz € Ret f(+oo) = 1,

d’ol une distance sur R, a savoir d(z,y) = |f(z) — f(y)|, z,y € R ; 'application
f est alors une isométrie. Décrivons la topologie ainsi définie sur R. Les boules ou-
vertes (resp. fermées) de R sont les images réciproques par f des boules ouvertes
(resp. fermées) de I’espace [—1, 1]. Or, I’ensemble des boules ouvertes de [—1, 1]
est constitué des intervalles [—1,1], |a, b, [-1,b[et]a,1]jod —1 <a < b< let
I’ensemble des boules fermées des intervalles [a,b] od —1 < a < b < 1 ; la bi-
jection f étant strictement croissante ainsi que la bijection réciproque, 1’ensemble
des boules ouvertes de R est constitué des intervalles [—co, +00], ]a, b[, [~00, b[ et
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]a, +00] ot —00 < a < b < +00 et ’ensemble des boules fermées des intervalles
[@,b] ot —00 < @ < b < +00. L’ensemble des boules ouvertes contenant un point
z de R constituant une base du filtre V(z), on en déduit, si = appartient a R, que
I’ensemble (| — €,z +£[)e>0 est une base du filtre V(z) et il en est donc de méme
de I’ensemble ([ — €,z + €])e>0 ; on vérifie de méme que le filtre V(+o00) est
engendré par (Ja, +00])qer et par ([a, +00])qcr et que le filtre V(—o0) est en-
gendré par ([—00, a[)acr €t par ([—00, a])scr- Ceci permet de décrire les suites
convergentes de R. Soit z € R, en utilisant le systtme fondamental de voisinages
([ — &, + €])e>0, ON constate qu’une suite (z,) de R converge vers z si, et
seulement si, il existe ng € N tel que z, € R pour n > ng et la suite (2, )n>n,
converge vers z pour la topologie de R. De méme, on vérifie qu’une suite (z,)
converge vers +00 (resp. —oo) si, et seulement si, pour tout a € R, il existe n € N
tel que T, > a (resp. T, < a) pour tout p > n.

Le principe du prolongement des inégalités (proposition 2.3.7) se généralise
alors comme suit.
Proposition 2.13.5 Principe du prolongement des inégalités Soient F un filtre
sur un ensemble X et deux applications f,g : X — R telles que f(z) < g(z)
pour tout x € X. Si f et g admettent des limites suivant le filtre F, on a

li <limg.
ipf <lipg

Preuve Posons y = limg f et 2 = limg g et supposons z < y ; il existe alors
a € Rtel que 2 < a < y. D’apreés la définition d’une valeur limite d’une appli-
cation, les ensembles f~!([—oo0, a[) et f~!(]a, +00]) appartiennent 2 F, il en est
donc de méme de leur intersection ; cette intersection étant vide, on obtient une
contradiction. Q.E.D.
En prenant pour filtre F le filtre de Fréchet sur N, on en déduit le résultat
suivant qui étend a R la proposition 2.3.7.
Corollaire 2.13.6 Soient (z,) et (yn) deux suites convergentes de R telles que
T, < yp pour tout n € N, on a alors limy, o T, < limp 00 Yn.

Fonctions semi-continues

Les fonctions semi-continues jouent un role important dans les problémes de mini-
misation de fonctionnelles ; nous allons indiquer ici les propriétés les plus simples
de ces fonctions.
Définition 2.14.1 Soit X un espace topologique, une fonction f : X — R est dite
semi-continue inférieurement (en abrégé s.c.i.) en un point a € X si
(SCI,) Pourtout o € R, a < f(a), I’ensemble f~'(]a, +00)) est un voisinage
de a.

11 est équivalent de dire que, pour tout o € R, a < f(a), il existe un voisinage
V de a tel que f(V) Cla, +00].
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La fonction f : X — R est dite s.c.i. si elle est s.c.i. en tout point de X.
Si la fonction —f est s.c.i. en un point @ € X, on dit que f est semi-continue
supérieurement (en abrégé s.c.s.) au point a € X ; nous étudierons les fonctions
s.c.i., les propriétés des fonctions s.c.s. s’en déduisant aisément.

Remarque 2.14.1 On dit que f : X — R admet un minimum relatif au point a
s’il existe un voisinage V' de a tel que f(z) > f(a) pour tout z € V. Une telle
fonction est s.c.i. au point a, vu que f(V) C [f(a), +00]. Cette remarque montre
que dans des problémes de minimisation des hypothéses de semi-continuité sont
naturelles.

Proposition 2.14.1 Soit X un espace topologique et soit a € X.

1. Soit f : X — R une fonction s.c.i. au point a et soit A > 0 (resp. A < 0),
alors la fonction A f est s.c.i. (resp. s.c.s.) au point a.

2. Soient f,g : X — R deux fonctions s.c.i. au point a, alors la fonction f + g
est s.c.i. au point a.

3. Toute enveloppe supérieure de fonctions s.c.i. au point a est s.c.i. au point a.

4. Toute enveloppe inférieure finie de fonctions s.c.i. au point a est s.c.i. au
point a.

Preuve 1. Il suffit de vérifier I’assertion lorsque A > 0. Soit & < Af(a), c’est-
a-dire aA ™! < f(a) ; il existe un voisinage V de a tel que f(V) Clar™1, +00),
d’od (Af)(V) Clay, +00] et ceci prouve que Af est s.c.i. au point a.

2. Soita < f(a) + g(a), posons 2 = f(a) + g(a) —a > 0etB = f(a) — ¢,
v =g(a)—€e;onaalorsa = B+, B < f(a), vy < g(a). 1l existe donc
des voisinages V' et W de a tels que f(V) C|B,+oo[ et g(W) CJy, +oo[, d’od
(f + 9)(VNW) Cla, +0o, ce qui prouve le résultat voulu.

3. Soient (f;)iecr une famille de fonctions s.c.i. au point a, f = sup;c; f; et
a < f(a), il existe ¢ € I'tel que a@ < f;(a) ; soit V' un voisinage de a tel que
fi(V) Cla, +00] ; on aalors f(V) Cle, +00], ce qui permet de conclure.

4, On suppose I’ensemble I fini et on pose g = inf;c; fi. Soit @ < g(a),
c’est-a-dire a < g;(a) pour tout ¢ € I ; il existe des voisinages V; de a tels que
fi(Vi) Cla, 4+00] d’ob (V') Cla, +00] odt V' = [, V; est un voisinage de a car
I est fini, ce qui prouve le résultat voulu. Q.ED.

Le lien avec les fonctions continues est assez simple a établir.

Proposition 2.14.2 Une fonction f : X — R est continue au point a si, et seule-
ment si, elle est s.c.i. et s.c.s. au point a.

Preuve Les conditions sont évidemment nécessaires. Réciproquement, supposons
f s.c.i. et s.c.s. au point a. Si f(a) est fini, pour tout o, € R tels que
a < f(a) < B, f (o, +o0]) et f~1([—o0,B[) sont des voisinages de a, il
en est donc de méme de Iintersection qui n’est autre que f~'(Ja, B[) ce qui
prouve la continuité de f au point a, car ’ensemble des intervalles considérés
], B[ constitue un systéme fondamental de voisinages de f(a). Si f(a) = +oo,
pour tout a € R, f~!(Ja, +00]) est un voisinage de a, ce qui permet de conclure,
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I’ensemble (o, +00]) ek étant un systtme fondamental de voisinages de +oo
(exemple 2.13.5). On raisonne de méme lorsque f(a) = —oo. QE.D.
Les fonctions s.c.i. en tout point admettent des caractérisations utiles.

Proposition 2.14.3 Une fonction f : X — R est s.c.i. si, et seulement si, elle
satisfait a I’une des propriétés suivantes

(SCL) Pour tout o € R, f~1(]a, +00)) est ouvert.

(SCI3) Pourtout o € R, f~1([—00, ) est fermé.

Preuve L’équivalence de ces deux propriétés est évidente d’apres la définition des
parties fermées. Si f est s.c.i,, soient « € Reta € f~!(Ja,+00]) ; la condi-
tion (SCI,) au point a signifie que f~!(Ja, +o0]) est un voisinage de a ; cet
ensemble est donc ouvert en tant que voisinage de chacun de ses points. Récipro-
quement, supposons la condition (SCI5) vérifiée ; soita € X et a < f(a), alors
(], +00]) est un ouvert contenant a, donc un voisinage de a. Q.E.D.

Exemple 2.14.1 Soit A une partie d’un espace topologique et soit 1 4 la fonction
caractéristique (remarque 1.8.2) de A. On a

X , sia<0,
Yo, +o0) =4 A , si0<a<l,
p , sil<ao.

Il en résulte que la fonction 1 4 est s.c.i. si, et seulement si, A est ouvert et qu’elle
est 8.c.S. si, et seulement si, A est fermé.

Exercice 2.14.1 Soient X un espace topologique, f,g : X — Ry des fonctions s.c.i., montrer que
la fonction f g est s.c.i..

Exercice 2.14.2 Soient X un espace topologique, f : X — R’ une fonction s.c.i., montrer que la
fonction 1/ f est s.c.s..

Exercice 2.14.3 1. Soient X et Y des espaces topologiques, ¢ : X — Y une fonction continue en
unpointa € X, f : Y — R une fonction s.c.i. au point ¢(a), montrer que la fonction foy : X — R
est s.C.i. au point a.

2. Soient X un espace topologique, f : X — R une fonction s.c.i. en un point a € X,
@ : f(X) — R une fonction continue et croissante, montrer que p o f : X — R est s.c.i. au
point a.

Exercice 2.14.4 1. Soit X un espace métrique et soit O un ouvert de X, on pose

fo(z) = min(nd(z, X — O),1) pourz € X etnentier > 1.
Montrer que les fonctions f, : X — [0, 1] sont continues et que la suite ( f ) est une suite croissante
telle que 1o = sup,, fa.

2. Soit f : X — [0, 1] une fonction s.c.i., montrer qu’il existe une suite croissante de fonctions
continues fr : X — [0, 1[ telle que f = sup,, fn [soientO,, x = f~1(Jk/n,+o0[), n > 1,
1<k<n-1gn = (1/n) ""1 i Bo,, ;. vérifier que f = sup,, gn ; d’apres L., il existe,
pour tout > 1, une suite croissante (hn m)m21 de fonctions continues de X dans [0, 1] telle que
9n = 8UP,, hnm ; prendre alors fn = supy<;<n, 1<j<n Rijl

3. Soit f : X — K une fonction s.c.i. telle que f > goig : X — R est une fonc-
tion continue, montrer que f est I’enveloppe supérieure d’une suite croissante de fonctions continues
fn : X — R [on peut d’abord supposer g = 0, puis se ramener a 2. en considérant la fonction @ o f oll
¢ : Ry — [0, 1] est défini par (t) = t/(1 +t) sit € Ry et p(+00) = 1 (exercice 2.14.3)].
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Comparaison de topologies

Etant donné un ensemble X, nous nous proposons de définir une relation d’ordre
sur I’ensemble des topologies sur X ; considérons donc deux topologies T7,72 sur
X ; nous noterons alors X et X, les espaces topologiques correspondants, V; (z)
et Va(z) les filtres des voisinages d’un point = pour les topologies T7 et T, etc.
En termes de convergence, il est évidemment intéressant de pouvoir affirmer que
tout filtre convergeant pour I’'une des topologies converge a fortiori pour 1’autre
topologie. Nous sommes donc conduits a poser la définition suivante.

Définition 2.15.1 Soient Ty, To deux topologies sur un ensemble X. On dit que la
topologie T, est moins fine que la topologie T2 si, pour tout x de X, tout filtre qui
converge vers x pour la topologie T, converge vers x pour la topologie T.

On définit ainsi une relation d’ordre sur I’ensemble des topologies sur X : la
relation est évidemment réflexive et transitive ; quant a I’antisymétrie, supposons
T, moins fine que T2 et T2 moins fine que T, alors le filtre Vo (z) convergeant
vers z pour la topologie T, converge vers = pour la topologie T;, donc est plus fin
que le filtre V; (z) ; de méme, on montre que le filtre V1 (z) est plus fin que Vz(z)
et par conséquent V1(z) = Va(z) pour tout z € X, ce qui prouve que J; = To.
Cette relation d’ordre sera notée J; < T3 ; nous dirons aussi que T est plus fine
que T ; si, en outre J; # Ta, nous dirons que T est strictement plus fine que T;.

L’ensemble ordonné des topologies sur un ensemble X admet un plus petit
et un plus grand élément : la topologie grossitre est la moins fine, la topologie
discrete est la plus fine.

Théoréme 2.15.1 Soient Ty, Ty deux topologies sur un ensemble X. Les proprié-
tés qui suivent sont équivalentes.

1. La topologie Ty est moins fine que la topologie T>.

2. Pour tout x € X, tout voisinage de x pour la topologie T, est un voisinage
de x pour la topologie T, soit V;(x) C Va(z).

3. Toute partie de X ouverte pour la topologie Ty est ouverte pour Ts, soit
01 C ..

4. Toute partie de X fermée pour la topologie Ty est fermée pour Ts, soit
0] C 05

5. L’application identique de X5 dans X est continue.

6. Pour toute partie A de X, I’adhérence de A pour Ty contient I’adhérence
de A pour Ts.

7. Pour toute partie A de X, ’intérieur de A pour T est contenu dans |’inté-
rieur de A pour Ts.

Preuve Nous avons vérifié ci-dessus que 1 = 2. L’implication 2 = 3 résulte du
fait qu’un ouvert est un voisinage de chacun de ses points. Montrons que 3 = 1:
soit F un filtre sur X convergeant vers  pour la topologie Js, c’est-a-dire plus
fin que V2(z) ; I’ensemble Oy(z) (resp. O1(z)) des ouverts pour Ty (resp. T;)



2.15 COMPARAISON DE TOPOLOGIES 105

qui contiennent x constitue une base du filtre Va(x) (resp. V1 (z)) ; I’hypothese 3.
implique O1(z) C Oa(x), d’ol Vi(z) C Va(x), ce qui prouve que F est plus fin
que V;(z), donc converge vers = pour J;. Les propriétés 3., 4. et 5. sont équiva-
lentes d’apres le théoréme 2.13.4 ; les propriétés 6. et 7. sont équivalentes d’apres
(2.10.4). Enfin, on a 3 = 7 car I’intérieur de A est le plus grand ouvert contenu
dans Aetona7 = 3 d’aprés (2.10.2). Q.E.D.
Note D’apres le théoreme précédent la relation J; < T; est donc équivalente a
Vi(z) C Va(z), 8 O3 C Oz et 2 O] C Of : plus une topologie est fine, plus
les filtres des voisinages sont fins, plus il y a d’ensembles ouverts et plus il y a
d’ensembles fermés.

Remarque 2.15.1 Soit f : X — Y une application définie sur un ensemble X a
valeurs dans un espace topologique Y et soit F un filtre sur X. Alors, si f admet
une limite y suivant le filtre &, cela reste vrai lorsqu’on substitue 2 la topologie de
Y une topologie moins fine. En particulier, si X est un espace topologique et si f
est continue en un point a € X, f reste continue lorsqu’on remplace la topologie
de Y par une topologie moins fine ; en outre f reste continue lorsqu’on remplace la
topologie de X par une topologie plus fine. L’ensemble C(X; Y') est donc d’autant
plus grand que la topologie de X est plus fine et celle de Y moins fine.

Examinons le cas particulier des espaces métriques. Soient d; et dy deux dis-
tances sur un ensemble X, notons X; et X les espaces métriques correspon-
dants. Comme nous I’avons déja indiqué, ces distances sont dites topologiquement
équivalentes si elles définissent la méme topologie, autrement dit si I’application
identique de X, dans X5 est un homéomorphisme. Cet homéomorphisme et I’ho-
méomorphisme réciproque ne sont pas en général uniformément continus ; ceci
conduit a la définition suivante.

Définition 2.15.2 On dit que deux distances d; et dy sur un ensemble X sont
uniformément équivalentes, ou qu’elles définissent la méme structure uniforme, si
I'application identique de X1 sur X, est uniformément continue ainsi que 1’appli-
cation réciproque.

L’intérét de cette notion apparait déja dans la remarque suivante : soit Y un
autre espace métrique, une application f : X; — Y (resp. f : Y — X))
est uniformément continue si, et seulement si, I’application f : Xo — Y (resp.
f Y — X>) est uniformément continue. Autrement dit, on ne modifie pas I’en-
semble des applications uniformément continues en substituant aux distances ini-
tiales des distances uniformément équivalentes.

Bien entendu, des distances uniformément équivalentes sont topologiquement
équivalentes.

Exemple 2.15.1 S’il existe des constantes a > 0 et § > 0 telles que
ady < dy < Bdy,

les distances d; et dp sont uniformément équivalentes.
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Exemple 2.15.2 Soit d; une distance sur un ensemble X, alors dy = min(d;, 1)
est une distance uniformément équivalente a d; . En effet, d; est bien une distance :
I’inégalité triangulaire résulte de 1’inégalité

(2.15.1) min(u +v,1) < min(u, 1) + min(v, 1), u,v € R;.

On a ensuite d2 < d; ce qui prouve la continuité uniforme de I’application iden-
tique de X; dans X5 ; en outre, soit 0 < € < 1, alors ds < € implique d; < g, ce
qui prouve la continuité uniforme de 1’application réciproque. Cet exemple montre
qu’on peut toujours remplacer une distance par une distance uniformément équi-
valente bornée.

Exercice 2.15.1 Soit ¢ : Ry — R une application croissante telle que p(u) = 0 < u = Oet
p(u + v) < p(u) + p(v) pour tout u, v € Ry.

1. Si dj est une distance sur un ensemble X, montrer que d2 = ¢ o d; est une distance sur X .
2. Si p est continue a I’origine, montrer que ces distances sont uniformément équivalentes.

3. Exemples : p(u) = min(1, u), p(u) = u/(1 + u).

Point adhérent a une base de filtre

Définition 2.16.1 Dans un espace topologique, un point x est dit adhérent a un
Sfiltre F si x est adhérent a tout ensemble M € F.

L’ensemble des points adhérents (),,c5 M est donc un ensemble fermé. Soit
B une base du filtre , on a alors N gep B = (\prex M : en effet, vuque B C F,
le premier membre contient le second ; d’autre part, si z € (\gcp B, pour tout
M € F, il existe B € Btel que B C M d’od x € B C M, ce qui prouve que
z est un point adhérent au filtre F. Pour vérifier que x est un point adhérent au
filtre F, il suffit donc de vérifier que x est adhérent a tout ensemble appartenant a
une base B du filtre F ; nous pourrons donc parler de point adhérent a une base de
filtre. Explicitons cette définition.

Proposition 2.16.1 Pour que x soit un point adhérent & une base de filtre B, il faut
et il suffit que, pour tout voisinage V' de x appartenant a un systéme fondamental
de voisinages de x et tout B € B, onaitV N B # (.

On notera qu’un filtre sur un espace topologique n’admet pas nécessairement
de point adhérent : par exemple, sur N muni de la topologie discréte, le filtre de
Fréchet n’admet pas de point adhérent. Les espaces topologiques sur lesquels tout
filtre admet un point adhérent sont particulierement importants et seront étudiés
ultérieurement.

Si z est adhérent a un filtre F, il est clair d’une part que z est adhérent a tout
filtre moins fin que ¥, d’autre part que z reste adhérent & F si 1’on remplace la
topologie par une topologie moins fine.

Notons par ailleurs la
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Proposition 2.16.2 Soient X etY des espaces topologiques et soit f : X - 'Y

une application continue en un point x € X, alors si x est adhérent a une base de

filtre B sur X, le point f(z) est adhérent a la base de filtre f(B).

Preuve Soit V un voisinage de f(z), alors f~!(V) est un voisinage de z, d’oi

F~Y(V) N B # 0 pour tout B € B et par suite V N f(B) # B, ce qui prouve le

résultat voulu. Q.E.D.
Nous utiliserons constamment les deux propositions qui suivent.

Proposition 2.16.3 Tout point limite d’un filtre F est un point adhérent @ F.

Preuve Si le filtre F converge vers z, tout voisinage de z appartient 2 F, donc tout

voisinage de z rencontre tout ensemble de JF (un filtre étant stable par intersection

finie et constitué de parties non vides). Q.ED.
Pour démontrer la seconde proposition, nous utiliserons le

Lemme 2.16.4 Soient F, et Fo deux filtres sur un ensemble X, alors il existe
un filtre plus fin que Fy et F3 si, et seulement si, My N My est non vide pour
tout M; € F;, © = 1,2. Lorsque cette condition est vérifiée, I’ensemble {F,,F2}
admet une borne supérieure F dans I’ensemble ordonné des filtres sur X et on a
F= {]\/11 NMs; M; € F; (’L = 1,2)}.

Preuve S’il existe un filtre ¥’ tel que ¥’ > F;, 1 = 1,2, tout M; de F; appartient 2
F' et par conséquent M7 N My appartient 2 F’ et est donc non vide. Ceci pouve que
la condition est nécessaire et que, si F est un filtre, ce filtre est la borne supérieure
de {F1,F2}. Or, si M D M; N M, avec M; € F;,ona M = N; N N, avec
N; = M; UM € J,, ce qui prouve (F}) ; (F2) est trivialement vérifié et (F3)
résulte de I’hypothese. Q.E.D.

Proposition 2.16.5 Un point x est adhérent a un filtre Fsi, et seulement si, il existe
un filtre plus fin que F qui converge vers x.

Preuve La condition est nécessaire : si x est adhérent 3 F, pour tout M € F et tout
V € V(z), M NV est non vide ; d’apres le lemme 2.16.4, le filtre sup{F, V(z)}
est un filtre plus fin que F qui converge vers z. La condition est suffisante : s’il
existe un filtre ¥’ plus fin que F qui converge vers z, la proposition 2.16.3 montre
que z est un point adhérent a ¥’ et, F étant moins fin que F, le point z est a fortiori
adhérent a4 F. Q.E.D.

Définition 2.16.2 Soit f : X — Y une application définie sur un ensemble X et
a valeurs dans un espace topologique Y. Un point y € Y est appelé une valeur
d’adhérence de ’application f suivant un filtre F sur X siy est un point adhérent
a la base de filtre f(F).

Ceci signifie que, pour tout voisinage V' de y appartenant a un systéme fonda-
mental de voisinagesde y ettout M € F,ona f(M)NV #£0.

Considérons, en particulier, une suite (z,,) dans un espace topologique X. Une
valeur d’adhérence de I’application n — z,, suivant le filtre de Fréchet est appelée
une valeur d’adhérence de la suite (z,,) ; ce n’est pas autre chose qu’un point
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adhérent au filtre €lémentaire associé 2 la suite (z,,). Dire qu’un point z € X
est une valeur d’adhérence d’une suite (x,,) signifie donc que tout voisinage de
rencontre tout ensemble B,, défini en (2.11.4), soit

(2.16.1) (VW eV(z))(VneN)(FpeN)(p>netz, €V)

On exprime cette propriété en disant que V' contient une infinité de termes de la
suite.

Note On ne confondra pas cette notion avec celle de point adhérent a I’ensemble
Uneo{zn} : toute valeur d’adhérence est évidemment adhérente a cet ensemble,
mais la réciproque est en général fausse.

Nous savons que le filtre élémentaire associ€ a une sous-suite extraite d’une
suite (xr, ) est plus fin que le filtre élémentaire associ€ a la suite ; d’apres la propo-
sition 2.16.5 il en résulte ceci : s’il existe une sous-suite qui converge vers z, alors
z est une valeur d’adhérence de la suite (z,,). Toujours d’aprés la méme propo-
sition, si x est une valeur d’adhérence de la suite (z,,), il existe un filtre plus fin
que le filtre élémentaire associé a la suite (z,,) et qui converge vers z, mais rien ne
permet d’affirmer que ce filtre est le filtre €élémentaire associé a une sous-suite et
ce résultat peut &tre en défaut. On a cependant la

Proposition 2.16.6 Dans un espace topologique a base dénombrable de voisi-
nages, un point z est une valeur d’adhérence d’une suite si, et seulement si, il
existe une sous-suite qui converge vers .

Preuve Il s’agit de montrer que la condition est nécessaire. Soient = une valeur

d’adhérence de la suite (z,,) et (V,,) une base dénombrable décroissante du filtre

V(z). En utilisant (2.16.1) il est immédiat de construire par récurrence une sous-

suite (z,,, ) telle que z,, € Vj, pour tout k € N ; cette sous-suite converge alors

vers . Q.E.D.
Plus généralement, on a la caractérisation suivante.

Proposition 2.16.7 Soit f : X — Y une application définie sur un ensemble
X a valeurs dans un espace Y a base dénombrable de voisinages et soit F un
filtre sur X admettant une base dénombrable. Un point y € Y est une valeur
d’adhérence de f suivant F si, et seulement si, il existe une suite (x,,) de X dont
le filtre élémentaire est plus fin que F et telle que la suite (f(x,,)) converge vers y.
Preuve La condition est suffisante sans hypothése sur F et Y. Montrons qu’elle
est nécessaire. Soit (By,) une base décroissante de F et soit (V},) un systeéme fon-
damental décroissant de voisinages du point y. Alors, pourtoutn € N, y € f(By,)
d’od V, N f(By) # 0 ; soit z,, € By, tel que f(z,) € V,. On construit ainsi une
suite (z,,) de X ayant les propriétés voulues. Q.E.D.

Espaces séparés

Comme nous I’avons indiqué, un filtre sur un espace espace topologique peut ad-
mettre plusieurs points limites. Nous allons étudier dans ce paragraphe les espaces
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topologiques sur lesquels un filtre ne peut admettre plus d’un point limite.

Définition 2.17.1 Un espace topologique X est dit séparé si
(H1) Tout filtre sur X admet au plus un point limite.

On dit aussi que X est un espace de Hausdorff. Dans un tel espace, une suite
a donc au plus un point limite, mais cette propriété ne caractérise pas les espaces
séparés. On notera que tout espace métrisable est séparé d’apres la proposition
2.11.3. La topologie discrete est donc séparée ; la topologie grossiére ne I’est pas
si Card (X) > 2.

Nous allons donner d’autres caractérisations des espaces séparés, en particulier
en termes de voisinages.

Proposition 2.17.1 L’axiome (H,) est équivalent a chacun des axiomes suivants.
(H2) (Axiome de Hausdorff) Pour tout z,y € X, x # vy, il existe un voisinage de
T et un voisinage de y disjoints.

(Hs) Pour tout x € X, lintersection des voisinages fermés de x est réduite au
point .

(Hy) Pourtout z € X et tout filtre F qui converge vers z, alors x est le seul point
adhérent a F.

Preuve (H;) = (H2) Raisonnons par I’absurde. On suppose donc qu’il existe
deux points distincts z et y tels que tout voisinage de x rencontre tout voisinage
de y ; d’apres le lemme 2.16.4, le filtre sup{V(z), V(y)} converge a la fois vers =
ety , ce qui est absurde d’apres (H, ).

(H2) = (H3) Soit y un point distinct de z ; d’aprés (Hz), il existe des voisi-
nages disjoints V € V(z) et W € V(y) ; il en résulte que y n’appartient pas 2 V,
qui est un voisinage fermé de z.

(Hs) = (H4) L’axiome (Hs) signifie que Ny vy V = {z}, c’est-a-dire que
z est le seul point adhérent au filtre V(). Si F est un filtre qui converge vers z,
tout point adhérent a F est adhérent a V(x), ce qui prouve que z est le seul point
adhérent a F.

(H4) = (H,) car tout point limite est un point adhérent. Q.E.D.

L’axiome de Hausdorff est appelé un axiome de séparation : on peut séparer
deux points distincts par des voisinages disjoints.

Dans un espace séparé toute partie réduite a un élément est fermée d’apres
(H3), une intersection de fermés étant fermée ; nous dirons que les points sont
fermés ; il en résulte que toute partie finie est fermée ; cette propriété n’est pas
caractéristique des espaces séparés (exercice 2.17.2).

Observons que toute topologie plus fine qu’une topologie séparée est séparée
d’apres (H2) par exemple.

Exercice 2.17.1 1. Montrer qu’un espace topologique est séparé si, et seulement si, toute suite gé-
néralisée admet au plus un point limite [si X n’est pas séparé, il existe a,b € X, a # b, tel que

VNW # 0pourtout V € V(a), W € V(b) ; en prenant un point 2y y dans chacun de ces
ensembles V' N W, construire une suite généralisée qui converge a la fois vers a et vers b).



110 CHAPITRE2 TOPOLOGIE

2. Montrer qu’un espace topologique a base dénombrable de voisinages est séparé si, et seulement
si, toute suite admet au plus un point limite.
Exercice 2.17.2 1. Soit X un ensemble, montrer que I’ensemble des complémentaires des parties
finies de X et la partie vide de X vérifie les axiomes des ouverts et par conséquent définit une topologie
sur X.

2. Montrer que tout point est fermé, mais que la topologie est séparée si, et seulement si, X est
fini.

3. Caractériser les suites convergentes et en déduire en particulier qu’une suite dont tous les termes
sont distincts converge vers tout point.
Exercice 2.17.3 Soit X un ensemble muni d’une topologie T; et soit B 1’ensemble des parties de
X de la forme O — D od O est un ouvert de X et D une partie dénombrable de X .

1. Montrer que B est une base d’une topologie T2 plus fine que T;.

2. Montrer que les seules suites convergentes pour la topologie T2 sont les suites stationnaires 2
partir d’un certain rang.

3. Montrer que la topologie T2 est métrisable si, et seulement si, tout point admet pour la topologie
71 un voisinage dénombrable.

4. En déduire un exemple d’espace séparé non métrisable ol les seules suites convergentes sont
les suites stationnaires (on notera que la topologie T2 de I’exemple 2.11.5 n’est pas séparée).

Par définition, une fonction f : X — Y est continue en un point a € X si
f(@) = lim f(z);
lorsque Y est un espace séparé, on peut préciser cette propriété comme suit.
Proposition 2.17.2 Soient X, Y des espaces topologiques, si Y est séparé, une

application f : X — Y est continue en un point a € X si, et seulement si, la
limite limg_,q f(x) existe.

Preuve Il s’agit de démontrer que la condition est suffisante. Posons
y = lim f(z),

d’aprés (Hy) y est le seul point adhérent au filtre de base f(V(a)); or le point
f(a) est adhérent a cette base de filtre donc y = f(a), ce qui permet de conclure.
QED.

Indiquons une propriété fondamentale des espaces séparés.

Proposition 2.17.3 Soient f,g: X — Y deux applications continues définies sur
un espace topologique X et a valeurs dans un espace séparé'Y . Alors I’ensemble

{z e X; f(z) =g(z)}
est fermé.

Preuve Montrons que I’ensemble A = {z € X ; f(z) # g(x)} est ouvert. Soit
x € A, donc f(x) # g(z), d’aprés (Ha) il existe des voisinages disjoints
V e V(f(z)) et W € V(g(x)). D’aprés lacontinuité de f et g, f~1(V) et g~ 1 (W)
sont des voisinages de z et par suite f~1(V)) N g=!(W) est aussi un voisinage de
z. Montrons que ce voisinage de x est contenu dans A, ce qui prouvera que A est
un voisinage de z, donc un voisinage de chacun de ses points : or, si y appartient &
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fTHV)ng= (W), ona f(y) € V,g(y) € W,d’od f(y) # g(y) car VW = .
QE.D.
On en déduit le résultat suivant, appelé principe du prolongement des identités.

Corollaire 2.17.4 Soient X etY des espaces topologiques et soient f,g : X —Y
deux applications continues égales sur une partie de X partout dense ; alors, si
Y est séparé, f et g coincident partout.

Autrement dit, une fonction continue a valeurs dans un espace séparé est par-
faitement déterminée par ses valeurs sur un ensemble partout dense. Ceci conduit
évidemment a la propriété suivante : donnons-nous une application f : A — Y, ou
A est dense dans X, et supposons Y séparé, alors s’il existe une application conti-
nue f : X — Y qui prolonge f, cette application est unique. Quant a I’existence
d’un prolongement continu, il est nécessaire de faire des hypothéses supplémen-
taires et ce probléme sera étudié ultérieurement.

Certains espaces (les espaces métrisables par exemple) vérifient des axiomes
de séparation plus forts que I’axiome de Hausdorff. Mentionnons ici la classe des
espaces réguliers.

Proposition 2.17.5 Si X est un espace topologique, les propriétés suivantes sont
équivalentes.

(R1) Pour tout x € X, I’ensemble des voisinages fermés de x est un systéme
fondamental de voisinages de z.

(R2) Pour tout fermé F C X et tout x &€ F, il existe des voisinages de z et F
disjoints.

(R3) Pour tout fermé F C X, lintersection des voisinages fermés de F est
identique a F.

(Ry4) Pour tout filtre F sur X qui converge vers x, le filtre de base (M) res
converge vers .

Preuve (R;) = (R2) Soit F unferméde X etz € X —F ; X — F estun voisinage
ouvert de z, il existe donc d’aprés (R;) un voisinage fermé V de x contenu dans
X — F ;alors X — V est un voisinage ouvert de F', V' est un voisinage de z et ces
voisinages sont disjoints, ce qui prouve (Rz2).

(R2) = (R3) Soitz € X — F ;ilexiste V € V(z), W € V(F) tels que
V NW = 0 et, par conséquent, z ¢ W ; W étant un voisinage fermé de F, ceci
prouve (R3).

(Rs) = (R4) Soit F un filtre qui converge vers z et soit F' le filtre de base
(7\/7) mev (exemple 2.11.1). Montrons que tout voisinage ouvert V' de x contient
un voisinage fermé de z ; ceci prouvera que le filtre de base (W)WGV(z) converge
vers z et il en sera de méme a fortiori du filtre ¥ qui est plus fin. D’aprés (R3),
X — V étant fermé, il existe un voisinage ouvert W de x tel que X — W soit un
voisinage de X — V ; on a alors W C V : en effet, un point y de X — V ne peut
étre adhérent 2 W vu que X — W est un voisinage de y ne rencontrant pas W.
Ceci prouve le résultat voulu, W étant un voisinage fermé de  contenu dans V.
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(R4) = (Ry) Prenons F = V(z), alors ' converge vers z, ce qui signifie que,
pour tout V' € V(z), il existe W € V(z) tel que W C V et ceci prouve (R;).
QED.

Définition 2.17.2 Un espace topologique est dit régulier s’il est séparé et s’il vé-
rifie les propriétés équivalentes de la proposition 2.17.5.

Tout espace métrisable est régulier d’aprés la proposition 2.8.2.

Dans un espace topologique, tout point admet un syst¢me fondamental de voi-
sinages ouverts (proposition 2.9.2) ; dans un espace régulier, tout point admet un
systtme fondamental de voisinages fermés. Comme nous le verrons, cette pro-
priété est utile pour effectuer des passages a la limite dans des inclusions.

Exercice 2.17.4 Montrer que, sur un ensemble totalement ordonné, la topologie de I’ordre (exercice
2.9.3) est réguliére.

Exercice 2.17.5 Double limite 1. Soient F; et F2 des filtres sur des ensembles X; et X2, Y un
espace régulier et f : X1 X X2 — Y une application telle que la limite limgz, x5, f (exercice
2.11.4) existe ainsi que, pour tout 21 € X1, la limite g(21) = limg, f(z1,+). Montrer alors que la
limite limy, g existe etque limz, g = limg, x5, f.

2. Expliciter ce résultat pour une suite double (Zm,n) (m,n)en2 d’un espace régulier.
Exercice 2.17.6 1. Montrer que sur R I’ensemble des intervalles de la forme [a, b[, a < b, est une
base d’une topologie T plus fine que la topologie usuelle.

2. Montrer que cette topologie est séparée et que tout point admet un syst¢me fondamental dénom-
brable de voisinages fermés.

3. Montrer que R, muni de la topologie T, est séparable.

4. Montrer que la topologie T n’admet pas de base de topologie dénombrable [si (B;);ecr est une
base de la topologie, montrer que, pour tout z € R, il existe 2 € I tel que £ = min B;] et en déduire
que cette topologie n’est pas métrisable.

On obtient ainsi un exemple d’espace régulier, séparable et a base dénombrable de voisinages qui
n’est pas métrisable.

Espaces métriques complets

La définition (2.11.2) fait apparaitre une propriété intéressante des bases de filtre
convergentes sur un espace métrique. Pour cela, introduisons la notion suivante :
on appelle diametre d’une partie non vide A d’un espace métrique le nombre réel
(éventuellement infini)

(2.18.1) diam A= sup d(z,y) € R,.
TEAYEA

Exercice 2.18.1 Soient A et B des parties non vides d’un espace métrique, montrer que
1. diam A = diam A,
2.diam (AU B) < diam A +diam Bsi ANB #Qou AN B # 0.
La condition (2.11.2) implique évidemment que le diametre de B est plus petit

que 2¢ ; en d’autres termes, si une base de filtre B converge, il existe des ensembles
de B dont le diametre est arbitrairement petit. Ceci conduit a la définition suivante.
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Définition 2.18.1 Dans un espace métrique, une base de filtre B est appelée une
base de filtre de Cauchy si, pour tout € > 0, il existe un ensemble de ‘B dont le
diamétre est inférieur a e.

Si B et B’ sont deux bases de filtre équivalentes, B est une base de filtre de
Cauchy si, et seulement si, B’ est une base de filtre de Cauchy : en effet, tout
ensemble de B contient un ensemble de B’ et inversement. La propriété pour une
base de filtre d’étre une base de filtre de Cauchy est donc une propriété du filtre
engendré ; le choix particulier de la base du filtre importe peu.

Une suite (z,,) sera appelée une suite de Cauchy si le filtre élémentaire associé
est un filtre de Cauchy. D’apres (2.11.4), ceci signifie donc

{ (Ve > 0)(3n € N)(Vp € N)(Vq € N)

(p=netg>n)=dxp,zq) <e).

Sur R, cette définition coincide bien avec la définition 2.3.2.

D’apres ce qui a été dit ci-dessus, tout filtre convergent est un filtre de Cauchy,
donc toute suite convergente est une suite de Cauchy. Vu la définition 2.18.1, il
est clair d’autre part que tout filtre plus fin qu’un filtre de Cauchy est un filtre de
Cauchy. En particulier, si (z,) est une suite de Cauchy, toute sous-suite extraite
est une suite de Cauchy.

Voici une propriété utile des filtres de Cauchy.

(2.18.2)

Proposition 2.18.1 Un filtre de Cauchy converge vers un point x si, et seulement
si, T est un point adhérent a ce filtre.

Preuve La condition est nécessaire d’aprés la proposition 2.16.3. Réciproquement,
soit z un point adhérent a un filtre de Cauchy JF ; pour toute > 0, il existe M € F
tel que diam M < g, c’est-a-dire tel que d(y,z) < € pour tout y,z € M ;
le point z étant adhérent & F, la boule B’(z;¢) est un voisinage de x qui ren-
contre M ; il existe donc un point y € M tel que d(z,y) < € ; il en résulte que
d(z, z) < 2¢ pour tout z € M, c’est-a-dire M C B’(x; 2¢) ce qui prouve que le
filtre F converge vers . Q.E.D.

Un espace métrique étant séparé, on peut énoncer la proposition précédente
comme Suit.

Corollaire 2.18.2 Soit F un filtre de Cauchy, alors ou bien F n’admet pas de point
adhérent, ou bien F admet un unique point adhérent x auquel cas F converge vers
x.

Dire qu’un point x est adhérent a un filtre équivaut a I’existence d’un filtre plus
fin qui converge vers x (proposition 2.16.5) ; on peut donc énoncer la proposition
2.18.1 de la fagon suivante.

Corollaire 2.18.3 Tout filtre de Cauchy moins fin qu’un filtre qui converge vers z,
converge vers .

Un espace métrique étant a base dénombrable de voisinages, la proposition
2.16.6 prouve le
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Corollaire 2.18.4 Une suite de Cauchy converge vers x si, et seulement si, il existe
une sous-suite qui converge vers T.

Voici une application intéressante des notions précédentes. Considérons une
fonction f : X — Y définie sur un espace topologique X et a valeurs dans un
espace métrique Y. On définit alors I’oscillation de f en un point a € X par la
formule suivante

2.183 ;z) = inf diam f(V) € Ry.
(2.18.3) w(f;z) yinf i f(V)eRy

Bien entendu, on peut se contenter de prendre la borne inférieure sur un syst¢éme
fondamental de voisinages du point z. Cette notion permet de caractériser la conti-
nuité de f, on a en effet le résultat suivant.

Proposition 2.18.5 1. La fonction x +— w(f; ) de X dans Ry est s.c.s.
2. La fonction f est continue au point  si, et seulement si, w(f;x) = 0.

Preuve 1. Soit a > w(f;z), il existe un voisinage V' de z, qu’on peut supposer
ouvert, tel que diam f(V) < o. Pour tout y € V, V est un voisinage de y, donc
w(f;y) < a, soitw(f; V') C [—00, af ce qui prouve que w(f;+) est s.c.s. au point
z.

2. La condition w(f; ) = 0 signifie que (f(V'))vev(g) est une base de filtre
de Cauchy. Si f est continue au point z, cette base de filtre convergeant vers f(z)
est de Cauchy, donc w(f;z) = 0. Réciproquement, si w(f;z) = 0 la base de filtre
(f(V))vev(s) est de Cauchy et, admettant le point f(x) comme point adhérent,
elle converge vers f(x) d’apres la proposition 2.18.1, ce qui prouve la continuité
de f au point z. Q.E.D.

Exercice 2.18.2 Soient X un espace topologique, Y un espace métrique et f : X — Y une appli-
cation. Montrer que I’ensemble des points de continuité de f est un G (exercice 2.13.4).

Nous avons défini la notion de filtre de Cauchy en utilisant explicitement la
distance ; il est évidemment essentiel de savoir comment cette notion dépend du
choix de la distance. Le résultat qui suit permettra de répondre a cette question.

Proposition 2.18.6 Soient X, Y des espaces métriques et f : X — Y une appli-
cation uniformément continue. L’image par f de toute base de filtre de Cauchy sur
X est une base de filtre de Cauchy surY'.

Preuve Soit B une base de filtre de Cauchy sur X et soit € > 0 ; d’apres la
continuité uniforme de f, on peut trouver un § > 0 tel que , pour tout z,y € X,
d(z,y) < é implique d(f(x), f(y)) < &, autrement dit tel que, pour tout ensemble
M de X, diam M < § implique diam f(M) < € ; alors, B étant une base de filtre
de Cauchy sur X, on peut trouver un ensemble M de B tel que diam M < §,d’od
diam f(M) <e. Q.ED.

Il en résulte que deux distances uniformément équivalentes définissent les
mémes filtres de Cauchy ; la notion de filtre de Cauchy ne dépend donc que de
la structure uniforme sous-jacente.
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Remarque 2.18.1 Il n’en est pas du tout de méme pour des distances topologique-
ment équivalentes. Par exemple, considérons sur R la distance usuelle
dy(z,y) = | — y] et la distance induite par celle de R (exemple 2.13.5)

da(z,y) = |f(z) - F(¥)I-

Ces distances sont topologiquement équivalentes : en effet, une suite (z,) de
R converge vers x pour la distance d; si, et seulement si, elle converge vers x
pour la distance dy d’aprés la continuité de f et f~! :] — 1,1[— R, vu que
F~Yy) = y/(1—|y|). Alors, la suite z,, = n n’est pas de Cauchy pour la distance
d, alors qu’elle I’est pour la distance da vu que la suite (n/1 + n) converge vers
1. Ceci montre que les distances d; et dz ne sont pas uniformément équivalentes.

Dans un espace métrique, nous avons vu que tout filtre convergent est un filtre
de Cauchy ; la réciproque est en général fausse. Par exemple, sur R muni de la
distance d; ci-dessus, la suite de Cauchy z,, = n ne converge pas. Ceci conduit a
la définition suivante.

Définition 2.18.2 Un espace métrique est dit complet si tout filtre de Cauchy
converge.

Dans un espace métrique complet les filtres convergents sont donc les filtres de
Cauchy ; pour démontrer qu’un filtre converge, il suffit donc de vérifier qu’il est
de Cauchy et il n’est pas utile de connaitre a priori la limite. Ceci explique I’inté-
rét fondamental des espaces métriques complets. Enongons plus généralement le
critere de Cauchy.

Théoréme 2.18.7 Critére de Cauchy Soit f : X — Y une application définie
sur un ensemble X et a valeurs dans un espace métrique complet Y. Pour que f
admette une valeur limite suivant un filtre F sur X, il faut et il suffit que la base
de filtre f(F) soit une base de filtre de Cauchy.

Dans un espace métrique complet, une suite converge si, et seulement si, elle
est de Cauchy. Réciproquement, on a le

Théoréme 2.18.8 Un espace métrique est complet si, et seulement si, toute suite
de Cauchy converge.

Preuve Il s’agit de démontrer que la condition est suffisante. Considérons donc un
filtre de Cauchy JF ; pour tout entier n > 1, il existe un ensemble A,, € F tel que
diam A, < 1/n; posons M; = A; et M, = Mp,_1 N A, pourn > 1;
on construit ainsi une suite décroissante (M,),>; d’ensembles de F tels que
diam M,, < 1/n. Cette suite (M, ) est évidemment une base d’un filtre de Cau-
chy ¥’ moins fin que F ; choisissons un point ,, dans chaque M, ; on construit
ainsi une suite (x,) dont le filtre élémentaire est plus fin que ¥’ comme nous
I’avons démontré au paragraphe 2.12 ; le filtre ¥ étant de Cauchy, la suite (z,,)
est donc une suite de Cauchy qui converge vers un point z par hypothese. Le filtre
F’ étant moins fin que le filtre élémentaire associé a la suite (), le corollaire
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2.18.3 prouve que F converge vers z, donc F, qui est plus fin que F, converge a
fortiori vers x. Q.E.D.

Vu le théoreme 2.3.5, la droite réelle R munie de la distance usuelle
d(z,y) = |z — y| est un espace métrique complet.

Proposition 2.18.9 Cantor Dans un espace métrique complet, soit (Fy,) une suite
décroissante de fermés non vides dont le diamétre tend vers 0 lorsque n tend vers
Uinfini. Alors, 'intersection (v Fy, est réduite & un point.

Preuve La suite (F,) est une base de filtre de Cauchy dans un espace complet ;
elle est donc convergente vers un point a qui est d’aprés (Hy) le seul point adhérent
a cette base de filtre, d’od {a} = (oo Fn, les F,, étant fermés. Q.E.D.

Exemple 2.18.1 Tout espace métrique discret est complet. En effet, si F est un
filtre de Cauchy, il existe M € F tel que diam M < 1/2 ; il en résulte que M
est nécessairement réduit a un point z et par conséquent F est plus fin que le filtre
V(z).

Exercice 2.18.3 Montrer qu’un espace métrique est complet si, pour toute suite décroissante (F, )
de fermés non vides dont le diametre tend vers 0, I'intersection ()72 F7, est réduite 2 un point.

Exercice 2,18.4 Dans un espace métrique, une suite généralisée (;);cr (exemple 2.11.5) est dite
de Cauchy si I'image du filtre des sections sur I’ensemble filtrant I par ’application ¢ > z; est une
base de filtre de Cauchy. Montrer qu’une suite généralisée (z;);cr est de Cauchy si, et seulement si,

(Ve > 0)(3i € I)(Vj, k € I)(j,k > i = d(xj,xi) < €).

Montrer que toute suite généralisée convergente est de Cauchy et qu’un espace métrique est complet
si, et seulement si, toute suite généralisée de Cauchy converge.

Topologies initiales

On se propose de décrire un procédé tres général permettant de construire de nou-
veaux espaces topologiques ; deux exemples fondamentaux seront traités dans les
deux paragraphes suivants.

La situation générale envisagée est la suivante. Nous nous donnons une fa-
mille (X;);cr d’espaces topologiques, un ensemble X et une famille d’applica-
tions f; : X — X;. On désire munir I’ensemble X d’une topologie ; les topo-
logies intéressantes sont celles qui rendent continues toutes les applications f;. Si
une topologie sur X rend continues toutes les applications f;, il en est évidemment
de méme de toute topologie plus fine ; ceci montre qu’il est intéressant de savoir
si ’ensemble & des topologies sur X rendant continues toutes les applications f;
admet un plus petit élément. La réponse a cette question est positive ; on a trés
précisément le théoréme suivant.

Théoréme 2.19.1 Soient (X;);cr une famille d’espaces topologiques, X un en-
semble et f; : X — X; une famille d’applications. 1l existe sur X une topologie,
dite topologie initiale, rendant continues toutes les applications f; et moins fine
que toute topologie sur X rendant continues toutes les applications f;.
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Preuve Notons O; la famille des ouverts de X;. Si T est une topologie sur X
appartenant a &, pour tout i € I et tout O; € O; les ensembles f;'(O;) doivent
étre ouverts, donc I’ensemble des intersections finies de tels ensembles, c’est-a-
dire ’ensemble des

(2.19.1) () £71(0s), 02 O; € 0;, J € F(I),

i€J

ol F(I) désigne I’ensemble des parties finies de I. Si nous montrons que les en-
sembles (2.19.1) constituent une base de topologie, le théoréme sera démontré : la
topologie cherchée sera définie par cette base de topologie. Vérifions les propriétés
(B1) et (Bz) de la proposition 2.9.4 : (By) est vérifié car I’intersection de deux
ensembles de la forme (2.19.1) est encore de cette forme et (Bz) est vérifi€ car
X = f7H(Xa). QED.
Exemple 2.19.1 Borne supérieure d’une famille de topologies Sur un ensemble
X, soit (T;);er une famille de topologies ; notons X; I’espace X muni de la to-
pologie T; et f; : X — X, I’application identique. La topologie initiale sur X
associée a ces fonctions f; est donc plus fine que chaque topologie T; et c’est la
topologie la moins fine ayant cette propriété ; autrement dit, la famille de topolo-
gies (7;)ser admet une borne supérieure, a savoir la topologie initiale précédente.

Sur chaque espace X;, donnons-nous une base de topologie B;, alors I’en-

semble des
(2.19.2) () £71(B:), ou B; € By, J € F(1),

i€
constitue une base de la topologie initiale. En effet, ces ensembles sont ouverts et,
par conséquent, il suffit de vérifier que tout ensemble de la forme (2.19.1) est une
réunion d’ensembles de la forme (2.19.2), c’est-a-dire que pour tout
z € ey f71(0s), il existe des B; € B;, i € J, tels que

ze (7B < [ £i(00);
i€J ieJ
cette derniére propriété est immédiate a vérifier, car f;(z) € O; donc, B; étant une
base de la topologie de X, il existe B; € B; tel que f;(z) € B; C O;, d’ou le
résultat désire.
Décrivons le filtre des voisinages d’un point z de X ; soit 8; un syst¢me fon-

damental de voisinages du point f;(z), alors I’ensemble des
(2.193) () £71(Va), od V; €85, J € F(I),

ieJ
constitue un systtme fondamental de voisinages du point z. Notons d’abord que
ces ensembles sont des voisinages de x d’aprés la continuité des applications f;
et le fait que J est fini. Montrons ensuite que tout voisinage V' de x contient un
ensemble de la forme (2.19.3) ; en effet, V' contient un ouvert qui contient z, donc
V contient un ensemble de la forme (2.19.1) qui contient z, soit

ze () f71(0:) CV,on0; €0, JeF()
ieJ



118 CHAPITRE 2 TOPOLOGIE

les ouverts O; sont alors des voisinages de fi(z), donc il existe des V; € 8; tels
que fi(z) € V; C 0;, d’od z € ;s f7 (Vi) C V, ce qui prouve le résultat
voulu.

En ce qui concerne la convergence des filtres, le résultat de base est le suivant.

Proposition 2.19.2 Les hypotheéses étant celles du théoréme 2.19.1, un filtre F sur
X, muni de la topologie initiale, converge vers un point x si, et seulement si, pour
tout i € I, la base de filtre f;(F) converge vers f;(z).

Preuve Si le filtre F converge vers un point z € X, la continuité des applica-

tions f; prouve que les bases de filtre f;(F) convergent vers f;(z). Réciproque-

ment, supposons que les bases de filtre f;(F) convergent vers fi(z) et considérons

un voisinage du point z de la forme V = e, f71(Vi), od V; € V(fi(z)),

J € F(I) ; alors f;1(V;) € F et J étant fini, on en déduit que V € ¥, ce qui

prouve que le filtre F converge vers z. Q.E.D.
Cette proposition a des conséquence importantes que voici.

Corollaire 2.19.3 Soit F un filtre sur un ensemble Y, alors une application
f:Y = X, on X est muni de la topologie initiale, admet une valeur limite
x € X suivant le filtre F si, et seulement si, pour tout i € I, f;(x) est une valeur
limite de U'application f;o f : Y — X, suivant le filtre 7.

En particulier, en prenant Y = N et pour filtre ¥ le filtre de Fréchet, on constate
qu’une suite (z, ) de X converge vers un point z € X si, et seulement si, pour tout
1 € I la suite (f;(z,)) converge vers f;(z).

En prenant pour ¥ le filtre des voisinages d’un point a d’un espace topologique
Y, on constate que z = lim,_,, f(y) si, et seulement si, pour tout i € I,

filz) = lim(f; o £)(y)-
En particulier, on obtient le corollaire qui suit.

Corollaire 2.19.4 Soit Y un espace topologique, une application f :' Y — X est
continue en un point a € Y si, et seulement si, pour tout i € I, les applications
fiof : Y — X sont continues au point a. L’application f est donc continue dans
Y si, et seulement si, toutes les applications f; o f sont continues dans'Y .

Exercice 2.19.1 Montrer que la topologie initiale sur X est la seule topologie vérifiant la propriété

quels que soient I’espace topologique Y et I’application f : Y — X, f est continu si, et
seulement si, pour tout ¢ € I, les applications f; o f : Y — X sont continues.

Exercice 2.19.2 Topologie engendrée par une famille de parties 1. Soit (A;);cr une famille de
parties d’un ensemble X, montrer qu’il existe sur X une topologie T et une seule telle que A; soit
ouvert pour tout ¢ et moins fine que toute autre topologie possédant cette propriété [utiliser sur X les
topologies définies par O; = {0, A;, X}1.

2. Soit Y un espace topologique, montrer qu’une application f : Y — X est continue (X étant
muni de la topologie T) si, et seulement si, f~1(A;) est ouvert pour tout i.

Enfin la proposition 2.19.2 permet de donner un critére trés simple pour que la
topologie initiale soit séparée.
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Corollaire 2.19.5 On suppose les espaces X; séparés, alors la topologie initiale
sur X est séparée si, et seulement si,

(2194) (Vo € X)(Vy € X)((Vi € D)(fi(2) = fi(y)) = = =).
On dit alors que les fonctions f; séparent les points de X.

Preuve La condition est suffisante. En effet, soit F un filtre sur X convergeant vers
z et y ; I’espace X; étant séparé, la proposition 2.19.2 montre que f;(z) = fi(y)
pour tout s € I, d’olt = y, ce qui prouve que X est séparé. Réciproquement,
s’il existe z,y € X, = # y, tel que f;(z) = fi(y) pour tout ¢ € I, le filtre V()
converge 2 la fois vers z et y. Q.E.D.
Note Lorsque les espaces X; sont métrisables, la topologie initiale sur X n’est
pas en général métrisable, ni méme a base dénombrable de voisinages comme le
montre, par exemple, la proposition 2.21.17 concernant les topologies produits.

Topologie induite

Soit f : X — Y une application définie sur un ensemble X et a valeurs dans
un espace topologique Y ; on peut alors munir X de la topologie initiale associée
a cette application f, c’est-a-dire de la topologie la moins fine rendant continue
I’application f ; cette topologie est appelée topologie image réciproque par f de
la topologie de Y.

Nous nous proposons d’étudier dans ce paragraphe un cas particulier de cette
notion. Soit A une partie d’un espace topologique X . La topologie image réci-
proque par I’injection canonique ¢ : A — X de la topologie de X est appelée
topologie induite sur A par celle de X. Muni de cette topologie, A est appelé un
sous-espace de X. Tous les résultats du paragraphe précédent s’appliquent a cette
situation particuliere.

La topologie induite est la topologie la moins fine rendant continue I’injection
canonique i : A — X.

La base de topologie (2.19.1), c’est-a-dire I’ensemble des

i"l(0)=0n4A

o O décrit ’ensemble des ouverts de X, vérifie dans ce cas les axiomes des
ouverts et constitue donc I’ensemble de tous les ouverts de la topologie induite.
Un ouvert de la topologie induite sera dit ouvert dans A et, par conséquent, une
partie de A est ouverte dans A si, et seulement si, elle est la trace sur A d’un ouvert
de X. Il en résulte évidemment qu’une partie de A est fermée dans A, c’est-a-dire
est fermée pour la topologie induite, si, et seulement si, elle est la trace sur A d’un
fermé de X.

Si B est une base de la topologie de X, les traces sur A des ensembles de B
est une base de la topologie induite d’apres (2.19.2).
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On prendra garde au fait qu’un ensemble ouvert (resp. fermé) dans A n’a au-
cune raison d’étre ouvert (resp. fermé) dans X ; plus précisément, on a le résultat
suivant.

Proposition 2.20.1 Pour que tout ensemble ouvert (resp. fermé) dans A soit ou-
vert (resp. fermé) dans X, il faut et il suffit que A soit ouvert (resp. fermé) dans
X.

Preuve Si tout ensemble ouvert dans A est ouvert dans X, A étant ouvert dans A
(d’apres (O3)) est ouvert dans X. La réciproque est immédiate, car un ouvert de
A est de la forme O N A ot O est ouvert dans X et on utilise (Oz). On fait un
raisonnement analogue pour des fermés. Q.E.D.

Exercice 2.20.1 Soient X un espace topologique, A et B des partiesde X et M C AN B, si M
est ouvert (resp. fermé) dans A et dans B, montrer que M est ouvert (resp. fermé) dans A U B.

Exercice 2.20.2 Sous-espace localement fermé Soient X un espace topologique, A une partie de
X, montrer que les propriétés suivantes sont équivalentes (on dit alors que A est localement fermé)

1. pour tout = € A, il existe un voisinage V;; de x tel que V; N A soit fermé dans Vz,

2. A est une pattie ouverte de A,

3. A peut s’écrire comme I’intersection d’un ouvert et d’un fermé de X,

4, il existe un ouvert O contenant A tel que A soit fermé dans O

[pour vérifier que 1 = 2, soit Oz un ouvert tel que x € Oy C Vi, noter que

ANV =ANVNVy DANOz NOy,

montrer que A O A N O en utilisant I’exercice 2.10.3 et en déduire que A = AN Uzeca Ozl

Exercice 2.20.3 Recollement d’espaces topologiques Soit X un ensemble tel que X = J;c; X;
ol chaque X; est muni d’une topologie T; vérifiant, pour tout ¢,j € I,

a. X; N X estouvert dans X; et dans X;,

b. les topologies T; et T; coincident sur X; N X;.

Montrer alors qu’il existe une unique topologie T sur X telle que T induise sur X; la topologie T;
et que X; soit un sous-espace ouvert de X [montrer d’abord que, si une telle topologie existe, elle est
unique : I’ensemble O des ouverts est nécessairement donné par la formule

0={0e?PX);0=|J0; 0i € 0;},
el
9; désignant I’ensemble des ouverts de (X;, T;) ; montrer ensuite que O vérifie les axiomes des ou-
verts (on sera conduit  vérifier que X; N O; € O; pour tout O; € O;) et définit une topologie sur X

vérifiant les propriétés voulues].

En ce qui concerne la notion de voisinage, on a d’aprés (2.19.3) le résultat
suivant : soit a un point de A et soit 8 un systéme fondamental de voisinages de a
dans X, alors I’ensemble des traces sur A des ensembles de 8 constitue un systéme
fondamental de voisinages de a dans A (c’est-a-dire pour la topologie induite).

Pour préciser ce résultat, introduisons la notion de filtre induit. Soit F un filtre
sur X et soit F4 I’ensemble des traces sur A des ensembles de F ; F4 n’est pas
en général un filtre sur A, pour que F4 soit un filtre, il est nécessaire que

(2.20.1) (VM e F) (M NAH#D)

et cette condition est évidemment suffisante ; on dit alors que F admet une trace
sur A et le filire F 4 est appel€ le filtre induit sur A par F. Si B est une base du
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filtre &, I’ensemble B 4 des traces sur A des ensembles de B est évidemment une
base du filtre F 4.
Voici deux remarques trés simples concernant cette notion.

Remarque 2.20.1 Soient F et F' deux filtres sur X, F étant moins fin que F'.
Alors, si ¥’ admet une trace sur A, le filtre ¥ admet une trace sur A et le filtre F 4
est moins fin que F,.

Remarque 2.20.2 Soit F un filtre sur X admettant une trace F 4 sur A. Alors, F4
est une base de filtre sur X qui engendre un filtre plus fin que JF.

Exemple 2.20.1 Soit A une partie d’un espace topologique X . Alors, un point a
de X est adhérent a A si, et seulement si, le filtre V(a) admet une trace sur A. Si
F est ce filtre induit, F est une base de filtre sur X qui converge vers a d’aprés la
remarque 2.20.2.

Exercice 2.20.4 Image réciproque d’un filtre Soient X, Y des ensembles, f : X — Y une
application et B’ une base de filtre sur Y. Montrer que f~1(B’) = {f~1(M'); M’ € B’} est une
base de filtre sur X si, et seulement si, f~1(M") est non vide pour tout M’ € B’. Cette condition
étant vérifiée, montrer que le filtre engendré par f~1(B’) ne dépend que du filtre engendré par B’ et
que f(f~1(B’)) engendre un filtre plus fin que B’.

Revenons a la notion de sous-espace. Avec la terminologie qui précéde, le filtre
des voisinages dans A d’un point a € A est simplement la trace sur A du filtre des
voisinages dans X du point a. Un voisinage de a dans A n’est pas en général un
voisinage de a dans X eton ala

Proposition 2.20.2 Soit A un sous-espace d’un espace topologique et soit a € A.
Pour que tout voisinage de a dans A soit un voisinage de a dans X, il faut et il
suffit que A soit un voisinage de a dans X.

Preuve La condition est nécessaire car A est un voisinage de a dans A. Elle est
suffisante : si V' est un voisinage de a dans A, il existe un voisinage W de a dans
X tel que V. = W N A et par suite V est un voisinage de a dans X d’apres (F2).
Q.E.D.
La proposition 2.19.2 montre qu’un filtre F sur A converge dans A vers un
point a € A si, et seulement si, F en tant que base de filtre sur X converge vers
a dans X. En particulier, il est équivalent de dire d’une suite (z,) de A qu’elle
converge dans A ou dans X vers un point a de A. Enfin, d’aprés le corollaire
2.19.4, une application f : Y — A définie sur un espace topologique Y est conti-
nue en un point a € Y si, et seulement si, ’application io f : Y — X est continue
en ce point.

Remarque 2.20.3 Soient Y un espace topologique et f : X — Y une application
continue en un point a € A. L’application foi : A — Y, c’est-a-dire la restriction
de f a A est continue au point a, d’apres la continuité de I’injection canonique ¢. La
réciproque est évidemment fausse en général ; elle est vraie si A est un voisinage
de a : en effet, si V est un voisinage du point f(a), (foi)~}(V) = f"}(V)N A
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est un voisinage de a dans A, donc dans X d’apres la proposition 2.20.2 et il en
résulte que f~!(V) est un voisinage de a dans X d’apres (F}).

Remarque 2.20.4 Soient X un espace topologique et A, B des parties de X telles
que B C A C X. On peut considérer B comme un sous-espace de X ou comme
un sous-espace du sous-espace A ; il est évident que les deux topologies ainsi
induites sur B coincident.

Remarque 2.20.5 Soit A un sous-espace d’un espace topologique X et soit B
une partie de A. Alors I’adhérence de B dans A est égale a la trace sur A de
I’adhérence de B dans X. En effet, les fermés de A sont de la forme A N F', ol
F est fermé dans X, et on obtient donc le plus petit fermé de A contenant B en
prenant pour F le plus petit fermé de X contenant B, c’est-a-dire I’adhérence de
B dans X. On en déduit que B est dense dans A si, et seulement si, A C B ; par
conséquent, si A est dense dans X et si B est dense dans A, alors B est dense
dans X. Plus généralement, supposons A muni d’une topologie T plus fine que
la topologie induite (autrement dit, on suppose seulement I’injection canonique
i : A — X continue), alors si A est dense dans X et si B est dense dans A muni
de la topologie T, B est dense dans X d’aprés ce qui précéde et le point 6. du
théoréme 2.15.1.

Venons-en enfin a la notion de limite relative a un sous-espace.

Définition 2.20.1 Soit a un point adhérent & une partie A d’un espace topologique
X et soit f : A — Y une application a valeurs dans un espace topologique Y. On
dit que f(z) tend vers un point y de Y quand z tend vers a en restant dans A, si
y est une valeur limite de ’application f suivant le filtre induit sur A par le filtre
V(a). On écrit alors y = limg_q zc 4 f(2).

Si 8(y) est un systéme fondamental de voisinages de y, ceci signifie simple-
ment
(2.20.2) (VV € 8())(AW € V(a))(f(WNA) C V).

Toute valeur limite étant un point adhérent, on notera que y € f(T)

Si I’espace X est a base dénombrable de voisinages, on peut caractériser cette
notion de limite en termes de suite.

Proposition 2.20.3 Les notations étant celles de la définition 2.20.1, on suppose
X a base dénombrable de voisinages, alors y = limy_q,ze 4 f() si, et seulement
si, pour toute suite () de A qui converge vers a, la suite (f(z,)) converge vers
Y.

Preuve D’apres la proposition 2.12.3, il s’agit de vérifier qu’une suite (z,,) de A
converge vers a si, et seulement si, le filtre élémentaire sur A associé a cette suite
est plus fin que le filtre V(a)| 4, ce qui est immédiat. Q.E.D.
Remarque 2.20.6 Soient A et B deux parties d’un espace topologique X telles
que B C A C X. Si a est un point adhérent & B, a est a fortiori adhérent & A. Soit
f: A — Y une application a valeurs dans un espace topologique Y et supposons
y = limg0,0ea f(z), d’apres (2.20.2) on a alors y = lim; 4 2eB f(z).
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Exemple 2.20.2 Soit a un point non isolé dans un espace topologique X, alors a
est adhérent 2 X — {a}. Si une application f : X — {a} — Y admet une limite y
quand x tend vers a par valeurs différentes, c’est-a-dire en restant dans X — {a},

onécrit y = limg_;4 224 f(z).

Signalons enfin que le critére de séparation 2.19.5 s’applique. Tout sous-espace
d’un espace séparé€ est sépar€. Notons également que tout sous-espace d’un espace
régulier est régulier.

Exercice 2.20.5 Les notations étant celles de I’exemple 2.20.2, montrer que y = limgz 4 z54 ()
si, et seulement si, la fonction f : X — Y prolongeant f telle que f (a) = y est continue au point a.

Exercice 2.20.6 Limite & gauche et a droite Soient A une partie de R, Y’ un espace topologique et
f i A — Y une application. Soit a € R un point adhérent 2 B = AN]a, +o0|, le filtre V(a) admet
alors une trace F sur B ; si f|p admet une limite y € Y suivant ce filtre, on dit que f admet une
limite & droite au point a et on note cette limite f(a + 0) = limz—a, z>q f(z). On définit de méme
la notion de limite a gauche f(a — 0) si a est adhérent 2 AN] — o0, a[.
1. Montrer que y = f(a 4 0) équivaut a chacune des propriétés suivantes

a. pour tout voisinage V' € V(y), il existe § > 0 tel que f(AN]a,a +6[) C V.

b. pour toute suite () de B qui converge vers a, la suite (f(z,,)) converge vers y.

c. pour toute suite strictement décroissante (z,) de B qui converge vers a, la suite (f(zn))
converge vers y.

2. Supposons a € A, on dit alors que f est continu 2 droite au point a si f(a + 0) existe et
f(a +0) = f(a) (lorsque a n’est pas adhérent & B, c’est-a-dire lorsqu’il existe § > 0 tel que
ANla, a + 6[= 0, on convient que f(a + 0) = f(a) et que f est continu 2 droite au point a). On
définit de méme la continuité a gauche. Montrer que f est continu au point a si, et seulement si, f est
continu a gauche et a droite au point a, c’est-a-dire f(a) = f(a +0) = f(a — 0).

3. Soient Y un espace régulier et f : [a,b[— Y une application telle que f(z + 0) existe pour
tout z € [a, b[. Montrer que la fonction 2 — f(z + 0) est continue 2 droite en tout point de [a, b[ .
Exercice 2.20.7 Discontinuité d’une fonction monotone Soit f : [a,b] — R une application
monotone, croissante pour fixer les idées.

1. Montrer que f admet une limite & gauche et a droite en tout point de [a, b] (on convient que
fla—0) = f(a)et f(b+0) = f(b))etque,poura <z <y <b,

flz—0) < f(z) < fx+0) < fy—0) < f(y).

2. Montrer que la fonction z — f(xz + 0) est croissante, continue a droite et la fonction
z — f(x — 0) croissante, continue 2 gauche.

3. On définit le saut de f au point z par s(z) = f(z + 0) — f(z — 0). Montrer que f est continu
au point z si, et seulement si, s(z) = 0. Montrer que I’ensemble des points de discontinuité de f est
dénombrable [noter que les intervalles ] f(z — 0), f(z + 0)[ sont disjoints deux a deux et en déduire
que I’ensemble des z tels que s(z) > 1/n est fini).

Exercice 2.20.8 Fonction réglée Soient X un espace topologique et f : [a,b] — X une applica-
tion. On dit qu’un point = € [a, b] est un point de discontinuité de premiere espece si f(z + 0) et

f(x — 0) existent et sont différents. Si f n’admet que des discontinuités de premiere espece, on dit que
[ estréglé.

On suppose que X est un espace métrique, montrer que I’ensemble des points de discontinuité
d’une fonction réglée f : [a,b] — X est dénombrable [montrer que, pour tout € > 0, I’ensemble
{z € [a,b]; d(f(z + 0), f(z — 0)) > €} est un ensemble de points isolés].



124 CHAPITRE 2 TOPOLOGIE

Exercice 2.20.9 Discontinuité artificielleindexdiscontinuité artificielle Soient X un espace séparé,
Y un espace régulier et
f: X — Y une application. On note A I'ensemble des points de discontinuité artificielle, c’est-a-dire
I’ensemble des points  de X non isolés tels que la limite limy_,, ;. f(y) existe et est différente
de f(x). On pose alors

_ f@ , sizg A,
#le) = { limyz, 422 f(y) , sizeA

1. Montrer que ¢ : X — Y est continue en tout de A et en tout point de continuité de f.
2. 8i Y est un espace métrique, on pose A, = {z € A; d(p(z), f(z)) > 1/n}, n € N,
montrer que tout point de A,, est isolé dans A,.

3. Si X admet une base de topologie dénombrable, en déduire que A est dénombrable [utiliser
I’exercice 2.10.8].

Exercice 2.20.10 Soient D et D' deux parties de R dénombrables et partout denses, 1’objet de cet
exercice est de prouver que D et D’ sont homéomorphes. On peut écrire D et D’ sous la forme
D =UpLofan} D' = Uplofarn} odap # ag 0, #agsip #g.

1. Construire par récurrence une suite de bijections croissantes fn : A, — Al ob Ap, et A, sont
des parties finies de D et D’ telles que

n n
U {ap} € 4n, J{a)} C Ap, An C Ay, A C ALy et fr = friala, -
p=0 p=0

2. En déduire I’existence de bijection croissante f : D — D’.
3. Montrer que toute bijection croissante f : D — D’ est un homéomorphisme.
En particulier, toute partie dénombrable dense dans R est homéomorphe a Q.

Etudions les sous-espaces des espaces métriques. Soit A une partie d’un es-
pace métrique X . La restriction 8 A x A de la distance d est une distance sur A
définissant une structure d’espace métrique sur A, donc une topologie T, sur A.
On peut d’autre part munir A de la topologie T5 induite par celle de X. Ces deux
topologies J7 et T2 coincident. En effet, si a est un point de A, on obtient une base
du filtre des voisinages de a pour la topologie T, en prenant les traces sur A des
boules fermées {z € X ; d(a,z) < r}, (r > 0), et ces traces sont précisément les
boules fermées dans A centrées au point a.

Ceci montre qu’un sous-espace d’un espace métrisable est métrisable.

Voici une propriété particuliére aux espaces métrisables.

Proposition 2.20.4 Tout sous-espace d’un espace métrisable séparable est sépa-
rable.

Preuve En effet, si un espace admet une base de topologie dénombrable, il en est
de méme de tout sous-espace et on conclut grice a la proposition 2.10.7. Q.E.D.

En ce qui concerne les sous-espaces métriques complets d’un espace métrique,
on a d’abord la

Proposition 2.20.5 1. Tout sous-espace fermé d’un espace métrique complet est
complet.
2. Tout sous-espace complet d’un espace métrique est fermé.
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Preuve 1. Soit A une partie fermée d’un espace métrique complet X et soit (zy,)
une suite de Cauchy de A ; c’est a fortiori une suite de Cauchy dans X qui
converge donc dans X vers un point = ; mais A étant fermé, le point z appartient
a A et la suite (z,,) converge vers = dans A.

2. Soit A un sous-espace complet d’un espace métrique X et soita € A ;
d’apres la proposition 2.12.1, il existe une suite (z,) de A qui converge vers a
dans X ; cette suite est donc de Cauchy dans X, donc dans A ; le sous-espace A
étant complet, cette suite converge donc vers un point b € A dans A, donc dans
X ; un espace métrique étant séparé, on a nécessairement a = b, d’od a € A, ce
qui prouve que A est fermé. Q.E.D.

Corollaire 2.20.6 Dans un espace métrique complet, I’ensemble des parties fer-
mées est égal a I’ensemble des parties compleétes.

Proposition 2.20.7 Soit (A;);c1 une famille de parties complétes dans un espace
métrique X.

1. Si I est non vide, lintersection de la famille est une partie compléte.

2. 8i I est fini, la réunion de la famille est une partie compléte.

Preuve 1. Chaque A; est fermé dans X (proposition 2.20.5), I’intersection est
fermée dans X, donc dans tout A; et on conclut avec la proposition 2.20.5.

2. Soit A la réunion de la famille et soit () une suite de Cauchy de A. L’en-
semble I étant fini, il existe ¢ € I et une sous-suite (z,, ) tels que z,, € A;.
L'ensemble A; étant une partie compléte de X, cette sous-suite converge dans A;,
donc dans A et on conclut avec le corollaire 2.18.4. Q.E.D.

Exemple 2.20.3 La droite achevée R (exemple 2.13.5) est isométrique a I’inter-
valle [—1, +1], qui est un sous-espace métrique complet de R d’apres la propo-
sition 2.20.5 ; il en résulte que R est un espace métrique complet. En effet, étant
donné deux espaces métriques X et Y, s’il existe un homéomorphisme de X sur
Y uniformément continu ainsi que I’homéomorphisme réciproque, X est complet
si, et seulement si, Y est complet.

Remarque 2.20.7 La topologie induite sur R par celle de R est la topologie usuelle
de R : ladistance d2(z,y) = |f(z) — f(y)| induite sur R par celle de R est topolo-
giquement équivalente a la distance usuelle d; (z,y) = |z — y| (remarque 2.18.1).
Les distances d; et dz sur R ne peuvent étre uniformément équivalentes car R est
complet pour la distance d; et ne I’est pas pour la distance ds : en effet, R muni
de cette distance dy est isométrique a I’intervalle ] — 1, 1[ muni de la distance d;,
intervalle qui n’est pas un sous-espace complet de (R, d; ), n’étant pas fermé.

Exercice 2.20.11 Soit X un espace métrique, on suppose qu’il existe 7 > 0 tel que toute boule
fermée B’(z;r) soit complete, montrer alors que 1’espace X est complet.
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Topologie produit

Donnons-nous une famille (X;);c; d’espaces topologiques. Nous nous proposons
de définir sur 1’ensemble produit X = [, X; une structure topologique. Nous
noterons O; ’ensemble des ouverts de X;, V;(x;) le filtre des voisinages d’un
point z; de X, etc.
Le théoréme 2.19.1 permet de donner la définition suivante.

Définition 2.21.1 Soit (X;);cr une famille d’espaces topologiques, sur I’ensemble
X = [1,e1 Xi la topologie la moins fine rendant continues toutes les projections
pri : X — X, est appelée la topologie produit.

La topologie produit étant une topologie initiale, nous obtenons de suite les
propriétés essentielles de cette topologie. Auparavant, faisons une remarque préli-
minaire : soit A; une partie de X;, on a

pr{l(Ai) =A; x H X;
JEILj#i
et, si J est une partie de I, on a donc
ﬂpri‘l(A,-) = HAz' X H Xi;
ieJ ieJ i€l-J
si J est une partie finie de I, de tels ensembles seront appelés des ensembles élé-
mentaires.

Considérons alors sur chaque espace facteur X; une base B; de la topologie ;
d’aprés (2.19.2), une base de la topologie produit est constituée par I’ensemble des
ouverts élémentaires
(2.21.1) IIB:x ] X odBie By, JeF().

i€J i€l-J

Soit £ = (z;)ser un point de ’espace produit et soit 8; un systéme fondamen-
tal de voisinages du point z; ; d’aprés (2.19.3), I’ensemble des voisinages élémen-
taires
(2212) [Tvix [] Xi oaVies;, JeF),

ieJ icl-J
est un systeéme fondamental de voisinages du point = pour la topologie produit.

Les projections pr; sont continues d’apres la définition méme de la topologie
produit ; ce sont en outre des applications ouvertes ; voici la définition de cette
notion.

Définition 2.21.2 Soient Y et Z deux espaces topologiques, une application
f 1Y — Z est dite ouverte si l’image par f de tout ouvert de'Y est un ouvert de
Z.

Proposition 2.21.1 Les projections pr; : X — X; sont des applications ouvertes.

Preuve Si O = [];c; O: est un ouvert €lémentaire, on a pr;(0) = O;oul ;
un ouvert U de X est une réunion d’ouverts élémentaires, U = U,\E AU, et
pri(U) = Uyea Pri(Ux), ce qui permet de conclure. Q.E.D.
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Remarque 2.21.1 Lorsque I’ensemble d’indices I est fini, on peut dans (2.21.1)
et (2.21.2) prendre J = I ; une base de la topologie produit est constituée de 1’en-
semble des produits Hie ; Bi ol B; € B; ;en particulier, tout produit d’ensembles
ouverts est un ensemble ouvert pour la topologie produit. Par exemple, I’espace
R™, n > 1, sera muni de la topologie produit de n droites réelles ; une base de
cette topologie est constituée de 1’ensemble des ouverts élémentaires H;;l]ai, bi[,
ol a;,b; € R ; ces ensembles sont appelés des pavés ouverts. L’ensemble C des
nombres complexes étant muni de la topologie de R2, on munira I’espace C™ de la
topologie produit de  droites complexes, ou ce qui revient au méme de la topolo-
gie de R?",

Proposition 2.21.2 Pour tout i € I, soit A; une partie de X;. On a

2213) 14 =]]4

i€l i€l

et, si I est fini,

(221.4) Int [JA4i = ][] nt 4.
i€l i€l

Preuve Prouvons d’abord (2.21.3). D’apres la continuité des projections et le théo-
réme 2.13.4, on a, en notant A le produit des ensembles A;,

_ . pri(A) C pri(4) C A;,
d’od A C [];es Ai 5 pour démontrer I’inclusion opposée, soit & = (a;)ics un
pointde [],c; A; et soit [I;c; O: un ouvert élémentaire contenant ce point ; on a

alors

(JJo:)na=]J©inA4)

il i€l
et cet ensemble est non vide car O; est un ouvert contenant le point a; € A;, ce
qui prouve que le point a est adhérent a A.

Quant a (2.21.4), I étant fini, on notera d’abord que Hie ;7 Int A; est un ouvert
contenu dans A, donc dans Int A; pour démontrer I’inclusion opposée,
a = (a;)ies un point de Int A ; il existe donc un ouvert [],.; O; contenant ce
point et contenu dans A, d’od a; € O; C A;, ce qui prouve que a; € Int A; et par
conséquent a € [, Int A;. QE.D.

Corollaire 2.21.3 Un produit d’ensembles fermés est fermé pour la topologie pro-
duit.

Une telle propriété est en général fausse pour des ensembles ouverts ; un pro-
duit d’ensembles ouverts [, ; O; n’est un ensemble ouvert que dans les deux cas
suivants : ou bien ce produit est vide, ou bien O; = X; sauf pour un nombre fini
d’indices i. En effet, dans les autres cas un tel ensemble est non vide et ne contient
aucun ouvert élémentaire non vide, il ne peut donc étre une réunion d’ouverts élé-
mentaires.

Exercice 2.21.1 Soient X, Y des espaces topologiques, A C X et B C Y, montrer que
Fr (A x B) = (Fr (A) x B) U (4 x Fr (B)).
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Supposons les espaces facteurs X; non vides et soit A une partie dense dans
X ; d’aprés la continuité des projections, on a pr;(A4) C pr;(A), et par conséquent
pri(A) est dense dans X;. Il en résulte que, si un produit d’espaces topologiques
non vides est séparable, chaque espace facteur est séparable. Réciproquement, on
ala
Proposition 2.21.4 Le produit d’une famille dénombrable d’espaces séparables
est séparable.
Preuve Notons X, n € N, les espaces facteurs qu’on peut supposer non vides,
D,, une partie dénombrable dense dans X, et X = HZ°=0 X, I’espace produit.
Soit a = (a,) un point de X, posons

] 0o
A,,:Han H {an} pourp € N.
n=0 n=p+1
L’ensemble A = U;‘;O A, est alors dénombrable d’apres les propositions 1.9.5 et
1.9.6 et il est dense dans X, car tout ouvert élémentaire non vide s’écrit

P (e
H O, X H X,, O, ouvert de X,
n=0 n=p+1
et rencontre donc A. Q.E.D.
En particulier, les espaces R™ et C™ sont séparables.

Exercice 2.21.2 On considere I’espace R muni de la topologie définie a I’exercice 2.17.6 et I’espace
produit R2, espace séparable d’apres la proposition 2.21.4. Montrer que le sous-espace

X ={(z,y) eR?;z+y =1}
n’est pas séparable [vérifier que la topologie de ce sous-espace est la topologie discréte].

Les espaces produits permettent d’énoncer un critére utile de séparation que
voici.
Proposition 2.21.5 Un espace topologique X est séparé si, et seulement si, la
diagonale de X x X, A = {z € X x X ; priz = proz}, est fermée.
Preuve Si X est séparé, A est fermé dans X x X d’aprés la continuité des
projections et la proposition 2.17.3. Réciproquement, supposons A fermé et soit
z,y € X,z #y;ona(z,y) € AetX x X — A est un voisinage ouvert de
(z,y) ; il existe donc V' € V(z), W € V(y) tel que (V x W) N A = 0, ce qui
signifie VN W = { et ceci prouve (Hz). Q.ED.

Ceci peut se généraliser de la fagon suivante. Etant donné deux ensembles X et
I,I# 0,onnote§ : X — XT I’application = + (z;);c; od z; = z pour tout
i € I ; cette application, appelée application diagonale, est évidemment injective
et son image A = §(X) est appelée la diagonale de X?. La bijection réciproque
d=!: A — X est simplement la restriction 2 A de 1’'une quelconque des projec-
tions pr;. On a alors la

Proposition 2.21.6 Soient X un espace topologique et I un ensemble non vide.
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1. L’application diagonale § est un homéomorphisme de X sur la diagonale
Ade X',
2. Si X est séparé, la diagonale A est fermée.

Preuve 1. L’application J est continue vu que pr; o § est I’application identique de
X ; l’application 6! est continue vu que 6! = pry|a.

2.0nal = erxg Fijou Fij = {z € XT; pri(z) = prj(z)} 5si X
est séparé, A est donc fermé d’apres la proposition 2.17.3. Q.E.D.

Corollaire 2.21.7 Soit (A;)icr une famille non vide de parties d’un espace séparé
X. Alors A = (\;c; Ai est homéomorphe a un sous-espace fermé de I’espace
produit [],c; As
Preuve L application diagonale § est un homéomorphisme de X sur la diagonale
de X, donc induit un homéomorphisme de A sur §(A) ; or J(A) = ([;er As )nA
et, A étant fermé, 6(A) est un sous-espace fermé de [;.; A QE

En ce qui concerne la convergence des filtres sur un espace produit, on a
d’apres la proposition 2.19.2 la caractérisation suivante.

Proposition 2.21.8 Un filtre I sur un espace produit [ [,.; X; converge vers un
point & = (x;)icr Si, et seulement si, les filtres pr;(F) convergent vers x;.

Soit f : Y — X = [],c; Xi une application définie sur un ensemble Y,
notons f; = pr; o f : Y — X les applications composantes. Alors, si F est un
filtre sur Y, le corollaire 2.19.3 montre que = (z;);c; = limg f si, et seulement
si, z; = limg f; pour tout 7 € I. En particulier, une suite (z,,) de X converge vers
un point z si, et seulement si, pour tout ¢ € I, la suite (pr;(z,)) converge vers
le point pr;(z). En prenant pour filtre F le filtre des voisinages d’un point a d’un
espace topologique Y, on a donc z = lim,_,, f(y) si, et seulement si, pour tout
i€ I, z; = limyq fi(y).

Exercice 2.21.3 Soient X, Y des espaces topologiques et F un filtre sur X X Y. Siz € X estun
point adhérent au filtre pry (F) et y € Y un point limite du filtre pro(F),od pr1 : X XY — X et

2 ¢ X XY — Y désignent la premiere et la seconde projection, montrer que (x,y) est un point
adhérent au filtre F.

Enfin d’apres le corollaire 2.19.4, on a la

Proposition 2.21.9 SoitY un espace topologique, une application f : Y — X est
continue en un point a € Y si, et seulement si, toutes les applications f; : Y — X;
sont continues au point a. Par suite, f est continue dans'Y si, et seulement si, toutes
les applications f; sont continues dans'Y .

Exercice 2.21.4 Soient X et Y des espaces topologiques, f : X — Y une application et
G = {(z,y) € X xY;y = f(z)} le graphe de f. Montrer que f est continu si, et seulement
si, pr1|g est un homéomorphisme de G sur X, pr; : X X Y — X désignant la premiere projection.

Pour étudier les fonctions de plusieurs variables, ¢’est-a-dire définies sur un
espace produit, nous utiliserons la proposition suivante.
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Proposition 2.21.10 Soit X = [];c; X un produit d’espaces topologiques non
vides et soit o € I ; pourtout i € I, i # a, choisissons un point a; de X;. Alors,
Uapplication h : o — (;)icr, 0l T; = a;, pour tout i # a, est un homéomor-
phisme de I'espace X sur le sous-espace [ ;¢ ;1o{ai} X Xo de I’espace produit
X.

Preuve Il est évident que h est une bijection. Une base de la topologie du sous-

espace [ [  ;.o{ai} x Xq s’obtient en prenant les traces sur ce sous-espace des

ouverts élémentaires [[,.; O;, O; € O; ; on obtient ainsi comme base de la topo-

logie I’ensemble des [];c; ;.o {ai} X O, 0d Oq décrit O ; il est clair qu’on a

ainsi tous les ouverts du sous-espace et que I’image directe et réciproque par h de

tout ouvert est un ouvert. Q.E.D.
Un produit d’ensembles fermés étant fermé, on en déduit le

Corollaire 2.21.11 Soit X = [],.; Xi un produit d’espaces topologiques non
vides. Chaque espace facteur X; est homéomorphe a un sous-espace de |’espace
produit X. Si dans chaque espace X les points sont fermés (en particulier lorsque
les espaces X; sont séparés), les espaces facteurs X; sont homéomorphes a des
sous-espaces fermés de I’espace produit X.

Du critere de séparation 2.19.5, on déduit le

Corollaire 2.21.12 Un produit d’espaces topologiques non vides est séparé si, et
seulement si, tous les espaces facteurs sont séparés.

Exercice 2.21.5 Montrer que tout produit d’espaces réguliers est régulier.

Considérons maintenant une application f : X — Y définie sur I’espace pro-
duit [ [, ; X; et a valeurs dans un espace topologique Y. Les notations étant celles
de la proposition 2.21.10, considérons I’application f o h : X, — Y, c’est-a-dire
'application 2, — f(z), ol ¢ = (2;);es €t T; = a; pour tout ¢ # « ; si f est
continue en un point a = (a;);cy, le théoréme des fonctions composées prouve
que f o h est continue au point a,. On exprime cette propriété en disant qu’une
fonction de plusieurs variables continue par rapport a I’ensemble des variables est
séparément continue par rapport 4 chacune des variables. La réciproque est en gé-
néral fausse : par exemple, la fonction f : R? — R définie par

F(@,9) = g 51 (2:) # (0,0) €0 /(0,0) = (0,0)

n’est pas continue a ’origine de R?, bien qu’elle soit séparément continue.

Voici enfin une derniére conséquence de la proposition 2.21.10. Considérons
une partie A de I’espace produit [ ], X; ; ’ensemble h=1(A), c’est-a-dire

A((a:)ie1-{a}) = {Za € Xa; (Ti)ier € AOd z; = a; pouri # a},

est appelé la coupe ou section de A relative au point (a;);c1—{}- D’aprés la conti-
nuité de h, si A est ouvert (resp. fermé), cet ensemble est ouvert (resp. fermé).
Note Dans ce qui précéde nous avons fixé€ toutes les coordonnées sauf une, celle
d’indice « ; une généralisation évidente consiste a fixer les coordonnées d’indice
i € J ol J est une partie quelconque de 1.
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Examinons enfin les propriétés de commutativité et d’associativité des topolo-
gies produits.
Proposition 2.21.13 Soit (X;)jc; une famille d’espaces topologiques et soit
[+ I = J une bijection, alors I'application ¢ : (zj)jecs — (Tf@))ier est un
homéomorphisme de [ ; X; sur [1;c; X)-
Preuve Il est clair que ¢ est une bijection. Pour tout A; C X}, on a d’autre part
¢(I1;es Aj) = [lier Agiy ; cette formule montre que I’image par ¢ de tout ou-
vert €lémentaire de [];c ; X; est un ouvert élémentaire de [],c; X;(; et il en
résulte que ¢ est une application ouverte ; de méme, ! est une application ou-
verte, ce qui prouve que ¢ est un homéomorphisme. Q.E.D.

Corollaire 2.21.14 Soient X un espace topologique, I et J des ensembles équi-
potents, alors X et X7 sont homéomorphes.

Proposition 2.21.15 Soit (X;);c; une famille d’espaces topologiques et soit
(Ix)xren une partition de I. Considérons les espaces produits

X=][%Y=]][vaoavs=]] X
i€l AEA i€l
L’application ¢ : (z;)icr — (Ya)ren, 08 Yx = (Ti)ier,, est un homéomorphisme

de X surY.

Preuve On peut supposer tous les espaces facteurs X; non vides. Il est clair que
¢ est une bijection de X sur Y. Soit O = [],.; O; un ouvert élémentaire de X :
Oi=X;sii€I—JouJ e F(I).Onap(O) = [[ep U 0d Uy = [lic;, O
est un ouvert élémentaire de Y), car I, N J est fini ; en outre, I’ensemble

M={ eA;I,nJ #0}

estfiniet Uy = Y) si A € A — M, ce qui signifie que ©(O) est un ouvert élé-
mentaire de Y. L’application ¢ est donc ouverte. Inversement, I’ensemble des
ouverts élémentaires U = [[,ca Ux de Y, ot Uy = [];¢ 1, Oi est un ouvert
élémentaire de Y),, constitue une base de la topologie de Y d’aprés (2.21.1) et
¢ HU) = [l;e; Oi» o0 O; = X; sauf pour un nombre fini d’indices i : en ef-
fet, ’ensemble Jy = {i € I); O; # X;} est fini (U est un ouvert élémentaire)
ainsi que I’ensemble M = {A € A; Jy # 0} (U est un ouvert élémentaire). Ceci
prouve que ™! est une application ouverte et f est donc un homéomorphisme.

Q.ED.

Corollaire 2.21.16 Soit X un espace topologique, les espaces produits (X')” et
XIxJ sont homéomorphes.

Preuve On applique la proposition précédente a la famille (X ;) jyerxs ob
Xij = X etalapartition I x J = U;c;(I x {5}). Q.E.D.

Lorsque les espaces facteurs X; sont a base dénombrable de voisinages, on
peut se demander si I’espace produit est a base dénombrable de voisinages. On a
en fait le critére suivant.
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Proposition 2.21.17 Soit (X;);c1 une famille d’espaces topologiques non vides et
soit X ’espace produit. Alors, I’espace X est a base dénombrable de voisinages
si, et seulement si, les espaces X; sont a base dénombrable de voisinages et tous
les X;, sauf au plus une infinité dénombrable, sont munis de la topologie gros-
siere. En particulier, un produit dénombrable d’espaces topologiques est a base
dénombrable de voisinages si, et seulement si, tous les espaces facteurs sont d
base dénombrable de voisinages.

Preuve 1. Montrons que les conditions sont suffisantes. Soit a = (a;);er un point
de X et soit (V; n)nen un systtme fondamental dénombrable de voisinages de a;.
L’ensemble des [];c; Ving) X [1;e;—y Xi o J décrit 'ensemble des parties fi-
nies de I et i — n(i) 'ensemble des applications de J dans N est un systéme
fondamental de voisinages de a. D’apres les hypothéses, il existe une partie dé-
nombrable I de I telle que V;, = X, pour tout i € I — Iy ; il en résulte qu’on
peut supposer J C Ij et que cet ensemble de voisinages est dénombrable d’aprés
I’exercice 1.9.5 et les propositions 1.9.5 et 1.9.6.

2. Montrons que les conditions sont nécessaires. Si X est a base dénombrable
de voisinages, il en est de méme des X;, vu qu’ils sont homéomorphes a des sous-
espaces de X . Raisonnons ensuite par I’absurde. Supposons que la topologie d’une
infinit€ non dénombrable de X; ne soit pas la topologie grossiére. Il existe alors
un point ¢ = (a;);er de X tel que, pour une infinité non dénombrable d’indices
i, a; admette un voisinage # X;. Soit (V,,)nen un systéme fondamental dénom-
brable de voisinages du point a, chaque V;, contient un voisinage de la forme
[Le 7, Vin X [Lici- J,, Xi ol Jp, est une partie finie de I et V; ;, est un voisinage
de a;. L’ensemble Iy = U;”:O Jn, est dénombrable ; il existe donc i € I — I tel
que a; admette un voisinage V' # X;. Alors, V' x [] jer—-{i} Xj est un voisinage
de a qui ne contient aucun V,,, ce qui est absurde. Q.ED.

Produit dénombrable d’espaces métriques

Soit (X;);es une famille d’espaces métriques, notons d; la distance sur X; et soit
X = [];er Xi ’espace produit. D’apres la proposition 2.21.17, si Card X; > 2
la topologie produit sur X ne peut &tre métrisable que si I est dénombrable. Nous
allons donc nous intéresser uniquement a des produits dénombrables.

Considérons d’abord le cas le plus simple d’un produit fini. On peut alors munir
’espace X de diverses distances ; voici les plus utilisées

(2.22.1) d(z,y) = maxd;(z:,ys),

2.222) d(z,y) =) di(zi,y),
i€l

(2.22.3) d"(@,y) = (3 dilzi, 90)%) ",

i€l
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ol £ = (z;)ier» ¥ = (¥i)icr. Toutes ces distances sont en fait uniformément
équivalentes : on aeneffet d < d’ < d' < ndodn = Card I ; il est d’autre
part ais€ de vérifier que, si on substitue aux distances d; des distances uniformé-
ment équivalentes, on substitue aux distances d, d’, d” des distances uniformément
équivalentes. Par conséquent, les distances d, d’, d"’ définissent sur X une structure
uniforme qui ne dépend que des structures uniformes des espaces facteurs X ;
nous I’appellerons la structure uniforme produit. La topologie correspondante sur
X est la topologie produit : en effet, pour la distance d par exemple, une base
du filtre des voisinages d’un point £ = (z;);cs est consituée par I’ensemble des
boules fermées B’(x;7) = [],c; Bi(xi;7), o Bj(z;; ) désigne la boule fermée
centrée au point z; et de rayon 7, alors que, pour la topologie produit, nous sa-
vons qu’une base du filtre V(z) est constituée par ’ensemble des voisinages élé-
mentaires [[,.; Bj(zi; i), 7 > 0 ; ces deux bases de filtre sont manifestement
équivalentes.

Considérons plus généralement une famille dénombrable (X, ),en d’espaces
métriques. On peut alors définir sur I’espace produit diverses distances. Pour toute
suite o = (a,) de nombres > 0 telle que la série Y>> a, converge et pour toute
suite 8 = (B,) de nombres > 0 telle que lim,_,, 5, = 0, on pose

o0
(2.22.4) do(2,9) = Y anmin(1,dn(n, ¥n)),
n=0
(2.22.5) dg(z,y) = SUIl\)l Bnmin(1,dn(zn,Yn)),
ne

odz = (z,) € X,y = (yn) € X. On obtient ainsi des distances d,, et dg sur X,
I’inégalité triangulaire se vérifiant en utilisant (2.15.1).

Lemme 2.22.1 Les distances d, et dg sont uniformément équivalentes et sont
remplacées par des distances uniformément équivalentes lorsqu’on substitue aux
distances d,, des distances uniformément équivalentes.

Preuve Notons dj la distance (2.22.5) associée a des distances d;, uniformément
équivalentes aux distances dy,. Il suffit de vérifier alors que dq et dj; sont unifor-
mément équivalentes.

1. Soit € > 0, montrons qu’il existe § > 0 tel que d,, < § implique d; < e. 1l
existe ng € Ntel que 8, < € pour n > ng ; les distances min(1, d,,) et min(1, d},)
étant uniformément équivalentes (exemple 2.15.2), il existe § > 0 tel que, pour tout
0 < n < np, min(1,d,) < da;! implique min(1,d/,) < eB; 1. Supposons alors
do < 6, d’0d min(1,d,) < ot et par conséquent min(1,d!) < eB;! pour
0 < n < ngetil en résulte que d5 < € vu le choix de ng.

2. Soit ¢ > 0, montrons qu’il existe § > 0 tel que dj < & implique
do < e llexisteng € Ntelque )07 ) an < €/2; les distances min(1, d,) et
min(1, d},) étant uniformément équivalentes, il existe § > 0 tel que

min(1,d,) < 68, = min(1,d,) < (¢/2)(no + 1) "1, pour 0 < n < ny.
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Supposons alors djg < 4, c’est-a-dire min(1, dl) <éB;t, don
min(1,d,) < (¢/2)(no + 1), pour 0 < n < ng
et par conséquent ) e o o min(1,d,) < €/2, d’olt dy < € vu le choix de no.
Q.E.D.
Les distances d,, et dg définissent sur I’espace produit une structure uniforme
qui ne dépend que de la structure uniforme des espaces facteurs et que nous appel-
lerons la structure uniforme produit. Nous allons vérifier que la topologie associée
est bien la topologie produit.

Proposition 2.22.2 La topologie associée aux distances d, et dg est la topologie
produit. En outre, les projections pry, : X — X, sont uniformément continues.

Preuve On peut supposer 0 < d,, < 1 d’apres le lemme 2.22.1.
Les projections sont uniformément continues car

dn(PTnil?,P"‘ny) < a';lda(a% Y).
Ceci prouve que la topologie associée aux distances d,, et dg est plus fine que la
topologie produit.

Montrons que ces deux topologies coincident ; il s’agit de vérifier que toute
boule ouverte B(z;e), € > 0, pour la distance dg (par exemple) est ouverte
pour la topologie produit. Or B(z;e) = [[o” Ba(zniefpt) od z = (zn),
By (zn;€B;!) désignant la boule centrée au point z,, et de rayon €3, 1. Dés que
eBrt > 1,0na By(zn;eB, ) = X, etil en résulte que B(z;€) est tout simple-
ment un ouvert élémentaire. Q.E.D.

Corollaire 2.22.3 Un produit dénombrable d’espaces métrisables est métrisable.
Nous pouvons alors préciser la proposition 2.21.9.

Proposition 2.22.4 Soit X = [[>2, X, un produit dénombrable d’espaces
métriques et soit Y un espace métrique. Une application f : Y — X est
uniformément continue si, et seulement si, les applications composantes
fn=prpo f:Y — X, sont uniformément continues.

Preuve La condition est nécessaire d’aprés la proposition 2.22.2. Réciproquement,
supposons les fonctions f, uniformément continues ; notons d la distance sur Y.
On peut supposer 0 < d,, < 1. Soit € > 0, il existe ng € N tel que B, < € pour
n > ng ; pour tout n € N, il existe 8, > 0 tel que dy, (fr(z), fu(y)) < B, des
que d(z,y) < 0p,d’od

sup Bndn(fn(z), fr(y)) <edésqued(z,y) <6 = min &,
OSnSn() Os'nSng

et par conséquent dg(f(z), f(y)) < € dés que d(z,y) < & vu le choix de ng, ce
qui prouve la continuité uniforme de f. Q.E.D.

Soit X = Hf:o X7, un produit dénombrable d’espaces métriques non vides
et soit @ = (an) un point de X. D’apres la proposition 2.21.10, I’application
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h: zp = (Zp)peN, Ol T, = ap, pour p # n, est un homéomorphisme de X, sur le

sous-espace
[e)

{ap} x Xp.
p=0

p#n

Cet homéomorphisme est uniformément continu ainsi que I’homéomorphisme ré-
ciproque : on a en effet do (h(2,,), h(yn)) = andn(zn, yn) pour tout T, y, € X,
en supposant 0 < d,, < 1. Ceci prouve qu’il existe un homéomorphisme uniformé-
ment continu ainsi que ’homéomorphisme réciproque, de chaque espace facteur
sur un sous-espace fermé de I’espace produit. En outre, si f : X — Y est une
application a valeurs dans un espace métrique Y uniformément continue, alors f
est séparément uniformément continue par rapport a chacune des variables.

Exemple 2.22.1 Soit X un espace métrique, alors la distance d : X x X — Rest
uniformément continue. On a en effet, d’aprés 1’inégalité triangulaire, pour tout
(z,y)eX xXet(z,y)e X x X

d(«',y') < d(a',z) + d(z,y) + d(y,y"),
d’od d(z',y’) — d(z,y) < d(z,z’) + d(y,y’) d’apres (D;) ; on vérifie de méme
que d(z,y) — d(2/,y’) < d(z,z') + d(y,y’), d’ou
(2.22.6) ld(z',y') - d(z,y)| < d(z,z") +d(y,¥),
ce qui prouve le résultat voulu.

Indiquons enfin un résultat important concernant les produits d’espaces mé-
triques complets.

Théoréme 2.22.5 Un produit dénombrable d’espaces métriques non vides est com-
plet si, et seulement si, tous les espaces facteurs sont complets.

Preuve La condition est nécessaire d’aprés la propriété des espaces facteurs indi-
quée ci-dessus et les propositions 2.18.6 et 2.20.5.

La condition est suffisante ; en effet, si F est un filtre de Cauchy sur I’espace
produit, les filtres pr,, (F) sont des filtres de Cauchy d’apres les propositions 2.22.2
et 2.18.6 ; ces filtres sont donc convergents, ce qui prouve que F converge d’apres
la proposition 2.21.8. Q.E.D.
Exemple 2.22.2 Les espaces R™ et C™ seront toujours munis de la structure uni-
forme produit de n droites réelles ou complexes. Le théoréme 2.22.5 montre que
ces espaces sont complets.

Exemple 2.22.3 Le cube de Hilbert L’espace [0, 1]V, c’est-a-dire ’ensemble de
toutes les suites (z,,) avec 0 < z,, < 1, est appelé le cube de Hilbert. La topologie
produit sur cet espace est métrisable : on peut prendre comme distance par exemple
|Zn — Yl

n+1
On obtient ainsi un espace métrique, complet et séparable d’apres la proposition
2.214.

d(z,y) = sup
neN
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Exercice 2.22.1 Soit O un ouvert d’un espace métrique X, O # X. On considere la fonction
f(z) =1/d(z,F)pourz € Ood F = X — O.

1. Montrer que le graphe de f, G = {(x,y) € O X R;y = f(x)} est fermé dans X x R.

2. En déduire que O est homéomorphe a un sous espace fermé de X x R [utiliser I’exercice 2.21.4]
et, si X est complet, que O est homéomorphe a un espace métrique complet.

3. En déduire que tout s (exercice 2.13.4) d’un espace métrique complet est homéomorphe 2 un
espace métrique complet [utiliser le corollaire 2.21.7].

4. Application : montrer que I’ensemble des irrationnels est homéomorphe 2 un espace métrique
complet.
Exercice 2.22.2 Soient X un espace métrique, d la distance sur X et O un ouvert de X, O # X.
Pour tout 2,y € O, on pose
1

1 N
@r) dgp|*F=%X-0

d'(z,y) = d(z,y) +
Montrer que d’ est une distance sur O topologiquement équivalente 2 la distance d et, si X est
complet, que (O, d’) est un espace métrique complet (comparer avec I’exercice 2.22.1).

Exercice 2.22.3 Soit X un ensemble, on définit une distance sur ’espace Y = XN* de la fagon
suivante. Soient z = (2, ) et y = (yn) deux éléments de cet espace, si x = y on pose d(z,y) = 0
et, siz # y, dz,y) = 1/n(x,y) od n(z,y) est le plus petit entier n > 1 tel que 2n # yYn.
Montrer alors que Y est un espace métrique complet [munir X de la métrique discrate et observer que
la distance d est de la forme dg].

Exercice 2.22.4 Fraction continue illimitée 1. Soit (@n),>1 une suite de nombres entiers > 1,

on considere la suite de rationnels (), >1 définie de la fagon suivante : 7, = rn(on,...,an),
r1(a1) = 1/a1 et,pourn > 1,

Tn+1(Q1,. .., Qnp1) =Tnlar,. .., 0n—1,0n + (1/onq1)).
Montrer que rn, = pn/qn o p1 = 1,q1 = a1,p2 = 02,92 = a2q1 + let
Pn = @nPn-1+Pr-2, n = Cndn-1+ gn—2 pourn > 3.

En déduire que pn+1gn — Pndn+1 = (—1)" pour n > 1 et que la suite (r5,) converge vers un
nombre irrationnel z €]0, 1[. On écrira alors = a%l 4.4 I% + - - - et on dit qu’on a développé

z en fraction continue illimitée. "

2. Réciproquement, montrer que, pour tout irrationnel z de ]0, 1[, il existe une unique fraction
continue illimitée égale a z. En déduire une bijection f de I'ensemble Y = F(N*; N*) sur I’ensemble
I des irrationnels de ]0, 1[.

3. On munit N* de la topologie discréte et 1’espace Y de la topologie produit, montrer que f
est alors un homéomorphisme de Y sur I. En déduire que I’ensemble des irrationnels de ]0, 1 est

homéomorphe a un espace métrique complet (comparer avec I’exercice 2.22.1).

Exercice 2.22.5 1. Montrer que I’ensemble de Cantor C (exercice 2.6.2) est homéomorphe 2 I’es-
pace produit {0,2}N° oi I’espace & deux éléments {0,2} est muni de la topologie discréte [utili-
ser la bijection construite dans I’exercice 2.6.2 et, siz = 0.a1...an..,y = 0.61...8n...,
a;,Bj € {0,2}, = # y, remarquer que 37P < |z — y| < 37P+1 o p est le plus petit entier > 1
tel que ap # By et en déduire qu’une suite (z*) de ensemble de Cantor, zF = 0.a¥ ...k ...,
converge vers  si, et seulement si, (a}' ) converge vers a; pour tout j € N*].

2. En déduire que les espaces C™, n > 1, et CN sont homéomorphes a I’ensemble de Cantor.
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Exercice 2.22.6 Soient X un espace métrique complet et (An)n>1 une suite décroissante
de fermés. On suppose que chaque A, peut s’écrie Ap, = |J, An,c Ol € décrit I’ensemble
&n = F([1,n]; {0, 1}) avec les propriétés suivantes

a. les Ay ¢ sont fermés non vides et disjoints deux a deux pour 7 fixé,

b. maxeeg, diam Ap, e tend vers O lorsque n tend vers I'infini,

C.Ane DAppr,er UApy e ote’,e” 1 [1,n 4 1] — {0,1} sont les deux applications qui
prolongent €.

Montrer que A = (1, A, est homéomorphe 2 I’espace produit {0, 1}N", I’ensemble {0, 1}
étant muni de la topologie discréte [pour a € A, montrer qu’il existe une unique application
€: N* = {0,1} telle que a € Ap,e,, pourtout n > 100 en = €|[1,) ; €n déduire une bijec-

tion de A sur {0, 1}N" et vérifier qu’il s’agit d’un homéomorphisme].

Tous les espaces A construits par la méthode précédente sont donc homéomorphes & I’ensemble
de Cantor (exercices 2.6.2 et 2.22.5) ; ce sont des espaces compacts sans point isolé ayant la puissance
du continu.

Exercice 2.22.7 Montrer que tout espace métrique complet non vide et sans point isolé contient
un sous-espace homéomorphe a I’ensemble de Cantor [utiliser la construction de I’exercice 2.22.6 en
prenant pour Ay ¢ des boules fermées].

Topologie de la convergence simple

Soient X un ensemble et Y un espace topologique ; ’ensemble F(X;Y"), noté
également YX, de toutes les applications de X dans Y est simplement 1’espace
produit [ [y Yz, 00 Yz =Y pour tout z € X. On peut donc munir cet ensemble
de la topologie produit, qu’on appelle topologie de la convergence simple ; muni
de cette topologie, 1’espace F(X;Y) sera noté F;(X;Y). Tous les résultats du
paragraphe 2.21 s’appliquent donc a cette situation particuliere.

La topologie de la convergence simple est la topologie la moins fine rendant
continues toutes les projections, c’est-a-dire les applications pr,, : f — f(z) de
F(X;Y) dans Y, ob z décrit X.

Un ouvert élémentaire est d’aprés (2.21.1) de la forme

HOmx H Yz,

zEA TEX-A

ol A est une partie finie de X et O, un ouvertde Y ; cet ouvert élémentaire s’écrit
donc
(2.23.1) {f €F(X;Y); (Vz € A)(f(z) € O,)}
et on obtient une base de la topologie de la convergence simple en faisant décrire
a A I’ensemble des parties finies de X et a O, I’ensemble des ouverts de Y.

On obtient un systtme fondamental de voisinages d’une application
f + X = Y en considérant I’ensemble des voisinages élémentaires de ce point
f, c’est-a-dire I’ensemble des
(2232) V(f; A, (Va)zea) = {9 € F(X;Y); (Vz € A)(9(z) € Vy)}
ol A décrit I’ensemble des parties finies de X et V,, le filtre des voisinages du
point f(z) ou une base de ce filtre.
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Si un filtre F sur I’espace F,(X; Y') converge vers une application £, nous di-
rons que ce filire converge simplement. D’apres la proposition 2.21.8, ceci signifie
que, pour tout - € X, le filtre pro(F) converge vers f(z) dans Y. Etant donné que

pro(F) = {pro(M); M € F} od pro(M) = {g(z); g € M},
ceci signifie donc que

2.233)  (Vz € X)(VV € V(f()))(3M € F)(Vg)(g € M = ¢(x) € V).

Si une suite (f,) de F5(X;Y) converge vers une application f pour la topo-
logie de la convergence simple, nous dirons qu’elle converge simplement ; ceci
signifie que, pour tout z € X, la suite (f,(x)) converge vers f(z) dans I’espace
Y. Bien entendu, c’est cette propri€té qui est a I’origine du nom de la topologie de
la convergence simple.

D’apres le corollaire 2.21.12, 0n ala
Proposition 2.23.1 La topologie de la convergence simple sur ’espace F(X;Y),
oit X est non vide, est séparée si, et seulement si, ’espace Y est séparé.

Si Y est a base dénombrable de voisinages, la topologie de la convergence
simple n’est pas en général a base dénombrable de voisinages. D’aprés la proposi-
tion 2.21.17, on a en effet le critére suivant.

Proposition 2.23.2 1. Si X est dénombrable, I’espace F;(X;Y) est a base dé-
nombrable de voisinages si, et seulement si, Y est a base dénombrable de voisi-
nages.

2. Si X n’est pas dénombrable, I’espace F;(X;Y) est a base dénombrable
de voisinages si, et seulement si, la topologie de Y est la topologie grossiére ; la
topologie de 'espace Fs(X;Y) est alors la topologie grossiére.

Exercice 2.23.1 Soient X, Y des ensembles et Z un espace topologique, montrer que la bijection
canonique de F(X; F(Y; Z)) sur F(X x Y; Z) qui a une application z — f; de X dans F(Y; Z)
associe I’application (z,y) — fz(y) de X XY dans Z est un homéomorphisme de Fs(X; Fs(Y; Z))
sur Fs(X x Y; Z) [utiliser le corollaire 2.21.16].

Topologies finales, topologie quotient

Considérons comme au paragraphe 2.19 une famille (X;);c; d’espaces topolo-
giques, un ensemble X et une famille d’applications f; : X; — X (au lieu d’ap-
plications de X dans X;). On désire munir I’ensemble X d’une topologie qui rend
continues toutes les applications f; ; si T est une telle topologie, toute topologie
moins fine rend a fortiori continues toutes les applications f;. On a alors le théo-
réme suivant.

Théoréme 2.24.1 Soient (X;);cr une famille d’espaces topologiques, X un en-
semble et f; . X; — X une famille d’applications. 1l existe sur X une topologie,
dite topologie finale, rendant continues toutes les applications f; et plus fine que
toute topologie sur X rendant continues les applications f;.
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Preuve Si T est une topologie rendant continues les f; et si O est un ouvert pour
T, on a nécessairement f;*(O) € O; pour tout i € I. Le théoréme résulte simple-
ment du fait que

(2.24.1) 0={0€PX); f7'(0) € O; pour tout i € I'}
vérifie les axiomes des ouverts et par suite définit la topologie la plus fine rendant
continues les f;. Q.E.D.

Bien entendu, on a la

Proposition 2.24.2 Pour la topologie finale, une partie F' de X est fermée si, et
. p—1 i .
seulement si, ;" (F) est fermé dans X; pour tout i € I.

Pour les topologies finales, il n’existe pas de caractérisation des filtres conver-
gents. I n’y a pas non plus de critére simple de séparation. On a cependant le
résultat important que voici.

Proposition 2.24.3 Soit Y un espace topologique, une application f : X —»'Y
est continue si, et seulement si, les applications f o f; : X; — Y sont continues
pour touti € I,

Preuve La condition est nécessaire d’apres la continuité des f;. Réciproquement,
supposons les applications f o f; continues et soit O un ouvert de Y, alors f~1(0)
est un ouvert de X car f;"1(f~1(0)) = (f o fi)~1(O) € O; pour tout i € I et
ceci prouve la continuité de f. Q.E.D.

Exemple 2.24.1 Borne inférieure d’une famille de topologies Soit (J;);cr une
famille de topologies sur un ensemble X. Notons X; I’ensemble X muni de la
topologie T; et f; : X; — X P’application identique. La topologie finale sur X
associée a ces données est donc moins fine que chaque topologie T; et c’est la
topologie la plus fine ayant cette propriété ; autrement dit, cette topologie finale est
simplement la borne inférieure des topologies (T;):c ;. Compte-tenu de 1’exemple
2.19.1, ceci montre que toute famille de topologies sur un ensemble X admet une
borne supérieure et une borne inférieure.

Dans la suite, les seules topologies finales que nous utiliserons seront des to-
pologies quotients ; elles sont définies de la fagon suivante.

Soient R une relation d’équivalence sur un espace topologique X, X/R I’es-
pace quotient et 7 : X — X/R la surjection canonique. La topologie finale sur
X/R associée a cette seule application 7 est appelée la topologie quotient. La
topologie quotient est donc la topologie la plus fine sur X/R rendant continue
I’application 7 ; un ensemble O de X/ R est ouvert (resp. fermé) pour la topologie
quotient si, et seulement si, 7~1(O) est ouvert (resp. fermé) dans X. Voici un cri-
tere simple de séparation que nous utiliserons dans 1I’étude des espaces vectoriels
topologiques.

Proposition 2.24.4 Si l’espace quotient X /R est séparé, le graphe de R est fermé
dans X x X ; la réciproque est vraie lorsque I’application T est ouverte.
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Preuve Soit G le graphe de R, on a
G={(z,y) € X x X; m(z) = n(y)},

c’est-a-dire G = {z € X x X ; (mopr1)(z) = (moprg)(z)}. SiI’espace X/R
est séparé, G est donc fermé d’apres la proposition 2.17.3. Réciproquement, sup-
posons G fermé et m ouverte. Soient £ = 7(z) et 7 = 7(y) deux points distincts
de X/R, alors (z,y) ¢ G ; G étant fermé, il existe donc des voisinages ouverts
UetV dezetytelsque (U x V)N G = 0 ; I’application 7 étant ouverte, il en
résulte que 7(U) et w(V') sont des voisinages ouverts disjoints de { et 7. Q.E.D.

Des exemples d’espaces quotients seront donnés dans 1I’étude des espaces com-
pacts.

Exercice 2.24.1 Soient X un espace topologique, R une relation d’équivalence sur X, X/R I’es-
pace quotient, # : X — X/R la surjection canonique. Si A est une partie de X, I’ensemble
7~ 1(n(A)) = {z € X;(3y € A)(z = ymod. R)} est appel€ le saturé de A. Montrer 1’équi-
valence de

1. ’application 7 est ouverte (resp. fermée),

2. le saturé de tout ouvert (resp. fermé) est ouvert (resp. fermé).
Exercice 2.24.2 On reprend la situation de I’exercice 1.2.8 et on suppose que X et Y sont des
espaces topologiques ; on munit I’espace X /R de la topologie quotient.

1. Montrer que f est continu si, et seulement si, g est continu.
2. Si f est une application ouverte, g est une application ouverte.

3. On suppose I’application 7 : X/R — Y ouverte et f continue surjective, montrer que f est
ouverte si, et seulement si, g est un homéomorphisme de X/R surY.

Prolongement des applications uniformément
continues

Voici une premiére application importante de la notion d’espace métrique complet
concernant le probleme de prolongement évoqué aprés le corollaire 2.17.4. Voici
d’abord une proposition préliminaire.

Proposition 2.25.1 Soient A une partie dense dans un espace topologique X, Y
un espace régulier et f : A —'Y une application. Pour qu’il existe une application
continue f : X — Y qui prolonge f, il faut et il suffit que, pour tout = de X, la

limite
li
ydim f(y)
existe. Le prolongement est alors unique : il est donné par la formule
(2.25.1) flz) = hm f@), zeX.

Note L’hypothese faite, a savoir que la limite limy_,> yc 4 f(y) existe, implique
que f est continue d’apres la proposition 2.17.2.

Preuve La condition est nécessaire : s’il existe un prolongement continu
f:X = Y, ona f(z) = limy,, f(y), d’od d’aprés la remarque 2.20.6
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f(x) = limy_z e a f(y) ; le filtre qui intervient dans cette derniere limite est
la trace sur A du filtre V() ; f étant un prolongement de f, ceci prouve que la li-
mite limy_,, ye 4 f(y) doit exister et que f est nécessairement donné par (2.25.1).
La condition est suffisante. I s’agit de vérifier que 1’application f définie par
(2.25.1) est un prolongement continu de f. Notons d’abord que f est un pro-
longement de f : en effet, lorsque z € A4, la proposition 2.17.2 montre que
flz) = limy—,; yea f(y) = f(z). Montrons ensuite que f est continu en un point
z € X.L'espace Y étant régulier (définition 2.17.2), soit V' un voisinage fermé de
f(z). D’apres la définition (2.25. 1) de f(z), il existe un voisinage ouvert W de =
tel que f(W N A) C V. Pour tout z € W, f(z) est un point limite de la base de
filtre f('V(2)|4), donc un point adhérent & cette base de filtre ; W " ayant €t€ choisi
ouvert, on a donc f(z) € f(W N A) et ceci prouve que f(W) C f(W N A) A) Ilen
résulte, V étant fermé, que f(W) C V et ceci démontre la continuité de f. Q.E.D.
Nous allons en déduire le

Théoréme 2.25.2 Prolongement des applications uniformément continues
Soient A une partie dense dans un espace métrique X et f : A — 'Y une appli-
cation uniformément continue a valeurs dans un espace métrique complet. Alors,
il existe une unique application continue f : X — Y qui prolonge f. En outre, f
est uniformément continue.

Preuve On peut utiliser la proposition 2.25.1, car tout espace métrique est ré-
gulier. D’autre part, le filtre des voisinages d’un point z € X est un filtre de
Cauchy ; sa trace sur A est a fortiori de Cauchy et I’image de cette trace par I’ap-
plication uniformément continue f est donc une base de filtre de Cauchy sur Y.
L’espace Y étant complet, cette base de filtre converge ce qui signifie que la limite
limy . ye 4 f(y) existe. D’apres la proposition 2.25.1, I’application f se prolonge
en une application continue f: X — Y.

Montrons que f est uniformément continue. Soit £ > 0, il existe § > 0 tel que

(zeAety € Aetd(z,y) < d) = d(f(z), f(¥)) <&
autrement dit, on a d(f(z), f(y)) < € lorsque (z, y) appartient a I’ensemble
{(z,y) € Ax A; d(z,y) <}

qui est dense dans I’ensemble {(z,y) € X x X ; d(z,y) < &} car ce dernier
ensemble est ouvert et A X A est dense dans X x X. Le principe du prolonge-
ment des inégalités prouve que d( f(:t:) f(®)) < &, pour tout z,y € X tel que
d(z,y) < 4. QED.
Exercice 2.25.1 Soient X un espace topologique, Y un espace métrique et f : A — Y une ap-
plication définie sur une partie A de X. Pour tout z € A, on définit I’oscillation de f au point z par
w(f;z) = infy gy(gy diam f(V N A4).

1. Montrer que la fonction w(f, ) : A 1R+ ests.c.s.

2. On pose Ap = {x € A;w(f;z) = 0}. Montrer que Ag est un Gg (exercice 2.13.4) du
sous-espace A et, si X est un espace métrique, que Ag est un G5 de X [utiliser le lemme 2.29.7).

3. On suppose I'application f continue et Y’ complet, montrer que A C Ag C A et que f se
prolonge en une fonction continue fo : Ap — Y [utiliser la proposition 2.25.1].
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Exercice 2.25.2 Soient X, Y des espaces métriques complets, A C X,BC Yetf: A— B
un homéomorphisme. D’apreés I’exercice 2.25.1, il existe un G5 Ao D A et une application continue
fo : Ao — Y qui prolonge f et de méme il existe un G5 Bo D B et une application continue
go : Bo = X qui prolonge g = f~1. On pose

A ={z € Ao; fo(z) € Boet go(fo(z)) = =},

By = {y € Bo; go(v) € Ao et fo(g0(v)) = y}-

1. Montrer que A; et By sontdes G; [si F' : Ag — X XY désigne I'application z — (z, fo(z)),
remarquer que A; = F~1(Go) ol Go C X X By est le graphe de go, montrer que Go est un G5
dans X x Y et utiliser I’exercice 2.13.4].

2. Montrer que f1 = fola, : A1 — B est un homéomorphisme qui prolonge f.

3. En déduire que tout sous-espace d’un espace métrique complet homéomorphe 2 un espace mé-
trique complet est nécessairement un Gs.

D’apres I’exercice 2.22.1, ceci prouve que dans un espace métrique complet un sous-espace est
homéomorphe a un espace métrique complet si, et seulement si, ce sous-espace est un G4.

Le théoréme du point fixe

Voici une seconde application de la notion d’espace métrique complet. Il s’agit de
la méthode des approximations successives, méthode générale d’étude d’équations
fonctionnelles que nous aurons 1I’occasion d’appliquer plusieurs fois.

Soient X et Y des espaces métriques, une application f : X — Y est appelée
une contraction stricte s’il existe une constante 0 < k < 1 telle que

d(f(z), f(y)) < kd(z,y), pourtoutz,y € X ;

le nombre k sera appelé la constante de contraction. Une telle application est évi-
demment continue, et méme uniformément continue.

Théoréme 2.26.1 Théoréme du point fixe Soient X un espace métrique complet
et f : X — X une contraction stricte. Alors f admet un unique point fixe, c’est-
a-dire il existe un unique point a de X tel que f(a) = a.
Preuve Démontrons d’abord I’ unicité du point fixe. Soient a et b deux points fixes
de f ;ona f(a) = a, f(b) = b,d’od

d(a,b) = d(f(a), (b)) < kd(a,b),
ce qui impliquea =bvuque0 <k < 1.

Pour démontrer I’existence du point fixe, soit ¢ un point quelconque de X ;
posons Tp11 = f(z,) pour n € N. On construit ainsi une suite (z,) de X eton a
d(Zn+1,Zn) = d(f(2n), f(Tn-1)) < kd(Tn, Tn-1),

d’ol d(Tp41,2,) < k™d(z1,20). Pour 0 < p < g, on en déduit que
q—-1
kP
d(zp,z4) < (gk")d(ml,xo) < 71, 20)
et, k étant < 1, ceci montre que la suite (z,) est une suite de Cauchy ; X étant
complet, cette suite converge vers un point a. En passant a la limite dans la relation
Zn41 = f(2n), ce qui est loisible car f est continu, on obtient a = f(a). Q.E.D.
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Dans les applications, il est fréquent que f ne soit pas une contraction, mais
qu’une itérée de f le soit : si f : X — X est une application d’un ensemble X
dans lui-méme nous poserons fO = Ix, f**! = f" o f pour toutn € N. On a
alors

Proposition 2.26.2 Soient X un espace métrique complet et f : X — X une
application. S’il existe un entier n > 1 tel que f™ soit une contraction stricte, f
admet un point fixe et un seul.

Preuve Notons d’abord que tout point fixe de f est un point fixe de f™ ; ceci
prouve le théoreme d’unicité. D’autre part, f™ admet un point fixe a d’aprés le
théoréme précédent ; on a donc f™(a) = a, d’od f**1(a) = f(a) ce qui prouve
que f(a) est aussi un point fixe de f™ ; vu que f™ n’admet qu’un seul point fixe,
ona f(a) = a ce qui prouve que a est un point fixe de f. Q.E.D.

Nous avons étudié jusqu’a présent une équation de la forme f(z) = z ; lorsque
f dépend d’un parametre, il est essentiel d’étudier la dépendance du point fixe par
rapport au paramétre. Dans cette direction, voici deux résultats le premier global,
le second local.

Proposition 2.26.3 Soient X un espace topologique, Y un espace métrique com-
plet, f : X xY — Y une application continue. On suppose qu’il existe une
constante 0 < k < 1 telle que, pour tout x € X et tout y1,y2 € Y,

(2.26.1) d(f(z, 1), f(z,2)) < kd(y1,32).

Alors, I'équation f(z,y) = y admet pour tout x de X une solution et une seule
y = @(z). De plus, 'application p : X —'Y est continue.

Preuve L'existence et I'unicité de ¢(z) résultent du théoréme 2.26.1. Prouvons la
continuité de ¢ en un point a € X ; en posant b = p(a) ety = p(z),on a

d(‘P(x)’ ‘p(a)) = d(y’ b) = d(f(:l:, y)) f(a’ b))
< d(f(z,y), f(=z,b)) + d(f(z,b), f(a,b))
< kd(y,b) +d(f(z,b), f(a,b)),

d’od
d(p(z), p(a)) < (1 - k)" d(f(z,b), f(a,b))
et d’apres la continuité de I’application = — f(z,b) au point a, il existe, ¢ > 0
étant donné, un voisinage V' de a tel que d(f(z,b), f(a,b)) < e, pourz € V,d’ob
d(p(z),¢(a)) < (1 — k)71, pourz €V,
ce qui prouve le résultat voulu. Q.E.D.

Proposition 2.26.4 Soient X un espace topologique, Y un espace métrique com-
plet, Q un ouvert de X xY et f : Q@ — Y une fonction continue. On suppose
qu’il existe une constante 0 < k < 1 telle que, pour tout (z,y1),(z,y2) € Q,
d(f(z,y1), f(z,y2)) < kd(y1,y2). Soit (a,b) un point de Q tel que f(a,b) = b,
alors il existe un voisinage ouvert A de a et une fonction continue p : A —'Y dont
le graphe est contenu dans 2 tels que, pour tout © € A, y = () soit 'unique
solution de I’équation I’équation f(x,y) = y.
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Preuve On vérifie I’ unicité comme dans le théoréme 2.26.1. Pour démontrer I’exis-
tence et la continuité, nous allons nous ramener 2 la situation de la proposition
2.26.3. On peut trouver des ouverts Q2 et Q5 tels que (a,b) € 1 x Q1 C £, puis
une boule fermée B’(b;7), 7 > 0, telle que B’ (b;r) C Q2 et enfin un ouvert A tel
quea € AC Qet

d(f(z,b), f(a,b)) < (1 — k)r pour tout € A.
On a alors pour tout (z,y) € A x B/(b;r)
d(f(z,y), f(a,b)) < d(f(z,y), f(z,b)) + d(f(=,b), f(a,D))
< kd(y,b)+(1—-k)r<r
Ceci prouve que f(AxB’(b;r)) C B’(b;). On peut alors appliquer la proposition
2.26.3 a la restriction de f 2 A x B’(b;r), en notant que B’(b;r) est fermé dans
Y, donc complet. Q.ED.

Topologie de la convergence uniforme

Soient X un ensemble, Y un espace métrique ; nous allons munir 1’ensemble
F(X;Y) de toutes les applications de X dans Y d’une structure d’espace mé-
trique.

Posons, pour tout f, g € F(X;Y),

(2.27.1) di(f,9) = sup d(f(z),9(z)).

Cette application d; vérifie trivialement les axiomes (D), (D2) et (D3) mais la
quantité d; (f, g) peut étre égale a +o0 et d; n’est donc pas en général une distance.
Pour remédier a ce défaut, nous poserons

(2.21.2) d(f,9) = min(1,d1(f,9)),
on obtient alors une distance sur I’ensemble F(X;Y) : I’inégalité triangulaire ré-
sulte de I’inégalité triangulaire pour d; et de ’inégalité (2.15.1). On vérifie aisé-
ment qu’en substituant 4 d une distance uniformément équivalente, on remplace
alors do par une distance uniformément équivalente ; autrement dit, la distance
dy définit sur F(X;Y) une structure uniforme qui ne dépend que de la structure
uniforme de Y : nous I’appelerons structure uniforme de la topologie de la conver-
gence uniforme ; la topologie correspondante sera appelée topologie de la conver-
gence uniforme. Muni de cette topologie, I’espace F(X; Y) sera noté F,(X;Y).
Si un filtre F sur I’espace F,,(X;Y) converge vers une application f pour la
topologie de la convergence uniforme, nous dirons qu’il converge uniformément
vers f. Ceci signifie simplement que

2273) (Ve>0)(3M e F)(Vg)(ge M = s161§ d(f(z),9(z)) <e),
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d’apres (2.23.3), on constate qu’un filtre convergeant uniformément vers f conver-
ge simplement vers f : la topologie de la convergence simple est moins fine que la
topologie de la convergence uniforme.

Dire qu’une suite (f,,) converge uniformément vers f signifie que

(2274) (Ve>0)3neN)(VpeN)(p>n=> sup d(f(z), f»(z)) <e).
z€

On peut introduire un sous-espace de I’espace F(X;Y) sur lequel la quantité
d; est une distance. Dans un espace métrique Y, une partie A est dite bornée si son
diametre (2.18.1) est fini ; cette notion ne dépend pas que de la structure uniforme
de Y mais dépend essentiellement du choix de la distance sur Y : on peut en
effet toujours remplacer une distance par une distance uniformément équivalente
bornée (exemple 2.15.2) ; il faut donc manipuler cette notion avec précaution. Une
application f : X — Y seradite bornée si f(X) est une partie bornée de Y et nous
noterons F(X;Y) ou I°(X;Y) ’ensemble de toutes les applications bornées de
X dansY.

Sur I’espace Fy(X; Y) la fonction d; est une distance, on a en effet, en prenant
un point a de X

di(f,9) = sup,ex d(f(z),9(z))

supgex d(f(z), f(a)) + d(f(a), 9(a)) + sup,ex d(g(a), 9(x)),
doddy(f,g) < diam £(X) + d(f(a), g(a)) + diam g(X) < co.

On observera que la distance dy induit sur le sous-espace F,(X;Y’) une dis-
tance uniformément équivalente a d; d’aprés I’exemple 2.15.2.

Voici une propriété essentielle de I’espace F,,(X;Y).

IN

Théoréme 2.27.1 Si Y est un espace métrique complet, l’espace métrique
Fu(X;Y) est complet.

Preuve Soit (f,,) une suite de Cauchy dans I’espace F,(X;Y)
(Ve > 0)(3n € N)(Yp,q € N)((p 2 netq > n) = sup d(f,(z), fo(z)) < ).
z€X

Ceci prouve que, pour tout z de X, la suite (f,(z)) est une suite de Cauchy dans Y’
qui est complet, donc elle converge dans Y vers un point que nous noterons f(z).
La suite (f,) converge donc simplement vers f ; montrons que la convergence
est uniforme : on a d(fp(z), fo(x)) < € pour tout z € X et tout p,q > n, donc
en passant a la limite quand p tend vers I’infini (principe du prolongement des
inégalités), on obtient d(f(x), fo(z)) < €, pour tout z € X et tout ¢ > n, ce qui
prouve le résultat voulu. Q.E.D.

On a un résultat semblable pour I’espace Fy(X;Y) ; c’est une conséquence
immédiate de la

Proposition 2.27.2 Le sous-espace Fy(X;Y') est fermé dans F,(X;Y).

Preuve 11 s’agit de démontrer (corollaire 2.12.2) que la limite f d’une suite (f,)
uniformément convergente d’applications bornées est encore bornée. Soit € > 0,



146 CHAPITRE 2 TOPOLOGIE

il existe n € N tel que d(f(z), fn(z)) < &, pour tout z de X, d’ol

d(f(z), f(y)) < d(f(@), fn(x)) + d(fn(z), Fo(¥)) + d(fn(y), F(¥))

< 2e+diam fr(X),

ce qui prouve que diam f(X) < 2¢ + diam f,,(X) < oo. QE.D.
Corollaire 2.27.3 Si Y est un espace métrique complet, I'espace métrique
Fo(X;Y) est complet.
Exemple 2.27.1 Prenons X = N, [*°(N;Y) est alors I’ensemble des suites bor-
nées de Y, c’est-a-dire I’ensemble des suites x = (z,,) telles que

supd(a,z,) < 00
neN

ol a est un point quelconque de Y ; cet espace est alors muni de la distance
di(z,y) = Sugd("cmyn)’ z=(zn),y = (Yn);
ne

cet espace est complet lorsque Y est complet.

Lorsque X est un espace topologique, nous noterons Cy,}(X;Y) I'espace de
toutes les applications f : X — Y continues en un point a de X. On a alors la

Proposition 2.27.4 L’espace C(q)(X;Y') est un sous-espace fermé de ’espace
Fu(X;Y) muni de la topologie de la convergence uniforme.

Preuve Il s’agit de démontrer (corollaire 2.12.2) que la limite f d’une suite (f,,)
uniformément convergente d’applications continues au point a est encore continue
au point a. Soite > 0, il existe n € Ntel que d(f(z), fn(x)) < epourtoutz € X.
On a alors

d(f(a), f(=)) < d(f(a), fn(a)) + d(fn(a), fu(2)) + d(fn(2), f(2))

< 2 +d(fr(a), fn(2))
et d’apres la continuité de f,, au point g, il existe un voisinage V' € V(a) tel que

d(fn(a), fn(z)) < epourz €V,
d’od d(f(a), f(z)) < 3¢ pour tout z € V, ce qui prouve la continuité de f au
point a. Q.E.D.
Etant donné que C(X;Y) = N,cx C(a}(X;Y), on en déduit le

Corollaire 2.27.5 Le sous-espace C(X;Y') des applications continues de X dans
Y est fermé dans F,(X;Y) ; siY est complet, ce sous-espace est donc complet.

Nous noterons C,(X;Y’) I’ensemble des applications continues et bornées de X
dans Y ; ce qui précede prouve que ce sous-espace est fermé dans chacun des
espaces F(X;Y), Fp(X;Y) et €(X;Y) ; ce sous-espace est donc complet si Y
est complet.

Exercice 2.27.1 Soient X un ensemble et Y un espace métrique, montrer que la topologie de la

convergence uniforme sur F(X; Y) est strictement plus fine que la topologie de la convergence simple
si, et seulement si, X est infini et Y a au moins deux éléments.
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Exercice 2.27.2 Soient X, Y des ensembles, Z un espace métrique et soit

0 F(X XY;2Z) > F(X;F(Y;2)

la bijection quia f € F(X xY; Z) associe la fonction ®(f) : z — f(z, «) de X dans F(Y; Z). Mon-
trer que P est un homéomorphisme uniformément continu, ainsi que ’homéomorphisme réciproque,
de I’espace T, (X x Y; Z) sur ’espace Fy (X; Fu(Y; Z)).

Exercice 2.27.3 Soient X un ensemble, Y et Z des espaces métriques et ¢ : Y — Z une applica-
tion uniformément continue. Montrer que I’application f — ¢ o f de F,(X;Y') dans F,(X; Z) est
uniformément continue.

Exercice 2.27.4 Soient X, Y des ensembles, Z un espace métrique et p : Y — X une application.
Montrer que I’application f — f o ¢ de F,(X; Z) dans F,(Y'; Z) est uniformément continue.

Exercice 2.27.5 Soient X un espace topologique, Y un espace métrique, on dit qu’une suite (fn)
d’applications de X dans Y converge localement uniformément vers une application f : X — Y si,
pour tout € X, il existe un voisinage V' de x tel que la suite (f|v) converge uniformément vers
flv - Siles fonctions f, sont continues, montrer que f est continu.

Exercice 2.27.6 Soit Y un espace métrique complet, montrer que I’ensemble ¢(N;Y’) des suites
convergentes de Y est un sous-fermé de I’espace [°(N;Y).

Exercice 2.27.7 Complété d’un espace métrique 1. Soit (X, d) un espace métrique et soit a un
point de X, montrer que I’application = — f, de X dans F,(X;R) ob fz(y) = d(z,y) — d(a,y)
est une isométrie de X sur un sous-espace de Fy (X; R).

2. En déduire I’existence d’un espace métrique complet X tel que X soit isométrique 2 un sous-
espace dense de X.

3. Si X1 et X2 sont deux espaces métriques complets satisfaisant aux conditions de 2., montrer
qu’il existe une isométrie de X sur X [utiliser le théoréme 2.25.2].

A une isométrie pres, il existe un seul espace métrique complet vérifiant 2. ; on 1’appelle le com-
plété de X.

Exercice 2.27.8 Permutation de limites Soient F; et F> des filtres sur des ensembles X1 et X2,
Y un espace métrique et f : X1 X X2 — Y une application. On suppose que, pour tout 21 € X1, la
limite g(z1) = limg, f(21, ¢) existe et que, pour tout z2 € X2, la limite h(x2) = limg, f(o,z2)
existe et est uniforme par rapport a z2, c’est-a-dire que

(Ve > 0)(AM, € F1)(Vz1 € My etVzz € X2) (d(f(z1,22), h(z2)) <€).

1. On suppose que g admet une limite suivant F1, soit y = limg, g. Montrer alors que
y = limg, x5, f (exercice 2.11.4) et en déduire, grice a I'exercice 2.17.5, que limg, g = limg, h,
c’est-a-dire que limg, limg, f = limg, limg, f (théoréme de permutation de deux limites).

2. Déduire de 1. la proposition 2.27.4.

3. Lorsque Y est un espace métrique complet, montrer que la limite limg, x5, f existe [utiliser
le critere de Cauchy] et en déduire que les conclusions de 1. subsistent.
Exercice 2.27.9 Soient X un espace métrique complet, f, : [a,b] — X une suite de fonctions

réglées (exercice 2.20.8) convergeant uniformément vers f. Montrer que f est réglée [montrer que f
admet des limites 2 gauche et a droite en tout point en vérifiant le critére de Cauchy].
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Le théoréme de Baire

Définition 2.28.1 Dans un espace topologique, une partie est dite maigre si elle
est contenue dans une réunion dénombrable de fermés sans point intérieur.

On observera qu’une réunion dénombrable d’ensembles maigres est maigre.

L’intérét des ensembles maigres est le suivant. Certaines relations R(z) sur
un espace topologique X ne sont pas vérifiées pour tout z € X, mais seulement
sur le complémentaire d’un ensemble maigre ; de telles relations ne peuvent étre
intéressantes que si les ensembles maigres sont suffisamment petits. Ceci conduit
a la définition suivante.

Définition 2.28.2 Un espace topologique est appelé un espace de Baire s’il vérifie
les relations équivalentes suivantes

(B}) Toute partie maigre est d’intérieur vide.

(Bg) Toute réunion dénombrable de fermés d’intérieur vide est d’intérieur vide.
(B3) Toute intersection dénombrable d’ouverts partout denses est partout dense.

La vérification de I’équivalence de ces trois propriétés est immédiate.
Voici un exemple important d’espace de Baire.

Théoréme 2.28.1 Baire Tout espace métrique complet est de Baire.

Preuve Soit (O,,) une suite d’ouverts partout denses et soit O un ouvert non vide ;
il s’agit de vérifier que O N (o>, O, est non vide. Construisons par récurrence
une suite de boules ouvertes B, = B(ay; p,) telle que, pour tout n € N

(228.1) By CO,Bpy1 CB,NO0,, 0< ppyi < pnet li_)m pn =0.
n—00

Louvert O étant non vide, il existe une boule ouverte By telle que
By C O. De méme, O,, étant partout dense , I’ouvert B, N O, est non vide et
il existe une boule ouverte By, ) telle que §n+1 C B, N Oy, et on peut toujours
choisir pp41 < pn/2.

D’aprés la proposition 2.18.9, I'intersection (oo, By, est réduite 2 un point
et, vu que (o g Bn C O N(oo, On d’apres (2.28.1), ceci permet de conclure.

Q.E.D.
Note Nous montrerons ultérieurement que les espaces localement compacts sont
également des espaces de Baire.

Exercice 2.28.1 Montrer que tout produit X = [];c; X; d’espaces métriques complets est un
espace de Baire [raisonner comme pour le théoréme 2.28.1 en prenant pour B,, un ouvert élémentaire
non vide de la forme [T, ;. Bn,i X [1;er- J,. Xi» Jn partie finie de I, od diam By, ; < pnl.

Exercice 2.28.2 1. On considere la fonction f : R — R définie par f(x) = 0 si « est irrationel,

f(0) =1let f(x) = 1/qsiz = p/q, p € Z*, g € N*, la fraction p/q étant irréductible. Montrer que
la fonction f est continue en tout point de R — Q et discontinue en tout point de Q.

2. Montrer qu’il n’existe pas de fonction f : R — R continue en tout point de Q et discontinue en
tout point de R — Q [utiliser ’exercice 2.18.2 et vérifier que Q ne peut étre un Gy).
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Exercice 2.28.3 Soit f : [0, 4+-00[ — R une fonction continue telle que
vz > 0) nll)néo f(n:z:) =0.
Soit € > 0, on pose
Fa(e) = {z 2 0; | f(pz)| < € pour tout entier p > n}.
1. Montrer qu’il existe no € Net0 < a < btels que ]a, b[ C Fn, ().
2. Montrer qu’il existe n; € N tel que
Jpa, pb[N](p + 1)a, (p + 1)b[ # O pour p > n1
et en déduire que
[e o)
Jnaa, +o0[= U |pa, pb].

p=n)

3. Déduire de ce qui précede que limgz— o0 f(z) = 0.
Voici quelques propriétés utiles pour les applications.

Lemme 2.28.2 Soit X un espace topologique et soit Y un sous-espace de X. Une
partie A de'Y maigre dans'Y est maigre dans X.

Preuve Ona A C ;2 F;, ol les ensembles F,, sont fermés dans Y’ et d’intérieur
vide dans Y. Soit F', I’adhérence de F’, dans X, montrons que F,, est d’intérieur
vide dans X ; ceci prouvera le lemme. Raisonnons par I’absurde, soit O un ouvert
non vide de X contenu dans F,,, alors ON F,, est non vide et, vu que F;, est fermé
dans Y, F, = F, NY o0 ONF, = ONY etceci prouve que ONY est un
ouvert non vide de Y contenu dans F},, ce qui est absurde. Q.E.D.

Exercice 2.28.4 Les notations étant celles du lemme 2.28.2, si Y est ouvert et si A est maigre dans
X, montrer que A est maigre dans Y.

Exercice 2.28.5 Montrer que tout ouvert d’un espace de Baire est un espace de Baire.

Exercice 2.28.6 Montrer qu’un espace topologique est un espace de Baire si tout point admet un
voisinage qui est un espace de Baire.

Exercice 2.28.7 1. Soient X un espace topologique, f : X — I une fonction s.c.i. ; on sup-
pose qu’il existe une partie A de X non maigre telle que f(zx) < +oo pour z € A. Montrer
qu’il existe un ouvert non vide O de X tel que sup, ¢ f(z) < +oo [considérer les ensembles
Fp = f~1([—o0,n]) pourn € N).

2. Soient X un espace de Baire, f, : X — R une suite de fonctions s.c.i. convergeant simplement
vers une fonction f : X — R. Montrer que tout ouvert non vide de X contient un ouvert non vide sur
lequel f est borné supérieurement [on peut raisonner sur I’ouvert X (exercice 2.28.5), utiliser alors 1.

en prenant pour fonction f la fonction sup,,en fnl.

Proposition 2.28.3 Dans un espace de Baire, le complémentaire de toute partie
maigre est un espace de Baire.

Preuve Soit X un espace de Baire, Y une partie maigre de X et A une partie
maigre de X — Y. Il s’agit de vérifier que A est d’intérieur vide dans X — Y.
Soit O un ouvert de X — Y contenu dans A4, il existe un ouvert U de X tel que
O=UN(X-Y);onaalorsU C AUY ol AUY est maigre dans X carY est
maigre dans X par hypothése et A est maigre dans X d’apres le lemme 2.28.2 ; il
en résulte que U = ) (X étant de Baire), d’od O = 0. Q.E.D.
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Proposition 2.28.4 Soient X un espace topologique, (Fy,) une suite de fermés
telle que X = \J°o Fy. Alors, le complémentaire de I'ouvert O = |J2>_o F, est
maigre. Si X est un espace de Baire, cet ouvert O est donc partout dense.

Preuve Ona X —O C U,?;D (Fn— ﬁ'n) ou F, — ﬁ'n est simplement la frontiére de
F,, cet ensemble est donc fermé sans point intérieur (proposition 2.10.4) et ceci
prouve que X — O est maigre. Q.E.D.
Proposition 2.28.5 Soit X un espace de Baire non vide, séparé et sans point isolé,
alors le complémentaire de toute partie maigre dans X n’est pas dénombrable. En
particulier, X n’est pas dénombrable.

Preuve Soit A une partie maigre, il existe une suite (F3,) de fermés sans point
intérieur telle que A C |J;> o F. Si X — A était dénombrable, soit

[o 0]
X -A=J{an},

n=0

on pourrait écrire
X = U F,u U {an},
n=0

ol les ensembles {a,} sont fermés et d’mteneur vide et X serait maigre dans
lui-mé&me alors que X est supposé non vide, ce qui est absurde. Q.ED.

Exemple 2.28.1 Soit D = |J;-,{a.} une partiec dénombrable de [0, 1] partout
dense. Pour € > 0 etn € N, on pose
On(e) =lan — 27 "¢,an + 27 "¢,

puis O(e) = [0,1] N Upeg On(€) ; cet ensemble O(e) est ouvert dans [0, 1],
contient D et par conséquent est partout dense. Il en résulte que le complémen-
taire de A = ﬂ;il O(1/p) est maigre ; ’espace [0, 1] étant de Baire d’apres le
théoréme 2.28.1, la proposition 2.28.3 montre que A est un espace de Baire ; cet
ensemble A contenant D est dense dans [0, 1] et ne peut donc admettre de point
isolé. D’apres la proposition 2.28.5, A est donc non dénombrable. Ceci peut sem-
bler assez surprenant ; on pourrait en effet imaginer que A se réduit & D. Cet
exemple est par ailleurs intéressant du point de vue de la théorie de la mesure :
c’est un exemple d’ensemble non dénombrable de mesure nulle pour la mesure de
Lebesgue.

Voici une autre application de ces notions. Il s’agit d’un exemple de propriété
vérifiée sur le complémentaire d’un ensemble maigre.
Proposition 2.28.6 Soient X un espace topologique, Y un espace métrique et
fn ¢ X — Y une suite d’applications continues convergeant simplement vers
une application f. Alors, I’ensemble des points de discontinuité de f est maigre.
Preuve Soient k£ un entier > 1, p et ¢ deux entiers ; considérons les ensembles
fermés

Akpq ={z € X; d(fp(2), fo(z)) < 1/k}, Brp = ﬂ Ak,pq
qa2p
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etposons A = 2, 2, B p.
1. Montrons d’abord que f est continu en tout point a € A. Soient € > 0,
k € N* tel que 1/k < ¢, il existe p € N tel que a € By, ;, ; pour tout = € By, p, on
a
d(fp(2), fo(2)) < 1/k < € pour ¢ > p,
d’ob d(fp(z), f(z)) < € et par conséquent

d(f(2), f(@)) < d(f(z), fo(2)) + d(fo(), fy(a)) + d(fp(a), f(a))

< 2+ d(fp(2), fr(a))-
D’apres la continuité de f, au point a, il existe un voisinage V' de a contenu dans
By,p tel que d(fp(z), fo(a)) < e pour z € V, d’ou d(f(z), f(a)) < 3¢ pour
x € V, ce qui prouve la continuité de f au point a.
2. L’ensemble D des points de discontinuité de f est donc contenu dans

[e o] (o o] R
X-A=J&x - B
k=1 =0

la suite (fn(z)) étant de Cauchy, X = U:°=0 By, pour tout k > 1 et (proposition
2284) X — U:°=0 ék,p est donc maigre ; on en déduit que X — A est maigre en
tant que réunion dénombrable d’ensembles maigres. Q.E.D.

D’autres applications des espaces de Baire seront données ultérieurement. Le
théoréme de Baire permet de prouver I’existence d’objets pathologiques sans qu’il
soit nécessaire de faire des constructions explicites ; on peut par exemple mon-
trer I’existence de fonctions continues nulle part différentiables (exercice 2.33.15).
Mais I’application la plus profonde concerne sans aucun doute 1I’étude des formes
linéaires continues sur un espace de Banach par exemple ; ceci sera expliqué le
moment venu.
Exercice 2.28.8 Soient X un espace topologique, Y et Z des espaces métriqueset f : X XY — Z

une application séparément continue par rapport a chacune des variables.
1. Soitb € Y, pour tout 2z € X et e > 0, on pose

Ae(z) = {6 20; (Vy € Y)(d(y,b) < & = d(f(z,b), f(z,y)) <€)}

Montrer que A¢ (z) = [0, 8¢ ()] o 8¢ : X — )0, +00] est une fonction s.c.s.
2. On note D I’ensemble des points de discontinuité de f,

D, ={r € X; (z,b) € D};
ona Dy = J32, Dy ot Dy, = {z € X ; w(f;(z,b)) > 1/n}.On pose
Fple)={z € X;6(z) >1/p},p>1.

Montrer que X = ;°=1 Fp(€) et que I'ouvert U;°=1 F",,(e) est contenu dans X — D, si
0 < € < 1/4n. En déduire que D), est maigre dans X

3. Si X est un espace de Baire, en déduire que I’ensemble D des points de discontinuité de f est
maigre dans X X Y et d’intérieur vide.
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Espaces analytiques

On considére I’espace produit X, = NN ol chaque espace facteur N est muni de la
métrique discréte. La topologie produit sur X, peut &tre définie par une distance ;
d’apres I’exemple 2.18.1, le théoréme 2.22.5 et la proposition 2.21.4, X, est alors
un espace métrique complet séparable.

Définition 2.29.1 Un espace topologique séparé X est appelé un espace analy-
tique s’il existe une application continue surjective f : X, — X.

Note D’aprés I’exercice 2.22.4, I’espace X, est homéomorphe a I’ensemble I des
irrationnels de |0, 1] ; dire qu’un espace séparé X est analytique signifie donc que
X est une image continue de 1’ensemble des irrationnels.

Un sous-ensemble A d’un espace topologique X est appelé un sous-espace
analytique de X si, muni de la topologie induite, A est un espace analytique. Ceci
signifie donc que A est un sous-espace séparé de X et qu’il existe une application
continue f : X, = X telle que f(X,) = A.

L’image continue d’un espace analytique est analytique, soit

Proposition 2.29.1 Soient X etY des espaces séparés et f : X — Y une appli-
cation continue. Si A est un sous-espace analytique de X, f(A) est un sous-espace
analytique de Y .

Note Cette propriété de stabilité est a I’origine de la notion d’espaces analytiques ;
I’image continue d’un borélien (voir ci-dessous la définition de la tribu borélienne)
n’est pas en général un borélien (erreur célebre die a Lebesgue), mais c’est tou-
jours un sous-espace analytique. Indiquons & ce propos que les espaces analytiques
métrisables sont appelés sousliniens dans Bourbaki [4].

Voici une premiére propriété des espaces analytiques.

Proposition 2.29.2 Tout espace analytique est séparable.

Preuve En effet, soit D une partie dénombrable de X, partout dense ; si

f + X, = X est continue surjective, f(D) est dense dans X d’aprés la propo-

sition 2.13.3, ce qui prouve la proposition. Q.E.D.
Des exemples d’espaces analytiques sont donnés par la

Proposition 2.29.3 Tout espace métrique complet séparable est analytique.

Preuve Notons X un tel espace métrique complet séparable.

Voici une premiére remarque valable pour tout espace métrique séparable. Soit
D une partie dénombrable de X partout dense et soit z € X, on a d(z,D) = 0
(proposition 2.10.5) ; pour tout € > 0, il existe donc a € D tel que d(z,a) < €/2,
ce qui prouve que X = J,cp B'(a;€/2). Autrement dit, pour tout € > 0, X peut
s’écrire comme une réunion dénombrable de fermés non vides de diameétre < €.

Si €, > 0 est une suite tendant vers 0, on peut donc écrire X = U;io Fj; on
les F; sont des fermés non vides de diametre < &g, puis par récurrence, grice a la
proposition 2.20.4, F, ., = U;";O F,,..a.j00les Fy, o, sont des fermés non
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vides de diamétre < €,.41. Soit a = (a,) € X,, I'intersection ﬂf;o F,,..q, est

réduite a un point f(a) d’apres le théoréme de Cantor 2.18.9. On définit ainsi une
application f : X, — X surjective car, pour tout = de X, il existe a = (a,) € X,
telque x € Fy,, .. 4, pourtoutn € N.

Montrons que cette application est continue en tout point a = (a,) € X,.
Soit € > 0, B’ = B’(f(a);€) ; construisons un voisinage V du point a tel que
f(V) € B’, ceci prouvera le résultat voulu. Prenons V' de la forme

V={z = (zn) € Xo; x; = a; pour 0 < i < p},;
un tel V est un voisinage élémentaire ouvert du point a et, si t € V,
f(z) € Fy,...q,» d00 d(f(x), f(a)) < €p, soit f(z) € B’ en choisissant p suffi-
samment grand pour que &, < €. Q.E.D.
Note L’espace X, étant analytique, la classe des espaces analytiques est par consé-
quent la plus petite classe d’espaces sé€parés stable par image continue et contenant
la classe des espaces métriques complets séparables.

Corollaire 2.29.4 Tout sous-espace fermé d’un espace analytique est analytique.

Preuve Soit F' un sous-espace fermé d’un espace analytique X et soit
f : X, = X une application continue surjective. Alors, A = f~1(F) est un
sous-espace fermé de X, ; il en résulte que A est un espace métrique complet
séparable, donc analytique d’aprés la proposition précédente et F' = f(A) est
analytique d’apres la proposition 2.29.1. Q.E.D.

Nous allons vérifier ensuite que la classe des espaces analytiques est stable par
les opérations de type dénombrable.

Proposition 2.29.5 1. Tout produit dénombrable d’espaces analytiques est analy-
tique.

2. Dans un espace séparé, toute réunion dénombrable et toute intersection
dénombrable de sous-espaces analytiques est analytique.

Preuve 1. Soit (Y,) une suite d’espaces analytiques. L’espace produit
Y = [Ioe, Yn est séparé. 11 existe des surjections continues f,, : X, — Y.
Considérons I’application f : X) — Y définie par f(z) = (fn(Zn))nen si
T = (z,) € XN. Cette application est évidemment surjective ; sa continuité équi-
vaut a celle des applications @y, :  — f,(z,) de XY dans Y,, et ces applications
sont bien continues vu que @, = fr,0pry, pry, ¢ XN — X, désignant la projection
d’indice n. L’espace X est homéomorphe 2 NV*N d’apres le corollaire 2.21.16,
donc & X, d’apres le corollaire 2.21.14 et ceci prouve que Y est analytique.

2. Soit (A,) une suite de sous-espaces analytiques d’un espace séparé X et soit
A = U5, An. 1l existe des applications continues f, : X, — X telles que
An = fo(X,). On définit une application 7 : X, — X, en posant
T(z) = (Znt+1)nen pour £ = (z,)nen € X, ; cette application est continue, car
PrpOT = Prpy1 ol pry, : X, — N désigne la projection d’indice n. On définit en-
suite une application f : X, — X en posant f(z) = f, (7(z)).Ona f(X,) = A
car, pour chaque j € N, f({z € X,; z, = j}) = fj(X,) = Aj;. Vérifions
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enfin la continuité de f : soit (z,) une suite de X, convergente vers a € X,,
montrons que la suite (f(zp,)) converge vers f(a) ; si T, = (Zpn)nen € Xo»
a = (an)nen € X,, il existe ¢ € N tel que z,, = a, pour p > ¢, d’od
f(xp) = fo,(r(zp)) pour p > g et, vu la continuité de f,, et de 7, ceci prouve
que la suite (f(x,)) converge vers fo,(7(a)) = f(a).

3. Avec les mémes notations, montrons que B = ﬂn_o A, est un sous-espace
analytique de X. Or, B est homéomorphe & un sous-espace fermé de Hn—O
(corollaire 2.21.7), ce qui permet de conclure vu 1. et le corollaire 2.29.4. Q.E. D

Ces résultats vont nous permettre de vérifier la

Proposition 2.29.6 Dans un espace métrisable analytique, tout ouvert est un sous-
espace analytique.

Cette proposition résulte du lemme suivant vu le corollaire 2.29.4 et la propo-
sition 2.29.5.

Lemme 2.29.7 Dans un espace métrique, tout fermé s’écrit comme une intersec-
tion dénombrable d’ouverts et tout ouvert s’écrit comme une réunion dénombrable
de fermés.
Preuve Soit X un espace métrique, d la distance sur X et soit F' un fermé de
X. Les ensembles O, = V; /n(F) n > 1, (exemple 2.13.2) sont ouverts et
contiennent F ; intersection ()., O, estégale 3 F', car larelation z € (o0 ln=10n
signifie d(z, F) < 1/n pour tout nn > 1, c’est-a-dire d(z, F') = 0, soitz € F F.
En passant au complémentaire, on obtient la propriété concernant les ouverts.
Q.E.D.
Introduisons maintenant la notion de tribu, cette notion sera utilisée ultérieure-
ment en théorie de la mesure.

Définition 2.29.2 Soit X un ensemble, un ensemble T de parties de X est appelé
une tribu si

(‘Il) XeT.

(T2) (VA AeT=>X—-AeT).

(T3) (VneN)(VA, €T) = Up g An €T

Une tribu T est donc un ensemble non vide de parties de X stable par pas-
sage au complémentaire et par réunion dénombrable ; une tribu est donc stable par
intersection dénombrable.

On a évidemment le
Lemme 2.29.8 Soient X un ensemble et (T;)ic1 une famille de tribus sur X, alors
Nicy Ti est une tribu sur X.

On en déduit ceci : si € est un ensemble de parties de X, I’intersection de toutes
les tribus contenant € est encore une tribu et c’est la plus petite (pour I’inclusion
entre parties de P(X)) tribu contenant C ; on I’appelle la tribu engendrée par C.

Définition 2.29.3 Soit X un espace topologique, la tribu engendrée par !’en-
semble O des ouverts de X est appelée la tribu borélienne de X.
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Une partie de X appartenant a la tribu borélienne est appelée un borélien.
D’apres (72), toute partie fermée est un borélien ; la tribu borélienne est par consé-
quent la plus petite tribu contenant O U O’. Ceci peut étre précisé comme suit.

Lemme 2.29.9 Soit X un espace topologique, la tribu borélienne est le plus petit
ensemble de parties de X contenant O U O’ stable par réunion et intersection
dénombrable.

Preuve Si (C;);cr est une famille de parties de P(X) telle que chaque €; soit stable
par réunion et intersection dénombrable, I’intersection ﬂie ;1 Ci est encore stable
par réunion et intersection dénombrable ; il existe donc bien un plus petit ensemble
C de parties de X contenant QU O’ stable par réunion et intersection dénombrable.
Il est clair que € est contenu dans la tribu borélienne B de X. Montrons que C
est une tribu, c’est-a-dire que € est stable par passage au complémentaire ; ceci
prouvera que C contient B, donc que € = B. A cet effet, considérons I’ensemble
¢ = {X — A; A € €} des complémentaires des ensembles de € ; €’ contient
O U O’ et est stable par réunion et intersection dénombrable ; il en résulte que
C C € et ceci signifie précisément que A € €/, c’est-a-dire X — A € €, dés que
AecC QE.D.

Exercice 2.29.1 Soit X un espace métrisable, montrer que la tribu borélienne de X est le plus petit
ensemble de parties de X contenant O (resp. O') stable par réunion et intersection dénombrable [utiliser
le lemme 2.29.7].

Vu le corollaire 2.29.4 et les propositions 2.29.5 et 2.29.6, on en déduit la
Proposition 2.29.10 Soit X un espace métrisable analytique, alors tout borélien
est analytique.

Ce qui précéde va nous permettre de déterminer la cardinalité de la tribu boré-
lienne de R par exemple.

Proposition 2.29.11 Soit A [’ensemble de tous les sous-espaces analytiques d’un
espace séparé X ayant la puissance du continu, alors A a la puissance du continu.

Preuve Toute partie de X réduite a un point est évidemment analytique, donc
Card R < Card A.

D’apres la définition méme d’un sous-espace analytique Card A < Card €(X,; X).
L’espace X, étant séparable, une fonction continue de X, dans X est déterminée
par sa restriction a une partie dénombrable de X, partout dense, d’ou

Card €(X,; X) < Card XN = Card RN = Card R
d’apres la proposition 1.9.7 et ceci permet de conclure. Q.E.D.

Corollaire 2.29.12 Soit X un espace métrisable analytique ayant la puissance du
continu, alors la tribu borélienne B de X a la puissance du continu.

Preuve Toute partie réduite a un élément est fermée, donc borélienne, d’ol
Card R < Card B. D’aprés la proposition 2.29.10, on a B C A, d’ol

Card B <Card A =Card R



1566 CHAPITRE 2 TOPOLOGIE

d’apres la proposition précédente et on peut donc conclure. Q.E.D.
Par exemple, la tribu borélienne de R™ (n > 1) a la puissance du continu.
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C — Espaces compacts

Définitions équivalentes de la compacité

Sur un espace topologique, un filtre n’admet pas nécessairement de point adhérent
comme nous I’avons déja remarqué (paragraphe 2.16). Ceci conduit a la définition
suivante.

Définition 2.30.1 Un espace topologique séparé X est dit compact si
(C1) Tout filtre sur X admet un point adhérent.

11 en résulte que toute application f : X — Y a valeurs dans un espace com-
pact Y admet une valeur d’adhérence suivant tout filtre sur X . En particulier, toute
suite dans un espace compact admet une valeur d’adhérence et dans un espace
compact a base dénombrable de voisinages, de toute suite on peut extraire une
sous-suite convergente (proposition 2.16.6).

Note L’espace R n’est pas compact : 1a suite z,, = n n’a pas de valeur d’adhérence.

Donnons de suite une autre caractérisation topologique des espaces compacts.
Une famille (O;);c; d’ensembles ouverts est appelée un recouvrement ouvert
de I’espace X si X = [J;c; O;; on dit que ce recouvrement contient un sous-
recouvrement fini, ou qu’on peut extraire un sous-recouvrement fini, s’il existe
une partie finie J de I telle que X = |J,c; O;.

On a alors le théoréme suivant.

Théoréme 2.30.1 L’axiome (C\) est équivalent a chacun des axiomes suivants.
(C2) (Axiome de Borel-Lebesgue) Tout recouvrement ouvert de X contient un
sous-recouvrement fini.

(C3) Toute famille d’ensembles fermés de X dont I'intersection est vide contient
une sous-famille finie dont |’intersection est vide.

Preuve L’équivalence de ces deux axiomes est évidente.

(C1) = (C3). Soit (F});cs une famille de fermés dont I’intersection est vide ;
supposons que I’intersection de toute sous-famille finie soit non vide. Considé-
rons alors I’ensemble de ces intersections, c’est-a-dire 1’ensemble des ﬂie s F
ol J décrit I'’ensemble F(I) des parties finies de I ; cet ensemble de parties non
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vides stable par intersection finie est une base de filtre qui admet un point adhérent
d’apres (Ci) ; les ensembles F; étant fermés, ceci prouve que I’intersection de la
famille (F;);c 1 est non vide contrairement & I’hypothése.

(C3) = (C1). Supposons qu’il existe un filtre F sans point adhérent, c’est-
a-dire tel que ;e M = 0. Alors, d’aprés (Cs), on pourrait trouver une fa-
mille finie (M;);c; d’ensembles de F telle que ﬂie ,—]\7,- = (), d’ou a fortiori
Mier Mi = 0, ce qui est absurde cet ensemble appartenant a F. Q.E.D.

Exemple 2.30.1 Un espace discret X est compact si, et seulement si, il est fini.
Rappelons d’abord que la topologie discrete est séparée. Si X est fini, tout re-
couvrement est fini donc X est compact. Réciproquement, si X est compact, le
recouvrement ouvert ({z})zex contient un sous-recouvrement fini, donc X est
fini et ceci prouve 1’assertion voulue.

Remarque 2.30.1 Soit (F},) une suite décroissante de fermés dans un espace com-
pact ; I’axiome (C3) montre que I’intersection ﬂ;‘;o F,, est non vide si, et seule-

ment si, tous les ensembles F}, sont non vides.

Exercice 2.30.1 Soient X un espace topologique séparé et (B;);e une base de la topologie de X,
montrer que X est compact si, et seulement si, tout recouvrement de X par des ouverts de la base
(Bi):ie 1 contient un sous-recouvrement fini.

Exercice 2.30.2 Soit X un espace topologique, montrer I’équivalence des propriétés suivantes.
1. Tout recouvrement ouvert dénombrable contient un sous-recouvrement fini.
2. Toute suite décroissante de fermés non vides a une intersection non vide.

3. Toute suite d’éléments de X admet une valeur d’adhérence.

Exercice 2.30.3 Espace de Lindel6f Un espace topologique X est appel€ un espace de Lindelof si
tout recouvrement ouvert de X contient un sous-recouvrement dénombrable.

1. Soit X un espace topologique admettant une base de topologie dénombrable et soit (O;);e s
une famille d’ouverts de X . Montrer qu’il existe une partie dénombrable J de I telle que

Uo:=o:
ied i€l
[si (Br) est une base de topologie, soit A I’ensemble des entiers n € N tels qu’il existe i(n) € I tel
que By, C Oj(y), montrer alors que ;¢ O; = Upe 4 Oin))-
2. En déduire que tout espace a base de topologie dénombrable est un espace de Lindelof et que
toute base de topologie contient une base de topologie dénombrable.

3. Soit X un espace séparé tel que toute suite admette une valeur d’adhérence, montrer que X est
compact si, et seulement si, X est un espace de Lindelof [utiliser ’exercice 2.30.2].

Exercice 2.30.4 Soit (X;);cs une famille d’espaces topologiques non vides, montrer que 1’espace
X = Hz’e 1 Xi admet une base de topologie dénombrable si, et seulement si, tous les espaces X;
admettent une base de topologie dénombrable et si tous les X;, sauf au plus une infinité dénombrable,
sont munis de la topologie grossiére [pour démontrer que la condition est nécessaire, on utilisera le
fait que X admet une base de topologie dénombrable constituée d’ouverts de la forme (2.21.1) d’aprés
I’exercice 2.30.3].

Exercice 2.30.5 Coefficient de Lebesgue d’un recouvrement Soient X un espace métrique com-

pact et (O;);er un recouvrement ouvert de X, montrer qu’il existe un nombre ¢ > 0 (appelé coef-
ficient de Lebesgue du recouvrement) tel que tout ensemble de diameétre < & soit contenu dans 1’un
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des O; [pour tout z € X, il existe i € I et 7(z) > O tel que B(z;r(x)) C O; ; du recouvre-
ment (B(x; 7(2)/2))zex extraire un sous-recouvrement fini (B(z; 7(x)/2))zca, A fini, et prendre
€ = minge4 7(x)/2].

Exercice 2.30.6 Soient X un espace topologique, Y un espace compactet f : X X Y — R une
fonction s.c.i., montrer que la fonction g(z) = infycy f(z,y) ests.c.i.

Exercice 2.30.7 Soient X un espace topologique, Y un espace compact et Z un espace métrique,
montrer que I’homéomorphisme @ : F, (X X Y; Z) — Fu(X; Fu(Y; Z)) (exercice 2.27.2) induit un
homéomorphisme de I’espace C (X X Y; Z) sur I’espace €y, (X; €. (Y'; Z)), uniformément continu
ainsi que I’homéomorphisme réciproque.

Donnons une derni¢re caractérisation des espaces compacts qui utilise la no-
tion suivante.

Définition 2.30.2 Un filtre U est appelé un ultrafiltre s’il n’existe pas de filtre
strictement plus fin.

Autrement dit, un ultrafiltre est un élément maximal de 1I’ensemble ordonné
des filtres sur X. On peut donner un exemple (c’est le seul) d’ultrafiltre. Etant
donné un point a de X, notons U, le filtre engendré par la base de filtre constituée
du seul ensemble {a} ; ce filtre est un ultrafiltre : en effet, s’il existait un filtre F
strictement plus fin que U,, on pourrait trouver un ensemble M de F ne contenant
pas le point a ; on aurait alors {a} € F, M € Fet {a}NM = () ce qui est absurde.
L'ultrafiltre U, est appelé I’ ultrafiltre trivial associé au point a.

Exercice 2.30.8 Soit U un ultrafiltre sur un ensemble X, montrer que (), ¢y M contient au plus
un point et, si cette intersection est réduite a un point a, U est I’ ultrafiltre trivial Uq.

On a alors le théoréme.

Théoréme 2.30.2 Pour tout filtre F sur un ensemble X, il existe un ultrafiltre plus
fin que 3.

Preuve D’apres le lemme de Zorn 1.5.1, il s’agit de prouver que, sur un ensemble
non vide, I’ensemble ordonné des filtres est inductif. Notons d’abord que cet en-
semble est non vide. Considérons une famille (¥;);cr de filtres totalement ordon-
née. Il suffit de vérifier que F = |J,; F; estun filtre sur X : il est évident que (F})
et (F3) sont vérifiés ; quant A (F3), soient A;, A2 € F, alors il existe 43,12 € [
tel que A; € F;, et A2 € F;, ; la famille (F;);c étant totalement ordonnée, on a
par exemple F;, C F;, d’od A; N Ay € F;, C TF, ce qui prouve le résultat voulu.
QE.D.
Le théoréme précédent est un théoréme d’existence ; il ne donne aucun moyen
pour construire un ultrafiltre plus fin qu’un filtre donné. D’autre part, il existe en
général plusieurs ultrafiltres plus fins qu’un filtre donné : par exemple, si F est
le filtre engendré par une partie A non vide, tous les ultrafiltres triviaux U,, ou
a € A, sont plus fins que F.
Notons enfin la propriété suivante, qui résulte de la proposition 2.16.5.
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Proposition 2.30.3 Sur un espace topologique X, un ultrafiltre U converge vers
un point x si, et seulement si, x est un point adhérent a U.

Nous sommes maintenant en mesure de prouver le

Théoréme 2.30.4 L’axiome (C,) est équivalent a I’axiome
(C4) Tout ultrafiltre converge.

Preuve La proposition 2.30.3 montre que (C;) implique (Cy). Réciproquement,
soit F un filtre sur X ; d’aprés le théoréme 2.30.2, il existe un ultrafiltre U plus fin
que F ; d’apres (Cy), cet ultrafiltre converge et tout point limite de U est un point
adhérent & F ce qui permet de conclure. Q.ED.
Comme nous le verrons au paragraphe 2.33, cette caractérisation des espaces
compacts permet d’étudier trés simplement un produit d’espaces compacts.
Exercice 2.30.9 1. Soient F un filtre sur un ensemble X, Y un espace topologique, y € Y et
f : X — Y une application. Montrer que y = limg f si, et seulement si, y = limy f pour tout
ultrafiltre U plus fin que F [condition suffisante : si y n’est pas une valeur limite de f suivant &, il

existe un voisinage V de y tel que F admette une trace sur X — f~1(V’), considérer alors un ultrafiltre
plus fin que le filtre engendré par le filtre induit F| 5 _ 1wyl

2. Si X est un espace topologique, montrer que I’application f : X — Y est continue en un point
a de X si, et seulement si, pour tout ultrafiltre U qui converge vers a, la base de filtre f(U) converge

vers f(a).

Propriétés des espaces compacts

En ce qui concerne le comportement des filtres sur un espace compact, outre la
propriété (C1),onala

Proposition 2.31.1 Sur un espace compact, un filtre converge si, et seulement si,
il admet un seul point adhérent.

Preuve La condition est nécessaire car un espace compact est séparé. Réciproque-
ment, soit F un filtre sur un espace compact X admettant un seul point adhérent z.
Nous allons montrer que F converge vers z. Si ce n’était pas le cas, on pourrait en
effet trouver un voisinage ouvert V de z n’appartenant pas a F ; il en résulterait
que tout M de F rencontrerait X — V' ; le filtre F admettrait donc une trace F sur
X —V ; cefiltre F considéré comme une base de filtre sur X admettrait un point
adhérent y qui serait a fortiori adhérent au filtre moins fin F (remarque 2.20.2). On
aalorsy € X —V,d’oiy € X — V vuque V est ouvert, d’oll z # y et le filtre
F admettrait deux points adhérents, ce qui est contraire a 1’hypothése. Q.E.D.

Corollaire 2.31.2 Dans un espace compact, une suite converge si, et seulement si,
elle admet une seule valeur d’adhérence. Dans un espace compact ¢ base dénom-
brable de voisinages, une suite converge si, et seulement si, toutes les sous-suites
extraites qui convergent, convergent vers la méme limite.
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Exercice 2.31.1 Soient X, Y des espaces topologiques et f : X — Y une application.
1. Si Y est séparé et si f est continu, montrer que le graphe de f, c’est-d-dire I’ensemble
G={(x,y) € X xY; y= f(z)}, est fermé.

2. Réciproquement, si Y est compact et si le graphe de f est fermé, montrer que f est continu
[montrer que f(x) est le seul point adhérent 2 la base de filtre ( f Mveva))

Définition 2.31.1 Dans un espace topologique X, une partie K C X est dite
compacte si, munie de la topologie induite par celle de X, K est un espace com-
pact.

Dire que K est une partie compacte de X signifie que la topologie induite sur
K par celle de X est une topologie compacte. Ceci implique d’abord que K est un
sous-espace séparé de X . Pour écrire ensuite I’axiome de Borel-Lebesgue, il est
vivement conseillé d’utiliser des ouverts de X ; cet axiome doit alors s’écrire de
la fagon suivante : soit (O; );¢ r une famille d’ouverts de X telle que K C |J;¢; O
(c’est-a-dire un recouvrement de K par des ouverts de X), alors il existe une partle
finie J de I telle que K C |J;c, O;

Exemple 2.31.1 Soit (x,,) une suite convergente de limite x dans un espace séparé
X. Posons A = ;2 o{zn}, on aalors A = AU {z} : en effet, le point z est
adhérent a A, montrons que tout pointy € X — AU {z} n’est pas adhérent 2 A ;
x # y, donc il existe des voisinages ouverts disjoints V et W de z et y ; la suite
(z) convergeant vers z, V contient tous les z,, sauf peut-étre un nombre fini ;
il en résulte que W N A est fini et par suite W — A est un voisinage ouvert de y
ne rencontrant pas A. Montrons ensuite que A est une partie compacte de X . Soit
(Oy)ier un recouvrement ouvert de A ; il existe ig € I tel que € O;, ; cet ouvert
O;, contenant tous les x,, sauf peut-&tre un nombre fini, il existe une partie finie J
de I telle que (O;);e s soit un sous-recouvrement fini de A qui est donc compact.

Exercice 2.31.2 Soient X un espace séparé a base dénombrable de voisinages et Y un espace topo-
logique. Montrer qu’une application f : X — Y est continue si, et seulement si, pour tout compact K
de X, larestriction f| : K — Y de f a K est continue.
Exercice 2.31.3 Convergence uniforme sur tout compact Soient X un espace topologique, Y un
espace métrique, on dit qu’une suite (f,,) d’applications de X dans Y converge uniformément sur tout
compact vers une application f : X — Y si, pour tout compact K C X, la suite (f»|r) converge
uniformément vers f| .

1. Si la suite (f,,) converge uniformément sur tout compact vers f, montrer que la suite (fr)
converge simplement vers f.

2. Si la suite (f) converge vers f localement uniformément (exercice 2.27.5), alors elle converge
vers f uniformément sur tout compact.

3. On suppose X séparé a base dénombrable de voisinages, si (fn) est une suite d’applications
continues convergeant uniformément sur tout compact vers f, alors f est continue [utiliser I’exercice
231.2).

Exercice 2.31.4 Soient X7, X2 deux espaces topologiques, K1 C X et K2 C X2 des parties
compactes non vides, montrer que ’ensemble des V1 x V2, lorsque V; et V2 décrivent respectivement
les filtres V(K1) et V(K2), constitue un systtme fondamental de voisinages de K3 X K2 [supposer
d’abord que I’'un des K; est réduit a un point].
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Il est souvent essentiel de connaitre les parties compactes d’un espace topo-
logique. Des théorémes fondamentaux seront donnés ultérieurement (paragraphes
2.32 et 2.33); pour I’instant contentons-nous de quelques remarques préliminaires.

Proposition 2.31.3 1. Dans un espace compact, toute partie fermée est compacte.
2. Dans un espace séparé, toute partie compacte est fermée.

Preuve 1. Soit K une partie fermée d’un espace compact X. Alors K est un sous-
espace d’un espace séparé, donc K est un espace séparé. D’apres la proposition
2.20.1, une partie de K est fermée dans K si, et seulement si, elle est fermée dans
X ; il en résulte que la propriété (Cs3) est vérifiée par le sous-espace K, vu qu’elle
I’est par I’espace X . Ceci prouve que K est une partie compacte.

2. Soit K une partie compacte d’un espace séparé X. Si K n’est pas fermé, il
existe a € K — K ; I’espace X étant séparé, ﬂVEv(a) V= {a},d’od

| (Vnk)=0.
Vev(a)
D’apres (C3), il existe donc une famille finie (V;)1<i<n de voisinages de a telle
que (i, (ViNK) = 0 ; on obtient une contradiction car ()}._, V; est un voisinage
de a et, a étant adhérent a K, ce voisinage doit rencontrer K. Q.ED.

Corollaire 2.31.4 Dans un espace compact, I’ensemble des parties compactes est
égal a ’ensemble des parties fermées.

Dans un espace séparé, toute partie compacte étant fermée, il est commode
d’introduire la terminologie suivante.

Définition 2.31.2 Dans un espace séparé, une partie est dite relativement com-
pacte si son adhérence est compacte.

Toute partie relativement compacte est donc contenue dans une partie com-
pacte. Réciproquement, soit A une partie de K od K est une partie compacte d’un
espace séparé ; alors K est fermée dans X d’apres la proposition 2.31.3 et par
conséquent 1’adhérence A de A dans X est contenue et fermée dans K , donc com-
pact d’apres la proposition 2.31.3.

Dans un espace séparé, une partie est donc relativement compacte si, et seule-
ment si, elle est contenue dans une partie compacte. Il en résulte que, dans un
espace séparé, tout ensemble contenu dans une partie relativement compacte est a
fortiori relativement compact.

Proposition 2.31.5 1. Dans un espace séparé, une réunion finie de parties com-
pactes est une partie compacte.

2. Dans un espace séparé, I’intersection d’une famille non vide de parties com-
pactes est une partie compacte.

Preuve 1. Soit (K;)ics une famille finie de parties compactes dans un espace
séparé X ; le sous-espace K = J;¢; K; est donc séparé. Soit (O;) e s un recou-
vrement ouvert de K ; pour tout i € I, il existe d’apres (C3) une partie finie J; de
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J telle que K; C ¢, Oj, d’od K C Ujeur Oj> 0t J' = ;e Ji est une partie
finie de J ; ceci prouve que K est compact.

2. Soit (K;)ier une famille non vide de parties compactes d’intersection K ;
d’apres la proposition 2.31.3, les ensembles K; sont fermés, donc K est fermé

dans X, donc fermé dans chacun des K; et on conclut avec la proposition 2.31.3.
Q.E.D.

Corollaire 2.31.6 Dans un espace séparé, une réunion finie d’ensembles relative-
ment compacts est relativement compacte.

Précisons les propriétés topologiques des espaces compacts.

Proposition 2.31.7 Tout espace compact est régulier ; autrement dit, tout point
admet un systéme fondamental de voisinages compacts.

Preuve L’espace est séparé ; nous allons vérifier (R;). L’ensemble B des voisi-

nages fermés d’un point z étant stable par intersection finie est une base de filtre

qui engendre un filtre moins fin que V(z). D’aprés (H3), z est le seul point adhé-

rent a B, donc B converge vers z d’apres la proposition 2.31.1, ce qui prouve que

B est une base du filtre V(x), et ceci prouve (Rj). Q.E.D.
Plus généralement, on a la

Proposition 2.31.8 Dans un espace compact, toute partie compacte admet un sys-
téme fondamental de voisinages compacts.

Preuve Soit K une partie compacte d’un espace compact X et soit V' un voi-
sinage de K. Pour tout z de K, il existe d’aprés la proposition précédente un
voisinage fermé C(x) du point z tel que z € C(z) C V. Quant x décrit K, les
intérieurs C’(:c) de ces voisinages forment un recouvrement ouvert du compact X,
dont on peut extraire un sous-recouvrement fini C(:v,) 1 < i < n. L’ensemble
Ui, C(z;) est un voisinage fermé, donc compact, de K contenu dans V. Q.E.D.

On peut préciser la propriété (R2) de séparation des espaces réguliers de la
fagon suivante.

Proposition 2.31.9 Dans un espace régulier X, soient A une partie compacte et
B une partie fermée sans point commun. Alors, A et B admettent des voisinages
disjoints.
Preuve Pour tout = € A, il existe d’aprés (Rz) un voisinage ouvert V; de x et un
voisinage W de B sans point commun. L’espace A étant compact, on peut extraire
du recouvrement ouvert (V,)zc4 de A un sous-recouvrement fini (Vy)zenr (M
partie finie de A). Alors, V' = (J, ¢ Vo et W = [,cps Wo sont des voisinages
disjoints de A et B. Q.E.D.
Etudions enfin les propriétés des fonctions continues définies sur un espace
compact.
Théoréme 2.31.10 Soit f : X — Y une application continue définie sur un es-

pace topologique X a valeurs dans un espace séparé Y. Alors, I'image par f de
toute partie compacte de X est une partie compacte de'Y .
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Preuve Soit K une partie compacte de X et soit (O;);ecs un recouvrement ouvert

de f(K). D’apres la continuité de f, les ensembles f~1(O;) sont ouverts dans X

et (f71(0s))ier est un recouvrement ouvert de K. On peut donc trouver une partie

finie J de I telle que (f~1(O;))ic soit un recouvrement de K ; il en résulte que

(0;)ie s est un sous-recouvrement fini de f(K'), qui est donc compact, I’espace Y’

étant sépar€. Q.E.D.
Introduisons la terminologie suivante.

Définition 2.31.3 Soient X et Y deux espaces topologiques, une application
[+ X = Y est dite fermée si I'image par f de toute partie fermée de X est
une partie fermée de Y.

Corollaire 2.31.11 Soient X un espace compact, Y un espace séparé, alors toute
application continue f : X — 'Y est fermée.

Preuve En effet, toute partie fermée de X est compacte et toute partie compacte
de Y est fermée ; il suffit d’appliquer le théoréme précédent. Q.E.D.

Corollaire 2.31.12 Soit f : X — Y une bijection continue définie sur un espace
compact a valeurs dans un espace séparé. Alors, f est un homéomorphisme et Y
est un espace compact.

Nous allons en déduire une propriété intéressante des topologies compactes.
Introduisons la terminologie suivante.

Définition 2.31.4 Sur un ensemble X, une topologie séparée est dite minimale si
elle est minimale dans ’ensemble ordonné des topologies séparées sur X.

Proposition 2.31.13 Sur un ensemble X les topologies compactes sont des topo-
logies minimales.

Preuve En effet, soit T; une topologie séparée moins fine qu’une topologie com-
pacte T2. Alors, I’application identique de X2 dans X est une bijection conti-
nue, donc un homéomorphisme d’apres le corollaire 2.31.12, ce qui prouve que
T =To. Q.ED.

Autrement dit, toute topologie séparée moins fine qu’une topologie compacte
coincide nécessairement avec cette topologie compacte ; cette propriété n’est ce-
pendant pas caractéristique des topologies compactes.

Corollaire 2.31.14 Soient T, et Tz deux topologies séparées sur un ensemble X
telle que Ty soit moins fine que To. Alors, toute partie compacte de X pour T est
compacte pour T et les topologies Ty et T coincident sur une telle partie.

Exercice 2.31.5 Soient X un espace compact, Y un espace topologique, montrer que la projection
pr2 : X X Y — Y est une application fermée [soient A une partie fermée de X x Y,y & pra(A),
pour tout z € X il existe un voisinage ouvert Uz X V de (z,y) ne rencontrant pas A, utiliser alors
Borel-Lebesgue].
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Exercice 2.31.6 Soient X,Y, Z des espaces topologiques, on suppose Y compact et Z séparé et
soit f : X X Y — Z une application continue telle que, pour tout z € X, ’application y — f(z,y)
soit injective. Soit @ € Z, on pose
A={ze X;(FyeY)(f(z,y) =a)}
1. Montrer que A est fermé dans X [utiliser ’exercice 2.31.5].
2.0nnote g : A — Y I'application telle que f(z, g(z)) = a pour tout z € A. Montrer que g
est continu [utiliser I’exercice 2.31.1].

Indiquons enfin un théoréme établissant un lien intéressant entre la conver-
gence simple et la convergence uniforme, et qui repose sur des hypotheses de
croissance. Des relations entre ces deux types de convergence d’une toute autre
nature seront étudiées au paragraphe 2.34.

Théoréme 2.31.15 Dini Soient X un espace compact, f; : X — R une suite
généralisée (exemple 2.11.5) de fonctions s.c.i. telle que ’application i — f; soit
croissante. On suppose la fonction f = sup;c; fi a valeurs réelles finies. Alors, si
f est continue, la suite généralisée (f;);c1 converge uniformément vers f.

Preuve Il s’agit de démontrer que
(231.1) (Ve >0)(FieI)(VjeI)(j>i= sup(f(z) — fi(z)) <e).
zeX

Posons O; = {z € X; f(z) — fj(z) < €} ; la famille (O;);er est un recou-
vrement ouvert de X dont on peut extraire un sous-recouvrement fini (O;);e,.
L’ensemble I étant filtrant (exemple 2.8.8), il existe k£ € I tel que k > j pour tout
j € J ; d’apres la croissance de I’application ¢ — f;, on a O; C Oy, pour tout
j € J,d’od O = X, ce qui prouve (2.31.1). Q.E.D.

Corollaire 2.31.16 Soient X un espace compact, f, : X — R une suite crois-
sante de fonctions s.c.i. convergeant simplement vers une fonction continue
f: X — R Alors, la suite (f,) converge uniformément vers f.

Le théoreme de Tychonoff

Nous allons démontrer qu’un produit de topologies compactes est une topologie
compacte ; il s’agit 1a d’un théoréme fondamental dont la preuve utilise essentiel-
lement le lemme de Zorn par I’intermédiaire de la notion d’ultrafiltre.

Proposition 2.32.1 Soient U un ultrafiltre sur un ensemble X, A et B deux parties
de X telles que AU B € U, alors A€ Uou B € U.

Preuve Supposons en effet que A ¢ U et B ¢ U; alors I’ensemble
F={McCcX; AUM € U}estunfiltre sur X car 0 ¢ Fvuque A ¢ U
et ce filtre est strictement plus fin que U car B € F — U. Ceci est contradictoire
avec le fait que U est un ultrafiltre. Q.E.D.
Corollaire 2.32.2 Soient U un ultrafiltre sur un ensemble X et (A;);cr une famille
finie de parties de X telle que | J);c; Ai € U. Alors, il existe i € I tel que A; € U.
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Ceci va nous permettre de caractériser les ultrafiltres de la fagon suivante.

Proposition 2.32.3 Un filtre U sur un ensemble X est un ultrafiltre si, et seulement
si, pourtout AC X,onaAeUouX —Ael

Preuve La condition est nécessaire d’apres la proposition 2.32.1, vu que
AU(X-A)=Xel

La condition est suffisante ; en effet, supposons qu’il existe un filtre F strictement

plus fin que U ; alors, il existe un ensemble M € F — U ; d’aprés la proposition

2.32.1, on a nécessairement X — M € U d’oa X — M € ¥ et par suite M et

X — M appartiennent tous deux a F, ce qui est absurde, leur intersection étant
vide. Q.E.D.

Exercice 2,32.1 Soit U un ultrafiltre sur un ensemble X et soit A une partie de X, montrer que U
admet une trace sur A si, et seulement si, A € U, auquel cas U 4 est un ultrafiltre.

Nous pouvons établir maintenant le résultat dont nous aurons besoin.

Proposition 2.32.4 Soient X, Y des ensembles et f : X — Y une application de
X dans'Y. Alors, I’image par f de tout ultrafiltre sur X est une base d’ultrafiltre
surY.

Preuve Soit U un ultrafiltre sur X et soit B une partie de Y. D’aprés la caractéri-
sation précédente, ona f~1(B) € Uou X — f~1(B) € Uet il en résulte que B
ou Y — B appartient au filtre engendré par f(U), ce qui prouve que f(U) est une
base d’ultrafiltre sur Y. Q.E.D.

Théoréme 2.32.5 Tychonoff Un produit d’espaces topologiques non vides est
compact si, et seulement si, tous les espaces facteurs sont compacts.

Preuve Soit (X;);e une famille d’espaces topologiques et soit X = [],.; X;
I’espace topologique produit. Si X est compact, X est séparé, les espaces facteurs
sont séparés (corollaire 2.21.12) donc homéomorphes & des sous-espaces fermés
de X (corollaire 2.21.11) ; les espaces facteurs sont donc compacts (proposition
2.31.3). Réciproquement, supposons tous les espaces facteurs X; compacts, alors
les espaces X; sont séparés donc X est séparé (corollaire 2.21.12). Soit U un
ultrafiltre sur X, alors les bases de filtre pr;(U) sont des bases d’ultrafiltre qui
convergent d’apres (Cy) ; il en résulte que U converge (proposition 2.21.8), ce qui
prouve que X est compact. Q.E.D.

Le théoréme de Tychonoff est un théoréme fondamental car il permet de ca-
ractériser les parties compactes d’un grand nombre d’espaces fonctionnels. Voici
d’abord un corollaire immédiat.

Corollaire 2.32.6 Soit X le produit d’une famille (X;);c d’espaces séparés. Une
partie Ade X est relativement compacte si, et seulement si, pour tout i € I, pr;(A)
est relativement compacte dans X;.

Preuve La condition est nécessaire. En effet, soit A une partie relativement com-
pacte de X qui est séparé (corollaire 2.21.12) ; A est compact, donc pr;(A) est
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compact d’aprés la continuité des projections et on a pr;(A) C pr;(4), ce qui
prouve que pr;(A) est relativement compact.
La condition est suffisante. On a en effet A C [, pri(A4), d’od
Ac [[prdA
icl
d’apres (2.21.3) ; notons alors que la topologie induite par la topologie de X sur
I’ensemble [],;; pri(A) est la topologie produit des topologies des sous-espaces

pri(A) ; d’apres le théoréme de Tychonoff cette topologie est compacte, ce qui
prouve que A est relativement compact. Q.E.D.

Dans le corollaire précédent, si on suppose les ensembles pr;(A) compacts
pour tout ¢ € I, on ne peut pas en déduire que A est compact, car A n’est pas
nécessairement fermé : par exemple, dans R?, il suffit de considérer I’ensemble
A= (]0,1] x {0}) U {(0,1)}.

Les résultats qui précédent s’ appliquent par exemple a la topologie de la conver-
gence simple. Le théoréme 2.32.5 et le corollaire 2.32.6 impliquent le

Théoréme 2.32.7 Soient X un ensemble non vide et Y un espace topologique.
L’espace F4(X;Y'), muni de la topologie de la convergence simple, est compact
si, et seulement si, Y est compact. Si Y est séparé, une partie A de F5(X;Y) est
relativement compacte si, et seulement si, pour tout x € X, ’ensemble

A(z) = pro(A) = {f(z); f € A}
est relativement compact dans Y .

Rappelons que la topologie de la convergence simple n’est pas en général
a base dénombrable de voisinages ; lorsque Y est un espace compact, I’espace
Fs(X;Y) est compact, donc toute suite d’applications f,, : X — Y admet une
valeur d’adhérence, mais il n’existe pas nécessairement de sous-suite extraite qui
converge simplement. Ceci conduit a la définition suivante.

Définition 2.32.1 Un espace topologique séparé X est dit séquentiellement com-
pact si toute suite de X admet une sous-suite convergente.

Un espace compact & base dénombrable de voisinages est séquentiellement
compact d’apres la proposition 2.16.6. Nous montrerons ultéricurement qu’un es-
pace métrisable séquentiellement compact est compact. Pour I’instant, voici un
résultat dont la démonstration utilise une méthode intéressante, il s’agit de la mé-
thode diagonale introduite par Cantor pour démontrer que R n’est pas dénom-
brable.

Proposition 2.32.8 Un produit dénombrable d’espaces séquentiellement compacts
est séquentiellement compact.

Preuve Notons X = H;’il X, ’espace prodl{it. Soit (z,)pen+ une suite ‘de X,
onaz, = (Tpg)geN OO ZTpq € X . Construisons par récurrence une suite dé-
croissante (A,) de parties infinies de N* telle que, pour tout ¢ € N*, la sous-suite
(%p,q)pea, de X, converge : I'espace X, étant séquentiellement compact, de la
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suite (Zp,q)pe A,_, (Ao = N*) on peut en effet extraire une sous-suite convergente
(Tp,g)pea, Ag C Ag_1.Posons ag = lim,_,00,pea, Tpg € Xgeta = (ag) € X.
Notons ¢(g) le ¢**™¢ élément de A, et montrons alors que la sous-suite diago-
nale (Z,(p))pen~ converge vers le point a, c’est-a-dire que la suite (Z,(p),q)peN=
converge vers aq : en effet, pour p > ¢, on a p(p) € A, C Ay et la suite
(Tp(p),q)p>q st donc une sous-suite de la suite (Zp,q)pea, Suite qui converge
Vers ag. Q.E.D.

Exercice 2.32.2 Soient X un espace compact, R une relation d’équivalence sur X, X/R I’espace
quotient, 7 : X — X/ R la surjection canonique et

G ={(z,y) € X x X; n(z) = n(v)}

le graphe de la relation R. Montrer I’équivalence des propriétés suivantes
1. ’espace X/ R est séparé,
2. le graphe G est fermé,
3. I’application 7 est fermée,

[pour démontrer que 2 = 3, si F est un fermé de X, noter que 7~ (w(F)) = pr1((X x F)NG) od
pr1 : X X X — X désigne la premiére projection ; pour démontrer que 3 = 1, soient £,1 € X/R,
€ # n, alors =1 (€) et w1 (n) sont des fermés disjoints qui admettent des voisinages ouverts disjoints
VetW ;si V/ et W/ sont les saturés (exercice 2.24.1) de X — V et X — W, vérifier que w(X — V')
et (X — W') sont des voisinages ouverts disjoints de £ et 77 ].

Espaces métriques compacts

La compacité des espaces métriques peut se caractériser par des propriétés de leur
structure uniforme. Cette caractérisation utilisera la notion suivante.

Définition 2.33.1 Dans un espace métrique, une partie A est dite précompacte si,
pour tout € > 0, il existe un recouvrement fini de A par des ensembles dont le
diamétre est inférieur a €.

Un ensemble de diametre < e étant contenu dans une boule fermée (resp. ou-
verte) de rayon € (resp. 2¢), un ensemble A est précompact si, et seulement si, pour
tout € > 0, il existe un recouvrement fini de A par des boules de rayon € qu’on
peut choisir ouvertes ou fermées. En prenant des boules fermées, on constate que
A est précompact dés que A est précompact. Par ailleurs, si A est précompact, tout
sous-ensemble de A est précompact. Il en résulte que A est précompact si, et seule-
ment si, A est précompact. Notons également que toute réunion finie d’ensembles
précompacts est précompacte et que tout ensemble précompact est borné.

Voici une premiere propriété des espaces métriques précompacts.

Proposition 2.33.1 Un espace métrique précompact est séparable.

Preuve Pour tout entier n > 1, il existe un recouvrement fini de I’espace X par
des boules de rayon 1/n ; soit A,, I’ensemble des centres de ces boules ; A, est
fini et A = J;—; An est dénombrable. Montrons que A est partout dense. On a

n=
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d(z,A) < d(z,Ap) < 1/npourtoutz € X ettoutn > 1,d’od d(z,A) = Oet
on conclut avec la proposition 2.10.5. Q.E.D.

La notion de précompacité ne dépend que de la structure uniforme de I’espace ;
on a en effet la proposition suivante.

Proposition 2.33.2 Soient X, Y des espaces métriques, f : X — Y une applica-
tion uniformément continue. Alors, I’'image par f de toute partie précompacte de
X est une partie précompacte de Y.

Preuve Soit A une partie précompacte de X et soite > 0; alors il existe un nombre
& > 0, tel que I’image par f de tout ensemble de diametre < § soit un ensemble de
diameétre < e. Il existe un recouvrement fini de A par des ensembles de diamétre
< 4, dont I’image par f est un recouvrement fini de f(A) par des ensembles de
diametre < €. Q.E.D.

Comme nous allons le montrer, il existe des liens trés étroits entre la notion de
partie précompacte et celle de partie relativement compacte.

Proposition 2.33.3 Dans un espace métrique, toute partie relativement compacte
est précompacte.

Preuve Soit A une partie relativement compacte, alors A est compact et I’ensemble

des boules ouvertes (B(z;¢€)), 7 (€ > 0) recouvre A ; d’apres Borel-Lebesgue, il

existe un sous-recouvrement fini ce qui prouve que A est précompact. Q.E.D.
On a alors le résultat fondamental que voici.

Théoréme 2.33.4 Soit X un espace métrique, les propriétés qui suivent sont équi-
valentes

1. L’espace X est compact.

2. Toute suite de X admet une valeur d’adhérence.

3. L’espace X est complet et précompact.

Preuve 1 = 2 d’apres (C).

2 = 3 Soit () une suite de Cauchy ; d’apres 2., cette suite admet une va-
leur d’adhérence donc elle converge (proposition 2.18.1) et ceci prouve que X est
complet. Pour montrer que X est précompact, nous raisonnerons par 1’absurde ;
supposons qu’il existe un nombre € > 0 tel qu’il n’existe pas de recouvrement fini
de X par des boules de rayon €. Construisons alors par récurrence une suite (z,)
de X telle que d(z,, z4) > € pour tout p,q € N, p # q. Pour o on prend un point
quelconque de X ; les points (z;)o<j<n €tant construits, on a U?:o B(zj;e) # X
gréce a I’hypothese, il existe donc un point z, 4, de X tel que d(z;,2p41) > €,
pour tout 0 < j < n, ce qui achéve la construction. Cette suite (x,,) ne peut ad-
mettre de valeur d’adhérence, c’est-a-dire de sous-suite convergente, car aucune
sous-suite ne satisfait au critére de Cauchy. Ceci est donc contraire a I’hypothése
2.

3 = 1 Montrons que tout ultrafiltre U converge, c’est-a-dire que tout ultrafiltre
est de Cauchy, I’espace X étant complet. Soit € > 0 et soit (A;);cs un recouvre-
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ment fini de X par des ensembles de diamétre < €. Dapres le corollaire 2.32.2, il
existe ¢ € I tel que A; € U, ce qui prouve bien que U est de Cauchy. Q.E.D.

Corollaire 2.33.5 1. Soit X un espace métrique compact. Alors I’ensemble des
parties fermées, l'ensemble des parties complétes et I’ensemble des parties com-
pactes sont trois ensembles égaux.

2. Soit X un espace métrique complet. Alors I’ensemble des parties précom-
pactes est égal a I’ensemble des parties relativement compactes.

Preuve 1. résulte des corollaires 2.20.6, 2.31.4 et du théoréme précédent.

Quant a 2., vu la proposition 2.33.3, il s’agit de vérifier qu’une partie précom-
pacte A est relativement compacte ; X étant complet, A est une partie compléte et
précompacte, donc compacte d’apres le théoréme 2.33.4 ; ceci prouve le résultat

voulu. Q.E.D.

Corollaire 2.33.6 Soit X un espace métrique, une partie A de X est relativement
compacte si, et seulement si, toute suite de A contient une sous-suite convergente
dans X.

Preuve La condition est nécessaire : si A est relativement compact, A est com-
pact, donc toute suite de A, et a fortiori de A, contient une sous-suite conver-
gente. Réciproquement, soit (z,) une suite de A, il existe y, € A tel que
d(zn,Yn) < (n+ 1)L Vu I’hypothese, il existe une sous-suite (yn, ) qui conver-
ge ; la sous-suite (z,,, ) est alors convergente et ceci prouve que A est compact
(théoréme 2.33.4) ; A est donc relativement compact. Q.E.D.

Exercice 2.33.1 Montrer qu’un espace métrique est compact si, et seulement si, tout recouvrement
ouvert dénombrable contient un sous-recouvrement fini [utiliser I’exercice 2.30.2].

Exercice 2.33.2 Soient X un espace métrique compact et f : X — X une application telle que

d(z,y) < d(f(z), f(y)) pourtout z,y € X.
1. Soient a,b € X, an = f™(a), bp = f™(b) pour n € N. Montrer que, pour tout ¢ > 0, il

existe un entier n > 1 tel que d(a,an) < e et d(b,bn) < € [si (an, ) et (bn, ) sont des sous-suites
convergentes, noter que, pour tout k < [,
d(ay an[ —nk) S d(ank E] an; ) et d(by b’n[ —nk) S d(bnk » bn[ )]

2. En déduire que d(a, b) = d(f(a), f(b)).
3. Montrer que f est une isométrie de X sur X [pour démontrer la surjectivité de f, noter que
f(X) est dense dans X d’aprés 1.].

Exercice 2.33.3 Soit X un espace métrique borné et soit F I’ensemble des fermés non vides de X ;
pour A, B € F, on pose

p(A, B) = max(sup d(z, B), sup d(z, A)).
T€EA z€EB

1. Montrer que p est une distance sur F [pour vérifier I’inégalité triangulaire, montrer que, pour
tout A, B, C € F,supg¢ 4 d(z, C) < supgey d(z, B) +supyep d(y, C)]-

2. Soit (A une suite de F convergeant vers A et soit £, € An, si la suite () converge vers
x, montrer que x € A.

3. Soit (A») une suite de F convergeant vers A, montrer que A = (52 Up>n Ap [si z appar-
tient a ce dernier ensemble, construire une sous-suite (Ay,) et des £ € An, tels que la suite (zy,)
converge vers  ; utiliser alors 2.].
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4. Si X est précompact, montrer que F est précompact [soient € > 0, A un recouvrement fini
de X par des ensembles fermés de diametre < € et B I’ensemble de toutes les réunions d’ensembles
appartenant a A, montrer que, pour tout A € F, il existe B € B tel que p(A, B) < €].

5. Si X est complet, montrer que F est complet en raisonnant comme suit. Soit (A, ) une suite de
Cauchy de J, on pose Bn, = {,,>,, Ap et B =71 Bn.

a. Montrer que, pour tout € > 0, il existe n € N tel que, pour tout p,g > netx € Ay, il
existe y € Aq tel que d(z,y) < e.

b. Soient € > 0 et (¢) une suite de nombres > O telle que > 72 ; €x < &, construire une
sous-suite (Ayp,, ) et, pour tout 29 € Upznu Ap,desxy € An, (k> 1) tels que d(zg, Zp41) < €
pour tout k > 0.

c. En déduire que B est non vide et que, pour tout € > 0, il existe n € Ntelqued(x, B) < ¢
pour tout z € Bj,.

d. Montrer que la suite (A,) converge vers B.

6. Si X est compact, en déduire que F est compact.

Le théoréme 2.33.4 montre que la définition 2.5.2 des parties compactes de R
coincide bien avec la définition générale 2.30.1. Une partie de R est relativement
compacte si, et seulement si, elle est bornée (théoréme 2.5.5). Plus généralement,
onale

Théoréme 2.33.7 Les parties relativement compactes de R™ sont les parties bor-
nées de R™.

Preuve Il suffit d’appliquer le corollaire 2.32.6 en remarquant qu’une partie de
R™ est bornée si, et seulement si, pour tout ¢ € [1,n], les ensembles pr;(A) sont
bornés dans R. Q.E.D.

Corollaire 2.33.8 Les parties compactes de R™ sont les parties fermées et bor-
nées.

Exemple 2.33.1  Etant donné que R est homéomorphe a I’intervalle compact
[-1, +1], la droite achevée R est compacte.

Exemple 2.33.2 L’intervalle [0, 1] étant compact, le cube de Hilbert [0, 1]N (exem-
ple 2.22.3) est compact.

Note L’espace R, muni de la distance usuelle d;(z,y) = |z — y|, est un espace
complet, non précompact. Par contre, si on munit R de la distance d induite par
celle de R, R est isométrique a ’intervalle ouvert | — 1, +1[, donc non complet
mais précompact. Cet exemple, oil les distances d; et da sont topologiquement
équivalentes, montre combien il est essentiel de ne substituer & une distance qu’une
distance uniformément équivalente.

Exercice 2.33.4 Soit X un ensemble, une fonction f : [a,b] — X est appelée une fonction en

escalier s’il existe une suite finie de points de [a, b], (%:)1<i<n+1 telle que
a=21<22<...<ZTp41 =0

et telle que f soit constante sur chaque intervalle ouvert |z;, z;41[, 1 < i < n.

1. Si X est un espace métrique, montrer que toute fonction réglée (exercice 2.20.8) est la limite
uniforme d’une suite f, : [a,b] — X de fonctions en escalier [soient € > 0, z € [a, b], il existe
8, > Otel que d(f(y), f(2)) < epoury, z € [a,b)N]z,z + 8[ et poury, z € [a,b)N]z — 3z, 2[ ;
extraire du recouvrement ouvert (] — 8z, 2 + 8z[)z¢[a,5) Un sous-recouvrement fini et construire
une fonction en escalier g telle que d(f(z), g(x)) < € pourtout z € [a, b] 1.

2. En déduire que toute fonction réglée f : [a,b] — X, X métrique, est bornée.
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Exercice 2.33.5 Soit X un espace métrique compact non vide, on propose de prouver qu’il existe
une surjection continue de {0, 1}N" sur X : tout espace métrique compact est une image continue de
I’ensemble de Cantor (exercice 2.22.5). On procédera de la fagon suivante. Posons
& = F([1,n];{0,1}) pourn > let & = |USZ, &n ; construire une famille (Ae)ece de par-
ties compactes non vides de X telle que

1.X=ApUA,,

2.pourtoutn > 1,toute € €y, Ac = Ay U A b €',€” € En41 désignent les deux
applications qui prolongent €,

3. pour tout € € {0, 1}N", le diametre de Ae,,, 0l € = €|[1,5), tend vers 0 quand 7 tend vers
I’infini.

Pourtoute € {0, 1}V, 'ensemble NS, Ae,, estréduita un point a ; montrer que I’application
€ — a est une surjection continue.
Exercice 2.33.6 Soit X un ensemble totalement ordonné muni de la topologie de I’ordre (exercices
2.9.3 et 2.17.4), montrer que X est compact si, et seulement si, toute partie non vide de X admet
une borne supérieure et une borne inférieure [pour prouver que la condition est nécessaire, si A est
une partie non vide de X, considérer la base de filtre sur X, ([z,— [NA)zc4 ; pour la condition
suffisante, si F est un filtre sur X, vérifier que @ = sup,;c5 inf M est un point adhérent a F).
Retrouver ainsi le fait que R est compact.

Exercice 2.33.7 1. Etant donné des ensembles ordonnés X et X2, on considere sur X; X X2 la
relation «(z1 < y1) ou (z1 = y1 ety < y2)» ot (x1,22), (¥1,y2) € X1 X X2. Montrer que cette
relation est une relation d’ordre (appelé ordre lexicographique) et que cet ordre est total si les ordres de
X1 et X2 le sont.

2. On munit [0, 1]2 de I’ordre lexicographique et de la topologie de 1’ordre correspondante, mon-
trer que cette topologie est compacte [utiliser I’exercice 2.33.6].

Griéce a la proposition 2.33.3, on a la

Proposition 2.33.9 Soient X un espace compact, Y un espace métrique et

f + X = Y une application continue. Alors f est une application bornée, au-

trement dit, C(X;Y) = Cp(X;Y).

Preuve En effet, f(X) est une partie compacte de Y (théoréme 2.31.10) donc

précompacte (proposition 2.33.3), donc bornée. Q.E.D.
Lorsque Y est R ou R, on peut préciser la proposition précédente.

Proposition 2.33.10 Soient X un espace compact, f : X — R (ou R) une fonc-
tion s.c.i. Alors f atteint sa borne inférieure sur une partie compacte non vide.

Preuve Posons @ = inf,cx f(z) € R, la proposition étant évidente si o = +o0,

on peut supposer & < +00. Soit (o, ) une suite décroissante de R, o, > a, conver-

geant vers . Les ensembles Fy, = f~!([—00, ap]) sont fermés d’apres la propo-

sition 2.14.3, non vides car o, > « et constituent une suite décroissante. L’espace

X étant compact (remarque 2.30.1), I’intersection F' = ﬂf;o F,, estnon vide ; F

est fermé, donc compact et F = f~1({a}) ce qui prouve I’assertion. Q.E.D.
On en déduit le théoréme suivant.

Théoréme 2.33.11 Soient X un espace compact, f : X — R (ou R) une appli-
cation continue. Alors, f est une application bornée et elle atteint ses bornes : il
existe des points a,b € X tels que f(a) = minzex f(z) et f(b) = maxzex f(z).
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On peut donner de trés nombreuses applications de ce théoreme. En voici
quelques unes a titre d’exemples.

Corollaire 2.33.12 Soient X un espace compact et f : X —]0,+00[ une ap-
plication continue. Alors, il existe un nombre § > 0 tel que f(x) > & pour tout
rze X

Exercice 2.33.8 Soient X un espace métrique compact, f : X — X une application telle que
d(f(z), f(y)) < d(z,y) pour tout z,y € X, x # y. Montrer que f admet un unique point fixe
[considérer @ = minge x d(z, f(z))).

Exercice 2.33.9 Soit A une partie compacte d’un espace métrique X, montrer que la suite
(Vi/n(A))n>1 (exemple 2.13.2) est un systéme fondamental dénombrable de voisinages de A.

Exercice 2.33.10 Montrer que le sous-ensemble N de R n’admet pas de syst2me fondamental dé-
nombrable de voisinages [on raisonnera par I’absurde en utilisant la propriété suivante : soit
(@mn)(m,n)en2 une suite double de nombres > 0, alors la relation

(3m € N)(Vn € N)(amn < @nn/2)

est fausse].

Exercice 2.33.11 Théoréme de D’Alembert Montrer que tout polyndme 2 coefficients complexes
non constant admet au mqis un zéro complexe (théoréme de D’ Alembert) [on raisonne par 1’absurde,
soit P(z) = Y 7 a;2z* un polyndme non constant, c’est-a-dire n > 1 et ap # O ; on suppose
P(z) # 0 pour tout z € C ; montrer qu’il existe zo tel que | P(20)| = infec | P(2)| ; on peut écrire
(Taylor)
n
P(z) = P(z0) + Zb,-(z —z)todl1<k<m, by #0;
i=k

montrer qu’il existe p > O tel que 37, 1 |bilp* < |bk|p* < |P(20)| ; montrer qu’ilexiste z1 € C,
|21 — 20| = p tel que le point P(zq) + by (21 — z0)* appartienne au segment [0, P(zo))] et en déduire
que | P(z1)| < |P(z0)] ].

Etant donné deux parties A et B non vides d’un espace métrique X, on définit
la distance de A 4 B par la formule

(2.33.1) d(A,B) = xellqrgeBd(m,y) = ;1612 d(z,B) = ylgg d(y, A) ;

on notera que d(A, B) n’est évidemment pas une distance sur 1’ensemble des par-
ties de X.

Corollaire 2.33.13 Soient X un espace métrique, A et B deux parties non vides
de X.

1. Si A est compact, il existe a € A tel que d(A, B) = d(a, B). Si A et B sont
compacts, il existe a € A et b € B tels que d(a,b) = d(A, B).

2. Si A est compact, B fermé et si A et B sont disjoints, alors d(A, B) > 0.

Preuve 1. L’application  — d(z, B) de A dans R est continue, donc elle atteint
sa borne inférieure, ce qui prouve la premiére assertion. De méme, I’application
y — d(a,y) de B dans R est continue, donc elle atteint sa borne inférieure si B
est compact.

2. résulte de 1. d’apres la proposition 2.10.5. Q.E.D.
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Remarque 2.33.1 En prenant B réduit & un point a, le corollaire précédent montre
que, pour tout compact KX non vide, il existe un point z € K tel que

d(a,z) = d(a, K).
On dit que z est une projection de a sur K. Nous venons de résoudre un probléme
de minimisation, & savoir la recherche des points z € K tels que

d(a,z) = yiglf( d(a,y);

cet exemple trés simple montre que des techniques de compacité peuvent conduire
a des théorémes d’existence ; bien entendu, sans hypothése supplémentaire il n’y
a aucun théoreme d’unicité.

On a enfin le résultat suivant.

Théoréme 2.33.14 Heine Soient X un espace métrique compact, Y un espace
métrique. Alors, toute application continue f : X — Y est uniformément conti-
nue.

Preuve Supposons que f ne soit pas uniformément continue. Alors, il existe € > 0
tel que, pour tout 6 > 0, il existe z,y € X vérifiant

d(z,y) < detd(f(x), f(y)) 2 e
En prenant § = 1/n (n > 1), on construit ainsi une suite ((Z,,y,)) de X x X
telle que
d(2n,yn) < 1/netd(f(zn), f(yn)) > €.
L’espace métrique X étant compact, il existe une sous-suite (z,, ) convergente,
soit a sa limite. L’inégalité d(z,, ,Yn,) < 1/n, montre que la sous-suite (Y, )
converge vers a. En passant 2 la limite dans I’inégalité d(f(zn, ), f(¥n,)) = €, 0n
obtient d(f(a), f(a)) > &, ce qui est absurde. QE.D.
On peut alors préciser le corollaire 2.31.12.

Corollaire 2.33.15 Soit f : X — Y une bijection continue définie sur un espace
métrique compact a valeurs dans un espace métrique. Alors, f est un homéomor-
phisme uniformément continu ainsi que f~1.

Corollaire 2.33.16 Soit X un espace compact métrisable. Alors toutes les dis-
tances sur X compatibles avec la topologie de X sont uniformément équivalentes.

Observons enfin que dans le théoreme 2.25.2, si X est un espace métrique com-
pact, la continuité uniforme de f est une condition nécessaire pour que f admette
un prolongement continu ; elle est suffisante d’aprés ce théoréme méme.

Exercice 2.33.12 Soient X, Y des espaces métriques, K un compactde X et f : X — Y une
application continue en tout point de K. Montrer que, pour tout € > 0, il existe § > 0 tel que
d(f(z), f(y)) < epourtout z € K,y € X vérifiant d(z, y) < 4.

Exercice 2.33.13 Soient X un espace topologique, f, : X — R une suite de fonctions s.c.i. en un
point a € X et qui converge uniformément vers f, montrer que f est s.c.i. au point a [se ramener au
cas ol toutes les fonctions sont a valeurs réelles finies en raisonnant comme dans I’exercice 2.14.4 et
en utilisant I’exercice 2.27.3].
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Exercice 2.33.14 Soient X un espace topologique, Y un espace métrique, (f,) une suite d’appli-
cations de X dans Y et f : X — Y une application.
1. Silasuite (fr) converge uniformément vers f et si f est continu, montrer que, pour tout z € X
et toute suite () de X convergeant vers z, la suite (f» (2 )) converge vers f(z).
2. Réciproquement, on suppose que, pour tout z € X et toute suite (2») de X convergeant vers
z, la suite (fn (zn)) converge vers f(z).
a. Montrer que la suite (f, ) converge simplement vers f.
b. Montrer que, pour toute sous-suite (f»,,), la suite (fn,, (zx)) converge vers f(z).
c. Si X est a base dénombrable de voisinages, montrer que f est continu [construire une
sous-suite (fn,, ) telle que d(fn,, (zr), f(xx)) < 1/k pour k > 1].
d. Si X est une espace métrique compact, montrer que la suite (f») converge uniformément
vers f [raisonner par I’absurde].

3. Si X est un espace métrique compact, en déduire que la topologie de la convergence uniforme
sur ’espace €(X; Y') ne dépend que de la topologie de Y : deux distances sur Y topologiquement
équivalentes conduisent a la méme topologie de la convergence uniforme.

Exercice 2.33.15 Fonction nulle part dérivable On considere I'espace E = €,([0, 1];R). On
pose I = [0, 1] et, pour tout entier n,
Fo={f€E;3teI)(vse)(f(s) - f(t) <nls—t])}.

1. Montrer que les ensembles F3, sont fermés et d’intérieur vide [on pourra vérifier que I’ensemble
des fonctions continues, affines par morceaux de E — F,, est dense dans E].

2. En déduire que I’ensemble des f € E dérivables en au moins un point (dépendant de f) est
maigre dans E, puis que I’ensemble des f € E n’admettant de dérivée en aucun point de [0, 1] est
partout dense dans E.

Le théoréme d’Ascoli

Nous nous proposons de caractériser les parties compactes pour la topologie de la
convergence uniforme et plus précisément les parties compactes de 1’espace des
fonctions continues C,,(X;Y), ou X est un espace topologique et Y un espace
métrique.

La topologie de la convergence simple étant moins fine que la topologie de la
convergence uniforme, notons d’abord (corollaire 2.31.14) que toute partie com-
pacte pour la topologie de la convergence uniforme T, est compacte pour la topo-
logie de la convergence simple T et que ces deux topologies coincident sur une
telle partie. 1l s’agit donc essentiellement de trouver les parties compactes pour
la topologie T sur lesquelles les topologies T et T, coincident. Pour cela, nous
allons introduire la notion nouvelle qui suit.

Définition 2.34.1 Soient X un espace topologique et Y un espace métrique. Un
ensemble A C F(X;Y) d’applications de X dans'Y est dit équicontinu en un
point a € X si, pour tout € > 0, il existe un voisinage V € V(a) tel que, pour tout
feAettoutx €V, onaitd(f(z), f(a)) <e

Toute fonction f de A est donc continue au point a, mais une famille d’ap-
plications continues au point a n’est pas nécessairement équicontinue au point a :
dans la définition qui précéde, le voisinage V' ne dépend pas de f € A.
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Nous dirons qu’une suite f, : X — Y d’applications est équicontinue en
un point a € X, si I'ensemble | J;—o{fn} est équicontinu au point a. Enfin, si
A C F(X;Y) est équicontinu en tout point de X, nous dirons simplement que A
est équicontinu.

Note La notion de partie équicontinue ne dépend que de la structure uniforme de
Y. Il est évidemment essentiel de disposer d’une structure uniforme sur Y : le
point f(a) dépend de f et il faut étre capable de mesurer la proximité du point
f(z) ace point f(a).

Exemple 2.34.1 Si X est muni lui ausssi d’une structure d’espace métrique, une
application f : X — Y est dite o — holdérienne de constante £ > 0 ot @ > 0
si, pour tout z,y € X, on a d(f(z), f(y)) < kd(z,y)*. Alors, tout ensemble
A C F(X;Y) de fonctions a—héldériennes de méme constante k est équicontinu.

Exercice 2.34.1 Soient X un espace topologique, Y un espace métrique et (f;);cs une famille
d’applications de X dans Y. Notons f : I x X — Y I’application (i,z) — f;(z). Montrer que la
famille (f;);er est équicontinue en un point a € X si, et seulement si, I'application z — f(e,x) de
X dans F,(I;Y) est continue au point a.

Proposition 2.34.1 Soient X un espace topologique,Y un espace métrique et
A C F(X;Y) un ensemble équicontinu en un point a € X. Alors, I’adhérence
A° de Adans F s(X;Y) (c’est-a-dire pour la topologie de la convergence simple)
est équicontinue au point a.

Preuve Soit € > 0, d’aprés 1’équicontinuité de A au point a, il existe un voisinage
V € V(a) tel que

d(f(z), f(a)) < e pourtout f € Aettoutz € V.
D’apres la continuité des projections f — f(a) et f — f(z) dans I’espace pro-
duit F,(X;Y) et le principe du prolongement des inégalités, il en résulte que
d(g(z), g(a)) < epourtout g € A" ettout z € V, ce qui prouve I’équiconti-
nuité de A° au point a. Q.E.D.

Corollaire 2.34.2 Soit B une base de filtre sur F(X;Y') qui converge simplement
vers une application f. S’il existe un ensemble M de B équicontinu en un point
a € X, I’application f est continue au point a. En particulier, si (f,) est une suite
équicontinue en un point a € X qui converge simplement, la limite de cette suite
est continue au point a.

Ce corollaire donne un critére permettant d’affirmer la continuité d’une limite
simple ; comme nous allons le voir, lorsque X est un espace compact, ce critére
ne differe pas de celui donné par le corollaire 2.27.5.

Proposition 2.34.3 Soient X un espace compact, Y un espace métrique et
A C C(X;Y) un ensemble équicontinu d’applications de X dans Y. Alors, sur A
les topologies de la convergence simple et de la convergence uniforme coincident.

Preuve La topologie de la convergence simple T étant moins fine que la topologie
de la convergence uniforme T, il s’agit de prouver que, sur A, la topologie T, est
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moins fine que Ts. Pour cela il suffit de démontrer que, pour tout f € A, tout
voisinage de f dans A pour la topologie T, est un voisinage de f dans A pour la
topologie T. On peut supposer que ce voisinage est la boule ouverte dans A,

B(f;r) ={g9 € 4; sup d(f(z),9(z)) <r};

nous allons construire un ouvert O de A pour la topologie T tel que
f € O C B(f;r) ; ceci prouvera le résultat souhaité. Or, pour tout a € X, il
existe un voisinage V'(a) € V(a) tel que, pour tout z € V(a) et tout g € A,
on ait d(g(z), g(a)) < r/3. Ces voisinages V'(a) (qu’on peut supposer ouverts)
constituent un recouvrement ouvert de X, qui est compact ; on peut donc en ex-
traire un sous-recouvrement fini V'(a;), 1 < ¢ < n. Considérons alors I’ensemble
O = {g € A; sup;<;<n d(9(ai), f(a;)) < r/3} ; cet ensemble est un voisinage
ouvert de f dans A pour la topologie T. En outre, soit g € O ; alors, pour tout
de X, il existe un V(a;) contenant z, d’ob

d(f(z),9(z)) < d(f(z), f(a:)) + d(f(ai), 9(as)) + d(g(a:), 9(z)) <,
ce qui prouve que O C B(f;7). Q.E.D.

Corollaire 2.34.4 Soient X un espace compact et Y un espace métrique. Toute
suite équicontinue d’applications fn, : X =Y qui converge simplement, converge
uniformément.

Preuve Posons A = ;2 o{fn} et soit f la limite simple' de la suite (fy) ; on
aalors A" = {f} U A; A est équicontinu, donc A° est equncontmu d’apres la
proposition 2.34.1 et la proposition précédente montre que sur A° les topologies
T et T coincident, ce qui permet de conclure. Q.E.D.

Si on ne suppose pas I’espace compact, on peut simplement dire qu’une suite
équicontinue de fonctions, qui converge simplement vers f, converge vers f uni-
formément sur tout compact de X.

Venons-en au résultat essentiel de ce paragraphe.

Théoréme 2.34.5 Ascoli Soient X un espace compact et Y un espace métrique.
Pour qu’une partie A de C,,(X;Y') soit relativement compacte pour la topologie
de la convergence uniforme, il faut et il suffit que les deux conditions qui suivent
soient vérifiées.

1. A est une partie équicontinue.

2. Pour tout x de X, I’ensemble A(x) = {f(z); f € A} est relativement
compact dans Y.

Preuve Les conditions sont suffisantes. En effet, 2. signifie que A est relative-
ment compact pour la topologie T (théoreme 2. ’42 7), donc A" est compact pour
la topologie Js. D’apres la proposition 2. ‘44 1, A° est une partie équicontinue et
la proposition 2.34.3 montre alors que A° est compact pour la topologie de la
convergence uniforme ; il en résulte que A C A est relativement compact pour la
topologie de la convergence uniforme.
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Les conditions sont nécessaires. Soit A une partie relativement compacte de
Cu(X;Y) ;les applications pry : f +— f(z) de C,(X;Y’) dansY étant continues,
les ensembles pr;(A) = A(z) sont relativement compacts dans Y. Montrons que
A est équicontinu en un point a de X ; notons d’abord que A est précompact
(proposition 2.33.3), donc, pour tout € > 0, il existe une famille finie (f;)1<i<n
de fonctions appartenant & A telle que les boules de A, B(f;;e),1 < i < n,
recouvrent A. Une famille finie de fonctions continues étant de toute évidence
équicontinue, il existe un voisinage V de a tel que, pour tout z € V et tout
1 < i < n, on ait d(fi(z), fi(a)) < e. Considérons alors une fonction f de
A ;ilexiste i € [1,n] tel que f € B(f;;€) ; on a alors pour tout z de V

d(f(z), f(a)) < d(f(z), fi(z)) + d(fi(z), fi(a)) + d(fi(a), f(a)) < 3¢
et ceci prouve I’équicontinuité de A au point a. Q.E.D.

Le théoréme précédent, pour étre utilisé pratiquement, suppose connues les
parties compactes de Y. Par exemple, si Y = R", la condition 2. signifie que, pour
tout = de X, A(x) est une partie bornée de R™.

Exercice 2.34.2 Soient X un espace topologique, Y’ un espace métrique, montrer qu’une suite (fr )
d’applications continues de X dans Y qui converge localement uniformément (exercice 2.27.5) est
équicontinue [observer que dans le théoréme d’Ascoli la compacité de X n’est pas utilisée pour dé-
montrer que les conditions sont nécessaires).

Espaces localement compacts

Comme nous I’avons déja remarqué, I’espace R n’est pas compact ; cependant
tout point admet un voisinage compact. Ceci conduit a la

Définition 2.35.1 Un espace topologique séparé est dit localement compact si
tout point admet un voisinage compact.

Tout espace compact est évidemment localement compact, mais il existe des
espaces localement compacts non compacts : par exemple, tout espace discret in-
fini, I’espace R. Notons également qu’un produit d’une famille finie d’espaces
localement compacts est localement compact d’apres le théoréme de Tychonoff.
En particulier, les espaces R™, C™ sont localement compacts.

Exercice 2.35.1 Soient X un espace localement compact, Y un espace métrique, montrer qu’une
suite (fn) d’applications de X dans Y qui converge localement uniformément converge uniformément
sur tout compact (exercice 2.27.5 et 2.31.3).

Exercice 2.35.2 Soient X un espace localement compact, Y un espace métrique, montrer qu’une
suite équicontinue ( f,) d’applications de X dans Y qui converge simplement converge uniformément
sur tout compact (exercice 2.31.3) [utiliser le corollaire 2.34.4].

Exercice 2.35.3 Soient X, Y des espaces séparés et f : X — Y une application continue. On

suppose, ou bien que X est a base dénombrable de voisinages, ou bien que X est localement compact ;
on note T la topologie de Y. Soit T2 une topologie sur Y plus fine que T telle que, pour tout compact
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K de X, f(I) soit compact pour la topologie T2. Montrer alors que f : X — Y est continu, I’espace
Y étant muni de la topologie T2.

Proposition 2.35.1 Dans un espace localement compact, toute partie compacte
admet un systéme fondamental de voisinages compacts.

Preuve Soit K une partie compacte d’un espace localement compact X . Montrons
d’abord que K admet un voisinage compact. Tout z de K admet un voisinage
compact C(z) ; lorsque z décrit K, I’ensemble des intérieurs C(z) constitue un
recouvrement ouvert de K dont on peut extraire un recouvrement fini (C(z;))ser ;
I’ensemble | J,; C(;) est alors un voisinage compact de K d’aprés la proposition
2.31.5, vu que X est séparé.

On peut ensuite appliquer la proposition 2.31.8. Soit V' un voisinage compact
de K, alors K, considéré comme une partie compacte de V', admet un systéme fon-
damental de voisinages compacts dans V' qui est a fortiori un systéme fondamental
de voisinages dans X, vu que V est un voisinage de K. Q.E.D.

D’apres la proposition 2.31.3, on en déduit le

Corollaire 2.35.2 Tout espace localement compact est régulier.

Exercice 2.35.4 Topologie de la convergence compacte Soient X et Y des espaces topologiques,
pour tout compact K de X et tout ouvert O de Y, on pose

I(K,0) = {f € &(X;Y); f(X) C O}

et on note B I’ensemble de toutes les intersections finies d’ensembles de la forme I'( K, O).

1. Montrer que B est une base d’une topologie T, sur C(X;Y’) appelée topologie de la conver-
gence compacte ; muni de cette topologie, I’espace €(X; Y) est noté Cc(X;Y).

2. Montrer que la topologie T est plus fine que la topologie de la convergence simple ; la topologie
T est donc séparée si Y est séparé.

On suppose désormais que Y est un espace métrique.

3. Soit (fr) une suite de I’espace €(X; Y') convergeant vers f € C(X; Y') uniformément sur tout
compact (exercice 2.31.3), montrer que la suite (f,) converge vers f pour la topologie T.. En déduire
que la topologie T, est moins fine que la topologie de la convergence uniforme.

4. Si X est localement compact, montrer réciproquement qu’une suite (f) convergeant pour la
topologie T converge uniformément sur tout compact.

5. Si X est un espace compact, en déduire que la topologie T, est la topologie de la convergence
uniforme. En déduire que la topologie de la convergence uniforme sur I'espace C(X;Y’) ne dépend
que de la topologie de Y (cf. exercice 2.33.14 lorsque X est métrisable).

Nous allons démontrer I’important théoréme suivant.
Théoréeme 2.35.3 Tout espace localement compact est un espace de Baire.

Preuve La démonstration est tout a fait analogue a celle du théoréme 2.28.1. Soit
(Ox) une suite d’ouverts partout denses et soit O un ouvert non vide ; vérifions que
O N (n’p On est non vide. Construisons par récurrence une suite (B,,) d’ouverts
non vides relativement compacts telle que

(2.35.1) BycOetB,;; C B,NO, pourtoutn € N.

Soit a € O, alors O est un voisinage de a, donc (proposition 2.35.1) contient un
voisinage compact de a et par conséquent il existe un ouvert non vide relativement
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compact By tel que By C O. L’ouvert B, N O,, étant non vide, le méme raisonne-
ment permet de construire un ouvert B, ayant les propriétés voulues. La suite
(By) est une suite décroissante de fermés non vides dans 1’espace compact By ;
son intersection est donc non vide (remarque 2.30.1) ce qui permet de conclure
comme pour le théoréme 2.28.1. Q.E.D.

Corollaire 2.35.4 Tout espace compact est un espace de Baire.

Exercice 2.35.5 Montrer que tout produit X = [];.; X; d’espaces localement compacts est un
espace de Baire [raisonner comme pour I’exercice 2.28.1 en prenant les B, ; relativement compacts].

Soit X un espace localement compact, tout ouvert de X est encore un es-
pace localement compact d’apres la proposition 2.35.1. En particulier, le complé-
mentaire d’un point dans un espace compact est un espace localement compact.
Réciproquement, nous allons démontrer que tout espace localement compact est
homéomorphe au complémentaire d’un point d’un espace compact.

Théoréme 2.35.5 Alexandroff Soit X un espace localement compact et soit w un
ensemble n’appartenant pas a X. Alors, sur I’ensemble X' = X U {w}, il existe
une unique topologie compacte qui induise sur X la topologie donnée de I’espace
X.

Preuve Notons d’abord qu’il existe un tel ensemble {w} d’aprés le paradoxe de
Cantor (remarque 1.1.3).

1. Supposons qu’il existe une topologie compacte sur X' induisant sur X la

topologie de X ; notons Ox et Ox I’ensemble des ouverts de X et X’ et X
I’ensemble des parties compactes de X . Montrons que nécessairement
(2.35.2) Ox =0xU{X'-K; K € X}.
L’espace X étant un ouvert de X', tout ouvert de X est un ouvert de X". Si K est
une partie compacte de X, donc de X/, X’ — K est un ouvert de X’. Inversement,
soitO € Ox: ;siw € 0,0 = ONX estunouvertde X et,siw € O, K = X'-0
est fermé, donc compact, d’od K € K et O = X’ — K. Ceci prouve que, s’il
existe une topologie sur X' vérifiant les exigences voulues, elle est parfaitement
déterminée : ’ensemble des ouverts de X’ est donné par la formule (2.35.2).

2. Montrons qu’on définit bien ainsi une topologie sur X', c’est-a-dire que
Ox: vérifie les axiomes des ouverts. Ceci est clair pour (O3). Quant a (O1) et
(O2), observons d’abord que I’ensemble (X' — K) gex vérifie ces axiomes : on a

en effet
U’ - k) = X' - K,
i€l el
(X'-K)N(X' —-Ky)=X'-K,UK,
et il suffit d’utiliser la proposition 2.31.5. D’autre part, soit O € Ox et K € X,

alors
OUX'-K)=X'-Kn(X-0)



2.35 ESPACES LOCALEMENT COMPACTS 181

ol K N (X — O) est fermé dans K, donc compact, et
OoN(X'-K)=0n(X-K)e€0x.

Ceci prouve que les axiomes (O;) et (O2) sont satisfaits et O x, définit bien une

topologie sur X”.

3. Il est évident que cette topologie sur X’ induit sur X la topologie de X .

4. L’espace X' est séparé. Vérifions I’axiome de Hausdorft (H2). Soient x et y
deux points distincts de X ; si x et y appartiennent tous deux a X, il suffit d’écrire
(H2) dans I’espace X et, siz € X, y = w, il existe un voisinage compact K € X
de z dans X (cet espace étant localement compact) ; K et X’ — K sont alors des
voisinages disjoints de x et w dans X', ce qui prouve le résultat voulu.

5. Montrons que la topologie de X’ est compacte. Soit (O;);er un recou-
vrement ouvert de X'. Il existe 59 € [ tel que w € O;, et 0;, = X' — K,
K € X; alors (O;);cr est un recouvrement ouvert du compact K qui contient
donc un sous-recouvrement fini (O;);cs. On obtient ainsi un sous-recouvrement
fini (O’i)iEJU{iu} de X'. QED

L’espace compact X’ que nous venons de construire est unique & un homéo-
morphisme prés ; on a en fait le théoréme suivant.

Proposition 2.35.6 Soient X un espace localement compact, X (i=1,2) deux
espaces compacts tels qu’il existe un homéomorphisme h; de X sur le complé-
mentaire d’un point w; de X|. Alors, il existe un unique homéomorphisme
h: X{ — Xjtel que ho hy = ho.
Preuve Posons X; = X — {w;}, soit X] = X; U {w;}. On a nécessairement
hlx, = ha o hT!,
ce qui prouve la continuité de h en tout point de X; vu que X; est ouvert dans
X1 (remarque 2.20.3), et h(w;) = wy. Vérifions la continuité de h au point w; :
soit Oz un voisinage ouvert de wy, alors Ko = X} — O; est fermé dans X}, donc
compact et
Ky = h™Y(K2) = (h1 o hy ') (K>)
est une partie compacte de X, donc fermée dans X ; il en résulte que
11_1(02) = X{ - K,

est un voisinage ouvert de w;. On vérifie de méme que h~! est continu, ce qui
permet de conclure. Q.E.D.

A un homéomorphisme pres, il existe un unique espace compact X' tel que
X soit homéomorphe au complémentaire d’un point w € X'. Cet espace X' est
appelé le compactifi¢ d’ Alexandroff de X et w le point a I’infini de ’espace X ;
on dit qu’on a compactifié I’espace X par adjonction d’un point a I’infini.

Exemple 2.35.1 On peut donner une description concréte du compactifié d’ Alexan-
droff de I’espace R™. Considérons I’espace R"t! = R™ x R, les coordonnées d’un
point
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(z,u) € R™xR seront notées (z1, . . . , Tn, u) ; identifions R™ & I’hyperplan u = 0
et notons S™ la sphére unité de R™**1, soit
Szl 4zl =1
La projection stéréographique a partir du pole nord N = (0,1) € R™ x R définit
un homéomorphisme h : S* — {N} — R" : on a simplement
h(z,u) = (1 —u)"lz.
La spheére S™ étant compacte est donc le compactifi€ d’ Alexandroff de R™.

Exercice 2.35.6 Soient X un espace localement compact, X’ = XU{w} son compactifié d’ Alexan-
droff, montrer que X est compact si, et seulement si, w est un point isolé de X'.
Exercice 2.35.7 Soit X un espace localement compact, non compact.

1. Montrer que B = (X — K)ex, od X désigne ’ensemble des parties compactes de X, est
une base de filtre sur X [utiliser I’exercice 2.35.6).

Soient Y un espace topologique, f : X — Y une application, y € Y. On dit que f(z) tend vers
y lorsque z tend vers I'infini si y = limg f : on écrit alors y = limgz— 00 f(2).

2. Soit f : X — R une fonction continue admettant une limite y € ] — 0o, +00] lorsque x tend
vers I’infini, montrer que f est borné inférieurement et que f atteint sa borne inférieure lorsqu’elle est
différente de y [utiliser I’exercice 2.20.5].

Exercice 2.35.8 1. Montrer que dans un espace séparé tout sous-espace localement compact est
localement fermé (exercice 2.20.2).

2. Réciproquement, dans un espace localement compact tout sous-espace localement fermé est

localement compact.
Exercice 2.35.9 Soient X un espace séparé, Y un espace localement compact, une application conti-
nue f : X — Y est dite propre si I'image réciproque par f de tout compact de Y est une partie
compacte de X. S’il existe une application propre de X dans Y, on notera que X est nécessairement
un espace localement compact.

1. Montrer que toute application propre est fermée [soient A une partie fermée de X, b € f(A),
V un voisinage compact de bet W = f~1(V'), montrer que V N f(A) = f(W N A), en déduire que
V N f(A) est fermé et, b étant adhérent 2 V N f(A), que b € f(A)].

2. Soient X, Y des espaces localement compacts, X’ = X U {w}, Y’ = Y U{w'} leur compac-
tifi€ d’ Alexandroff, montrer qu’une application continue f : X — Y est propre si, et seulement si, le
prolongement g : X/ — Y’ de f défini par g(w) = w' est continu au point w.

Exercice 2.35.10 Espace localement compact dénombrable a Pinfini Soient X un espace locale-
ment compact, X’ = X U {w} son compactifié d’ Alexandroff. Montrer que les propriétés suivantes
sont équivalentes.

1. le point w admet un syst¢me fondamental dénombrable de voisinages,

2. I’espace X est une réunion dénombrable de parties compactes,

3. lespace X est la réunion d’une suite (On) d’ouverts relativement compacts telle que
Opn C On41 pourtout n,

4. il existe une suite (K, ) de parties compactes telle que, pour tout compact K, il existe n tel que
K C Kn.

[pour vérifier que 2 = 3, si (K, ) est une suite de compacts de réunion X, prendre pour Op un
voisinage ouvert relativement compact de Ko et pour On, n > 1, un voisinage ouvert relativement
compact de Op—1 U Kp].

Un espace localement compact vérifiant ces propriétés est dit dénombrable a I’infini. Tout espace
compact est dénombrable a I’infini, tout sous-espace fermé d’un espace localement compact dénom-

brable a I’infini est un espace localement compact dénombrable 4 I’infini [utiliser I’exercice 2.35.8).
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Exercice 2.35.11 Paracompacité des espaces localement compacts dénombrables a I’infini Dans
un espace topologique, un recouvrement (A;) ;¢ est dit plus fin qu’un recouvrement (B;) e s si, pour
tout i € I, il existe j € J tel que A; C Bj.

Soit X un espace localement compact dénombrable a Pinfini (exercice 2.35.10) et soit
R = (O):ier un recouvrement ouvert de X. Montrer qu’il existe un recouvrement ouvert dénom-
brable localement fini (exercice 2.10.4) plus fin que R et constitué d’ouverts relativement compacts
[il existe une suite (Un) d’ouverts relativement compacts de réunion X telle que Up C Up41 pour
tout n, poser K, = Up — Un—1; (Un+1 — Un—2) N O;);¢er est un recouvrement ouvert de K<,
qui contient un sous-recouvrement fini R,, ; montrer que R’ = |J,, Ry vérifie les propriétés voulues :
pour démontrer que R’ est localement fini, si z € K, remarquer que Up 41 — Up—_2estun voisinage
de x ne rencontrant pas les ensembles de R, pour |p — n| > 2].

Un espace sépar€ est dit paracompact si, pour tout recouvrement ouvert, il existe un recouvrement
ouvert plus fin localement fini. Avec cette terminologie, tout espace localement compact dénombrable
a I’infini est paracompact.

Le théoréeme d’Urysohn

Un espace compact étant régulier, la proposition 2.31.9 montre que dans un espace
compact, deux fermés disjoints admettent des voisinages disjoints. Un espace ré-
gulier ne posséde pas nécessairement cette propriété de séparation ; ceci conduit a
la définition suivante.

Définition 2.36.1 Un espace séparé X est dit normal s’il vérifie I'une des pro-
priétés équivalentes qui suivent.

(N1) Quels que soient les fermés disjoints A et B, il existe des voisinages de A et
B disjoints.

(N2) Tout fermé admet un systéme fondamental de voisinages fermés.

Preuve Vérifions 1’équivalence de (V1) et (N2).

(N1) = (N2). Soit F' un fermé de X, montrons que tout voisinage O de F'
contient un voisinage fermé de F'. On peut supposer O ouvert (proposition 2.9.2) ;
alors F et X — O sont des fermés disjoints, il existe donc des voisinages disjoints
V € V(F) et W € V(X — O) qui peuvent étre supposés ouverts. Il en résulte que
V c X —W C O, ce qui montre que X — W est un voisinage fermé de F' contenu
dans O.

(N3) = (Ni). Soient A et B deux fermés disjoints. Alors, X — B est un
voisinage ouvert de A donc contient un voisinage fermé V de A ; X — V est alors
un voisinage ouvert de B et ces voisinages V et X — V sont disjoints.  Q.E.D.

Tout espace normal est régulier vu que (N;) implique (Rz). Tout espace com-
pact est normal d’apres la proposition 2.31.9. Tout espace métrisable est également
normal : en effet, si A et B sont des fermés disjoints,

V={ze X;d(z,A) <d(z,B)}etW = {z € X; d(z, B) < d(z,A)}
sont des voisinages ouverts de A et B disjoints.

Exercice 2.36.1 Montrer que tout espace régulier de Lindelof (exercice 2.30.3) est normal [soient
A et B deux fermés disjoints de I’espace X ; construire des recouvrements ouverts dénombrables
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(Mn)nen et (Nn)nen de A et B tels que
Mp,CcX—-B, N,CX—A;
poser alors Vo = Mo, Wo = No — Vg et, pourn > 1,
o =Mp —WoU...UWn_1, Wo = Ny —VoU...UV,
et montrer que | JO2_ o Vi et LUn> o Wi sont des voisinages disjoints de A et B].
Exercice 2.36.2 Montrer que tout espace localement compact dénombrable a I’infini (exercice

2.35.10) est un espace de Lindelof (exercice 2.30.3), donc normal (exercice 2.36.1).

Exercice 2.36.3 Soit X un espace normal.

1. Soient O1, O des ouverts tels que X = O; U Oz, montrer qu’il existe un ouvert U; tel que
Ul COy1et X =U;UQOas.

2. Soit (Oy) un recouvrement ouvert dénombrable et localement fini (exercice 2.10.4) de X,
montrer qu’il existe un recouvrement ouvert (Uy, ) de X tel que U, C O, pour tout 1 [en utilisant 1.,
construire les ouverts Uy, par récurrence tels que

n =]

X = U U; u U O pour tout .
j=0 j=n+1

Exercice 2.36.4 Soit X un espace normal, R une relation d’équivalence sur X, si la surjection

canonique 7 : X — X/R est fermée, montrer que I'espace quotient X/ R est un espace normal

[raisonner comme dans 1’exercice 2.32.2 pour démontrer que 2 => 3 en prenant pour £ et 7 deux

fermés disjoints de X/ R].

L’intérét des espaces normaux réside dans le théoréme suivant.

Théoréme 2.36.1 Urysohn Un espace séparé X est normal si, et seulement si,
(N3) Quels que soient les fermés disjoints A et B, il existe une fonction continue
f:X —[0,1) telle que fla =1, flg =0.
Preuve Il est facile de montrer que (N3) implique (N1). En effet, si f vérifie les
propriétés indiquées dans (N3), f~1(] — 00,1/2[) et f~1(]1/2, +00[) sont des
voisinages ouverts de A et B disjoints. Il s’agit de vérifier la réciproque.

1. Soit D I’ensemble des nombres dense dans [0, 1] de Ia forme k/2™ oun € N,
0 < k < 2"; construisons par récurrence sur n une famille d’ouverts (O(t)):ep
telle que
(236.1) AcCO(0), O(1) C X —BetO(t) C O(t') pourt <t
Pour n = 0, prenons O(1) = X — B, alors d’aprés (N2), il existe un voisinage
fermé V de Atel que A C V C O(1) ; posons O(0) = V, alors

A c 0(0) c O(0) c O(1).

Supposons O(k/2™) C O((k + 1)/2™), de méme d’apres (N2) il existe un ouvert
O((2k +1)/27*1) tel que

O(k/2™) c O((2k +1)/2™) c O((2k + 1)/2"t!) C O((k + 1)/2™),
ce qui acheve la construction de la famille (O(t)).

2. Posons fi = (1 — t)lo(), 9s = 1 — s + slg(,), puis f = sup,cp f: et
g = infsep gs. La fonction f est s.c.i. et la fonction g est s.c.s. d’aprés la pro-
position 2.14.1 et ’exemple 2.14.1. On a f; = 1 — ¢ sur O(t) donc sur A, d’od
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fla = let fy = 0sur X — O(t) donc sur B, d’od flB = 0. Si on montre
que f = g, la fonction f sera continue (proposition 2.14.2) et vérifiera toutes les
propriétés voulues.

3. Montrons d’abord que f < g, c’est-a-dire f; < gs pour tout s,t € D.
Soita € X,sia € (X — O(t)) UO(s) on a fy(a) = 0 ou gs(a) = 1, d’od
fi(a) < gs(a). Sia € O(t) N (X — O(s)), on a nécessairement s < ¢ d’aprés
(2.36.1), d’od

fr(@) =1-t<1-s=g4(a).

4. Montrons ensuite que f = g. Raisonnons par I’absurde : supposons qu’il
existe a € X tel que f(a) < g(a). Alors, il existe s,t € D tel que f(a) < 1—t <
1-s<g(a),d’oda € (X -O(t))NO(s) d’od O(s) ¢ O(t), ce qui est absurde
d’apres (2.36.1) vu que s < ¢. Q.E.D.
Exercice 2.36.5 Théortme de Tietze-Urysohn Soit F' une partie fermée d’un espace normal X .

1. Soit f : F — R une fonction continue telle que | f(2)] < a pour tout = € F, montrer qu’il
existe une fonction continue g : X — R telle que

lg(2)| < a/3 pourtout z € X et|f(z) — g(z)| < 2a/3 pourtout z € F'
[considérer les fermés
A= {2z €F;f(z) < —a/3}et B={z € F;f(z) >a/3}.

2. Soit f : F — [—1, 1] une fonction continue, montrer que f admet un prolongement continu
9 : X — [—1, 1] (théoréme de prolongement de Tietze-Urysohn) [en utilisant 1., construire une suite
gn + X — R de fonctions continues telle que |g,, (z)| < 2"/3"H1 pourz € X et

F@) =" gp(x)

p=0

< (2/3)"*! pourz € F,

puis considérer la série Y 02 o gn).

3. Montrer que le théoréme précédent subsiste pour des fonctions a valeurs dans un intervalle
compact de R ou 2 valeurs dans un intervalle ouvert de R [dans ce dernier cas, se ramener au cas de
Iintervalle ] — 1, 1, construire un prolongement g a valeurs dans [—1, 1], puis construire une fonction
continue h : X — [—1, 1] telle que la fonction g x h ait les propriétés voulues].

La démonstration du théoréme d’Urysohn est triviale pour des espaces métri-
sables. Il suffit de prendre f(z) = d(z, B)(d(z, A) + d(z, B))~!. En utilisant la
métrique, on peut construire des fonctions continues possédant diverses proprié-
tés. Par contre, sur un espace topologique général on ne sait pas a priori construire
des fonctions continues non constantes. Ceci montre tout I’intérét des espaces nor-
maux et du théoréme d’Urysohn. Nous allons d’ailleurs voir qu’on peut en déduire
des critéres de métrisabilité.

Théoréme 2.36.2 Urysohn Soit X un espace normal admettant une base de to-
pologie dénombrable. Alors, X est métrisable. En outre, X est homéomorphe é un
sous-espace du cube de Hilbert.

Preuve Soit (B, )»en une base de la topologie de X et D I’ensemble dénombrable

D = {(i,§) € N% B C B;}.
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D’aprés le théoréme d’Urysohn, il existe pour tout (%, 5) € D une fonction conti-
nue f;; : X — [0,1] telle que fi;|B, = 0, fij|x—B; = 1. Considérons I’applica-
tion continue f = (fi;)(:,j)ep de X dans [0, 1]P. Nous allons démontrer que f est
un homéomorphisme de X sur f(X), I’espace [0, 1]P étant métrisable (corollaire
2.22.3), ceci prouvera que X est métrisable.

1. Vérifions que f est injective. Soient z,y € X, z # y, alors I’espace X étant
séparé, il existe j € N tel que x € B;, y € Bj, de plus X étant régulier, il existe
i€Ntelquez € B; C B; C B;;ona(i,j) € D,dob fi(z) =0, fi;j(y) =1,
soit f(x) # £(y).

2. Montrons que f~! : f(X) — X est continu. Le sous-espace f(X) étant
métrisable, il s’agit de démontrer que toute suite (z,,) de X converge si la suite
(f(zn)) converge dans f(X). Notons f(z) la limite de la suite (f(z,)) et mon-
trons que la suite (z,,) converge vers x. Soit j € N tel que z € B; (I’ensemble
de ces ouverts B; est évidemment un syst¢éme fondamental de voisinages de z) ;
comme précédemment, il existe i € Ntelquez € B, C B; C B;, d’ou
fij(z) = 0; étant donné que f;;(z) = limp_, o0 fij(Trn), ona fij(xyn) # 1 dés que
n est suffisamment grand, c’est-a-dire z, € B; et ceci prouve que
T = lim,_y00 Tn.

3. Quant a la derniere assertion, elle résulte du fait que [0,1]P est homéo-
morphe a [0, 1]N d’apres le corollaire 2.21.14. Q.ED.

Corollaire 2.36.3 Soit X un espace métrisable, les propriétés suivantes sont équi-
valentes.
1. X admet une base de topologie dénombrable.
2. X est séparable.
3. X est homéomorphe a un sous-espace du cube de Hilbert.

Preuve L’équivalence de 1. et 2. a déja ét€ démontrée (proposition 2.10.7). Le
théoreme précédent prouve que 1. implique 3. Enfin, le cube de Hilbert étant mé-
trisable séparable (exemple 2.22.3), la proposition 2.20.4 montre que 3. implique
2. Q.ED.

Corollaire 2.36.4 Un espace compact est métrisable si, et seulement si, il admet
une base de topologie dénombrable.

Preuve La condition est suffisante d’apres le théoréme 2.36.2 et elle est nécessaire
d’apres la proposition 2.33.1 et la proposition 2.10.7. Q.E.D.

Exercice 2.36.6 Montrer qu’un espace métrique complet X est séparable si, et seulement si, X est
homéomorphe & un G5 du cube de Hilbert [utiliser I’exercice 2.25.2].

Exercice 2.36.7 Soient X un espace métrisable séparable, d une distance sur X définissant sa to-
pologie telle que 0 < d < 1 et soit (an) une suite de X partout dense. Montrer que I’application
f:x — (d(z,an)) de X dans [0, 1]N est un homéomorphisme de X sur un sous-espace du cube de
Hilbert : on obtient ainsi une démonstration directe (n’utilisant pas le théoréme d’Urysohn) de I’impli-
cation 2 = 3 du corollaire 2.36.3.
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Exercice 2.36.8 Soient X un espace localement compact, X’ = XU{w} son compactifié d’ Alexan-
droff, montrer 1’équivalence des propriétés suivantes

1. X admet une base de topologie dénombrable,

2. X' est métrisable,

3. X est métrisable et dénombrable a I’infini (exercice 2.35.10),

[pour démontrer 1 = 2, si (On) est une base de la topologie de X, montrer que I’ensemble
des Oy, relativement compacts constitue déja une base de la topologie de X ; en déduire que X est
dénombrable 2 I’infini, puis que X’ admet une base de topologie dénombrable ; pour démontrer 3 = 1,
vérifier que X est séparable].

Exercice 2.36.9 1. Soient X un espace métrique compact et Y un espace séparé, il existe une
surjection continue f : X — Y, montrer que Y est un espace compact métrisable [soit (B, ),,en une
base de la topologie de X stable par réunion finie, montrer que les ouverts C, = Y — f(X — By)
constituent une base de la topologie de Y en procédant comme suit : soient O un ouvert de Y et
a € O, montrer qu’il existe un ouvert By, tel que f~1({a}) C Bp C f~1(O) et en déduire que
a€Cp CO)

2. En utilisant I’exercice 2.33.5, en déduire que pour un espace séparé X les propriétés suivantes
sont équivalentes

a. X est un espace compact métrisable,

b. X est une image continue de I’ensemble de Cantor.

Exercice 2.36.10 Montrer que les espaces [0, 1]™ et [0, 1]N sont des images continues de I’intervalle
[0, 1] [si X est I'un de ces espaces, il existe une surjection continue de I’ensemble de Cantor C sur X
(exercice 2.36.9), utiliser ensuite le théoréme de Tietze (exercice 2.36.5)].

Peano (1890) a construit une application continue surjective de 'intervalle [0,1] sur le carré
[0, 1]2, c’est-a-dire une courbe, dite courbe de Peano, remplissant tout le carré [0, 1]2.

Exercice 2.36.11 1. Soient X un espace métrique compact et Y un espace métrique borné. On note
JF I’ensemble des parties fermées non vides de X X Y et on munit F de la distance définie a 1’exer-
cice 2.33.3 (sur X X Y on prend comme distance d(z,2’) = d(z,z’) + d(y,y’) od z = (z,y),
2’ = (2',9') ). Si f : X — Y est une fonction continue, on note Gy € F son graphe ; on définit
ainsi une application ¢ : f +— Gy de I’espace €(X;Y’) dans . L'espace €, (X;Y’) étant muni de
la topologie de la convergence uniforme, montrer que ¢ est un homéomorphisme de €, (X;Y) sur
un sous-espace de ¥ [si (fn) est une suite de C,,(X; Y') convergeant uniformément vers f, montrer
que la suite (G'y,, ) converge vers G dans I’espace F en remarquant que p(Gy, Gy,,) < di(f, fr) ;
réciproquement, si (G, ) converge vers Gy, soit (zn) une suite de X convergeant vers x, mon-
trer qu’il existe une suite (z7,) de X telle que limp 00 d(2n,25) = 000 2 = (ZTn, fn(za)),
z}, = (x5, f(z},)) et en déduire que la suite (fn(x)) converge vers f(x) ; conclure avec I’exercice
2.33.14].

2. Si X est un espace métrique compact et Y un espace métrique séparable, déduire de 1. que
I’espace C,(X;Y) est séparable [remarquer que Cy(X;Y) est homéomorphe 2 un sous-espace de
Cu(X; Z) ob Z est le cube de Hilbert et que I’espace F des parties fermées non vides de X X Z est
compact].

Exercice 2.36.12 Espace complétement régulier Un espace topologique séparé est dit complete-
ment régulier si

(CR1) pour tout fermé F et tout z ¢ F, il existe une fonction continue f : X — [0, 1] telle que
f(x) =0et f(y) =1poury € F.

1. Montrer que tout espace completement régulier est régulier et que tout espace normal est com-
plétement régulier ; en particulier, tout espace compact est completement régulier, tout espace métri-
sable est complétement régulier.

2. Tout sous-espace d’un espace complétement régulier est complétement régulier ; en particulier,
tout espace localement compact est complétement régulier.
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3. Soit X un espace completement régulier, on pose Y = €(X; [0, 1]), on considere I’espace
compact Z = Fs(Y;[0,1]) et on note & : X — Z I’application qui 2 € X associe I’application
®(x) : f €Y — f(z) € [0,1]. Montrer que ® est un homéomorphisme de X sur ®(X) [pour
démontrer la continuité de =1 : ®(X) — X, soit O un voisinage ouvert d’un point @ € X, il existe
f € Ytelque f(a) =0et f(z) = 1 pourz € X — O, montrer que U = {© € &(X); O(f) # 1}
est un ouvert de (X ) et que ®(a) € U C (O)]. En déduire que X est homéomorphe 2 un sous-
espace dense de I’espace compact 3X = ®(X), appelé compactifié de Stone-Cech de X.

4. En déduire qu’un espace séparé X est complétement régulier si, et seulement si, X est homéo-

morphe & un sous-espace dense d’un espace compact.

Exercice 2.36.13 Soient X un espace completement régulier (exercice 2.36.12) et f : X — R une
fonction s.c.i., montrer que f est I’enveloppe supérieure des fonctions continues g : X — K telles que
g < f [en utilisant ’homéomorphisme ¢ : R — [—1, 1] définie par o(t) = t/(1 + |t]) sit € R
et p(+oo) = %1, se ramener au cas od f est 2 valeurs dans [—1,1] ; soienta € X, o < f(a),
construire une fonction continue g : X — [—1, 1] telleque g < fetg(a) > a].

Un espace localement compact n’est pas en général un espace normal et au lieu
du théoreme d’Urysohn, on a seulement la

Proposition 2.36.5 Dans un espace localement compact X, soient A une partie
compacte et B une partie fermée sans point commun. Alors il existe une fonction
continue f : X — [0,1] telle que fla =1 et flg = 0.

Preuve Soit X’ = X U {w} le compactifié d’ Alexandroff. Alors, A est une partie
compacte de X', B est fermé dans X donc est la trace sur X d’une partie fermée
de X’ qui ne peut étre que B ou B U {w} et dans tous les cas B U {w} est fermé
dans X". I suffit alors d’appliquer le théoréme d’Urysohn dans 1’espace compact
X' aux fermés disjoints A et B U {w}. Q.ED.

Etant donné une fonction f : X — R définie sur un espace topologique X,
le support de f est par définition 1’adhérence de I’ensemble {z € X; f(z) # 0}
et on le note supp (f) ; c’est le plus petit fermé de X tel que f soit nulle sur son
complémentaire. Si supp (f) est une partie compacte de X, on dit que f est 2
support compact ; on note Co(X; R) I’ensemble de toutes les fonctions continues
f + X — R a support compact. Avec cette terminologie, on a alors le corollaire
suivant.

Corollaire 2.36.6 Soient X un espace localement compact, K une partie com-
pacte et O un voisinage ouvert de K. Il existe une fonction continue f : X — [0, 1]
égale a 1 sur K et a support compact contenu dans O.

Preuve Il existe un voisinage compact V' de K contenu dans O d’aprés la proposi-
tion 2.35.1. Utilisons la proposition 2.36.5 enprenant A= Ket B=X —V ;on
obtient ainsi une fonction & support dans V', donc a support compact contenu dans
O. Q.E.D.

Théoréme 2.36.7 Partition de 'unité Soient X un espace localement compact,
K une partie compacte de X et (O;);c1 un recouvrement ouvert fini de K. Alors,
il existe des fonctions continues a support compact @; : X — [0,1] telles que
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supp (ps) C O; et ) icrpi = 1 sur K : une telle famille (p;) est appelée une
partition de I’unité sur K subordonnée au recouvrement (O;).

Preuve Lorsque I est réduit 4 un élément, il s’agit simplement du corollaire précé-
dent. Nous raisonnerons alors par récurrence sur Card I. Supposons donc
I = [0,n] et K C Uiy O;:. On peut alors trouver deux compacts Ko et K’
tels que K C KgU K’ et Ky C Op, K' C O' o0 O’ = |J;._, O; : en effet, O’
étant un voisinage du compact K — Oy, il existe (proposition 2.35.1) un voisinage
compact K’ de K — Oy contenu dans O’ et il suffit de prendre Ky = K — K.
D’apres I’hypothése de récurrence, il existe une partition de 1’unité sur K’ subor-
donnée au recouvrement (O;)1<i<n, S0it (f;)1<i<n : d’apres le corollaire 2.36.6,
il existe d’autre part une fonction @y € Co(X; [0, 1]) égale a 1 sur K et a support
dans Oy. Posons alors ¢; = (1 — ) f; pour 1 < i < n; la famille (¢;)o<i<n
est évidemment une partition de I’unité sur Ko U K, donc sur K, subordonnée au
recouvrement (O;)o<i<n- Q.E.D.

Si f : X — R est une fonction continue a support contenu dans le compact
K, on peut donc écrire f = )., fi ob f; = p; f est une fonction continue de X
dans R a support dans O;. Ceci montre que f peut s’écrire comme la somme de
fonctions continues dont les supports sont arbitrairement petits ; ce type de résultat
est, comme nous le verrons, treés utile dans 1’étude des mesures de Radon sur un
espace localement compact.

Exercice 2.36.14 Partition de I’unité Soient X un espace topologique, (A;);ecr un recouvrement
(quelconque) de X ; une famille (f;);cs de fonctions continues f; : X — [0, 1] est appelée une
partition de I’unité subordonnée au recouvrement (A;);e;y si

a. supp f; C A; et la famille des supports (supp f;);er est localement finie (exercice 2.10.4),

b.pourtoutz € X, 3, fi(z) = 1.

1. Soient X un espace normal et (Oy,) un recouvrement ouvert dénombrable localement fini de
X, montrer qu’il existe une partition de 1’unité subordonnée a un tel recouvrement [soit (U, ) un
recouvrement ouvert de X tel que Up C On pour tout n (exercice 2.36.3), il existe des ouverts V;,
tels que Upn C Vi C Vi C On et des fonctions continues gn : X — [0, l] telles que g, = 1 sur
Uhn, gn = Osur X — V,, ; montrer que la fonction g = Zf:o gn est bien définie, continueet > 0 ;
prendre alors fr, = gn/g).

2. Soit X un espace localement compact dénombrable a I’infini, montrer que, pour tout recouvre-
ment ouvert de X, il existe une partition de 1'unité subordonnée a ce recouvrement [soit
R = (O;)ier un recouvrement ouvert de X, il existe (exercice 2.35.11) un recouvrement ouvert
dénombrable R’ = (U, ) localement fini et plus fin que R ; soit (f.) une partition de I’unité subor-
donnée 2 R’ (exercice 2.36.2) ; il existe une fonction ¢ : N — I telle que Up, C O (n) Pourtout n ;
on pose g; = Z«p( n)=i fn ; montrer que la famille (g;) est une partition de I’unité subordonnée a R].

Limite supérieure et inférieure

Considérons sur R une base de filtre B ; ’espace R étant compact, I’ensemble des
points adhérents 2 B est une partie non vide de R ; cet ensemble étant de toute
fagon fermé, c’est une partie compacte non vide de R. Nous pouvons donc poser
la définition suivante.
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Définition 2.37.1 Soit B une base de filtre sur R. On appelle limite supérieure
(resp. inférieure) de cette base de filtre, le plus grand (resp. petit) point adhérent a
B et on la note lim sup B (resp. lim inf B).

D’apres la proposition 2.31.1, une base de filtre B sur R converge si, et seule-

ment si, lim inf B = lim sup B et on a alors
lim B = liminf B = limsup B.

Si B et B’ sont deux bases de filtre sur R et si B engendre un filtre moins fin
que B’,ona
2.37.1D) liminf B < lim inf B’ < limsup B’ < limsup B.

Dans ce qui suit, on raisonnera uniquement sur les limites supérieures vu que

liminf B = — limsup(—B),

oll —B désigne I’ensemble des parties —M = {—z; z € M} lorsque M décrit B.
Il est utile d’expliciter la définition 2.37.1 sous la forme suivante.

Proposition 2.37.1 Soit B une base de filtre sur R, on a alors
limsupB = inf sup M et liminf B = sup inf M.
MeB MeB

Preuve Vérifions la premiere formule par exemple. Posons = lim sup B. Notons
d’abord que sup M est le plus grand point adhérent 2 M ; on adonc z < sup M
pour tout M € B, d’ot z < infp;ep sup M. Pour démontrer 1’inégalité opposée,
soit y > x, montrons que B n’admet pas de trace sur [y, +00| ; supposons en effet
que B admette une trace B’ sur un tel intervalle ; cet intervalle étant compact, B’
aurait un point adhérent 2 € [y, +00] qui serait a fortiori un point adhérent 2 B et
ceci est absurde vu que z est le plus grand point adhérent a B. Il en résulte qu’il
existe M € B tel que M N [y, +00] = P, d’odsupM < yetinfpyepsupM <y
ce qui permet de conclure. Q.E.D.

Si on considére maintenant une application f : X — R définie sur un en-
semble X et si B est une base de filtre sur X, on appellera limite supérieure (resp.
inférieure) de f suivant la base de filtre B la limite supérieure (resp. inférieure) de
la base de filtre f(B). On utilisera les notations suivantes

limsup f = limsup f(B) et limginff = lim inf f(B).
B
Si B est une base de filtre sur X engendrant un filtre moins fin que B’, on a d’aprés
(2.37.1)
(2.37.2) liminf f < liminf f < limsup f < limsup f.
B B B B

La proposition 2.37.1 montre que
2.373) limsup f= inf s im i = i .
( ) < pf ity sup f(z) et hm:rs inf f Asllé% xlél{/[ f(=z)

Le principe du prolongement des inégalités (proposition 2.13.5) se généralise
ainsi.
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Proposition 2.37.2 Soient B une base de filtre sur un ensemble X, f, g : X - R
deux applications telles que f < g, on a alors

limsup f < limsup g e liminf f < liminf g.
B B B B

Preuve II suffit d’utiliser les formules (2.37.3). Q.E.D.

La notion générale de limite supérieure et inférieure d’une application contient
comme cas particulier diverses notions fréquemment utilisées. Voici les plus im-
portantes.

Exemple 2.37.1 Limite supérieure et inférieure d’une suite Soit (z,) une suite
de R ; on appelle limite supérieure (resp. inférieure) de cette suite, la limite su-
périeure (resp. inférieure) de I’application n — z,, suivant le filtre de Fréchet ;
ces limites sont notées limsup,,_,. z, (resp. liminf, ,o z,). En d’autres
termes, limsup,,_, ., T est la plus grande valeur d’adhérence de la suite (z,,) et
lim inf,, o0 5 est la plus petite valeur d’adhérence. D’aprés (2.11.4) et (2.37.3),

ona
limsupz, = mg supz, = lim supzp,

(2.37.4) n—oo neENy>n n—=00 p>n
o hm mf Tp = sup 1nf zp = lim inf z,,.
neNP2n n—00 p>n

La suite (z,,) converge si, et seulement si,

liminf 2, = limsupz,
n—oo n—00

et on a alors

lim z, = hm mf T, = limsup z,.
n—oo n—00

Si () et (y,) sont deux suites de R telles que =, < yy, pour tout n € N, on a
d’apres la proposition 2.37.2,

liminf z,, < hm mf yn et limsupz, < limsupy,.
n—00 n—o00 n—00

Si f, : X — Rest une suite d’applications de X dans R, on définit la limite
supérieure et inférieure de cette suite par les formules

(limsup f)(z) = limsup fp(z) et (liminf f,)(z) = liminf f,(z) ;
n—00 n—o0o n—00 n—0o

on a donc

limsup f, = mf sup fr= llm sup Sos
(2.37.5) nmoo Np2n 2

hm mf fan= iléll:l ;nf fo= nll)n;o ;r>1£ fp-

La suite (f,) converge simplement si, et seulement si,

hm 1nf fn = limsup fy,
n—>00

auquel cas lim,, ;0 f, = lim 1nfn_,°° fn =limsup,_, o, fn.

Exemple 2.37.2 Soient X un espace topologique, A une partie de X, a un point
adhérent a Aet f : A — R une application. On appelle limite supérieure (resp.
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inférieure) de f(z) quand z tend vers a en restant dans A la limite supérieure
(resp. inférieure) de f suivant la trace sur A du filtre V(a) ; ces limites sont notées
lim SUPz_yq4,z€A f(z) etliminf, o zc 4 f(2).

Si A = X, on les note simplement limsup,,_,, f(z) etliminf,_,, f(z) ; étant
donné que f(a) est adhérent 2 la base de filtre f(V(a)), on a

(2.37.6) ligl,iglf f(z) < f(a) < limsup f(z)

et f est continue au point a si, et seulement si, ces deux limites sont égales.

Si (z,,) est une suite de A qui converge vers a, le filtre élémentaire associé i
cette suite étant plus fin que V(a), on a d’aprés (2.37.2)

377 limi < lim inf <l <l

3D Jimind, £@) < Umint f(z,) <Hmsup f(an) < limsup f(a).

Lorsque le filtre V(a) est & base dénombrable, il est possible de caractériser
les limites précédentes en termes de suite. De fagon précise, on a la proposition
suivante.

Proposition 2.37.3 Les notations étant celles de I’exemple 2.37.2, si le filtre V(a)
est a base dénombrable, on a y = limsup,_,, yc 4 f(x) si, et seulement si, les
deux conditions qui suivent sont réalisées.

1. Pour toute suite (x,,) de A qui converge vers a, limsup,,_, . f(z,) <.

2. Il existe une suite (T,) de A qui converge vers a. telle que la suite (f(x,,))
converge vers y.

Preuve En effet, d’apres la proposition 2.16.7, 1. signifie que toute valeur d’adhé-

rence de f suivant V(a)|4 est < y et 2. signifie que y est une valeur d’adhérence.

Q.E.D.

La semi-continuité se caractérise aisément en termes de limite supérieure ou
inférieure.

Proposition 2.37.4 Soit X un espace topqlogique. Une fonction f : X — R est
s.c.i. en un point a € X si, et seulement si,

(SC1y) f(a) <liminf;o f(x), auquel cas f(a) = liminf,_,, f(z).

Preuve Si f est s.c.i. au point a, pour tout o < f(a), il existe V' € V(a) tel que
F(V) Cla, +00], d’ott infzev f(z) > a et liminf,_,, f(z) > « et ceci prouve
(SC1,). On a alors I’égalité d’apres (2.37.6).

Réciproquement, si (SC1y) est vérifié, c’est-a-dire si

f(a) < sup inf f(z),
Vev(a) T€V
pour tout a < f(a), il existe V' € V(a) tel que o < infgzey f(z), d’od
f(V) Cla, +00] ce qui prouve la semi-continuité inférieure de f. QED.

Si f est s.c.i. au point a, pour toute suite (z,) de X qui converge vers a, on a
d’apres (2.37.7) f(a) < liminf,_,o f(25). Réciproquement, on a la
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Proposition 2.37.5 Soit X un espace a base dénombrable de voisinages, une ap-
plication f : X — R est s.c.i. en un point a € X si, et seulement si, pour toute
suite (zy,) de X qui converge vers a

(2.37.8) f(a) < linl) iorgf f(zn).

n
Preuve D’apres la proposition 2.16.7, (2.37.8) signifie que toute valeur d’adhé-
rence de f suivant V(a) est > f(a). QE.D.

Exercice 2.37.1 Soient ¥ un filtre sur un ensemble X et f, g : X — R des applications, on suppose
que f admet une limite finie > O suivant F, montrer alors que

limsup (f g) = lim f X limsupg.
F F ¥

Exercice 2.37.2 Régularisée s.c.i. Soit A une partie d’un espace topologique X partout dense et
soit f : A — R une application, montrer que la fonction f«(z) = lim infy 2, yea f(y) estla plus
grande fonction s.c.i. telle que f. < fsur A : f. est appelée la régularisée s.c.i. de f. Si f ests.c.i.,
[« prolonge f.

Exercice 2.37.3 Soient X un espace topologique admettant une base de topologie dénombrable et
fi : X = R, i € I, une famille de fonctions s.c.i.. Cet exercice a pour objet de démontrer qu’il existe
une partie dénombrable Io de I telle que (exercice 2.37.2) (inf;er f3)» = (inficr, fi)s (lemme de
Choquet). _

En utilisant I’'homéomorphisme ¢ : R — [—1, 1] de I’exercice 2.36.13, on peut supposer les
fonctions f; a valeurs dans [—1, 1]. Pour toute partie J de I, on pose f; = inf;cy fi et on note
(On)n>1 une base de la topologie de X telle que chaque ouvert O,, soit répété une infinité de fois
dans la suite (Oy,).

1. Soit n > 1, montrer qu’il existe z, € Oy, tel que fr(zn) < info,, fr + 1/n et un indice
in € Itel que f;, (zn) < f1(zn) + 1/n ; en déduire que

P .
inf fi, < inf fr + 2/n

2.0n pose Ip = U2 {in}. Soit g : X — K une fonction s.c.i. telle que g < f,, montrer que
g < fr[soitz € X,e > 0,il existe V € V(z) tel que g(z) < g(y) +¢€ pourtout y € V ; en déduire
que, pour toutn tel que z € O, C V, g(z) < fr(z) + € + 2/n].

3. Conclure.

Les espaces projectifs

On rencontre, en géométrie en particulier, de trés nombreux exemples d’espaces
compacts. Il faut d’abord citer la sphere unité S™ de R*+! : si les coordonnées
d’un point z € R™*! sont notées (z¥)p<i<n, On a
n
S" = {z e R**!; Z(xi)2 =1}.
i=0

Voici une description du cercle unité S! utile dans la théorie des fonctions
périodiques. Considérons sur R le sous-groupe additif 27Z et la relation d’équiva-
lence associée  —y € 27Z ; notons R cette relation d’équivalence et T = R/27Z
I’espace quotient muni de la topologie quotient ; cet espace est appelé un tore de
dimension 1. Nous allons démontrer la proposition suivante.
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Proposition 2.38.1 Le tore T est un espace compact homéomorphe a S'.

Preuve 1. Considérons I’application ¢ : R — S! définie par ¢(z) = €' ; cette
application est continue, surjective et, pour tout t € S, p~1(¢) est une classe
d’équivalence pour R. Si on note p : R — T la surjection canonique, ceci montre
qu’il existe une unique application ¢ : T — S! telle que 9 o p = ¢ ; en outre,
9 est une bijection, continue d’aprés la proposition 2.24.3. La topologie de T est
donc séparée, vu qu’elle est plus fine que la topologie compacte image réciproque
par 1 de celle de S!.

2. Considérons I’intervalle compact [0, 1] et notons i : [0,1] — R Iinjection
canonique ; considérons la relation d’équivalence R’ sur [0, 1] induite par R, I’es-
pace quotient [0, 1]/R’ (muni de la topologie quotient) et la surjection canonique
p' : [0,1] — [0,1]/R’. 1l existe alors une unique application 6 : [0,1]/R' — T
telle que @ o p’ = p o i ; en outre, & est une bijection, continue d’aprés la propo-
sition 2.24.3 et la continuité de p o 7 ; I’espace T étant séparé, il en résulte que
[0,1]/R’ est séparé ; I’espace [0, 1] étant compact et p’ étant continu, on en déduit
(théoreme 2.31.10) que [0,1]/R’ est compact. Le corollaire 2.31.12 montre alors
que @ est un homéomorphisme et que T est compact.

3. L’espace T étant compact, la bijection continue 9 : T — S! est un homéo-
morphisme. Q.E.D.
Note Les classes d’équivalence associées a R’ sont d’une part les ensembles ré-
duits a un point {z} o0 0 < z < 1, d’autre part I’ensemble {0, 1}. Le cercle unité
S? s’obtient donc en identifiant les points 0 et 1 de I’intervalle compact [0, 1] et
ceci est vrai du point de vue topologique : I’application 9 0 8 : [0,1]/R’ — S! est
un homéomorphisme. A

A toute fonction f : S! — C associons la fonction f = f o ¢, soit
f(z) = f(e®). Alors f : R — C est une fonction périodique de période 2
(c’est-a-dire f(z + 2r) = f(z), pour tout z € R) ; nous noterons Far(R; C)
I’ensemble de toutes les fonctions f R — C périodiques et de période 2m. Réci-
proquement, soit fe F2x(R; C), il existe une unique application f : S' — C telle
que f = f o . L’application f — f est donc une bijection de I’espace F(S};C)
sur Fo,(R; C). En outre, la proposition 2.24.3 montre, compte tenu de 1’homéo-
morphisme 9 : T — S!, que I’application f +» f induit une bijection de I’espace

€(S!; C) sur I'espace Cax(R;C) de toutes les fonctions continues f : R — C
périodiques et de période 2.

Introduisons maintenant les espaces projectifs. On considére 1’espace
K"t! — {0}, ot K = RouC ; les coordonnées d’un point z € K"*! seront
notées (z*)o<i<n. Si z et y sont deux éléments de K™+! — {0}, la relation

(3t e K*)(z = ty)
est une relation d’équivalence R. L’espace quotient P,,(K) = K»*! — {0}/R est
appelé I’espace projectif (réel ou complexe selon le cas) de dimension n ; on munit
cet espace de la topologie quotient et on note 7 : K**! — {0} — P, (K) la surjec-
tion canonique. Nous allons démontrer que les espaces projectifs sont compacts.
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Lemme 2.38.2 L’application = : K**! — {0} — P,,(K) est ouverte.

Preuve Soit O un ouvert de K™*! — {0}, montrons que m(O) est ouvert dans
P, (K), c’est-a-dire (paragraphe 2.24) que w1 (w(O)) est ouvert dans K**+! —{0}.
Notons h; : K**! — {0} — K"*! — {0} I’'homothétie de rapport t € K*, soit
hi(x) = tx ; I’application h; est un homéomorphisme. Alors d’aprés la définition
de la relation d’équivalence R, on a
7 1(x(0)) = |J h(0)
teK*
qui est donc ouvert dans K**! — {0}. Q.ED.
Afin d’appliquer la proposition 2.24.4, vérifions le

Lemme 2.38.3 Le graphe de la relation R est fermé dans (K™t — {0})2.

Preuve Notons G ce graphe ; si ((zx, yx)) est une suite de G qui converge vers
(z,y) dans (K™*! — {0})2, il faut démontrer que (x,y) € G, c’est-a-dire qu’il
existe t € K* tel que z = ty. Or, il existe t;, € K* tel que xz, = txyx. Il existe
0 <i < ntelquey’ #0,d od y} # 0 pour k suffisamment grand, soit k > ko ;
il en résulte que la suite t;, = .Ili /y}~ est convergente, soit ¢ = limg_,o tx. En
passant a la limite dans la relation x;, = tiys, on obtient x = ty et t ne peut étre
nul vu que z # 0 ; ceci prouve que (z,y) € G. Q.ED.

Compte tenu de la proposition 2.24.4, on en déduit que I’espace projectif
P, (K) est séparé. Nous allons démontrer que cet espace est compact. Suppo-
sons d’abord K = R. La relation d’équivalence R induit sur la sphére unité S™
de R™*! une relation d’équivalence R’ dont les classes d’équivalence sont de la
forme {z,—z} avec z € S™. On peut alors considérer I’espace quotient S™/R’
muni de la topologie quotient et on note 7/ : S* — S™/R’ la surjection cano-
nique. Il existe alors une application et une seule § : S*/R’ — P,(R) telle que
6 o’ = o1, ob i désigne I’injection canonique de S dans R**! — {0} ; en
outre, 8 est une bijection, continue d’aprés la proposition 2.24.3 et la continuité de
mwoi ; I’espace P, (R) étant séparé, on en déduit que I’espace S™/ R’ est également
séparé ; I’espace S™ étant compact et I’application 7’ étant continue, le théoréme
2.31.10 montre que I’espace S™ /R’ est compact et le corollaire 2.31.12 prouve que
PP, (R) est compact et que 6 est un homéomorphisme.

Lorsque K = C, le méme raisonnement montre que 1’espace IP,,(C) est com-
pact et homéomorphe a S?*+!/R” ol R" désigne la relation d’équivalence
dont les classes d’équivalence sont les ensembles {tz;t € C,|t| = 1} od
x € §?ntl c Crtl,

Examinons plus précisément I’espace P, (K).

Proposition 2.38.4 L’espace P;(R) est homéomorphe au cercle unité S*.

Preuve Considérons I’application f : S! — S! définie par f(z) = 2%,z = z +iy.
Cette application f est surjective et pour Z € S, il existe exactement deux points
de S! diametralement opposés z et —z tels que f(z) = f(—z) = Z. Ceci montre
qu’il existe une application et une seule ¢ : S'/R’ — St telle que pon’ = f ;
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en outre ¢ est une bijection. La continuité de f et la proposition 2.24.3 montrent
que ¢ est continu ; ¢ est donc une bijection continue, donc un homéomorphisme
d’apres le corollaire 2.31.12. Q.E.D.

Proposition 2.38.5 L’espace Py (C) est homéomorphe a la sphére unité S2.

Preuve Le raisonnement est analogue a celui de la proposition précédente. Il s’agit
de construire une application continue surjective f : S® — S? telle que ’image
réciproque par f de tout point de S? soit une classe d’équivalence pour R”. Les
coordonnées de C2 étant notées (z, y), la sphere S? est définie par |z|? + |y|? = 1.
On peut d’autre part identifier C xR et R? au moyen de 1application (X,Y) € Cx
R+ (Re X,3m X,Y) € R3 ; la sphere S? a alors pour équation | X |2 +Y?2 = 1.
On pose
f(z,y) = (227, |=I* - |y]*).
Si (z,y) €S% ona
227> + (|2 — |yI*)? = (l=” + |¥*])* = 1,
d’ob f(z,y) € S? Léquation f(z,y) = (X,Y) € S?, c’est-a-dire le systetme
225 = X, |z|? — |y|?> = Y se résout de la fagon suivante. Si Y = —1, donc
X =0onobtientz =0et|y =1.SiY > —1,onalz|? = (1+7Y)/2d0d
r=t(1+Y)/2)200teC,|t| =1,ety = tX/(2(1 + Y))'/2 et on vérifie
que ces points (z,y) appartiennent 2 S : en effet,
2
1+Y+ | X| :1+Y+1—Y
2 21+Y) 2 2

On constate bien que f~1(X,Y) est une classe d’équivalence pour R”. Le raison-
nement est alors identique a celui de la proposition précédente. Q.E.D.

Nous avons vu (exemple 2.35.1) que S™ était le compactifié d’ Alexandroff de
R™. Les propositions précédentes montrent que IP; (K) peut étre considéré comme
le compactifié d’ Alexandroff de K. Comme nous le verrons, le compactifié du plan
complexe C, c’est-a-dire P (C) ou S?, joue un rdle important dans la théorie des
fonctions d’une variable complexe.

=1

jz[? + |yl* =
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D — Espaces connexes

Propriétés fondamentales

Nous abordons ici I’étude d’une catégorie d’espaces topologiques d’une nature
différente de ceux qui ont été étudiés jusqu’a présent ; la connexité ne se relie pas
a des notions de convergence.

Définition 2.39.1 Un espace topologique X est dit connexe s’il vérifie I’'une des
propriétés équivalentes qui suivent.

(CO1) X n’est pas la réunion de deux ensembles ouverts non vides et disjoints.
(CO2) X n’est pas la réunion de deux ensembles fermés non vides et disjoints.
(CO3) L’ensemble X et la partie vide sont les seuls ensembles & la fois ouverts
et fermés.

Une partie d’un espace topologique est dite connexe si, munie de la topologie
induite par celle de X, A est un espace connexe. Quand on manipule des topologies
induites, il est conseillé d’utiliser des ouverts et des fermés de 1’espace ambiant.
Par exemple, dire que A n’est pas une partie connexe de X signifie qu’il existe
des ouverts O; et Os de X telsque A C O, U0, ANO; #0, ANOs # Det
ANO1NO2 =0.

Dans un espace topologique, toute partie réduite & un élément est évidemment
connexe. Un espace discret est connexe si, et seulement si, il admet au plus un
élément ; tout sous-espace d’un espace discret étant discret, ceci montre que, dans
un espace discret, les parties connexes non vides sont les parties réduites a un
élément.

Donnons de suite une propriété fondamentale des espaces connexes.

Théoréme 2.39.1 Soient X, Y des espaces topologiques, f : X — Y une appli-
cation continue. Alors, I'image par f de toute partie connexe de X est une partie
connexede Y.

Preuve Soit A une partie de X, montrons que A n’est pas connexe si f(A) n’est
pas connexe. Il existe donc des ouverts O;, Oy de Y tels que
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f(A) C O1UO,, F(A)NO, # 0, F(A)N Oz # Det f(A)NO1 N Oz = 0.
Les ensembles f~1(0;) et f~1(O2) sont deux ouverts de X tels que
AC fTHO)UF(0s), ANFTHO1) # 0, ANFTH(02) #0

et AN f~1(01) N f~1(02) = 0, ce qui prouve que A n’est pas connexe. Q.E.D.
Ceci permet d’en déduire la caractérisation suivante.

Proposition 2.39.2 Soit D un espace discret tel que Card D > 2. Un espace topo-
logique X est connexe si, et seulement si, toute application continue

f + X — D est constante.

Preuve La condition est nécessaire d’apres le théoréme 2.39.1 vu que f(X) doit
étre une partie connexe de D. Pour démontrer que la condition est suffisante, sup-
posons X non connexe. Il existe alors des ouverts non vides et disjoints Oy, Oz
tels que X = O; U O3 ; considérons alors deux éléments différents a et b de D
et ’application f : X — D égale a a sur O; et a b sur O, ; cette application non
constante est continue, I’image réciproque de tout ouvert de D étant un ensemble
ouvert de X. Q.ED.

Corollaire 2.39.3 Soit A une partie connexe d’un espace topologique. Alors, toute
partie B telle que A C B C A est connexe.

Preuve Soit D un espace discret et f : B — D une application continue. D’aprés
la proposition 2.39.2, I’application f|4 est constante ; A étant dense dans B,
le principe du prolongement des identités (corollaire 2.17.4) montre que f est
constante. La proposition 2.39.2 permet alors de conclure. Q.ED.

Corollaire 2.39.4 L’adhérence de toute partie connexe est connexe.

Corollaire 2.39.5 Soit (A;)icr une famille de parties connexes telle que
A;NA; #0Dsii#j,

alors la réunion de cette famille est connexe.

Preuve Soient D un espace discret et f : | J;c; Ai — D une application continue.
Les applications f| 4, sont constantes, donc f est constante vu I’hypothese. Q.E.D.
En raisonnant de facon similaire, on obtient les résultats suivants.

Corollaire 2.39.6 Soit (An)neN une suite de parties connexes telle que
An N Apy1 # 0 pour tout n € N. Alors | Jpo_, An est connexe.

Corollaire 2.39.7 Soient A une partie connexe et (A;)icr une famille de parties
connexes telles que AN A; # 0 pour tout i, alors AU J;c; A; est connexe.

Indiquons enfin une derniére propriété des espaces connexes.

Proposition 2.39.8 Soient A une partie d’un espace topologique X et B une par-
tie connexe de X. Si B rencontre A et X — A, alors B rencontre la frontiére de
A
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Preuve Si B ne rencontrait pas la frontiere de A, les ensembles Int A N B et
Int (X — A) N B seraient deux ouverts non vides de B, disjoints et leur réunion
serait B d’apres la proposition 2.10.3, ceci serait contraire a la connexité de B.

Q.E.D.

Corollaire 2.39.9 Dans un espace connexe X, une partie non vide distincte de X
admet une frontiére non vide.

Un sous-espace d’un espace connexe n’a aucune raison d’étre connexe en gé-
néral. Par contre, un produit d’espaces connexes est connexe ; pour démontrer ce
résultat nous aurons besoin du

Lemme 2.39.10 Soit (X;);c; une famille d’espaces topologiques et soit
a = (a;)ier un point de I’espace produit X. Alors ’ensemble A des x = (x;)icr
tels que x; = a; sauf pour un nombre fini d’indices i est dense dans X.

Preuve En effet, tout ouvert élémentaire non vide rencontre A. Q.E.D.

Théoréme 2.39.11 Un produit X = [];c; X d’espaces topologiques non vides
est connexe si, et seulement si, tous les espaces facteurs sont connexes.

Preuve Si X est connexe, les espaces facteurs sont connexes car les projections
sont continues et surjectives. Réciproquement, supposons les espaces facteurs
connexes et soit f : X — D une application continue a valeurs dans un espace
discret D. Soit a = (a;);er un point de X. Les applications partielles z; — f(x)
étant continues, la proposition 2.39.2 montre que f est constante sur I’ensemble
des z = (z;);es tels que 2; = a; sauf pour une valeur de I'indice 4, donc grice
au méme raisonnement f est constante sur I’ensemble des = (x;);er tels que
z; = a; sauf pour deux valeurs de I’indice %, et par récurrence f est donc constante
sur I’ensemble A du lemme 2.39.10, donc sur X d’aprés ce lemme et le principe
du prolongement des identités. Q.E.D.

Dans un espace produit, une partie non vide de la forme [],.; A; est connexe
si, et seulement si, tous les A; sont connexes. Si X est un ensemble et Y est un
espace topologique, I’espace F,(X;Y) muni de la topologie de la convergence
simple est connexe si, et seulement si, Y est connexe.

Exercice 2.39.1 Soient A et B des parties d’un espace topologique. Si A et B sont fermés et si
AU B et AN B sont connexes, montrer que A et B sont connexes.

Exercice 2.39.2 Soient A et B des parties d’un espace topologique. Si A et B sont connexes et si
AN BouAnN B est non vide, montrer que A U B est connexe.

Exercice 2.39.3 Soit (C;);es une famille de parties connexes filtrante pour I’inclusion : pour tout
1, € I il existe k € I tel que C; U C; C C. Montrer que ;< C; est connexe.

Exercice 2.39.4 Soient X un espace connexe et (O;);e; un recouvrement ouvert de X. Montrer
que, pour tout ¢,y € X, il existe une sous-famille finie (O;,)1<p<n telleque x € O;,,y € O;,, et
0;,N0;,,, #0pourl<p<n-—-1
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Exercice 2.39.5 Soient X,Y des espaces connexes, A et B des sous-ensembles stricts de X et Y,
montrer que X X Y — A X B est connexe.

Exercice 2.39.6 Soit (K) une suite décroissante de compacts non vides dans un espace topolo-
gique X.

1. Montrer que K = ﬂ‘f:o K, est un compact non vide et, que pour tout voisinage V' de K, il
existe n € Ntelque K, C V.

2. Si tous les compacts K, sont connexes, montrer que K est connexe [raisonner par 1’absurde et

utiliser la proposition 2.31.9].

Exercice 2.39.7 Montrer que dans un espace métrique connexe non borné, toute sphere est non vide.
Exercice 2.39.8 Soit X un espace métrique compact, montrer I’équivalence des propriétés suivantes
1. X est connexe,
2. pour tout € > Oet tout z,y € X, il existe une suite finie de points de X, (;)o<i<n, telle que
x0 =2, %n = yetd(z;, z;41) < epourtouts € [0,n — 1] : on dit alors qu’il existe une & — chaine
reliant x et y.

Exercice 2.39.9 Soit X un espace métrique compact, on suppose que, pour tout a € X et tout
r > 0, B(a;r) = B’(a;r). Montrer alors que toute boule ouverte ou fermée est connexe [soit
x € B'(a;r) et soit Ae, € > 0, I’ensemble des y € B’(a;r) tels qu’il existe une € — chaine
(exercice 2.39.8) dans B’(a; r) reliant z et y ; montrer que A est compact, que infyc 4, d(a,y) =0
et en déduire que a € A.].

Exercice 2.39.10 Soient X un ensemble, Y un espace métrique, montrer que I’ensemble Fj, (X ; Y)
des applications bornées de X dans Y est 2 la fois ouvert et fermé dans F,,(X;Y).

Exercice 2.39.11 1. Soient X un espace topologique, Y un espace métrique et A C €y (X;Y)
une partie équicontinue. Montrer que 1’ensemble des © € X tels que A(z) = {f(z); f € A} soit
précompact est a la fois ouvert et fermé.

2. Si X est un espace compact connexe et si Y est un espace métrique complet, en déduire qu’une
partie A C €y (X;Y) équicontinue est relativement compacte dés qu’il existe un point a € X tel
que A(a) soit relativement compact : ceci affaiblit, dans le cas od X est connexe, la seconde condition
figurant dans le théoréme 2.34.5 d’ Ascoli.

Parties connexes de la droite réelle

Théoréme 2.40.1 Les parties connexes de R et R sont les intervalles de R et R.
En particulier, R et R sont des espaces connexes.

Note Un intervalle I de R ou R peut étre limité ou illimité ; si a = inf I désigne
son origine et b = sup I son extrémité, un tel intervalle sera noté |a, b| ; les points
a et b n’appartiennent pas nécessairement a I et peuvent &tre infinis.

Preuve Nous raisonnerons sur R ; le théoréme pour R s’en déduit de suite puisque
R est un sous-espace de R.

1. Soit I une partie connexe non vide de R ; posons a = inf I et b = sup I.
Alors tout z tel que ¢ < = < b appartient nécessairement a I, sinon les ensembles
IN[—o0,z[et IN]z, +o00] formeraient une partition de I en deux ouverts de I non
vides et disjoints. Ceci prouve que I est un intervalle d’origine a et d’extrémité b.
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2. Réciproquement, soit I = |a, b| un intervalle non vide de R. Cet intervalle
peut s’écrire comme une réunion d’une famille d’intervalles de la forme [z, y] dont
I’intersection est non vide. D’apres le corollaire 2.39.5, il suffit de prouver que tout
intervalle compact [z,y] est connexe. Supposons non connexe un tel intervalle
[z, ] ; il existerait alors deux fermés, donc deux compacts K et K2 non vides et
disjoints tels que [z,y] = K; U K3 ; d’apres le corollaire 2.33.13, il existerait des
points a; € K; tels que

d(al, a2) = d(Kl, 1(2) ’
les compacts K; et K5 étant disjoints, on aurait a; # a3 et I’intervalle non vide
la1,a2[sia1 < a2 oulaz,a;siaz < a; n’appartiendrait pas 2 K; U K> = [z, ),
ce qui est absurde. Q.E.D.
Compte tenu du théoréme 2.39.11,0nale

Corollaire 2.40.2 Les espaces R™ et C™ sont connexes.

Corollaire 2.40.3 Théoréme des valeurs intermédiaires Soient X un espace
connexe, f : X — R une application continue, a et b deux points de X. Po-
sons a = f(a), B = f(b). Alors, pour tout vy € [o,B] six < B (v € [B,q] si
B < a), il existe un point c € X tel que v = f(c).

Preuve En effet, f(X) est une partie connexe de R (théoréme 2.39.1), donc un
intervalle de R (théoreme 2.40.1) et cet intervalle contient les points a et 3 donc
tout I'intervalle [, 8] si e < B ([B, 0] si B < a). Q.E.D.

Exercice 2.40.1 Montrer que les intervalles ]a, b[ et ]a, b], a < b, ne sont pas homéomorphes.

Exercice 2.40.2 Montrer que toute application continue f : [—1, 1] — [—1, 1) admet un point fixe.
Exercice 2.40.3 Montrer qu’il n’existe pas d’application continue f : R — R telle que

f@QCR-Qet f(R-Q)CQ.

Exercice 2.40.4 Soit X un ensemble totalement ordonné muni de la topologie de I’ordre (exercice
2.9.3).
1. Montrer que X est connexe si, et seulement si,
toute partie non vide de X majorée admet une borne supérieure et pour tout
{:c,y € X, z < y, I'intervalle ]z, y| est non vide.
2. On suppose X connexe, montrer qu’un ensemble I C X est un intervalle si, et seulement si,
pourtoutz,y € X,z < y,ona)z,y[ C I. Montrer que les parties connexes de X sont les intervalles

de X.

Exercice 2.40.5 Soient / un intervalle de Ret f : I — R une fonction continue injective.

1. Soient 2,y,z € I tels que < y < z, montrer que I’on a, soit f(z) < f(y) < f(z), soit
f(z) > f(y) > f(2) [utiliser le corollaire 2.40.3).

2. Soient a,b € I, a < b,si f(a) < f(b) (resp. f(a) > f(b)), montrer que f est strictement
croissante (resp. décroissante).

3. En déduire que f est un homéomorphisme de I sur f(I). De plus, si I est un intervalle ouvert

(resp. compact), alors f(I) est un intervalle ouvert (resp. compact).
Exercice 2.40.6 SurR, on note d(z, y) = | —y| la distance usuelle et, pour toute fonction injective

f: R — R, on considre la distance d¢ (z,y) = | f(x) — f(y)|. Montrer que
1. les distances d et d ¢ sont topologiquement équivalentes si, et seulement si, f est continu,
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2. les distances d et ds sont uniformément équivalentes si, et seulement si, f est un homéomor-
phisme uniformément continu de R sur R ainsi que f~1,

3. les suites de Cauchy pour d et d; sont les mémes si, et seulement si, f est un homéomorphisme
de R sur R,

4. R muni de la distance d est complet si, et seulement si, f(R) est fermé.

Définition 2.40.1 Un chemin dans un espace topologique X est une application
continue f : [a,b] — X définie sur un intervalle compact de R.

L’'image f([a, b]) de I’intervalle [a, b] par f sera appelée un arc de courbe ; le
point A = f(a) est appelé I’origine du chemin, le point B = f(b) I’extrémité du
chemin. D’apres les théorémes 2.39.1 et 2.40.1, un arc de courbe dans un espace
topologique X est une partie connexe de X. D’aprés la proposition 2.39.8, on a
donc la

Proposition 2.40.4 Théoréme du passage de la frontiére

Soit f : [a,b] = X un chemin dans un espace topologique X et soit A une partie
de X telle que f(a) € A et f(b) € X — A. Alors il existe t € [a,b] tel que
f(t) € Fr A

Définition 2.40.2 Urn espace topologique X est dit connexe par arc si, pour tout
z,y de X, il existe un chemin f : [0,1] — X d’origine x et d’extrémité y.

Remarque 2.40.1 Soient z,y, z trois points d’un éspace topologique X . S’il existe
un chemin f : [0,1] — X d’origine z et d’extrémité y et un chemin g : [0,1] = X
d’origine y et d’extrémité z, alors il existe un chemin h : [0,1] — X d’origine z
et d’extrémité z. En effet, il suffit de définir h de la fagon suivante : h(t) = f(2¢t)
pour 0 <t <1/2eth(t)=g(2t—1)pour1/2 <t < 1.

Proposition 2.40.5 Un espace connexe par arc est connexe.

Preuve En effet, soit a un point de X ; alors pour tout z de X, il existe un chemin
fz 1 [0,1] = X tel que f;(0) = aet fz(1) = zetonaalors X = |J,x fz([0,1]),
qui est donc connexe d’apres le corollaire 2.39.5. Q.E.D.

Un espace connexe n’est pas nécessairement connexe par arc (exercice 2.41.2).

Proposition 2.40.6 Tout produit d’espaces connexes par arc est connexe par arc.

Preuve Notons X = [, X; un tel espace produit. Soient z = (z;)ier,
Yy = (¥i)ier deux points de X. Pour tout i € I, il existe une application
continue 7y; : [0,1] — X; telle que v;(0) = z; et 7;(1) = y;. L’application
v ¢ t = (7i(t))icr est continue et ¥(0) = z et v(1) = y, ce qui permet de
conclure. Q.E.D.

L’espace R étant évidemment connexe par arc, les espaces R™ et C" sont
connexes par arc.

Exercice 2.40.7 Montrer que I'image continue d’un espace connexe par arc est connexe par arc.

Exercice 2.40.8 Montrer que les spheres S™, n > 1, sont connexes par arc et que les espaces
projectifs P, (K) sont connexes par arc [utiliser ’exercice 2.40.7).
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Exercice 2.40.9 Soit X un espace connexe tel que, pour tout z € X, il existe un voisinage V de =
tel que, pour tout y € V, il existe un chemin tracé dans X joignant les points z et y. Montrer que X
est connexe par arc.

Exercice 2.40.10 Espace localement connexe par arc Un espace topologique X est dit localement
connexe par arc si tout point admet un syst¢me fondamental de voisinages connexes par arc.

1. Montrer qu’un espace X est localement connexe par arc si, et seulement si, pour tout x de X
et tout voisinage V' de z, il existe un voisinage W de z tel que, pour tout y € W, il existe un chemin
tracé dans V joignant les points x et y.

2. Un espace connexe, localement connexe par arc est connexe par arc [exercice 2.40.9].

3. Un espace métrique est localement connexe par arc si, et seulement si, pour tout z € X et tout
€ > 0, il existe § > O tel que, pour tout y € B(x;§), il existe un chemin tracé dans la boule B(z; )
joignant les points x et y.

4. Soit X un espace métrique compact, localement connexe par arc, montrer que, pour tout € > 0,
il existe 6 > O tel que, pour tout z,y € X vérifiant d(z,y) < 4, il existe un chemin joignant z et y
de diamétre < ¢ [raisonner par I’absurde].
Exercice 2.40.11 1. Montrer qu’un produit fini d’espaces localement connexes par arc (exercice
2.40.10) est localement connexe par arc.

2. Montrer que tout produit d’espaces connexes et localement connexes par arc est connexe et
localement connexe par arc.
Exercice 2.40.12 Montrer que tout espace métrique compact, connexe et localement connexe par
arc X est une image continue de I'intervalle [0, 1] [soit f : C — X une surjection continue (exercice
2.33.5) ot C désigne I’ensemble de Cantor ; on peut écrire [0, 1] — C = U2 glan, ba[ ol les inter-
valles Jan, by [ sont disjoints deux a deux ; montrer que limp, 00 (bn — an) = 0 et en déduire que

limp— 00 d(f(an), f(bn)) = O ; en utilisant I'exercice 2.40.10, construire des fonctions continues
Tn @ [@n,bn] = X telles que

Ya(an) = f(an), Yn(bn) = f(bn) et lim diam yn([an,bn]) = 0;

prolonger alors f en une surjection continue g : [0,1] — X en posant g“amb"] = 7n). Comparer
avec I’exercice 2.36.10.

Composante connexe

Sur un espace topologique X, considérons la relation R(z,y)
(241.1) il existe une partie connexe de X contenant x et y.

On définit ainsi une relation d’équivalence sur X. Cette relation est en effet
réflexive car toute partie réduite a un élément est connexe ; elle est évidemment
symétrique et la transitivité résulte du corollaire 2.39.5. Les classes d’équivalence
associées a cette relation d’équivalence sont appelées les composantes connexes de
X.L’ensemble des composantes connexes de X constitue une partition de X . Pour
tout x de X, il existe une composante connexe de X qui contient z, on I’appelle la
composante connexe de .

Proposition 2.41.1 La composante connexe d’un point x est le plus grand en-
semble connexe contenant x.
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Preuve Notons C; la composante connexe de z. D’aprés la définition (2.41.1)
de la relation d’équivalence R, un point y appartient & C;, si, et seulement si, il
existe un ensemble connexe contenant z et y. Il en résulte que C, est la réunion
de tous les ensembles connexes contenant z et cette réunion est connexe d’apres

le corollaire 2.39.5. Q.E.D.
Corollaire 2.41.2 Les composantes connexes sont des ensembles connexes fer-
més.

Preuve En effet, I’adhérence d’un ensemble connexe est connexe (corollaire 2.39.4)
et la composante connexe d’un point z est le plus grand ensemble connexe conte-
nant x. Q.E.D.

Les composantes connexes sont fermées ; s’il n’y a qu’un nombre fini de com-
posantes connexes, elles sont également ouvertes, mais en général elles ne le sont
pas sauf pour une catégorie particuliere d’espaces que nous allons étudier mainte-
nant.

Définition 2.41.1 Un espace topologique X est dit localement connexe si tout
point admet un systéme fondamental de voisinages connexes.

Un espace localement connexe n’est pas nécessairement connexe (par exemple
un espace discret) et un espace connexe n’est pas nécessairement localement
connexe (exercice 2.41.2).

Dans un espace localement connexe, tout sous-espace ouvert est localement
connexe. Un produit fini d’espaces localement connexes est localement connexe
d’apres le théoréme 2.39.11.

L’espace R est localement connexe : I’ensemble des intervalles

Jt—e,z+¢e[ode>0
constitue un syst¢tme fondamental de voisinages connexes du point x. Il en résulte

que les espaces R™, C™ sont localement connexes.
L’intérét des espaces localement connexes réside dans la propriété suivante.

Proposition 2.41.3 Un espace topologique X est localement connexe si, et seule-
ment si, les composantes connexes de toute partie ouverte sont ouvertes.

Preuve La condition est nécessaire. Soit C une composante connexe d’un ouvert O
etsoit £ € C, il existe un voisinage connexe V dex telquex € V C O ; C étantle
plus grand ensemble connexe contenant z et contenu dans O, on a nécessairement
V' C C ce qui prouve que C est un voisinage de chacun de ses points, donc un
ensemble ouvert.

La condition est suffisante. Soit O un voisinage ouvert d’un point x de X, alors
la composante connexe de O qui contient z est ouverte, donc un voisinage de
contenu dans O, ce qui prouve le résultat voulu. Q.E.D.

Corollaire 2.41.4 Dans un espace localement connexe séparable, tout ouvert est
une réunion dénombrable d’ouverts connexes disjoints.
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Preuve Un ouvert est en effet égal a la réunion de toutes ses composantes connexes

qui sont ouvertes et disjointes deux a deux. L’ensemble (C;);cy de ces compo-

santes connexes est par ailleurs dénombrable : si D est une partie dénombrable

partout dense, C; N D est non vide, soit z; € C; N D ; I'application ¢ — z; de I

dans D est injective, donc I est dénombrable. Q.E.D.
Ceci permet de préciser le corollaire 2.5.9 comme suit.

Corollaire 2.41.5 Un ouvert de R est une réunion dénombrable d’intervalles ou-
verts disjoints.

Exercice 2.41.1 Soient X un espace topologique, f : X — R une application s.c.s. et A I’ensemble
des points ot f admet un minimum local (exercice 2.9.5). Montrer que f est constante sur chaque
composante connexe de A.

Exercice 2.41.2 Dans R2, on considere le sous-espace A réunion des deux sous-ensembles

{(z,y) €eR?; 2z € R— Qety > 0} et {(z,y) € R?; z € Qety < 0}.

Montrer que A est un espace connexe, non localement connexe et non connexe par arc [pour démontrer
que A est connexe, soit f : A — D une application continue a valeurs dans un espace discret,
considérer I’ensemble connexe B = A U (Q x {0}), prolonger f en une application g : B — D
en posant g(z,0) = f(z,y) pour z € Qety < O, puis vérifier que g est continu ; pour démontrer
que A n’est pas connexe par arc, considérer un chemin (f,g) : [0,1] — A joignant deux points
(z,y) et (2',y’') de Atelsque y > Oety’ < O et une composante connexe ]a,b[ de ’ouvert
{t €]0,1[; g(t) < O}

Exercice 2.41.3 Espace extrémement discontinu Soit X un espace topologique, montrer I’équiva-
lence des propriétés suivantes

(ED,) P’adhérence de tout ouvert est un ensemble ouvert,
(ED2) quels que soient les ouverts disjoints O; et Oz, ona O1 N Oz = 0.

Un espace séparé vérifiant ces propriétés est dit extrémement discontinu. Montrer que dans un tel
espace toute partie connexe non vide est réduite a un point.

Exercice 2.41.4 Soient X un espace connexe, A une partie connexe de X.

1. Soit M une partie de X — A a la fois ouverte et fermée dans X — A, montrer que A U M
est connexe [soient O1, O2 des ouverts disjoints de A U M tels que AUM = O, U Oz ; A étant
connexe, on peut supposer A C O3, ANO2 = 0 ; montrer que O2 est ouvert et fermé dans X (utiliser
I’exercice 2.20.1)].

2. Si M est une composante connexe de X — A, montrer que X — M est connexe [soient O1, O2
des ouverts disjoints de X — M tels que X — M = O;UOz, on peut supposer A C O1, ANO2 =0 ;
en utilisant 1., montrer que M U Oq est connexe].

Exercice 2.41.5 Soient X un espace séparé connexe, Y = X X X — A od A est la diagonale
de X x X. Pour toute partie A C X x X, on note A~! I'image de A par I’'homéomorphisme

(z,9) » (y,2). 1
1. Soient O1, O2 deux ouverts disjoints telsque Y = O1 UO2et O; = O; .

a. Soit 2 € X, si O;() est non vide, montrer que O;(z) = O;(z) U {z}.
b. Montrer que O1 () et Oz () sont connexes pour tout £ € X [utiliser ’exercice 2.39.1].
¢. Soit y € O1(z), montrer que Oz(z) X {y} C O1 ; en déduire que

((z,y) € Oret(z,2) € O2) = (1,2) €O1

et que, pour tout 2 € X, I'un des deux ensembles O; (), O2(z) est vide.
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d. Montrer que I'un des ouverts O, Oz est vide.

2. Soient O1, O3 deux ouverts non vides et disjoints tels que Y = O; U O2. Montrer que
Y =U1 VU UUz 00 U; = 0; NO; 1, Uz = (01 N O3 1) U(OT ! N O2), et déduire de 1. que
0, =05 ! et que O; et O2 sont connexes.

3. Déduire de ce qui précéde que, ou bien Y est connexe, ou bien Y admet deux composantes
connexes C et C~1.
Exercice 2.41.6 Soit X un espace connexe compact, montrer que X est localement connexe si, et
seulement si, pour tout recouvrement ouvert (O;);¢1, il existe un recouvrement fini (C;)je plus
fin (exercice 2.35.11) et constitué de parties connexes compactes [pour vérifier que la condition est
nécessaire, on procédera ainsi : soit z € X, il existe i(z) € I et un ouvert Uy tel que

z €Uz CUz C Oy

on note A le recouvrement ouvert constitu¢ de toutes les composantes connexes des ouverts Uy, =
décrivant X ; si (A;); ¢ est un sous-recouvrement fini, prendre C; = _j ; pour démontrer que la
condition est suffisante, soit z € X et soit O un voisinage ouvert de x ; considérer le recouvrement
ouvert {O, X — {z}} et un recouvrement fini plus fin constitué de parties connexes compactes pour
construire un voisinage connexe de z contenu dans O].

Exercice 2.41.7 Soient X un espace connexe compact localement connexe, Y un espace séparé et
f : X — Y une application continue surjective. Montrer que Y est un espace connexe compact
localement connexe [utiliser le critére de I’exercice 2.41.6].

Exercice 2.41.8 Théoréme de Sierpinski Montrer qu’un espace métrique connexe compact X est
localement connexe si, et seulement si, pour tout € > 0, X est la réunion d’une famille finie de parties
connexes compactes de diametre < € [utiliser le critere de I’exercice 2.41.6 et I’exercice 2.30.5].

Espaces connexes compacts

Dans un espace compact X, les composantes connexes sont compactes, car fer-
mées. Nous allons étudier d’une fagon plus précise les propriétés de ces compo-
santes connexes.

Lemme 2.42.1 Soit C une composante connexe d’un espace compact X, alors C
est égal a Uintersection des voisinages de C a la fois ouverts et fermés.

Preuve Notons G I’ensemble des voisinages de C a la fois ouverts et fermés, po-
sons

D = (yeg V. L'ensemble D est fermé, donc compact et il contient C. Sup-
posons D # C, alors D n’est pas connexe ; il existe des fermés non vides et
disjoints M et N tels que D = M U N et I’espace X étant normal (proposition
2.31.9), des ouverts disjoints Ops et Op tels que M C Op, N C Op. La fa-
mille (X — V)yeg est un recouvrement ouvert du compact X — Ops U Oy, car
Uveg(X—V) = X—-D = X—-MUN. Il existe donc une famille finie (V;)ics de
S telle que ;e (X = Vi) D X —OpnUON, soit Vo C OpUON od Vo = (e Vi
appartient encore a G.
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Etant donné que C est connexe et que C C MUN,onaC C MouCC N ;
supposons C C M pour fixer les idées. L’ensemble V5 N Oy est ouvert, il est
également fermé vu que VoNOjpy = VoN(X —Oy) etil contient C, par conséquent
VoNOu € G, d’ ot D C Oy ce qui est absurde. Q.E.D.

Proposition 2.42.2 Soit C une composante connexe compacte d’un espace loca-
lement compact X. Alors, C admet un systéme fondamental de voisinages a la fois
ouverts et fermés.

Preuve 1. Supposons d’abord X compact. Soit O un voisinage ouvertde C, X —O
est compact et la famille (X — V)yeg, od G désigne I’ensemble des voisinages de
C ala fois ouverts et fermés, est un recouvrement ouvert de X — O car
Ux-vy=x-cox-0
Ves
d’apres le lemme 2.42.1. I existe un sous-recouvrement fini (V;);cr, on a alors
X-WoX-0
oa Vo =gy Vi€ G, doa Vp C O.
2. Lorsque X est localement compact, montrons que tout voisinage ouvert O
de C contientun V' € §. Soit K un voisinage compact de C (proposition 2.35.1),
O N K est un voisinage ouvert de C contenu dans K, on peut donc supposer
O C K. Alors, O est un voisinage ouvert de C dans le sous-espace compact K ;
d’aprés 1. il existe un voisinage V' de C dans K a la fois ouvert et fermé dans K
tel que C C V C O. L’ensemble V est ouvert dans K, donc dans O (car O est
contenu dans K), donc dans X car O est ouvert ; I’ensemble V' est fermé dans K,
donc dans X car K est fermé et ceci prouve que V € G. Q.ED.

Lemme 2.42.3 Soient X un espace localement compact et connexe, O un ouvert
relativement compact non vide et distinct de X. Alors les composantes connexes
de O (qui sont fermées dans O) ne sont pas fermées dans X.

Preuve Raisonnons par 1’absurde. Soit C' une composante connexe de O, suppo-
sons la fermée dans X, alors C est compact vu que O est relativement compact.
11 existe (proposition 2.35.1) un voisinage compact I{ de C'telque C C K C O
et, d’aprés la proposition précédente, il existe V' a la fois ouvert et fermé dans O
(qui est bien un sous-espace localement compact) tel que C C V' C K. Montrons
que V est a la fois ouvert et fermé dans X : V est fermé dans O, donc dans K et,
K étant fermé dans X, V est fermé dans X ; V est ouvert dans O et, O étant un
ouvert de X, V est bien ouvert dans X. L’ensemble V' a la fois ouvert et fermé
étant non vide et distinct de X (car O # X), X ne saurait &tre connexe. Q.E.D.

Proposition 2.42.4 Soient X un espace localement compact, O un ouvert de X
distinct de X et soit X' = X U {w} le compactifié d’Alexandroff de X. Alors, les
propriétés suivantes sont équivalentes.

1. L’espace X' — O est connexe.

2. Le point w est adhérent a toute composante connexe de X — O.
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Preuve | = 2 Notons (C;);er les composantes connexes de X — O. Par hypothése
K = X’ — O est un espace compact connexe, w € K et X —O = K — {w} estun
ouvert non vide de K distinct de K. On peut donc appliquer le lemme précédent
dans ’espace K a cet ouvert X —O : toute composante connexe C; est fermée dans
K — {w}, mais n’est pas fermée dans K ; autrement dit, w est un point adhérent a
C;.

2=10naX -0 =y Ciet X' =0 = ;c; Cs U {w}. D’aprés 2. et
le corollaire 2.39.3, C; U {w} est connexe et il suffit d’utiliser le corollaire 2.39.5
pour en déduire que X’ — O est connexe. Q.E.D.

Corollaire 2.42.5 Soit X un espace non vide, localement compact et connexe et
soit X' = X U {w} le compactifié d’Alexandroff de X. Alors, X' est connexe si,
et seulement si, X n’est pas compact.

Preuve On applique la proposition précédente en prenant O = (. Alors, X’ est
connexe si, et seulement si, le point w est adhérent 2 X . Dire que le point w est
adhérent 3 X = X' — {w} signifie que {w} n’est pas ouvert, c’est-a-dire que X
n’est pas fermé dans X’, donc n’est pas compact ce qui permet de conclure. Q.E.D.
Note Bien entendu, ce corollaire peut se démontrer directement : si X est compact,
X et {w} sont deux fermés de X' non vides, disjoints et de réunion X', donc X’
n’est pas connexe ; réciproquement, si X n’est pas compact, X est dense dans X’
qui est donc connexe d’apres le corollaire 2.39.4,

Corollaire 2.42.6 Les sphéres S™ (n > 1) sont connexes.

Preuve La sphére S™ est le compactifié d’ Alexandroff de R™, espace localement
compact et non compact. Q.E.D.

Exemple 2.42.1 L’espace X = R" (n > 1) a pour compactifié¢ d’ Alexandroff la
sphere S™. Si A est une partie de R™, dire que le point a I’infini w est adhérent a A
signifie simplement que A n’est pas borné dans R™, 1a proposition 2.42.4 peut donc
s’énoncer comme suit : S® — O est connexe si, et seulement si, les composantes
connexes de R™ — O sont non bornées. On peut s’exprimer d’une fagon imagée en
appelant trou de O toute composante connexe bornée de R™ — O ; alors, S™ — O
est connexe si, et seulement si, I’ouvert O n’a pas de trou.

Exercice 2.42.1 Espace totalement discontinu Un espace topologique est dit totalement discontinu
si les parties connexes de X sont réduites a un point. Montrer qu’un espace métrique compact est
totalement discontinu si, et seulement si, pour tout € > 0, il existe une partition finie de X constituée
de parties compactes de diameétre < € [pour démontrer que la condition est nécessaire, utiliser la
proposition 2.42.2].

Exercice 2.42.2 Montrer qu’un espace métrique compact non vide, totalement discontinu (exercice
2.42.1) et sans point isolé est homéomorphe a I’ensemble de Cantor [utiliser la méthode de I’exercice
2.33.5 : construire la famille (A¢) telle que Ag N Ay = 0, Ao N Ao =  griice A ’exercice 2.42.1].
Exercice 2.42.3 Soit X un espace métrique compact.

1. Montrer que I’ensemble A des parties de X a la fois ouvertes et fermées est dénombrable [si
(Br) est une base de la topologie, noter que tout A € A s’écrit comme une réunion finie de By].
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2.0n pose A = (Dpn)n>1 et on définit une application f : X — C 2 valeurs dans I’ensemble
de Cantor (exercice 2.6.2) en posant f(z) = Y00 | 2n /3" 00 2 = 2siz € Dy etz = Osi
z ¢ Dr. Montrer que I’application f est continue, constante sur chaque composante connexe de X et
qu’elle prend des valeurs différentes sur des composantes connexes différentes [pour vérifier ce dernier
point utiliser la proposition 2.42.2].

3. En déduire qu’un espace métrique compact est totalement discontinu (exercice 2.42.1) si, et
seulement si, il est homéomorphe a un sous-espace fermé de I’ensemble de Cantor.

Exercice 2.42.4 Soit X un espace métrique complet, connexe et localement connexe (par exemple
[0, 1]), montrer que X ne peut s’écrire comme une réunion infinie dénombrable de fermés, non vides
et disjoints deux 2 deux [on raisonne par I’absurde, supposons X = |J7> o Fr, ol les F), sont fermés,
non vides et disjoints ; on pose G, = Fp, — FpetG= U2 G ; montrer que G est fermé et en
déduire que G est un espace de Baire, puis montrer que les Gy, sont fermés dans G et d’intérieur vide
dans G et en déduire que G est maigre dans G ; conclure].
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E — Corrigés des exercices

Exercices du chapitre 2.A

EXERCICE 2.1.1

1.Siz+y>0,onalz+yl=z+youz < |z|ety < |y| ; d’apres (2.1.1), on en déduit
lz+yl=z+y<|z|+y<|z|+ |yl

Siz+y<Oonajz+yl=—-(z+y)=(-2z)+ (-y),od —z < |z|] et —y < |y| et on

en déduit I’inégalité triangulaire comme précédemment.

2. Quant a la seconde relation, lorsque z et y sont positifs, = y est positif d’apres (2.1.2),
d’od jzy| = zy = |z||y|.

Lorsque z est négatif et y positif, on notera d’abord que —z est positif. En effet, d’aprés
2.1.N)onaz + (—z) < 0+ (—z), soit 0 < —z. On peut alors écrire zy = —(—2z) y,
d’od |zy| = |(—z) y| = (—z) y d’apres le premier cas étudié et on conclut en remarquant
que —z = |z]ety = [y|.

On traite de la méme fagon les deux autres situations.

EXERCICE 2.1.2
Onaz = y+a —y, dod |z| < |y| + |z — y| d’apres I'inégalité triangulaire et
|z| = |y| < |z — y| d’apres (2.1.1). En permutant z et y, on obtient
lyl —lo| < |y — 2| = & -y,
d’ou le résultat voulu.
EXERCICE 2.2.1 PARTIE BIEN ORDONNEE DE R
1. On définit une application f : A — R de la fagon suivante : si A admet un plus grand
élément a, on pose f(a) = a + 1 et, si a n’est pas le plus grand élément de A lorsqu’il
existe, on prend
f(@)=minModM = {z € A; z > a}.

Onaalorsa < f(a) et ANJa, f(a)[= 0 pour tout a € A.

2. Montrons que les intervalles ouverts ]a, f(a)[ et ]b, f(b)[ sont disjoints lorsque
a # b. Supposons a < b par exemple, alors f(a) < b, sinon on auraita < b < f(a)
ce qui est contraire 2 la définition de f(a) ; ceci prouve que a < f(a) < b < f(b),d’ol le
résultat annoncé.

3. D’apres la proposition 2.2.5, ]a, f(a)[NQ est non vide ; il existe donc (axiome de
choix) une application g : A — Q telle que a < g(a) < f(a) pour tout a € A ; cette ap-
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plication est injective d’apres 2., d’ol Card A < Card Q et, Q étant dénombrable (exercice
1.9.3), ceci prouve que A est dénombrable.

EXERCICE 2.6.1

OnaR = QU (R~ Q) et, Q étant dénombrable, R — Q ne peut &tre dénombrable, sinon R
serait dénombrable (proposition 1.9.6). On a donc Card Q@ < Card (R — @) ; vu I’exercice
1.9.4 Card R = Card (R — Q), ce qui prouve que I’ensemble des irrationnels a la puissance
du continu.

EXERCICE 2.6.2 ENSEMBLE TRIADIQUE DE CANTOR

1. Les intervalles E,; étant ouverts, E,, est ouvert d’aprés (O1) (proposition 2.5.7) ; le
méme argument montre que E = J7°, E, est ouvert, donc C, qui peut s’écrire
C = [0,1] N (R — E), est fermé d’aprés (O2) (proposition 2.5.2). L’ensemble C' étant
fermé et borné est donc compact (théoréme 2.5.5).

2. Si un réel £ € [0,1] admet deux développements triadiques, 1’'un est
de la forme z = 0.a;...a,2...2...001n > 1, &, = Ooul, le second étant alors
z=00...0p+1.Sia, =0,alorsa, +1 =1etsia, =1, an+1 = 2; ceci
montre que si I’un des développements ne contient pas le chiffre 1, ’autre développement
contient le chiffre 1. Par conséquent, si z admet un développement triadique ne contenant
pas le chiffre 1, ce développement est unique.

b. Montrons que I’intervalle E,; peut s’écrire
(2.43.]) ]0.0[1 .. .a—n_11,0.(11 e Oln_12[ ou Qj = Oou 2.

Raisonnons par récurrence sur nn. On a bien Ey =]0.1,0.2[. Supposons (2.43.1) établi, alors

E,; est le tiers central ouvert de I'intervalle ]0.a; ... an-1,0.01 ... an_1 + 1] et donne

naissance a deux intervalles ouverts F, 11 qui peuvent donc s’écrire
|0.21...0n-101,0.01... 00102 €t ]0.ct1 ...@n-121,0.01 ... @n-122|

et qui sont bien de la forme voulue ; ceci prouve le résultat souhaité.

Inversement, tout intervalle ]0.a;1 ... on-11,0.01...n—12[ 00 @; = 0 ou 2 est un
intervalle Ep; car il y a exactement 2°~? tels intervalles.

c. Montrons qu’un point z € [0, 1] appartient a I’ensemble de Cantor si, et seulement
si, z admet un développement triadique ne contenant pas le chiffre 1. On remarque d’abord
que les extrémités des intervalles E,; appartiennent 2 I’ensemble de Cantor et que ces points
s’écrivent

O0.ar...an-11=0.01...a,-1022... 0u0.001...an_12 0b les ; valent O ou 2;
ces points admettent bien un développement triadique ne contenant pas le chiffre 1.

Considérons alors un point £ = 0.1 ..., ... qui N’est pas extrémité de ’un des
intervalles E,; ; d’apres la caractérisation des intervalles En;, on observe qu’un tel point
appartient & E,, si, et seulement si, a1, ...,an-1 € {0,2} et a, = 1. Un tel point appar-
tient a I’ensemble de Cantor si, et seulement si, = n’appartient pas a E,, pour toutn > 1:
z ¢ F, signifie a1 # 1,2 ¢ Ey U E; signifie donc a1 # 1 et a2 # 1 et par récurrence
z € C signifie donc a,, # 1 pour tout n > 1. Ceci prouve le résultat annoncé.

3. Il en résulte que I’application (aj);j>1 — 0.1 ...0an ... est une bijection de 1’en-
semble {0,2}"" sur I’ensemble de Cantor. L’ensemble de Cantor a donc la puissance du
continu d’aprés la remarque 1.8.2.
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Exercices du chapitre 2.B

EXERCICE 2.8.1
Soit F un filtre sur un ensemble fini X. Posons A = (o5 M. L'ensemble X étant fini,
F est fini, d’apres (F2) on en déduit que A appartient au filtre F. Toute partie M contenant
A appartient 3 F d’apres (F1) et tout M € F contient A d’apres la définition de A. Ceci
montre que

F={MeP(X); Ac M}
et on obtient tous les filtres sur X en faisant décrire & A 1’ensemble des parties non vides
de X.

EXERCICE 2.9.1

Soit X un espace métrique fini. Si X est un ensemble 2 un élément {a}, la seule métrique est
donnée par d(a, a) = 0 et la seule topologie sur X est la topologie discrete. Si Card X > 2
etsia € X, posons r = mingex—{(q} d(a,z), alors 7 est > 0 et B(a;r) = {a} estun
ensemble ouvert ; tout point étant ouvert, toute partie de X est ouverte et la topologie est
bien la topologie discrete.

EXERCICE 2.9.2

1. Sur un ensemble X = {a,b} a deux éléments, il existe 4 topologies différentes. On a
d’abord la topologie discréte et la topologie grossiére, puis les deux topologies définies par
0 ={0,{a}, X} et 0 = {0, {6}, X}.

2. Soit X = {a, b, c} un ensemble 2 3 éléments.

Déterminons d’abord les topologies pour lesquelles aucun point n’est ouvert. On a
d’une part la topologie grossiére, d’autre part la topologie O = {0, {a,b}, X} et celles
qu’on obtient en permutant les points a, b et c. En résumé, on obtient 4 topologies.

Supposons ensuite qu’un seul point soit ouvert. On obtient les topologies suivantes :

0={0,{a}, X} 3 topologies,
0= {0) {a'}) {a,b}) X} 6 topologies,
0= {mi {a}1 {b) C}, X} 3 topologies,

0= {0,{a},{a,b},{a,c}, X} 3topologies.
Lorsque deux points sont ouverts, on obtient
0 = {0, {a}, {b},{a,b}, X} 3 topologies,
0 = {0, {a}, {b},{a,b},{a,c} X} 6 topologies.
Lorsque tous les points sont ouverts, on obtient la topologie discrete.
En résumé, on obtient 29 topologies.

EXERCICE 2.9.3 TOPOLOGIE DE L'ORDRE
L’ensemble B des intervalles ouverts étant stable par intersection finie est une base de to-
pologie d’apres la proposition 2.9.4.
Tout intervalle fermé est fermé. On a en effet X — [a, b] =] +—, a[U]b, — [et s’il s’agit
d’un intervalle illimité
X-])+,a]=]a,— [et X — [a,— [=] +,q].

La topologie usuelle sur R coincide avec la topologie de I’ordre ; il en est de méme de
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la topologie de R.

EXERCICE 2.9.4

Soit B une base de la topologie de X et soit z € X. Si V est un voisinage de =, il existe
un ouvert O tel que z € O C V ; cet ouvert peut s’écrire comme une réunion d’ouverts
appartenant a B. 11 existe donc un ouvert U € Btelquez € U C O C V et ceci montre
que I’ensemble des ouverts appartenant a3 B et contenant x est un syst¢éme fondamental de
voisinages de z.

Réciproquement, supposons que 8; = {O € B; z € O} est un systéme fondamen-
tal de voisinages de z. Soit O un ouvert, pour tout z € O il existe O € 8; tel que
x € Oy C O car O est un voisinage de z. Il en résulte que O = (J, o O= ; tout ouvert
peut donc s’écrire comme une réunion d’ouverts appartenant a B, ceci prouve que B est
une base de la topologie.

EXERCICE 2.9.5
L’espace X admet une base de topologie dénombrable que nous notons (By,).

1. Soit A I’ensemble des points od f présente un minimum local strict. Soit a € A,
il existe un voisinage V' de a tel que f(a) < f(z) pour tout z € V — {a}. D’apres
’exercice 2.9.4, les ouverts By, qui contiennent a constituent un systéme fondamental de
voisinages de a, il existe donc n tel que a € B, C V ; d’aprés I’axiome de choix, il
existe donc une application ¢ : A — Ntelle que a € By(q) et f(a) < f(z) pour tout
z € By(a) — {a}. Montrons que cette application ¢ est injective. Soient a,b € A, a # b,
tels que n = p(a) = @(b). Onaalors f(a) < f(z) pourtoutz € B,—{a}et f(b) < f(z)
pour tout z € B, — {b}. Dans la premitre relation, prenons = = b, on obtient f(a) < f(b)
et dans la seconde z = a, alors f(b) < f(a), ce qui conduit 2 une contradiction ; ¢ est
donc injective, ce qui prouve que A est dénombrable.

2. Soit B I’ensemble des points ol f présente un minimum local. Bien entendu, le
résultat précédent ne subsiste pas ; B n’est pas en général dénombrable comme le montre
I’exemple d’une application constante. Nous allons démontrer que f(B) est dénombrable.
Comme précédemment, on peut construire une application ¢ : B — Ntelle que a € By(q)
et f(a) < f(x) pour tout x € B,(,). Montrons que f est constante sur B N ¢~ (n)
quel que soit I’entier n : ceci prouvera le résultat voulu. Soient a,b € B N ¢~!(n), alors
f(a) < f(z) et f(b) < f(z) pour tout z € By, d’apres la définition de I’application
@ ; en prenant = b dans la premiere relation et = a dans la seconde, on en déduit
f(a) = f(b), ce qui prouve le résultat voulu.

EXERCICE 2.10.1
Prenons A = [0, 1) et B = [1, 2], alors
AU B =]0,1{U]1,2[etInt (AU B) =]0,2].

EXERCICE 2.10.2

D’aprés (2.10.3), ona AU B C Int (A U B) et il s’agit de démontrer I’inclusion
Int(AUB) c AU B. Soit z € Int (AU B), alors £ € AU B. Supposons par exemple
x € A et montrons que € A. Par hypothese, A C X — B et X — B est donc un ouvert
contenant le point x, donc un voisinage de ce point ; d’autre part, AU B est un voisinage de
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X. Il en résulte que (X — B) N (AU B) = Aest un voisinage de z,d’od z € A ¢ AU B,
ce qui prouve le résultat voulu.

EXERCICE 2.10.3

1. Soit z € A N B, montrons que tout voisinage V de  rencontre A N B, ceci prouvera
que z est un point adhérent 3 A N B. L’ouvert A contenant z est un voisinage de z, donc
V' N A est un voisinage de z et,  étant un point adhérent 2 B, V' N A rencontre B, donc V
rencontre A N B, ce qui prouve le résultat souhaité.

2. L’inclusion peut étre stricte comme le montre I’exemple suivant. Sur R, prenons
A=]0,2[et B=[1,2).Onaalors AN B =[1,2[et AN B = [1,2].

3. L’ensemble AN B étant fermé, on en déduit que ANB C AN B ; I'inclusion
opposée étant trivialement vérifiée vu que AN B C AN B, on obtient bien la relation
ANB=ANB.

EXERCICE 2.10.4 FAMILLE LOCALEMENT FINIE DE FERMES

1. D’aprés (2.10.7),ona | J,¢; A;C U, Ai etil s’agit de démontrer I’inclusion opposée.

Soit z € | J;¢; A:. Il existe un voisinage V' de z qui ne rencontre qu’un nombre fini de A; :
il existe une partie finie J de I telle que V N A; = 0 pour tout 2 € I — J. Considérons
alors un voisinage quelconque W de z, V N W est un voisinage de z et, 2 étant un point
adhérenta A = Ui€ 1 Ai, V. N W rencontre A. Or,
vawnA=vawn(JA);
i€J

ceci prouve que W rencontre B = | J, ; A; et par conséquent z est un point adhérent & B.
D’apres (2.10.7), B = ;¢ As, J étant fini. Il en résulte que z € ;o ; As C U, Ai et
ceci prouve le résultat voulu.

2. Lorsque les ensembles A; sont fermés, on en déduit que

U= 4.

i€l i€l
Lensemble | J, ; A: est donc fermé : une réunion localement finie de fermés est fermée.
EXERCICE 2.10. 5
1.OnaFr (4) = AoDA AetA:)A dodFr(A) cA— A=FrA.

Dememe,onaFr(A) A-AoAcCE, douFr(A)CA A=FrA.
2. Sur R prenons A = {0}U]1,2[U]2, 3, alors 4 = {0} U[1,3] et A =]1,2[U]2,3][,
d’ou

Fr (A) = {0,1,2,3}, Fr (4) = {0,1,3} et Fr (4) = {1,2,3}.
Cet exemple montre que les inclusions peuvent étre strictes et qu’il n’existe en général
aucune inclusion entre les ensembles Fr (4) et Fr (A).
EXERCICE 2.10.6
1,a. Démontrons d’abord I’inclusion
Fr(AUB)UFr (AN B) U (Fr (A) NFr(B)) C Fr (A) UFr (B).
En utilisant les relations AU B = AUBet AUB CInt (AU B),ona
Fr(AUB)=AUB-Int(AUB)CAUB-AUBCc (A-A)u(B - B),
d’od Fr (AU B) C Fr (A) UFr (B).
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En utilisant les relations AN B C ANBet AN B =1Int (AN B),ona

Fr(ANB)=ANB—Int(ANB)CANB-AnBc (A-A)u(B- B),
d’od Fr (AN B) C Fr (A) UFr (B).

On a d’autre part Fr (A) NFr (B) C Fr (A) UFr (B), ce qui prouve I’inclusion annon-
cée.

b. Démontrons ensuite 1’inclusion opposée, c’est-a-dire
Fr (A)UFr (B) C Fr (AU B)UFr (AN B) U (Fr (A) NFr (B)).
Soit z € Fr(A) U Fr (B), supposons par exemple z € Fr (A) ; siz € Fr(B), on a
z € Fr (A) N Fr (B) et par conséquent on peut supposer z ¢ Fr (B). Démontrons alors
que z € Fr (AU B) UFr (A N B) et pour cela raisonnons par I’absurde : autrement dit,
supposons
z€Fr(A),z¢Fr(B),z¢Fr(AUB)etz g Fr (AN B).
Il existe donc un voisinage V' de x tel que
(VNB=0ouVN(X-B)=0
et
(VN(AUB)=0ouVN(X—-AUB)=0)
et.
(VN(ANB)=0ouVN(X—-ANB)=0).
Le point = appartenant 2 la frontitre de A, V N (A U B) est non vide, ainsi que
VN(X—-AnNB);onadoncVN(X—-AUB) =0etVN(ANB) = . En ré-
sumé, on a
(VNB=0ouVN(X-B)=0etVCAUBetVNANB=0.
Si VN B = 0, il en résulte que V' C A et ceci est absurde : z étant un point frontiére
de A, V doit rencontrer X — A. Si V N (X — B) = 0, alors V C B et par conséquent
VNANB =V N A est vide, ce qui est absurde comme précédemment, 2 appartenant
a la frontiere de A. Dans tous les cas, on obtient donc une contradiction, ce qui prouve le
résultat voulu.
c.£orsqueﬁﬂ§ =0onaANB = 0,dod Fr(ANB) = 0, etFr A C 4,

FrBC B,dotFr AN FrB=0;onendéduitque Fr(AUB) =FrAUFrB.

2. D’apres I’exercice 2.10.2,ona Fr (AUB) = AU B—Int (AUB) = AUB—-AUB.
On remarque ensuite que

AUB-AuB=(A-A)U(B-B)=F(A)UF (B),

car ANB=ANnB=0.
EXERCICE 2.10.7 AXIOMES DE FERMETURE DE KURATOWSKXI

L’application o possede bien les propriétés indiquées : @ = @ car I’ensemble vide est fermé,
AcCA,A="AcarAestferméet AU B = AU B d’apres (2.10.7).

Réciproquement, soit o une application vérifiant les propriétés 1. a 4. S’il existe une
topologie sur X telle que a(A) = A pour toute partie A de X, cette topologie est unique :
une partie A de X est fermée si, et seulement si, A = a(A). Nous allons donc démontrer
que ’ensemble de parties O’ = {A € P(X); A = a(A)} vérifie les axiomes des fermés
(proposition 2.9.5) ; ceci permettra de définir une topologie sur X et il restera a vérifier que
pour cette topologie o(A) = A.

Il s’agit de montrer que O’ vérifie (O}), (O2) et (O3). Notons d’abord que

ACB=a(A) Ca(B) :
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on a en effet d’aprés 4. a(A) C a(A) U a(B — A) = a(B). Considérons alors une
famille non vide (A;):es de parties de X telle que A; = «(A;) pour tout ¢ et posons
A = ;e Ai ; alors A C A; pour tout 4, d’od a(A) C a(A;) = A; et par conséquent
a(A) C A, dod a(A) = A d’apres 2., ce qui prouve (0}). Si A = a(A) et B = a(B),
a(AU B) = a(A) Ua(B) = AU B d’aprés 4., ce qui prouve (O3). Enfin, (@) = D et
a(X) = X car X C a(X) d’apres 2., ce qui prouve (O3).

Vérifions ensuite que, pour la topologie définie par O’, a(A) = A pour toute partie A.
Notons d’abord que a(A) est fermé d’apres 3. et contient A d’aprés 2. Si B est une partie
fermée contenant A, on a alors a(A) C a(B) = B, ce qui prouve que a(A) est le plus
petit fermé contenant A, d’oil le résultat voulu.

EXERCICE 2.10.8 DIVERSES PROPRIETES DE DENOMBRABILITE

(D1) = (D2) Soit (Br)nen une base de la topologie de X ; on peut supposer que ces
ouverts B, sont non vides. Choisissons alors un point z, dans chaque B,. On construit
ainsi un ensemble D = |J,,cy{z~} dénombrable qui est partout dense, car tout B, donc
tout ouvert non vide, rencontre D. Ceci prouve que I’espace est séparable.

(D2) = (D4) Soit D un ensemble dénombrable partout dense et soit (O;)ier une
famille d’ouverts non vides disjoints deux a deux. L’ensemble D N O; est non vide ; il
existe donc (axiome de choix) une application f : I — D telle que f(3) € D N O; pour
tout 4. Cette application est injective : si f(z) = f(j), I'intersection O; N Oj est non vide,
donc O; = Oj et i = j. Ceci prouve que I est dénombrable.

(D1) = (Ds3) Soit (Bn)nen une base de la topologie de X et soit A une partie de
X dont tous les points sont isolés. Pour tout @ € A, il existe un voisinage V' de a tel que
V N A = {a} ; il existe donc un entier n tel que B, N A = {a}. On peut donc définir une
application f : A — N telle que Bj(,) N A = {a} pour tout a € A. Cette application f
est injective : si f(a) = f(b), {a} = Bja) N A = Bspy N A = {b}, d’ot @ = b. Ceci
montre que A est dénombrable.

(D3) = (D4) Soit (O;):er une tamille d’ouverts non vides disjoints deux a deux.
Choisissons un point z; dans chaque O; et posons A = |J,c;{x:}. Tous les points de A
sont isolés, car O; est un voisinage de x; ne recontrant A qu’au point z;, les ouverts O; étant
disjoints deux a deux. D’apres (D3), ’ensemble A est donc dénombrable. L’application
1 — x; étant une bijection de I sur A, ceci prouve que I est dénombrable.

EXERCICE 2.10.9

1. Lensemble A,, est non vide : @ € A,. Soit (A;):cr une tamille totalement ordonnée
par inclusion d’ensembles appartenant a A, et soit A la réunion de cette famille. Montrons
que A appartient 2 A, : ceci prouvera que A est un majorant de la famille (A;) et par
conséquent que A, est inductif. Soit z,y € A,  # v ; la famille (A;) étant totalement
ordonnée, il existe i tel que A; contienne z et y, d’od d(z,y) > 1/n, A; appartenant a3 A,
et ceci prouve le résultat voulu.

2. Soit A, un élément maximal de A, (lemme de Zorn) et soit D = |J;>; An. Mon-
trons que D est partout dense, ¢’est-A-dire (proposition 2.10.5) que d(z, D) = 0 pour tout
z € X. Or, dire que A,, est un élément maximal signifie qu’il existe a, € A, tel que
d(z,a,) < 1/n,d’0d d(z, Ar) < 1/n et, vu que d(z, D) < d(z, An) pour tout n, il en
résulte que d(z, D) = 0, ce qui prouve le résultat souhaité.

3. On suppose que toute famille d’ouverts non vides disjoints deux a deux est dénom-
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brable et il s’agit de prouver que I’espace est séparable. L’entier n étant fixé, I’ensemble
des boules ouvertes B(x;1/2n) od z décrit A, est donc dénombrable, ces boules étant
disjointes deux a deux. Ceci signifie que A, est dénombrable, donc D = |J;2 , A, est
dénombrable et partout dense d’apres 2., ceci prouve que X est séparable et par conséquent
(D4) = (D).

Etant donné que (D) = (D,) (proposition 2.10.7), on en déduit que dans un espace

métrisable, les propriétés (D) a (D4) sont équivalentes.

EXERCICE 2.10.10

1. Soit  un point isolé de 4, il existe un voisinage V de z tel que V N4 = {z}, d’od
VN A C {z}; le point = étant adhérent 3 A, V N A est non vide et il en résulte que
V N A = {z}, ce qui prouve que x appartient 3 A et que x est un point isolé de A.

2. Soit X la réunion de la famille (A;)icr de tous les sous-espaces de X sans point
isolé. Montrons que X; est sans point isol€ en raisonnant par 1’absurde. Soit  un point isolé
de X ; il existe un voisinage V de x tel que V N X1 = {z}, d’od V NJ,¢; Ai = {z},
soit |J,c;(V N A;) = {z} ; il existe donc i tel que V N A; = {z}, ce qui signifie que x est
un point isolé de A;, ce qui est absurde vu la définition de la famille (A4;).

Le sous-espace X est donc le plus grand sous-espace de X sans point isol€ ; X,
étant sans point isol€ d’apres 1., X; est donc fermé. De plus, si A est une partie non vide de
X — X1, A admet nécessairement un point isolé : si A etait sans point isolé, A appartiendrait
a la famille (A;) et serait donc contenu dans X.

EXERCICE 2.10.11 ENSEMBLE DERIVE

Rappelons (définition 2.10.4) qu’un point z est un point d’accumulation de A si, et seule-
ment si, pour tout voisinage V de z, VN A — {z} # 0.

a. Soit A C Betsoitz € A’, alors quel que soit le voisinage V de z, VN A — {z} est
non vide et a fortiori V' N B — {xz}, ce qui prouve que z est un point d’accumulation de B
et par conséquent A C B = A’ C B'.

b. Tout point d’accumulation de A étant adhérent 3 A, ona AU A’ C A. Inversement,
soit z un point adhérent, tout voisinage V' de = rencontre A ; si z n’appartient pas a A, on
en déduit que V N A — {z} est non vide, ce qui prouve que z est un point d’accumulation,
dod AUA =A.

c.OnaAC AUBetBC AUB,dod A' C (AUB) et B' C (AU B) d’aprés a.,
dod AUB' C (AUBY)'.

Inversement, soit x ¢ A’ U B’, alors il existe un voisinage V de z tel que

VNA-{z}=0etVNB-{z}=0,
d’od VN (AUB) — {z} = 0, ce qui prouve que z € (AU B)', soit (AUB)’ Cc A'UB’.
On en déduit ainsi que (AU B)' = A'UB’.

d.D’apresb.etc,onad = (AUA) = A UA" =74, soit A = 4.

e. On suppose que tout point est fermé. Soit z € A” et soit O un voisinage ouvert
de z ; alors O N A’ — {z} est non vide, il existe donc un pointy € ON A",y # z ;
ce point y est donc un point d’accumulation de A et O — {z} est un voisinage de y, d’od
(0 - {z})NA - {y} # Det par conséquent (O — {z} N A = ON A — {z} est non vide,
ce qui prouve que z est un point d’accumulation de A et par conséquent A” C A’. D’aprés
b.etc,onadonc A = A'UA" = A’, soit A’ = A7 = (A)’ d’apres d. Ceci montre que
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I’ensemble dérivé est fermé.
EXERCICE 2.10.12 THEOREME DE CANTOR-BENDIXON

1,a. Supposons A C B et soit z un point de condensation de A. Pour tout voisinage V' de
z, V N A est non dénombrable et V N B est a fortiori non dénombrable, ce qui prouve que
 est un point de condensation de B, d’oi A C B = A™ C B*".

b. Tout point de condensation z est un point d’accumulation : si V' est un voisinage de
z, V N A est non dénombrable, donc V N A — {x} est non vide. Autrement dit, A* C A'.

c. Montrons que A* = A*, c’est-a-dire que I’ensemble des points de condensation est
fermé. Soit = un point adhérent 3 A* et soit O un voisinage ouvert de = ; O N A™ est non
vide, soity € O N A*, alors O est un voisinage de y, donc O N A est non dénombrable, ce
qui prouve que z est un point de condensation de A.

d.OnaAC AUBetB C AUB,dod A* C (AUB)* et B* C (AUB)"
d’apres 1,a., ce qui prouve que A* U B* C (A U B)". Inversement, montrons que tout
point de condensation z de A U B appartient 8 A* U B* en raisonnant par I’absurde : si
z ¢ A* U B*, il existe un voisinage V' de z tel que V N A et V N B soient dénombrables
et par conséquent V N (A U B) est dénombrable, ce qui est absurde. Ceci prouve donc que
(AuB)* = A*UB*.

e. D’aprés 1,b,,ona A* C A’ C A, d’od A** C A*, soit A** C A* d’aprés 1c.

2. On suppose que I’espace X admet une base de topologie dénombrable, soit (By).
Soitz € A— A", il existe un voisinage V' de z tel que V' N A soit dénombrable et par suite
il existe un entier n tel que © € By, et B, N A est dénombrable. 11 en résulte que A — A*
est contenu dans la réunion de tous les ensembles B, N A qui sont dénombrables et cette
réunion étant dénombrable, on en déduit (proposition 1.9.6) que A — A* est dénombrable.
Un ensemble dénombrable n’ayant pas de point de condensation, ona (A— A*)* = ), d’od
A" =(A-A")"U(ANA")" C A™ d’aprés l,a. et 1,d., soit A* C A*™* ; d’apres le.,
on en déduit que A* = A**.

3.Onpose X; = X" et Xo = X — X*. Alors, X; est un sous-espace fermé d’apres
l,c., sans point isolé car X, = X7 C X d’aprés 2. et 1,b. Le sous-espace X = X — X*
est dénombrable d’apres 2. Ceci prouve le résultat voulu.

EXERCICE 2.11.1

Si X est un ensemble fini, tout filtre F sur X est fini ; il en résulte que I’ensemble N MeF M
appartient au filtre et est donc non vide. Si I’intersection () ames M est vide, I'ensemble X
est donc infini. En outre, pour tout @ € X, il existe M, € Ftel que x ¢ M,, soit
M, C X — {z} et par suite X — {z} appartient au filtre F. Si A est une partie finie de X,
on en déduit que X — A = (¢ 4(X — {x}) appartient au filtre qui est donc plus fin que
le filtre des complémentaires des parties finies.

EXERCICE 2.11.2

Soit F un ﬁl}re sur X, montrons que f(F) = {f(A); A € F} est un filtre sur Y lorsque
[ est surjective. Vérifions (F1). Soit M une partie de Y telle queM D f(A)ob A e F;
posons B = f~!(M),alors B D A, donc B appartient2 Fet M = f (B) (exercice 1.2.2),
ce qui prouve (Fy). Quant A (F), soit A, B € ¥, alors

M = f(A)N f(B) > f(ANB),
d’od M € f(F) d’aprés (F1). Enfin, 0 & f(F) car 0 gFetY = f(X) € f(F)car fest
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surjective.
EXERCICE 2.11.3 FILTRE INTERSECTION
LSiF =g, Fi={M C X; M € F;pourtouti € I} est un filtre, ce filtre sera la
borne inférieure de la famille (F;):cr. Soient A € Fet B D A, alors A € F; pour tout
i,d’od B € F; pour tout i, ce qui prouve (F1). Soient A, B € ¥, alors A, B € F; pour
tout i, d’od AN B € F; pour tout 4, soit AN B € F, ce qui prouve (F3). Quant a (F3),
I’ensemble vide n’appartenant 4 aucun F; n’appartient pas 8 ¥ et X appartenant a tous les
F; appartient a F.

2. D’apres la définition méme d’une borne inférieure, dire que le filtre F est plus fin que
le filtre V(a) des voisinages d’un point a signifie que F; est plus fin que V(a) pour tout ,
ce qui prouve le résultat voulu.

EXERCICE 2.11.4

1. L’ensemble B; x B, est un ensemble non vide de parties non vides ; en outre, soient
Bi1, B, € By, By, By € By, alors (proposition 2.8.3) il existe Bf € B, et By € B tels
que BY ¢ BiNBjet By C BoN B3, d’od
(B1 x B2)N (B} x By) = (B1N By) x (B2NBz) D B N By

et ceci prouve que By x B est une base de filtre. Montrons que le filtre engendré F ne
dépend que des filtres F;. Il suffit de remarquer que la base de filtre 1 x F2 est équivalente
A la base de filtre B; x B> ; il est évident que F1 X F2 est plus fine By X B2 etsi M; € F;
il existe B; € B; tel que B; C M;, d’od By x B2 C M1 X M3z, ce qui prouve I’inclusion
opposée.

2. Lorsque F; et F2 sont les filtres de Fréchet sur X1 = X2 = N, le filtre F admet
donc pour base [p, +00[X[g, +oo[ oll p et g décrivent N. Cette base de filtre est en fait
équivalente 2 la base de filtre, évidemment moins fine, ([r2, +00[*)nen, Vu que

[p, +00(x[g, +00[ D [, +o00[” 0l n = max(p, ).

Le filtre F est strictement plus fin que le filtre ¥’ des complémentaires des parties finies.
En effet, soit A une partie finie de N, il existe un entier n tel que A C [0, n[? et il résulte
que N? — A D [n, +oo[?, d’od N2 — A € F, ce qui prouve que F est plus fin que 5. Etant
donné que [1, +-oo[2€ F — F, F est strictement plus fin que F.

3. Il suffit d’écrire la définition d’une valeur limite de 1’application f suivant une base
de filtre. On remarquera que

x=lg}1f:’z=h;nf,

mais la réciproque est en général fausse comme le montre 1’exemple suivant. Sur R, la suite
double Zm,» = 1/(m + 1) tend vers 0 selon F, mais n’a pas de limite selon F'.

EXERCICE 2.11.5
1. Le filtre F est un ensemble filtrant lorsqu’on le munit de la relation d’ordre indiquée :
soit A, B € F, alors AN B appartientd Fet A< ANB,B< ANB.
2. Le filtre F’ associé 2 la suite généralisée (zar) ares admet pour base I’ensemble des
S(M)y=|J {zn}obM décritF.
NCM,NeF
Lorsque N C M,onazny € N C M,d’od S(M) C M et ceci prouve que le filtre F' est
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plus fin que F.
EXERCICE 2.12.1 FILTRE A BASE DENOMBRABLE

1. Soit F un filtre admettant une base dénombrable (B, ) qu’on peut supposer décroissante
et soit 7’ I’intersection de tous les filtres élémentaires plus fins que F. Par définition, le filtre
F est plus fin que F. Montrons que ces deux filtres coincident et, A cet effet, raisonnons
par I’absurde. Supposons J” strictement plus fin que F : alors, il existe M € F' tel que
B, ¢ M pour tout n ; il existe donc z, € B, — M. On construit ainsi une suite (z,) ; le
filtre élémentaire F; associé 2 cette suite est plus fin que F vu que =, € By, donc plus fin
que F et par conséquent M € F, ce qui est contradictoire avec le fait que z, ¢ M pour
tout n.

2. D’apres I’exercice 2.11.3, un filtre F a base dénombrable sur un espace topologique
converge vers un point a si, et seulement si, tous les filtres élémentaires plus fins que F
convergent vers a, ce qui prouve le résultat voulu.

EXERCICE 2.12.2

Soit z € A tel qu’il existe une suite (z,,) de A qui converge vers z telle que z, # =
pour tout 7 et soit V' un voisinage de z, alors il existe n tel que z, € V et par conséquent
z, € VN A — {z}, ce qui prouve que le point = n’est pas un point isolé (on notera que
cette démonstration n’utilise pas le fait que I’espace est a base dénombrable de voisinages).

Réciproquement, soit € A un point non isolé et soit (V,,) un systeéme fondamental
dénombrable décroissant de voisinages de z. Alors, V, N A — {z} est non vide pour tout
n ; choisissons un point z, dans chaque V;, N A — {z}, on construit ainsi une suite (z,)
de A qui converge vers z telle que z,, # x pour tout n.

EXERCICE 2.12.3

1. Reprenons les notations de I’exercice 2.6.2. On a, pour tout entier N > 1,
C c [0,1] —UX_, En et cet ensemble est la réunion d’un nombre fini d’intervalles fermés
disjoints deux 2 deux et de longueur 3~ % ; étant donné que 3~V tend vers 0 lorsque N
tend vers I’infini, I’ensemble de Cantor ne peut contenir d’intervalle ouvert non vide, ce qui
prouve que I’ensemble de Cantor est d’intérieur vide.

2.S0itz = 0.01...0n ..., ; € {0,2}, un point de ’ensemble de Cantor.- Construi-
sons une suite (z) de C convergeant vers z telle que z, # x pour tout n, ceci prouvera
que I’ensemble de Cantor n’admet pas de point isolé (exercice 2.12.2). L’entier n > 1 étant
fixé, posons

Bi=ajsij#netf, =0sia, =2, 8, =2sia, =0,
puis 2, = 0.51...Bn .... On obtient ainsi un point x, € C'tel que |z — z,| =2x 37" ;
on construit ainsi une suite (z,) ayant les propriétés voulues.

EXERCICE 2.12.4 ESPACE SEPARABLE A BASE DENOMBRABLE DE VOISINAGES

Soit D un ensemble dénombrable partout dense. Pour tout z € X, il existe (proposi-
tion 2.12.1) une suite (z,,) de D qui converge vers z ; il existe donc une application
f : X — DN telle que, pour tout z € X, la suite f () converge vers z. Cette applica-
tion f est donc injective, d’ol

Card X < Card DV
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et ceci prouve que X a au plus la puissance du continu.

EXERCICE 2.13.1

La condition est nécessaire : si f est continu au point a et si la suite généralisée (z:)secr
converge vers a, alors la suite généralisée (f(z;)):er converge vers f(a). En effet, soit V'
un voisinage de f(a), il existe un voisinage W de a tel que f(W) C V etunindice i € I
tel que ; € W pour j > 4,d’od f(x;) € V pour j > i, ce qui prouve le résultat voulu.

Réciproquement, supposons que pour toute suite généralisée (z:)ic1 qui converge vers
a, la suite généralisée f(z;)icr converge vers f(a) et montrons que f est continu au point
a. Raisonnons par I’absurde : si f n’est pas continu au point a, il existe un voisinage V de
f(a) tel que f(W) ¢ V quel que soit le voisinage W de a, autrement dit f(W)N(X —V)
est non vide ; il existe donc zw € W tel que f(zw) € V. Munissons le filtre V(a) de la
relation d’ordre W < W' si W D W' ; on obtient ainsi d’apres I’exercice 2.11.5 une suite
généralisée (zw)wev(a) qui converge vers a alors que la suite (f(zw)) ne converge pas
vers f(a), le voisinage V' ne contenant aucun f(zw ).

EXERCICE 2.13.2

La condition est évidemment nécessaire (sans hypothese sur X et Y'). Réciproquement, on
suppose que, pour toute suite () de X convergeant vers a, la suite (f(z»)) admet une
limite ; montrons alors que la suite (f(x»)) converge vers f(a), ceci prouvera la continuité
de f au point a. Considérons la suite (y») définie par y2n = Zn €t Y2nt1 = a. Cette
suite (yn) converge vers a, la suite (f(y»)) admet donc une limite d’aprés I’hypothese.
Montrons que toute valeur limite [ de cette suite (f(y»)) est nécessairement égale a f(a).
Raisonnons par I’absurde, supposons ! # f(a). La sous-suite (f(y2n+1)) converge vers [
et, vu I’hypothese faite sur Y, Y — {f(a)} est un voisinage ouvert de [ ne contenant aucun
terme de cette sous-suite, ceci est absurde. Ceci montre que la suite (f(yr)) converge vers
f(a) et on en déduit que la sous-suite (f(z»)) converge vers f(a), ce qui prouve le résultat
souhaité.
EXERCICE 2.13.3

1 = 2 Soit Aune partiede Y,ona A C A, d’od f~1(4) C f2(A)et, f~1(A) étant
ouvert, on en déduit que f~*(A) C Int (f~1(A)).

2 = 3 Soit A une partic de Y, posons B = Y — A; d’aprés 2., on a

fYB) cInt (f~1(B)) od

B =Y -A) =X - f(A)
et
Int f7}(B) = Int (X — f7}(A)) = X - F-1(4);

on en déduit X — f~'(A) C X — f-1(A), d’od f~-1(A) C f~*(A), ce qui prouve le
résultat voulu.

3 = 1 Soit A une partie fermée de Y. D’aprés 3., on a f-1(4) C f~!(A), ce
qui prouve que f~(A) est fermé ; I'image réciproque de tout fermé étant fermée, f est
continu.

EXERCICE 2.13.4
Soit A un G5 de Y, alors A peut s’écrire A = 2

Oy, ol (Oy,) est une suite d’ouverts

n=0
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de Y ; on aalors f7'(A) = N2, f~'(Ox) ol les f~1(On) sont ouverts d’aprés la
continuité de £, ce qui prouve que f~'(A) est un G5 de X.

De méme, un F, s’écrit A = 5o, Fr od (F,) est une suite de fermés de Y ; on a
alors f~1(A) = U2 f1(Fr) o les £~ (F,) sont fermés d’apres la continuité de £, ce
qui prouve que f~1(A) estun F, de X.

EXERCICE 2.13.5
1. Soit A une partie dense dans X, on a alors d’apres la continuité de f,

F(X) = f(4) C f(4)
et, f étant surjective, ceci prouve que Y = f(A) : f(A) est dense dans Y.

2. Soit B une partie dense dans Y, montrons que tout ouvert non vide O de X rencontre
f~Y(B), ceci prouvera que f~*(B) est partout dense. L’application f étant ouverte, f (0)
est un ouvert non vide et, B étant partout dense, f(O) N B est non vide : il existe z € O
tel que f(z) € B, soitz € f~*(B), ce qui prouve que O N f~!(B) est non vide.
EXERCICE 2.13.6
D’apres la continuité de 1’application z — d(z, A) — d(z, B) (exemple 2.13.1), les en-
sembles disjoints

Os={z€X;d(z,A) <d(z,B)}etOp ={z € X; d(z,B) < d(z,A)}.
sont ouverts. D’autre part, soit z € A, alors d(z, A) = O et d(z, B) > 0 car z n’appartient
pas 2 B vu que A N B est vide ; ceci prouve que z € O4, d’od A C O4. Ceci montre
que O4 est un voisinage ouvert de A, de méme Op est un voisinage ouvert de B et ces
voisinages sont disjoints, ce qui prouve le résultat voulu.

EXERCICE 2.14.1

Soit a € X. Si f(a)g(a) = 0, la fonction f g admettant un minimum au point a est s.c.i.
en ce point (remarque 2.14.1). Supposons f(a)g(a) > Oetsoit0 < a < f(a)g(a) ; on
peut écrire o = By od 0 < B < f(a) et 0 < 4 < g(a) : on choisit &/g(a) < B < f(a)
puis ¥ = a/pB. Les fonctions f et g étant s.c.i. au point a, il existe des voisinages V et W
de a tels que f(z) > Bpourz € Vetg(z) > ypourz € W,d’od f(z)g(z) > By =«
pour z € V N W et ceci prouve que la fonction f(x)g(x) est s.c.i. au point a.

EXERCICE 2.14.2

Soienta € X et a > 1/f(a), c’est-d-dire 1/ < f(a) ; la fonction f étant s.c.i. au point
a, il existe un voisinage V de a tel que f(z) > 1/a pourz € V,d’od 1/f(z) < a pour
x € V et ceci prouve que 1/ f est s.c.s. au point a.
EXERCICE 2.14.3
1. Soit a < (f o )(a). La fonction f étant s.c.i. au point (a), il existe un voisinage V
de ce point tel que f(V) C]la,+o0] et, d’apres la continuité de ¢ au point g, il existe un
voisinage W de a tel que (W) C V, d’od (f o ¢)(W) C|a,+00), ce qui prouve que
f opests.c.i. au point a.

2. Soit & < (p o f)(a), posons b = f(a). On a a < (b) et, la fonction ¢ étant
continue au point b, il existe € > 0 tel que p(y) > a poury € f(X)N]b—€,b+ €,
donc pour tout y € f(X)N]b — &, +00] d’apres la croissance de . La fonction f étant
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s.c.i. au point a, il existe un voisinage V de a tel que f(z) > b — e pour z € V, d’od
(¢ o f)(z) > apour z € V, ce qui prouve que la fonction ¢ o f est s.c.i. au point a.

EXERCICE 2.14.4

1. La continuité des fonctions f,, résulte de la continuité de I’application z — d(z, X — O).
Montrons que la suite (f,) est une suite croissante convergeant vers la fonction caractéris-
tiquede O.Siz € X — O, fo(z) =0 = lo(z) et,siz € O, d(z,X — O) est > 0, il
existe donc un entier n > 1 tel que d(z, X — O) > 1/n, d’od fp(z) = 1 = Lo(z) pour
P > m, ce qui prouve le résultat voulu.

2. On pose Ok = f~'(Jk/n,+0o[) pourn > 1,1 < k < n — 1 ; ces ensembles
On, i sont ouverts, f étant s.c.i.

On pose ensuite g, = (1/n) Y5_; 1o, ,, montrons que f = sup, gn. Ona

gn(z) =0si0< f(z) <1/n
et
gn(x) =k/nsik/n< f(z) < (k+1)/n,1<k<n-1,
d’od 0 < f(z) — gn(z) < 1/n et ceci montre que la suite (g»,) converge (uniformément)
vers f.

Les fonctions g, : X — [0, 1] étant s.c.i. (exemple 2.14.1), il existe d’apres 1. une suite
croissante (hnm)m>1 de fonctions continues hpnm : X — [0, 1] telle que g, = sup,, hnm.
Posons fn = Sup;<;<n,1<j<n hij- Ces fonctions fn : X — [0,1] sont continues, la
suite (fn) est évidemment croissante. En outre, 0 < hnm < gn < (n — 1)/n, d’od
0 < fn < (n — 1)/n et ceci prouve que les fonctions f,, sont a valeurs dans [0, 1[. Enfin,
ona

sup fn = supsup hi; =supg; = f.
n i j i

Ceci prouve le résultat voulu.

3. La fonction g étant a valeurs finies, la fonction f — g est bien définie et elle est
s.c.i. d’apres la continuité de g. On peut donc supposer la fonction f 2 valeurs positives.
Considérons la fonction ¢ : Ry — [0,1] définie par o(t) = t/(1 +¢)sit € Ry
et p(+o0) = 1. D’apres I’exercice 2.14.3, la fonction p o f : X — [0,1] est s.c.i. ;
d’apreés 2., il existe une suite croissante de fonctions continues f, : X — [0, 1] telle que
@ o f =sup, fr. Notons 9 : [0,1[— [0, +oo[ la fonction définie par ¢(s) = s/(1 — s).
Cette fonction 1) étant continue croissante, la suite de fonctions 9 o f : X — [0, +00] est
une suite croissante de fonctions continues a valeurs finies et

supypo fn=9opof=f;
n
la suite (3 o fr) posseéde toutes les propriétés voulues.
EXERCICE 2.15.1

1. Vérifions les axiomes des distances (définition 2.7.1). On a

d2(z,y) = ¢(di(z,9)) = p(di(y, 7)) = d2(y,2),
ce qui prouve (D1). Quant a (D2), p(d1(z,y)) = 0 équivaut 2 d1(z,y) = 0 d’apres les
hypotheses faites sur ¢, donc 4 z = y. Enfin, on a

d2(2, z) = p(d1(z, 2)) < p(di(z,y) + da(y, 2))
d’apres la croissance de ¢, d’ ol

d2(,2) < p(di(z,y)) + p(di(y, 2)) = d2(z,y) + d2(y, 2)

vu les hypotheses, ce qui prouve I’inégalité triangulaire.
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2. Si  est continue a I’origine, pour tout ¢ > 0, il existe § > Otel que 0 < u < 6
implique 0 < p(u) < g, d’ol dy(z,y) < 8 = da(z,y) <e.

Inversement, la fonction ¢ étant croissante, soit ¢ > 0, § = ¢(¢), alors
p(u) < 0 = u < g dod da(z,y) < § = di(z,y) < e. distances d; et d sont uni-
formément équivalentes.

3. La fonction ¢(u) = min(1,u) est continue, croissante, p(u) = O si, et seule-
ment si, v = 0 et p(u + v) < p(u) + @(v) d’apres I'inégalité (2.15.1). La fonction
p(uw) = u/(1 + u) posséde les mémes propriétés, I’inégalité p(u + v) < p(u) + p(v) se

vérifie comme suit
u+v u v u v

= + < + .
l1+u+wv l+u+v 14+u+v 14u 14w

EXERCICE 2.17.1

1. La condition est évidemment nécessaire d’apres la définition méme d’un espace séparé.
Réciproquement, supposons que toute suite généralisée admette au plus un point limite et
montrons que I’espace est séparé. Raisonnons par I’absurde, si 1’espace n’est pas séparé,
il existe a,b € X, a # b, tel que tout voisinage de a rencontre tout voisinage de b ;
soient V' € V(a), W € V(b), choisissons un point zvaw € V N W. L’ensemble F des
intersections {VNW; V € V(a) et W € V(b)} est un filtre (lemme 2.16.4) plus fin que
les filtres V(a) et V(b). Vu I’exercice 2.11.5, la suite généralisée (zar)ames converge a la
fois vers a et b, ce qui contredit I’hypothése.

2. On suppose I’espace a base dénombrable de voisinages et que toute suite admet au
plus un point limite et il s’agit de démontrer que I’espace est séparé. On raisonne comme
précédemment en utilisant des syst¢émes fondamentaux dénombrables décroissants de voi-
sinages de a et b, soient (V;,) et (W,,) ; on choisit un point z,, € V,, N W,, et on construit
ainsi une suite () qui converge  la fois vers a et b.

EXERCICE 2.17.2

1. Soit (A;i)ier une famille de parties finies, alors |J;c;(X — A;) = X — A od
A = (), A est une partie finie, ce qui prouve (O1). Si A et B sont des parties finies,
(X-A)N(X-B)=X-CouC = AU B est fini, dod (O2). L’axiome (O3)
étant trivialement vérifié, on définit bien une topologie T sur X en prenant pour ouverts §
et ’ensemble des complémentaires des parties finies.

2. Pour cette topologie, les fermés sont X et les parties finies de X. En particulier, les
points sont fermés. Lorsque X est un ensemble fini, il en résulte que la topologie T est la
topologie discréte, topologie séparée. Lorsque X est infini, la topologie n’est pas séparée,
car deux ouverts non vides O; et Oz ont toujours une intersection non vide, vu que

X—O1002=(X—01)U(X—02)
est fini et ’axiome de Hausdortf ne peut étre vérifié.

3. Si X est fini, les suites convergentes sont les suites stationnaires a partir d’un certain
rang.

Lorsque X est infini, montrons qu’une suite converge vers  si, et seulement si, pour
tout y # z, '’ensemble {n € N; 2, = y} est fini. En effet, si £ = limpc0 Tn et si
y # z, '’ensemble X — {y} est un voisinage ouvert de x, donc il existe un entier n tel que
zp € X — {y} pour p > n et ceci montre que I’ensemble {p € N; =, = y} est contenu
dans P’intervalle [0, n[, donc fini. Réciproquement, si {n € N; =, = y} est fini pour tout
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y # x, soit O un voisinage ouvert de z ; alors O = X — A ol A est une partie finie ne
contenant pas le point z ; il en résulte que
{neN;z, € A} = U{neN;wn=y}
YEA

est fini, donc contenu dans un intervalle de la forme [0, 7 ; on a alors z,, € O pourp > n
et ceci prouve que la suite (z,,) converge vers .

En particulier, une suite (z,) dont tous les termes sont distincts (c’est-a-dire telle que
’application n — x,, soit injective) converge vers tout point.

EXERCICE 2.17.3

1. Montrons que B est une base de topologie. Vérifions les propriétés (B;) et (B2) de la
proposition 2.9.4. Soient O, et Oz des ouverts de X, D, et D des parties dénombrables,
alors

(01 -—D1)ﬂ(02 - D2) =01N02 —D;UD,
et ceci montre que B est stable par intersection finie, ce qui prouve (B). Quant & (Bz), on
remarque que X = X — () appartient 2 B. Nous noterons 7 la topologie engendrée par B.
Cette topologie est plus fine que la topologie J1 vu que tout ouvert O pour la topologie T
peut s’écrire O = O — ) et est également ouvert pour la topologie 7.

2. Soit (z,) une suite convergente vers a pour la topologie T2. Montrons que cette
suite est nécessairement stationnaire et égale & a a partir d’un certain rang. Raisonnons par
I’absurde ; supposons qu’il existe une sous-suite (2, ) telle que z,, # a pour tout k, alors
X — UpZo{zn, } est un voisinage ouvert de a pour la topologie T2 qui ne contient aucun
terme de la sous-suite (zn, ), sous-suite qui converge vers a ; ceci est évidemment absurde.
Les suites convergentes pour la topologie T2 sont bien les suites stationnaires.

3. Si la topologie T2 est métrisable, cette topologie est nécessairement la topologie
discrete d’apres 2. Il en résulte que, pour tout z € X, il existe un ouvert O pour la topologie
T1 et une partie dénombrable D tels que {z} = O — D et ceci montre que O est un
voisinage ouvert dénombrable de z pour la topologie T;. Réciproquement, supposons que
tout  admette un voisinage dénombrable pour la topologie T71, alors z admet un voisinage
ouvert dénombrable O et on peut écrire {} = O — D od D = O — {z} est dénombrable ;
ceci montre que {xz} est ouvert pour la topologie T2 et cette topologie est donc la topologie
discréte qui est métrisable. Ceci prouve que la topologie T2 est métrisable si, et seulement
si, tout point admet un voisinage dénombrable pour la topologie T7.

4. Prenons X = R muni de sa topologie usuelle T;. Le procédé précédent permet de
construire sur R une topologie T2 séparée (car plus fine qu’une topologie séparée), non
métrisable d’apres 3. et pour laquelle les seules suites convergentes sont les suites station-
naires.

EXERCICE 2.17.4

Montrons d’abord que la topologie est séparée. Soit a,b € X, a < b. S’il existe ¢ € ]a, b[,
] <, ¢[ et ]e, — [ sont des voisinages ouverts disjoints de a et b. Sinon, ] +,b[=] <, a] et
Ja, —[= [b, — [ sont des voisinages ouverts disjoints de a et b.

Montrons ensuite que la topologie est réguliere, c’est-a-dire que tout voisinage d’un
point z contient un voisinage fermé. Un voisinage de = contient un intervalle ouvert conte-
nant x ; nous supposerons que cet intervalle est de la forme ]a, b[, on raisonnerait de la
méme fagon lorsqu’il est de la forme |+, b[ ou Ja, —[. On suppose donc z €]a, b].
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S’ilexiste @, 8 € X telquea < a < z < B < b, alors z € |a, B[ C [a, 8] Cla, b,
ce qui montre que [c, O] est un voisinage fermé de x contenu dans ]a, b[.

Si]a,z[=]z,b[=0,]a,b[= {z} est un voisinage fermé de .

SiJa,z[= Dets’ilexiste B € X telquez < B < b,onaz €]a, B[ C [z,8] Cla,b],
ce qui montre que [z, 8] est un voisinage fermé de = contenu dans ]a, b[. On raisonne de
fagon analogue lorsque Jz,b[ = P et s’il existe & € X telque a < a < .

Ceci prouve que la topologie de 1’ordre est réguliere.
EXERCICE 2.17.5 DOUBLE LIMITE

1. Posons y = limg, x5, f et soit V un voisinage fermé de y. 1l existe M; € F; tel que
f(My x Mz) C V. Pour tout z; € M, on a donc f(z1,M2) C V ; tout point limite
étant un point adhérent, on en déduit que g(z1) € V = V pour tout 1 € M, c’est-a-dire
g(M1) C V. Lensemble des voisinages fermés de y constituant un syst¢me fondamental
de voisinages de ce point, I’inclusion précédente prouve que y = limg, g. Ceci prouve le
résultat voulu, qu’on peut écrire sous la forme
T =, S

2. Prenons X = N et pour JF; le filtre de Fréchet. Considérons une suite double (zm,n)
dans un espace régulier Y. On suppose que cette suite double admet une limite y suivant
la base de filtre F1 x F2, c’est-a-dire que, pour tout voisinage V' de v, il existe un entier n
tel que zp,q € V pour p > n et ¢ > n. On suppose en outre que, pour tout m, la limite
Ym = liMpy00 T, eXiste, alors la suite (v, ) converge vers y d’apres 1.

EXERCICE 2.17.6

1. L’ensemble ‘B des intervalles [a,b[, a < b, est une base de topologie sur R car B est
stable par intersection finie et R = |J 45 A (proposition 2.9.4). Notons T la topologie
définie par cette base de topologie ; cette topologie est plus fine que la topologie usuelle To
de R. En effet, soit ]a, b[ un intervalle ouvert, alors Ja, b[ = (U, o<, b[ est ouvert pour
la topologie T ; tout ouvert de R pour Jp étant une réunion d’intervalles ouverts est donc
ouvert pour T : ceci prouve que T est plus fine que To.

2. La topologie T, plus fine qu’une topologie séparée, est séparée. La suite
([a;a + 1/n])n>1 est un systeme fondamental de voisinages fermés (car ces intervalles
sont fermés pour la topologie usuelle) de a : en effet, tout intervalle [, B[ qui contient
le point a contient un intervalle de la forme [a,a + 1/n]. Tout point admet un systéme
fondamental dénombrable de voisinages fermés. La topologie T est donc réguliere.

3. Montrons que R, muni de la topologie T, est séparable : tout intervalle [a,b[, a < b,
contient un rationnel, donc Q est partout dense pour la topologie T, ce qui prouve le résultat
voulu.

4. Montrons que la topologie T n’admet pas de base de topologie dénombrable. Soit
(Bi)ier une base de topologie. Soit z € R, I’intervalle ouvert [z, +o00[ peut s’ écrire comme
une réunion de B; ; il existe donc nécessairement un i tel que z € B; et B; C [z, +00],
c’est-a-dire tel que £ = min B;. On peut donc définir une application f : R — I telle que
x = min By, ; cette application f est nécessairement injective, ce qui prouve que I a au
moins la puissance du continu. Ceci prouve qu’il ne saurait exister de base de la topologie
7 qui soit dénombrable.

L’espace R, muni de la topologie T, étant séparable d’apres 3., cette topologie n’est pas
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métrisable d’aprés la proposition 2.10.7.

EXERCICE 2.18.1
1. Notons d’abord que diam A < diam B si A C B, en particulier diam A < diam A. Dé-
montrons I’inégalité opposée, soit € > 0, il existe z,y € A tel que
diam 4 < d(z,y) + ¢ ; les points 2 et y étant adhérents A A, il existe =’ € Aety’ € Atels
que d(z,z') < eetd(y,y’) < e d’od diam 4 < d(y,y’) + 3¢ < diam A + 3¢ et, ceci
étant vérifi€ pour tout € > 0, diam A < diam A, ce qui prouve le résultat voulu.
2. Soite > 0, il existe z,y € AU B tel que diam (AU B) < d(z,y) + €. Sizety
appartiennent 3 A, d(z,y) < diam A < diam A + diam B, d’od
diam (AU B) < diam A + diam B + ¢
et de méme si z et y appartiennent 3 B. Lorsque € Aety € B, si AN B est non vide,
soit z € AN B, alors d(z,y) < d(z, z) + d(z,y) < diam A + diam B, d’od, d’apres 1.,
diam (AU B) < diam A + diam B + ¢.
Si c’est A N B qui est non vide, on choisit un point z € A N B et on raisonne de la méme
fagon. L’inégalité ci-dessus valable dans tous les cas prouve le résultat voulu.

EXERCICE 2.18.2

L’ensemble C des points de continuité de f peut s’écrire
oo
C={zeX;w(f;z)=0}= ﬂ{a: € X; w(f;z) <1/n}
n=1

ol les ensembles {z € X ; w(f;x) < 1/n} sont ouverts, la fonction w étant s.c.s. (propo-
sition 2.18.5). Ceci prouve que C est un Gs.

EXERCICE 2.18.3

Il s’agit de démontrer que le théoréme de Cantor (proposition 2.18.9) caractérise les es-
paces métriques complets. Soit (z,) une suite de Cauchy, posons B, = UpZn{w,,} et
F, = B,. Ces ensembles F,, sont fermés, la suite (Fy,) est décroissante comme la suite
(Brn) et le diametre de F, tend vers O, car la suite (z,) est de Cauchy et
diam F,, = diam B, d’aprés I’exercice 2.18.1. 11 en résulte que I’intersection (7o, Fr
est réduite a un point, ce qui signifie que la suite (z,) admet une valeur d’adhérence ;
la suite (z5) converge donc d’aprés la proposition 2.18.1, ce qui prouve que I’espace est
complet.

EXERCICE 2.18.4

1. L’image du filtre des sections sur I par I’application ¢ — z; admet pour base I’ensemble
des B; = |J;5,{x;} od i décrit 1. Dire que ce filtre est de Cauchy signifie donc que, pour
tout € > 0, il existe ¢ € I tel que diam B; < ¢, c’est-a-dire d(z;,zx) < e pour j > et
k>

2. Tout filtre convergent étant de Cauchy, toute suite généralisée convergente est de
Cauchy.

3. Si X est un espace métrique complet, toute suite généralisée de Cauchy converge
d’apres la définition 2.18.2. Réciproquement, si toute suite généralisée de Cauchy converge,

toute suite (ordinaire) de Cauchy converge et 1’espace est complet d’aprés le théoréme
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2.18.8.
EXERCICE 2.19.1
La topologie initiale T vérifie la propriété indiquée (corollaire 2.19.4). Réciproquement, soit
T’ une topologie sur X vérifiant cette propriété. Prenons pour espace Y
I’espace X muni de la topologie T’ et pour application f I’application identique
Ix : (X,7') = (X,T’) ; cette application étant continue, les applications

fiolx = fi : (X,7") = X;
sont continues, ce qui prouve que la topologie J” est plus fine que la topologie T (théoréme
2.19.1). Prenons ensuite pour espace Y I’espace (X, T) et pour application f 1’application
identique Ix : (X,T) — (X,7’) ; les applications f;o0Ix : (X,T) — X; étant continues,
cette application I'x : (X, T) — (X, T’) est continue, ce qui signifie que la topologie T est
plus fine que T’. Ceci prouve que T = J” et le résultat voulu.

EXERCICE 2.19.2 TOPOLOGIE ENGENDREE PAR UNE FAMILLE DE PARTIES

1. Notons X; I’espace topologique obtenu en munissant ’ensemble X de la famille d’ou-
verts O; = {0, A;, X}. Si T est une topologie sur X, dire que A; est ouvert pour cette
topologie signifie que I’application identique Ix : (X,T) — X;, que nous noterons f;,
est continue. La topologie initiale sur X associée a cette famille (f;):er est donc la topolo-
gie la moins fine sur X pour laquelle tous les ensembles A; sont ouverts. On dit que cette
topologie est engendrée par la famille (A;).

D’aprés (2.19.2), une base de cette topologie est constituée des intersections (), ; Ai
ol J décrit I’ensemble des parties finies de 1.

2. Btant donné un espace topologique Y, le corollaire 2.19.4 montre qu’une application
f 'Y — X est continue si, et seulement si, les applications f; o f : Y — X sont
continues, c’est-a-dire si £~ (A;) est un ouvert de Y pour tout 3.
EXERCICE 2.20.1
Dire que M est ouvert dans A signifie qu’il existe un ouvert U de X tel que
M = U N A ; de méme il existe un ouvert V de X tel que M = V N B. On en déduit que
M = (UNV)N (AU B), ce qui prouve que M est ouvert dans A U B.

Le raisonnement est analogue lorsque M est fermé dans A et dans B.
EXERCICE 2.20.2 SOUS-ESPACE LOCALEMENT FERME

1 = 2 Soit x € A, il existe un voisinage V, de =z tel que
Vz N A soit fermé dans V, c’est-a-dire tel que V; N A = VN AN V,. Soit O; un
ouvert tel que € O, C V; ; d’aprés ’exercice 2.10.3,0ona O, N A C O; N 4, d’od

0:NACO;NANO; CVoNANV,=V:NACA

et ceci prouve que (U, 4 Ox) N A C A ; I'inclusion opposée étant trivialement vérifiée,
on a donc I’égalité, soit A = O N'A od O désigne I’ouvert Uzea Oz et ceci prouve que A
est une partie ouverte de A.

2 = 3 Dire que A est une partie ouverte de A signifie qu’il existe un ouvert O tel que
A = ONA, ce qui prouve que A peut s’écrire comme I’intersection d’un ouvert et d’un
fermé.

3 = 4 Onsuppose que A = ON F ol O est un ouvert et F' un fermé, alors A est fermé
dans I’ouvert O, ce qui prouve 4.
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4 = 1 D’apres 4., il existe un ouvert O contenant A et un fermé F'telque A = ONF,
alors, pour tout z € A, O est un voisinage de z et AN O = O N F, donc AN O est fermé
dans O, ce qui prouve 1.

EXERCICE 2.20.3 RECOLLEMENT D’ESPACES TOPOLOGIQUES

Notons O; I’ensemble des ouverts de X; et soit 7" une topologie sur X vérifiant les condi-
tions requises. Un ouvert O de X peut s’écrire O = |J,c; Oi od O; = O N X; est un
ouvert de X;. Inversement, soit O; un ouvert de X;, alors O; est ouvert dans X, X; étant
ouvert dans X, et par suite O = |J,,; O; est un ouvert de X. Ceci montre que, sil existe
une topologie vérifiant les propriétés voulues, cette topologie est unique : ’ensemble des
ouverts est nécessairement donné par
0={0;0=J0:000; € 0;}.
i€l

Nous allons démontrer que O vérifie bien les axiomes des ouverts et que la topologie
associée posseéde les propriétés voulues.

1. Vérifions d’abord la propriété suivante : soit O; un ouvert de X, alors X; N O; est
un ouvert de X;. Or X;NO; = (Xi;NX;)NO; estun ouvert de X; N X; pour la topologie
induite T;|x;nx;, topologie qui, d’aprés I’hypothése b., coincide avec la topologie induite
'Tilx,-nxj ; il existe donc un ouvert U; de X; tel que X; N O; = (X; N X;) NU; et cet
ensemble est ouvert dans X; d’apres I’hypothése a., ce qui prouve le résultat annoncé.

2. Montrons alors que O est stable par intersection finie, les autres axiomes des ouverts
sont trivialement vérifiés. Soit

0=J0;,0 =J0;ion0;,0; € 0;.
i€l i€l
OnaONO = ez (0: NO;) et il faut vérifier que O; N O est ouvert dans X; par
exemple. Etant donné que O; N 05 = 0; N (X: N O;), il suffit de remarquer que X; N O;
est ouvert dans X; d’apres 1.

L’ensemble O définit donc une topologie T sur X.

3. Montrons que X; est un sous-espace ouvert de X. En effet, on peut écrire
X =UjEle ol O; =X,-et0j =08ij 752

4, Vérifions que T induit la topologie T; sur X;. Soit O = Uie 10i, O; € O
un ouvert de X, alors O N X; = UU;¢;(0; N X;) od O; N X; est un ouvert de X;
d’apres 1., ce qui prouve que O N X; est un ouvert de X; : la topologie T; est donc plus
fine que la topologie induite T x;. Inversement, soit O; un ouvert de X; ; on peut écrire
0i = XiN (Uje; O;) 00 O; = B si j # i et ceci prouve que O; est un ouvert pour la
topologie induite T x;, topologie qui est donc plus fine que la topologie T;. Ceci acheve la
démonstration.

EXERCICE 2.20.4 IMAGE RECIPROQUE D’UN FILTRE
1. Pour que f~*(B’) soit une base de filtre, il est évidemment nécessaire que f~!(M’)
soit non vide pour tout M’ € B’, un ensemble appartenant 2 un filtre étant non vide.
Réciproquement, si cette condition est vérifiée, montrons que f~!(B’) est une base de
filtre. Utilisons la proposition 2.8.3, f ~!(B’) est un ensemble non vide de parties non vides
et,si M',N' € B, il existe P’ € B' telque P’ C M' N N’, d’od

f—l(Ml) N f—-l(NI) ») f—-l(MI N NI) ») f—l(Pl)’
ce qui prouve le résultat voulu.
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2. Notons F' le filtre engendré par B’ et F le filtre engendré par f~*(B’). Une partie
M de X appartient 2 F il existe M’ € B’ tel que f~1(M') C M, ce qui équivaut 2 dire
qu’il existe M’ € ' tel que f~!(M’) C M. Ceci montre que le filire F ne dépend que du
filtre 5.

3. La base de filtre f(f~'(B’)) engendre un filtre plus fin que F car, pour tout
M' e B',M' D f(f~(M')) (proposition 2.11.1).
Note Cet exercice généralise la situation décrite a la remarque 2.20.2 : si F est un filtre sur
X admettant une trace sur une partie A de X, le filtre induit F 4 est I’'image réciproque de
F par I’injection canonique ¢ : A — X et i(F4), c’est-3-dire F4 en tant que base de filtre
sur X, engendre un filtre plus fin que .

EXERCICE 2.20.5

Rappelons la situation envisagée. On considére une application f : X — {a} - Y ol a
est un point non isolé de X, ce qui signifie que a est un point adhérent 3 X — {a}. Alors,
y = limg—a,220 f(2) signifie que, pour tout voisinage V' de y, il existe un voisinage W
de a tel que f(W — {a}) C V. Dire que f est continue au point a signifie que, pour tout
voisinage V de v, il existe un voisinage W de a tel que f (W) C V. Ces deux conditions
sont équivalentes vu que fi (a) = y € V, ce qui prouve le résultat voulu.

EXERCICE 2.20.6 LIMITE A GAUCHE ET A DROITE

1. Dire que y = f(a + 0) signifie que, pour tout voisinage V de y, il existe un voisinage
W de atel que f(ANWN]a,+oo[) C V ;’ensemble (Ja — &, a + d[)s>0 constituant un
syst¢éme fondamental de voisinages de a, il est équivalent de dire qu’il existe § > 0 tel que
f(AN]a,a + 8[) C V ;ceci prouve que y = f(a + 0) équivaut i a.

a => b Soit (z,) une suite de AN]a, +oo[ convergeant vers a, alors il existe n tel que
Zp €Ja,a + 8[ pour p > n,d’od f(zp) € V, ce qui prouve que la suite (f(z,)) converge
vers y.

b => cest trivialement vérifié.

¢ = a On raisonne par I’absurde, si a. n’est pas vérifié, il existe un voisinage V de y tel
que f(ANJa,a+4d[) ¢ V pourtoutd > 0. On construit alors par récurrence une suite ()
de AN]a, +oo strictement décroissante convergeant vers a tel que f(z.) € V. On choisit
zo € ANja,a+1[tel que f(2o) € V, puis 2n41 € AN]a,a+zn[tel que f(zni1) € V.
On obtient ainsi une suite (f(zx)) qui ne converge pas vers y, ce qui contredit c.

2. Dire que f est continu au point a signifie que, pour tout voisinage V de f(a), il
existe § > 0 tel que f(AN]a — d,a + d[) C V, c’est-a-dire f(AN]a — b,a[) C V et
f(ANn]a,a + 8[) C V ; d’apres 1,a., ceci signifie donc que f est continu a gauche et 2
droite au point a: f(a) = f(a +0) = f(a — 0).

3. Posons g(z) = f(z + 0) pour = € [a, b[. Soient z € [a, b[, y = g(z) et V un voisi-
nage fermé de y. Il existe 8 > 0 tel que f(z') € V pour tout
z <z <z+8 dod f(z' +0) € V = V, tout point limite étant un point adhérent.
Ceci prouve que g(z') € V pourtout z’ € |z, z + §[ ; I’ensemble des voisinages fermés de
y étant un systeme fondamental de voisinages de y = g(z), on en déduit que g est continu
A droite au point z. La fonction z — f(z + 0) est continue 2 droite : en quelque sorte,
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f(z+0+0) = f(z+0).
EXERCICE 2.20.7 DISCONTINUITE D’UNE FONCTION MONOTONE

1. Montrons que f admet une limite 2 droite en tout point © € [a,b[. On pose
y = inf,¢)5,5) f(2) ; cette borne inférieure est bien définie car f(z) > f(z) lorsque 2 > .
Montrons que y = f(x + 0). Soite > 0, ilexisted > Otelquey < f(z+8) < y+e,
d’od y < f(2) < y+ € pour tout z € |z, z + J[, ce qui prouve le résultat voulu. De plus,
f(@) < f(z +0).

De la m&me fagon, on vérifie que f admet une limite a gauche en tout point z €]a, b,
f(x — 0) = sup,¢(, o f(2) et que f(z — 0) < f(z). Pour tout z € [a, b], on a donc (vu
les conventions adoptées aux extrémités de ’intervalle) f(z — 0) < f(z) < f(z + 0).

Lorsque a <z <y < b,ona f(z + 0) < f(y — 0) : en effet, soit ' €]z, y], alors

fz+0)= inf f(2)<f(a')< sup f(2)=f(y-D0).
z€|z,x’| [

z€)z’,y|
2.Soita <z <y < b,d’aprés 1. on a
f@) < flz+0) < fly—0) < fy) < fly+0),
ce qui montre que la fonction z — f(z + 0) est croissante ; cette fonction est continue
a droite d’apres I’exercice 2.20.6. De méme, on vérifie que la fonction z — f(z — 0) est
croissante et continue a gauche. '

3. D’apres I’exercice 2.20.6, la fonction f est continue en un point z si, et seulement si,
f(z) = f(z+0) = f(z—0), c’est-a-dire si, et seulement si, le saut de la fonction au point
zestnul:s(z) =0.

Montrons que I’ensemble D des points de discontinuité de f est dénombrable. On re-
marque que les intervalles | f(z — 0), f(z + 0)[, z € [a,b], sont disjoints deux & deux
et contenus dans I’intervalle [f(a), f(b)]. 1l en résulte que I’ensemble des points x pour
lesquels s(x) > 1/n est nécessairement fini et on en déduit que I’ensemble

D= U{x € [a,b]; s(z) > 1/n}
n=1
est dénombrable.

EXERCICE 2.20.8 FONCTION REGLEE

Soit € > 0, on pose

D = {z € [a,b]; d(f(z — 0), f(x +0)) > €};
I’ensemble D des points de discontinuité de f peut alors s’écrire D = |Jo2, Dyn et il
suffit donc de démontrer que les ensembles D, sont dénombrables. Nous allons vérifier que
tous les points de D, sont isolés ; I’exercice 2.10.8 permettra de conclure, ’espace [a, b]
admettant une base de topologie dénombrable.

Soit z € D, il existe § > Otel que d(f(z+0), f(y)) < &/3pourtoutz <y < x+94
et il en résulte que d(f(z + 0), f(y £ 0)) < &/3 pourtout z < y < = + & ; on en déduit
que d(f(y — 0), f(y + 0)) < 2¢/3 < ¢ et ceci prouve que DN )z,z + §[= 0. De méme,
on vérifie qu’il existe 8’ > 0 tel que DeN)z — &', z[= 0, d’0d DeN ]z — &',z + §[= {z},
ce qui prouve que z est un point isolé de De.

Note Toute fonction monotone f : [a,b] — R est réglée d’apres I’exercice 2.20.7, on
retrouve ainsi le fait que I’ensemble des points de discontinuité d’une fonction monotone
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est dénombrable.
EXERCICE 2.20.9 DISCONTINUITE ARTIFICIELLE

l,a. Montrons d’abord que ¢ est continu en tout point a de A. On a
w(a) = limzq,25a f(x). Si V est un voisinage fermé de ¢(a), il existe donc un voi-
sinage ouvert W de a tel que f(W — {a}) C V, c’est-a-dire f(z) € V pour tout
x € W — {a}. En particulier, p(y) € V pour touty € (W — {a}) — A. D’autre part, soit
y € (W — {a}) N A, I’espace X étant séparé, W — {a} est un voisinage ouvert de y et il
en résulte que p(y) € V =V pour tout y € (W — {a}) N A. Ceci montre que p(y) € V
pour touty € W — {a}, donc pour tout y € W. L’ensemble des voisinages fermés de o (a)
étant un systéme fondamental de voisinages de ¢(a), ceci prouve que ¢ est continu en tout
point de A.

b. Montrons ensuite que ¢ est continu en tout point de continuité de f. Si a est un
point isolé de X, il n’y a rien & démontrer car toute fonction est continue en un point isol€.
Si a n’est pas un point isolé, on a p(a) = f(a) = limg— 24 f(z) d’apres la continuité de
f au point a et le raisonnement est alors identique 2 celui fait précédemment.

2. Montrons que tout point de A, est isolé. Raisonnons par I’absurde, supposons qu’il
existe un point z € A,, non isolé. Alors, on peut considérer I’éventuelle limite

2= lim o) d(e(y), f(v));

y—=z,y€A,
cette limite, si elle existe, est nécessairement > 1/n. D’aprés la définition de ¢ et la conti-
nuité de ¢ au point z, on a

= t i =
‘y-—)lyye"};lu_{w} fW) =vl@e y—m.ylenlliln—{x} () = ¢(2),

d’ol z = 0, ce qui est absurde vu que z doit étre > 1/n.
3. D’apres I’exercice 2.10.8, X admettant une base de topologie dénombrable, 1’en-

OO0

semble Ay, est dénombrable et il en résulte que A = |J7, A, est dénombrable.
EXERCICE 2.20.10 PARTIE DE R DENOMBRABLE ET PARTOUT DENSE
1. Pour n = 0, on prend Ao = {ao}, Ay = {ag} et pour fo : Ao — Ag I’application
définie par f(ao) = ag. Supposons construite une bijection croissante f, : A, — Al
vérifiant les conditions requises et construisons fp 1.
Sian+1 € Anetayy, € A} 41, on prend simplement
A1 = A, A:H-l = An et foy1 = fn.

Sinon, on a an41 & A, ou anyy € Aj. On prolonge d’abord f,, en une bijection
croissante g, : An U {an+1} — By, ol B;, D A, (si an+1 appartient 3 A,, on prend
gn = Jfn) puis on prolonge g. en une bijection croissante fn+1 : Ant1 — Apyq OD
Ant1 D An U {anp1} et Ay = B, U {ah41} (si al,4, appartient 3 By, on prend
fn+1 = gn). Expliquons la construction de g,, celle de f,+1 est semblable.

S’il existe o, B € Aqn tel que & < an41 < Bet e, B[NA, = 0, on choisit un point
a' € D' tel que fo(a) < a’ < fa(B), ceci est possible car D’ est partout dense ; on prend
alors By, = A, U {a’} et on prolonge f, en posant gn(ant1) = a@’.

S’il existe a € A, tel que an+1 < aet]—oo,a[NA, = 0, on choisit un pointa’ € D’
tel que @’ < fn(c) et comme précédemment on pose Bj, = A}, U {a’} et gn(@n+1) = @'.

Le raisonnement est identique lorsqu’il existe @ € A, tel que & < an+4+1 et
|a, +o0[NA, = 0.

Ceci achéve la construction des bijections f, : A, — AL.
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2. On définit une bijection f : D — D’ en posant simplement f|a, = fn.

3. Montrons que toute bijection croissante f : D — D’ est un homéomorphisme.
Soient a € D, V un voisinage de a’ = f(a). L’ensemble D’ étant partout dense, il existe
o/,f' € D'tel que @’ €]o/,f'[C V;onaa = fla)et B = f(B)oda,B € Det
a <a<p.Onaalors f(]e,8(ND) C V N D’ o |, B[ND est un voisinage de a dans
D, ce qui prouve la continuité de f au point a. De méme, on vérifie la continuité de fu
EXERCICE 2.20.11
On remarque que toute suite de Cauchy est bornée : en effet, il existe no tel que
d(Zny,Zn) < 1 pourtout n > no, d’ol , € B’ (x4, ;) en posant

r= max(l,osr?laé);u d(Tngy, Tn))-
Cette boule étant compléte par hypothése, la suite () est convergente.
EXERCICE 2.21.1
OnaFr(AxB) = A x BN(X xY —Int (Ax B)), o (proposition2.21.2) A x B = AxB
etInt (A x B) = A x B. De plus,
XxY-AxB=(X-A)xY)U(Xx (Y -B))
et par conséquent
Fr(Ax B)=((AxB)N((X - A) x V))U((AxB)N(X x (Y — B)))
ot (Ax B)N((X - A) x Y) = (AN (X — A)) x B = Fr (A) x Betde méme
(AxB)N(X x (Y —=B))=Ax (BN (Y — B)) =4 x Fr (B),
ce qui permet de conclure.

EXERCICE 2.21.2
11 s”agit de vérifier que, pour tout z € R, ’ensemble {(z, 1 — )} est ouvert et ceci résulte
de I’égalité suivante

{z1-2)}=XN(z,c+e[x[1—z,1—z+¢)ode>0.
Il en résulte que X est le seul sous-espace de X dense dans X et, X n’étant pas dénom-
brable, ceci prouve que X ne saurait &tre séparable.

EXERCICE 2.21.3

1. Lorsque ¥ est le filtre élémentaire associ€ 2 une suite ((zn,y.)) et que I’espace X est
a base dénombrable de voisinages, la démonstration est la suivante. D’apres la proposition
2.16.6, il existe une sous-suite (zn, ) qui converge vers x ; la sous-suite (yn, ) converge
alors vers y et il en résulte que la sous-suite ((zn,,¥yn,)) converge vers (z,y), ce qui
prouve que (z,y) est une valeur d’adhérence de la suite ((zn,yn)).

2. Dans le cas général, soient V et W des voisinages de x et y, il s’agit de démontrer
que V x W rencontre tout M € F. Le filtre pr2(F) converge vers y, donc est plus fin que
le filtre V(y) ; il existe donc N € Ftel que W = pra(N).Posons P=M NN € F,ona

(VxW)nM D (V x pr2(P)) NP = (VNpri(P)) x pr2(P)
et cet ensemble est non vide car V Npr; (P) est non vide, le point « étant adhérent A pry (P).
Ceci prouve le résultat voulu.

EXERCICE 2.21.4

Notons d’abord que pri|e : G — X est une bijection dont la bijection réciproque est
donnée par la formule (pri|c)™!(z) = (z, f(z)). D autre part, cette bijection pri|g est
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continue d’aprés la continuité de la projection pr; : X x Y — X. Quant a la bijection
réciproque, elle est continue si, et seulement si, f est continu. Ceci prouve que f est continu
si, et seulement si, pri | est un homéomorphisme de G sur X.

EXERCICE 2.21.5 PRODUIT D’ESPACES REGULIERS

Un produit d’espaces séparés étant séparé (corollaire 2.21.12), il s’agit de démontrer que
tout voisinage d’un point z = (z;)ics contient un voisinage fermé. On peut supposer que
ce voisinage est un voisinage élémentaire, donc de la forme V = [[;c; Vi X [[;¢;_, Xi
ol J est une partie finie de I et ol V; est un voisinage de ;. Les espaces X; étant supposés
réguliers, il existe un voisinage fermé W; de z; tel que W; C V; et il en résulte que
[Tics Wi X I1;c;— , Xi est un voisinage fermé (corollaire 2.21.3) de z contenu dans V/, ce
qui prouve que I’espace produit est régulier.

EXERCICE 2.22.1

1. Soit ((zn,y=)) une suite de G convergeant vers (z,y) dans I’espace X x R, montrons
que (z,y) appartient 2 G, c’est-a-dire que z € O et que y = f(z), ceci prouvera que G est
fermé dans X X R. On a y,d(zn, F') = 1 pour tout n, d’odt y d(z, F') = 1 ; on en déduit
qued(z, F) #0,soitz € Oet(z,y) € G.

2. La fonction f : O — R étant continue, 1’exercice 2.21.4 montre que O est ho-
méomorphe a G, donc 2 un sous-espace fermé de X x R d’apreés 1. Si X est un espace
métrique complet, tout sous-espace fermé de X X R est complet et par conséquent O est
homéomorphe a un espace métrique complet.

3. Soit A un Gs d’un espace métrique complet X : A peut s’écrire (oo, On Ol les
ensembles O, sont des ouverts de X. D’apres le corollaire 2.21.7, A est homéomorphe
a un sous-espace fermé de I’espace produit []>> ) On ; chaque O, étant homéomorphe 2
un espace métrique complet, cet espace produit est homéomorphe a un espace métrique
complet (théoréme 2.22.5) et la proposition 2.20.5 montre alors que A est homéomorphe a
un espace métrique complet, ce qui prouve le résultat voulu.

4. On peut écrire

I=R-Q=[)[R-{a}),
q€Q
ce qui prouve que I’ensemble des irrationnels I est un G5 de R ; d’aprés 3., I est donc
homéomorphe & un espace métrique complet : il existe sur I une distance topologiquement
équivalente a la distance usuelle, celle induite par celle de R, pour laquelle I est complet.
Bien entendu, il ne peut s’agir de la distance usuelle pour laquelle I n’est pas complet,
n’étant pas fermé dans R.

EXERCICE 2.22.2

1. 11 est clair que d’ est une distance sur O. Montrons que les distances d et d’ sont to-
pologiquement équivalentes. On remarque d’abord que d < d’, donc I’application iden-
tique Io : (0,d') — (O,d) est continue. Pour démontrer que I’application identique
Io : (O,d) — (O,d') est continue, montrons que toute suite (z») de O qui converge vers
 pour la distance d, converge vers z pour la distance d'. D’aprés (2.13.4), on a
d(z,zn)
d(z, Fd(an, F)
ot limy o0 d(, ) = 0 et limy00 d(z, Fr) = d(z, F) d’apres la continuité de I’ap-

(2.44.1) d'(z,z,) < d(z,z,) +
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plication y — d(y, F) ; il en résulte que limp— 00 d'(z,zn) = 0, ce qui prouve le résultat
voulu.

2. On suppose ’espace X complet, montrons que 1’espace O muni de la distance d’ est
complet. Soit (z,,) une suite de Cauchy de (O, d’). Vu I'inégalité d < d’, la suite (z,) est
de Cauchy pour la distance d et converge donc vers un point z € X pour la distance d.
D’autre part, la suite (z,,) étant de Cauchy pour d', pour tout € > 0, il existe un entier n tel
que

1 1

- <epourp>netqg=>n
zp B daq, )|~ °P !

c’est-a-dire
|d(zp, F) — d(zq, F)| < e d(zp, F)d(zq, F).
En faisant tendre g vers I’infini, on en déduit que
|d(zp, F) — d(z, F)| £ € d(zp, F)d(z, F') pour tout p > n.
Cette inégalité montre que d(z, F') ne peut étre nul et par conséquent z appartient a O, F'
étant fermé. L’inégalité (2.44.1) montre alors que la suite (z,,) converge vers = pour d'.
Ceci prouve que tout ouvert d’un espace métrique complet est homéomorphe & un espace
métrique complet.
EXERCICE 2.22.3
Munissons I’ensemble X de la métrique discréte et prenons sur I’espace produit Y = X N*
la distance dg définie en (2.22.5) avec 8, = 1/n. On obtient alors dg(z,y) = 0siz =y
,etsiz # y, dg(z,y) = 1/n ol n est le plus petit entier tel que T, # Yn, C’est-2-dire
la distance d proposée. D’apres le théoréeme 2.22.5, I’espace Y est bien un espace métrique
complet pour cette distance.
EXERCICE 2.22.4 FRACTION CONTINUE ILLIMITEE
l,a.0Onar, = 1/au, soit
'r1=ﬂoilp1=1,q1=a1;

[/}
1 Qa2
T = = )
a1+ 1/az  ar02+1
soit P2
ro = q—zoﬁp2=a2etQ2=012¢]1+li
r3 s’obtient 2 partir de 72 en substituant a2 + 1/a3 & a2, d’ol
_ o2+ 1/asz azp2 + P
r3 = = ’
(az+1/az)ar+1  az@2+q
d’ou p3
ra= ol p3 = a3pz + p1 et g3 = @3¢z + q1.

On raisonne ensuite par récurrence, T, +1 S obtient en remplacant dans 1’expression de 75,
Qn par an + 1/any1, d’ol
o1 = (an + l/an+1)pn—1 + Pn—-2 - Qn+1Pn + Pn-1
(an + 1/an+1)qn_1 + gn—2 Qnt1qn + gn-1
0il P, = AnPn—-1+Pn—-2,qdn = Angn—1+gn-2 et ceci prouve le résultat voulu. On notera
que les pn et gn sont des entiers > 1, que pn < gn pour n > 2 d’apres les formules de

récurrence (car p1 < qa et p2 < gz), donc 0 < 7, < 1 pourm > 2.
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b. On a p2q1 — p1g2 = —1 et par récurrence

Prn+1qn — Pndn+1 = (an+1pn + Pn—1)qn — Pn(an+1¢1n + ¢In—1)
= —(Pngn-1—Pn-1qx) = (-1)".
On en déduit que
="
Tn4l —Tp = ,
andn+1

dolrper =11 + Z’;:l(—l)"/qquﬂ. La série 35>, (—1)* /qkqx+1 est en fait conver-
gente car il s’agit d’une série alternée ; le terme général tend vers O car la suite (gn) est
strictement croissante d’apres la formule de récurrence g, = angn—1 + gn—2. Ceci prouve
que la suite (r,,) est convergente, notons  sa limite. On a 72, < & < 72,41 pour tout n et
en particulier 0 < z < 1.
¢. Si 0 < = < 1 est développable en fraction continue illimitée, nous allons montrer

que x est nécessairement irrationnel et que le développement est unique.

Notons d’abord la formule

reat(Qy .oy aktt) = (o, .. o + Ti(Qkat, - QL))

pour tout k, ! > 1. En effet, pour [ = 1il ne s’agit que de la définition de 741 en fonction de
T} ; On raisonne ensuite par récurrence sur l, 7x.4++1 $’obtient 4 partir de 7,4 en remplagant
Qg1 par g1 + 1/ar4141, ce qui conduit de suite 2 la formule voulue.

En faisant tendre ! vers I’infini, on en déduit que, pour k > 1,

z =ri(a1,...,0k—1,0% + Tp) D T} = ll_iglo'rz(akﬂ, ey Okl)

observons que zx €0, 1[. Etant donné que
Tia(Qhka1y oo Q1) = ri(eksr + 1@k, - Qgr4)),
on obtient en passant  la limite x = 1/(ax+1 + Zk+1), formule qui vaut encore pour
k = O en posant o = . Autrement dit,
1
Ty = ————— pour tout k > 0.
ar41 + Te+1

Cette formule permet de calculer par récurrence les entiers ax, > 1 et les réels zx €]0, 1].
En effet, ax+1 est nécessairement la partie entiére de 1/, soit

1 1
(2.44.2) Qpp1 = [—] ety = — — [i] .
Tk Ty Tk

Lorsque z est rationnel, soit £ = o = p/q, 0 < p < g, tous les xx sont rationnels ;
montrons que T = Yr+1/Yx o (yx) est une suite d’entiers > 0 strictement décroissante :
ceci prouvera qu’il existe k tel que 0 = yp41 < Yk, d’oll ¢ = 0 ce qui est absurde, les
). appartenant 2 |0, 1[. On a zo = y1/yo avec yo = g et y; = p, puis par récurrence on a
(division euclidienne) yx = syx41 +¢,0 < t < Yrt1, 00 Y /Yk+1 = S + t/Yk+1, SOit
s = [1/xx] et Th41 = Yr+2/Yk+1 OU Y2 = ¢, ce qui prouve le résultat voulu.

2. Ce qui précéde montre que toute fraction continue illimitée définit un nombre irra-
tionnel de |0, 1[ et que I’application f qui 2 toute suite (cn)n>1 associe le nombre irration-

nel a%l + 4 I—;J. + - - - est injective. Montrons que cette application de Y = F(N*; N*)
sur I’ensemble I des irrationnels de )0, 1[ est surjective.

Etant donné un irrationnel de 10, 1[, les formules (2.44.2) définissent une suite (o )n>1
d’entiers > 1, tous les z,, étant irrationnels. Vérifions alors que z = EIIJ 4+t ’Tll 4.
En effet, on note que '

z =rg(a1,...,0k-1,0r + Tk) pourtout k > 1.
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Pour k = 1, cette formule se réduit 3 z = ri(c1 + 1) = 1/(0n + 1), soit
1/z = a3 + z1, ce qui est la définition de a; et ;. On raisonne ensuite par récurrence :
onazy = 1/(aks1 + Tht1), d’od

z = rk(al e, Okt ak+————)
e ’ Qk+1 + T4l

= Tr4r(Qa,. .., Qky Qrg1 + Tha)s
ce qui prouve le résultat voulu. La fonction y — 7 (aa, . . ., 0k-1, @k +y) étant croissante
si k est pair, décroissante si k est impair, on en déduit que

P2n/G2n < T < Pant1/g2n41 pour tout n
et, en faisant tendre n vers I’infini, il résulte que = est bien égal a la fraction continue

illimitée %ll + 4 |A + -+ Ceci prouve que f : Y — I est une bijection.

Qan

3. Soit & = () € Y et soit (o) une svite de Y, o’ = (o) ; on pose z = f(a) et
x? = f(a?). Les espaces Y et I étant métrisables, il s’agit de démontrer que la suite (a”)
converge vers « si, et seulement si, la suite (z7) converge vers .

Supposons d’abord que la suite (a”) converge vers a, alors (proposition 2.21.8) pour
tout entier n > 1, il existe un entier k tel que ap, = a‘,’, pour 1 < p < n et tout
J 2 k. 1l en résulte que z et =’ pour j > k appartiennent au méme intervalle d’extré-
mités rp_1(a1,...,an-1) et rp(a,...,an), intervalle dont la longueur 1/g,—1¢x tend
vers 0, ce qui prouve que la suite (z7) converge vers .

Réciproquement, si la suite (z7) converge vers z, les formules (2.44.2) montrent que,
pour tout n, la suite (o) converge vers ax, et ceci prouve le résultat voulu,

Tout espace métrique discret étant complet, I’espace Y est un espace métrique complet
d’apres le théoréme 2.22.5 : plus précisément, il existe une distance sur Y’ compatible avec
sa topologie pour laquelle Y est complet. On en déduit que I est homéomorphe a un espace

métrique complet.
EXERCICE 2.22.5
1. Rappelons que 1’application

fi(an)nz1— Y om37"

n=1
est une bijection de Iespace {0, 2}N" sur I’ensemble de Cantor C. Montrons que f est un
homéomorphisme. Soit (a*) une suite de {0, 2}V, o = (ak), et soit
o= (an) € {0,2}";

posons z¥ = f(a*) etz = f(a). Les espaces {0,2}"" et C étant métrisables, il s’agit de
démontrer que la suite (a*) converge vers  si, et seulement si, la suite (z*) converge vers
z.

Notons d’abord le résultat suivant. Soient , 8 € {0,2}"", e # 8 ; posons z = f(c)
ety = f(B). Notons p > 1 le plus petit entier tel que ap # Bp. On a

(o)
T-y=2x3"P+ Y (oan—Ba)37"

n=p+1

00
<2 ) 3"=377,
n=p+1

Z (an — Bn)37"

n=p+1
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d'ou37P < |z —y| <3P

Si la suite (a*) converge vers c, pour tout entier p il existe k tel que an = o, pour
1<n<pettoutj >k, dod|z—z'| <3P et, 377! tendant vers 0 lorsque p tend
vers I’infini, ceci prouve que la suite (a:k) converge vers z. Réciproquement, si la suite (z*)
converge vers z, pour tout entier po, il existe k tel que |z — 27| < 377 pour j 2 k,d’od
37Pi < 37PY, soit p; > po si p; désigne le plus petit entier tel que ap; # ap; et ceci
montre que o, = o, pour 1 < n < po et tout § > k : la suite (a") converge vers a.

2. D’apres le corollaire 2.21.16, on en déduit que les espaces C™, n > 1, et CN sont ho-
méomorphes a {0, 2}V X[1:%] et {0, 2}V XN, Les ensembles N* x [1,n] et N* xN étant équi-
potents & N*, le corollaire 2.21.14 prouve que ces espaces sont homéomorphes a {0, 2}”',
donc a I’ensemble de Cantor.

EXERCICE 2.22.6

1. Soit @ € A, alors a € A, pour tout n > 1 ; les ensembles A, . étant disjoints deux
a deux, il existe une unique application € € &, telle que a € Ap . Vu I’hypothese c., on
en déduit qu’il existe une unique application € : N* — {0, 1} telle que a € An,e,, pour
toutn > 1ol e, déSIgne la restriction de ¢ 2 [1, n]. Ceci permet de définir une application
fiA = {0,1}" telle que a € Ay g, (a) Pourtout n > 1 00 fu(a) = f(a)|p,n-
Cette application est une bijection. En effet, soit ¢ € {0,1}"’, alors f(a) = ¢ signifie
a € (o2, An,e. c€ qui détermine a, cette intersection étant réduite a un point d’aprés le
théoréme de Cantor (proposition 2.18.9).

2. Montrons ensuite que cette bijection est un homéomorphisme. Soit (a*) une suite de
A qui converge vers a € A et soit n > 1, alors il existe € € &, tel que a € A, . Soit
0 < & < mingeg,, e 2e d(a, An ¢1), il existe k tel que |a—aj| < é pour j > k. Vule choix
de 8, a’ appartient au méme ensemble A, - que a. Si on pose € = f(a) ete? = f(a?), ceci
prouve que £(n) = €7 (n) pour tout j > k et ceci démontre que la suite (¢*) converge vers
€, d’ob la continuité de f. Inversement, supposons que la suite (s"') converge vers €. Soit
n > 1, il existe k tel que €,, = &5, pour tout § > k, ce qui prouve que a et a’ appartiennent
au méme ensemble A, e, d’od | — a?| < maxcce, diam A, pour tout j > k; vu
I’hypothese b., ceci montre que la suite (ak) converge vers a. Ceci prouve la continuité de
f~1. L’espace A est donc homéomorphe 2 I’ensemble de Cantor d’aprés I’exercice 2.22.5.
Note On observera que I’ensemble de Cantor lui-m&me est bien construit selon le procédé

décrit ci-dessus
EXERCICE 2.22.7

Utilisons I’exercice 2.22.6. Construisons une suite (A, )»>1 de fermés vérifiant les proprié-
tés requises dans cet exercice. En prenant pour A, . des boules fermées, il suffit de vérifier
la propriété suivante : soit B'(a;r), 7 > 0, une boule fermée et soit § > 0, alors il existe
des boules fermées disjointes B’(a1; s) et B’(az;s), 0 < s < §, contenues dans B'(a; ).
En effet, prenons a1 = a ; le point a n’étant pas un point isolé, la boule ouverte B(a;r/2)
contient un point a2 # a. Il suffit alors de choisir s tel que 0 < s < min(4, d(a1, az2)/2).

EXERCICE 2.23.1

OnaTF,(X;Fs(Y;2)) = (Z¥)X et F5(X x Y; Z) = ZX*¥ ol les espaces produits sont
munis des topologies produits. Il suffit d’utiliser alors le corollaire 2.21.16 en observant
que, dans cette situation particuliere, I’homéomorphisme décrit dans la proposition 2.21.15
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est bien la bijection canonique qui nous intéresse ici.

EXERCICE 2.24.1

1 = 2 Soit A un ouvert de X, alors 7(A) est ouvert d’aprés 1. Vu la continuité de 7,
on en déduit que w~ (w(A)) est ouvert, ce qui prouve 2.

2 = 1 Soit A un ouvert de X, 7~ !(m(A)) est ouvert d’aprés 2., ce qui signifie que
m(A) est ouvert d’apres la caractérisation des ouverts de la topologie quotient. Ceci prouve
-que I’application 7 est ouverte.

Le raisonnement est identique dans le cas fermé.

EXERCICE 2.24.2

1.Ona f = g o et la surjection canonique w : X — X/R est continue. Si g est continu,
f est donc continu. Réciproquement, si f est continu et si O est un ouvert de Y, g~1(0)
est un ouvert de X/R car 7~ (g~1(0)) = £~1(O) est un ouvert de X ; ceci prouve que
g est continu.

2. Soit O un ouvert de X/R, alors U = w~*(O) est un ouvert de X et, 7 étant surjec-
tive, 7(U) = O ; il en résulte que g(O) = g(w(U)) = f(U) est un ouvert de Y, ce qui
prouve que g est une application ouverte.

3. Lorsque f est surjective, g est bijective. La continuité de g résulte de celle de f
d’apres 1. Si f est ouverte, g est ouverte d’apres 2. et réciproquement, si g est ouverte, f est
ouverte en tant que composée d’applications ouvertes (7 est supposée ouverte). Enfin, dire
que g est ouverte signifie que g~ est continu, autrement dit que g est un homéomorphisme,
ce qui prouve le résultat demandé.

EXERCICE 2.25.1

1. Le raisonnement est analogue 2 celui de la proposition 2.18.5. Soit o > > w(f; z),il existe
un voisinage ouvert de z tel que diam f(V N A) < a. Soity € V N A4, alors V est un
voisinage de y, d’od a > w(f;y) et
w(f; V) C [-—OO, al )
ce qui prouve que w( f;s) est s.c.s. au point .
2.0na Ao =72, {2 € 4; w(f;x) < 1/n} ;lafonction w étant s.c.s., on en déduit
que Ao est un G5 de A. Il existe des ouverts Oy, de X tels que Ao = (22, (On N A).

Si X est un espace métrique, Aestun G5 de X d’aprés le lemme 2.29.7 : il existe des
ouverts Oy, de X tels que A = (32, O, d’od

(e <]
Ao =[)(0nnOy),
n=1
ce qui prouve que Ag est un G5 de X.

3.8i f: A > Y est continu, w(f;z) = 0 pour tout z € A (proposition 2.18.5), d’od
A C Ao C A. Ceci montre que A est dense dans Ao. Montrons que f se prolonge en
une application continue fo : Ao — Y, c’est-d-dire (proposition 2.25.1) que la limite
limy 3 yea f(y) existe pour tout = € Ao. L’espace métrique Y étant complet, il suffit de
remarquer que (f(V N A))vev(s) est une base de filtre de Cauchy, I’oscillation de f étant
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nulle au point z.
EXERCICE 2.25.2
1.Onnote F': Ao — X x Y I'application 2 — (z, fo(z)) et
Go = {(z,y) € X x Bo; = = go(¥)}

le graphe de go. On a alors

F—I(GO) ={z € Ao; fo(z) € Boetz = go(fo(z))} = Ai.
Le sous-espace Gy est fermé dans X x By d’apres la continuité de go ; d’apres le lemme
2.29.7, Go estun Gs de X X Bo,donc de X xY, X x By étant un G5 de X x Y. L’application
F étant continue, I’exercice 2.13.4 montre que A; est un G5 de Ao, donc de X, Ao étant un
Gs de X.

Pour démontrer que Bi est un G, on raisonne de fagon similaire. On introduit I’appli-
cation F' : y — (go(y),y) de Bo dans X x Y et on remarque que B; = F'~1(Gj) ol G}
est le graphe de fo.

2. On vérifie d’abord que fo(A;) C Bi. Soit z € Aj, alorsy = fo(z) € B et
go(fo(z)) = z,d’0l go(y) = = € A; C Ao et fo(go(y)) = fo(z) = v, ce qui prouve que
y appartient & B;.

De méme, on vérifie que go(B1) C A ; on peut donc définir des applications
f1 = fola, : A1 = Biet g1 = go|g, : B1 — Ai. Ces applications sont continues et
d’apres la définition de A; et B1, ona g1(fi(z)) = z pourtoutz € A; et f1(91(y)) =y
pour tout y € By, ce qui prouve que f; : A; — B est un homéomorphisme, g; étant
I’homéomorphisme réciproque. Cet homéomorphisme prolonge f par construction.

3. Soient X un espace métrique complet, A un sous-espace de X homéomorphe 2 un
espace métrique complet Y ; notons f : A — Y un tel homéomorphisme. D’apres 2., il
existe un G5 Ay de X contenant A, un G5 B; de Y contenant Y, qui ne peut donc étre
que Y, et un homéomorphisme f, : A, — Y qui prolonge f. On a donc nécessairement
A = Aj, ce qui prouve que A est un G et le résultat voulu.

EXERCICE 2.27.1

On sait déja que la topologie de la convergence uniforme est plus fine que la topologie de
la convergence simple. Lorsque Y est I’ensemble vide, I’ensemble F(X; Y') est I’ensemble
vide ; lorsque Y est réduit a un €lément, il en est de méme F(X;Y) : dans les deux cas,
il n’existe qu’une seule topologie sur F(X;Y') et par conséquent la topologie de la conver-
gence uniforme coincide avec la topologie de la convergence simple. Lorsque X est fini,
’espace F(X;Y) s’identifie 3 Y™ si n désigne le nombre d’éléments de X. La distance
définissant la topologie de la convergence uniforme s’écrit

di(y, z) = max d(yi, z:) 00y = (¥i)ii<n, 2 = (21)1gign,

et on sait que cette distance définit la topologie produit sur Y™ ; dans ce cas les deux topo-
logies sont donc les mémes.

Si X est infini et si Y admet au moins deux éléments, construisons une suite (f,) de
F(X;Y) qui converge simplement, mais qui ne converge pas uniformément : ceci prouvera
que les deux topologies sont différentes. Il existe une injection n — z,, de N dans X et
deux éléments distincts a et b de Y. Notons alors f, : X — Y I’application définie par
fa(z) = asiz = z, et fo(xz) = bsiz # xn. Cette suite (f,) converge simplement
vers la fonction f identiquement égale a b, car, z € X étant fixé, ou bien x # x,, pour
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tout n2 et alors f, = f, ou bien il existe un entier = (et un seul) tel que = z,, auquel cas
fo(z) = f(z) pour p > n. Par contre, cette suite ne converge pas uniformément : en effet,
si elle convergeait uniformément, sa limite ne pourrait étre que f et ceci n’a pas lieu car
dl(f) fn) = SUP;ex d(f(:l:), fn(af)) = d(a:b)'
EXERCICE 2.27.2
On peut supposer que la distance sur Z est bornée, car deux distances uniformément équi-
valentes sur Z induisent la méme structure uniforme sur les espaces Fu(X x Y;Z) et
Fu(Y;Z), donc sur Pespace Fu(X;Fu.(Y;Z)). Etant donné deux fonctions
f,9 € F(X xY;Z),onaalors

dl(f:g) = sup Yd(f(m!y))g(xvy))

(z,y)EX X
et
d1(f(:l:, '))g(w) ’)) = 225 d(f(:c,y),g(z,y)),

d’ol
di(2(f), ®(g)) = sup d1(f(z,s), 9(z,)) = sup sup d(f(z,),9(z,v))
z€X z€X ye€Y
et par conséquent d1(®(f), ®(g)) = d1(f,g) : autrement dit, I’application ® est simple-
ment une isométrie, ce qui prouve le résultat voulu.

EXERCICE 2.27.3

Comme pour I’exercice 2.27.2, on peut supposer que les distances sur Y et Z sont bornées.
Soit € > 0, il existe § > O tel que d(p(¥), p(¥')) < € pour tout y,3' € Y vérifiant
d(y,y’) < 6. Soient f,g € Fu(X;Y), onadonc d((¢ o f)(z), (¢ o g)(x)) < € pour tout
z € X tel que d(f(z), g(z)) < ¢ ; autrement dit,

di(f,9) <6 =di(po f,pog)<e

et ceci prouve que I’application f — ¢ o f est uniformément continue.

EXERCICE 2.27.4

Comme dans les exercices précédents, on peut supposer que la distance sur Z est bornée.
Soient f,g € Fu.(X;Z),ona
di(fop,gop) = sup d(f(e®), 9(v(®)) < sup d(f(2), 9(z)) = d(,9)

et ceci prouve que I’application f — f o  est uniformément continue.

EXERCICE 2.27.5

Si les fonctions f,, sont continues en un point z, montrons que la fonction f est continue au

point z. Il existe un voisinage V de z tel que la suite (f»|v) converge uniformément vers

flv. D’apres la proposition 2.27.4, 1a fonction f|y : V — Y est continue au point = ; si W

est un voisinage de f(z), (f|lv) ™ (W) = V' N f~!(W) est donc un voisinage de z dans le

sous-espace V/, donc dans X d’aprés la proposition 2.20.2 et il en résulte que f~ (W) est

un voisinage de x dans X, ce qui prouve la continuité de f au point z.

EXERCICE 2.27.6

Soit (z*), z¥ = (aX), une suite de c(N;Y') qui converge vers z = (z,) dans [°(N;Y).

L’espace Y étant complet, il s’agit de démontrer que la suite () est de Cauchy. On a
d(zp,zq) < d(a:’;,:z:p) + d(:z:f;,:z:q) + d(xﬁ,m';)
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et, € > 0 étant donné, il existe un entier & tel que

d(a:';,a:,,) <e, d(:t’q“,:z:q) <g¢
la suite (2% )nen appartenant 2 I’espace c, il existe un entier n tel que d(zk, z%) < e pour
p,q > n,d’0d d(zp, z4) < 3¢, ce qui permet de conclure.

EXERCICE 2.27.7 COMPLETE D’UN ESPACE METRIQUE

1.Ona |fz(y)| = |d(z,y) — d(a,y)| < d(a,z) ; ceci montre que I’application f, appar-
tient bien a I’espace F,,(X; R). On a d’autre part

|f=(2) = fy(2)] = ld(z, 2) — d(y, 2)| < d(=,y),
dob di(fz, fy) < d(z,y) ; de plus, |fz(z) — fy(z)| = d(z,y), ce qui prouve que
d1(fz, fy) = d(z,y). Lapplication ¢ : £ — f, est donc une isométrie de X sur un
sous-espace de I’espace F(X; R).

2. Soit X I’adhérence de p(X) dans F,(X; R), alors X estun espace métrique complet
(corollaire 2.27.3) et X est isométrique 2 un sous-espace dense de X, a savoir (X).

3. Soient X et X, deux espaces métriques complets et @; : X — X; des applications
telles que s soit une isométrie de X sur son image ;(X) supposée dense dans X;. Alors
w2007 1 1(X) = w2(X) est une isométrie ; cette application uniformément continue
se prolonge donc (théoréme 2.25.2) en une application continue ¢ : X1 — Xo. Le principe
du prolongement des identités montre que ¢ est une isométrie sur son image, image qui
est donc complite ; cette image (X1) est donc fermée, elle est par ailleurs partout dense
vu qu’elle contient P2 (X) et par conséquent <p(X 1) = Xa. Ceci montre que ¢ est une
isométrie de X, sur X, ce qui prouve le résultat voulu.

Note La méthode précédente de complétion d’un espace métrique utilise de fagon essen-
tielle le fait que R est complet par I’intermédiaire du corollaire 2.27.3. Cette méthode ne
peut donc étre utilisée pour construire R en tant que complété de Q.

EXERCICE 2.27.8 PERMUTATION DE LIMITES

1. Soit € > 0, il existe My € F tel que
d(f(z1,22), h(z2)) < e pour tout £, € M; ettout z2 € X,
d’od
(2.44.3) d(f(z1,x2), f(x1,22))) < 2¢€ pour z1,z) € My etz2 € Xo.
Etant donné que y = lims, g, on peut choisir M, tel que d(g(z1),y) < & pour tout
x1 € M. Le point =i € M, étant fixé, il existe d’autre part M2 € F tel que
(2.44.9) d(f(z1,2),9(z1)) < € pour tout 22 € M.

On a alors pour 1 € M, et x2 € M

d(f(xl)a"?):y) < d(f(mh (1:2), f(m/17m2)) + d(f(xlly $2)) g(xll)) + d(y(m,l)iy)>
d’od d(f(z1,z2),y) < 4¢ et ceci prouve que y = limy, x5, f. L’application f ayant une
limite suivant le filtre produit F1 x Fa2, on peut utiliser 1’exercice 2.17.5 en permutant le
role des espaces X1 et X et ceci prouve que y = limg, h, soit

i =l i/

2. Le fait qu’on puisse permuter deux limites lorsqu’une de ces limites est uniforme
contient comme cas particulier la proposition 2.27.4. Soient X un espace topologique, Y’
un espace métrique et f, : X — Y une suite d’applications continues en un point a € X
convergeant uniformément vers une application k. Prenons X1 = Net X2 = X, pour F;
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le filtre de Fréchet et pour F le filtre des voisinages du point a. Notons f : X; X X - Y
I’application f(n,z) = fa(x). La continuité au point a signifie

f(n,a) = fu(a) = lim fn = lim f(n, )

La convergence uniforme de la suite (f,) vers h signifie précisément que la limite
h(z2) = lim f(s, 22)
1

est uniforme par rapport a z2. D’aprés 1., on a donc

nl_l_)n;lo ll_r)n fa(z) = llm 11m fn(z),

c’est-a-dire
lim fa(a) = lim h(z),
soit h(a) = limz—4 h(z) ce qui signifie que h est continu au point a.

3. Lorsque Y est un espace métrique complet, montrons que la limite lims, x5, f
existe, c’est-a-dire que la base de filtre f(F1 x F2) est de Cauchy. On écrit d’abord (2.44.3)
et (2.44.4) ; de (2.44.4), on déduit

d(f(zll:mz): f(x{l’yZ)) <2¢ pour tout z2, Y2 € M.

On a d’autre part

d(f(fl)l,(l:z), f(mll:y2)) < d(f(xha:?)’ f(mllvwz)) + d(f(:l:{l,$2), f(mll’yz)):
vu (2.44.3), on en déduit que

d(f(z1,2), f(z1,y2)) < 4€ pour tout z, € My, x2,y2 € Ms.

On a alors

d(f(wl’wi’): f(y11y2)) < d(f(ml):’:?)’f(xll’y?)) + d(f(zlla:‘h))f(yl’y?)),
d’ol

d(f(z1,z2), f(y1,y2)) < 8¢ pourtout z1,y1 € M et z2,y2 € M2,

ce qui prouve le résultat voulu.

EXERCICE 2.27.9

Montrons par exemple que f admet une limite 2 droite en tout point z € [a, b[. Soit e > 0,
il existe un entier n tel que
d(f(z), fo(z)) < € pour tout z € [a, b].
La fonction f, admettant une limite a droite au point z, il existe § > O tel que
d(fn (), fa(2)) Sepourz < y,z <z +3,
d’od
d(f(y), £(2)) < d(f(¥), fn(¥)) + d(fn(¥), fn(2)) + d(fn(2), f(2)) < 3e
et ceci montre que la base de filtre (f(]z,z + 8[))o<s<b—=z €st de Cauchy et, X étant
complet, que f admet une limite a droite au point z.

EXERCICE 2.28.1

Le raisonnement est analogue a celui du théoréme 2.28.1. Soit (O ) une suite d’ouverts par-
tout denses et soit O un ouvert non vide ; il s’agit de vérifier que O rencontre I’intersection
Or. On construit une suite d’ouverts élémentaires de la forme
Bo=[] Basx [] X
. 1€J, i€l—-Jp
ol J,, est une partie finie de I, By, ; est un ouvert non vide de X; de diametre < p,,, cette
suite vérifiant en outre (2.28.1), c’est-a-dire
Bo CO, Bay1 CBaNOp, 0< pry1 < pnet le pn=0.
n—o00

n*O
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Pour conclure, il faut alors vérifier que I’intersection B = (o2, _B'E_est non vide. Or, si on
écrit By, = [[;¢; Bn,i en posant By, ; = X lorsque i & Jn, ona Bn = [[;¢; Bn,i» d’0d

B = [l (ﬂf;oﬁ,,_i). Soit i € I, alors ou bien B,; = X; pour tout n et

® o Bn,i = Xi, ou bien la suite (B ;) est une suite décroissante de fermés non vides
dont le diamétre tend vers O et I’intersection (o Bi; est védtﬂe a un point d’apres le
théoréme de Cantor (proposition 2.18.9). Dans tous les cas (3, Bx,: est non vide et il en
résulte que B est non vide.

Expliquons maintenant comment on construit par récurrence les ouverts By. L’ ouvert
non vide O contient un ouvert élémentaire non vide de la forme [T, ;, Oo,i X [Tici- 5o Xi

et, Jo étant fini, il existe des boules fermées B’(zi; po/2) C Oo,: pour @ € Jo ; on prend

alors
Bo = H B(:E-,'; p0/2) X H Xi
i€Jo iel-Jo
dont 'adhérence [ ;¢ 5, B(:; p0/2) X [ ;1 4, Xi est bien contenue dans O, 'adhérence
d’une boule ouverte étant contenue dans la boule fermée de méme centre et de méme rayon.
La construction de By+1 est analogue, il suffit d’utiliser le fait que Bn N Oy, est non vide.

EXERCICE 2.28.2

1. La fonction f est discontinue en tout point rationnel a = p/q € Q" car f(a) =1/¢ >0
alors que tout voisinage de a contient un irrationnel ; il en est de méme si a = 0 vu que
f(0)=1.

Sia € R — Q, soit go € N* ; I’ensemble des rationnels p/q avec 1 < q < qo tels que
|la — p/q| < 1est fini. Il en résulte qu’il existe € > O tel que

p/q €la—¢,a+¢e[=> q > qo.
On en déduit que
z€la—€e,a+e[=0< f(z) <1/q
et ceci prouve la continuité de f au point a vu que f(a) = 0.

2. D’apres I’exercice 2.18.2, il suffit de vérifier que Q n’et pas un Gs. On raisonne
par ’absurde : on suppose que R — Q peut s’écrire comme une réunion dénombrable de
fermés ; ces fermés sont nécessairement d’intérieur vide et R — Q serait donc maigre. On
remarque ensuite que Q = |J, .o {g} est maigre. Il en résulte que R, en tant que réunion de
deux ensembles maigres, serait maigre, donc d’intérieur vide d’apres le théoréme de Baire
(théoreme 2.28.1) et ceci est absurde.

EXERCICE 2.28.3

1.Ona
Fu(e) = ({z 2 0; |f(pz)| < €}
p2n
Ces ensembles sont donc fermés d’apres la continuité de f et I’hypotheése signifie que

U Fa(e) = [0,+00|

et, vu le théoréme de Baire, I’un des F), () est d’intérieur non vide, d’ol le résultat voulu.
2. Vu que b/a > 1, on remarque que (p + 1)/p < b/a pour p suffisamment grand. 1l
existe donc un entier n; tel que (p + 1)a < pb pour p > n,, c’est-a-dire
Ipa, pb[N](p + 1)a, (p+ 1)b[# 0
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et on en déduit que Jn1a, +oo[= U;2,, |pa, pb[.

3. On peut supposer n1 > no. Soit > maa, il existe p > n; tel que z € Jpa, pb, soit

z/p €]a,b[ et, vu que p > no,
z
@l =|7(p3)| <<

et ceci prouve le résultat voulu.
EXERCICE 2.28.4
La situation envisagée est la suivante. Soient X un espace topologique, Y un ouvert de X
et A une partie de Y. On suppose que A est maigre dans X et on demande de vérifier que
A est maigre dans Y ; il s’agit donc d’une réciproque du lemme 2.28.2. Par hypothése,
il existe une suite (Fy,) de fermés de X d’intérieur vide telle que A C |2, Fn, d’od
A C U2, YNF, obles ensembles Y N F, sont fermés dans Y. Montrons que ces fermés
sont d’intérieur vide dans Y, ceci prouvera le résultat voulu. Soit O un ouvert de Y tel que
O C YNE,,alors O estun ouvert de X car Y estunouvertde X etO C F,,,d’od O = {),
F,, étant d’intérieur vide.
EXERCICE 2.28.5
Soient X un espace de Baire, Y un ouvert de X et A une partie maigre de Y. Alors, A est
une partie maigre de X d’aprés le lemme 2.28.2, donc d’intérieur vide dans X . Montrons
que A est aussi d’intérieur vide dans Y. En effet, soit O un ouvert de Y contenu dans A,
alors O est ouvert dans X car Y est un sous-espace ouvert et, A étant d’intérieur vide dans
X, il en résulte que O est vide, ce qui prouve le résultat souhaité.

EXERCICE 2.28.6

Soit (Oy) une suite d’ouverts partout denses et soit V' un voisinage d’un point z € X, il
s’agit de démontrer que V rencontre I'intersection A = ()72, On. Or, il existe un voisinage
Vo de x qui est un espace de Baire et qu’on peut supposer ouvert d’aprés I’exercice 2.28.5 ;
On NV est alors un ouvert de Vo dense dans Vo, donc ANV; est dense dans Vj. Il en résulte
que V N Vo, qui est un voisinage de  dans Vj, rencontre AN Vo, soit ANV NVy # Deta
fortiori ANV # 0, ce qui prouve le résultat voulu.

EXERCICE 2.28.7

1. Les ensembles F, = f~!([—oo,n]) sont fermés et A C US>, Fn ; A n’étant pas
maigre, I’un de ces fermés, soit F,,, est d’intérieur non vide ; sur I’ouvert O = }3’,., ona
alors sup, o f(x) < n.

2. Soit O un ouvert non vide, alors O est un espace de Baire (exercice 2.28.5) et
falo : O — R est s.c.i. (exercice 2.14.3). On peut donc raisonner sur I’ouvert X sup-
posé non vide. La fonction g = sup,, ¢y fn est s.c.i. (proposition 2.14.1), g(x) est fini pour
tout z € X car la suite (fn(x)) est convergente et X n’est pas maigre car X est de Baire et
non vide : d’apres 1., il existe un ouvert non vide sur lequel g est borné supérieurement et il
en est de méme de f vuque f < g.

EXERCICE 2.28.8

1L,a. Il est clair que A¢(x) est un intervalle de [0, +00] contenant 0. La continuité au point b
de la fonction y — f(z,y) montre que cet intervalle n’est pas réduit a 0. Cet intervalle est
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d’autre part fermé : en effet, soit (8 ) une suite de A¢(x) convergente vers 4, si d(y, b) < 6,
il existe n tel que d(y, b) < d,,d’od d(f(z,b), f(z,y)) < € ce qui prouve que & appartient
A A¢(z). Il existe donc bien une fonction d¢ : X — 0, +o00] telle que Ac(z) = [0, 5 (z))].

b. Montrons que cette fonction est s.c.s. Soit o > d¢(a), alors il existe y € Y tel que
d(y,b) < aetd(f(a,b), f(a,y)) > € ;lafonction z — d(f(z,b), f(z,y)) étant continue
au point a, on en déduit que a > J¢(x) pour z voisin de a et ceci prouve le caractére s.c.s.
de la fonction de.

2,a. Les ensembles F,(¢) sont fermés d’aprés la semi-continuité de la fonction &, et
X = UpZ, Fp(e) vu que 5¢(z) est > 0 pour tout z.

b. Montrons que l'ouvert O = |J;2, 13",,(6) est contenu dans X — D, si

0 < € < 1/4n. Soit a € Fp(€). D’aprés la continuité au point a de I’application
z — f(z,b), il existe un voisinage V de a tel que a € V C Fp(e) et
d(f(z,b), f(a,b)) < 1/4n pour tout z € V. On en déduit que pourz € Vettouty € Y,

d(f(z,9), f(a,b)) < d(f(z,y), f(z,b)) +d(f(z,b), f(a,b))
< d(f(z,y), f(=,0)) +1/4n;
lorsque d(y,b) < 1/p, on a d(f(z,b), f(z,y)) < € < 1/4n car z € Fp(¢) et par consé-
quent
d(f(z,y), f(a,b)) < 1/2npourz € Vety € B(b;1/p),
ce qui prouve que w(f;(a,b)) < 1/n,soita € X — D,.

c. Le complémentaire de 1’ouvert O étant maigre d’apres la proposition 2.28.3, I’en-
semble D, C X — O est maigre. L’ensemble D, est donc maigre en tant que réunion
dénombrable de maigres.

3. On peut écrire D = | Jo>_; G o les ensembles
Gn ={(z,y) € X xY; w(f;(2,9)) > 1/n}

sont fermés. Montrons que D est d’intérieur vide, les ensembles G, seront a fortiori d’in-
térieur vide et ceci prouvera donc que D est maigre. Il s’agit de prouver que tout ou-
vert non vide A de X x Y contient des points de continuité de f. Soit b € prz(A) od
pra : X X Y — Y désigne la seconde projection. L’ensemble

Ab) ={z € X; (z,b) € A}
est un ouvert non vide de X ; I’espace X étant de Baire, I’ensemble maigre Dy est d’in-

térieur vide et il en résulte que A(b) rencontre X — Dy, ce qui signifie précisément qu’il
existe des points de continuité de f de la forme (z, b) appartenant a A.

EXERCICE 2.29.1

Soit C le plus petit ensemble de parties de X stable par réunion et intersection dénombrable
contenant 0. D’aprés le lemme 2.29.7, tout fermé appartient a C, donc C est le plus petit
ensemble de parties de X stable par réunion et intersection dénombrable contenant O et
O’ ; d’aprés le lemme 2.29.9, C est donc la tribu borélienne de X.
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Exercices du chapitre 2.C

EXERCICE 2.30.1

La condition est évidemment nécessaire. Inversement, soit (O;);jcJ un recouvrement ouvert
de X. Chaque O; s’écrit O; = Uie,j By, Ij C I.Posons K = J;, I, alors la famille
(B:)iex estun recouvrement de X qui, par hypothese, contient un sous-recouvrement fini,
soit (B;)ier ol L est une partie finie de K. Il existe une application f : K — J telle que
i € Ig() pourtouti € K ;onaalors B; C Oy et il en résulte que (Oj(;))icL est un
sous-recouvrement fini de X, ce qui prouve que X est compact.

EXERCICE 2.30.2

1 = 2 Soit (Fy,) une suite décroissante de fermés non vides, montrons que I’inter-
section ﬂ;‘io F,, est non vide en raisonnant par I’absurde. Si cette intersection est vide, la
suite (X — Fy) est un recouvrement ouvert dénombrable qui admet, d’apres 1., un sous-
recouvrement fini ; cette suite (X — F,) étant croissante, ceci signifie qu’il existe un entier
ntel que X — F,, = X, ce qui est absurde, les ensembles F}, étant non vides.

2 = 3 Soit (z,) une suite de X, I’ensemble des valeurs d’adhérence de cette suite est
égal a I’intersection de la suite décroissante de fermés non vides U;‘;n {zp}, intersection
non vide d’apres 2., ce qui prouve 3.

3 = 1 Soit (O,) un recouvrement ouvert dénombrable de X, montrons qu’il existe un
sous-recouvrement fini en raisonnant par I’absurde. On suppose donc que X # Up_0
pour tout n. Les ensembles X — U2‘,=0 O, sont non vides, choisissons un pomt
Tn € X — Z=0 O, dans chacun de ces ensembles. On construit ainsi une suite ().
Montrons que cette suite n’admet pas de valeur d’adhérence, ceci contredira 3. Supposons
que z soit une valeur d’adhérence de la suite (), alors il existe un entier n tel que z € O,
et cet ouvert O, doit contenir tous les z, a ’exception peut-étre d’'un nombre fini d’entre
eux, ce qui n’est pas vérifié vu que z, & O, pourp > n.

EXERCICE 2.30.3 ESPACE DE LINDELOF

1. Soit (B,) une base de topologie dénombrable et soit (O;)icr une famille d’ouverts.
Posons
A={neN; (Jel)(B. CO:)}.

On peut alors définir une application 7 : n — i(n) de A dans I telle que B, C Oy
pour tout n € A. Montrons que | J;c; Oi = U, ¢ 4 Oi(n)» 0it U;c; Oi = Uy Os ob
J = i(A) est bien une partie dénombrable de I. Il s’agit de démontrer 1’inclusion

U O; C U O.,;(n).

i€l nEA
Or, (By) est une base de topologie, donc pour tout 7 € I il existe une partie A; de N telle
que O; = U, ¢ 4, Bn, ce qui montre que A; C Aet O; C Upeq Bn C U, ea Oi(n). 400
Pinclusion voulue.

2,a. D’apres 1., si X est un espace a base de topologie dénombrable, tout recouvrement
ouvert de X contient un sous-recouvrement dénombrable, ce qui prouve qu’un tel espace
est un espace de Lindelof.

b. De plus, soit (B, ) une base de topologie dénombrable et soit (C;)ic r une autre base
de la topologie de X. Alors, pour tout entier 7, il existe d’aprés 1. une partie dénombrable
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I, de I telle que By, = UiE L, C;. Lensemble J = Uf’l°=0 I, est dénombrable et (C;)ies
est une base de la topologie de X car tout ouvert s’écrivant comme une réunion de B,
s’écrit comme une réunion de C; avec ¢ € J. Ceci montre que toute base de topologie
contient une base de topologie dénombrable.

3. Soit X un espace séparé tel que toute suite admette une valeur d’adhérence. Si X est
un espace de Lindelof, X est compact d’apres I’exercice 2.30.2. Réciproquement, si X est
compact, tout recouvrement ouvert contient un sous-recouvrement fini, donc dénombrable,
et X est un espace de Lindelof.

EXERCICE 2.30.4

1. Démontrons d’abord que la condition est suffisante. Chaque espace X; admet une base
de topologie dénombrable que nous notons B; et il existe une partie dénombrable Ip de
I telle que B; = {0, X} pour i € I — Io. On obtient une base de la topologie produit
en prenant I’ensemble des ouverts de la forme B = [[;.; Bi X [[;c;_; Xi ob B; décrit
B; et J I’ensemble des parties finies de I. On peut supposer J C Ip, donc J décrit un
ensemble dénombrable, a savoir I’ensemble des parties finies d’un ensemble dénombrable
(exercice 1.9.5). Lorsque J est fixé, on obtient un ensemble dénombrable d’ouverts B car
un produit fini d’ensembles dénombrables est dénombrable (proposition 1.9.5). La base de
la topologie produit considérée est donc dénombrable en tant que réunion dénombrable
d’ensembles dénombrables (proposition 1.9.6).

2. Montrons ensuite que la condition est nécessaire. Chaque X;, homéomorphe a un
sous-espace de 1’espace produit, est nécessairement a base de topologie dénombrable. Si B;
est une base de la topologie de X;, I’exercice 2.30.3 montre qu’il existe une base dénom-
brable (B,) de la topologie produit od chaque By, est de la forme

Bn = H Bn,i X H Xz
i€Jn i€l—-J,
ol J,, est une partie finie de I et B,,; € B;. L'ensemble Jo = (J;2, Jn est dénombrable
et si ¢ & Io la topologie de X; est nécessairement la topologie grossiére, sinon 1’ouvert
O =0; X H#i X; od O; est un ouvert non vide et distinct de X; ne contiendrait aucun
B, ce qui est absurde car cet ouvert O doit s’écrire comme une réunion de B,.

EXERCICE 2.30.5 COEFFICIENT DE LEBESGUE D’UN RECOUVREMENT

Pour tout z € X, il existe i € I tel que z € O; et, O; étant ouvert, une boule ouverte
centrée au point z et contenu dans O, soit B(z;7(z)) C O;, r(z) > 0. Du recouvrement
ouvert (B(z;r(x)/2))zecx, On peut extraire un sous-recouvrement fini : il existe une partie
finie A de X telle que U ¢ o B(z;r(x)/2) = X. Prenons alors € = minge4 7(x)/2. Si
M est une partie non vide de X de diametre < ¢, il existe z € A tel que M rencontre la
boule B(z;r(x)/2) ; il en résulte que M est contenu dans la boule B(z;r(2)/2+¢€),d’od
M C B(z;r(x)) C O; care < r(x)/2 et ceci prouve le résultat voulu.

EXERCICE 2.30.6

Montrons que g est s.c.i. au point a € X. Soit « € R tel que a < g(a) et soit
a < B < g(a),pourtouty € Yonap < f(a,y) et, f étant s.c.i., il existe un voisi-
nage Vi, x W, de (a,y) tel que 8 < f(z',y") pour tout (z’,y’) € V;, x W,. Bien entendu,
on peut supposer ce voisinage ouvert, alors (W, )y ey est un recouvrement ouvert de 1’es-
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pace compact Y. Il existe donc un sous-recouvrement fini, soit (Wy)yea, A désignant une
partie finie de Y. L’ensemble V = ﬂye 4 Vy estun voisinage de a et 8 < f(z,y) pour tout
(z,y) € V x Y,d’od B < g(z) pour tout z € V et par conséquent & < g(x) pour tout
z € V, ce qui prouve le résultat voulu.

EXERCICE 2.30.7

1. On peut supposer la distance sur Z bornée : des distances uniformément €quivalentes
sur Z induisent des distances uniformément équivalentes sur les espaces F.(X x Y; Z)
et F,.(Y; Z), donc sur I’espace F, (X; F.(Y'; Z)) ; il en résulte que remplacer la distance
sur Z par une distance uniformément équivalente ne modifie ni les espaces C,, (X x Y; Z),
Cu(Y; 2Z), Cu(X;Cu(Y; Z)), ni leur structure uniforme.

2. Rappelons la définition de I’homéomorphisme ®. Soit f € F(X x Y'; Z), notons
gz : Y — Z I’application y — f(z,y) ; alors, ®(f) désigne I’application z — g, de X
dans F(Y'; Z). Si f est une fonction continue, il est clair que g est une fonction continue,
soit &(f) : X — C(Y;2).

2,a. Montrons d’abord la continuité de ®(f), I’espace €(Y'; Z) étant muni de la topo-
logie de la convergence uniforme, soit ®(f) € C(X;Cu(Y; Z)). Soita € X et soite > 0,
il s’agit de démontrer qu’il existe un voisinage V' de a tel que di1(gz,9.) < 2¢ pour tout
z € V, c’est-a-dire

zeV = sup d(f(z,y), f(a,y)) < 2e.
v

La fonction f est continue au point (a,b) € X X Y, il existe donc un voisinage ouvert
Vb x W de (a,b) tel que
d(f(z,v), f(a,b)) < € pour tout (z,y) € Vo X Wp.

Le recouvrement ouvert (Wb)bey de I’espace compact Y contient un sous-recouvrement
fini (Ws)ben, B partie finie de Y. Posons V' = (), Vb, alors V est un voisinage de a et
d(f(z,y), f(a,b)) < € pour tout (z,y) € V x Y,

d’od
d(f(z,y), f(a,y)) < d(f(z,v), f(a,b)) + d(f(a,y), f(a,b)) < 2¢
pour tout (z,y) € V x Y, ce qui prouve le résultat voulu.

b. D’aprés 2,a., I’application ® induit une injection de 1’espace C(X x Y; Z) dans
C(X;Cu(Y; Z)). Montrons que cette application est surjective. Etant donné une appli-
cation continue z — g de X dans C,(Y’; Z), il s’agit de démontrer que I’application
f 1 X XY — Z définie par f(z,y) = g (y) est continue. Soient (a,b) € X xY ete > 0,
d’apres la continuité au point ¢ de I’application  — g, il existe un voisinage V de a tel
que

d(f(z,y), f(a,y)) < e pourtout (z,y) eV xY
et, d’apreés la continuité au point b de I’application g, : Y — Z, il existe un voisinage W de
btel que d(f(a,y), f(a,b)) < e pourtouty € W. 1l en résulte que, pour (z,y) € V x W,
d(f(z,9), f(a,0)) < d(f(z,v), f(a,y)) +d(f(a,), f(a, b)) < 2,
ce qui prouve la continuité de f au point (a, b).

c. Ce qui préceéde prouve que ® induit une bijection de I’espace €, (X xY; Z) sur’es-
pace Cu(X;Cu(Y; Z)). Vérifions que cette bijection est un homéomorphisme uniformé-
ment continu, ainsi que I’homéomorphisme réciproque. FEtant donné que
®: Fu(X X Y;Z) = Fu(X;Fu(Y; Z)) est un homéomorphisme uniformément continu,



2.45 EXERCICES DU CHAPITRE 2.C 251

ainsi que I”’homéomorphisme réciproque, il suffit de remarquer que C.(X x Y; Z) est un
sous-espace métrique de F,.(X X Y; Z) et que Cou(X;Cu(Y; Z)) est un sous-espace mé-
trique de Fu(X; F.(Y; Z)). Comme nous ’avons vérifié (exercice 2.27.2), ® est en fait
une isométrie lorsque la distance sur Z est bornée.

EXERCICE 2.30.8

Soita € (ysey M, alorsa € M pourtout M € U et ceci prouve que M € U,. L'ultrafiltre
U est donc moins fin que I'ultrafiltre trivial U, et donc coincide avec cet ultrafiltre, ce qui
prouve le résultat voulu.

EXERCICE 2.30.9

1. La condition est évidemment nécessaire, tout filtre plus fin qu’un filtre convergent conver-
geant vers la méme limite. Réciproquement, supposons que y = limy f pour tout ultrafiltre
U plus fin que F et montrons que y = limg f. Raisonnons par I’absurde, supposons que y
ne soit pas une valeur limite de f suivant F. Alors, il existe un voisinage V' de y n’appar-
tenant pas au filtre engendré par f(F), ce qui signifie f(M) ¢ V pour tout M € F, soit
MN(X - f~Y(V)) # 0. Autrement dit, F admet une trace sur X — f (V) qui engendre
un filtre F sur X plus fin que F. Soit U un ultrafiltre plus fin que F, donc que 7 ; la base
de filtre f(U) ne converge pas versy car X — f~(V) € ¥ C U, d’od f~(V) ¢ Ueton
obtient ainsi une contradiction.

2. Dire que f est continu en un point a signifie que f(a) = limyq) f donc d’apres 1.
que, pour tout ultrafiltre U plus fin que le filtre V(a), c’est-a-dire qui converge vers a, la
base de filtre f(U) converge vers f(a).

EXERCICE 2.31.1

1. Le graphe de f peut s’écrire

G ={(z,9) € X XY ; pra(z,y) = (f opr1)(z,9)}
ennotantpry : X XY — Xetpry : XXY — Y les deux projections. Si f est continu, son
graphe est donc fermé d’apres le principe du prolongement des identités, Y étant séparé.

2. Réciproquement, on suppose I’espace Y compact et le graphe de f fermé. Montrons
que f(z), z € X, est le seul point adhérent au filtre de base f(V(z)), on en déduira que
cette base de filtre converge vers f(x) d’aprés la proposition 2.31.1, ce qui signifie que £ est
continu au point z. Considérons donc un point y € Y adhérent au filtre de base f(V(z)).
Alors, pour tout voisinage V' x W de (z,y), W N f(V)) # 0, ce qui signifie que V x W
rencontre G ; ceci montre que le point (x,) est adhérent 3 G, d’od (z,y) € G, G étant
fermé, soity = f(x).

EXERCICE 2.31.2

La condition est évidemment nécessaire. Réciproquement, I’espace X étant a base dénom-
brable de voisinages, soient € X et (z,) une suite de X convergeant vers z, il s’agit
de démontrer que la suite (f(xz,)) converge vers f(z). Considérons le compact (exemple
2311 K = {2} UU;_o{zn}. La fonction f|x : K — Y étant continue et la suite
(zn) convergeant vers z dans le sous-espace K, la suite (f (zx)) converge vers f(z), ce
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qui prouve le résultat voulu.
EXERCICE 2.31.3 CONVERGENCE UNIFORME SUR TOUT COMPACT

1. Une suite (f») convergeant uniformément sur tout compact vers f converge simplement
vers f car toute partie de X réduite a un point est compacte.

2. Soit (fr) une suite convergeant localement uniformément vers f et soit K une partie
compacte de X. Pour tout z € X, il existe un voisinage ouvert O, de z tel que la suite
(fn]o.) converge uniformément vers f|o, : pour tout € > 0, il existe un entier n. tel que

sup d(f(y), fo(¥)) < € pour tout p > ng.
y€O,

La famille (Oz)ze i est un recouvrement ouvert du compact K ; il existe donc une partie fi-
nie A de K telle que K C |J,cqOz. Posons n = maxzeanz, on a alors
sup, e d(f(¥), fo(y)) < € pour p > n et ceci prouve que la suite (fn|x) converge
uniformément vers f|x. La suite (fn) converge donc uniformément sur tout compact vers
f

3. On suppose I’espace X séparé et a base dénombrable de voisinages et on considere
une suite (fr) de fonctions continues convergeant uniformément sur tout compact vers f.
Soit K une partie compacte de X, d’apres le corollaire 2.27.5 la fonction f|x est continue
et f est donc continu d’apres I’exercice 2.31.2.

EXERCICE 2.31.4

1. On considere un compact K de X1, un point a € X et un voisinage V' de K, x {a}.
Pour tout z € K1, V est un voisinage du point (z, a), il existe donc un voisinage ouvert
O1,2 X Oz, de (z, a) contenu dans V. La famille (O1,;)zek, est un recouvrement ouvert
du compact K7, il existe donc une partie finie A de K telle que K1 C O1 = | ¢ 4 O1,e.
Posons Oz = () ¢4 O2,z, alors O1 X O est un voisinage ouvert de K1 x {a} contenu
dans V/, ce qui prouve le résultat voulu lorsque K est réduit a un point.

2. Dans le cas général, soit V' un voisinage de K; x K. Pour tout y € Ko, il existe,
d’apres 1., un voisinage ouvert O1,y X O2,y de K1 X {y} contenu dans V. Lorsque y décrit
K>, les ouverts O,,,, constituent un recouvrement de K ; il existe donc une partie finie A
de K> telle que K> C O2 = |J,¢ 4 O2,y. Posons O = Nyea Oy, alors Or X Oz estun
voisinage ouvert de K x K2 contenu dans V/, ce qui prouve le résultat voulu.

EXERCICE 2.31.5

Soit A une partie fermée de X x Y et soit y ¢ pr2(A). Pour tout z € X, le point (z,y)
n’appartenant pas & A n’est pas adhérent a A ; il existe donc un voisinage ouvert Uy x V;
de ce point ne rencontrant pas A. Lorsque = décrit X, les ouverts U, forment un recou-
vrement ouvert de ’espace compact X. Il existe donc une partie finie F de X telle que
X = Uyep Us. Posons V = (. V. Alors, V est un voisinage ouvert du point y ne
rencontrant pas prz(A), ce qui prouve que prz(A) est fermé.

EXERCICE 2.31.6

1. On peut écrire A = pri(f~'({a})) en notant pr; : X x Y — X la premiere projec-
tion. L'ensemble f~'({a}) est fermé d’apres la continuité de f, I’espace Z étant séparé.
L’espace Y étant compact, I’exercice 2.31.5 montre que A est fermé.

2. Lapplication g : A — Y est bien définie d’aprés I’injectivité de 1’application
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y — f(z,y). Le graphe G de g est fermé dans A x Y car
G={(z,y) € AXY; f(z,y) =a} = (AxY)N {7 ({a}).
Lespace Y étant compact, I’application g est continue d’aprés 1’exercice 2.31.1.

EXERCICE 2.32.1

L ultrafiltre U admet une trace sur A si, et seulement si, M N A # @ pour tout M € U.
Or, A € Uoubien X — A € U d’apres la proposition 2.32.3 ; si U admet une trace sur A,
X — A ne peut pas appartenir a U et on a donc nécessairement A € U et, si cette condition
est réalisée, alors U admet une trace sur A, I’intersection de deux ensembles d’un filtre étant
non vide.

Montrons alors que le filtre induit U 4 est un ultrafiltre. Utilisons le critere de la propo-
sition 2.32.3. Soit B une partie de A, alors ou bien B € U, ou bien X — B € U. Lorsque
BeU,onaalors B=BNAecUsetlorsque X —BeU,ona

A-B=(X-B)NAEe€Ua,
ce qui permet de conclure.
EXERCICE 2.32.2

1 = 2 d’aprés la continuité de 7 et ’exercice 2.31.1.

2 = 3 Soit F' un fermé de X, montrons que w(F) est fermé dans X/ R, c’est-a-dire
que 7~ (w(F)) est fermé dans X. On observe que

7~ (n(F)) = {z € X; (3y € F)(n(y) = n(2))}
et par conséquent
7 (w(F)) = pri((X x F)NG)
ennotant pr; : X x X — X la premiére projection. L’ensemble (X x F)NG est une partie
fermée de I’espace compact X x X (Tychonoff), donc compacte ; d’apreés la continuité de
la projection pry, 7! (w(F)) est donc compact dans X, c’est-a-dire fermé.

3 = 1 Montrons que deux points distincts £ et ) de I’espace quotient X/ R admettent
des voisinages disjoints. L’application 7 étant fermée, le saturé de tout fermé est fermé
(exercice 2.24.1) ; en particulier, ’ensemble 7~ *(£) est fermé en tant que saturé de 1’un
quelconque de ses points et de méme 7~ (n) est fermé. Les ensembles 7~ (£) et 7~ (n)
sont donc deux fermés disjoints dans un espace compact ; d’apres la proposition 2.31.9, ces
fermés admettent des voisinages disjoints

VeV i(E) et W € V(n (n))

qu’on peut supposer ouverts. L’ensemble (saturé) 7~ (£) ne rencontrant pas X — V' ne ren-
contre pas le saturé V' de X — V, dod 771(¢) C X — V' C V; de méme,
7~ (n) C X — W’ C W ennotant W’ le saturé de X — W. Les ensembles V'’ et W’ sont
fermés en tant que saturés d’ensembles fermés. Les inclusions précédentes montrent que
X —V'et X — W' sont des voisinages ouverts disjoints de 7~ (€) et # = (n). Ces ouverts
étant saturés, on en déduit que leurs images par 7 sont des ouverts disjoints et ce sont donc
des voisinages ouverts disjoints de £ et 7, ce qui prouve le résultat voulu.

EXERCICE 2.33.1

La condition est évidemment nécessaire. Réciproquement, si tout recouvrement ouvert dé-
nombrable contient un sous-recouvrement fini, toute suite admet une valeur d’adhérence
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(exercice 2.30.2) et I’espace est compact d’apres le théoréme 2.33.4,

EXERCICE 2.33.2
1. Lespace X x X est un espace métrique compact (Tychonoff) ; il existe donc une sous-
suite ((an,,,bn, )) convergente. Les suites (an, ) et (bn, ) sont convergentes , donc de Cau-
chy : en particulier, pour tout £ > 0, il existe un entier k tel que
d(an,,an,) < cetd(bn,,bn,) < epourtout! > k.
Vu ’hypothese, on a
d(a,an;-n,) < d(f™*(a), f™* (an;—ny)) = d(an,,an,) <€
et de méme d(b, bn,—n, ) < €. Choisissons un! > k et posons n = n; —n, > 1, on a alors
d(a,a,) <eetd(b,bn) <e.
2. D’apres I’inégalité triangulaire, on en déduit que
d(f(a), (b)) < d(an,bn) < d(a, an) + d(an, bn) + d(b,bn) < 2¢ +d(a,b),
et, ceci valant pour tout € > 0, d(f(a), f(b)) < d(a,b), d’ot d(f(a), f(b)) = d(a,b).

3. L’application f est donc une isométrie de X sur son image f(X). L’espace X étant
compact, f(X) est une partie compacte, donc fermée. Notons d’autre part que f(X) est
dense dans X : en effet, pour tout a € X et tout € > 0, il existe d’aprés 1. un point
z € f(X), a savoir a,, tel que d(a,z) < &. Ceci prouve que f(X) est fermé et partout
dense et par conséquent f(X) = X : f est une isométrie de X sur X.

EXERCICE 2.33.3 ESPACE DES FERMES D’UN ESPACE METRIQUE

1. On a évidemment p(A, B) = p(B, A). La relation p(A, B) = 0 signifie d(z, B) = 0
pourtoutz € Aetd(x,A) = Opourtoutz € B, c’est-d-dire AC B=BetBC A=A,
d’od A = B. Quant 2 I’inégalité triangulaire, montrons que, pour tout A, B,C € &,

sup d(z, C) < sup d(z, B) + sup d(y, C).
TEA xEA yEB

D’aprés (2.13.4),onapourtoutz € Aettouty € B
d(z,C) < d(z,y) + d(y,C) < d(z,y) + supd(y, C),
YyEB

d’ou
d(z,C) < inf d(z,y) + sup d(y, C),
yEB y€EB

soit
d(z,C) < d(z, B) + sup d(y, C)
y€EB

et on obtient I’inégalité annoncée en prenant la borne supérieure sur € A. On en déduit
que

sup d(z,C) < p(A, B) + p(B,C)

T€

et en permutant A et C,
sup d(z, 4) < p(A, B) + p(B, 0),
z€C
d’ou
p(A,C) < p(A, B) + p(B,C).
2. On considere une suite (A,) de F convergeant vers A pour cette distance p et

des points z, € A, tels que la suite (z,) converge vers une limite notée z. Montrons
que z appartient 3 A. Posons €, = sup,c 4, d(z, A), la suite (en) tend vers 0 ; on a
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d(zn, A) < €n et en passant 2 la limite d(z, A) = 0,d’od z € A = A, ce qui prouve le
résultat voulu.

3. Soit (A,) une suite de F convergeant vers A, on se propose de démontrer que A est
égal a 'ensemble B = (724 U, 5, 4p-

Soit z € A, montrons que x appartient 2 B. Il s’agit de démontrer que, pour toutn € N,
x est adhérent & ’ensemble U,,,,, Ap, c’est-a-dire que pour tout & > 0 il existe p > n tel
que I’intersection B(z; €)N A, soit non vide : en effet, sup, ¢ 4 d(z, Ap) tend vers 0 lorsque
p tend vers I’infini ; il existe donc p > n tel que d(z, Ap) < &, ce qui prouve le résultat
voulu.

Inversement, soit z € B. Soit (ex) une suite de nombres > 0 convergeant vers 0,
construisons par récurrence une sous-suite (A, ) telle que

B(z;er) N An, # 0 pour tout k.
Pour k = 0, le point z étant adhérent & |J 5, Ap, il existe un entier no tel que B(z; €o)
rencontre Ayn,. De méme, le point z étant adhérent a Upan 1 Ap, il existe np41 > ng tel
que B(z;€k+1) rencontre An, . Choisissons alors zx. € B(z;€k) N An, ; on construit
ainsi une suite () qui converge vers z et, la sous-suite (A, ) convergeant vers A, on a
x € Ad’apres 2.

Ceci prouve la formule voulue.

4. On suppose I’espace X précompact. Soit € > 0, il existe une famille finie (A;):cr de
fermés non vides de diametre < € dont la réunion est X. On note B I’ensemble des parties
de X qui s’écrivent | J, ; Ai ob J est une partie non vide de I ; de telle parties de X étant
fermées, B est une partie finie de F. Si A est une partie fermée non vide de X, I’ensemble
J={i€l; AN A; # 0}estnonvideet A C Bod B =|J,c; Ai € B. Il en résulte que

p(A, B) = sup d(x) A) <e
z€EB

et ceci prouve que I’ensemble des boules fermées (B’'(B;€)) e est un recouvrement fini
de F, ce qui prouve que F est précompact.

5,a. La suite (A,) étant de Cauchy, il existe un entier n tel que p(Ap, Ag) < €/2,
C’est-d-dire sup,¢ 4, d(x, Aq) < €/2, pour tout p,q > n. Pour tout = € Ay, on a donc
d(z, Aq) < €/2 et par conséquent il existe y € Aq tel que d(z,y) < e.

b. D’aprés 5,a., il existe un entier no tel que, pour p,g > no et x € Ap, il existe
y € Agtel que d(z,y) < €o. On choisit un point quelconque zo de |J,5 ,,,, Ap- Alors, pour
q = no, il existe y € Ag tel que d(zo,y) < €o. D’apres 5,a., il existe un entier ny > no
tel que, pour p,q > ny et x € Ap, il existe y € A, tel que d(z,y) < €;. On choisit un
point 1 € Aqn, tel que d(zo,21) < €0 ; pour ¢ > na, il existe alors y € A, tel que
d(z1,y) < e1. Par récurrence, on construit ainsi une sous-suite (An, ) et des zp € Aq,,
k > 1, tels que d(zr—1,2x) < €x—1 et, pour tout ¢ > ny, il existe y € Aq tel que
d(wk’y) < €.

c. La suite (z) est de Cauchy car on a

d(zk, k1) <€k + ...+ €ppi-1,1 21,
et la série ) 27, €x est convergente. L’espace X étant complet, cette suite converge vers
une limite que nous notons y. On a z,,, € An, C By car ng > k et la suite (By) étant
décroissante z,, € By pour k > I, d’od y € B; = B, pour tout [, soit y € B et ceci
prouve que B est non vide. De plus,
d(zo,zr) <e€o+...+ek-1 <5,
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d’oll d(zo,y) < € et en particulier d(zo, B) < €. En posant nop = netzg = z, on
en déduit ceci : pour tout € > 0, il existe un entier n tel que, pour tout € Up>n Ap,
d(z, B) < ¢ et ceci vaut encore pour tout 2 € Bp,. B
d. Soit ¢ > 0, d’apres 5,a., il existe n tel que, pour tout ¢ > n et tout ¢ € Up>n Ap,
donc tout z € B, d(z, Ag) < &, soit sup ¢ d(z, A¢) < €. D’aprés 5,c., on peut en outre
choisir n tel que sup, ¢ 4, d(z, B) < € pour g > n et ceci prouve que p(B, Ag) < € pour
g > n. La suite (An) converge donc vers B et I’espace F est donc complet.
6. Si X est compact, X est complet et précompact (théoréme 2.33.4) ; il en est donc de

méme de F qui est donc compact.

EXERCICE 2.33.4

1. Soiente > Oetz € [a, b], 1a fonction f admettant des limites & gauche et & droite au point
z, il existe §; > 0 tel que d(f(y), f(2)) < €lorsque y,z € [a,b]N]z,z + [, ou bien
lorsque y, z € [a,b]N ]z — 8z, z[. Le recouvrement ouvert (]2 — 8z, £+ 682 [ )ze(q,p5) de I'in-
tervalle compact [, b] contient un sous-recouvrement fini (]a;—da;, aj+0a,[)jes. Notons
(@:)1<i<n+1 la suite strictement croissante constituée des points a, b, a; — 8, , a;j, a; +da;
appartenant 2 [a, b] . On a alors d(f(y), f(2)) < € lorsque y, 2z € ]&;, Z;4+1[. On construit
ensuite une fonction en escalier g : [a,b] — X en posant g(z:) = f(z:),1<i<n+1let
g9(z) = f(y:) pour z €]xi,ziy1[, 1 < i < m, 0 y; est un point arbitraire de 1’intervalle
|zi, zit1[. On a alors d(f(z),g(x)) < € pour tout z € [a,b], ce qui prouve le résultat
voulu.

2. Toute fonction en escalier étant bornée, la proposition 2.27.2 montre que toute fonc-

tion réglée est bornée.

EXERCICE 2.33.5

1. Construisons la famille (A¢). Notons & le diamétre de X. Si § = 0, c’est-a-dire si X
est réduit a un point, on prend Ap = A; = X. Lorsque § > 0, X étant précompact, il
existe une famille finie (K;)1<i<p+1 de parties compactes non vides de diamétre < 6/2
dont la réunion est X et, § étant > 0, on notera que p > 1. Définissons alors les Ae pour
€ € UP_, €x de la fagon suivante. On pose

P+l
Ao=KietA, = U K,,

n=2
puis pours € Egoul < g < p,si Ac estl’'undes Ky, onprend Ayr = A = K et si
A = " q+1 Kn, on prend

p+1
Ao = Kgrret Agn = U K,.
n=q+2

On constate alors que chaque A¢ pour e € €, est égal 8 I’'un des K, et est donc de diametre
< 6/2. 1 suffit alors d’itérer cette construction a partir de ces A, € € €,, pour obtenir le
résultat voulu.

2. Pour € € {0, 1}V, P’intersection Mo, Ae,, est réduite 2 un point a d’apres le théo-
réme de Cantor (proposition 2.18.9) ; montrons que I’application f : € — a de {0, l}N‘
dans X est une surjection continue.

Cette application est surjective. En effet, soita € X ; pourtoutn > 1, X = |,
donc il existe e, € &, tel que a € Ag,,. D’apreés la condition 2., en raisonnant par récur-
rence on peut choisir les €, tels que e,.||1,n_1| = €n-1 pour n > 2. Autrement dit, il existe
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€ € & tel que g|[1,,) = €n pour tout n > 1 et par conséquent a = f(€).

Quant 2 la continuité de £, soit (¢*) une suite de {0, 1}"" convergeant vers . Montrons
que la suite a* = f(e*) converge vers a = f(). La topologie sur I’espace {0,1}"" étant
la topologie produit, pour tout n > 1, il existe un entier k tel que, pour [ > k, €, = €n,
d’oil @' € A, et par conséquent |a — a!| < diam A.,, pour | > k et, vu la condition 3.,
ceci montre que la suite (a*) converge vers a.

EXERCICE 2.33.6

1. Montrons que la condition est nécessaire. On suppose 1’espace compact et on consideére
une partie non vide A de X. Posons A; = [z, — [NA, alors B = (A;)zea est une base de
filtre en tant qu’ensemble non vide de parties non vides (car z € A,) stable par intersection
finie car A; N Ay = A, ol z = max(z, y). Cette base de filtre admet un point adhérent a,
soit a € A, pour tout £ € A. On en déduit en particulier que a € [z, — [ pour tout z € A,
ce qui prouve que a est un majorant de A. Montrons que a est la borne supérieure de A en
raisonnant par I’absurde. Supposons qu’il existe un majorant b de A tel que b < a, alors
]b, = [ est un voisinage ouvert de a ne rencontrant pas A, ce qui est absurde vu que a € A.

En remplagant I’ordre par 1’ordre opposé qui induit la méme topologie, on en déduit
que toute partie non vide admet une borne inférieure.

2. Réciproquement, supposons que toute partie non vide admet une borne supérieure
et inférieure. Montrons que 1’espace est compact. L’espace est séparé d’aprés 1’exercice
2.17.4. Montrons que tout filtre ¥ admet un point adhérent. On pose zp = inf M et
a = sup,;cs T ; VErifions que a est un point adhérent & F. Les intervalles ouverts de
la forme ], B[, |, = [, ] =, B[ qui contiennent a constituent un systéme fondamental de
voisinages de a ; vérifions que chacun de ces intervalles rencontre tout M € F.

Sil =]a,Bloul =]a,—[,onaa < a;il existedonc N € Ftelque a < zn < a,
dolla < zy < zman < aet, vu la définition de zarnn, il en résulte que Iintervalle 1
rencontre M N N et a fortiori M.

Si I =]+, B[, alorsa < B,d’od zpr < a < B et par conséquent I N M # 0, ce qui
prouve le résultat voulu.

3. La topologie de 1’ordre sur R est la topologie usuelle, elle est donc compacte d’aprés
le critere précédent.

EXERCICE 2.33.7

1. Notons (z1,z2) < (y1,y2) la relation. Cette relation est évidemment réflexive. Véri-
fions la transitivité. On suppose (z1,22) < (¥1,y2) et (¥1,y2) < (21,22). Siz1 < y1 ou
n < 2, alors 21 < 21, d’ol (.’Bl,.’l:z) < (21,2:2). Sinon, z; = N = 21 et
22 < y2 < z2,d’0d (21,%2) < (21, 22). Quant a ’antisymétrie, si (z1,22) < (y1,y2) et
(v1,¥2) < (z1,22), on a nécessairement 1 = y1, d’ol 2 < Y2 et y2 < T2, SOit T2 = Ya.
Ceci prouve que la relation considérée est bien une relation d’ordre.

Lorsque les relations d’ordre sur X; et X2 sont des relations d’ordre total, montrons
que I’ordre lexicographique est total. Soient (1, 2), (y1,y2) € X1 X X2.Si 21 < y; ou
siy1 < z1,0na(z1,22) < (¥1,¥2) ou (y1,y2) < (Z1,22). Sinon, z1 = Y1 et z2 < Y2
ouye < x2,d’0d (z1,22) < (y1,92) ou (¥1,¥2) < (%1,22).

2. On munit I'espace [0, 1]? de I’ordre lexicographique et de la topologie de 1’ordre
associée. Utilisons I’exercice 2.33.6. Montrons que toute partie non vide A admet une borne
supérieure et une borne inférieure. Posons a = sup, ,)c 4 z et B = AN ({a} x [0,1]).
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Si B = 0, alors (a,0) est la borne supérieure de A : en effet, si (z,y) € A, on a
z < a,d’od (z,y) < (a,0) ce qui prouve que (a,0) est un majorant ; en outre, pour tout
b < a, il existe (z,y) € Atel que b < z et, si (m,n) est un majorant, il en résulte que
b<z<m,doda < met(a0) < (m,n), ce qui prouve que (a,0) est le plus petit
majorant, c’est-a-dire la borne supérieure de A.

Lorsque B est non vide, posons b = sup, .\ g ¥, alors (a, b) est évidemment la borne
supérieure de A.

On démontre de méme que A admet une borne inférieure et on en déduit que I’espace
[0, 1)% est compact.

EXERCICE 2.33.8

Vu I’hypothese, I’application f est continue ; il en résulte que ’application z — d(z, f(z))

est continue. L’espace X étant compact, cette application admet un minimum (théoréme

2.33.11) : si a = mingex d(z, f(z)), il existe zo € X tel que a = d(zo, f(z0)). Montrons

que o est un point fixe de f. Raisonnons par I’absurde. Si on avait f(zo) # o, on aurait
d(f(zo), f(f(20))) < d(zo, f(x0)) = a,

ce qui est contraire a la définition de a.

Montrons que ce point fixe est unique. Supposons en effet que f admette deux points
fixes zo et £1, o # z1. On avrait alors d(zo, 1) = d(f(z0), f(z1)) < d(zo, 1), ce qui
est absurde.

EXERCICE 2.33.9

Soit V un voisinage de A, on peut supposer V # X. L’application z — d(z, X — V) est
continue sur X etd(z, X — V') > 0 pour tout z € A. D’apres le corollaire 2.33.12, il existe
& > 0tel que d(z, X — V) > & pour tout z € A et il en résulte que V7, (A) C V dés que
1/n < §, ce qui prouve le résultat voulu.

EXERCICE 2.33.10

On raisonne par I’absurde. Supposons que N admette un syst¢me fondamental dénombrable
de voisinages, soit (V7). Il existe des nombres amn > 0 tels que

(e o]
Vi D U]n — amn,n+ amn[-
n=0
Bien entendu, on peut supposer am» < 1/2. Considérons alors le voisinage de N,

(e o]
V= U]n — @nn /2, + nn/2|.
n=0
11 doit exister un entier m tel que Vi, C V, c’est-a-dire tel que amn < @nn/2 pour tout n
et ceci est évidemment en défaut pour n = m.

Ceci prouve que dans I’exercice 2.33.9, I’hypothése de compacit€ est essentielle.

EXERCICE 2.33.11 THEOREME DE D’ALEMBERT
Notons P(z) = Y1 a:2* le polyndme ; on suppose n > 1 et an # 0. Raisonnons par
I’absurde : supposons P(z) # 0 pour tout z € C. Etant donné que |P(z)| tend vers Iinfini
quand |2| tend vers I'infini, il existe R > O tel que

|P(0)] < |P(z)| pour tout |2| > R.
Sur le compact {z € C; |z| < R}, |P| admet un minimum (théoréme 2.33.11) : il existe
20 € C tel que | P(20)| = min,|<r |P(2)|, d’0d |P(20)| = minec |P(z)].
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D’apres la formule de Taylor, on peut écrire

n
P(z) = P(z0) + Y bi(z — z0)* ol 1 < k <metbi #0.
i=k
Lorsque p > 0 tend vers 0, |br|o* et 37, +1 104 p°~* tendent vers 0 ; P(zo) et by étant
non nuls, on en déduit que, pour p suffisamment petit,

n
D bl p* < Jbe] o < |P(20)].
i=k+1
Quand z décrit le cercle |z — zo| = p, le point P(z0) + bk (2 — z0)* décrit k fois le cercle de
centre P(2o) et de rayon |bk| p¥, rayon < | P(z0)] ; il existe donc un point z1, |21 — 20| = p,
tel que le point P(zo0) + bk (21 — 20)* appartienne au segment |0, P(z0)[, d’od
|P(20) + bi(21 — 20)| = |P(20)| — [bx| "
et on en déduit

n
|P(z1)] < |P(20) + bi(z1 — 20)*| + | Y bi(z1 — 20)"
n i=k+1
< |P(20) — bel * + ) [bsl 6* < |P(20)l,

i=k+1
soit |P(z1)| < |P(20)|, ce qui contredit le fait que |P| admet un minimum au point zo.
EXERCICE 2.33.12
On raisonne par I’absurde. Supposons qu’il existe € > 0 tel que, pour tout § > 0, il existe
z € Kety € X tels que
d(z,y) < detd(f(z), f(y)) 2.
Prenons § = 1/n,n > 1 ; on construit ainsi une suite (z») de K et une suite (y») de X
telles que
d(Zn,yn) < 1/netd(f(zn), f(yn)) 2 €.
Le sous-espace K étant compact, il existe une sous-suite (2, ) convergente versa € K ;de
I'inégalité d(zn, , Yn,) < 1/1k, on déduit que la suite (yn, ) converge vers a. L’application
f étant continue au point a, en passant 2 la limite dans 1’inégalité d(f(zn, ), f(yn,)) > &,
on obtient d(f(a), f(a)) > &, ce qui est absurde.
EXERCICE 2.33.13
Utilisons la fonction ¢ : R — [—1, 1] définie par
o(t) =t/(1+|t]) sit € Retp(+oo) = £1.
Les fonctions ¢ o f, : X — [—=1,1] sont s.c.i. d’aprés I'exercice 2.14.3 ; I’espace R
étant compact, la fonction ¢ est uniformément continue et on en déduit que la suite (o fr)
converge uniformément vers o f (exercice 2.27.3). Les fonctions @ et ¢~ ! étant continues
et croissantes, la fonction f est s.c.i. si, et seulement si, la fonction ¢ o f est s.c.i. (exercice
2.14.3). Ceci montre qu’on peut supposer toutes les fonctions f, et f & valeurs réelles finies.
Soit a < f(a) et soit & > Otel que & + 3& < f(a). Il existe un entier n tel que
|f(z) — fa(z)] < epourtoutz € X.
Onaalors f(z) = f(x) — fa(®) + fa(x) — fa(a) + fa(a) — f(a) + f(a), d’od
f(@) 2 fa(z) = fala) + f(a) — 26
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D’aprés la semi-continuité de f, au point a, il existe un voisinage V' de a tel que
fa(x) > fa(a) —epourz € V,d’ou f(z) > f(a) —3e > apourtoutz € V, ce
qui prouve que f est s.c.i. au point a.

EXERCICE 2.33.14

1. Soit € > 0, il existe un entier n tel que d(f(z), fo(z)) < ¢ pour tout z € X et tout
p > n.On aalors, pourp > n,

d(f(z), fo(zp)) < d(f(2), f(=p)) + d(f(zp), fo(2p)) < d(f(2), f(zp)) +&.
D’apres la continuité de f au point z, on peut supposer de plus que d(f(z), f(zp)) < €
pour p > n et on en déduit que d(f(z), fp(zp)) < 2€ pour p > n, ce qui prouve que la
suite (fn(zn)) converge vers f(z).

2,a. En prenant pour suite (z) la suite constante £, = x, I’hypothése implique que la
suite (fn(z)) converge vers f(z) : la suite (f») converge simplement vers f.

b. On pose y, = z pour ng < n < mk41. On obtient ainsi une suite (y,) qui
converge vers z : si V' est un voisinage de z, il existe [ tel que x € V pour k > I, d’od
Yn € V pourn > ny. Lasuite (f-(yn)) converge vers f(z) etil en résulte que la sous-suite
(fri (yn,)), C’est-a-dire la suite (fn, (zr)), converge vers f(z).

c. Soit (z») une suite convergeant vers z. D’aprés 2,a., la suite (f (zx)) converge vers
f(xx). Par récurrence, on peut donc construire une sous-suite (fn,) telle que
d(fn,(zk), f(zk)) < 1/k pour tout k > 1. La suite (fa, (zk)) convergeant vers f(z)
d’apres 2,b., on en déduit que la suite (f(zx)) converge vers f(z), ce qui prouve la conti-
nuité de f au point z, I’espace X étant a base dénombrable de voisinages.

d. Lorsque X est un espace métrique compact, montrons que la suite (f,) converge
uniformément vers f. Raisonnons par I’absurde. On suppose qu’il existe € > 0 tel que, pour
tout entier n, il existe p > n et z € X tels que d(f(z), fp(z)) > €. Par récurrence, on peut
alors construire une sous-suite (f,, ) et une suite (zx) telles que d(f(zk), fn, (k) > €.
L’espace X étant un espace métrique compact, quitte 2 extraire une sous-suite on peut
supposer que la suite (z) est convergente ; notons x sa limite. La fonction f est conti-
nue d’aprés 2,c., un espace métrique étant A base dénombrable de voisinages ; on peut
donc passer a la limite dans I'inégalité d(f(zk), fa.(zk)) > € grice 2 2,b., on obtient
d(f(z), f(z)) > €, ce qui est absurde.

3. Lorsque X est un espace métrique compact, ce qui précéde prouve qu’une suite (f,,)
converge uniformément vers une application continue f si, et seulement si, pour toute suite
(zn) convergeant vers z, la suite (fn(zn)) converge vers f(x). Cette derniére propriété
n’utilisant que la structure topologique de I’espace Y, ceci montre que deux distances topo-
logiquement équivalentes sur Y induisent la méme topologie de la convergence uniforme
sur I’espace C(X;Y).

EXERCICE 2.33.15 FONCTION NULLE PART DERIVABLE

1. Soit (fi) une suite de F;, convergeant uniformément vers f. Il existe t;. € I tel que
[fx(8) = fi(tr)| < m|s — ti| pourtout s € I
et, I étant compact, il existe une sous-suite convergente (¢, ) de limite t. Posons g; = f, ;
la suite (g1) converge uniformément vers f et
[9:(s) — gi(tx,)| < m|s — ti,| pourtout s € I.
On sait que limi— o0 g1(tk,) = f(t) d’aprés I’exercice 2.33.14 ; A la limite, on a donc
[f(s) = f(t)] < n|s—t| pourtout s € I
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et ceci prouve que f € F, qui est donc bien fermé.

Vérifions ensuite que F}, est d’intérieur vide, c’est-2-dire que E — F,, est dense dans
E. Soient f € E, ¢ > 0, montrons qu’il existe une fonction continue, affine par morceaux,
g € E — Fy telle que sup,¢; | f(z) — g(z)| < €. D’aprés la continuité uniforme de f, il
existe une subdivision

0=z <z2<...<Zpp1 =1
de I'intervalle I telle que |f(z) — f(y)| < elorsque z,y € [zi,zit1],1 < i < p. 1l
existe alors a; tel que f([xs,Zi+1]) C [ai,a; + €] et il est aisé de construire une fonction
continue g, affine par morceaux, telle que g(z;) = f(2:), 9(zi+1) = f(zi41), chaque
segment constituant le graphe de g ayant une pente en valeur absolue > n/ > n et telle que
g([zi, zi+1]) C [ai, ai + €] Onaalors |g(z) — f(x)| < € pour tout z € [z, Zi+1], ce qui
acheve la construction de g.

2. Si f admet une dérivée en un point ¢ € I, la fonction s — (f(s) — f(t))/(s — t)
admettant une limite quand s tend vers ¢ par valeurs différentes est bornée : il en résulte que
f appartient & I'un des F;,, donc a I’ensemble maigre | J;~_, Fn. Le complémentaire de cet
ensemble est partout dense car E est complet, donc de Baire, et une fonction appartenant a
ce complémentaire n’est dérivable en aucun point de I.

EXERCICE 2.34.1

On peut supposer la distance sur Y bornée. Dire que la famille (f;)icr est équicontinue au
point a signifie que, pour tout € > 0, il existe un voisinage V de a tel que, pour tout i € I
ettoutz € X, d(fi(z), fi(a)) < ¢, c’est-a-dire

d(f(e,2), f(,0)) = sup d(fi(), fi(a) < €;

I’équicontinuité est donc équivalente 2 la continuité au point a de I’application z > f(e, )
de X dans Fu(I;Y).

EXERCICE 2.34.2

Soit (f») une suite qui converge localement uniformément. Observons que I’équicontinuité
est une propriété locale : la suite (f) est équicontinue en un point a si, et seulement si, il
existe un voisinage V' de a tel que la suite (f»|v) des restrictions & V' soit équicontinue au
point a. On peut donc supposer que la suite (f,) converge uniformément ; cette suite est
donc relativement compacte pour la topologie de la convergence uniforme, donc équiconti-
nue d’apres le théoréme d’ Ascoli, I’hypothése de compacité de X n’étant pas utilisée pour
établir que les conditions 1. et 2. de ce théoréme sont nécessaires.

EXERCICE 2.35.1

Soit K une partie compacte de X, pour tout € K il existe un voisinage V; de z, qu’on
peut supposer ouvert, tel que la suite (fn|v, ) converge uniformément vers f|v, . Le recou-
vrement ouvert (Vz)zex du compact K contient un sous-recouvrement fini (Vz)zea, A
partie finie de K. Soit ¢ > O, pour tout x € A il existe un entier n tel que
supycy, d(f(¥), fr(y)) < € pour p 2 ng. Posons n = maxgeang, on a alors
d(f(y), fo(y)) < epourp > nettouty € (J e, Vi, donc pour tout y € K, ce qui



262 CHAPITRE2 TOPOLOGIE

prouve que la suite (f,) converge vers f uniformément sur K.
EXERCICE 2.35.2

Soient a € X et V un voisinage compact de a. La suite (f»|v) est équicontinue et converge
simplement ; elle converge donc uniformément d’apres le corollaire 2.34.4. Ceci prouve
que la suite ( f) converge localement uniformément, donc uniformément sur tout compact
d’apres I’exercice 2.35.1.

EXERCICE 2.35.3

1. Supposons X a base dénombrable de voisinages. Montrons la continuité de f en un
point x € X. Soit (z,) une suite de X convergeant vers z, il s’agit de démontrer que la
suite (f(xzn)) converge vers f(z) pour la topologie J2. Or, K = {z} U U2 o{zn} est
compact, donc f(K) est compact pour la topologie T2 d’aprés I’hypothese. La topologie
T1 étant moins fine que T2, sur f(K) les topologies T et T2 coincident ; la suite (f(2x))
convergeant vers f(z) pour la topologie T1 d’apres la continuité de f, converge vers f(x)
pour la topologie T3 et ceci prouve le résultat voulu.

2. Si X est localement compact, soit K un voisinage compact de z, alors
flx : K — f(K) est continu lorsque f(K) est muni de la topologie J1, donc de la
topologie T2 puisque les deux topologies coincident sur f(K) comme précédemment et
ceci prouve que f est continu au point z lorsque Y est muni de la topologie T.

EXERCICE 2.35.4 TOPOLOGIE DE LA CONVERGENCE COMPACTE

1. L'ensemble ‘B est stable par intersection finie et ['(#,Y) = €(X;Y) ; d’aprs la propo-
sition 2.9.4, B est donc une base de topologie.

2. Montrons que la trace sur C(X;Y’) de tout ouvert élémentaire (1’ensemble de ces
traces est une base de la topologie de la convergence simple) est un ouvert pour la topologie
Te. Etant donné une partie finie A de X et, pour tout 2 € A, des ouverts O, de Y, on pose

0 ={f € &(X;Y); (Vz € A)(f(z) € Oz)}
et il s’agit de démontrer que O est un ouvert pour la topologie T.. Or, O peut s’écrire
0 = (] I({=},02)
T€EA
o {z} est une partie compacte, donc O € B, ce qui prouve le résultat voulu.

Sil’espace Y est séparé, la topologie de la convergence simple est séparée, la topologie
T plus fine qu’une topologie séparée est donc séparée.

3. On suppose que la suite (f,) converge uniformément sur tout compact vers f.
Soient K un compact de X et O un ouvert de Y tel que f € I'(K,O). D’aprés la
continuité de f, f(K) est compact ; ce compact et le fermé Y — O sont disjoints, d’ou
e =d(f(K),Y — O) > 0 d’apres le corollaire 2.33.13. La suite (fn|x) convergeant uni-
formément vers f|, il existe un entier n tel que sup ¢ i d(f(x), fo(x)) < € pour tout
p > n,dod fp(K) C O, c’est-a-dire f, € ['(K,O) pour p > n, ce qui prouve que la
suite (f,) converge vers f pour la topologie de la convergence compacte.

En particulier, une suite uniformément convergente converge pour la topologie T, ce
qui prouve que la topologie T est moins fine que la topologie de la convergence uniforme.

4. Réciproquement, on suppose I’espace X localement compact et on considére une
suite (fr) convergeant vers f pour la topologie T.. Montrons que cette suite converge lo-
calement uniformément, donc uniformément sur tout compact d’aprés 1’exercice 2.35.1.
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Soiente > 0,z € X et O = B(f(z);¢), d’aprés la continuité de f, il existe un voisi-
nage K de z tel que f(K) C O et I’espace X étant localement compact, on peut choisir
K compact. On a donc f € I'(K, O) et, la suite (f») convergeant vers f pour la topolo-
gie T, il existe un entier n tel que f, € I'(K,0) pour p > n, soit f,(K) C O, d’ol
d(f(zx), fp(z)) < 2 pourtout z € K et tout p > n, ce qui prouve le résultat voulu.

5. Lorsque X est un espace compact, 3. et 4. prouvent que la topologie T coincide avec
la topologie de la convergence uniforme. La définition de la topologie T ne faisant appel
qu’a la structure topologique de Y, la topologie de la convergence uniforme sur I’espace
C(X;Y) ne dépend pas de la structure uniforme de Y : deux distances topologiquement
équivalentes sur Y conduisent 2 la méme topologie de la convergence uniforme.

EXERCICE 2.35.5 PRODUIT D’ESPACES LOCALEMENT COMPACTS

Le raisonnement est analogue a celui de I’exercice 2.28.1. 1l suffit d’observer qu’on peut
choisir les ouverts By, ; non vides et relativement compacts, on utilise ensuite le fait qu’une
suite décroissante de compacts non vides admet une intersection non vide. Un tel choix est
possible car, dans un espace localement compact, pour tout ouvert non vide O, il existe un
ouvert non vide relativement compact B tel que B C O d’apres la proposition 2.35.1.

EXERCICE 2.35.6

Si I’espace X est compact, il est fermé dans X', donc {w} est un ensemble ouvert, ce
qui signifie que le point w est isolé. Réciproquement, si {w} est ouvert, X est fermé dans
I’espace compact X', donc compact.

EXERCICE 2.35.7

1. Le point w n’est pas isolé d’apreés I’exercice 2.35.6. Le filtre des voisinages de ce point ad-
met donc une trace sur X ; le filre V(w) admettant pour base (X' — K)kex,
(X — K)kex est une base du filtre induit.

2. On prolonge f en une application f : X’ — K en posant f (w) = y. On obtient
ainsi une application continue d’apres 1’exercice 2.20.5 ; elle admet donc un minimum sur
PPespace compact X' : il existe zo € X' tel que f(zo) < f(x) pour tout z € X'. Ceci
montre que f est borné inférieurement. Lorsque 2o = w, la borne inférieure de f est égale
a y. Lorsque la borne inférieure de f est différente de y, on a donc zp # w et f admet un
minimum au point zo.

EXERCICE 2.35.8

1. Soit A un sous-espace localement compact d’un espace séparé. Soit z € A , il existe un
voisinage compact K de x dans le sous-espace A. Il existe un voisinage V' de z dans X tel
que K = VN Aet K est fermé dans V' car compact, ce qui signifie que A est localement
fermé (exercice 2.20.2).

2. Soit A un sous-espace localement fermé d’un espace localement compact X. Soit
x € A, il existe un voisinage V' de x tel que VN A soit fermé dans V. D’aprés la proposition
2.35.1, il existe un voisinage compact K de z tel que x € K C V. Alors, K N A est un
voisinage de 2 dans A et ce voisinage est compact : eneffet, KN A = KN(VNA)et
V N A est fermé dans V', donc K N (V' N A) est fermé dans K. Ceci prouve que tout point
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x € A admet un voisinage compact dans A ; A est un sous-espace localement compact.
EXERCICE 2.35.9 APPLICATION PROPRE

On notera que ’espace X est nécessairement localement compact. En effet, soient z € X
ety = f(z), il existe un voisinage compact V de y, alors f~!(V') est un voisinage de z
d’apres la continuité de f et ce voisinage est compact, f étant propre.

1. Montrons que f est une application fermée. Soient A une partie fermée de X et b
un point adhérent 3 f(A). Il existe un voisinage compact V de b, alors W = f~1(V)
est une partie compacte de X. Vérifions que V N f(A) = f(W N A). On a d’une part
F(WnNA)C f(W)n f(A) C VN f(A),dautre part, siy € V N f(A), il existez € A
telquey = f(z),dodz € WnNAety € f(WnN A); Wn A est fermé dans W, donc
compact et f(W N A) est compact d’apres la continuité de f. Il en résulte que V N f(A)
est compact, donc fermé. Soit V'’ un voisinage du point b, alors V' N V" est un voisinage de
b qui rencontre donc f(A), ce qui prouve que b est adhérent 2 V N f(A) et, cet ensemble
étant fermé, on en déduit que b € f(A), ce qui prouve que f(A) est fermé.

2. Supposons I’application f propre et soit Y’ — K', K’ partie compacte de Y, un
voisinage ouvert de w’, alors g 7' (Y’ — K’) = X’ — f~!(K’) est un voisinage ouvert de
w, car f~1(K") est une partie compacte de X. Ceci prouve la continuité de g au point w.
Réciproquement, si g est continu, X’ — f~*(K”) est un ouvert en tant qu’image réciproque
d’un ouvert par une application continue, ce qui prouve que f~!(K’) est fermé dans X',
donc compact : f est donc propre.

EXERCICE 2.35.10 ESPACE LOCALEMENT COMPACT DENOMBRABLE A LINFINI

1 = 2 On suppose que w admet un systeme fondamental dénombrable de voisinages,
il en résulte que w admet un systéme fondamental dénombrable de voisinages de la forme
(X'—K,) odles K, sont des parties compactes de X . Montrons alors que X = (J32 , Kn.
Soit z € X, alors X’ — {z} est un voisinage ouvert de w, il existe donc n tel que
X' — Kn C X' — {=}, soitz € Kp, ce qui prouve le résultat voulu.

2 = 3 On suppose que X est la réunion d’une suite (K7, ) de parties compactes. D’aprés
la proposition 2.35.1, il existe un voisinage ouvert relativement compact Og de K et, pour
n > 1, un voisinage ouvert relativement compact Oy, du compact O, —1 U Ky,. Les ouverts
On possedent les propriétés voulues.

3 = 40n pose K, = On, les ouverts Oy, vérifiant 3. Si K est une partie compacte de
X, 1a suite (Oy) est un recouvrement ouvert de K et, cette suite étant croissante, il existe
unntel que K C O,,d’od K C K,,.

4 = 1 Soit (K,) une suite de compacts vérifiant 4. Alors, (X’ — K,) est un sys-
teme fondamental de voisinages de w car tout voisinage de w contient un voisinage ouvert
X' - K, K partie compacte de X, donc contient un voisinage de la forme X' — K, d’aprés
4.

Tout espace compact est dénombrable a I’infini d’apres 2.

Montrons que tout sous-espace fermé A d’un espace localement compact X dénom-
brable a I’infini est un espace localement compact dénombrable a I’infini. Le fait que A soit
localement compact résulte de 1’exercice 2.35.8, to