1

4 » Y & o E
g |’ g A o b
8 o & 4 5 B 3 e 8k o % e g B Y. 1
§ "~sdarEiE FREET TS 2R e ] Egat _
i €A B SN "y 8 Nrk Wet %t b ¥ ;

ggggg es espaces de panach

RAPPEL DE NOTIONS RELATIVES AUX ESPACES DE BANACH
ET AUX APPLICATIONS LINEAIRES CONTINUES

Dans toute la suite, le corps de base K est le corps réel R ou le corps complexe C. On
suppose connues les définitions relatives aux espaces vectoriels et leurs propriétés
élémentaires. On rappelle que s1 E est un espace vectoriel complexe (c’est-a-dire sur
le corps C), E posséde une structure d’espace vectoriel réel sous-jacent : on se borne a
considérer le produit Ax d’un vecteur x € E par un scalaire / lorsque 1€ R.

Norme sur un espace vectoriel E

C’est une fonction p: E—- R* (ou R* désigne I’ensemble des nombres réels =0)
ayant les propriétés suivantes :
(i) p(0) = 0;
(i) (p(x) = 0) =(x = 0);
(i) p(x + y) < p(x) + ply), Vx,y € E;
(iii) p(Ax) = |4]- p(x),Vx e E, LeK.

Un espace vectoriel (e.v. en notation abrégée) munide la donnée d’une norme s’appelle
un espace vectoriel normé (e.v. normé). Quand la norme p est ainsi donnée, on note
souvent [|x| la valeur p(x) de la norme pour un vecteur x. Avec cette notation, les
conditions (1) a (i11) s’écrivent :

1) [10] = 0;
(@) (x| = 0) = (x = 0);
(i) % + vl < ] + [yl;
(i) [2x| < 14 [ ]|
Soit E un e.v. normé ; on définit la distance de deux points x, y de E par la formule :

d(x,y) =[x — y].
Puisque [[x — y| = ||y — x| a cause de (iii) [remplacer x par (x — y), et A par —1],
on a d(x, y) = d(y, x). De plus, (i1) entraine immédiatement
d(x,2) < d(x,y) + dly,2)

(«inégalité du triangle »). Enfin, d(x, y) = O si et seulement si x = y. Donc E est un
espace métrique ; et, comme pour tout espace métrique, E a une structure topologique.
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CALCUL DIFFERENTIEL

Pour cette topologie, la norme u— |lu|| est une application continue E — R, parce que
ull = vl < flu = Vil
Soit, pour a€ Eetr > 0, B'(a,r) la boule de centre a et de rayon r, formée des points
x € E tels que
dix,a)<r  clest-a-dire |x —al <.

Alors un sous-ensemble U < E est dit ouvert si, pour tout a € U, il existe r > O tel que
la boule B'(a,r) soit contenue dans U. Ces ensembles ouverts définissent bien une
topologie.

On vérifie que la boule B'(a,r) est fermée (son complémentaire est un ensemble
ouvert). En revanche, la « boule ouverte» B(a,r), formée des x tels que |[x — al <r,
est un ensemble ouvert.

La topologie de E est séparée, car si x # y, posons d(x,y) = r; alors les boules
ouvertes B(x, r/2) et B(y, r/2) sont disjointes.

Une suite (X,), » o de points de E a pour limite a € E, et on écrit lim x, = a, si la suite

n—aos

des distances || x, — a|| tend vers zéro. On montre facilement que sl

limx. = a; limy, = b, alors lim(x, +y,) =a+Db.

n— oo n— co n— o=

De méme, si

limx, = a im 4, = pu,
fi—uo0 n—
alors
lim(4,x,) = pua.
n-— oo
Une suite (x,) s’appelle une suite de Cauchy sion a lim | x,, — x| = O ceci signifie
que Ve > 0, 3N tel que oo

m=Netn>=N)=|x, — x,|| <e.

On sait que toute suite convergente (c’est-d-dire qui a une limite) est une suite de
Cauchy. Si la réciproque est vraie (c’est-a-dire si toute suite de Cauchy est convergente),
on dit que I'espace métrique E est complet.

DEFINITION. On appelle espace de Banach un espace vectoriel normé qui est complet
pour la distance déduite de la norme. Si le corps de base est R, on parle d’espace de
Banach réel ; si c’est C, on parle d’espace de Banach complexe.

Exemples d’'espaces de Banach

Exemple 1. Considérons I'espace numérique réel R”, resp. I'espace numérique complexe
C". C’est un espace vectoriel réel; resp. un e.v. complexe. Considérons sur cet espace
I'une des trois normes usuelles :

p(x) = Y Ix{,

i=1

pa(x) = sup |xi,

=1I=sn
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n
ps(x) =/ > |x|* (norme euclidienne);
i=1
[on a noté X, ..., X, les coordonnées du vecteur x].

La topologie définie sur R" (resp. C") par I'une quelconque de ces normes est la
topologie-produit R x ... x R (n fois), resp. C x ... x C (n fois). Pour qu’une suite
de points ait pour limite a = (a,,..., a,) il faut et il suffit que, pour tout entier i tel
que 1 < i < n, la i-itme coordonnée des points de la suite ait pour limite a,. Comme
R (resp. C) est complet, R" (resp. C") est aussi complet : c’est un espace de Banach pour

I'une quelconque des normes p,, p,, P5.

Exemple 2. Soit X un espace topologique. Soit %,(X) I'’ensemble de toutes les fonctions
numériques X — R qui sont continues et bornées. Dire que f est bornée, c’est dire que

su);() [f(x)| est fini.

Il est clair que %,(X) est un espace vectoriel (I’addition étant I’addition des fonctions,
et le produit Af de f par un scalaire 4 étant le produit de la fonction f et de la fonction

constante 4). Posons
[l = sup [f(x)].
xeX

On verifie (le faire a titre d’exercice !) que ||f|| est une norme sur I’espace vectoriel ,(X).
On l'appelle la norme de la convergence uniforme des fonctions. De plus, cet espace
est complet (exercice a détailler : cela tient a ce que la limite d’une suite uniformément
convergente de fonctions continues bornées est continue. Ainsi %, (X) est un

espace de Banach (réel).
On pourrait faire de méme avec les fonctions continues bornées a valeurs complexes :

on obtiendrait un espace de Banach complexe.

Exemple 2 bis. On va genéraliser I'exemple 2. Au lieu de considérer les fonctions
continues bornées X — R, considérer les applications continues et bornées X — F, ou
F désigne un espace de Banach donné ; par définition, f : X — F est bornée si

I = sup [1f(x)]

est fini (dans le membre de droite, |f(x)| désigne la norme de f(x) dans I'espace de
Banach F). L’ensemble %,(X ; F) de ces fonctions est encore un espace vectoriel (e.v.
sur R, si F est un e.v. réel ; e.v. sur C, si F est un e.v. complexe). De plus ||f|| définie ci-
dessus est une norme sur cet espace vectoriel ; et il est complet parce que F est
complet (le démontrer en exercice). Ainsi €, (X.F) est un espace de Banach.

Exemple 3. Soit %[0, 1] I'espace vectoriel des fonctions numériques sur I'intervalle
[0, 1] < R, intégrables au sens de Lebesgue. Posons

1
I =f (1)l dt.
0
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Ceci a toutes les propriétés d’une norme, excepté (i) : la relation |[f| = 0 n’implique
pas que f est identiquement nulle, mais seulement que f est nulle « presque partout »
(c’est-a-dire sauf sur un ensemble de mesure nulle). Pour obtenir une vraie norme, on
procéde ainsi : considérons la relation d’équivalence #(f,, f,):

«f, et f, sont égales presque partout » ;

’ensemble L,([0, 1]) des classes d’équivalence a une structure d’espace vectoriel (c’est
I’espace vectoriel quotient par le sous-espace vectoriel des f telles que ||| = 0). Si ¢
est une classe d’équivalence, on définit ||¢| : c’est la valeur commune de |f|| pour les
fdelaclasse ¢. Alors | ¢ | est une norme sur I’espace vectoriel L, ([0, 1]). De plus il résulte
de la théorie de I'intégrale de Lebesgue que I'espace L,([0, 1]) est complet (cela ne serait
pas vrai si on utilisait I'intégrale de Riemann). Ainsi L,([0, 1]) est un espace de Banach.

Exemple 3 bis. 1l est analogue au précédent : on considére cette fois 'espace vectoriel

Z,([0, 1]) des « fonctions de carré intégrable » avec

1
Ifll = f If(t)* dt.

On passe au quotient par la relation d’équivalence %(f, , f,) comme ci-dessus. L’espace
quotient L,([0, 1]) est un espace de Banach.

Séries normalement convergentes dans un espace de Banach

DEFINITION. Soit (u,),», une suite d’éléments u, € E, ou E désigne un espace de
Banach. On dit que la série de terme général u, est normalement convergente si la
série des normes

> luall,

nz0

qui est une série a termes > 0, est convergente.

THEOREME. S’il en est ainsi, la série de terme général u, est convergente (c’est-a-dire :
Y, U, aune limite quand p — oo, limite notée Y u,), et ona

0<n<p nz0

1Y uall < Y Mgl

nz=0 nz0

Nous ne démontrons pas ce théoréme (cf. par ex. Choquet, loc. cit, p.- 215-216;
Choquet dit « absolument sommable » la ot nous disons « normalement convergente »).
Il est essentiel d’avoir supposé que E est un espace de Banach, car la démonstration
utilise le critére de Cauchy.

Exemple. Reprenons I'espace de Banach %,(X) (exemple 2 du n° 1.2). Dire que u, est
le terme général d’une série normalement convergente, ol u, est une fonction numérique
continue et bornée sur I'espace topologique X, c’est dire qu’il existe une série convergente

14
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a termes ¢, = O telle que I’on ait, pour tout n,
lu.(x)| <&, quelquesoitxeX;
il suffit en effet de prendre ¢, = |lu,|| = sup |u,(x)|. On retrouve ainsi la notion usuelle
xeX

de convergence normale d’une série de fonctions.

Applications linéaires continues

Soient E et F deux e.v. normés (tous deux sur le corps R, ou tous deux sur le corps C).
On se propose de chercher un critére permettant de reconnaitre si une application
linéaire f : E — F est continue lorsqu’on munit E et F des topologies définies par leurs

normes.

THEOREME 1.4.1. Pour une application linéaire f : E — F, les conditions suivantes sont

équivalentes.
(a) f est continue en tout point de E;
(b) f est continue a I'origine O,
(c) |If(x)| est bornée sur la boule-unité || x| < 1.

DEMONSTRATION. 1l est clair que (a) = (b). Montrons que (b) = (c) : supposons
f continue au point O ; 'image réciproque f~' de la boule-unité de F est un voisinage
de 0 dans E, donc contient une boule || x|| < r pour un r > O convenable. Ainsi il existe

r > Otel que

Ix|| <r entraine [f(x)| < 1;
alors

x| <1 entraine [f(x)| < 1/r,
car si on pose y = rx,ona

Ifty)ll <15 or Jfyll = -1/

Donc on vient de prouver que [f(x)| est borné sur la boule-unité {|x|| < 1, ce qui

démontre que (b) entraine (c).
Montrons enfin que (c) entraine (a). Si (c) est vrai, il existe M > O tel que [[f(x)| < M
pour tout x tel que ||x|| < 1, d’ou, pour tout X sans exception,

IO < Miix]l.

(en effet, c’est évident si |x|| = O; et si [|[x|] = r > 0, le vecteur y = (1/r)x satisfait a
lyll = 1,d’ou [f(y)l < M, et [f(x)| = r|f(y)] <.rM = M|x||). Montrons que, dans ces
conditions, f est continue en un point quelconque a€ E; on a f(x) — f(a) = f(x — a)
puisque f est linéaire, donc il suffit que |x — a|| < ¢/M pour que

Ifx) — f(a)| < M {nu = &,

et ceci prouve bien la continuiteé.
15
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Notation. On notera #(E ; F) 'ensemble de toutes les applications linéaires continues
de E dans F. C’est évidemment un espace vectoriel (sous-espace vectoriel de I’espace
de toutes les applications linéaires E — F). Sur #(E ; F), on pose

Il = sup ().

qui est fini (d’apres le critere (c) du théoréme 1.4.1). On a vu que, pour tout xe E :

(1.4.1) 1O < 10 - 11l (relation fondamentale)

De plus, soit M > O tel que
(1.4.2) If(x)]| <M x| pour tout xe E ;
alors, pour | x|| < 1, ceci donne ||f(x)|| < M;d’ou

Sup Il < M,
c’est-a-dire ||[f| < M. Ainsi |f|| est le plus petit des nombres M = O tels que la relation
(1.4.2) ait lieu.
If]| est une norme sur I'espace vectoriel Z(E ; F) : la vérification est immédiate (la faire
a titre d’exercice). Ainsi Z(E ; F) est un espace vectoriel normé ; il a donc une topologie
parfaitement définie par la donnée des deux espaces normés E et F.

THEOREME 1.4.2. SiF est un espace de Banach, L(E ; F) est un espace de Banach.

DEMONSTRATION. Soit (f,) une suite de Cauchy dans I’espace #(E; F). Pour
chaque r > 0, considérons les restrictions des f, 4 la boule || x| < r:ce sont des fonctions
f qui forment une suite de Cauchy dans I’espace vectoriel %,(B'(0, 1) ; F) (cf. exemple
2 bis du n° 1.2). Or cet espace est complet puisque F est un espace de Banach. Donc la
suite f converge uniformément, dans la boule || x| < r, vers une fonction f® continue
et bornée. 1l est clair que, pour 1’ < r, la restriction de f 4 la boule ||x|| < v est égale
a ™). Donc la collection des fonctions f* (fonctions qui se prolongent nutuellement)
définit une fonction f dans tout I'espace E, telle que la restriction de f 4 la boule || x| < r
soit précisément f". Pour chaque x € E, on a
f(x) = hm f,(x),

puisque la convergence est uniforme sur chaque boule de centre 0. De 13 on déduit,
sixeEetyekE:

fix +y) = lim f,(x + y) = lim(f,(x) + f.(y))
= lim f,(x) + lim f,(y)

= f(x) + f(y),

16
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et on montre de la méme maniere que
f(Ax) = Af(x).

Ainsi f est linéaire. On a vu que, sur chaque boule || x| < r, [f(x)| est bornée ; donc f
est linéaire continue.
Enfin ||f — f_|| tend vers O, puisque

If = fall = sup [f(x) — f,(x)]

MES!

et que, sur la boule ||x|| < 1, la suite (f,) converge uniformément vers f. On a ainsi
montré que la suite de Cauchy (f,) a une limite f, et il est donc prouvé que #(E ; F) est

un espace de Banach.

Composition des applications linéaires continues

Soient E, F, G trois e.v. normés, et soient f : E — F, g : F — G deux applications linéaires
continues. Alors gof: E— G est une application linéaire continue (on sait en effet
que la composée de deux applications linéaires est linéaire, et que la composée de deux
applications continues est continue). Pour tout xe E, on a

D) = llgtfxDil < ligl - 1Ol 5

or
I < NIfll- 1]l

d’ou finalement

(g =HI < ligll - Il - lix]l-

D’aprés la propriété caractéristique de la norme d’une application linéaire (cf. 1.4),

ceci entraine

(1.5.1) gt < llgll - lIfl

Isomorphismes d’espaces vectoriels normeés ;
normes équivalentes sur un e.v. normeé

DEFINITION. Une application f:E — F (ou E et F sont des e.v. normés) est un
isomorphisme sl :

1° f est linéaire continue ;

2° il existe une g linéaire continue F — E telle que g+ f = id; (application identique
de E)etfog = idg.

Ces conditions impliquent que f est une bijection de E sur F, et que g est la bijection
réciproque. D’autre part, il est clair que si f est une bijection linéaire, la bijection
réciproque est linéaire. En revanche, si f est une bijection linéaire continue, il n’est
pas certain que la bijection réciproque soit continue. De ces remarques, il suit une
autre caractérisation des isomorphismes :

17
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Pour que f: E — F soit un isomorphisme, il faut et il suffit que f soit un homéo-
morphisme (d’espaces topologiques) et soit linéaire.

Signalons sans démonstration un théoréme, trés important en Analyse, mais difficile
a demontrer* :

THEOREME DE BANACH. Si E et F sont des espaces de Banach, toute application
linéaire continue bijective f : E — F est un isomorphisme.

(Ce théoréme dit que I'application réciproque f™':F — E est automatiquement
continue.)

I1 ne faut pas confondre isomorphisme et isométrie :

DEFINITION. Une application f:E — F (ou E et F sont des e.v. normeés) est une
isométrie si f est une bijection linéaire qui conserve la norme, c’est-a-dire

IO = x|l pour x e E.

Cette condition entraine que ||f(x)| est bornée sur la boule-unité : donc f est une applica-
tion linéaire continue ; et le méme raisonnement montre que I'application réciproque
g est linéaire continue. Ainsi toute isométrie est un isomorphisme : mais la réciproque
n’est pas vraie : par exemple, une homothétie x - Ax (ot 1 # 0) est un 1somorphisme
E — E, mais n’est pas une isométrie si |4] # 1.

DEFINITION. On dit que deux normes p, et p,, sur un méme espace vectoriel E,
sont équivalentes si elles définissent la méme topologie.

On peut encore formuler cette définition comme suit : soit E, I’e.v. normé qu’on
obtient en munissant E de la norme p, ; et E,, celui qu’on obtient avec la norme p,.
L’application identique de E définit deux bijections

fl:Epj e Eﬂz’ fZ:Eﬁz—’Epl’

réciproques 'une de I'autre. Dire que p, et p, définissent la méme topologie, c’est dire
que f, et f, sont des isomorphismes d’e.v. normés. Pour cela, il faut et il suffit que f,
et f, soient des applications continues.

Appliquons le critére de continuité d’une applicationlinéaire (théoréme 1.4.1);
la continuite de f, s’exprime par I'existence d’'un M > 0 tel que

p2(x) € Mpy(x) pourtout xeE;
de méme, la continuité de f, s’exprime par I’existence d’un M’ > O tel que

p1(X) < M'p,(x)
d’ou :

PROPOSITION 1.6.1. Pour que les normes p, et P, solent équivalentes, il faut et il

suffit que le rapport p,(x)/p,(x) (qui est défini pour x # 0) soit majoré et minoré par
des nombres > 0.

* Voir par exemple N. Bourbaki, Espaces vectoriels topologiques, Chap. II.
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THEOREME 1.6.2. Sur I'espace vectoriel R", toutes les normes sont équivalentes.

Ixi =/ % lef

la norme euclidienne (£,,...,¢, désignent les coordonnées de x). Soit p n’importe
quelle autre norme ; montrons d’abord que p: R” - R™ est continue (lorsqu’on munit
R" de la topologie-produit, qui est aussi celle définie par la norme euclidienne.) On a

DEMONSTRATION. Notons

1) — oyl < px — V) < 3 1€ — ndete),
i=1

en notant (e;,...,e,) la base canonique de R". Cette inégalit¢é montre que p(y)tend

vers p(x) quand y tend vers X ; p est bien continue.
Sur la sphére-unité ||x|| = 1, qui est compacte, p est une fonction continue partout

#0; elle a donc une borne supérieure M > O et une borne inférieure m > 0. D’oul

aussitot :
p(x) < M|x|l,  p(x) = m|x]|,

ce qui prouve que p est équivalente a la norme euclidienne.

COROLLAIRE. Si E est un e.v. normé, toute application linéaire bijective f : R* — E
est un isomorphisme. (En effet, si p désigne la norme sur E, p < f est une norme sur R" ;
cette norme définit donc la méme topologie que la norme euclidienne, d’ou le résultat.)

THEOREME 1.6.3. Soit E un e.v. normé de dimension finie. Alors E est un espace de
Banach, et toute application linéaire de E dans un e.v. normé F est continue.

DEMONSTRATION. Soit n la dimension de E; on a une application linéaire bi-
jective f : R* — E. D’aprés le corollaire précédent, f est un isomorphisme. Puisque R"
est complet, E est complet (c’est un espace de Banach). Soit maintenant g : E — F une
application linéaire (F étant un e.v. norme) ; si on montre que

h=g-f:R">F
est continue, il s’ensuivra que g = h o f~! est continue.

Il reste donc seulement & montrer que toute application linéaire h :R" — F est

continue. On a

n

hi,...,&) = X &h(e).

i=1

D’ou

1=

Ih(y, ... &I < 2, 1]~ IIh(edll,

1

i
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donc h(¢y,...,¢,) tend vers O quand le point (&, , ..., ¢&,) tend vers O.

Remarque. On a des résultats analogues aux théorémes 1.6.2 et 1.6.3 pour les espaces
vectoriels complexes ; le r6le de R" est alors jou€ par c?

Soient E et F deux espaces vectoriels de dimension finie, dim E = m, dim F = n.
Le choix d’une base de E et d’une base de F identifie ’espace vectoriel #(E ; F) a 'espace
vectoriel des matrices a n lignes et m colonnes (les éléments de ces matrices €tant dans
le corps de base). La dimension de .#(E ; F) est égale au produit mn.

Exemples d’espaces ¥(E ; F)

Exemple 1. Supposons que E = R dans le cas des e.v. réels, resp. E = C dans le cas
des e.v. complexes. Raisonnons par exemple dans le cas réel. On va définir une iso-
métrie naturelle

ZR;F)= F.

Pour cela, nous associons a chaque y € F I’application linéaire A+ Ay de R dans F;
elle est continue, puisque

Iyl = Iyl - 14

Ceci définit une application ¢ : F - #(R ; F), qui est évidlemment linéaire. De plus
la relation des normes montre que I’application linéaire ¢(y) : R — F a pour norme ||y/||.
En sens inverse, partons d’une application linéaire continue f: R — F; associons-lui
I’élément f(1) € F ; on définit ainsi une application ¢ de #(R, F) dans F, qui est évidem-
ment linéaire. Il est immédiat que les applications ¢ et ¥ sont réciproques 1'une de
l’autre ; chacune d’elles est donc une bijection. De plus, cette bijection est une isométrie,
puisqu’on a vu que [|@(y)|| = |y|. Par définition, y est I'isométrie naturelle de #(R ; F)
sur F.

Exemple 2. Soit E un espace de Banach réel ; alors Z(E ; R) est un espace de Banach
réel, qu'on appelle le dual topologique de E. Ses €léments sont les formes linéaires
continues sur E.

Ne pas confondre avec le dual algébrique, qui comprend toute les formes linéaires
continues ou non. Lorsque E est de dimension finie n, le dual topologique se confond
avec le dual algébrique, il est aussi de dimension n. En général, nous noterons E* le
dual topologique de E ; E* est muni de sa structure d’espace de Banach.

On définirait de méme le dual topologique #(E ; C)d’un espace de Banach complexe.

Exemple 3. L algebre ¥ (E ; E), E étant un espace de Banach.

On sait déja que Z(E ; E) est un espace de Banach. Mais on a en outre la loi de com-
position

(g9,f)—>g-of.
20
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Appelons-la une multiplication (cette multiplication n’est pas commutative, en général).
Cette multiplication jouit des propriétés suivantes :

{(91 + gy)ef=(g;°f) +(g,¢°0),
(Ag) o f = A(g o).

(conséquence de la définition de I'addition g, + g, des applications linéaires et de la
multiplication d’une application linéaire g par un scalaire 4). De plus

{(9°(f1 +f,)=(gef) +(gefy)

go(4f) = Ag - f),
parce que g est linéaire. Les relations (1.7.1) et (1.7.2) expriment que si I'on fixe f,
I'application g — g e f est linéaire, et que si I’on fixe g, 'application f+— g o f est linéaire.
Une telle application est dite bilinéaire (cf. ci-dessous, n° 1.8).

Chaque fois que, dans un espace vectoriel A, on a défini une loi de composition
interne (appelée multiplication) qui est bilinéaire, on dit qu’on a défini sur A une struc-
ture d’algébre sur le corps de base. Cette algébre est dite associative si la multiplica-
tion est associative. On voit donc ici que Z(E ; E) est une algébre associative sur le
corps R (resp. C), suivant que E est un espace vectoriel réel ou complexe. Nous omettrons
souvent le signe o de la multiplication, écrivant simplement gf pour I'application
composée g o f.

Sur Ialgébre #(E, E), nous avons une norme qui satisfait aux conditions habituelles
d’une norme d’espace vectoriel (cf. 1.1), et en outre, d’aprés (1.5.1), satisfait a

(1.7.1)

(1.7.2)

(1.7.3) latl <lgil-Ifl

(propriété de la norme vis-a-vis de la multiplication).

—5 Enfin, si E est un espace de Banach (ce qu’on va supposer jusqu’a la fin de ce numero),

#(E ; E) est complet pour la norme (a cause du théoréme 1.4.2). Nous dirons alors
que #(E ; E) est une algébre de Banach : d’une fagon précise, une algebre de Banach A
est une algébre munie d’une norme satisfaisant a (1.7.3), et compleéte pour cette norme.

Remarque. 11 ne faut pas croire que ||gf| = |igll - [f|l ; par exemple : prenons E = R*:
soit f (resp. g) I'application de projection sur le premier (resp. le second) axe de

données. On a
coor of = fg = 0.

et cependant
It =1, gl = 1.
Dans I'algébre de Banach #(E ; E), nous allons faire deux fois usage de la théorie

des séries normalement convergentes.

THEOREME 1.7.1 ET DEFINITION. Si E est un espace de Banach, et si fe £(E ; E),

la série
y L
nso0N!

est normalement convergente. On note exp f sa somme.
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DEMONSTRATION. Tout d’abord on convient que f® = 1, élément unité de I’algebre

(application identique E — E). On a, d’apreés (1.7.3),
(1 /8

donc la série des normes est majorée par :

1
2 —lIfI™ = explfi
n!

n=20 """

(fonction exponentielle usuelle d’une variable réelle), série qui converge.

CQFD.

Exercice. Démontrer que si gf = fg, on a (expf)-(expg) = (expg)-(expf) = exp(f + g) ;

en particulier, puisque exp(0) = 1, on a
(exp f)- (exp(—f)) = 1,
donc exp f est un élément inversible de £(E ; E).

Remarque. Ce qui précede est valable pour toute algébre de Banach.

THEOREME 1.7.2. Soit E un espace de Banach, et soit u e ZL(E;E)tel que
lul < 1.

Alors 1 — u a un inverse dans I'algébre #(E ; E).

DEMONSTRATION. La série

YuU=T4+u+. Ut

nz0

est normalement convergente, puisque |[u"| < ||ul”, et que la série géométrique
Y Jlul™ est convergente en vertu de I’hypotheése |u| < 1. Soit v la somme

nz0
Y u™ On voit tout de suite que
nz0

vu = uv

est la somme de la série » u". Alors

nzl
vl —u)=(1 —uv=1,
donc v est 'inverse de 1 — u.

Remarque. Ce théoréme est aussi valable dans toute algébre de Banach.
Voici une conséquence du théoréme 1.7.2. :
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THEOREME 1.7.3. Soient E et F deux espaces de Banach. Notons Isom (E ; F) le sous-
ensemble de #(E : F) formé des isomorphismes E — F (cf. Déf. du §1.6).

Alors :
(a) Isom (E ; F) est ouvert dans £(E ; F) ;
(b) application u— u~' de Isom (E ; F) dans &£(F ; E) est continue.

DEMONSTRATION. Observons d’abord que 'ensemble Isom (E ; F) peut étre vide
(si E et F ne sont pas isomorphes !). Dans ce cas, le théoréme est trivialement vrai. Si
Isom (E ; F) n’est pas vide, prenons un u, € Isom (E ; F). Pour prouver (a), nous devons
montrer que tout u € #(E ; F) assez voisin de u, est encore un isomorphisme. Or, pour
que u : E — F soit un isomorphisme, il faut et il suffit que

(up) "'u:E—>E

soit un isomorphisme ; cherchons donc une condition suffisante pour que (uy)™'u
soit un isomorphisme, ¢’est-a-dire soit un élement inversible de #(E ; E). Posons :

(Ug) 'lu=1—-v.

Il suffit que ||v| < 1, d’aprés le théoréme 1.7.2. Or v =1 — ug'u = ug '(u, — u),

d’ou
(1.7.4) vl < flug Il lu — ull.
Donc, si
lu = Uoll < ——==,
g lug '

on est sir que |v| < 1, donc que u est un isomorphisme. Ceci prouve bien que tout
u assez voisin de u, est un isomorphisme.
(Attention ! Ne pas croire que [[ug [ = 1/[uel).

Il reste a démontrer (b). On a

u ™l = (U1 = V) ' =(1 = V)" ug) ™",

d’ou
(1.7.5) u ™t = (up) ' =1 = V)T = 1)
or
(1 =v) =3 v dot (1-v)t—-1=>3) Vv,
nz0 nz1
_ v
1w -1 < n VI
II( V) | < ngl vl T

Ainsi (1.7.5) entraine

) ] vl
{1.7.6 u-t g b —
) u (o)™ < U5 3=
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Lorsque u tend vers ug, ||v| tend O d’apres (1.7.4), donc u™! tend vers (u,) ™! d’apres
(1.7.6). Ceci prouve bien que u~' est une fonction continue de u lorsque u parcourt
Isom(E ; F). Le théoréme est ainsi démontré.

Remarque. Lorsque E et F sont de méme dimension finie n, et qu’on identifie #(E ; F)
a I'espace des matrices a n lignes et n colonnes, on sait exprimer qu’une matrice f est
inversible : la condition est que son déterminant det f soit # 0. L’application f+ det f
de #(E;F) dans R (resp. C) étant continue, 'image réciproque du complémentaire
de 0, qui est Isom (E ; F), est ouverte. Ceci donne, dans ce cas particulier, une nouvelle
démonstration de la partie (a) du théoréme. Le calcul de la matrice inverse permettrait
de vérifier (b) dans ce cas particulier.

Applications multilinéaires continues

D’abord, un rappel d’algébre : soient E,,..., E, et F des espaces vectoriels ; une
application
f:E]. XK e K En—)F

est dite multilinéaire (bilinéaire si n = 2, trilinéaire si n = 3) si, pour chaque entier
ke [1,n], et pour chaque systéme d’éléments a; € E; (i # k), I’application « partielle »

e fag,...,a 1 X8 4,...,a,)

de E, dans F est linéaire. Autrement dit, lorsqu’on fixe toutes les variables sauf une,
f doit dépendre linéairement de la variable restante. S’il en est ainsi on a O o e om0

des que 'un au moins des x; est nul ; en particulier f s’annule 2 l'origine (O, ..., 0).
Observons que si f est multilinéaire, on a

(1.8.1) FAL X0y AaXa) = (Ay o AR(Xy LX),

Exemple. Prenons pour E,,..., E_ et Fle corps des scalaires ; le produit de n éléments
du corps

iliz---;\.

n?

considéré comme fonction de 4,, 4,,..., 4,, est une fonction multilinéaire.

Supposons maintenant que E,,..., E , F soient des espaces vectoriels normeés.
Alors E; x ... x E, a une structure d’espace topologique (comme produit d’espaces
topologiques) ; cela a donc un sens de se demander si une application f : E; x...xE,»F
est continue. Le théoréme 1.4.1 se généralise comme suit :

THEOREME 1.8.1. Soient Ei...., E,. Fdes ev. normés, et soit f:E, x ... x E, > F
une application multilinéaire. Les conditions suivantes sont équivalentes :

(a) fest continue en tout pointde E; x ... x E,_;

(b) fest continue a I'origine (0,...,0)€E; x ... x E_;

(€) If(xy,...,%,)| est borné sur le produit des boules-unité

”XIH < 1:"'3“Xn” < ks
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La démonstration procéde comme celle du théoréme 1.4.1. Il est évident que (a) = (b).
Pour montrer que (b) = (c), on observe que si f est continue a I’origine, I'image réciproque
de la boule-unité de f est un voisinage de (0,...,0)dans E, x ... x E,, donc il existe
r > O tel que

(| %;]] < r pour tout i) = ||f(x,,...,x,)| <1

Compte tenu de (1.8.1), on en déduit
(%] < 1 pour tout i) = |[f(x,,..., x)| < -t
ce qui prouve (c).
Supposons que f vérifie (c) ; soit M > O tel que
(Ix;] € 1 pour tout i)= |[f(x4,...,Xy)| < M
On a alors, quels que soient les x; :
(1.8.2) (x5 XD < M{Ixg - X

Montrons que, dans ces conditions, f est continue en un point arbitraire (a,,..., a,),
ce qui prouvera que (c) = (a). Formons la différence

f(xy,...,x,) — f@a;,...,a,)
= f(x; — @y, %X3,....%,) + f@;, x; — a5, X%35,...,X,)
T f(ala"'aan—l,xn - an)'

[Vérification immediate, puisque f est une fonction additive de chaque variable séparé-
ment.] L.a norme du premier membre est majorée par la somme des normes des termes
du second membre ; donc, compte tenu de (1.8.2) :

(1'83) Hf(XIQ""JXD)_f(al3""an)”

< Mlix, — aqll - Ixall - 1Xall + Mix, — @, - lay ]l - [Ix3]] - .. [Ix,]l
+ ..o+ Mlx, — agll - llag ] ... laa—y -
Supposons || x; — a&;|| < ¢ pour tout i ;alors ||x;|| < ||a;| + ¢, donc il existe un nombre
A > Otel que
(IIx; — a;|| < ¢ pour tout i) => ||x;]| < A pour tout i.

L’inégalité (1.8.3) entraine donc

< nMA" 1g

(184) Hf(xla"-axn) - f(als"'aan)” < MAn_l( Zn: ”xi — a4

i=1

dés que ||x; — & < ¢ pour tout i. Visiblement, A peut étre choisi indépendamment
de ¢ > O dés que ¢ est assez petit. Alors (1.8.4) montre que f(x,,..., x,) tend vers
f(a;,...,a,) quand simultanément x, tend vers a,,..., X, tend vers a,. Donc f est
continue au point (a,, ..., a,), et la démonstration est achevée.
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Notation. On notera #(E,, ..., E_ ;F) I'ensemble des applications n-linéaires
continues E, x...x E,~ F. C’est évidlemment un sous-espace vectoriel de 1’espace

vectoriel de toutes les applications E, x . .. x E,~ F. Pour f EL(E, x...xE_;F)
on posera

Il = suplif(xy, ..., x,)|
lorsque x, ..., x, parcourent les boules-unité :

Ixil < 1,..., Il < 1.
On a alors, d’aprés (1.8.2) :
(1.8.5) O s Xl < I Il Xl

et ||f]| est le plus petit des M > O tels que (1.8.2) ait lieu.
Exercice. Vérifier que |f|| est bien une norme sur I’espace vectoriel BHE, s ¢ cen B FY.

Autre exercice. Montrer que si F est un espace de Banach, I’e.v. normé FEi,...rbsiF)
est un espace de Banach. (Procéder comme dans le cas n = 1, cf. ci-dessus n° 14)

Exemple d’une application bilinéaire continue. Soient E, F, G trois espaces vectoriels
normes. Considérons I’application de composition :

@:Z(F;G) x £E;F)- ZE:G),
définie par

@(g,f)=gof.
On a déja vu qu’elle est bilinéaire. On sait de plus que (cf. (1.5.1))
lg=fil < gl - If] ;
doncsi [f| < Tet|g| < 1,ona g < f|| < 1. Ceci montre que 'application bilinéaire

@ est continue, et que sa norme o] est <1.

L'isométrie naturelle #(E, F: G) ~ L(E; Z(F; G))

Nous allons d’abord définir une application
¢:Z(E F;G)—» L(E; 2(F;G))

comme suit : Soitfe Z(E, F ; G) ; f(x, y)est une fonction de deux variables x eEetyeF;

si on fixe x, I'application y s f(x, y) est une application linéaire de F dans G, qu'on va
noter f, (application partielle). On a

I = 110, v < () 1)L - Iyl
donc

(1.9.1) Il < M1 (1],
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et cecl montre notamment que f, est une application linéaire continue (puisque sa norme
est finie). Alors x+— f, est une application g : E - Z(F ; G) ; on vérifie aussitot qu’elle
est linéaire. De plus (1.9.1) s’écrit

lgGoll < (Ifll - Il

donc g est continue, et ||g| < [[f|. On a ainsi associé a toute fe Z(E, F;G) une
ge L(E; Z(F;G)), qui par définition sera ¢(f). Ceci définit I'application ¢. Il est
immédiat que ¢ est linéaire. De plus, puisque ¢ transforme f en g, et que | g < |/f||,
I’application linéaire ¢ est de norme <1 :|¢| < 1.

Maintenant, nous allons définir en sens inverse une application

v:LE; LF;G)— L(EF;Q).
Pour cela, partons d’une application linéaire continue
g:E—- Z(F;QG).

Pour x € E, g(x) est une application linéaire continue F — G ; donc, pour xe E, ye F,
g(x) - y est une application bilinéaire

f:Ex F->G@G.

De plus
gl < ligll - I,

donc
I, VI = a(x) -yl < g - Iyl < Higll - 11l - 1yl

ce qui prouve que f est bilinéaire continue, et que
Il < lal-

Ainsi chaque g € Z(E : Z(F ; G)) définit une f e #(E, F ; G) ; par définition, f sera y(g).
Ceci définit I'application . Il est immédiat que y est linéaire. De plus, puisque v
transforme g en f, et que |f|| < |gl|, 'application linéaire y est de norme <1.
Maintenant il est clair que les deux applications ¢ et Y sont réciproques I'une de
I"autre. Ainsi o ¢ est I'application identique de #(E x F ;G), sa norme est donc 1.

D’ol

T=1yeol <yl lel,
et comme

lel <1, |yl <1,
on en conclut que

lell =1, gyl =1.

Par suite ¢ conserve la norme : c’est une isométrie.
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. APPLICATIONS DIFFERENTIABLES

Définition d'une application différentiable

Dans ce qui suit, on se donne deux espaces de Banach E et F, et un ouvert non vide
U <= E. On considére des applications f : U — F. Chaque point a € U définit une relation
d’équivalence dans I’'ensemble de ces fonctions, comme suit :

DEFINITION. On dit que f, : U — F et f, : U — F sont tangentes en un point ae U

si la quantité

m(r) = sup _||f,(x) — f,(x),

| x=all<r

qui est définie pour r > 0 assez petit (puisque U est ouvert), satisfait 4 la condition

(2.1.1) lim— =0,

condition qu’on écrit aussi
2.1.2) m(r) = o(r).

Le lecteur verifiera que la relation : « f, et f, sont tangentes en a» est bien une relation
d’équivalence. On a, en particulier, la notion d’une f tangente a 0 au point a.

La condition (2.1.2) implique que la fonction f, — f, est continue au point a, et
prend la valeur O au point a. Ainsi : deux fonctions tangentes en a prennent la méme
valeur au point a, et si I'une d’elles est continue en a, l’autre est aussi continue en a.

Exemple. Soit g une application linéaire E — F (continue ou non). Posons

f(x) = g(x — a),

et cherchons si f est tangente a4 O au point a. On a
m(r) = ligf -,

donc si m(r)/r tend vers O avec r, on a ||g|| = 0, donc g est identiquement nulle. De 1a
il résulte qu’étant donnée une application f:U — F, il existe au plus une application
linéaire g : E — F telle que les applications

xr— f(x) — f(a)
et
x— g(x — a)

soient tangentes en a. De plus, si une telle g existe, la continuité de f en a entraine la
continuité de g a I'origine (donc partout, puisque g est linéaire), et réciproquement.
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DEFINITION. On dit que f : U — F est différentiable au point a € U si les conditions
suivantes sont vérifiees :

(i) f est continue au point a;
(i) il existe une g linéaire E — F telle que les applications x— f(x) — f(a) et x— g(x — a)

soient tangentes au point a.
Cette condition s’exprime ainsi :

(21.3) If(x) — f(a) — g(x — a)ll = oflx — al]).
Si f est différentiable au point a, 'unique g linéaire qu’elle définit est continue, d’apres

Ja remarque ci-dessus. C’est un élément de #(E ; F),qu’on notera f'(a),et qu'on appellera

la dérivée de I’application f au point a.

Une définition équivalente est celle-ci : f est différentiable au point a € U s’il existe une
ge Z(E; F)telle que(2.1.3) ait lieu. En effet, la continuité de g entraine alors la continuité
de f au point a.

Nous récrivons (2.1.3) avec la notation f(a) :

(2.1.4) If(x) — f(a) — f(a)(x — a)] = olllx — al).

Exemple. Soit F un espace de Banach réel, et soit U un ouvert de R;alors f:U—F
est une fonction d’une variable réelle. Compte tenu de lisométrie canonique
#(R:F)~ F, la différentiabilit¢ de f au point a équivaut a I'existance d’un élément
c e F tel que

If(x) — f(a) — (x — a)e]| = o(x — al);

autrement dit, le quotient
f(x) — f(a)
X —a

(pour x # a)

doit avoir une limite ¢ € F lorsque x tend vers a. On retrouve la définition usuelle de la
dérivée d’une fonction d’une variable réelle, & valeurs dans un espace de Banach F.
Si cette limite ¢ est notée f'(a), 'application linéaire

t — tf'(a)

de R dans F est I’élément de (R :F) qui lui correspond dans I'isométrie naturelle
F~ 2R :F):cest 'élément de £(R ; F) que nous avions noté f'(a) dans le cas général.
1l n'y a pas d’inconvénient majeur a utiliser la méme notation f(a) pour désigner

I’élément de F et I’élément correspondant de Z(R ; F).
On a un phénoméne analogue pour #(C ; F) lorsque F est un espace de Banach

complexe.

Revenons au cas général : E > U L F.

DEFINITION. On dit que f est différentiable dans U si f est différentiable en tout
point de U.
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Alors I’élément f'(a)e #(E ; F) dépend de ae U. Nous avons donc une applicatio
a— f'(a), que nous noterons simplement f' :

U 24E ; F).

C’est, par définition, Papplication dérivée de 'application différentiable f: U — F, 0.
notera bien que I'application dérivée f' ne prend pas ses valeurs dans le méme espac
F que I"application f. Rappelons toutefois que si E = R (resp. C), F étant un espace d
Banach réel (resp. complexe), alors on peut identifier Z(R;F)a F(resp. Z(C;F)aF
Donc, pour une fonction f d’une variable réelle (resp. complexe), on peut identifie
application dérivée f' a une application U — F.

DEFINITION, On dit que f: U — Fest continament différentiable, ou de classe G s
1) fest différentiable dans U, c’est-a-dire différentiable en tout point de U :
2) I'application dérivée f: U — Z(E ; F) est continue.

(Ne pas oublier que Z(E ; F) est muni d’une norme qui en fait un espace de Banach :
donc U et Z(E ; F) sont des espaces topologiques.)

Remarque sur la notion de différentiabilité : soit toujours f une application continue
U — F, ol Fest un espace de Banach, et U un ouvert d’un espace de Banach E. Rem-
plagons la norme de E par une norme ¢quivalente (cf. 1.6) ; notons ||x||, la nouvelle
norme d’un x € E, I’ancienne étant notée x| ; remplagons de méme la norme de F par
une norme équivalente. La topologie de E n’est pas changée, celle de F non plus : U reste
ouvert, et f reste une application continue.

PROPOSITION 2.1.1. Si f est différentiable au point a€ U pour les anciennes normes,
f est aussi différentiable au point a pour les nouvelles normes, et sa dérivée est la méme.

En effet, le fait que f est différentiable au point a et a pour dérivée un élément
g€ #(E; F) s’exprime par les conditions

fim 1100 = (@) — g(x — a)| _

e Ix — a

0.

Puisque les normes | || et | ||, sont €quivalentes dans E, on a

1 1
< y
Ix — al, Ix — al

M étant un nombre fixe. Puisque les normes | | et || I, dans F sont équivalentes, on a
1) — f(a) — g(x — a)]|, < M'|[f(x) — f(a) — g(x — a)l,
M’ étant un nombre fixe. D’ot -

100 — f(@) = g(x — @), _ 0 10 — (@) — glx — a)]
Ix = all, =l

Puisque par hypothése le second membre tend vers Oquand x tend vers a (en restant = a),

il en est de méme du premier membre. C.QF.D.
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Dérivée d'une fonction composée

Soient E, F, G trois espaces de Banach, soit U un ouvert de E, et soit V un ouvert de F.

On considére deux applications continues

f:U-—>F, g:V-aG,

et un point a € U. On suppose que b = f(a) € F est, en fait, dans V. Alors f~ (V) = U
est un ouvert de E qui contient a ; dans cet ouvert U’, 'application composée

gef:U -G
est définie.

THEOREME 2.2.1. Sous les hypothéses précédentes, si f est différentiable au point a,
et si g est différentiable au point b = f(a), alors h = g o f est différentiable au point a,

et on a
(2.2.1) h'(a) = g'(b) - f'(a).
Autrement dit, 'application linéaire h'(a):E — G est composée de I'application
linéaire f'(a) : E — F et de 'application linéaire g'(f(a)) : F — G.
DEMONSTRATION. On a par hypothése
(2.2.2) f(x) = f(a) + f(a) - (x — a) + @(x — a),
ou ¢ est une application tangente a O a ’origine, c’est-a-dire
lp(x — a) = o(l|x — a).
De méme, on a par hypothése
(2.2.3) a(y) = g(b) + g'(b)- (y — b) + y(y — b),

avec [[y(y — b)|| =o([ly — bl)).
Evaluons alors h(x) — h(a) = g(f(x)) — g(f(a)) ; appliquons (2.2.3) en y remplacant y

par f(x), et b par f(a). On obtient
h(x) — h(a) = g'(f(a)) - (f(x) — f(a)) + Y(f(x) — f(a)).

Dans cette relation, remplacons f(x) — f(a) par sa valeur tirée de (2.2.2), en tenant
compte du fait que g'(f(a)) est une fonction linéaire F — G :

h(x) — h(a) = (g'(f(a)) - f'(a)) - (x — a)
+ g'(f(a)) - o(x — a)
+ Y(f(x) — f(a)).

Pour prouver que h est différentiable au point a et a pour dérivée g'(f(a)) - f'(a), il
suffit de montrer que le second et le troisiéme terme du membre de droite sont tangents
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a 0, c’est-a-dire
(2.2.4) Ig'f(a)) - @(x — a)| = o(||x — a),
(2.2.5) l(t(x) — f(a)]l = o(llx — al).
Or (2.2.4) résulte de
lg'(f(@)- o(x — a)| < lIlg'(f(@))] - llp(x — a)] ;
(2.2.5) résulte du fait que
l(f(x) — Ha)ll = o([f(x) — f(a)l|)
et du fait que, en vertu de (2.2.2), 'inégalité
If(x) — f(a)ll < M- |x — a
(ou M est donné > |[f'(a)||) a lieu pour ||x — al| assez petit, comme cela résulte de (2.2.2).
Le théoreme 2.2.1 est ainsi démontré.

Linéarité de la dérivée

Considérons le cas général : U est un ouvert d’un espace de Banach E, F est un espace
de Banach. Soient f et g deux applications U — F ; leur somme h est I'application
h:U — F définie par

h(x) = f(x) + g(x) (addition dans F).
De méme, le produit Af de f par un scalaire / est Papplication k : U - F définie par
k(x) = 4-f(x).
PROPOSITION 2.3.1. Avec les notations précédentes, si f et g sont différentiables au
point a, h = f + g est différentiable au point a, et on a
h'(a) = f'(a) + g'(a).
Si f est différentiable au point a, k = Af est différentiable au point a, et on a
k'(a) = if'(a).

Autrement dit, ensemble des f: U — F qui sont différentiables au point ae U est un
sous-espace vectoriel V, de Iespace vectoriel de toutes les applications U — F, et
application f— f'(a) est une application linéaire de V, dans Z(E : F). On verrait de
méme que I'ensemble des applications f: U — F qui sont de classe C'! (dans U) est un
sous-espace vectoriel du précédent.

Dérivées de fonctions particuliéres

PROPOSITION 24.1. Sif:U — F est une application constante, elle est différentiable
et sa dérivée f'(x) est nulle, quel que soit x € U.

32

N



CALCUL DIFFERENTIEL DANS LES ESPACES DE BANACH

C’est évident a partir des définitions.
On verra plus loin (§3) que réciproquement, si f est différentiable et si f'(x) = O pour

tout x € U, si en outre U est connexe, alors f est constante dans &

PROPOSITION 2.4.2. Si f:U — F est la restriction d’une application linéaire continue
E — F (qu’on notera encore ), elle est différentiable, et on a

f(x) =f pour tout xeU

[la dérivée est donc constante ; ne pas oublier que cette constante est un ¢lément de
#(E ; F)]. C’est encore évident a partir des définitions.

On va maintenant étudier la dérivée d’une application bilinéaire continue
f:E, x E, - F,

E,, E,, F désignant trois espaces de Banach. Mais d’abord, pour nous trouver dans le
cadre voulu, nous devons définir sur E; x E, une structure d’espace de Banach. Pour
cela, on considére d’abord sur E; x E, la structure d’espace vectoriel, produit des e.v.
E, et E, : les opérations d’espace vectoriel sont définies par les formules

(X1, X2) + (Y1, ¥2) = (X + Y1, %3 + V2)
{ Ay, %) = (AXy, AX)

en particulier, (X;,X;) = (x;,0) + (0, x,). 1I reste a préciser quelle norme on choisit

sur I’espace vectoriel E; x E, ; on posera

(2.4.1) [y, 3l = Ixqll + %205

on vérifie que ceci est bien une norme, qu’elle définit sur E; x E; la topologie-produit
de E, et de E,, et que pour cette norme E; x E, est complet (parce que E, et E, sont
complets, par hypothése). Remarque : au lieu de la norme définie par (2.4.1), on pourrait
prendre n’importe quelie autre norme équivalente a celle-la, par exemple sup (|| X, [, I x2|)-

THEOREME 2.4.3. Si f: E, x E, — F est bilinéaire continue, f est différentiable, et sa
dérivée au point (a,, a,) [avec a, € E,, a, € E,] est définie par

(24.2) f(a,,a;)-(hy, hy) = f(hy,a;) + Ha,, hy);

dans cette formule, on a h, €E,, h, € E,; le premier membre désigne la valeur de

f(a,,a,) e L(E, x E,;F)surle vecteur (h;,h,) e E; x E,.

DEMONSTRATION
f(a, + hy, a; + hy) — f(ay, a,) = f(h,, a,) + f(a;, hy) + f(hy, hy),
et tout sera donc démontré si on prouve que

If(hy, ho)ll = o(li(hy, hy)l)-
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Or lithy, hy)ll = [Ih,]| + |, ], tandis que
Ifth s ho)ll < - by ) - by < IE- bl + Jhyf)?.
Etil est clair que (|[h, || + ||h,[)? = o(lthy |l + [ih,]). |
C.QFD.

Généralisation. Au lieu d’un produit de deux espaces de Banach E, et E,, considérons
un produit

n €tant un entier quelconque. Sur ce produit, on prend la structure d’espace vectoriel
produit, et la norme

0653l = ¥ .

Elle définit la topologie-produit. Soit
fiEix ... xE >F

une application multilinéaire continue. Alors le théoréme 2.4.3. se généralise : f est
différentiable, et on a

(2.4.3) f’(al,...,an)-(hl,...,hn) = f(hl,az,...,an) + fa,, h,,as,...,a)
+ ...+ f(al,...,an_l,hn).
[Dans f(a,, ..., a,), on remplace successivement chaque a; par h;, sans toucher aux

autres a; ; on fait la somme des termes obtenus, et cela donne le second membre de

(24.3)]. La démonstration se fait par récurrence sur n; elle est laissée au lecteur a
titre d’exercice.

Voici un dernier exemple : dans le théoréme 1.7.3, on a défini une application continue
=l
ur—u

de Isom(E ; F) (ouvert dans I'espace de Banach Z(E ; F)) sur Isom(F ; E) (ouvert dans
I’espace de Banach Z(F ; E)). Soit ¢ cette application ; on a donc ou) =u~! Onp peut
considérer ¢ comme prenant ses valeurs dans I'espace de Banach #(F ; E), et cela a
donc un sens de se demander s; ¢ est différentiable. Sa dérivée sera alors un élément de

L(ZL(E;F); £(F;E)).
THEOREME 2.4.4, Avec les notations précédentes, ¢ est de classe C! dans I'ouvert
Isom(E ; F) = L(E ; F), et sa dérivée est donnée par

(2.4.4) @U)-h= —y-1.hoy-t pour he #(E ; F).
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DEMONSTRATION. Regardons d’abord ce que signifie le second membre de (2.4.4.).
Le signe o désigne ici la composition des applications linéaires continues

FSEL FU'E,
de sorte que le second membre est un élément de #(F ; E), comme il se doit.
Pour démontrer (2.4.4), donnons & u un « accroissement » h :
@u+h)—o@u)=(@u+h " —u!
=(Uu+h)"lo(u—-(u+h)ou!

= —~(Uu+h"tehou™t.
Pour prouver le théoreéme, il suffit de montrer que, u € Isom(E ; F) étant fixé, la différence
entre (U + h)™' e hou™" etla fonction (linéaire en h) u™' c hou~'esto(|h]). Or
(Uu+hTehou™ —utochoul=(Uu+h ' —uYohout,
d’ou
lu+h)teheu™ —utehou ' < (u+h)"" = u= - u")-h].

11 suffit donc de montrer que [[(u + h)™' — u™"| tend vers O quand h tend vers 8 %

or il en est bien ainsi, puisque I'application u+— u~! est continue (théoréme 1.7.3).
Ainsi on a prouvé que ¢ est différentiable en tout point u € Isom(E ; F), et que sa

dérivée ¢'(u) est donnée par la formule (2.4.4). Pour montrer que ¢ est de classe C!, il

reste 2 démontrer que 'application
@' :Isom(E; F) » L(ZL(E;F); £(F;E)
est continue. Introduisons pour cela une notation : pour ve #(F;E), we #(F; E),
notons W(v, w) Iapplication linéaire
h— —vehowde Z(E;F)dans Z(F;E).
Alors (2.4.4) montre que
@'(u) = Y(u™t,u?).
Or I'application (v, w)— (v, w) de Z(F;E) x Z(F;E)dans £(Z(E;F); #(F;E)
est bilinéaire ; elle est continue, car
(v, w)-hj = flvehow] < v|-|h]-|w],

ce qui entraine (cf. relation (1.4.2) et les lignes qui suivent) :
(v, w)| < v - lw]f.
Donc y est une application bilinéaire continue. Cela dit, I’application
u— @'(u) = y(u=,u™)
est composée de I'application continue u— (u™?', u™') de Isom(E ; F) dans
F(FzE) x F(F1E};

et de 'application continue (v, w)— y(v, w). C’est donc une application continue.
C.O.ED.

N.B.—On verra plus tard que cette application est méme différentiable.
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CAS PARTICULIER DU THEOREME 2.4.4. Supposons E= F =R (resp. E=F=C
dans le cas complexe). Une application linéaire E — F est alors définie par un scalaire,
que nous noterons u ; et pour que I'application définje par u soit un isomorphisme, il
fautetil suffit que u % 0. Ainsi Isom(R ; R)s’identifie 4 'ouvert de R formé des éléments
u # 0. Le théoréme 2.4.4 dit, dans ce cas, que I'application u — 1/u est différentiable,
et que sa dérivée est —1/u? Résultat bien classique!

Fonctions a valeurs dans un produit d’espaces de Banach

Supposons que I’espace F soit le produit d’un nombre fini k d’espaces de Banach :
F=F x...xF,.

Introduisons les notations suivantes - pour chaque entier i tel que 1 < i < k, soit
pi:F— F

Iapplication de projection du produit sur son i-iéme facteur, et soit
u:F, > F

I'injection définie par

ui(x;) = (0,...,x;,...,0)

[O partout sauf i la i-iéme place]. On vérifie que p; et U; sont des applications linéaires
continues, et qu’elles satisfont aux relations
P; o U; = 1g, (application identique de F,

(2.5.1) k
Y U;op; = 1 (application identique de F).
i=1

PROPOSITION 2.5.1. Avec les notations précédentes, soit f: U — F une application
continue, U désignant toujours un ouvert d’un espace de Banach E. Pour que 1 soit
différentiable au point a e U, il faut et il suffit que, pour chaque i (1 < i < k), la fonction
fi=piof:U - F, soit différentiable au point a, et alors

k
(2.5.2) fa)= ) u;-fia).
i=1

Démonstration facile. Les applications linéaires p, et u; sont différentiables. Donc si f
est différentiable, I'application composée p; o f est différentiable (théoréme 2.2.1) et a
pour dérivée

fi@) = piofla)e £(E; F).

Réciproquement, supposons que f; soit différentiable au point a, quel que soit I’entier
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i(1 <i < k);ladeuxieme relation (2.5.1) donne

k
Z Uicpiofzf:
i=1

k
cest-a-diref = > u; < f;; donc (théoréme 2.2.1 et proposition 2.3.1) f est differentiable

au point a, et '7!

f(a) = i u; o fi(a).

C.QFD.

Remargue. Pour que I'application f' : U — #(E ; F) soit continue, il faut et il suffit que
fi:U — Z(E ; F,) soit continue pour chaque i

Exemple. La proposition précédente s’applique notamment lorsque F = R* (resp. C¥) ;

on prend alors

Fij = ... = Fy = R{résp. = C).

La donnée de f: U — R* équivaut a la donnée de k fonctions numeriques f; : U - R
(a savoir f; = p; o f); pour que f soit différentiable, il faut et il suffit que chaque f; soit
différentiable, et alors f(a) est I'application linéaire E — R* dont les k composantes
sont fi(a),. .., f(a).

Application. Considérons, comme au n° 24, une application bilinéaire continue
f:E, x E, » F; soient d’autre part u: U — E, et v:U — E, deux applications con-
tinues. La donnée de f permet de « multiplier » entre elles les fonctions u et v ; d’une
fagon précise, elles définissent w : U — F par la formule

(2.6.3) w(x) = f(u(x), v(x)).

PROPOSITION 2.5.2. Avec ces notations, supposons que U et v soient différentiables
au point a € U ; alors w est différentiable en ce point, et W'(a) est déterminée par la formule :

(2.5.4) w'(a)-h = f(u'(a)- h, v(a)) + f(u(a), v'(a)- h), pour hekE.

DEMONSTRATION. D’aprés la proposition 2.5.1, I'application x — (u(x), v(x)) de
U dans E, x E, est différentiable au point a, et sa dérivée est I'application lin€aire

h — (u’(a)- h, vi(a)- h).

D’autre part, lapplication f : E; x E, — F est différentiable en tout point de E, x E,,
puisqu’elle est bilinéaire continue (théoréme 2.4.3). L’application w définie par (2.5.3)
est la composéee

USRS E x E, L F;
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donc (théoréme 2.2.1) elle est différentiable au point a, et sa dérivée est égale a la com-
posée des applications dérivées.

Explicitons cette dérivée : on doit, dans la relation (2.4.2), remplacer a, par u(a),
a, par v(a), h, par u'(a)- h, h, par v'(a)- h; on obtient alors précisément le second
membre de la relation (2.5.4) a démontrer. C.QFD.

Cas particulier. Supposons que E = R, c’est-a-dire que u et v soient des fonctions
d’une variable numérigue x. Alors on sait que u’(a) - h est simplement h - u’(a) (produit
de u'(a)e E; par le scalaire h), que v'(a)-h est h-v'(a), et w'(a)-h est h-w'(a). La
relation (2.5.4) donne alors, en y faisant h = 1 :

(2.5.5) w'(a) = f(u'(a), v(a)) + f(u(a), v'(a)).

On reconnait ici la formule qui donne la dérivée d’un « produit » de deux fonctions
u et v d’'une variable numérique : par exemple, produit vectoriel de deux fonctions
a valeurs dans R?, produit scalaire de deux fonctions a valeurs dans R". Cette formule
s’applique s1 E; = E, = A est une algébre de Banach (cf. 1.7), f: A x A - A étant la
multiplication dans cette algeébre ; dans ce cas (2.5.5) s’écrit

(uv)(a) = u'(a)v(a) + v(a)u'(a).

Le cas le plus simple est celui ou I"algébre A est le corps des scalaires, et on retrouve
alors la formule usuelle donnant la dérivée du produit de deux fonctions numériques.

Cas ol U est un ouvert d’un produit d’espaces de Banach

On suppose maintenant que E = E; x ... x E_, et que U est un ouvert de E. Soit
f:U— F une application continue. Pour chaque a = (a,,...,a,)eU, considérons
I'injection 4, : E; — E définie par

Ai(xi) = (als' seg ai—‘l, xi5 aj+1,. T an)
L’application composée fo 2; est définie dans I'ouvert (1) '(U) c E,, qui contient

a; € E; ; on I’appelle la i-ieme application partielle au point a.

PROPOSITION 2.6.1 ET DEFINITION. Avec les notations précédentes, si f est
différentiable au point a, alors, pour chaque entier i (1 < i < n), 'application partielle
fo4; est différentiable au point a;. On note f, (a), ou f/dx;(a), ou f,(a,,...,a,), ou
of/oxi(ay, ..., a,) la dérivée de cette application partielle au point a,; c’est un élément
de Z(E; ; F), qu’on appelle aussi la dérivée partielle de f par rapport a x,. En outre, on a

(2.6.1) f(a)-(h;,...,h))= > f(a)-h;, pour h,eE,,...,h €E,.
i=1
DEMONSTRATION. Notons u; : E; — E I'injection canonique, définie par

ui(xi): (03'--a09xi505"'70)'
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u; est linéaire continue. On a évidemment

(2.6.2) Alx) = a+ ufx; — &), 4(a)=a;
d’ou
(2.6.3) A{x;) = u; pour tout x; € E;.

Sifest différentiable au point a, f » 4; est donc différentiable au point a, (théoréme 2.2.1),

et (fo 4) = f(a)o u;. Ainsi f, (a) existe, et n’est autre que f(a) - u;.
La relation (2.6.1) résulte alors de la relation

uep; = Tg (cf(25.1)),

=

]

i=1

qui donne

(26.4) 2. (F@)ouy)op; =f(a),
i=1

qui n’est qu’'une autre maniere d’écrire (2.6.1).

Remarque. Contrairement a ce qui avait lieu pour la proposition 2.5.1, la proposition
2.6.1 n’affirme pas que si les dérivées partielles partielles f, (a) existent, la dérivée f'(a)
existe. On reviendra sur cette question au § 3.

Supposons maintenant que f soit différentiable en tout point de U, et soit
f':U-> Z(E;F
I'application dérivée. Alors I'application « dérivée partielle »
fi;U— Z(E ;F)
est composée de f' et de 'application linéaire
(2.6.5) FAE ; Fy—s FE; : Fj

qui, a toute application linéaire continue ¢ : E — F, associe @ o u; : E; — F ; en effet,
cela résulte de la relation

(2.6.6) f(a) = f(a)e u;.

L’application linéaire (2.6.5) est de norme < 1, donc continue. Par suite, si I’application
dérivee f’ est continue, les applications f,, sont continues. La réciproque est vraie, car la
relation (2.6.4) montre que I'application f est égale a la somme des applications com-

posées
U '™ Z(E;F)—> £(E;F),
ou L(E;;F)— Z(E;F) est l'application linéaire qui, a ¢,e Z(E, ;F), associe

;o p;€ L(E;F).
En résumé :
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PROPOSITION 2.6.2. Sif est différentiable en tout point de U, une condition nécessaire
et suffisante pour que f soit de classe C' est que les f, : U — Z(E; ; F) soient des applica-

tions continues.

Combinaison des cas étudiésen 2.5 et 2.6

Supposons a la fois que E=E x.. . xE_ et F= F,x...xF_. Soit U un ouvert
de E, et soit f:U — F une application différentiable au point a = (a,,...,a,)e U.
Alors les p;of =f, (ol p;: F — F, est la projection) sont différentiables au point a,
donc ont des derivées partielles df;/dx;(a) (1 <i<m,1<j<n)Ona

of,
@_—.;j(a)e Z(E;;F),

ct

-~

cf;
(2.7.1) fa = Y U;e=—(a)=q;,
,zjl ox .

i
ou
{ g; : E — E; est la projection canonique,

u; : F; — F est I'injection canonique.

Ainsi I'application linéaire f'(a) est déterminée par la matrice des (0f,/0x;)(a); Cest
une matrice @ m lignes et n colonnes (i est 'indice des lignes, la i-iéme ligne corres-
pondant a I'espace F; ;] est I'indice des colonnes, la j-iéme colonne correspondant a
'espace E;). On vérifiera (exercice!) que si on a en outre un espace de Banach
G =G, x ... x G, une application continue g d’un ouvert V < G dans U < E,
differentiable en un point b e V tel que g(b) = a, et si on note h I'application composée
fog:V — F, la matrice [(8h,/dy,)(b)] (oU y, varie dans G,.1 < k < p) est égale au
produit de la matrice (0g;/0y,)(b) par la matrice (afi/@ij)(a) ;autrement dit :

= ¥ Sl D)

P

(2.7:2)

Ceci resulte tout simplement du théoréme de dérivation d’une fonction composée :
h'(b) = f'(a) - g'(b).

Ce qui précede s’applique notamment lorsque E = R", F= R™ (avecE, =... = E, = R,

Fi =...= F,= R). Alors (¢f/0x;)(a)e R. Sien outre G = RP(avec G, = ... = G, = R),

les (0g;/0y,)(b) sont aussi des scalaires, et dans le second membre de (2.7.2) le signe o sig-

nifie simplement la multiplication des scalaires, comme dans le produit classique de
deux matrices dont les éléments sont des scalaires.

Remarque finale : comparaison entre R-différentiabilité et C-différentiabilité

Comme on I'a déja dit, la théorie précédente s’applique aussi bien aux espaces de
Banach réels qu'aux espaces de Banach complexes. On va maintenant comparer les
deux théories.
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Soient E et F deux espaces de Banach sur le corps C; on peut les considérer aussi
comme des espaces de Banach sur le corps R : il suffit de ne considérer le produit d'un
vecteur et d’un scalaire que lorsque ce scalaire est réel. Par exemple, C est un espace
vectoriel sur C, de dimension 1 ; pour sa structure réelle sous-jacente c’est un espace
vectoriel sur R, de dimension 2.

E et F étant donc des espaces de Banach sur C, soit U un ouvert de E, et soit f: U->F
une application continue. Soit enfin a € U. On peut envisager deux propriétés de f:

(i) f est différentiable au point a, pour les structures d’e.v. sur C ;

(ii) f est différentiable au point a, pour les structures d’e.v. sur R.

Dans le premier cas, la dérivée f/(a) est une application linéaire continue E — F, ou
« linéaire » signifie : C-linéaire. Pour bien préciser, on notera Z¢(E ; F) 'espace vectoriel
(normé complet) des applications C-linéaires continues de E dans F. Dans le second
cas, la dérivée f'(a) est une application R-linéaire continue E — F. Pour bien préciser,
onnotera %(E ; F) ’espace de Banach des applications R-linéaires continues de E dansF.

Une application C-linéaire est, a fortiori, R-linéaire ; donc Z¢(E; F) = ZR(E; F);
P’espace de Banach Z((E ; F) est un sous-espace de Z(E ;F), et c’est d’ailleurs un
sous-espace fermé, puisqu’il est complet.

La condition (i) ci-dessus exprime qu’il existe une ge Z¢(E;F), nécessairement
unique, telle que |f(x) — f(a) — g(x — a)ll = o(|lx — al|). La condition (ii) exprime
qu’il existe une g € %R(E ; F), nécessairement unique, telle que

[f(x) — f(a) — g(x — a)ll = ofjx — al).

1l est donc clair que la condition (i) entraine la condition (ii) : si f est C-différentiable
au point a, f est a fortiori R-différentiable au point a, et sa dérivée f'(a) au sens réel est la

méme que sa dérivée au sens complexe.
Inversement, supposons que f soit R-différentiable au point a, et soit f'(a) e ZR(E ; F)

sa dérivée. Pour que f soit C-différentiable au point a, il faut et il suffit que f'(a) appar-
tienne au sous-espace vectoriel L¢(E ; F) de LR(E ; F).
La théorie qui s’occupe spécialement des fonctions C-différentiables fait I'objet d’une

autre partie du cours de Mathématiques II : ces fonctions sont aussi appelées fonctions
holomorphes, et on étudiera surtout les fonctions holomorphes dans un ouvert de C.

. THEOREME DES ACCROISSEMENTS FINIS; APPLICATIONS

La terminologie des « accroissements finis » s’explique par des raisons historiques :
la notion d’accroissements « finis » s’oppose a celle d’accroissements « infinitésimaux »

dont il était question autrefois en calcul différerntiel.

Enoncé du théoréme principal

THEOREME 3.1.1. Soient a et b deux points de R tels que a < b. Notons [a,b] le
segment fermé qu’ils déterminent. Soient donnés deux applications continues

f:[a,b] > F, g:[a,b]—-R,
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ou F est un espace de Banach. Supposons que f et g soient différentiables en tout point de
Fintervalle ouvert Ja, b[ et que

(3.1.1) [f(x)] < g'(x) poura< x < b.
Alors on a
(3.1.2) If(b) — f(a)|| < g(b) — g(a).

On va démontrer un théoréme un peu plus fort, et dont la démonstration n’est pas
plus difficile. Avant de I’énoncer, il faut donner une définition.

DEFINITION. On dit qu'une application f:[a, b] - F admet une dérivée a droite
en un point x € [a, b[ si

1
lim —(f(x + h) — f(x))
h—0 h
h>0

existe ; cette limite se note alors fy(x) et s’appelle la dérivée a droite de f au point x.
C’est un elément de F. On définit de méme, si elle existe, la dérivée d gauche de f en un
point x € ]a, b] :

fy(x) = lim %(f(x + h) — ().

h<0

Pour que f admette une dérivée f'(x) en un point x € Ja, b[, il faut et il suffit que fj(x) et
fy(x) existent, et soient égales : c’est évident.

THEOREME 3.1.2. Mé&me énoncé que pour le théoréme 3.1.1, sauf que I’on suppose
seulement I'existence de f3(x) et de gj(x) en tout point x € Ja, b[, et que P'inégalité (3.1.1)
est remplacée par

(3.1.1)a [fax)| < gy(x) poura < x < b.

La conclusion est la méme : c’est I'inégalité (3.1.2).
Ainsi on a affaibli les hypothéses du théoréme 3.1.1, et la conclusion subsiste. Le
théoréme 3.1.2 est donc plus fort que le théoréme 3.1.1.

DEMONSTRATION DU THEOREME 3.1.2. Donnons-nous un nombre ¢ > 0.
On va montrer

(3.1.3) If(x) —f(a)] < g(x) —g(a) + e(x — a) + ¢

pour tout x €[a, b]. Un fois cela prouvé, on appliquera cette inégalité pour x = b,
puis on fera tendre ¢ vers O, ce qui, & la limite, donnera I’inégalité (3.1.2) de ’énoncé.

Introduisons I'ensemble U des x € [a, b] pour lesquels (3.1.3) est fausse, c’est-a-dire
pour lesquels

(3.1.4) 1f(x) — f(a)ll > g(x) — g(a) + &(x — a) + «.

42.



CALCUL DIFFERENTIEL DANS LES ESPACES DE BANACH

On veut montrer que U est vide. On sait deja que U est ouvert : en effet, puisque les
fonctions f et g ont été supposées continues, chacun des deux membres de I'inégalité
(3.1.4) est une fonction continue de x. Or si on considére une inégalité ¢(x) > 0, ol ¢
est une fonction continue a valeurs numériques, I’ensemble des points x qui vérifient
cette inégalité est ouvert. Ainsi U est ouvert. Raisonnons par I'absurde, en supposant
U non vide. Alors U aurait une borne inférieure c. On peut dire trois choses :

(i) ¢ > a;eneffet, larelation(3.1.3)est vraie pour tout x assez voisin de a, a cause de la
continuité des deux membres ;

(ii) c¢ U, parce que U est ouvert: si ¢ appartenait a U, il y aurait des x tels que
a < x < cet xe U, et c ne serait pas la borne inférieure de U ;

(ili) ¢ < b, sinon U devrait se réduire au point b, et ne serait donc pas ouvert.

Puisque a < ¢ < b, on peut appliquer a ¢ ’hypothése de I’énoncé :

{31.5) [fa(e)ll < ga(c).

D’apres la définition de fy(c) et de gy(c), il existe un intervalle ¢ < x < ¢ + 5 (o1 > 0)

dans lequel on a

ey > [0 1) 2
dalc) < g(:)%g(c) + ;_
Ces inégalités et (3.1.5) entrainent
(3.1.6) I(x) — (e} < g(x) — glc) + &(x — c).
Or on a vu que ¢ ¢ U ; autrement dit, on a
(3.1.7) If(c) — f(a)ll < g(c) — g(a) + &(c — a)+ e.

Les inégalités (3.1.6) et (3.1.7) donnent
I(x) — f(@)l| < [1f(x) — f(c)] + [[f(c) — f(a)]

< g(x) —g(@a) + &x — a)+ €.

Ceci est valable pour ¢ < x < ¢ + #. Ainsi (3.1.3) est vraie pour ¢ < x < ¢ + 1. Mais
alors tout x < ¢ + # satisfait a (3.1.3), et la borne inférieure de U estdonc = ¢ + . On

arrive a une contradiction.
C.Q.F.D.

Remarque. On a un théoréme analogue au théoréme 3.1.2, en remplacant les derivees
a droite par les dérivées a gauche. I1 s’en déduit en changeant x en —x.

Complément. Signalons un théoréme encore plus fort que le théoréme 3.1.2.
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THEOREME 3.1.3. Soient f:[a,b] = F et g:[a, b] » R deux applications continues.
Supposons que, pour tout X € [a, b] sauf peut-étre pour ceux d’un ensemble dénombrable
D, f4(x) et gy(x) existent et satisfassent a (3.1.1)4. Alors on a

(3.1.2) If(b) — f(a)ll < g(b) — g(a).

Indication sur la démonstration. Onrangeles pointsde D enunesuite Xy, X5,. .., X,,...;
pour chaque x € [a, b], on note N, I’ensemble des entiers n > 0 tels que x, < x. Alors,
au lieu de prouver (3.1.3) comme dans le théoréme 3.1.2, on démontre

> 2_“) +ex —a)+¢.

neNy

If(x) — f(a)ll < g(x) — g(a) + ¢

Une fois ceci prouvé, on fait x = b, puis on fait tendre ¢ vers O.

Cas particuliers du théoréme principal

Dans le théoréme 3.1.2, supposons que ’espace F soit réduit a {O}. Alors I'hypothese
se réduit a g4(x) = 0, et la conclusion devient g(b) > g(a). Comme on peut appliquer
le résultat 4 deux points quelconques x, et X, de [a, b], on obtient : g(x,) > g(x,) chaque
fois que x, < x,. Ainst :

COROLLAIRE 32.1. Si g:[a, b] = R est continue et posséde une dérivée a droite
g4(x) = O pour tout x € Ja, b[, g est croissante (au sens large) dans l'intervalle [a, b].
La réciproque est évidente : si une fonction croissante posséde une dérivée a droite,

celle-ci est = 0.
Appliquons maintenant le théoréme 3.1.2 en supposant que g(x) = kx (k constante
> 0). L’hypothése (3.1.1), devient donc ||f4(x)| < k. D’ou le:

COROLLAIRE 3.2.2. Soit f:[a, b] = F une application continue (ot F est un espace
de Banach). Supposons que f admette une dérivée d droite fy(x) pour tout x € ]a, b, et que
If4(x)] < k (k constante > 0).

Alors on a
If(b) — f(a)| < k(b — a),
et, plus généralement :
B.21) If(x,) — f(x)ll < K|x, — x;] quels que soient X, X, €[a, b].

Théoréme des accroissements finis lorsque la variable
est dans un espace de Banach

Jusqu’a présent f était une fonction d’une variable réelle. Soit maintenant U un
ouvert d’un espace de Banach E, et soit f : U — F une application continue, F étant un
espace de Banach. Rappelons que si a et b sont deux points de E, on appelle segment
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d’extrémités a et b I’ensemble des points x € E de la forme

x=(1—-1ta+tb, avec 0<t<1.

PROPOSITION 3.3.1. Sif est différentiable dans U, et si le segment d’extrémités a et b

est contenu dans U, on a

(3.3.1) If(b) — f(a)ll < |lb — af - sup [f((1 — t)a + tb)].

o<t€1

DEMONSTRATION. Soit h(t) = f((1 — t)a + tb). C’est une fonction différentiable
de t, et on a (cf. théoréme sur la dérivée d’une fonction composée, n® 2.2)

h'(t) = f(1 — t)a + tb)-(b — a),
d’ou

IN@I < (1 — t)a + tb)|| - [[b — a]|.

Appliquons le corollaire 3.2.2 (ou f serait remplacée par h) : on obtient (3.3.1).
C.QF.D. J

Supposons maintenant que l'ouvert U soit convexe, c’est-a-dire que, pour tout
couple (a, b) de points de U, le segment d’extrémités a et b soit contenu dans U. Alors

la proposition 3.3.1 entraine aussitot :

THEOREME 3.3.2. Soit U un ouvert convexe d’'un espace de Banach E, et soitf:U — F
une application différentiable a valeurs dans un espace de Banach F. Supposons que :

If(x)| < k pourtout xeU.

Alors, quels que soient x; €U, x,e U, ona
(3.3.2) [f(xz) — fx)Il < kilxz — Xyl

Une fonction f qui satisfait a (3.3.2) est, par définition, lipschitzienne de constante Kk,
ol k-lipschitzienne (la définition peut se donner chaque fois qu’on a deux espaces

métriques et une application de I'un dans l'autre).

COROLLAIRE 3.3.3. Sous les hypothéses précédentes, supposons que k = 0, c’est-
a-dire que f(x) = 0 pour tout x € U. Alors f est constante dans U,
On va voir maintenant que ce corollaire est, en réalité, valable non seulement si U

est convexe, mais plus généralement si U est connexe.
Rappelons qu’un espace topologique X est dit connexe si, chaque fois que X est une
réunion de deux ouverts disjoints, I'un deux est vide (et 'autre est X).

THEOREME 3.3.4. Soit U un ouvert connexe d’'un espace de Banach E, et soit
f:U — F une application différentiable a valeurs dans un espace de Banach. Si la
dérivée f'(x) est nulle pour tout x € U, alors f est constante.
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DEMONSTRATION. Soita un point quelconque de U ; U contient une boule ouverte
B de centre a : cette boule est convexe, donc f est constante dans B, d’aprés le corollaire
3.3.3. Ainsi f est localement constante dans U [par définition, on dit qu’une fonction
définie sur un espace topologique est localement constante si chaque point possede
un voisinage dans lequel la fonction est constante]. On n’a pas encore utilisé 'hypothese
de I’énoncé, suivant laquelle U est connexe. On va maintenant la faire intervenir ;
pour cela, démontrons un lemme :

Lemme. Soit f: X — Y une application continue d’un espace topologique X non vide
dans un espace topologique séparé Y. Si f est localement constante, et si X est connexe,
alors f est constante dans X.

Ce lemme entraine évidemment le théoréme 3.3.4. Reste a prouver le lemme : soit
beY ; I'image réciproque f~!(b) est un fermé de X, puisque f est continue, et que
I'ensemble {b} = Y est fermé (la topologie de Y étant séparée). D’autre part, f~(b)
est ouvert, puisque f est localement constante. Ainsi f~'(b) est a la fois ouvert et fermé ;
donc X est réunion de Pouvert f~ !(b) et de son complémentaire qui est aussi ouvert.
Puisque X est supposé connexe, I'un de ces deux ensembles est X. Cela dit, prenons un
point a€ X, et choisissons b = f(a) ; alors f~'(b) n’est pas vide, donc f~*(b) = X, ce
qui prouve que f(x) = b pour tout x e X.

C.QF.D.

Le théoréme 3.3.4 donne un résultat meilleur que le corollaire 3.3.3 ; en effet, tout
ouvert U convexe est connexe. Cela résulte de la proposition suivante qui donne un
critére permettant de reconnaitre si U est connexe :

PROPOSITION 3.3.5. Soit U un ouvert d’un espace vectoriel normé (sur le corps R).
Les conditions suivantes sont équivalentes :

(@) U est connexe ;

(b) deux points quelconques de U peuvent étre joints par un chemin dans U ;

(c) deux points quelconques de U peuvent étre joints par une ligne brisée dans U.

Avant la démonstration, il faut définir avec précision les termes utilisés dans I’énonce
des conditions (b) et (c).

DEFINITION. Dans un espace topologique X, on appelle chemin une application
continue ¢ du segment [0, 1] = R dans I’espace X ; le point ¢(0) s’appelle I'origine, le
point ¢(1) s’appelle 'extrémité du chemin. On dit que deux points a et b € X peuvent
étre joints par un chemin s’il existe un chemin ¢ tel que ¢(0) = a et (1) = b.

DEFINITION. Dans une partie A d’un espace vectoriel normé E sur le corps R, on
appelle ligne brisée un chemin ¢ :[0,1] — A tel qu’il existe un nombre fini de points
du segment [0, 1] :

Lh=0<t €... € <t =1
de fagon que, dans chaque intervalle [t;, t;, ;] (0 < i < n — 1),la fonction ¢ soit somme
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d’une application linéaire et d’une constante (I'image de [t;, t;,,] par ¢ est donc un
segment de droite dans 'espace vectoriel E).

DEMONSTRATION de la proposition 3.3.5. Il est clair que (c) = (b). On va démontrer
successivement (b) = (a), puis (a) = (c) ; cela prouvera I’équivalence de (a), (b), (c).

Démonstration de (b) = (a) [cette démonstration vaut pour n’importe quel espace
topologique, et pas seulement pour un ouvert d’un e.v. normé] : supposons (b) vrai,
et raisonnons par I’absurde, en supposant qu’il existe deux ouverts non vides U, et
U, contenus dans U, disjoints, et tels que U soit réunion de U, et U, . Prenons un point
xo € Uy et un point x; € U; ; puisqu’on suppose (b), il existe un chemin ¢ :[0,1] - U
tel que @(0) = X,, @(1) = x,. Les ensembles ¢~ '(Ug) et ¢~ '(U,) sont deux ouverts
non vides, disjoints, du segment [0, 1], qui en est la réunion. Ainsi le segment [0, 1]
ne serait pas connexe. C’est absurde, car on démontre en Topologie générale que tout
segment de la droite numérique R est connexe.

Démonstration de (a) = (c) : on peut supposer U non vide (sinon (a), (b) et (c) sont
trivialement vrais). Choisissons donc x, € U, et soit V I'ensemble des points de U que
I’on peut joindre & x, par une ligne brisée dans U. On va montrer que V est a la fois
ouvert et fermé dans U. Il en résulte que si U est connexe (hypothése (a)), alors V = U,
puisque V n’est pas vide ; donc que (a) = (c).

V est ouvert dans U : soit aeV I'extrémité d’une ligne brisée | (contenue dans U)
ayant pour origine X, (figure). Il existe une boule B(a, r) de centre a, de rayon r > O,
o contenue dans U. Tout point x € B(a, r) peut étre joint a a par un

segment. En « mettant bout & bout» la ligne brisée | et ce segment,

on obtient une ligne brisée d’origine X,, d’extrémité x e B(a,r), et

« contenue dans U [Il faut naturellement retoucher le paramétrage

initial de |, en s’arrangeant par exemple pour que | soit decrite lorsque

tcroitde 0 a4, et que le segment [a, x] soit décrit quand t croit de 7 a 1.] Ainsi a posséde

bien un voisinage dont tous les points x peuvent étre joints & x, par une ligne brisée.
Donc V est ouvert.

V est fermé dans U : soit ae U un point adhérent & V, et montrons que ae V. Il
existe une boule B(a, r) contenue dans U ; puisque a est adhérent a V, il existe un point
be B(a, r) n V. Ce point b peut étre joint & X, par une ligne brisée contenue dans U,
puisque b e V ; comme a peut étre joint & b par un segment contenu dans U, il existe
une ligne brisée d’origine x, et d’extrémité a, ce qui veut dire que ae V. COED

Ainsi la proposition 3.3.5 est démontrée.

Remarque. Dans un espace topologique X, la composante connexe d’un point X, € X
est définie comme le plus grand sous-ensemble connexe qui contient X, (on montre
que parmi les parties connexes contenant X, il y en a une qui contient toutes les autres).
Les composantes connexes de X forment une partition de X. Ici, pour un ouvert U
d’un e.v. normé, la composante connexe de X, € U est I'ensemble V des points que
I’on peut joindre & x, par une ligne brisée contenue dans U, ainsi qu’il résulte de la
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proposition 3.3.5. Dans la derniére partie de la démonstration de cette proposition,
nous avons en fait prouvé que V est ouvert. Ainsi, si U est un ouvert d’un e.v. normé,
les composantes connexes de U sont des ensembles ouverts.

Encore le théorédme des accroissements finis

Soit E un e.v. normé. On sait ce qui est la longueur d’un segment d’origine a et d’ex-
trémité b : c’est
d(a,b) = |b — a.
Par définition, la longueur d’une ligne brisée est la somme des longueurs des segments
qui la composent ; cette longueur est donc au moins égale a la distance ||b — al de
Iorigine a a Pextrémité b.

DEFINITION. Soit U un ouvert connexe d’un espace de Banach E. Pour aet be U,
on note dy(a, b) la borne inférieure des longueurs des lignes brisées, contenues dans U,
qui ont a pour origine et b pour extrémité. Cette définition est justifiée, car il existe
de telles lignes brisées, en vertu de la proposition 3.3.5. On a

{ dy(a, b) = dy(b, a)
dyla, c) < dyl(a, b) + dy(b, c)

(le vérifier a titre d’exercice). Autrement dit, dy(a, b) est une distance dans I’espace
topologique U.

Exercice. Montrer que cette distance définit sur U la méme topologie que la distance
la — bll. Pour cela, on observera que si a est donné, on a dy(a,b) = ||a — b| deés
que b est assez voisin de a.

PROPOSITION 3.4.1. Soit U un ouvert connexe d'un espace de Banach E. Soit
f:U — F une application différentiable a valeurs dans un espace de Banach F.

Supposons que
()] < k pourtout xeU.

Alors, quels que soient x, et x, €U, on a |f(x,) — f(x,)| < k-dy(x,, X,). (Comparer
cet énonce celui du théoréme 3.3.2.) La démonstration de la proposition 3.4.1 est
laissée au lecteur a titre d’exercice.

Une liste d’exercices

(1) (Facile). Soit U un ouvert connexe d’un espace de Banach E : soit f: U — F une
application différentiable a valeurs dans un espace de Banach F. Montrer que si 'ap-
plication f': U — #(E ; F)est constante, f est somme d’une constante et de la restriction
a U d’une application linéaire (continue).

(2) Soit f une application continue d’un intervalle [a, b] dans un espace de Banach F.
Posons g(x) = |[f(x)]|. Montrer que si f est dérivable a droite en un point x € [a, b[, alors
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g est dérivable a droite en ce point et
Iga(X) < [[fa(3)ll-

(Utiliser la convexité de la norme et I’exercice n° 6 a la fin de ce chapitre.) Montrer par
un exemple simple que la dérivabilité de f n’entraine pas nécessairement la dérivabilité
de g.

(3) Soit f une application continue d’un segment [a, b] = R dans un espace de
Banach F ayant une dérivée a droite en tout point x € ]a, b[. Soit C un sous-ensemble
fermé convexe de F tel que fj(x) e C pour tout x € ]a, b[. Montrer que

f(b) — f(a)
b-—a
[Calquer la marche de la démonstration sur celle du théoréme 3.1.2. Montrer que pour
a< u<v< bete> 0quelconque, 'ensemble

f(x) — f(u)
X—u

=

¢C.

U, = {xe[u,v];

est vide; C, désigne I’ensemble des éléments y € F tels que d(y, C) < ¢ (on vérifie que

C, est fermé convexe).]

Premiére application du théoréme des accroissements finis :
convergence d'une suite de fonctions différentiables

THEOREME 3.6.1. Soit U un ouvert convexe d’un espace de Banach E, et soit une
suite d’applications différentiables
f,:U—> F (F:espace de Banach).

Faisons les hypotheses suivantes :

(i) il existe un point a € U tel que la suite des f (a) € F ait une limite ;

(i1) la suite des applicationsf, : U — #(E ; F) converge uniformément dans U vers une
g:U—- Z(E;F).
Alors, pour chaque x € U, la suite des f,(x) e F a une limite (qu’on note f(x)) ; la con-
vergence de la suite {f,} vers f est uniforme sur chaque partie bornée de U ; enfin, la
fonction limite f est différentiable, et sa dérivée f'(x) n’est autre que g(x).

DEMONSTRATION. D’aprés le théoréme 3.3.2 (qui est applicable puisqu’'on a
supposé U convexe), on a

(3.6.1) If5(x) = fp(@) — (fa(x) — fo(@ll < lix — all - sup [[fy(y) — fa Il

A cause de I'hypothése (ii), le second membre tend vers O quand p et g augmentent
indéfiniment ; de plus la convergence est uniforme vis-a-vis de x, pourvu que ||x — a|
reste borné, c’est-a-dire que x reste dans une partie bornée de U. Donc le premier
membre de (3.6.1) tend vers O quand p — o0, g — o0, et ceci uniformément quand X
reste dans une partie bornée de U. De plus, d’apreés (i), f (a) — f,(a) tend vers 0. Donc
If,(x) — f(x)| tend vers O, uniformément en x dans toute partie bornée de U. Soit f
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la fonction limite ; chaque point de U a un voisinage borné, dans lequel f est limite
uniforme de la suite des fonctions continues f,, donc f est continue au voisinage de
chaque point de U ; cela signifie simplement que f est continue dans U. 11 reste 4 montrer
que f est différentiable, et que f(x) = g(x). Fixons x, € U. Il suffit de montrer que

(36.2) [f(x) — f(xp) — 9(x0) - (x — Xo) = o(||x — Xg]).
Or on a évidemment
(3.6.3) 1(x) = f(xo) — G(Xo) - (X — xp)ll < [If(x) — f(xo) — (F(x) — F. (X))

+ [fa(x) = falxo) — fa(xo) - (x = o)l

+ [Ifalxo) (X — Xo) — 9(x0) - (x — X)II.
Donnons-nous ¢ > 0. On peut majorer le premier des trois termes du second membre
de (3.6.3), car (3.6.1) donne

(%) — fo(xo) — (Falx) — Fu(Xo))Il < &llx — X,
des que p et n sont > n, (entier convenable dépendant de ) ; donc, en passant a la
limite quand p — oo :
(3.6.4) 1(x) = f(xo) — fa(x) — fo(xo)ll < &lx — Xo| pour n > n,,.
D’autre part on a, a la limite,

Ifa(x0) — 9(xo)| < & pour n > ng,
d’ol, pour n = ny :

(3.6.5) Ifa(X0) - (X — Xg) — G(Xo) - (x — Xo)| < el|x — X, .

Ainsi, pour n = n,, le premier et le troisiéme terme du second membre de (3.6.3) sont
majorés chacun par g||x — x,|. Fixons alors n (par exemple n = Ne); des que
[x — Xql| < h assez petit, on a

200 = falxo) — falxo) - (x — Xo)Il < el x — X,

d’apres la définition méme de la dérivée f(x,); ceci est une majoration du second
terme du second membre de (3.6.3). Au total, (3.6.3) donne donc

IO = f(x0) — g(xo) " (x — Xo)|| < 3el|x — X0l désque [x — x| < h.

Pour tout ¢ > O existe un tel h > 0. Or ceci exprime précisément (3.6.2).

Remarque: si E = R, le théoréme 3.6.1 s’étend aux dérivées a droite.

On peut s’affranchir de ’hypothése de convexité faite sur U dans le théoréme 3.6.1 :

THEOREME 3.6.2. Soit U un ouvert connexe d’un espace de Banach E, et soit une
suite d’applications différentiables
f,:U— F (F:espace de Banach).

Faisons les hypotheéses suivantes :
(1) il existe un point a € U tel que la suite des f (a) € F ait une limite ;
(i) pour tout x, € U, il existe une boule de centre x, dans laquelle la suite {f.} converge
uniformément.
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Alors, pour chaque x € U, la suite des f (x) € F a une limite (qu’on note f(x)) ; tout point
de U posséde un voisinage dans lequel la convergence de la suite {f_} vers f est uniforme ;
enfin, f est différentiable dans U, et f(x) = g(x) pour tout x € U.

Ce théoréme est une conséquence facile du théoréme 3.6.1. Le détail de la démonstra-
tion est laissé au lecteur, qui procédera ainsi : 1) 'ensemble des x € U tels que la suite
{f.(x)} ait une limite est ouvert et fermé dans U (utiliser le théoréme 3.6.1) ; 2) si xo € U,
et si B(xq,r) est une boule dans laquelle la suite {f,} converge uniformément, la suite
{f,} converge uniformément vers f dans B(x,, r) (appliquer encore le théoreme 3.6.1) ;
3) que f(x) = g(x) résulte encore du théoréme 3.6.1 appliqué a une boule convenable

contenue dans U.

Deuxiéme application du théoréme des accroissements finis : relation
entre différentiabilité partielle et différentiabilité

¢

Soient E,,..., E,, F des espaces de Banach, et soit E = E; x ... x E,. Soit U un
ouvert de E, et soit f:U — F une application continue. Pour la notion de dérivée

partielle f, , ou 0f/dx;, se reporter au n° 2.6.

THEOREME 3.7.1. Avec les notations précédentes, pour que f soit de classe C, il faut
et il suffit que f ait des dérivées partielles 0f/0x; et que les applications

of
el . SEy )

i

soient continues.
La condition est nécessaire, d’apreés les propositions 2.6.1 et 2.6.2. Il reste a montrer

qu’elle est suffisante. Supposons donc que, pour tout aeU, les dérivées partielles
(6f/ox;)(a) e L(E, ; F) existent, et que les applications df/ox;:U — #(E;;F) soient

continues. On veut montrer que f est alors de classe C'. On va d’abord montrer que, .

pour tout a, f'(a) existe (c’est-a-dire que f est différentiable au point a) ; la démonstration
sera alors terminée, car la proposition 2.6.2 montre que I'application f' : U — #(E ; F)

sera continue.
En résumé, il nous reste seulement a démontrer la proposition suivante :

PROPOSITION 3.7.2. Si les dérivées partielles (0f/0x;)(x) existent en tout point
X = (Xy,...,X,)€U, et si les applications &f/ox; :U — ZL(E;;F) sont continues au

point a, alors f est différentiable au point a.
La démonstration va utiliser de maniére essentielle le théoréme des accroissements

finis. On veut montrer que

IQ)
=5

(a)-(x; — al

=

1f(xy,...,%x,) — f(@y,...,8,) —

i

D
x

1

est o(||x — al), c’est-a-dire o(|[x; — a,|| + ... + [[X;, — a,l),
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d’apres la définition de la norme sur un produit d’espaces de Banach. Or on a I'identité

évidente :
= o
f(xla'-'axn) - f(al‘a'-"an) - z _x(a)'(xi il ai)
i=1
of
= f(x,,%5,...,%,) — f(@a;, X5,...,X,) —a—(a)-(x1 — a,)
Xy

— a,)

A0y 5 Keas 55 5 %) = W@y 585 5 a0 By

of
+ ...+ f@,...,a,-1,%,) — f(al,...,an_l,an)—ax

(@) (X, — a,).

n

I1 suffit donc de montrer que, ¢ > O étant donné, il existe n > O tel que les inégalités

(3.7.1) IX; —agll <7,..., 0%, — ayll <7
entrainent
- of
”f(xlﬂx.?: .. ':xn) - f(alax2> ey xn) - a(a)(XI - 1)” SHXI - aIH
1
of
(37.2) < IIf(@y, X555 X)) — @y, 85,00, %,) — a—xz(a) (X, — ay)ll < ¢fx, — a,fl
”f(ala L) an 1axn) f(619 ’ an 1> n) ( - n)“ 8” an”'

Montrons par exemple que, ¢ étant donné, on peut choisir # de facon que (3.7.1) entraine
la premiére inégalité ; la démonstration serait analogue pour les autres. On aura ainsi
a faire un choix de n pour chacune des n inégalités (3.7.2), et alors on pourra trouver
un 7 (le plus petit) qui marche pour les n inégalités (3.7.2). Regardons donc le premier
membre de la premiere des inégalités (3.7.2). Soit £; une variable (élément de I’espace
E,, suffisamment voisin de a,) ; posons

0E0) = o ka0 ) — @6 - )

On veut majorer |g(x,) — g(a)[l. Or g a une dérivée, par hypothese : c’est

o
0%,

(@y,...,4a,).

of
g€ = &T(éuxz,---,xn) -

Puisque (df/dx,)(x) est une fonction de x qui est continue au point a (par hypothése!),
il existe un # > O tel que les inégalités (3.7.1) entrainent

o
0%,

N
5r]

(XIHXZ""5XH)_ (81,82,...,?3“)

ox,

S’1l en est ainsi, et si &, = (1 — t)a; + tx,; est un point du segment d’origine a, et

52



CALCUL DIFFERENTIEL DANS LES ESPACES DE BANACH

d’extrémité x, (dans I’espace vectoriel E,), on a aussi

of of
a—xl(élzxz's-"axn)_a_x;(a]aaZ:--':an)

car ||€; — a,| < |x; — a,| < n. D’aprés la proposition 3.3.1 on conclut donc que

< e,

la(xy) — glay) |l < ellx; — ayf.

Et c’est justement ce que nous voulions démontrer. La proposition 3.7.2 est donc

établie.

Remarque. La proposition 3.7.2 et le théoréme 3.7.1 s’appliquent notamment lorsque
E, = R,...,E, = R, donc E = R". Alors 6f/0x; sont des applications U — F.

Troisiéme application du théoréme des accroissements finis :
notion de fonction strictement différentiable

Dans tout ce qui suit, U désigne un ouvert d’un espace de Banach E, et F un espace
de Banach ; on considére des applications de U dans F.

DEFINITION. f:U — F est strictement tangente a zéro au point a€ U, si les condi-

tions suivantes sont vérifiées :

(i) fla) = 0;
(ii) pour tout ¢ > 0 il existe r > O tel que, dans la boule ||x — al| < r,f soit &-

lipschitzienne.
S’il en est ainsi, on a en particulier pour [|x — af <,
[f) = [If(x) — f(a)ll < efx — al,
donc f est tangente d zéro au point a. (Cf. la définition donnée en 2.1.) Ainsi « f strictement

tangente a zéro » entraine « f tangente a zéro », ce qui est heureux pour la terminologie

choisie.

DEFINITION. On dit que f, et f, sont strictement tangentes au pointae U sif; — f,
est strictement tangente a 0. Vérifier (exercice!) qu’on obtient ainsi une relation d’équiva-

lence entre fonctions U — F.

DEFINITION. f:U — F est strictement différentiable au point ae U s’il existe une
application linéaire continue g : E — F telle que les applications

x~— f(x) — f(a) et x+—g(x — a)

soient strictement tangentes au point a.
S’il en est ainsi, ces deux applications sont a fortiori tangentes ; donc f est différentiable

au point a, et g est égale a la dérivée f'(a). Ainsi :
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Pour que f soit strictement différentiable au point a, il faut et il suffit que f soit
différentiable au point a, et que pour tout ¢ > 0 il existe r > O tel que I'application

x'+— f(x) — f(a) — f'(a)- (x — a) = g(x)
soit ¢- lipschitzienne dans la boule | x — a| < r. Explicitons : cela signifie que

{ f(x) — f(y) = f(@)- (x — y) + [ x — vyl - ¥(x,y),
(3.8.1)
avec lim [[y(x, y)l| = 0.

y—a

THEOREME 38.1. Si f:U— F est différentiable dans U, et si [’application
f':U — ZL(E ; F) est continue au point a, alors f est strictement différentiable au point a.

Ce critére de stricte différentiabilité se démontre grace au théoréme des accroisse-
ments finis. En effet, posons

g(x) = f(x) — f(a) — f'(a) - (x — a).
g est différentiable, et on a
g'(x) = f'(x) — f(a),

donc lim [g'(x)| = O par hypothése. Etant donné ¢ > O, il existe r > O tel que

Xx—*a

lg’(X)|| <& pour |x—a| <r.

D’aprés le théoréme des accroissements finis (sous la forme du théoréme 3.3.2), on
conclut que g est e-lipschitzienne dans la boule |[x — aj| < r.
C.QF.D.

. INVERSION LOCALE D'UNE APPLICATION DE CLASSE C1.
THEOREME DES FONCTIONS IMPLICITES

Difféomorphismes de classe C' 4.1

DEFINITION. Soient E et F deux espaces de Banach, V un ouvert de E, W un ouvert
de F. On dit que f:V — W est un difffomorphisme de classe C' (ou un C'-difféo-
morphisme) si f est bijective, de classe C' (considérée comme application de V dans
F), et si en outre I’application réciproque g = f~! : W — V est de classe C! (considérée
comme application de W dans E).

Erreur d ne pas commettre : une application de classe C?, f : V — W, peut étre un homéo-
morphisme sans étre un difffomorphisme de classe C' ; autrement dit, ’'homéomor-
phisme réciproque f ' = W — V n’est pas nécessairement de classe C'. Par exemple,
la fonction d’une variable réelle x :
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définit un homéomorphisme de R sur R ; elle est de classe C', mais I'application

réciproque
x =y =gl(y)

n'est pas différentiable a I'origine ; en effet, la dérivée f'(x) est 3x* qui s’annule pour
x = 0; si g'(0) existait, on aurait g'(0)f'(0) = 1 (dérivée d’une application composée),
ce qui est absurde. D’'une maniére génerale :

PROPOSITION 4.1.1. Soit f:V — W un homéomorphisme de classe C' (V désigne un
ouvert de Banach E, W un ouvert de 'espace de Banach F). Pour que f soit un difféo-
morphisme de classe C', il faut et il suffit que, pour tout x € V, ¥ (x) appartienne a Isom(E ; F).

'‘On va d’abord démontrer un lemme :

Lemme. Soit f:V — W un homéomorphisme ; supposons f différentiable en un point
aeV. Pour que g = f~! soit différentiable au point b = f(a)e W, il faut et il suffit

que f'(a) € Isom(E ; F), et alors
g'(b)= (fa)~ "

La condition est nécessaire, car si g est différentiable au point b, le théoréme sur la

dérivée d’une application composée donne
g(b)of(a)=1g,  fl(a)egi(b)= 1,

ce qui prouve que f'(a) est un isomorphisme de E sur F, et que g'(b) est I'isomorphisme
réciproque. Montrons que la condition est suffisante : on suppose f'(a) e Isom(E ; F),
et on veut montrer que g est différentiable au point b. Puisque f est différentiable au
point a, on a, en posant y = f(x) pour x voisin de a :

(4.1.1) y—-b="f(@) (x—a)+ [x —al okx—a),

avec

lim @(x — a) = 0.

x—*a

Effectuons sur les deux membres la transformation linéaire (f'(a)) ™" :
(4.1.2) x—a=(fa) '-(y—b) =[x —a|(f(@)""ex — a);

tout revient a prouver que

Ix — af (@)~ " e(x — a) = ol|ly — b))

Posons, pour abréger :

(f(a) ' px —a)=y(x — a);

ceci tend vers O quand x tend vers a, puisque (f(a))”' est une application linéaire
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continue de F dans E. La relation (4.1.2) entraine

If @)~ -(y = b)ll = lIx — all(1 — [[y(x — a)ll),

d’ou
T (G
HX = a“ < “\/ b” 1 — “l/l(x — a)”
(des que [|x — a|| est assez petit pour que [[y(x — &) < 1). D’ou
s [(x — a)
Ix —all - [y(x — &) < lly — bl -[[(fa)~ T= yx — a)

= o( |y — bl)).
C.QFD.

Ayant établi le lemme, passons a la démonstration de la proposition 4.1.1. La condition
de I’énoncé est évidemment nécessaire ; réciproquement, si f'(x) € Isom(E ; F) pour tout
x € V, il résulte du lemme que g est différentiable en tout point y e W, et que

(4.1.3) g'(y) = (Flaly) ™"
Il reste a démontrer que g est de classe C?, ¢’est-a-dire que I’application
g :W- Z(F;E)

est continue. Or (4.1.3) montre que cette application est composée de trois applications :

1) Papplication y— g(y) de W dans V, qui est continue puisque fest homéomorphisme ;

2) P'application x — f'(x) de V dans Isom(E ; F), qui est continue puisque f a été supposée
de classe C!;

3) I'application u— u~' de Isom(E ; F) dans #(F;E), qui est continue (théoréme
1.7.3).

Ceci achéve la démonstration.

Le théoréme d’inversion locale

Jusqu’a présent, on avait supposé que f: V — W était un homéomorphisme. On veut
maintenant s’affranchir de cette hypothése. Le théoréme fondamental est le suivant :

THEOREME 4.2.1. Soit U un ouvert d’un espace de Banach E, et soit f: U — F une
application de classe C' (F étant un espace de Banach). Supposons que, en un point a € U,
on ait

f'(a)e Isom(E ; F).

Alors il existe un voisinage ouvert V' de a (V < U) et un voisinage ouvert W de b = f(a),
tels que f soit un C'-difféomorphisme de V sur W.

La démonstration de ce théoréme prendra un certain temps (voir ci-dessous, 4.3,
4.4 et 4.5). Avant de le prouver, on va tout de suite en déduire un :
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COROLLAIRE 4.2.2. Pour que f:U — F, de classe C', soit un C'-difféomorphisme de
U sur un ouvert de F, il faut et il suffit que :

(1) f soit une injection ;

(i1) f'(x) e Isom(E ; F) pour tout x € U.

DEMONSTRATION DU COROLLAIRE. Les deux conditions sont évidemment
nécessaires. Réciproquement, supposons-les remplies ; la condition (ii) entraine que
f: U — Fest une application ouverte (c’est-a-dire : pour tout ouvert V < U, I'image f(V)
est un ouvert de F); cela résulte en effet du théoréme 4.2.1, qui montre que si ae U,
I'image par f de tout voisinage ouvert de a contient un voisinage ouvert de f(a). En
particulier, f(U) est un ouvert de F. Si nous montrons que f est un homéomorphisme
de U sur f(U), alors nous saurons grice a la proposition 4.1.1, que f est un C'-difféo-
morphisme de U sur f(U). Or, d’aprés (i), f est une bijection de U sur f(U) ; cette bijection
est une application qui est a la fois continue et ouverte ; puisque fest ouverte, g = =g

f(U) — U est continue, donc f est bien un homéomorphisme de U sur f(U).
COIED.

Démonstration du théoréme d’inversion locale : premiére réduction

Plagons-nous dans les hypothéses du théoréeme 4.2.1 (qu’il s’agit de démontrer).
Puisque f est de classe C', f est strictement différentiable au point a (cf. théoréme 3.8.1).

Admettons pour un instant la proposition suivante :

PROPOSITION 4.3.1. Soit U un ouvert d’un espace de Banach E, et soit f: U — F une
application continue (F étant un espace de Banach). Supposons que f soit strictement
différentiable au point a e U et que f'(a)e Isom(E ; F). Alors il existe un voisinage ouvert
V'de a(V' < U) et un voisinage ouvert W' de b = f(a), tels que f soit un homéomorphisme
de V'sur W'. De plus ’lhoméomorphisme réciproque est strictement différentiable
au point f (a).

Ceci étant admis, nous voyons que sous les hypothéses du théoréme 4.2.1, f'(x) existe
pour tout xeV'; de plus il existe un voisinage ouvert V de a (V < V') tel que
f'(x) e Isom(E ; F), car Isom(E ; F) étant ouvert dans #(E ; F) (cf. théoréme 1.7.3), son
image réciproque par I'application continue f' est un ouvert de V' qui contient a. Soit
W =1f(V); W est ouvert dans W', puisque f est un homéomorphisme de V' sur W’
(d’apres la proposition 4.3.1, que nous admettons provisoirement) ; de plus f est un
homéeomorphisme de V sur W. On est alors dans les conditions d’application de la
proposition 4.1.1, qui permet de conclure que f est un C'-difféomorphisme de V sur W.
Ainsi nous avons démontré le théoréme 4.2.1, sous réserve que la proposition 4.3.1

soit établie.
Démonstration de la proposition 4.3.1
Plagons-nous dans les hypotheses de la proposition 4.3.1. L’application linéaire
continue (f'(a))~! applique F sur E ; considérons Iapplication composée
f,=(f@) '-f:U>E
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(rappelons que U est un ouvert de E). On vérifie facilement que f; est strictement
différentiable au point aeU, et que fi(a) = 1g [Exercice : faire cette vérification.]
Puisque f, est strictement différentiable, on peut associer a chaque k > Ounr > 0 tel
que Papplication x — x — f;(x) = @(x) soit k-lipschitzienne dans la boule [x — af <.
Choisissons une fois pour toutes un k tel que O < k < 1, ce qui détermine un r > O.
Dans la boule ||x — a| < r, 'application ¢ est donc contractante, et on peut alors
appliquer la théorie des approximations successives traitée dans le cours de MATH. L.
D’une fagon précise, on va rappeler ci-dessous (et démontrer) le résultat dont on a
besoin ici, et qui nous permet de conclure a 'existence d’un voisinage ouvert V de a
(contenu dans la boule |x — al| < r) tel que f; soit un homéomorphisme de V sur un
voisinage ouvert W, de b, = f,(a). Comme f'(a) est un homéomorphisme de E sur F,

on voit alors que
f = §f(a)ef,

est un homéomorphisme de V sur W (transformé de W, par f'(a)), W ouvert de F
contenant b = f(a). Donc la proposition 4.3.1 est démontrée (a cela prés que ce qui
est noté V' et W’ dans I’énoncé s’appelle V et W dans la démonstration).

Voici le résultat précis que nous avons admis, et qui nous a permis de prouver la
proposition 4.3.1 :

THEOREME 4.4.1. Soit B(a, r) la boule ouverte ||x — a|| < r d’un espace de Banach

E, et soit
f:B(a,r)— E

une application continue, telle que I'application
x— x —f(x) = @(x)

soit contractante (c’est-a-dire k-lipschitzienne, avec k < 1). Soit f(a) = b. Alors il
existe un ouvert V contenant a, contenu dans B(a, r), tel que f soit homéomorphisme de
V sur la boule ouverte B(b, (1 — k)r); de plus I'application réciproque

g=f"1:B(b,(1 — k)r) - B(a,r)

est [1/(1 — k)]-lipschitzienne.
Démonstration du théoréeme 4.4.1

Soient x et x'e B(a,r); on a
f(x) = f(x) = (x = x) = (@(x) — @(x))
d’ou
If(x) — fON = lIx = X' = llo(x) = @),
ce qui, compte tenu du fait que ¢ est k-lipschitzienne, donne
(4.5.1) [f(x) — f(x)[ = (1 = k) - [ x = x|
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Lemme. Pour tout y € B(b, (1 — k)r), il existe un x et un seul dans B(a, r) tel que f(x) = vy.
Démonstration de l'unicité : si on af(x) = f(x'), 'inégalité (4.5.1) montre que x = x.
Démonstration de ’existence : on va construire le x cherché par la méthode des

approximations successives. On définit par récurrence sur n, une suite de points

Xg = 8, Xp= ¥+ p(Xg)oos
(4.5.2)

Xor1 =Y + OX,), ...

Pour que cette définition récurrente soit licite, on doit s’assurer de proche en proche
que x, € B(a, r), ce qui permet alors de définir x, , ,, car ¢ est définie dans B(a, r). D’une
facon précise, on va montrer, par récurrence sur n, que

1L~K"
0. — g — 4
(4.5.3) Ix, — al 1 k“Y b

et comme par hypothése ||y — b|| < (1 — k)r, on aura bien |x, — a| < r. Pour n = 1,
ona
x,—a=y+e¢a)—-a=y—flag=y - b,

donc (4.5.3) est vérifié pour n = 1. Supposons (4.5.3) vrai pour n(n = 1), et montrons-
le pour n + 1 ; on a, d’aprés (4.5.2),

Xar1 = Xp = @(Xp) — @(Xy-4),
d’ou
Xa+1 — Xall < Kl[Xy — Xq— 4]
et par suite (par récurrence)
(454) X041 — Xa|l < K7Ixy — a| = k"ly — b].
Cette inégalité, jointe a (4.5.3), donne
[Xa+1 — @l < [[Xa — @ll + [ Xq41 — X4
L=k ko) y - by = 1K

Tk =g =

|

ce qui prouve (4.5.3) ou n serait remplacé par n + 1. Maintenant, (4.5.4) prouve que la
serie de terme général x,, . ; — X, est normalement convergente, donc la suite (x,) est une
suite de Cauchy. Soit x sa limite ; par passage a la limite dans (4.5.3), on obtient

Ix — all < ly —bl <,

11—~k

et par passage a la limite dans (4.5.2) on trouve
X =y + ¢(x),
c’est-a-dire y = f(x). Ainsi le lemme est démontré.
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Introduisons maintenant une notation : pour y € B(b, (1 — k)r), notons g(y) I’'unique
x € B(a, r) tel que f(x) = y. On définit ainsi une application
g : B(b,(1 — k)r) » B(a,r).

L’inégalité (4.5.1) montre que si y et y’ sont deux points de B(b, (1 — k)r), on a

1
loty) = o)l < 7—lIy = v'I.

Dbnc la fonction g est [1/(1 — k)]-lipschitzienne ; en particulier, g est continue. Soit
V < B(a, r) I'image de 'application g. On a

V = f"YB(b, (1 — k),

image réciproque d’un ouvert ; comme f est continue, V est ouvert dans B(a, r), donc
ouvert dans E. II est clair que les applications f:V — B(b, (1 — k)r) et

g:B(b,(1 — K-V

sont bijectives, réciproques I'une de P’autre ; comme elles sont continues, ce sont des
homéomorphismes.

Le théoréme 4.4.1 est donc démontré. En méme temps, la démonstration du théoréme
d’inversion locale (théoréme 4.2.1) est achevée, puisque nous avions réduit sa démon-
stration a celle de la proposition 4.3.1, puis celle de la prop. 4.3.1 4 la démonstration du
théoréme 4.4.1.

Théoréme d’'inversion locale dans le cas de la dimension finie

Dans le théoréme 4.2.1, on suppose que f'(a) est un isomorphisme linéaire E — F.
Donc les hypothéses du théoréme impliquent que les espaces de Banach E et F sont
isomorphes. Lorsque E et F sont de dimension finie, cela implique qu’ils ont la méme
dimension. Envisageons donc le cas ou E = R", F = R" L’application f:U — F est
alors définie par n fonctions numériques de n variables réelles dans I'ouvert U :

f(Xy,...ox) (1 <i<n).

On les suppose de classe C'. L’application linéaire f/(a)e ZL(R", R") est définie par la
matrice des dérivées partielles '

of,

6_):.(81""’8")

]
(i est I'indice des lignes, j I'indice des colonnes). Dire que f'(a) € Isom(R", R") équivaut

a dire que le déterminant de cette matrice est # 0. On le note souvent

af,,.. . f.)

a(xl’”.,xn)(als"-san)

[il s’agit de la valeur, au point a = (a,,..., a,), de ce déterminant] et on I'appelle le
jacobien de la transformation f au point a.
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Le théoréme d’inversion locale dit que si ce jacobien est # O au point a, il existe un
ouvert V contenant a et contenu dans U, et un ouvert W contenant b = f(a), tels que f
soit un Cl-difféomorphisme de V sur W. L’application réciproque g est alors définie
par n fonctions g(y;, ..., Y,) qui sont de classe C! dans W.

Théoréme des fonctions implicites 4.7

On envisage la situation suivante : E, F, G désignent trois espaces de Banach, U
un ouvert de E x F,etf:U — G une application de classe C' ; f est donc une fonction
de deux variables f(x, y), ou x € E, y € F, le couple (x, y) restant dans U.

Soit (a, b) un point de U, et supposons

f(a,b) = 0.
On se propose d’étudier les solutions (x, y) de I'équation
fix, ¥y =10
qui sont « suffisamment voisines» de (a, b). Pour cela, faisons ’hypothése suivante :

(H) la dérivée partielle f,(a, b)e Z(F ; G) est un isomorphisme de F sur G.

THEOREME 4.7.1. (Théoréme des fonctions implicites.) Sous les hypothéses précé-
dentes, il existe dans E x F un voisinage ouvert V de (a, b) contenu dans U, il existe dans
E un voisinage ouvert W de a, et il existe une application de classe C'

g:W-F

qui jouissent de la propriété suivante : la relation

(4.7.1) (x,y)eV et f(x,y)=0
est équivalente a la relation
(4.7.2) xeW et y=g(x).

Commentaire. Dans le voisinage V de (a, b), les solutions de I’équation f(x,y) = O
sont données par (4.7.2) ; autrement dit, dans V I'équation f(x, y) = O se résout par
y = g(x), g de classe C' dans W.

Remarque. Puisque, par hypotheése, on a

(a,b)eV et f(a,b) =0,
et puisque a € W, I’équivalence de (4.7.1) et (4.7.2) montre que I'on a g(a) = b.
DEMONSTRATION DU THEOREME 4.7.1. On va se ramener au théoréme
d’inversion locale (théoréme 4.2.1). Pour cela, considérons I’application
f,:U->ExG

définie par
(4.7.3) f(x,y) = (xf(x,¥),(xeE, yeF).
61



CALCUL DIFFERENTIEL

f, est de classe C' dans U, car ses deux composantes x et f(x, y) sont de classe C! dans U:
Sa dérivée f|(a, b) est définie par une matrice

( - )

y 0

ouane F(E;E), fe L(F;E), ye LE;G), de L (F;G). En fait, le calcul des dérivées
partielles de f, montre que :

{cx=1E, =0
=f(a,b), ¢="f(aDb).

Ainsi f}(a) est 'application linéaire
(4.7.4) (h, k)= (h,f,(a, b)- h + f(a, b)- k)

de E x F dans E x G. Puisque fj(a, b) e Isom(E ; F), il est clair que (4.7.4) est un iso-
morphisme E x F — E x G, dont 'isomorphisme réciproque est

(h, k)= (b, (F)~1 - k' — (F) ™' o ;- h).

Nous pouvons donc appliquer a f,, au voisinage du point (a,b)e U, le théoréme
d’inversion locale. Il dit ceci :

Il existe dans E x F un voisinage ouvert V de (a, b), contenu dans U, et dans E x G
un voisinage ouvert W, de (a, 0) = f,(a, b), tels que f, soit un C!-diffeomorphisme de
Vsur W,.

Soit g, le difféomorphisme réciproque : il a la forme

g:(x,2) = (x,9(x,2)), avec xeE,zeG
tels que (x, z) € W, . Ceci définit une fonction
g:W,->F

declasse C'. Puisque f, et g, sont deux homéomorphismes réciproques, on a équivalence
entre les deux conditions suivantes :

(1) (x,y)eVetf(x,y) =z

(1) (x,z)eW, et g(x,z) = .

Dans ces relations, faisons z = 0 ; la condition (i) devient (4.7.1) ; voyons ce que devient
la condition (ii). Si on identifie E a un sous-espace vectoriel de E x F, en identifiant
xe Ea(x,0)e E x F, la relation (x, 0)eW, exprime que x appartient a I’intersection
de W, et de E ; cette intersection est un ouvert W de E, qui contient a [puisque W,
contient le point (a, 0)]. Posons d’autre part

a(x,0) = g(x);
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cest une fonction de classe C' dans I'ouvert W. Alors la condition (11), pour z = 0,
s’écrit
xeW et y=g(x).

C’est précisément (4.7.2), dont I’équivalence avec (4.7.1) est ainsi démontreée.
C.Q.FD.

L’ouvert W qui intervient dans I’énoncé du théoréme 4.7.1 n’est peut-étre pas
connexe. Mais il contient un ouvert connexe W’ contenant a (par exemple une boule
ouverte de centre a). Il est clair que la relation

fa

xeW' et y=gx)

entraine
(x,y)eU et f(x,y)=0.

Je dis que la fonction g est la seule fonction continue dans W' qui jouisse de ces propriétés.

D’une fagon précise :

PROPOSITION 4.7.2. Soit W' un ouvert connexe de E, contenant a et contenu dans W,
et soit h : W' — F une fonction continue jouissant des propriétés suivantes :

h(a) = b, (x, h(x)) e U pour tout xe W',
{ f(x, h(x)) = O.

Alors h est identique a g dans W'.
Principe de la démonstration (laissée a titre d’exercice) : Soit A I’ensemble des x e W’

tels que h(x) = g(x) ; observer que a € A, et que A est fermé dans W’ ; montrer que A
est ouvert dans W'. Conclure parce que W' est connexe.

Cas oit E, F, G sont de dimension finie. Les hypothéses du théoréeme 4.7.1 impliquent
alors que F et G ont méme dimension. Supposons donc E = R", F = RP, G = RP".
On se donne un systéme d’équations

(4.7.5) fXps. o Xa3Y1sesY) =0 (1<i<p),

ou les f, sont des fonctions numériques de classe C! dans 'ouvert U ; on suppose que le

jacobien

O Yipwszs s V)
est #0au point(a;, ..., a,; by, ..., by). On conclut que le systéme (4.7.5)est équivalent
au systéme
Yi = Gi(Xi5..0 Xph 1<igp
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(ou les g; sont de classe C'), tout au moins quand (x,,..., X,) est assez voisin de
(a3, ...,a,) et (Yy,...,Y,) assez voisin de (b,...,b,). Pour la formulation précise,
reprendre le V et le W de I’énoncé du théoréme 4.7.1.

. DERIVEES D'ORDRE SUPERIEUR

Dérivée seconde

Soient toujours E et F deux espaces de Banach, U un ouvert de E, et f : U — F une
application que nous supposons difféerentiable dans U. On a alors une application

dérivée
Pl s S E 2 F,

et on peut se demander si, a son tour, elle est différentiable.

DEFINITION. On dit que f est deux fois différentiable au point a € U si "application
' est difféerentiable au point a ; on note alors f"(a) la dérivée (au point a) de f' ;on a

f(a)e L(E ; L(E; F)).

Remarque. Sans supposer f différentiable dans tout U, on dit plus généralement que f
est 2 fois difféerentiable au point ae U si: 1) f est différentiable dans un voisinage V
de a; 2) I'application f' : V — Z(E ; F) est différentiable au point a.

DEFINITION. On dit que f est deux fois différentiable dans U si elle est deux fois
différentiable en tout point de U (autrement dit : f est différentiable dans U, et 'applica-
tion f':U — £(E;F) est différentiable dans U). S’il en est ainsi, I’application
x— f"(x) est une application

f:U > Z(E; Z(E:F)).

DEFINITION. On dit que f est de classe C? (ou deux fois contin@iment différentiable)
dans U si f est deux fois différentiable, et si 'application f” est continue. Condition
équivalente : f’ est de classe C' dans U.

Rappelons (cf. 1.9) qu’on a défini une isométrie canonique

(5.1.1) SUE, LIE B & E.E ).

Par cette bijection, f”(a) définit un élément de #(E, E ; F), ¢’est-a-dire une application
bilinéaire continue E x E — F. Par abus de langage, nous dirons souvent que f"(a) est
un élément de #(E, E ; F). Si on explicite (5.1.1) en se reportant a 1.9, on trouve que
I’application E x E — F définie par f"(a) est la suivante :

(5.1.2) (h, k)— (f"(a) - h) - k.
Expliquons cela : h et k désignent deux vecteurs de E ; puisque f”(a) est une application
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linéaire continue E — #(E ; F), la valeur de f(a) sur le vecteur h € E est un élément
f'(a)-he #L(E;F).

Ainsi f(a) - h est une application linéaire continue E — F ;sa valeur sur un vecteur ke E

est notée

(f"(a)- h)- k.
On a ainsi précisé le sens de (5.1.2).
THEOREME 5.1.1. Si f:U — F est deux fois différentiable au point a, la dérivée
seconde f"(a) € #(E, F ; F) est une application bilinéaire symétrique ; autrement dit :
(5.1.3) (f'(a)-h)-k = (f"(a) - k) - h, VheE et VkeE.
DEMONSTRATION. On va introduire la fonction
A(h, k) = f(a + h + k) — f(a + h) — f(a + k) + f(a),

qui est évidemment symétrique : A(h, k) = A(k, h). Supposons qu’on ait démontré la

relation :
(5.1.4) IA(h, k) — (f"(a)- k)- h| = o((|lh] + [Ik])?).

Je dis que (5.1.3) en résultera facilement. En effet, si dans (5.1.4) on échange h et k, on

obtient
IA(h, k) — (f"(a) - h) - kIl = o((Ihll + [k[)*);
cette relation et (5...4) entrainent
(5.1.5) I(f"(a)- k)- h — (f(a)- h) - k|| = o((lh]| + [IkI)?),
puisque
I(f"(a)- k) - h — (f"(a) - h) - k|| < [If"(a) - k) - h — A(h, K)[| + [[A(h, k) — (f"(a)- h) - k|-
(5.1.5) dit que, ¢ > 0 étant donné, il existe n > O tel que I'on ait
(5.1.6) I(f"(a) - k)- h — (f"(a) - k|| < e(Ih]l + [Ik])?
dés que ||h| + || k| < #. Or, pour tout scalaire 4, on a

|(f"(a) - Ak) - (2h) — (f"(a) - 2h) - Akl = |4]* - ||(f"(a) - k) - h — (f"(a) - h) - k] .

Etant donnés h et k quelconques dans E, on peut toujours trouver un 4 # O tel que
I2h] + Ak| < #; donc d’aprés (5.1.6) [ou h et k seraient remplacés par ih et 1k],

on a

1412 |(F(a)- k) - h — (F(a)- h) - k || < gA2(IhIP+ I1k]I*);

en divisant par |[4|* # 0, on trouve donc que I'inégalité (5.1.6) est vraie quels que soient
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h et k; comme ¢ > O a été choisi arbitrairement, on conclut que la relation (5.1.3)
est vraie, ce qui démontre le théoréme 5.1.1.

Ainsi, nous venons de voir que pour démontrer le théoréme, il suffit de prouver la
relation (5.1.4).
DEMONSTRATION de (5.1.4). Partons de I'inégalité évidente :
(5.1.7) IA(h, k) — (f"(a) - k) - h]]

< |A(h, k) — f(a + k)-h + f(a)- h||
+ |f(@a+ k)-h —f(a)-h — (f"(a)- k)- h|.

On va majorer chacune des quantités du second membre, c’est-a-dire

(5.1.8) |A(h, k) — f(a + k)-h + f(a)- h|
et
(5.1.9) If(a + k)-h — f(a)- h — (f(a)- k) - h].

Commengons par (5.1.9). On a
If(a + k)-h —f(a)-h — ((a)- k)- h|| < [h]| - [If'(a + k) — f(a) — f(a)- k] .
D’apreés la définition de la dérivée de la fonction ' au point a, on a
If(a + k) — f(a) — f(a) - k|| = o([[k]]).

Donc la quantite (5.1.9) est ||h]| - o([| k|}), et est a fortiori ||h|| - o(||h| + [k]|).
On va maintenant majorer (5.1.8). Considérons la fonction auxiliaire

B(h) = f(a+ k + h) — f(a+ h) — f(a + k)-h + f(a)- h.

Alors (5.1.8) n’est autre que ||B(h) — B(0)||. D’aprés I'inégalité des accroissements
finis (proposition 3.3.1), on a

IB(h) — B(O)] < [h]- sup [BIth)].
On a
B'(h)=f(a+ k+ h)—f(a+ h)—f(a+ k) + f(a);
donc (5.1.8) est majoré par

(5.1.10) Ihil -, Sup. [f'(a + k + th) — f(a + th) — f'(a + k) + f'(a)].

On va maintenant majorer (5.1.10) ; d’aprés la définition de f”(a), on a
f(a -+ k + th) = f(a) + f"(a)- (k + th) + o(| k + th|)
f'(a + th) = f'(a) + f"(a)- (th) + o(|th|))
fla + k) = f'(a) + f"(a)- k + o(J|k])).
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On en déduit, par combinaison :
|f(a + k + th) — f(a + th) — f(a + k) + f'(a)|
= o(|k + th])) + o(|th]}) + o(l[k[)).

Puisque ||k + th|| < ||k|| + [|h]| et [th]| < |[h]] quel que soit t (0 <t < 1), on voit
que 'expression (5.1.10) est de la forme o([|h]| + [|k||), et par conséquent (5.1.8) est
majoré par

Il -odlihll + [Ik).

Finalement, chacune des quantités (5.1.8) et (5.1.9) est ||h|| - o(|/h| + [[k]]); donc leur
somme aussi. Alors (5.1.7) montre que

IACh, k) — (f"(a) - k) - hi| = [Ib]| - o([[h]| + [[kI}).
Cela signifie que pour tout ¢ > 0 il existe # > O tel que I’on ait
IA(h, k) = (f"(a)- k)- hil < ellh] - (Ih]| + [Ik{})
dés que ||h|| + ||k| < #n. A fortiori, I'inégalité |h| + | k] < n entraine
IACh, k) — (F"(a)- k) - hil < e(llh]l + [1k[)?,

ce qui démontre (5.1.4).
La démonstration du théoréme 5.1.1 est ainsi achevée.

Cas ou Eestun produitE;, x ... x E|

On suppose toujours que U est un ouvert de E, et que f : U — F est deux fois différen-
tiable au point ae U. Ceci implique (par définition) que f est différentiable en tout
point x d’un voisinage de a. D’apres (2.6.1),ona

. ®. O
(5.2.1) f(x)-(hy,...,h) = > Bx; —(x)-h;, pour h;eE,.

i=1

La méme formule, appliquée a f" au lieu de f, donne

n ’

f
(5.2.2) f(@)-(k;,..., k)= }: g—x(a)- k;, pour k,eE,.
i=1 i

Par conséquent

0| of
(623)  (f(@)-(ky,..., ky)-(hy,... :.Z( (a)- k; ) (hy,...,hy).
Pour bien comprendre ce que signifie le second membre de cette relation, il faut penser
que
or (a)e Z(E;; Z(E; F))
ax i» ] b
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donc
of’

(Es Fls

et la valeur de ceci sur le vecteur (h,,..., h,) € E est un élément de F.
Pour calculer ¢f'/dx;(a), on utilise la relation (5.2.1) qui dit ce qu’est f' ; en dérivant
(5.2.1) par rapport a x; on obtient

2 RN f P T

0X;
Notons (6*f/dx;0x;)(a) la valeur, au point a, de d/0x(0f/dx;) ; c’est un élément de
L(E; s L(E;; F) ~ Z(E;, E;: F). Si dans (5.2.3) on remplace le second membre par
sa valeur tirée de (5.2.4), on obtient enfin :

(5.2.4)

( o (a)-k,|-h

(5.2.5) F@- ks k) - (B ) = D = —

ij

j
Telle est la relation fondamentale qui exprime f'(a)e Z(E, E ; F) a l'aide des dérivées

partielles
0°f

0X;0X

(a)e Z(E;, E; 5 F).

J

Elleest, pour la dérivée seconde, I'analogue de ce qu’était (2.7.1) pour la dérivée premiére.
Exprimons maintenant que f"(a) : E x E — Fest une application bilinéaire symétrigue

(théoreme 5.1.1). Par échange de k; et h; (pour chaque i), (5.2.5) donne

0°f
Z (8)- K ) Z(axa

0*f
0x;0

(a)- h)

J J

ou encore, en echangeant les indices de sommation i et j dans le second membre :

o*f
Ceci est une identité en ky, ..., k,, h;,..., h_. On en déduit
o*f o
k,
[ )0 = g )+
pour tout couple (i, j). Ceci exprime que I’application bilinéaire

0*f
OX;0%;

‘\2

0x,0x (a)k) Z

ij

(5.2.6)

(@):E; x E; > F

est composée de I'application de symétrie E; x E; — E; x E; [qui envoie (h;, k;) en

(k;, h;)] et de I'application bilinéaire

j» M

o*f

0x,0x

(a) < E; x E; = F.

i
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On peut dire, brievement, que les deux applications bilinéaires (0°f/0x,0x;)(a) et
(0*1/0x;0x;)(a) se déduisent 'une de autre par I'échange des variables k; € E; et h; e E;.
En particulier, (0*f/0x,0x;)(a), noté aussi (8*f/6(x;)*)(a), est une application bilinéaire

symétrique E; x E; = F.

Remarque. Dans tout ce qui précéde, on a supposé a priori I'existence de f”(a), — ce
qui entrainait I’existence des dérivées partielles (6%f/0x;0x;)(a). Or on a une condition
suffisante pour que f soit deux fois dérivable au point a; en effet, en appliquant deux

fois la proposition 3.7.2, on trouve ceci :

PROPOSITION 5.2.1. Pour que f"(a) existe, il suffit que les of/0x; existent en tout
point x € U et soient des fonctions continues dans U, et que les dérivées partielles
0/0x,(0f/0x;) existent en tout point x € U et soient des fonctions continues au point a

[comme application U — Z(E;, E; ; F)].

Cas particulier otz E = R". Dans ce cas, nous prenons E; = R pour i =1,..., n. Alors
Z(E, ; F)s’identifie a F,comme on I’a déja dit souvent ; et

Z(E; Z(E;;F)=ZR; ZR;F)
s’identifie ainsi & F. Par cette identification, si on note pour un instant ¢;; € F élément
de F défini par (8*f/dx;0x;)(a), I'application bilinéaire correspondante R x R — F
n’est autre que

(A5 A5) = Aid;Cy5.

D’aprés le résultat ci-dessous, on a

= A;4,C quels que soient 4; et 4;.

A4;Ci; #iCjis

On en déduit ¢;; = c;; (faire par exemple 4; = 1, 4; = 1). Ainsi:

PROPOSITION 5.2.2. Si f:U — F est une fonction deux fois différentiable de n

variables réelles, on a
0%t %t

axan D = Fxn D€

C’est le classique théoréme de Schwarz ; mais il est souvent énoncé sous les hypothéses
de la proposition 5.2.1, qui sont des conditions suffisantes, mais non nécessaires, pour

que f"(a) existe.
Le théoréme de Schwarz ne fait qu’exprimer, dans le cas particulier d’une fonction

de n variables réelles, le théoréme 5.1.1 qui vaut en toute généralité.

Dérivées successives

Soit f : U — F une fonction deux fois différentiable. On a alors 'application « dérivée

seconde » :
f':U - Z(E;F),
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en notant pour abréger, %,(E ; F) 'espace de Banach Z(E, E ; F) formé des applications
bilinéaires continues E x E — F. En général, on notera .%,(E ; F) I'espace des applica-
tions multilinéaires continues

Ex... xE—-F.
————

. n facteurs

On peut se demander si 'application f* est elle-méme différentiable. Si elle I’est au
point ae U, on notera f”(a), ou encore f*(a), la dérivée de " au point a; c’est un
elément de SHE + FLLE ; F)) w0 Z4L1E ; F)

Par récurrence sur n, on définit : « f est n fois différentiable au point a», et on dit
ce qu'on entend par la dérivée n-iéme f™(a)e Z,(E ; F). Supposons ces notions déja
définies pour n — 1 ; on dira que f est n fois différentiable en a s’il existe un voisinage
ouvert V de a tel que f soit n — 1 fois différentiable en chaque point de V, et si ’applica-
tion x— f®~1(x) de V dans &%, _,(E ; F) est différentiable au point a ; alors la dérivée
de f*~ au point a se note f™(a) et s’appelle la dérivée n-ieme de f au point a. Cest
un ¢lément de .Z,(E ; F).

Pour hy,...,h, € E, on notera f™(a)-(h,,...,h ) la valeur de f™(a): E x ... x E> F
pour I'¢lément (hy,...,h,)eE x ... x E.

DEFINITION. On dit que f est de classe C* dans U (ou encore, que f est n fois continti-
ment différentiable dans U), si f est n fois différentiable en tout point de U, et si 'applica-
tion

fo U Z(E:F

est continue.
Ayant ainsi défini ™ pour n > 1 (lorsque cette dérivée n-iéme existe), on convient
de poser

f = f (dérivée zéro-ieme!).

On dira que f est de classe CP si f est continue.

DEFINITION. On dit que f:U — F est de classe C® si elle est de classe C" pour
tout n.

Exercice : Pour cela, il suffit que ™ existe pour tout n ; on dit aussi, dans ce cas, que
f est indéfiniment différentiable.

Remarque. Pour que f soit n fois différentiable au point a (n > 1), il faut et il suffit que
f(x) existe en tout point x d’un voisinage ouvert V de a, et que I'application f': V — F
soit n — 1 fois différentiable au point a ; alors

f*)(a) = (£)*"~ a).
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De méme, on a pour n = 2,
fn)(a) = (f")"~2a), etc.

La vérification est laissée a titre d’exercice.

Du théoréme fondamental 5.1.1, on va déduire sans peine :

THEOREME 5.3.1. Si f est n fois différentiable au point a, la dérivée fY(a)e Z,(E ; F)
est une application multilinéaire symétrique E x ... x E — F. Autrementdit,sihy, ..., D
sont n vecteurs de E, et si ¢ désigne une permutation quelconque sur [1,2,...,n],ona

(5.3.1) f™(a)- (hy, h,, ..., h,) = (@) (hy1), hozys - - -5 Do)

DEMONSTRATION. La question ne se pose que pour n > 2. Pour n = 2, c’est déja
démontré (théoréme 5.1.1). On va procéder par récurrence : soit n > 3, et supposons le
théoréme démontré pour n — 1. Alors f®)(a) est la dérivée de I'application

fordls Vo i (E 3 F),

qui par hypothése existe dans un voisinage V de a. Par I'hypothése de récurrence,
fn=1 prend ses valeurs dans le sous-espace de %,_,(E;F) formé des applications
(n — 1)-linéaires symétriques. Donc, pour h, € E, f™(a)- h; est une élément de cet

espace ; autrement dit :
(f(n)(a} : hl) : (th vy hn)

est une fonction symétrique de h,, ..., h,. Or c’est
f(n)(a) ’ (hl ) h29 e hn)a

et on voit donc déja que I'application multilinéaire f®)(a) : E* — F est une fonction
symétrique des n — 1 derniéres variables. Il suffira donc de montrer que

f(n)(a) ’ (hls hz, ot 3 hn)

ne change pas de valeur lorsqu’on permute h; et h, ; en effet, on sait que toute permuta-
tion sur n éléments est composée d’un nombre fini de « transpositidns », dont chacune
consiste 4 permuter deux éléments consécutifs. On sait déja que cela ne change rien si
ces 2 éléments sont h, et h,,;,avec 2 < i < n — 1 ;etsion prouve qu’il en est de méme
pour h, et h,, tout sera démontré. Or f™(a) est la dérivée seconde de f*=2) donc

(f*a)-hy)-h,e &£, _5(E;F)

est symétrique en h, et h,, d’aprés le théoréme 5.1.1 appliqué a la fonction fn=2)
C.QFD.

Exemples de fonctions n fois différentiables
PROPOSITION 5.4.1. Toute application bilinéaire continue

@o:E, xE,—»F
7l

5.4
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est de classe C* ; plus précisément, ¢” est une application constante, et les dérivées
@™ sont donc nulles pour n > 2.

DEMONSTRATION. D’apres le théoréme 2.4.3, on sait que ¢ est différentiable, et que
@'(X1,X3) (hy, hy) = @(hy, ;) + @(x,, hy).
Cette relation montre que 'application
@'t By % By + #(Ey, Es 3 F)

est une fonction linéaire continue du point (x,, x,) € E; x E,. Donc sa dérivée ¢” est
constante ; la valeur de cette constante est I’¢lément de %,(E, x E, ;F) [ou E, x E,
est pris avec sa structure d’espace de Banach] qui, a deux éléments (h,, h,) et (k,, k,) -
de I’espace vectoriel E; x E,, associe

(P(hla kz) + qo(kla hz)

La démonstration est achevée.

THEOREME 5.4.2 (dérivées d une Jonction composée). Soient U c E et V < F deux
ouverts d’espaces de Banach, f:U — V et g:V — G deux applications continues.

(i) Sifest n fois différentiable au point ae U, et si g est n fois différentiable au point
b =f(a)eV,alorsh = gef:U — G est n fois différentiable au point a.

(1) Sif et g sont de classe C", alors h = g o f est de classe C".

DEMONSTRATION. Le théoréme est vrai pour n = 1. En effet, cela résulte du
théoréme 2.2.1 (dérivée d’une fonction composée), qui donne

(5.4.1) h'(x) = g'(f(x)) = f(x),

formule qui montre que si ' et g’ sont des fonctions continues, h’ est une fonction
continue (d’ou Iassertion (ii) pour n = 1). On va prouver (i) et (ii) par récurrence sur
n, en supposant que ce soit vrai pour n — 1 (avec n > 2).

Raisonnons par exemple dans le cas de la propriété (ii) ; le raisonnement serait tout
semblable pour (i). On veut montrer que h est de classe C", ou, ce qui revient au méme,
que h’ est de classe C"'. Or la relation (5.4.1) exprime que h’ est composée de deux
applications :

1°) Papplication x+— (g'(f(x)), f(x)) de U dans #(F : G) x Z(E;F);
2%) Papplication (v, u)r— vou de ¥(F :G) x Z(E ; F)dans #(E ; G).

La seconde application est bilinéaire continue (cf. la fin du n° 1.8), donc est de classe
C™ (proposition 5.4.1). La premiére application prend ses valeurs dans un espace-
produit ; ses deux composantes sont

x— g'(f(x)) et x— f(x).
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Par hypothese, la seconde de ces applications est de classe C" ™', Quant a la premiére,
elle est composée de

UL VE #F;G);

fest de classe C", et a fortiori de classe C" ! ; g’ est aussi de classe C" ™ '. Par I’hypothése
de récurrence, la composée g’ o f est de classe C"~'. Ainsi I'application 1°) est de classe
C"~! (parce que chacune de ses deux composantes est de classe C"~!) ; I’application 2°)
est aussi de classe C"™' (et méme C*). Par I’hypothése de récurrence (appliquée une
deuxiéme fois) leur composée est de classe C"~'. Cette composée est h’, et la récurrence

est démontrée.

THEOREME 5.4.3. Soient E et F deux espaces de Banach ; on note toujours Isom(E ; F)
'ouvert de Z(E ; F) formé des isomorphismes linéaires de E sur F. Alors I'application
¢ :Isom(E ; F) - £(F ; E), telle que

o(u) = u~ ! elsom(F ; E),

est de classe C*.

DEMONSTRATION. D’aprés le théoréme 24.4, on sait déja que ¢ est de classe C!,
et que

(5.4.2) W) -h=—u"lohou™' pour heZ(E;F).

@'(u) est un élément de L (L (E; F); Z(F;E)). Comme dans la démonstration du
théoréme 2.4.4, introduisons I’application bilinéaire continue

e 1 F(F s B} % S(F 3 E] = FFUE; F)3 28 (F 3z E))

définie par

(v, w)-h= —vohow.

La relation (5.4.2) s’écrit alors

(5.4.3) @'(u) = Y(o(u), o(u))

[puisque u~' = @(u)]. C’est 12 une «équation différentielle» a laquelle satisfait la
fonction ¢. On va en déduire, par récurrence sur n, que ¢ est de classe C".

On le sait pour n = 1. Soit n > 2, et supposons prouvé que ¢ est de classe C*~ 1.
On va montrer que ¢’ est de classe C"™! (c’est-a-dire : ¢ est de classe C"). Or (5.4.3)
exprime que I’application ¢’ est composée de deux applications :
1°) I'application u— (¢(u), ¢(u)) de Isom(E ; F) dans #(F ; E) x #(F;E);
2°) 'application bilinéaire .

La premiére est de classe C"~! par I’hypothése de récurrence, et la deuxiéme est de

classe C” (proposition 5.4.1). Donc leur composée est de classe C" ™! (théoréme 5.4.2).
CIQF.Ix
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Exercice. Démontrer la formule explicite suivante qui donne la dérivée n-iéme de ¢ :
¢™(u)-(hy,...,h) = (=1)"Yu teh,yeute. oulo homeu™",

ol la sommation est étendue aux n! permutations g de [1,..., n].

THEOREME 5.4.4. Soient E et F deux espaces de Banach, et soient V' = E et W c F
des ouverts. Soit

f:V-oW

un Cl-difféomorphisme (cf. 4.1). Si I’application f est de classe C*, alors I’homéomor-
phisme réciproque g = f~! est aussi de classe C". [On dit alors que f est un C"-difféo-
morphisme].

DEMONSTRATION. Pour n = 1, I’assertion de I’énoncé est une tautologie. De plus,
on sait que, pour ye W:

(5.4.3) g'ly) = (Flatym™";
ceci exprime que 'application g’ est composée de trois applications :

— l'applicationg : W — V;
— l’application f': V — Isom(E ; F) ;

1

— l’application Isom(E ; F) — £(F ; E) définie par ur— u™"',

On va alors démontrer le théoréme par récurrence sur n. Supposons-le vrai pour n — 1
in = 2y; a]brs, sous les hypothéses de I’énoncé, la deuxiéme et la troisiéme application
ci-dessus sont de classe C"~* (la troisiéme est méme de classe C*, d’apres le théoréme
5.4.3). Quant a la premiére, c’est g ; par I’hypothése de récurrence, elle est de classe
C"~ 1. Alors I'application @', composée de trois applications de classe C"™?, est de
classe C"~! (théoréme 5.4.2).

C.QFD.

Remarque. St un homéomorphisme f: V — W est de classe C" (n = 1) (resp. de classe
C=) et si f'(x) e Isom(E ; F) pour tout x € V, alors f est un C*-difféomorphisme (resp. un
C*-difféomorphisme). [Pour n = 1, ceci n’est pas autre chose que la proposition
4.1.1 ; en la joignant au théoréme 5.4.4 ci-dessus, on obtient le résultat énoncé].

COROLLAIRE 5.4.5. Dans le « théoréme d’inversion locale » (théoréme 4.2.1), si on
suppose que f est non seulement de classe C', mais de classe C", on conclut que la
restriction de fa V [notation du théoréme 4.2.1] est un C"-difféomorphisme de V sur W.

De méme, dans le « théoréme des fonctions implicites » (théoréme 4.7.1), si on suppose
que lapplication (x, y)— f(x, y) est non seulement de classe C!, mais de classe C",
on conclut [avec les notations du théoréme 4.7.1] que !’application g : W — F est de
classe C".
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Formule de Taylor : cas particulier

Commengons par une formule préliminaire. Soient E, F et G trois espaces de Banach,
et ¢ : E x F — G une application bilinéaire continue. Soient d’autre part

u:U—-E e v:U—-F

deux applications n + 1 fois différentiables, U désignant un intervalle ouvert de la
droite numérique R. Les dérivées successives u'’, v prennent leurs valeurs respective-

ment dans E et F.
Lemme. Sous les hypothéses précédentes, ’application

t 3 (=1 Pp(ut), v Pt
=0

P
de U dans G a pour dérivée
t— p(u(t), v U() + (= 1) U™ 1), v(1)).

La vérification est laissée au lecteur : on applique la formule qui donne la dérivée
d’une fonction bilinéaire de deux fonctions d’une variable numérique (cf. (2.5.5)).

On va appliquer ce lemme dans le cas particulier suivant : E = R, G = F, ’application
¢ :R x F — F étant la multiplication d’un vecteur de F par un scalaire. De plus nous

prenons

L1~

U(T) = m

qui est de classe C", avec u™* '(t) = 0. On obtient :

PROPOSITION 5.5.1. Si v est une fonction (n + 1) fois différentiable d’une variable
réelle t e U, a valeurs dans I’espace de Banach F, on a

d ' 1 n,,(n) 1 n,(n+1)
(5.5.1) EﬁMt) + (1 —twi)+ ...+ E?“ — t)"vi"(t)] = m(1 = R,
(la notation (d/dt)f désigne la dérivée d’une fonction f de la variable réelle t).

COROLLAIRE 5.5.2. Supposons en outre que U = [0, 1], et que v"* ! soit continue.
Alors

(5.5.2) v(1) — v(0) — v’(O)—lv”(O) —ivfn)(O)— luv(“+1)(t) dt
5. 5 g =] i :

En effet, si t+— f(t) a une dérivée continue f' pour te[0, 1], on sait que

1
f(1) — f(0) = J /(1) dt

0
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[cf. cours de Math I]. On applique ce résultat en prenant ici

(5.5.3) f)=vi)+ (1 —tv(t) + ... + %(1 ~ DAV,

COROLLAIRE 5.5.3. Sous les hypothéses de la proposition 5.5.1, supposons que

(5.5.4) [v®* D) < M pour te[0,1].
Alors on a
1 1 M
s s R e T S e (1) -
(5.5.5) [v(1) — v(0) — v'(0) 2V (9) n!v Q)] < Gk

DEMONSTRATION. On va appliquer le théoréme 3.1.1 (théoréme des accroissements
finis), en remplacant dans ce théoréme I'intervalle [a, b] par [0, 1], la fonction f par
celle donnée par (5.5.3), et en prenant

gt) = — M(:n—_:):)i!lﬂ.
La relation (5.5.1) dit que
iron < L yver gy
donc, d’apres ’hypothese (5.5.4) :
ron < MU= = g,

Le théoreme des accroissements finis 3.1.1 permet de conclure :
I#(1) — f(O0) < g(1) — g(0),
ce qui donne précisément I’inégalité (5.5.5) & démontrer.
Les corollaires 5.5.2 et 5.5.3 constituent deux cas particuliers de la « formule de
Taylor », qu’on va maintenant considérer dans le cas général.

Formule de Taylor : cas général 5.6

Désormais, U désigne un ouvert d’un espace de Banach E, et F un espace de Banach :
on considére une application

f:U->F.

Soient a et a + h deux points de U, tels que le segment [a, a + h] soit contenu dans
U (par exemple, si U est convexe, il suffit que ae U et a + h e U pour que le segment
soit contenu dans U ; si U est un ouvert quelconque, et a un point de U, alorsa + he U
pour tout vecteur h € E de norme assez petite).
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Considérons la fonction
v(t) = f(a + th), te[0,1].

Sifest n + 1 fois différentiable dans U, v est n + 1 fois différentiable (différentiabilité
d’une fonction composée), et on calcule immédiatement les dérivées de v :

v(t) = f(a + th)- h
v'(t) = (f(a + th)- h)- h,

qu'on a convenu de noter f’(a + th)-(h, h) [ne pas oublier que f’(a + th) est une
application bilinéaire, d’ailleurs symétrique, de E x E dans F]. D’une maniére génerale,

on voit par récurrence sur n que

(5.6.1) vio(t) = f™(a + th)-(h,..., h).
|
n fois
Pour abréger, on conviendra de noter (h)" I'élément (h, ..., h)e E".

Dans les corollaires 5.5.2 et 5.5.3, remplacons v et ses dérivées par les expressions
(5.6.1). On obtient :

THEOREME 5.6.1 (« formule de Taylor avec reste intégral »). Soit f : U — F une applica-
tion de classe C"* 1. Si le segment [a, a + h] est contenu dans U, on a :

(5.6.2) | f(a + h) = f(a) + f(a)-h + %f”(a)-(h, h) + ...

1 1(] ""t)n +1 +1
+mf‘“)(a)-(h)“+ Tf‘" a + th)-(h)"* ! dt.

0

THEOREME 5.6.2 (« formule de Taylor avec reste de Lagrange »). Soit f:U — F une
application n + 1 fois différentiable ; supposons

(5.6.3) [f**D(x)| < M pour xeU.

Alors :

564y |If(a+h) — fe) — fla)-h — ... ——f%a)- by < ML
7, . . n! s> (n + 1)!.
En effet,

Ve = " @ + th)-(h,..., h)ll;
par la propriété de la norme d’une application (n + 1)-linéaire continue (cf. (1.8.5)),
ceci est majore par
I D@ + th)| - |h**1,
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et par I’hypothese (5.6.3) ceci est majoré par M - |h|®**. 11 suffit alors d’appliquer le
corollaire 5.5.3 (ot M serait remplacé par M| h|"*1).

Telles sont les deux « formules de Taylor ». On en déduit une troisiéme « formule de
Taylor» : dans (5.6.4), on voit que si h tend vers 0, le second membre est o(||h| "), donc
le premier membre aussi. Mais ce résultat a été obtenu en supposant que f a une dérivée
f®* 1 bornée au voisinage de a. En réalité, il vaut sous des hypothéses plus larges :

THEOREME 5.6.3. Soit f:U — F une application n — 1 Jfois différentiable. Supposons
que f soit n fois différentiable au point a€ U. On a alors

1
(5.6.5) If(a + h) — f(a) — f(a)-h... — _rﬁf‘“)(a)-(h}“ I = o(|h[™).

Cette «formule de Taylor» exprime seulement une propriété «asymptotique» ;
elle dit ce qui se passe quand h tend vers zéro.

DEMONSTRATION. Pour n = 1, (5.6.5) ne dit rien de plus que la définition de la
dérivee f'(a) :

If(a + h) — f(a) — f(a)- h|| = o(||h])).

On va procéder par récurrence sur n, en supposant (5.6.5) vrai pour n — 1 (n > 2).
Considérons la fonction

(5.6.6) o(h) =f(a + h) — f(a) — f(a)-h — ... — %f(“’(a)-(h)“.

Calculons sa dérivée. Pour cela, cherchons d’abord la dérivée de la fonction
h— f™(a) - (h)" ; cette dérivée est, pour chaque valeur de h, un élément de Z(E ; F),
c’est-a-dire une fonction linéaire de ke E & valeurs dans F. Comme f™)(a) est une
fonction n-linéaire E x ... x E— F, la relation (2.4.3) nous donne sa dérivée pour
la valeur (h, ..., h) de la variable : c’est I'application linéaire

ki— f®(a)- (k, h,..., h) + f"a)- (h, k, h,...,h) +... + f*Xa)-(h,..., h k).

Comme f®(a) est une fonction symétrique, ceci fait k— nf™(a)-(h,..., h, k). On peut
interpréter cela comme suit : considérons f(a) comme la dérivée (n — 1)-iéme de
f:U - Z(E; F);c’est une fonction (n — 1)-linéaire symétrique a valeurs dans E ; F)
Notons

@) (h,..es h) = @) (RF 1

S e
n — 1 fois
sa valeur sur le multivecteur (h,..., h); c’est un élément de Z(E; F). Alors on voit

que la derivée de la fonction
1
h— mf(“)(a) -(h)* (application E — F)
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est

h ,_,_—1—!1‘(“’(8) -(h)*~ 1 (application E — #(E ; F)).

th=1)

Avec ces explications, la dérivée de la fonction ¢ définie par (5.6.6) est
1
=1 h)— f(a) — ... — ————f™(a)- (h)" .
¢(h) = f(a + h) - f(a) F @

Appliquons I’hypothése de récurrence a la fonction ' ; on obtient :
le'(h)ll = o(lh]"™").

Autrement dit, pour tout ¢ > 0 il existe n > O tel que

Ihll <#u entraine [@'(h)| <elh|"".
L’inégalité des accroissements finis entraine alors

le(h) — @(0)] < ellh|” pour [h] <.
D’ailleurs ¢(0) = 0. Donc on a

()l = o(l[h]l"),

ce qui est justement la relation (5.6.5) @ démontrer.

. POLYNOMES

La formule de Taylor (cf. 5.6) introduit la fonction de he E :

1
h=——1®Ya)-(h,..., h);
n fois

rappelons que f™(a) est une application multilinéaire symétrique E" — F. Ceci va
nous conduire a la notion générale d’application polynomiale homogéne de degré n de

E dans F.
La question a d’abord un aspect purement algébrique, que nous allons développer

pour comimencer.

Polynomes homogénes de degré n

Dans ce numéro et les suivants, K désigne un corps commutatif de caractéristique
zéro, c’est-a-dire contenant le corps Q des rationnels. I n’est pas nécessaire de supposer
que K soit R ou C ; en particulier, K pourrait étre égal a Q. Tous les espaces vectoriels
considérés sont des espaces vectoriels sur K, de dimension finie ou infinie.
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