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INTRODUCTION
Ce document est constitué d'une série de suppléments pour mon livre Topoloie Générale etEspaces Normés. Je donne dans ce document certaines démonstrations que j'ai omises dansmon livre et je donne aussi 223 exercices avec leurs solutions. Également, pour rappeler le lecteurcertaines notions que j'ai utilisées dans mon livre, j'ai ajouté quelques appendices surtout un surla théorie des ensembles et un autre sur le corps des nombres réels.J'accueillerai avec plaisir et gratitude toutes remarques et suggestions envoyées à l'adresse élec-tronique suivante : nawfal.elhage-hassan@univ-orleans.fr
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Chapitre 1ESPACES TOPOLOGIQUESProposition. Soient f et g deux applications continues d'un espace topologique X dans R, alorson a :1. L'application f + g : x 7−→ f(x) + g(x) est continue de X dans R.2. L'application fg : x 7−→ f(x)g(x) est continue de X dans R.3. Si g ne s'annule pas, l'application f

g
: x 7−→ f(x)

g(x)
est continue de X dans R.Démonstration. 1. Soit x0 ∈ X. Montrons que f + g est continue en x0. Soit ε > 0. Comme

f est continue en x0, alors il existe un voisinage V1 de x0 dans X tel que pour tout x ∈ V1, onait |f(x)− f(x0)| < ε
2 . De même, comme g est continue en x0, alors il existe un voisinage V2 de

x0 dans X tel que pour tout x ∈ V2, on ait |g(x) − g(x0)| < ε
2 . Soit V = V1 ∩ V2, alors V est unvoisinage de x0 dans X et pour tout x ∈ V , on a :

|f(x) + g(x) − f(x0)− g(x0)| ≤ |f(x)− f(x0)|+ |g(x) − g(x0)| < ε
2 + ε

2 = ε .Donc f + g est continue en x0. Par conséquent, f + g est continue.2. Soit x0 ∈ X. Montrons que fg est continue en x0. Soit ε > 0. Soit :
η = inf

(
1,

ε

|g(x0)|+ 1 + |f(x0)|

)
.Alors η > 0 et on a η(|g(x0)| + η

)
+ |f(x0)|η ≤ ε. Comme f et g sont continues en x0, alorsil existe un voisinage V de x0 dans X tel que pour tout x ∈ V , on ait |f(x) − f(x0)| < η et

|g(x)− g(x0)| < η. Donc pour tout x ∈ V , on a :
|f(x)g(x) − f(x0)g(x0)| = |f(x)g(x)− f(x0)g(x) + f(x0)g(x) − f(x0)g(x0)|

≤ |f(x)− f(x0)| |g(x)| + |f(x0)| |g(x) − g(x0)|

≤ |f(x)− f(x0)|
(
|g(x0)|+ η

)
+ |f(x0)| |g(x) − g(x0)|

< η
(
|g(x0)|+ η

)
+ |f(x0)|η ≤ ε .Donc fg est continue en x0. Par conséquent, fg est continue.3. D'après 2, il su�t de montrer que l'application 1

g
: x 7−→ 1

g(x)
est continue de X dans R.1
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2 Chapitre 1. ESPACES TOPOLOGIQUESSoient x0 ∈ X et ε > 0. Soit η = inf

(
ε |g(x0)|2

2
,
|g(x0)|

2

), alors η > 0. Comme g est continue en
x0, alors il existe un voisinage V de x0 dans X tel que pour tout x ∈ V , on ait |g(x)−g(x0)| < η.Alors pour tout x ∈ V , on a |g(x0)|

2
< |g(x)| et

∣∣∣∣
1

g(x)
− 1

g(x0)

∣∣∣∣ =
|g(x) − g(x0)|
|g(x)| |g(x0)|

≤ 2|g(x) − g(x0)|
|g(x0)|2

<
2η

|g(x0)|2
≤ ε .Donc l'application 1

g
est continue en x0. Par conséquent, 1

g
est continue. �Proposition. Soient X, Y des espaces topologiques et f : X −→ Y une application. Les pro-priétés suivantes sont équivalentes.(i) f est une application fermée.(ii) Pour tout sous-ensemble B de Y et pour tout ouvert U dans X tel que f−1(B) ⊂ U , ilexiste un ouvert V dans Y tel que B ⊂ V et f−1(V ) ⊂ U .(iii) Pour tout point y ∈ Y et pour tout ouvert U dans X tel que f−1

(
{y}
)
⊂ U , il existe unvoisinage V de y dans Y tel que f−1(V ) ⊂ U .Démonstration. Montrons l'implication (i) =⇒ (ii). Soient B un sous-ensemble de Y et U unouvert de X tels que f−1(B) ⊂ U . Soit F = X\U , alors F est fermé dans X et on a f(F )∩B = ∅.Comme f est une application fermée, alors f(F ) est un fermé de Y . Donc V = Y \ f(F ) est unouvert de Y contenant B et on a f−1(V ) = X \ f−1

(
f(F )

)
⊂ X \ F = U .Preuve de (ii) =⇒ (i). Soient F un fermé de X et A = f(F ). Alors X \ F est un ouvert de X eton a f−1(Y \A) ⊂ X \F . Donc il existe un ouvert V de Y tel que Y \A ⊂ V et f−1(V ) ⊂ X \F .Par conséquent, on a V = Y \A, d'où A est un fermé de Y . Donc f est une application fermée.L'implication (ii) =⇒ (iii) est triviale.Preuve de (iii) =⇒ (ii). Supposons que pour tout point y ∈ Y et pour tout ouvert U dans Xtel que f−1

(
{y}
)
⊂ U , il existe un voisinage V de y dans Y tel que f−1(V ) ⊂ U . Soient B unsous-ensemble de Y et U un ouvert dans X tels que f−1(B) ⊂ U . Pour tout y ∈ B, il existe unvoisinage ouvert Vy de y dans Y tel que f−1(Vy) ⊂ U . Soit V = ∪

y∈B
Vy, alors V est un ouvert de

Y tel que B ⊂ V et f−1(V ) = ∪
y∈B

f−1(Vy) ⊂ U . �Proposition. Soient X, Y deux espaces topologiques et f : X −→ Y une application continuesurjective. On munit X/Rf de la topologie quotient. Les propriétés suivantes sont équivalentes.(i) L'application f̃ : X/Rf −→ Y est un homéomorphisme.(ii) L'image par f de tout ouvert de X saturé pour Rf est un ouvert de Y .(iii) L'image par f de tout fermé de X saturé pour Rf est un fermé de Y .(iv) Pour toute partie U de Y , U est ouvert dans Y si et seulement si f−1(U) est un ouvert de
X.(v) Pour toute partie F de Y , F est fermé dans Y si et seulement si f−1(F ) est un fermé de
X.Démonstration. Montrons l'implication (i) =⇒ (ii). Soit U un ouvert de X saturé pour Rf ,d'où on a U = q−1(q(U)). Par conséquent, q(U) est un ouvert de X/Rf . Comme f̃ est unhoméomorphisme et f(U) = f̃(q(U)), on en déduit que f(U) est un ouvert de Y .
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3Preuve de (ii) =⇒ (i). Notons d'abord que f̃ est bijective car f est surjective. Puisque f estcontinue, alors f̃ est continue. Il reste à montrer que f̃ est ouverte. Soit W un ouvert de X/Rf ,alors q−1(W ) est un ouvert de X saturé pour Rf . Par conséquent, f(q−1(W )
) est un ouvert de

Y . Or on a f(q−1(W )
)
= f̃

(
q
(
q−1(W )

))
= f̃(W ), donc f̃(W ) est un ouvert de Y .Les équivalences (ii) ⇐⇒ (iii) et (iv) ⇐⇒ (v) s'obtiennent par passage aux complémentaires.Preuve de (i) =⇒ (iv). Soit U une partie de Y , on a f−1(U) = q−1

(
f̃−1(U)

). Puisque f̃ est unhoméomorphisme de X/Rf sur Y , U est un ouvert de Y si et seulement si f̃−1(U) est un ouvertde X/Rf si et seulement si q−1
(
f̃−1(U)

)
= f−1(U) est un ouvert de X.Preuve de (iv) =⇒ (i). L'application f̃ est continue et bijective. Il reste à montrer que f̃ estouverte. Soit W un ouvert de X/Rf , on a f−1

(
f̃(W )

)
= q−1

(
f̃−1

(
f̃(W )

))
= q−1(W ), donc

f−1
(
f̃(W )

) est un ouvert de X, d'où f̃(W ) est un ouvert de Y . �Proposition. Soient (xn)n≥0 une suite dans un espace topologique X et ` ∈ X.1. Si ` est une limite de la suite (xn)n≥0, alors ` est une valeur d'adhérence de (xn)n≥0.2. Si X est séparé et si (xn)n≥0 est convergente dans X, alors sa limite est unique et c'est laseule valeur d'adhérence de la suite (xn)n≥0.3. Si (xn)n≥0 converge vers `, alors toute sous-suite de (xn)n≥0 converge également vers `.4. La suite (xn)n≥0 converge vers une limite ` si et seulement si les sous-suites (x2n)n≥0 et
(x2n+1)n≥0 convergent vers `5. Si ` est une valeur d'adhérence d'une sous-suite de (xn)n≥0, alors ` est une valeur d'adhé-rence de (xn)n≥0.6. Si ` est une limite d'une sous-suite de (xn)n≥0, alors ` est une valeur d'adhérence de
(xn)n≥0. Réciproquement, si ` admet une base dénombrable de voisinages et si ` est unevaleur d'adhérence de (xn)n≥0, alors ` est une limite d'une sous-suite de (xn)n≥0.Démonstration. 1. Il résulte immédiatement de la dé�nition 1.7.1 que si ` est une limite de lasuite (xn)n≥0, alors ` est une valeur d'adhérence de (xn)n≥0.2. Ceci résulte de la proposition 1.6.3 et de la remarque 1.7.2. Mais donnons une preuve directe.On suppose ici que X est séparé et que la suite (xn)n≥0 converge vers une limite ` ∈ X. D'après1, ` est aussi une valeur d'adhérence de (xn)n≥0. Donc il su�t de montrer que ` est la seule valeurd'adhérence de (xn)n≥0. Soit `′ une valeur d'adhérence de (xn)n≥0. Si ` 6= `′, comme X est séparé,il existe un voisinage V de ` dans X et un voisinage W de `′ dans X tels que V ∩W = ∅. Puisque

` est une limite de la suite (xn)n≥0, il existe N ∈ N tel que pour tout n ≥ N , on ait xn ∈ V .Comme `′ est une valeur d'adhérence de (xn)n≥0, il existe n ≥ N tel que xn ∈ W . D'où on a
V ∩W 6= ∅, ce qui est impossible. Donc on a `′ = `.3. Ceci résulte de la proposition 1.6.5, mais on va donner une preuve directe en n'utilisant queles dé�nitions. Soit (xnk

)k≥0 une sous-suite de (xn)n≥0, alors pour tout k ≥ 0, on a nk ≥ k. Soit
V un voisinage de ` dans X, alors il existe N ∈ N tel que pour tout n ≥ N , on ait xn ∈ V . Alorspour tout k ≥ N , on a nk ≥ nN ≥ N , d'où xnk

∈ V . Donc la sous-suite (xnk
)k≥0 converge vers

`.4. Ceci résulte de la proposition 1.6.4 et de la remarque 1.7.2. Mais donnons une preuve directe. Ilrésulte de 3 que si (xn)n≥0 converge vers une limite `, alors les sous-suites (x2n)n≥0 et (x2n+1)n≥0convergent vers `.Réciproquement, supposons que les sous-suites (x2n)n≥0 et (x2n+1)n≥0 convergent vers `. Soit Vun voisinage de ` dans X. Alors il existe N1 ∈ N tel que pour tout n ≥ N1, on ait x2n ∈ V , et ilexiste N2 ∈ N tel que pour tout n ≥ N2, on ait x2n+1 ∈ V . Soit N = max(2N1, 2N2 + 1), alors
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4 Chapitre 1. ESPACES TOPOLOGIQUES
N ∈ N et pour tout n ≥ N , on a xn ∈ V . Donc (xn)n≥0 converge vers `.5. Supposons que ` est une valeur d'adhérence d'une sous-suite (xnk

)k≥0. Soient V un voisinagede ` dans X et N ∈ N. Alors il existe k ∈ N tel que k ≥ N et xnk
∈ V . Or on a nk ≥ k, d'où

nk ≥ N et xnk
∈ V . Donc ` est une valeur d'adhérence de (xn)n≥0.6. Il résulte de 1 et 5 que si ` est une limite d'une sous-suite de (xn)n≥0, alors ` est une valeurd'adhérence de (xn)n≥0. Réciproquement, supposons que ` est une valeur d'adhérence de (xn)n≥0et que ` admet une base dénombrable de voisinages dans X. Soit (Vn)n≥0

une telle base. Pourtout n ≥ 0, on pose Un =
n∩

k=0
Vk, alors (Un

)
n≥0

est une base dénombrable de voisinages de `dans X telle que pour tout n ≥ 0, on ait Un+1 ⊂ Un. On construit par récurrence une sous-suite
(xnk

)k≥0 telle que pour tout k ≥ 0, on ait xnk
∈ Uk. Soit n0 = inf

{
n ≥ 0 ; xn ∈ U0

}. Soit k ≥ 1et supposons nk−1 construit, on pose alors nk = inf
{
n > nk−1 ; xn ∈ Uk

}. Alors (xnk
)k≥0 estune sous-suite de (xn)n≥0 telle que pour tout k ≥ 0, on ait xnk

∈ Uk. Montrons que (xnk
)k≥0converge vers `. Soit V un voisinage de ` dans X, il existe k0 ∈ N tel que Uk0 ⊂ V . Alors pourtout k ≥ k0, on a Uk ⊂ Uk0 ⊂ V , d'où xnk

∈ Uk ⊂ V . Donc (xnk
)k≥0 converge vers `. �Théorème (Urysohn). Soient X un espace topologique et Y un sous-ensemble de X. Alors lespropriétés suivantes sont équivalentes.(i) Pour toute fonction continue f : Y −→ [−1, 1], il existe une fonction continue g : X −→

[−1, 1] prolongeant f .(ii) Pour tous a, b ∈ R tels que a < b et pour toute fonction continue f : Y −→ [a, b], il existeune fonction continue g : X −→ [a, b] prolongeant f .(iii) Deux sous-ensembles complètement séparés dans Y sont aussi complètement séparés dans
X.Démonstration. Montrons l'implication (i) =⇒ (ii). Soient a, b ∈ R tels que a < b et soit

f : Y −→ [a, b] une fonction continue. Soit ϕ : [a, b] −→ [−1, 1] un homéomorphisme, voirexemple 1.4.1. Alors ϕ ◦ f est une fonction continue de Y dans [−1, 1]. Par hypothèse, il existeune fonction continue f̃ : X −→ [−1, 1] prolongeant ϕ ◦ f . Alors g = ϕ−1 ◦ f̃ est une fonctioncontinue de X dans [a, b] prolongeant f .Preuve de (ii) =⇒ (iii). Soient A et B deux sous-ensembles de Y complètement séparés dans Y .Soit f : Y −→ [0, 1] une fonction continue telle que f|A = 0 et f|B = 1. Par hypothèse, il existeune fonction continue g : X −→ [0, 1] prolongeant f . Alors on a aussi g|A = 0 et g|B = 1. Donc
A et B sont complètement séparés dans X.Preuve de (iii) =⇒ (i). Montrons d'abord que si M > 0 et si f : Y −→ R est une fonctioncontinue telle que |f(x)| ≤M , pour tout x ∈ Y , alors il existe une fonction continue g : X −→ Rtelle que :(a) |g(x)| ≤ 1

3M , pour tout x ∈ X.(b) |f(x)− g(x)| ≤ 2
3M , pour tout x ∈ Y .En e�et, soient A = f−1
([
−M, −1

3 M
]) et B = f−1

([
1
3M, M

]). Alors A et B sont complètementséparés dans Y par f . Par hypothèse, A et B sont complètement séparés dans X, donc il existeune fonction continue h : X −→ [0, 1] telle que h|A = 0 et h|B = 1. Pour tout x ∈ X, soit
g(x) = 2

3M
(
h(x)− 1

2

). Alors g est une fonction continue de X dans R véri�ant les propriétés (a)et (b).Soit f : Y −→ [−1, 1] une fonction continue. On va construire par récurrence sur n une suite(
gn
)
n≥1

de fonctions continues de X dans R telle que :(α) |gn(x)| ≤ 1
3

(
2
3

)n−1 , pour tout n ≥ 1 et pour tout x ∈ X.
© Dunod, 2011 - Topologie et espaces normés - Nawfal El Hage Hassan



5(β) ∣∣∣f(x)− n∑

i=1

gi(x)
∣∣∣ ≤

(
2
3

)n , pour tout n ≥ 1 et pour tout x ∈ Y .En e�et, comme on a |f(x)| ≤ 1, pour tout x ∈ Y , alors on obtient g1 par ce qui précède. Ensuite,supposons que l'on a construit des fonctions continues g1, . . . , gn de X dans R telles que :
|gi(x)| ≤ 1

3

(
2
3

)i−1
, pour tout i ∈ {1, . . . , n} et pour tout x ∈ X ,

∣∣∣f(x)−
i∑

j=1

gj(x)
∣∣∣ ≤

(
2
3

)i
, pour tout i ∈ {1, . . . , n} et pour tout x ∈ Y .Alors f − n∑

i=1

gi|Y est une fonction continue de Y dans R telle que ∣∣∣f(x) − n∑

i=1

gi|Y (x)
∣∣∣ ≤

(
2
3

)n,pour tout x ∈ Y . On applique de nouveau le raisonnement précédent à f − n∑

i=1

gi|Y , on obtientune fonction continue gn+1 : X −→ R telle que :
|gn+1(x)| ≤ 1

3

(
2
3

)n
, pour tout x ∈ X ,

∣∣∣f(x)−
n+1∑

i=1

gi(x)
∣∣∣ ≤ 2

3

(
2
3

)n
=
(
2
3

)n+1
, pour tout x ∈ Y .Ainsi de suite, on construit la suite (gn)n≥1

. Puisque la série ∑
n≥1

1
3

(
2
3

)n−1 est convergente, ondéduit de la propriété (α) que pour tout x ∈ X, la série ∑
n≥1

gn(x) est convergente. On pose
g(x) =

+∞∑

n=1

gn(x), pour tout x ∈ X. Alors g est une fonction continue de X dans R telle que
|g(x)| ≤

+∞∑

n=1

|gn(x)| ≤
+∞∑

n=1

1
3

(
2
3

)n−1
= 1, pour tout x ∈ X. Comme on a lim

n→+∞

(
2
3

)n
= 0, ondéduit de la propriété (β) que pour tout x ∈ Y , on a g(x) = f(x). Donc g est une fonctioncontinue de X dans [−1, 1] prolongeant f . �Théorème (Tietze). Soit X un espace topologique séparé. Alors les propriétés suivantes sontéquivalentes.(i) X est un espace normal.(ii) Pour tous a, b ∈ R tels que a < b, pour tout ensemble fermé A dansX et pour toute fonctioncontinue f : A −→ [a, b], il existe une fonction continue g : X −→ [a, b] prolongeant f .(iii) Pour tout ensemble fermé A dans X et pour toute fonction continue f : A −→ R, il existeune fonction continue g : X −→ R prolongeant f .Démonstration. Montrons l'implication (i) =⇒ (ii). Soient a, b ∈ R tels que a < b, A unsous-ensemble fermé de X et f : A −→ [a, b] une fonction continue. Pour montrer qu'il existeune fonction continue g : X −→ [a, b] prolongeant f , d'après le théorème précédent, il su�t demontrer que deux sous-ensembles de A complètement séparés dans A sont aussi complètementséparés dans X. Soient C et D deux sous-ensembles de A complètement séparés dans A. Donc ilexiste une fonction continue h : A −→ [0, 1] telle que h|C = 0 et h|D = 1. Soient F = h−1
([
0, 1

3

])
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6 Chapitre 1. ESPACES TOPOLOGIQUESet G = h−1
([

2
3 , 1

]). Alors F et G sont des sous-ensembles fermés disjoints dans A tels que C ⊂ Fet D ⊂ G, d'où F et G sont des sous-ensembles fermés disjoints dans X. Comme X est normal,d'après le théorème 1.10.2, F et G sont complètement séparés dans X. Par conséquent, C et Dsont complètement séparés dans X.Preuve de (ii) =⇒ (i). Si X n'est pas un espace normal, alors il existe des sous-ensembles fermésdisjoints E et F dans X tels que pour tous ouverts U et V dans X tels que E ⊂ U et F ⊂ V ,on ait U ∩ V 6= ∅. Alors E ∪ F est un fermé de X et l'application f : E ∪ F −→ [0, 1] dé�niepar f(x) = 0 si x ∈ E, et f(x) = 1 si x ∈ F est continue, mais on ne peut pas prolonger fpar continuité à l'espace X tout entier, ce qui contredit l'hypothèse. Donc X est bien un espacenormal.Pour montrer l'implication (iii) =⇒ (i), on fait exactement le même raisonnement comme ci-dessus.Preuve de (i) =⇒ (iii). Soient A un sous-ensemble fermé de X et f : A −→ R une fonctioncontinue. Soit ϕ : R −→ ] − 1, 1[ un homéomorphisme, voir exemple 1.4.1. Alors ϕ ◦ f : A −→
]− 1, 1[ est une fonction continue. Comme X est normal, d'après la propriété (ii), il existe unefonction continue h : X −→ [−1, 1] telle que pour tout x ∈ A, on ait h(x) = (ϕ ◦ f)(x). Soit
B = h−1

(
{−1, 1}

), alors B est un fermé de X tel que B ∩ A = ∅. Soit ψ : X −→ [0, 1] unefonction continue telle que ψ|A = 1 et ψ|B = 0. Pour tout x ∈ X, on pose f̃(x) = h(x)ψ(x), alors
f̃ est une fonction continue de X dans ]− 1, 1[ prolongeant ϕ ◦ f . Soit g = ϕ−1 ◦ f̃ , alors g estune fonction continue de X dans R prolongeant f . �Supplément d'exercicesExercice 1.36. Soit (Xi)i∈I une famille d'espaces topologiques et pour tout i ∈ I, soit Ai unsous-espace topologique de Xi. Montrer que la topologie induite sur A =

∏
i∈I
Ai par la topologieproduit sur X =

∏
i∈I
Xi coïncide avec la topologie produit des topologies des sous-espaces Ai.Solution. Pour montrer que la topologie induite sur A par celle de X coïncide avec la topologieproduit des topologies des sous-espaces Ai, d'après la proposition 1.4.7, il su�t de montrer quesi A est muni de la topologie induite par celle de X, alors pour tout espace topologique E, uneapplication g : E −→ A est continue si et seulement si pour tout i ∈ I, pi ◦ g est continue de

E dans Ai, où pi est la projection canonique de A sur Ai. Notons également pi la projectioncanonique de A sur Ai. Alors on a le diagramme commutatif suivant :
E A X

Ai Xi

-g

@
@
@@R

pi◦g

-ı

?

pi

?

pi

-ıOù ı désigne l'injection canonique. Supposons d'abord que pour tout i ∈ I, l'application pi ◦ gest continue de E dans Ai. Alors pour tout i ∈ I, pi ◦ ı ◦ g = ı ◦ pi ◦ g est continue de E dans
Xi. On en déduit que ı ◦ g est continue de E dans X. Il résulte de la proposition 1.4.6 que g estcontinue de E dans A.Réciproquement, supposons que g est continue de E dans A muni de la topologie induite par cellede X. Alors ı ◦ g est continue de E dans X, d'où pour tout i ∈ I, ı ◦pi ◦ g = pi ◦ ı ◦ g est continuede E dansXi. Il résulte de la proposition 1.4.6 que pour tout i ∈ I, pi◦g est continue de E dans Ai.
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7Exercice 1.37. Soient (Yi)i∈I une famille d'espaces topologiques, Z un espace topologique, Aune partie de Z et a ∈ A.1. Soient X un ensemble et pour chaque i ∈ I, soit fi : X −→ Yi une application. On munit
X de la topologie initiale associée à la famille (fi)i∈I . Soit g : A −→ X une application.Montrer qu'un point ` ∈ X est une limite de g en a si et seulement si pour tout i ∈ I, fi(`)est une limite de fi ◦ g en a.2. On munit ∏

i∈I
Yi de la topologie produit. En déduire qu'une application g : A −→ ∏

i∈I
Yiadmet (`i)i∈I comme limite en a si et seulement si pour tout i ∈ I, `i est une limite de

pi ◦ g en a, où pi : ∏
i∈I
Yi −→ Yi est la projection canonique.Solution. 1. Supposons d'abord que ` ∈ X est une limite de g en a. Puisque les fi sont continuesen `, d'après le corollaire 1.6.2, pour tout i ∈ I, fi(`) est une limite de fi ◦ g en a.Réciproquement, supposons que pour tout i ∈ I, fi(`) est une limite de fi ◦ g en a. Soit Uun ouvert de X contenant `. D'après le lemme 1.4.1, il existe un sous-ensemble �ni J de I telque pour tout i ∈ J , il existe un ouvert Ui de Yi contenant fi(`) tels que ∩

i∈J
f−1
i (Ui) ⊂ U .Or pour tout i ∈ J , il existe un voisinage Wi de a dans X tel que (fi ◦ g)(Wi ∩ A) ⊂ Ui,d'où g(Wi ∩ A) ⊂ f−1

i (Ui). Soit W = ∩
i∈J
Wi, alors W est un voisinage de a dans X et on a

g(W ∩ A) ⊂ U . Donc ` est une limite de g en a.2. Ceci résulte immédiatement de 1.Exercice 1.38. Soit R une relation d'équivalence ouverte sur un espace topologique X. Montrerque si X admet une base dénombrable d'ouverts, alors il en est de même pour l'espace topolo-gique quotient X/R.Solution. Soit (Vn)n∈N une base dénombrable d'ouverts de X. Puisque l'application quotient
q : X −→ X/R est ouverte, alors pour tout n ∈ N, q(Vn) est un ouvert de X/R. Montrons que
(q(Vn))n∈N est une base d'ouverts de X/R. Soit U un ouvert non vide de X/R, alors q−1(U)est un ouvert non vide de X, donc il existe un sous-ensemble J de N tel que q−1(U) = ∪

n∈J
Vn.Puisque q est surjective, alors on a U = q(q−1(U)) = ∪

n∈J
q(Vn). Par conséquent, (q(Vn))n∈N estune base dénombrable d'ouverts de X/R.Exercice 1.39. Soient X un espace topologique et Γ un sous-groupe du groupe des homéomor-phismes de X. Soit RΓ la relation d'équivalence sur X dé�nie par :

xRΓ y ⇐⇒ il existe σ ∈ Γ tel que y = σ(x) .On note l'espace topologique quotient X/Γ.1. Montrer que RΓ est une relation d'équivalence ouverte sur X.2. Montrer que RΓ n'est pas en général une relation d'équivalence fermée sur X.3. Montrer que si Γ un sous-groupe �ni, alors RΓ est une relation d'équivalence ouverte etfermée sur X.Solution. 1. Soient q : X −→ X/Γ l'application quotient et U un ouvert deX. On a q−1(q(U)) =
∪

σ∈Γ
σ(U). Or pour tout σ ∈ Γ, σ(U) est ouvert dans X, donc q−1(q(U)) est ouvert dans X. Parconséquent, q(U) est un ouvert de X/Γ, donc q est une application ouverte.2. Si X = R et Γ = Q, le groupe Q agit par translation sur R, alors pour tout x ∈ R, {x} estfermé dans R et q−1

(
{q(x)}

) est dense mais n'est pas fermé dans R. Donc RΓ n'est pas une
© Dunod, 2011 - Topologie et espaces normés - Nawfal El Hage Hassan



8 Chapitre 1. ESPACES TOPOLOGIQUESrelation d'équivalence fermée dans R.3. Il reste à montrer que q est aussi une application fermée. Soit F un fermé de X. On a
q−1(q(F )) = ∪

σ∈Γ
σ(F ). Or pour tout σ ∈ Γ, σ(F ) est fermé dans X, et c'est une réunion �nie,donc q−1(q(U)) est fermé dans X. Par conséquent, q(U) est un fermé de X/Γ, donc q est uneapplication fermée.Exercice 1.40. Soient R une relation d'équivalence sur un espace topologique X et q : X −→

X/R l'application quotient. Montrer que les conditions suivantes sont équivalentes.(i) La relation R est ouverte.(ii) L'intérieur de toute partie de X saturée pour R est saturé pour R.(iii) L'adhérence de toute partie de X saturée pour R est saturé pour R.Solution. Montrons l'implication (i) =⇒ (ii). Soit A une partie de X saturée pour R, i.e.
A = q−1(q(A)). Puisque l'application q est ouverte, par la proposition 1.3.3, on a q( ◦

A
)
⊂

◦︷︸︸︷
q(A).Comme q est aussi continue, on a q−1

(
◦︷︸︸︷

q(A)
)
⊂

◦︷ ︸︸ ︷
q−1(q(A)). Par conséquent, on a :

◦
A⊂ q−1

(
q
( ◦
A
))
⊂ q−1

(
◦︷︸︸︷

q(A)
)
⊂

◦︷ ︸︸ ︷
q−1(q(A)) =

◦
A .D'où on a ◦

A= q−1
(
q
( ◦
A
)), donc ◦

A est saturé pour R.Preuve de (ii) =⇒ (i). Soit U un ouvert de X. Posons A = q−1(q(U)), alors A est saturé pour
R, donc ◦

A est saturé pour R. Autrement dit, on a ◦
A= q−1

(
q
( ◦
A
)). Par conséquent, q( ◦

A
) estun ouvert de X/R. Puisque q est surjective, on a q(A) = q(U). Or on a U ⊂ q−1(q(U)) = A,d'où U ⊂ ◦

A et donc on a q(U) ⊂ q
( ◦
A
). Comme q( ◦

A
) est un ouvert de X/R contenu dans

q(A) = q(U), alors on a q( ◦
A
)
⊂

◦︷︸︸︷
q(U). Par conséquent, on a q(U) =

◦︷︸︸︷
q(U). Autrement dit, q(U)est ouvert dans X/R. Donc l'application quotient q est ouverte.L'équivalence (ii) ⇐⇒ (iii) résulte du fait qu'une partie A de X est saturée pour R si et seule-ment si son complémentaire X \ A est saturé pour R et de la relation X \ A = X\

◦
A.Exercice 1.41. Soient R une relation d'équivalence sur un espace topologique X et q : X −→

X/R l'application quotient. Montrer que les propriétés suivantes sont équivalentes.(i) R est fermée.(ii) Pour tout x ∈ X et pour tout ouvert U de X contenant la classe de x, q−1
(
{q(x)}

), ilexiste un ouvert V de X saturé pour R tel que q−1
(
{q(x)}

)
⊂ V ⊂ U .En déduire que si R est fermée, alors pour tout x ∈ X et pour tout voisinage V de la classe de

x dans X, q(V ) est un voisinage de q(x) dans X/R.Solution. Montrons l'implication (i) =⇒ (ii). Soient x ∈ X et U un ouvert de X contenant
q−1
(
{q(x)}

). Soit F = X \ U , alors F est un fermé de X. Comme on a q−1
(
{q(x)}

)
∩ F = ∅,alors on a q(x) 6∈ q(F ). Soit W = (X/R) \ q(F ). Comme R est fermée, alors W est un ouvert de

X/R et on a q−1(W ) ∩ q−1(q(F )) = ∅. Or on a F ⊂ q−1(q(F )), d'où V = q−1(W ) est un ouvertde X saturé pour R tel que q−1
(
{q(x)}

)
⊂ V ⊂ U .Preuve de (ii) =⇒ (i). Soit F un fermé de X. Soit U = X \ F , alors U est un ouvert de X. Sipour tout x ∈ U , on a q−1

(
{q(x)}

)
∩ F 6= ∅, alors on a q(F ) = X/R et donc q(F ) est fermé
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9dans X/R. Supposons maintenant que l'ensemble V =
{
x ∈ U ; q−1

(
{q(x)}

)
∩ F = ∅

} estnon vide. Par hypothèse, pour tout x ∈ V , il existe un ouvert Wx de X saturé pour R tel que
q−1
(
{q(x)}

)
⊂ Wx ⊂ U . Puisque Wx est saturé pour R, alors pour tout y ∈ Wx, on a aussi

q−1
(
{q(y)}

)
⊂Wx, d'où Wx ⊂ V . Par conséquent, on a V = ∪

x∈V
Wx, donc V est un ouvert de Xsaturé pour R. Comme on a q−1(q(F )) = X \ V , alors q−1(q(F )) est fermé dans X, d'où q(F )est fermé dans X/R. Par conséquent, l'application quotient q est fermé.Supposons maintenant que R est fermée. Alors pour tout x ∈ X et pour tout voisinage V de laclasse de x dans X, il existe un ouvert U de X saturé pour R tel que q−1

(
{q(x)}

)
⊂ U ⊂ V . Parconséquent, q(U) est un ouvert de X/R contenant q(x) et contenu dans q(V ). Donc q(V ) est unvoisinage de q(x) dans X/R.Exercice 1.42. Soient X, Y des espaces topologiques et f : X −→ Y une application continue.1. Soient A et B des parties de X telles que A = B. Montrer que l'on a f(A) = f(B).2. Soit A une partie de X. Montrer que si A est dense dans X et f(X) est dense dans Y ,alors f(A) est dense dans Y . En particulier, si A est dense dans X et f est surjective, alors

f(A) est dense dans Y .Solution. 1. Puisque f est continue, il résulte du théorème 1.3.1 que l'on a f(A ) ⊂ f(A) et
f
(
B
)
⊂ f(B). Si A = B, alors on a f(A) ⊂ f

(
A
)
= f

(
B
)
⊂ f(B) et f(B) ⊂ f

(
B
)
=

f
(
A
)
⊂ f(A), donc f(A) = f(B).2. Par hypothèse, on a A = X et f(X) = Y . D'après 1, on a f(A) = f(X), d'où f(A) = Y , i.e.

f(A) est dense dans Y .Exercice 1.43. Soient Tsci = {R, ∅}∪{]a, +∞[ ; a ∈ R
} et Tscs = {R, ∅}∪{]−∞, a[ ; a ∈ R

}.Montrer que Tsci et Tscs sont des topologies sur R.Solution. Par dé�nition, on a R, ∅ ∈ Tsci. Pour tout a, b ∈ R, on a ]a, +∞[∩ ]b, +∞[ =
]max(a, b), +∞[∈ Tsci. Soit (ai)i∈I une famille d'éléments de R. Si inf

i∈I
ai = −∞, on a ∪

i∈I
]ai, +∞[

= R ∈ Tsci. Si inf
i∈I

ai = a ∈ R, on a ∪
i∈I

]ai, +∞[ = ]a, +∞[∈ Tsci. Donc Tsci est bien une topologiesur R. On fait le même raisonnement pour montrer que Tscs est aussi une topologie sur R.Dé�nition 1.0.1. Soient X un espace topologique et f : X −→ R une application. On dit que
f est semi-continue inférieurement (resp. semi-continue supérieurement) si pour tout
t ∈ R, f−1

(
]t, +∞[

) (resp. f−1
(
]−∞, t[

)) est un ouvert de X.Remarque 1.0.1. Soient X un espace topologique et f : X −→ R une application. Soit g = −f ,alors pour tout t ∈ R, on a g−1
(
]−∞, t[

)
= f−1

(
]− t, +∞[

) et g−1
(
]t, +∞[

)
= f−1

(
]−∞, −t[

).On en déduit que f est semi-continue inférieurement si et seulement si −f est semi-continuesupérieurement.Exemple 1.0.1. Soient A un sous-ensemble d'un espace topologique X et 1A la fonction indi-catrice de A. Pour tout t ∈ R, on a :
1A

−1
(
]t, +∞[

)
=





∅ si t ≥ 1 ,

A si 0 ≤ t < 1 ,

X si t < 0 .
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10 Chapitre 1. ESPACES TOPOLOGIQUES
1A

−1
(
]−∞, t[

)
=





∅ si t ≤ 0 ,

X \ A si 0 < t ≤ 1 ,

X si 1 < t .Par conséquent, on a :1. La fonction 1A : X −→ R est semi-continue inférieurement si et seulement si A est ouvertdans X.2. La fonction 1A : X −→ R est semi-continue supérieurement si et seulement si A est fermédans X.3. La fonction 1A : X −→ R est continue si et seulement si A est à la fois ouvert et fermédans X.Exercice 1.44. Soient X un espace topologique et f : X −→ R une application.1. Montrer que f est semi-continue inférieurement (resp. semi-continue supérieurement) si,pour tout x ∈ X et pour tout ε > 0, il existe un voisinage V de x dans X tel que pourtout y ∈ V , on ait f(y) > f(x)− ε (resp. f(y) < f(x) + ε).2. Montrer que si f est continue de X dans R muni de sa topologie usuelle, alors f estsemi-continue inférieurement et supérieurement. Montrer qu'inversement si f est à la foissemi-continue inférieurement et supérieurement, alors f est continue.3. Montrer que f est semi-continue inférieurement (resp. semi-continue supérieurement) si etseulement si elle est continue de X dans R muni de la topologie Tsci (resp. Tscs).4. Montrer que f est semi-continue inférieurement si et seulement si l'ensemble epi(f) ={
(x, t) ∈ X ×R ; f(x) ≤ t

}, appelé épigraphe de f , est une partie fermée de X × R.
x

f(x)

t epi(f)
X

R

Solution. 1. Supposons d'abord que f est semi-continue inférieurement. Soient x ∈ X et ε > 0,alors V = f−1
(
]f(x) − ε, +∞[

) est un ouvert de X contenant x et pour tout y ∈ V , on a
f(y) > f(x)− ε.Réciproquement, supposons que pour tout x ∈ X et pour tout ε > 0, il existe un voisinage V de
x dans X tel que pour tout y ∈ V , on ait f(y) > f(x) − ε. Soient a ∈ R et x ∈ f−1

(
]a, +∞[

),alors f(x) > a. Soit ε = f(x) − a > 0, il existe un voisinage V de x dans X tel que pour tout
y ∈ V , on ait f(y) > f(x) − ε = a, d'où V ⊂ f−1(]a, +∞[). Ainsi, f−1

(
]a, +∞[

) est voisinagede chacun de ses points, donc f−1
(
]a, +∞[

) est un ouvert de X, voir proposition 1.1.2. Parconséquent, f est semi-continue inférieurement.Pour montrer la deuxième partie de la propriété, on utilise ce que l'on vient de démontrer et la
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11remarque 1.0.1.2. Ceci n'est autre que la traduction de l'exercice 1.34.3. Ceci résulte immédiatement de la dé�nition de la topologie Tsci (resp. Tscs).4. Supposons d'abord que epi(f) est fermé dans X×R. Soient a ∈ R et x ∈ f−1
(
]a, +∞[

). Alorson a a < f(x), d'où (x, a) 6∈ epi(f). Comme (X×R)\epi(f) est ouvert dans X×R, alors il existeun voisinage ouvert Vx de x dans X et il existe ε > 0 tels que V×]a−ε, a+ε[⊂ (X×R)\epi(f).Donc pour tout y ∈ Vx, on a a < f(y). Autrement dit, on a Vx ⊂ f−1
(
]a, +∞[

). On en déduitque f−1
(
]a, +∞[

) est un ouvert de X. Donc f est semi-continue inférieurement.Réciproquement, supposons que f est semi-continue inférieurement. Soit Y l'ensemble R munide la topologie Tsci. Alors les applications
X × R −→ Y × Y
(x, t) 7−→ (f(x),−t) et Y × Y −→ Y

(s, t) 7−→ s+ tsont continues. Par conséquent, l'application g : (x, t) 7−→ f(x)− t est semi-continue inférieure-ment de X × R dans R, d'où epi(f) = g−1
(
]−∞, 0]

) est fermé dans X × R.Exercice 1.45. Soient X un espace topologique et I une partie de R. On dit qu'une application
f : I −→ X est continue à gauche (resp. continue à droite) en un point t ∈ I si pour toutvoisinage V de f(t) dans X, il existe ε > 0 tel que pour tout s ∈ ]t − ε, t] ∩ I, on ait f(s) ∈ V(resp. s ∈ [t, t+ ε[∩ I, on ait f(s) ∈ V ).1. Montrer que si f est continue en t ∈ I, I est muni de la topologie induite par R, alors elleest continue à gauche et à droite en t. Montrer qu'inversement, si f est continue à la foisà gauche et à droite en t, alors elle est continue en t.2. Montrer que f est continue à gauche (resp. à droite) en t ∈ I si et seulement si elle estcontinue en t lorsque I est muni de la topologie induite par Tl (resp. Tr) décrite dansl'exercice 1.16.Solution 1. Supposons que f est continue en t. Soit V un voisinage de f(t) dans X, alors ilexiste ε > 0 tel que pour tout s ∈ ]t−ε, t+ε[∩ I, on ait f(s) ∈ V . Par conséquent, f est continueà gauche et à droite en t.Réciproquement supposons que f est continue à gauche et à droite en t. Soit V un voisinagede f(t) dans X, alors il existe ε1, ε2 > 0 tels que pour tout s ∈ ]t − ε1, t] ∩ I, on ait f(s) ∈ V ,et pour tout s ∈ [t, t + ε2[∩ I, on ait f(s) ∈ V . Soit ε = inf(ε1, ε2), alors ε > 0 et pour tout
s ∈ ]t− ε, t+ ε[∩ I, on a f(s) ∈ V . Donc f est continue en t.2. Puisque les ensembles ]t − ε, t] ∩ I (resp. [t, t + ε[∩ I), avec ε > 0, forment un système fon-damental de voisinages de t dans I lorsque I est muni de la topologie induite par Tl (resp. Tr),alors on en déduit que f est continue à gauche (resp. à droite) en t ∈ I si et seulement si f estcontinue en t lorsque I est muni de la topologie induite par Tl (resp. Tr).Exercice 1.46. Soit f : R −→ R dé�nie par :

f(x) =





0 si x ≤ 0 ,
x si 0 ≤ x ≤ 1 ,
1 si x ≥ 1 .Montrer que f est une application continue fermée, mais f n'est pas une application ouverte.Solution. On a R = ]−∞, 0] ∪ [0, 1] ∪ [0, +∞[ est la réunion de trois fermés, et la restrictionde f à chacun de ces fermés est continue, donc f est continue, voir proposition 1.4.4. Soit F unfermé de R, on a f(F ) = (F ∩[0, 1])∪A, où A ∈ {∅, {0}, {1}}, donc f est une application fermée.
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12 Chapitre 1. ESPACES TOPOLOGIQUESOn a f(]0, 1[) = {0} qui n'est pas ouvert dans R, donc f n'est pas une application ouverte.Exercice 1.47. Soient X =
{
(x, y) ∈ R2 ; xy = 1

}
∪
{
(0, 0)

} muni de la topologie induite par
R2 et considérons l'application suivante :

π1 : X −→ R

(x, y) 7−→ xMontrer que π1 est une application continue bijective, mais π1 n'est pas un homéomorphisme.Solution. Il est clair que π1 est bijective. Puisque π1 est la restriction sur X de la projectioncanonique (x, y) 7→ x de R2 sur R, alors π1 est continue. L'application inverse π−1
1 est dé�nie par :

π−1
1 (x) =

(
x, 1x

) si x 6= 0 et π−1
1 (0) = (0, 0). L'application π−1

1 n'est pas continue car la suite determe général xn = 1
n tend vers 0 dans R, mais la suite (π−1

1 (xn)
)
≥1

n'est pas convergente dansX.Exercice 1.48. Soient X = [0, 1]∪ [2, 3] et Y = [0, 2] munis de la topologie induite par R. Soit
f : X −→ Y dé�nie par :

f(x) =





x si x ∈ [0, 1] ,

x− 1 si x ∈ [2, 3] .Montrer que f est une application continue surjective fermée, mais f n'est pas une applicationouverte.Solution. L'espace X est la réunion de deux fermés et la restriction de f à chacun de ces fer-més est continue, donc f est continue, voir proposition 1.4.4. Par ailleurs, il est clair que f estsurjective. L'intervalle [0, 1] est ouvert dans X, mais son image par f n'est pas ouverte dans Y ,donc f n'est pas une application ouverte. Soit F un fermé de X. Puisque X est fermé dans R,alors F est fermé dans R et on a f(F ) = (
F ∩ [0, 1]

)
∪
[(
F ∩ [2, 3]

)
− 1
]. Comme F ∩ [0, 1] et(

F ∩ [2, 3]
)
− 1 sont fermés dans R, alors f(F ) est fermé dans R. Or on a f(F ) ⊂ Y , donc f(F )est fermé dans Y . Par conséquent, f est une application fermée.Exercice 1.49. Soient X, Y deux espaces topologiques et f : X −→ Y une application fermée.Soit U un ouvert dans X. Montrer que l'ensemble B =

{
y ∈ Y ; f−1

(
{y}
)
⊂ U

} est un ouvertde Y .Solution. Soit y ∈ B, alors on a f−1({y}) ⊂ U . D'après la proposition 1.3.6, il existe un voisi-nage V de y dans Y tel que f−1(V ) ⊂ U , d'où on a y ∈ V ⊂ B. Par conséquent, B est voisinagede chacun de ses points, donc B est un ouvert de Y , voir proposition 1.1.2.Exercice 1.50. Soient X un espace topologique régulier, R une relation d'équivalence sur X et
q : X −→ X/R l'application quotient.1. Montrer que si R est fermée, alors G(R) = {(x, y) ∈ X×X ; xR y

} est fermé dans X×X.2. En déduire que si R est ouverte et fermée, alors l'espace topologique quotient X/R estséparé.Solution. 1. Montrons que (X×X)\G(R) est ouvert dans X×X. Soit (x, y) ∈ (X×X)\G(R),alors on a q(x) 6= q(y). Puisque q est fermée, alors q−1
(
{q(y)}

) est un fermé de X ne conte-nant pas x. Puisque X est régulier, il existe deux ouverts disjoints V et W dans X tels que
q−1
(
{q(y)}

)
⊂ V et x ∈ W . Puisque q est fermée, d'après l'exercice 1.37, il existe un ouvert Ude X saturé pour R tel que q−1

(
{q(y)}

)
⊂ U ⊂ V . Alors on a q(U) ∩ q(W ) = ∅. Par consé-quent, U ×W est un ouvert X × X contenant (x, y) tel que (U ×W ) ∩ G(R) = ∅. D'où on a

(x, y) ∈ U ×W ⊂ (X ×X) \G(R). Donc (X ×X) \G(R) est un ouvert de X ×X.
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132. Ceci résulte de 1 et de la proposition 1.5.6.Exercice 1.51. Soient X un espace topologique, F une partie fermée de X et R la relationd'équivalence dans X obtenue en identi�ant entre eux tous les éléments de F ; autrement dit, larelation d'équivalence dont les classes sont F et les ensembles {x} pour x ∈ X \ F .1. Montrer que si X est régulier, alors l'espace topologique quotient X/R est séparé.2. Montrer que si X est normal, alors l'espace topologique quotient X/R est normal.Solution. 1. Soient q : X −→ X/R l'application quotient et U = X \ F . Soient x, y ∈ X telsque q(x) 6= q(y). On distingue deux cas :Premier cas : x, y ∈ U . Puisque X est séparé et U est un ouvert de X, il existe deux ouvertsdisjoints V et W dans X tels que x ∈ V ⊂ U et y ∈W ⊂ U . Alors V et W sont saturés pour Ret donc q(V ) et q(W ) sont deux ouverts disjoints dans X/R contenant respectivement q(x) et
q(y).Deuxième cas : x ∈ U et y ∈ F . Puisque X est régulier, il existe deux ouverts disjoints V et Wdans X tels que x ∈ V ⊂ U et F ⊂W . Alors V et W sont saturés pour R et donc q(V ) et q(W )sont deux ouverts disjoints dans X/R contenant respectivement q(x) et q(y).Par conséquent, l'espace topologique quotient X/R est séparé.2. Soit G un fermé de X. Alors on a q−1(q(G)) = F ∪ G si G ∩ F 6= ∅ et q−1(q(G)) = G si
G∩F = ∅. Donc q−1(q(G)) est fermé dans X. Par conséquent, R est une relation d'équivalencefermée dans X. On déduit du corollaire 1.9.1 que X/R est un espace normal.Exercice 1.52. Soient X et Y deux espaces réguliers. Montrer que l'espace topologique produit
X × Y est régulier.Solution. Puisque X et Y sont séparés, alors X × Y est séparé, voir proposition 1.5.3. Soient
(x, y) ∈ X×Y et F une partie fermée de X×Y tels que (x, y) 6∈ F . Comme (x, y) ∈ (X×Y )\Fqui est ouvert dans X × Y , alors il existe un ouvert Ux de X contenant x et un ouvert Vy de Ycontenant y tels que (Ux×Vy

)
∩F = ∅. Comme X et Y sont réguliers, d'après la proposition 1.9.1,il existe un ouvert U de X et un ouvert V de Y tels que x ∈ U ⊂ U ⊂ Ux et y ∈ V ⊂ V ⊂ Vy,d'où on a (U × V )∩F = ∅. Soit W =

((
X \U

)
× Y

)
∪
(
X ×

(
Y \ V

)). Alors W est un ouvertde X × Y tel que F ⊂W et (U × V ) ∩W = ∅. Par conséquent, X × Y est régulier.Remarque 1.0.2. Le produit de deux espaces normaux n'est pas en général un espace normal.Par exemple, si X = R muni de la topologie T`, voir exercice 1.16, alors X est un espace normal,mais X ×X n'est pas normal, voir ([13], p. 80).
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Chapitre 2ESPACES MÉTRIQUESProposition. Soient (X, d) un espace métrique et A,B deux parties non vides de X.1. Si A ⊂ B, alors on a δ(A) ≤ δ(B)2. On a δ(A ) = δ(A).3. Pour tout x ∈ X et tout r > 0, on a δ(B(x, r)) ≤ δ(B′(x, r)) ≤ 2r.4. On a d(A,B) = d
(
A,B

)
= d
(
A,B

)
= d
(
A,B

).5. On a δ(A ∪ B) ≤ δ(A) + δ(B) + d(A,B). Donc si A et B sont bornées, alors A ∪ B estborné.Démonstration. 1. On suppose A ⊂ B. Pour tout x, y ∈ A, on a d(x, y) ≤ δ(B), d'où δ(A) ≤
δ(B).2. D'après ce qui précède, on a δ(A) ≤ δ

(
A
). Réciproquement, soient x, y ∈ A, d'après laproposition 2.2.3, il existe des suites (xn)n≥0 et (yn)n≥0 dans A telles que lim

n→+∞
xn = x et

lim
n→+∞

yn = y. D'où on a lim
n→+∞

d(xn, yn) = d(x, y), voir remarque 2.2.1. Or pour tout n ≥ 0, ona d(xn, yn) ≤ δ(A), d'où d(x, y) ≤ δ(A). Par conséquent, on a δ(A ) ≤ δ(A).3. On a δ(B(x, r)) ≤ δ(B′(x, r)). Soient y, z ∈ B′(x, r), alors on a d(y, z) ≤ d(y, x)+d(x, z) ≤ 2r,d'où δ(B′(x, r)) ≤ 2r.4. Puisque A ⊂ A et B ⊂ B, alors on a d(A,B ) ≤ d(A,B) ≤ d(A,B) et d(A,B ) ≤ d(A,B ) ≤
d(A,B). Soient x ∈ A et y ∈ B, alors il existe des suites (an)n≥0 et (bn)n≥0 dans A et Brespectivement telles que lim

n→+∞
an = x et lim

n→+∞
bn = y. D'où on a lim

n→+∞
d(an, bn) = d(x, y). Orpour tout n ≥ 0, on a d(A,B) ≤ d(an, bn), d'où d(A,B) ≤ d(x, y). Donc on a d(A,B) ≤ d

(
A,B

).Par conséquent, on a d(A,B) = d
(
A,B

)
= d
(
A,B

)
= d
(
A,B

).5. Soient x, y ∈ A∪B. Si x, y ∈ A, alors on a d(x, y) ≤ δ(A) ≤ δ(A)+δ(B)+d(A,B). Si x, y ∈ B,alors on a d(x, y) ≤ δ(B) ≤ δ(A) + δ(B) + d(A,B). Supposons maintenant x ∈ A et y ∈ B. Pourtout a ∈ A et tout b ∈ B, on a d(x, y) ≤ d(x, a) + d(a, b) + d(b, y) ≤ δ(A) + d(a, b) + δ(B). Parconséquent, on a d(x, y) ≤ δ(A) + δ(B) + d(A,B), d'où δ(A ∪B) ≤ δ(A) + δ(B) + d(A,B). �Proposition (Tietze). Soient A un fermé d'un espace métrique (X, d) et f : A −→ [a, b] unefonction continue. On suppose de plus que l'on a 1 ≤ a. Pour tout x ∈ X, on pose :
g(x) =





f(x) si x ∈ A ,

inf
y∈A

f(y)d(x, y)

d(x,A)
si x 6∈ A .Alors g est une fonction continue de X dans [a, b] prolongeant f .15
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16 Chapitre 2. ESPACES MÉTRIQUESDémonstration. Puisque A est fermé dans X, il résulte de la proposition 2.2.4 que pour tout
x 6∈ A, on a d(x,A) > 0, donc g est bien dé�nie, et par dé�nition g prolonge f . Soit x ∈ X \ A.Pour tout y ∈ A, on a d(x,A) ≤ d(x, y), d'où :

inf
z∈A

f(z) ≤ f(y)d(x, y)

d(x,A)
≤ d(x, y)

d(x,A)
sup
z∈A

f(z) .Comme on a inf
y∈A

d(x, y)

d(x,A)
= 1, on en déduit que inf

z∈A
f(z) ≤ g(x) ≤ sup

z∈A
f(z) ≤ b. Par conséquent,on a a ≤ inf

z∈A
f(z) = inf

x∈X
g(x) et sup

x∈X
g(x) = sup

z∈A
f(z) ≤ b.Il reste à montrer la continuité de g. Puisque ◦

A est un ouvert de X et la restriction de g à ◦
A estcontinue, alors g est continue sur ◦

A. Puisque X\A est un ouvert de X, pour montrer que g est sur
X \A, il su�t de montrer que la restriction de g à X \A est continue, voir proposition 1.4.3. Pourtout x ∈ X \ A, on a g(x) = 1

d(x,A)
inf
y∈A

f(y)d(x, y) et l'application x 7−→ d(x,A) est continuesur X, donc pour montrer que la restriction de g à X \A est continue, il su�t de montrer que larestriction de l'application x 7−→ h(x) = inf
y∈A

f(y)d(x, y) à X \ A est continue. Pour tous x, z ∈
X \A et pour tout y ∈ A, on a f(y)d(z, y) ≤ f(y)d(x, y) + f(y)d(x, z) ≤ f(y)d(x, y) + b d(x, z),d'où on a h(z) ≤ h(x) + b d(x, z). De même, on a h(x) ≤ h(z) + b d(x, z). Par conséquent, ona |h(x) − h(z)| ≤ b d(x, z). Donc la restriction de h à X \ A est continue. Il reste à montrer lacontinuité de g en tout point x ∈ A\ ◦

A. Soit ε > 0. Puisque f est continue en x, il existe η > 0 telque pour tout z ∈ A∩B(x, η), on ait |f(x)−f(z)| < ε. Soient B = A∩B(x, η) et C = A\B. Soit
z ∈ B

(
x, η

2b

)
∩ (X \ A). Pour tout y ∈ C, on a d(z, y) ≥ d(y, x)− d(x, z) ≥ η − η

2b ≥ η − η
2 = η

2 ,d'où inf
y∈C

f(y)d(z, y) ≥ η
2 . D'autre part, on a f(x)d(z, x) ≤ b η

2b = η
2 . Par conséquent, on a

inf
y∈A

f(y)d(z, y) = inf
y∈B

f(y)d(z, y). Comme f(x) − ε < f(y) < f(x) + ε pour tout y ∈ B et
inf
y∈B

d(z, y) = d(z,A), alors on a (f(x) − ε)d(z,A) ≤ inf
y∈B

f(y)d(z, y) ≤ (f(x) + ε)d(z,A) d'où
f(x)−ε ≤ g(z) ≤ f(x)+ε. Par conséquent, pour tout z ∈ B(x, η

2b

)
∩(X\A), on a |f(x)−g(z)| ≤ ε.Or on a A ∩B(x, η

2b

)
⊂ A ∩B(x, η) et pour tout z ∈ A ∩B(x, η

2b

), on a f(z) = g(z), donc pourtout z ∈ B(x, η
2b

), on a |f(x)− g(z)| ≤ ε. Donc g est continue en x. �Proposition. Soit f : R −→ R une fonction uniformément continue. Alors il existe deuxconstantes positives A et B telles que pour tout x ∈ R, on ait |f(x)| ≤ A|x|+B.Démonstration. Comme f est uniformément continue, alors pour tout ε > 0, il existe η > 0tel que pour tous x, y ∈ R véri�ant |x− y| ≤ η, on ait |f(x) − f(y)| ≤ ε. En prenant ε = 1, onobtient η > 0 tel que pour tous x, y ∈ R véri�ant |x − y| ≤ η, on ait |f(x) − f(y)| ≤ 1. On a
|f(η)−f(0)| ≤ 1 et |f(2η)−f(η)| ≤ 1, d'où |f(η)| ≤ 1+ |f(0)| et |f(2η)| ≤ 1+ |f(η)| ≤ 2+ |f(0)|.Par récurrence, pour tout n ∈ N, on a |f(nη)| ≤ |f(0)|+ n = |f(0)|+ 1

η (nη). Soit x ≥ 0, alors ilexiste n ≥ 1 tel que nη ≤ x < (n+1)η, n est la partie entière de x
η . Alors on a |f(x)−f(nη)| ≤ 1car |x− nη| ≤ η. Par conséquent, on a :

|f(x)| ≤ 1 + |f(nη)| ≤ 1 + |f(0)| + 1
η (nη) ≤ 1 + |f(0)|+ 1

ηx .Soient A = 1
η et B = 1+ |f(0)|, alors pour tout x ≥ 0, on a |f(x)| ≤ A|x|+B. Soit g(x) = f(−x),alors g est uniformément continue, et on a |g(0)| = |f(0)| et |x−y| ≤ η =⇒ |g(x)−g(y)| ≤ 1. Parce qui précède, on a alors |g(x)| ≤ A|x|+ B pour tout x ≥ 0. D'où on a |f(−x)| ≤ A| − x|+ Bpour tout x ≥ 0. Par conséquent, pour tout x ∈ R, on a |f(x)| ≤ A|x|+B. �
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17Proposition. Soit ((Xn, dn)
)
n≥0

une suite d'espaces métriques. Considérons l'ensemble produit
X =

∏
n≥0

Xn des suites (xn)n≥0, où xn ∈ Xn. Pour x = (xn)n≥0 et y = (yn)n≥0 dans X, on pose :
D∞(x, y) = sup

n≥0

1

2n
min

(
1, dn(xn, yn)

)
, D1(x, y) =

+∞∑

n=0

1

2n
min

(
1, dn(xn, yn)

) et
D(x, y) =

+∞∑

n=0

1

2n
dn(xn, yn)

1 + dn(xn, yn)
.Alors D∞, D1 et D sont trois distances topologiquement équivalentes sur X, et la topologieassociée à l'une de ces distances coïncide avec la topologie produit sur X.Démonstration. D'après la proposition 2.3.5, pour tout n ≥ 0, 1

2n
min(dn, 1) et 1

2n
dn

1 + dn
sontdes distances sur Xn, et par conséquent, D∞, D1 et D sont des distances sur X.Véri�ons que les topologies associées aux distances D∞ etD1 coïncident avec la topologie produitsur X. Puisque, pour tout n ≥ 0, les distances dn et min(1, dn) sont uniformément équivalentessur Xn, et donc elles dé�nissent la même topologie sur Xn, on peut supposer que dn ≤ 1, et donc

D∞ et D1 sont dé�nies par :
D∞(x, y) = sup

n≥0

1

2n
dn(xn, yn), D1(x, y) =

+∞∑

n=0

1

2n
dn(xn, yn) .Alors pour tout n ≥ 0, les projections canoniques pn : (X, D∞) −→ (Xn, dn) et pn : (X, D1) −→

(Xn, dn) sont lipschitziennes de rapport 2n, donc continues. Par conséquent, les topologies asso-ciées aux distances D∞ et D1 sont toutes deux plus �nes que la topologie produit sur X.Réciproquement, soient x = (xn)n≥0 ∈ X, r > 0 et B∞(x, r) la boule ouverte de centre x et derayon r dans (X, D∞). Soit N ∈ N tel que 1

2N
< r. Alors on a B∞(x, r) =

N∩
n=0

p−1
n

(
Bn(xn, 2

nr)
),où Bn(xn, 2

nr) est la boule ouverte de centre xn et de rayon 2nr dans (Xn, dn). Donc B∞(x, r)est un ouvert de X pour la topologie produit. Par conséquent, la topologie associée à la distance
D∞ coïncide avec la topologie produit sur X.De même, soit B(x, r) la boule ouverte de centre x et de rayon r dans (X, D1). Soit N ∈ N telque 1

2N
<
r

2
. Soit y = (yn)n≥0 ∈ X tel que pour tout n ≤ N , on ait dn(xn, yn) < r

4
. Alors on a :

D1(x, y) <
N∑

n=0

r

4

1

2n
+

+∞∑

n=N+1

1

2n
=

r

4

(
2− 1

2N

)
+

1

2N
<
r

2
+
r

2
= r .Donc on a x ∈ N∩

n=0
p−1
n

(
Bn

(
xn,

r
4

))
⊂ B(x, r). Comme N∩

n=0
p−1
n

(
Bn

(
xn,

r
4

)) est un ouvert de Xpour la topologie produit, on en déduit que B(x, r) est un voisinage de x pour la topologieproduit. Par conséquent, la topologie associée à la distance D1 est moins �ne que la topologieproduit, donc les deux topologies coïncident sur X.Pour tout x, y ∈ X, on a D(x, y) ≤ D1(x, y). Donc la topologie associée à la distance D estmoins �ne que la topologie produit sur X. Réciproquement, soient x = (xn)n≥0 ∈ X, r > 0 et
N ∈ N. Soit r′ = 1

2N
r

1 + r
, alors r′ > 0 et on a B(x, r′) ⊂ p−1

N

(
BN (xN , r)

), où B(x, r′) est laboule ouverte de centre x et de rayon r dans (X, D). Donc p−1
N

(
BN (xN , r)

) est un voisinage de x
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18 Chapitre 2. ESPACES MÉTRIQUESpour la topologie associée à la distance D. On en déduit que la topologie produit sur X est moins�ne que la topologie associée à la distance D. Par conséquent, les deux topologies coïncident sur
X. �Proposition. Soient (Xi, di), 1 ≤ i ≤ p, une famille �nie d'espaces métriques. Alors l'espacemétrique produit X = X1 × · · · × Xp est complet si et seulement si pour tout i ∈ {1, . . . , p},
(Xi, di) est complet. En particulier, pour tout p ≥ 1, les espaces métriques Rp et Cp sontcomplets.Démonstration. On munit l'espace X de la distance D∞. Supposons d'abord que (X, D∞) estcomplet. Soit a = (a1, . . . , ap) ∈ X. Pour tout i ∈ {1, . . . , p}, l'application

Xi −→ X
xi 7−→ (a1, . . . , ai−1, xi, ai+1, . . . , ap)est isométrique et son image est fermée dans X, donc complète. Par conséquent, (Xi, di) est com-plet. Réciproquement, supposons que les espaces métriques (Xi, di) sont complets. Soit (xn)n≥0 =(

(x1,n, . . . , xp,n)
)
n≥0

une suite de Cauchy dans (X,D∞). Puisque pour tout i ∈ {1, . . . , p} etpour tout n,m ≥ 0, on a di(xi,n, xi,m) ≤ D∞(xn, xm), alors pour tout i ∈ {1, . . . , p}, la suite
(xi,n)n≥0 est de Cauchy dans (Xi, di), donc il existe xi ∈ Xi tel que lim

n→+∞
xi,n = xi. Alors

x = (x1, . . . , xp) ∈ X et (xn)n≥0 converge vers x dans (X, D∞). Par conséquent, (X,D∞) estcomplet. �Théorème (Cantor). Soit (X, d) un espace métrique. Les propriétés suivantes sont équivalentes.(i) L'espace (X, d) est complet.(ii) L'intersection de toute suite décroissante (Fn)n≥0 de parties fermées non vides de (X, d)telle que lim
n→+∞

δ(Fn) = 0 contient un point et un seul.(iii) Toute famille �ltrante croissante de Cauchy dans (X, d) est convergente.Démonstration. Montrons l'implication (i) =⇒ (ii). Soit (Fn)n≥0 suite décroissante de partiesfermées non vides de (X, d) telle que lim
n→+∞

δ(Fn) = 0. Pour tout n ≥ 0, soit xn ∈ Fn. Soit
ε > 0, puisque lim

n→+∞
δ(Fn) = 0, il existe N ∈ N tel que pour tout n ≥ N , on ait δ(Fn) < ε.Comme la suite (Fn)n≥0 est décroissante, pour tout n,m ≥ N , on a xn, xm ∈ FN . D'où ona d(xn, xm) ≤ δ(FN ) < ε. Par conséquent, la suite (xn)n≥0 est de Cauchy dans (X, d), donc ilexiste x ∈ X tel que lim

n→+∞
xn = x. Soit p ∈ N, alors pour tout n ≥ p, on a xn ∈ Fn ⊂ Fp. Comme

Fp est fermé, alors on a x ∈ Fp. Par conséquent, on a x ∈ ∩
n≥0

Fn. Soit y ∈ ∩
n≥0

Fn, alors pour tout
n ≥ 0, on a 0 ≤ d(y, xn) ≤ δ(Fn). Comme on a lim

n→+∞
δ(Fn) = 0 et lim

n→+∞
d(y, xn) = d(y, x), onen déduit que d(y, x) = 0, i.e. y = x, d'où ∩

n≥0
Fn = {x}.Preuve de (ii) =⇒ (i). Soit (xn)n≥0 une suite de Cauchy dans (X, d). Pour tout n ≥ 0, soient

An = {xp ; p ≥ n} et Fn = An. Alors (Fn)n≥0 est une suite décroissante de parties fermées nonvides de X, et pour tout n ≥ 0, on a δ(Fn) = δ(An). Comme (xn)n≥0 est de Cauchy, alors on a
lim

n→+∞
δ(An) = 0, d'où lim

n→+∞
δ(Fn) = 0. Par conséquent, il existe x ∈ X tel que ∩

n≥0
Fn = {x}.Or pour tout n ≥ 0, on a 0 ≤ d(xn, x) ≤ δ(Fn), d'où lim

n→+∞
d(xn, x) = 0. Autrement dit, la suite

(xn)n≥0 converge vers x. Par conséquent, (X, d) est complet.L'implication (iii) =⇒ (i) est triviale.Preuve de (i) =⇒ (iii). Soit (xλ)λ∈Λ une famille �ltrante croissante de Cauchy dans (X, d). Alors
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19il existe une suite (λn)n≥0 dans Λ telle que pour tout n ≥ 0, on ait λn ≤ λn+1 et d(xλ, xµ) < 1
n+1pour tout λ, µ ∈ Λ véri�ant λn ≤ λ et λn ≤ µ. En particulier, pour tout m ≥ n ≥ 0, on a

d(xλn , xλm) <
1

n+1 . Donc la suite (xλn)n≥0 est de Cauchy dans (X, d). Par hypothèse, (X, d)est complet, donc (xλn)n≥0 converge vers un élément x ∈ X. Soit ε > 0. Alors il existe n0 ∈ Ntel que 1
n0+1 <

ε
2 et d(xλn0

, x) < ε
2 . Alors pour tout λ ∈ Λ véri�ant λn0 ≤ λ, on a d(xλ, x) ≤

d(xλ, xλn0
) + d(xλn0

, x) < 1
n0+1 + ε

2 < ε. Par conséquent, la famille �ltrante croissante (xλ)λ∈Λconverge vers x. �Théorème. Soient X un espace de Baire, (Y, d) un espace métrique, f une application de Xdans Y et (fn)n≥0 une suite d'applications continues de X dans Y telle que pour tout x ∈ X, lasuite (fn(x))n≥0 converge vers f(x) dans Y . Soit C l'ensemble des points de X en lesquels f estcontinue. Alors C est dense dans X.Démonstration. Pour n ∈ N et ε > 0, on pose :
Fn,ε =

{
x ∈ X ; d(fp(x), fq(x)) ≤ ε pour tout p, q ≥ n} .Comme l'application x 7−→ d(fp(x), fq(x)) est continue de X dans R, alors Fn,ε est fermé dans

X. De plus, pour tout n ≥ 0, on a Fn,ε ⊂ Fn+1,ε. Soit x ∈ X. Comme la suite (fn(x))n≥0 estconvergente, alors (fn(x))n≥0 est de Cauchy, donc il existe n ∈ N tel que pour tout p, q ≥ n, onait d(fp(x), fq(x)) ≤ ε, d'où x ∈ Fn,ε. Par conséquent, on a X = ∪
n≥0

Fn,ε. Soit Uε = ∪
n≥0

◦
Fn,ε.Comme X est un espace de Baire, il résulte de la proposition 2.8.1 que Uε est dense dans X. Onen déduit que ∩

k≥1
U 1

k
est dense dans X, car les U 1

k
sont des ouverts de X. Pour avoir le résultat,il su�t de montrer que ∩

k≥1
U 1

k
⊂ C. Autrement dit, pour tout point x ∈ ∩

k≥1
U 1

k
, f est continueen x. Soient x0 ∈ ∩

k≥1
U 1

k
et ε > 0. Il existe k ≥ 1 tel que 1

k <
ε
3 . Comme x0 ∈ U 1

k
, il existe n ≥ 0tel que x0 ∈ ◦

Fn, 1
k
. Comme fn est continue en x0, il existe un voisinage ouvert U de x0 dans Xtel que U ⊂ ◦

Fn, 1
k
et d(fn(x), fn(x0)) < ε

3 pour tout x ∈ U . Comme on a U ⊂ ◦
Fn, 1

k
, alors pourtout p ≥ n et pour tout x ∈ U , on a d(fp(x), fn(x)) ≤ 1

k <
ε
3 . En faisant tendre p vers +∞, onobtient d(f(x), fn(x)) ≤ 1

k <
ε
3 pour tout x ∈ U . En particulier, on a d(f(x0), fn(x0)) < ε

3 . Parconséquent, pour tout x ∈ U , on a :
d(f(x), f(x0)) ≤ d(f(x), fn(x)) + d(fn(x), fn(x0)) + d(fn(x0), f(x0)) <

ε
3 +

ε
3 +

ε
3 = ε .Donc f est continue en x0. �Supplément d'exercicesExercice 2.34. Soient (X, d) un espace métrique et A une partie de X.1. On suppose que toute suite de Cauchy dans A converge dansX. Montrer que A est complet.2. On suppose que A est complet. Soit (xn)n≥0 une suite de Cauchy dans X. On suppose quela suite (d(xn, A))n≥0

tend vers 0. Montrer que la suite (xn)n≥0 est convergente.Solution. 1. Soit (xn)n≥0 une suite de Cauchy dans A. Pour tout n ≥ 0, il existe an ∈ A tel que
d(an, xn) <

1
n+1 . D'où, pour tous n,m ∈ N, on a :
d(an, am) ≤ d(an, xn) + d(xn, xm) + d(xm, am) < 1

n+1 + d(xn, xm) + 1
m+1 .
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20 Chapitre 2. ESPACES MÉTRIQUESPar conséquent, (an)n≥0 est de Cauchy dans A. Par hypothèse, la suite (an)n≥0 converge vers unélément x ∈ X. Donc x ∈ A et on a 0 ≤ d(xn, x) ≤ d(xn, an) + d(an, x) <
1

n+1 + d(an, x), d'où
lim

n→+∞
d(xn, x) = 0. Autrement dit, la suite (xn)n≥0 converge vers x, donc A est complet.2. Pour tout n ≥ 0, soit an ∈ A tel que d(xn, an) < d(xn, A)+

1
n+1 , d'où on a lim

n→+∞
d(xn, an) = 0.Comme on a :

d(an, am) ≤ d(an, xn) + d(xn, xm) + d(xm, am)

< d(xn, A) +
1

n+1 + d(xn, xm) + d(xm, A) +
1

m+1 .On en déduit que (an)n≥0 est de Cauchy dans A. Puisque A est complet, alors il existe x ∈ Atel que lim
n→+∞

d(an, x) = 0. Or on a 0 ≤ d(xn, x) ≤ d(xn, an) + d(an, x), d'où lim
n→+∞

d(xn, x) = 0.Autrement dit, la suite (xn)n≥0 converge vers x.Exercice 2.35. Soit f : [−1, 1] × R −→ R une application continue et considérons l'équationdi�érentielle sur [−1, 1] suivante :
{
x′(t) = f(t, x(t))
x(0) = a

(2.1)1. Soit x : [−1, 1] −→ R une fonction continue. Montrer que x est une solution de l'équation(2.1) si et seulement si pour tout t ∈ [−1, 1], on ait x(t) = a+

∫ t

0
f(s, x(s))ds.2. On suppose qu'il existe une constante k ∈ [0, 1[ telle que pour tous (x1, x2) ∈ R2 et

t ∈ [−1, 1], on ait |f(t, x1) − f(t, x2)| ≤ k |x1 − x2|. Montrer que l'équation (2.1) admetune unique solution.Solution. 1. Si x véri�e l'équation (2.1), alors pour tout t ∈ [−1, 1], on a :
x(t) = x(0) +

∫ t

0
x′(s) ds = a+

∫ t

0
f(s, x(s)) ds .Réciproquement, si x(t) = a +

∫ t

0
f(s, x(s)) ds pour tout t ∈ [−1, 1], alors x est de classe C1sur [−1, 1], x(0) = a et on a x′(t) = f(t, x(t)) pour tout t ∈ [−1, 1]. Donc x est une solution del'équation (2.1).2. Soit E = C

(
[−1, 1], R

) l'ensemble des applications continues de [−1, 1] dans R muni dela distance de la convergence uniforme d∞. D'après la proposition 2.6.8, (E, d∞) est complet.Considérons l'application
Φ : (E, d∞) −→ (E, d∞)

x 7−→ Φ(x)où Φ(x)(t) = a +

∫ t

0
f(s, x(s)) ds pour tout t ∈ [−1, 1]. Soit x ∈ E, alors x est une solutionl'équation (2.1) si et seulement si Φ(x) = x. Pour tout x, y ∈ E et pour tout t ∈ [−1, 1], on a
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Φ(x)(t)− Φ(y)(t) =

∫ t

0

[
f(s, x(s))− f(s, y(s))

]
ds, d'où :

∣∣Φ(x)(t)−Φ(y)(t)
∣∣ ≤

∫ |t|

0

∣∣f(s, x(s))− f(s, y(s))
∣∣ ds

≤
∫ |t|

0
k |x(s)− y(s)| ds

≤
∫ |t|

0
k d∞(x, y) ds

= k d∞(x, y)|t| ≤ k d∞(x, y) .Donc on a d∞(Φ(x),Φ(y)) ≤ k d∞(x, y). Autrement dit, Φ est contractante. D'après le théorèmedu point �xe, il existe alors un unique x ∈ E tel que Φ(x) = x. Donc l'équation (2.1) admet uneunique solution.Exercice 2.36. On considère l'espace E = C
(
[−1, 1], R

) des applications continues de [−1, 1]dans R muni de la distance de la convergence uniforme d∞.1. Montrer que l'application Φ de E dans lui-même dé�nie par :
Φ(x)(t) = a+

∫ t

0
cos(s2)x(s)dsest contractante.2. En déduire que l'équation di�érentielle

{
x′(t) = x(t) cos(t2)
x(0) = aadmet une unique solution sur [−1, 1].Solution. 1. Pour tout x, y ∈ E et pour tout t ∈ [−1, 1], on a :

Φ(x)(t)− Φ(y)(t) =

∫ t

0

[
cos(s2)x(s)− cos(s2)y(s)

]
ds ,d'où :

∣∣Φ(x)(t) −Φ(y)(t)
∣∣ ≤

∫ |t|

0

∣∣ cos(s2)x(s)− cos(s2)y(s)
∣∣ ds

≤
∫ |t|

0
cos(s2)d∞(x, y) ds

≤
∫ 1

0
cos(s2)d∞(x, y) ds

= d∞(x, y)

∫ 1

0
cos(s2) ds .
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22 Chapitre 2. ESPACES MÉTRIQUESSoit k =

∫ 1

0
cos(s2) ds, alors on a 0 < k < 1 et d∞(Φ(x),Φ(y)) ≤ k d∞(x, y). Donc Φ est contrac-tante.2. Soit x ∈ E, alors x est une solution de l'équation di�érentielle si et seulement si Φ(x) = x.Comme (E, d∞) est complet et Φ est contractante, d'après le théorème du point �xe, il existealors un unique x ∈ E tel que Φ(x) = x.Exercice 2.37. Soit f : R −→ R une fonction de classe C1, et considérons l'équation di�éren-tielle sur [−1, 1] suivante : {

x′(t) = f(x(t))
x(0) = a

(2.2)1. On suppose qu'il existe k ∈ ]0, 1[ tel que pour tout s ∈ R, on ait |f ′(s)| ≤ k. Montrer quel'équation (2.2) admet une unique solution.2. Plus généralement, on suppose que f ′ est bornée sur R. Autrement dit, il existe M > 0 telque pour tout s ∈ R, on ait |f ′(s)| ≤ M . Montrer que l'équation (2.2) admet une uniquesolution.Solution. 1. Soit E = C
(
[−1, 1],R

) l'ensemble des applications continues de [−1, 1] dans Rmuni de la distance de la convergence uniforme d∞. D'après la proposition 2.6.8, (E, d∞) estcomplet. Considérons l'application
Φ : (E, d∞) −→ (E, d∞)

x 7−→ Φ(x)où Φ(x)(t) = a +

∫ t

0
f(x(s)) ds pour tout t ∈ [−1, 1]. Soit x ∈ E, alors x est une solutionde l'équation (2.2) si et seulement si Φ(x) = x. Puisque pour tout s ∈ R, on a |f ′(s)| ≤ k,d'après la proposition 2.3.3, f est contractante de rapport k, i.e. pour tout a, b ∈ R, on a

|f(a)− f(b)| ≤ k |a− b|. Pour tout x, y ∈ E et pour tout t ∈ [−1, 1], on a :
Φ(x)(t)− Φ(y)(t) =

∫ t

0

[
f(x(s))− f(y(s))

]
ds ,d'où :

∣∣Φ(x)(t)− Φ(y)(t)
∣∣ ≤

∫ |t|

0

∣∣f(x(s))− f(y(s))
∣∣ ds

≤
∫ |t|

0
k |x(s)− y(s)| ds

≤
∫ |t|

0
k d∞(x, y) ds

≤ k d∞(x, y)|t| ≤ k d∞(x, y) .Donc on a d∞(Φ(x),Φ(y)) ≤ k d∞(x, y). Autrement dit, Φ est contractante. D'après le théorèmedu point �xe, il existe alors un unique x ∈ E tel que Φ(x) = x.2. Comme ci-dessus, pour tout a, b ∈ R, on a |f(a) − f(b)| ≤ M |a − b|, et pour tout x, y ∈
E, on a d∞(Φ(x),Φ(y)) ≤ M d∞(x, y). Donc Φ n'est pas forcément contractante. Considéronsl'application Φ2 = Φ ◦ Φ de E dans E. Pour tout x, y ∈ E et pour tout t ∈ [−1, 1], on a :

Φ2(x)(t) − Φ2(y)(t) =

∫ t

0

[
f(Φ(x)(s))− f(Φ(y)(s))

]
ds ,
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23d'où :
∣∣Φ2(x)(t)− Φ2(y)(t)

∣∣ ≤
∫ |t|

0

∣∣f(Φ(x)(s))− f(Φ(y)(s))
∣∣ ds

≤
∫ |t|

0
M
∣∣Φ(x)(s)− Φ(y)(s)

∣∣ ds .Comme ci-dessus, on a aussi ∣∣Φ(x)(s)− Φ(y)(s)
∣∣ ≤M d∞(x, y) |s|, donc on a :

∣∣Φ2(x)(t) − Φ2(y)(t)
∣∣ ≤M2 d∞(x, y)

∫ |t|

0
|s| ds ,d'où :

∣∣Φ2(x)(t)− Φ2(y)(t)
∣∣ ≤ M2

2
t2 d∞(x, y) .De même, on montre par récurrence que pour tout n ≥ 0, on a :

∣∣Φn(x)(t)− Φn(y)(t)
∣∣ ≤ Mn

n!
|t|n d∞(x, y) .Par conséquent, on a d∞(Φn(x),Φn(y)

)
≤ Mn

n!
d∞(x, y). Or on a lim

n→+∞
Mn

n!
= 0, donc il existe

n ≥ 1 tel que Φn soit contractante. D'après le corollaire 2.6.2, il existe alors un unique x ∈ E telque Φ(x) = x.Exercice 2.38. Soit d la distance euclidienne sur C. Pour tous z et w de C, on pose :
d′(z, w) =





d(z, w) = |z − w| si 0, z et w sont alignés ,
d(z, 0) + d(0, w) = |z|+ |w| sinon.1. Montrer que d′ est une distance sur C.2. Déterminer les boules ouvertes de cette distance.3. L'application idC est-elle continue de (C, d′) dans (C, d) ?4. L'application idC est-elle continue de (C, d) dans (C, d′) ?5. Montrer que l'espace (C, d′) est complet.Solution. 1. Il est clair que pour tous z, w ∈ C, on a d′(z, w) ≥ 0, d′(z, w) = d′(w, z) et que

d′(z, w) = 0 ⇐⇒ z = w. Il reste à montrer l'inégalité triangulaire, i.e. pour tous a, b, c ∈ C, ona d′(a, c) ≤ d′(a, b) + d′(b, c). Notons d'abord que pour tous z, w ∈ C, on a d(z, w) ≤ d′(z, w).On distingue deux cas :Premier cas : 0, a et c sont alignés, alors on a d′(a, c) = d(a, c) ≤ d(a, b) + d(b, c) ≤ d′(a, b) +
d′(b, c).Deuxième cas : 0, a et c ne sont pas alignés, alors ou bien 0, a et b ne sont pas alignés ou bien
0, b et c ne sont pas alignés. Donc on a d′(a, c) = d(0, a) + d(0, c) et

d′(a, b) + d′(b, c) =





d(0, a) + d(0, b) + d(b, c) ≥ d(0, a) + d(0, c)ou
d(0, b) + d(0, c) + d(a, b) ≥ d(0, a) + d(0, c)ou
d(0, a) + d(0, b) + d(0, b) + d(0, c) ≥ d(0, a) + d(0, c) .
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24 Chapitre 2. ESPACES MÉTRIQUESPar conséquent, on a d′(a, c) ≤ d′(a, b) + d′(b, c). Donc d′ est bien une distance sur C.2. Pour tout w ∈ C, on a d′(0, w) = d(0, w), donc pour tout r > 0, on a Bd′(0, r) = Bd(0, r).Soit z ∈ C tel que z 6= 0, on a z = |z|eiθ avec |z| = d(0, z) > 0. Pour tout r > 0, soit
Ir =

{
teiθ ; |z| − r < t < |z|+ r

}, c'est un segment. Alors on a :
Bd′(z, r) =





Ir si 0 < r ≤ |z| ,

Bd(0, r − |z|) ∪ Ir si r > |z| .3. Pour tous z, w ∈ C, on a d(z, w) ≤ d′(z, w), donc l'application identique idC est lipschitziennede (C, d′) dans (C, d), donc elle est continue.4. Pour tout n ≥ 1, soit zn = 1 + i
n . Alors on a d(1, zn) = 1

n , donc la suite (zn)n≥1 convergevers 1 pour la distance d. Mais on a d′(1, zn) = d(0, 1) + d(0, zn) = 1 +
√

1 + 1
n2 , donc la suite

(zn)n≥1 ne converge pas vers 1 pour la distance d′. On en déduit que l'application identique idCn'est pas continue de (C, d) dans (C, d′).5. Soit (zn)n≥0 une suite de Cauchy dans (C, d′). Pour tous n,m ∈ N, on a d(zn, zm) ≤ d′(zn, zm),donc (zn)n≥0 est de Cauchy dans (C, d). D'après la proposition 2.6.6, (C, d) est complet, doncil existe z ∈ C tel que lim
n→+∞

d(z, zn) = 0. On distingue deux cas :Premier cas : z = 0. Comme pour tout n ≥ 0, on a d′(0, zn) = d(0, zn), alors (zn)n≥0 convergevers 0 = z pour la distance d′.Deuxième cas : z 6= 0. Soit ε = |z|
2 , comme (zn)n≥0 converge vers z pour la distance d, alors ilexiste N1 ∈ N tel que pour tout n ≥ N1, on ait | |z| − |zn| | ≤ |z − zn| = d(z, zn) <

|z|
2 . D'oùpour tout n ≥ N1, on a |z|

2 < |zn|. Comme (zn)n≥0 est de Cauchy pour d′, il existe N2 ∈ Ntel que pour tous n,m ≥ N2, on ait d′(zn, zm) < |z|
2 . Donc, pour tout n ≥ N = max(N1, N2),on a |z|

2 < |zn| et pour tous n,m ≥ N , on a d′(zn, zm) < |z|
2 . Soient n,m ≥ N . Si 0, zn et zmne sont pas alignés, alors on a |zn| + |zm| = d′(zn, zm), d'où |zn| < |z|

2 , ce qui est impossible.Donc, pour tous n,m ≥ N , 0, zn et zm sont alignés. Comme la droite passant par 0 et zN estfermée pour la distance d, on en déduit que pour tout n ≥ N , 0, zn et z sont alignés, donc ona d′(z, zn) = d(z, zn), d'où lim
n→+∞

d′(z, zn) = 0. Autrement dit, (zn)n≥0 converge vers z pour ladistance d′. Par conséquent, (C, d′) est complet.Exercice 2.39. Soit α ∈ R \ πZ.1. Montrer que lim
n→+∞

sin(nα) existe ⇐⇒ lim
n→+∞

cos(nα) existe.2. En déduire que lim
n→+∞

sin(nα) n'existe pas.3. Soit α ∈ R. En déduire que(i) lim
n→+∞

sin(nα) existe ⇐⇒ α ∈ πZ , et que dans ce cas, on a sin(nα) = 0.(ii) lim
n→+∞

cos(nα) existe ⇐⇒ α ∈ 2πZ , et que dans ce cas, on a cos(nα) = 1.Solution. 1. On a :
sin((n+ 1)α) = sin(nα+ α) = sin(nα) cos(α) + sin(α) cos(nα)

cos((n+ 1)α) = cos(nα+ α) = cos(nα) cos(α)− sin(α) sin(nα) .Puisque l'on a sin(α) 6= 0 car α ∈ R \ πZ, on en déduit les formules suivantes :
cos(nα) =

sin((n+ 1)α) − sin(nα) cos(α)

sin(α)
(2.3)
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sin(nα) =

cos(nα) cos(α) − cos((n + 1)α)

sin(α)
(2.4)Par conséquent, lim

n→+∞
sin(nα) existe ⇐⇒ lim

n→+∞
cos(nα) existe.2. Supposons que lim

n→+∞
sin(nα) existe, et soient `1 = lim

n→+∞
sin(nα) et `2 = lim

n→+∞
cos(nα). Ilrésulte des équations (2.3) et (2.4) que l'on a `2 =

`1 − `1 cos(α)
sin(α)

et `1 =
`2 cos(α)− `2

sin(α)
, d'où

[
1 +

(1− cos(α))2

(sin(α))2

]
`2 = 0, donc on a `1 = `2 = 0. Or on a (cos(nα))2 + (sin(nα))2 = 1, pourtout n, d'où `21 + `22 = 1, ce qui est impossible. Par conséquent, lim

n→+∞
sin(nα) n'existe pas.3. Si α ∈ πZ, alors pour tout n, on a sin(nα) = 0. Si α = (2k + 1)π, avec k ∈ Z, alors pour tout

n ≥ 0, on a cos(2nα) = 1 et cos((2n + 1)α) = −1, donc la suite (cos(nα))n≥0 ne converge pas.Si α = 2kπ, avec k ∈ Z, alors on a cos(nα) = 1 pour tout n ≥ 0, donc la suite (cos(nα))n≥0converge vers 1.Exercice 2.40. Soit P(N) l'ensemble des sous-ensembles de N. Pour A,B ∈ P(N), on pose
A4B = (A ∪ B) \ (A ∩ B), d(A,B) = 0 si A = B et d(A,B) = 1

n+1 si A 6= B, où n est le pluspetit élément de A4B.1. Montrer que d est une distance ultramétrique sur P(N).2. Soit (An)n≥0 une suite de Cauchy dans (P(N), d). Montrer que la suite (An)n≥0 convergevers A = ∩
n≥0

(
∪

k≥n
Ak

). En particulier, l'espace (P(N), d) est complet.3. Soit A une partie de N. Montrer que l'ensemble {B ∈ P(N) ; A ⊂ B} est fermé dans P(N).4. Soit A une partie �nie de N. Montrer que l'ensemble {B ∈ P(N) ; A ⊂ B} est ouvert dans
P(N).5. Soit Pf (N) l'ensemble des sous-ensembles �nis de N. Montrer que Pf (N) est dense dans
P(N).6. Montrer que l'application A 7−→ N \ A est une isométrie de P(N).7. Pour tout A ∈ P(N), on pose A1 =

{
n ∈ N ; 2n + 1 ∈ A

} et A2 =
{
n ∈ N ; 2n ∈ A

}.Montrer que l'application
f : P(N) −→ P(N)× P(N)

A 7−→ (A1, A2)est un homéomorphisme.8. Montrer que les applications
P(N)× P(N) −→ P(N)

(A,B) 7−→ A ∪B et P(N)× P(N) −→ P(N)
(A,B) 7−→ A ∩Bsont continues.9. Soit A une partie de N. Montrer que les applications

P(N) −→ P(N)
B 7−→ A ∩B et P(N) −→ P(N)

B 7−→ A ∪Bsont continues.
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26 Chapitre 2. ESPACES MÉTRIQUESSolution. 1. Il est clair que pour tous A,B ∈ P(N), on a d(A,B) ≥ 0, d(A,B) = d(B,A), et que
d(A,B) = 0 ⇐⇒ A = B. Il reste à montrer l'inégalité ultramétrique. Soient A,B,C ∈ P(N).Montrons d'abord que l'on a l'inclusion suivante :

A4C ⊂ A4B ∪ B4C (∗)Soit x ∈ A4C, alors x ∈ A ∪ C et x 6∈ A ∩ C. On distingue deux cas :Premier cas : x 6∈ B. Alors on a x ∈ A4B si x ∈ A, et on a x ∈ B4C si x ∈ C. Donc
x ∈ A4B ∪ B4C.Deuxième cas : x ∈ B. Alors on a x ∈ B ∩ (A∪C) = (A∩B)∪ (B ∩C). Comme x 6∈ A∩B ∩C,alors ou bien x 6∈ A∩B ou bien x 6∈ B∩C. Donc, ou bien on a x ∈ A4B ou bien on a x ∈ B4C,d'où x ∈ A4B ∪ B4C. Par conséquent, on a bien l'inclusion (∗).Supposons maintenant A 6= B 6= C. Soient n = min(A4C), p = min(A4B) et q = min(B4C).D'après l'inclusion (∗), on amin(p, q) ≤ n, d'oùmin(p+1, q+1) = min(p, q)+1 ≤ n+1. Par consé-quent, on a 1

n+1 ≤
1

min(p + 1, q + 1)
= max

(
1

p+1 ,
1

q+1

), d'où d(A,C) ≤ max
(
d(A,B), d(B,C)

).Donc d est bien une distance ultramétrique sur P(N).2. Soit (An)n≥0 une suite de Cauchy dans (P(N), d). Soit ε > 0. Alors il existe N ∈ N tel quepour tous p ≥ N et q ≥ N , on ait d(Ap, Aq) < ε. Montrons d'abord que pour tous p ≥ N et
q ≥ N , on a d

(
Ap, ∪

k≥q
Ak

)
< ε. On peut supposer Ap 6= ∪

k≥q
Ak. Soit n ∈ Ap4

(
∪
k≥q

Ak

)
=

[
Ap ∪

(
∪

k≥q
Ak

)]
\ ∪

k≥q

(
Ap ∩ Ak

). Si n ∈ Ap, alors pour tout k ≥ q, on a n ∈ Ap4Ak,d'où 1
ε − 1 < min

(
Ap4Ak

)
≤ n. Si n ∈ ∪

k≥q
Ak, alors il existe k ≥ q tel que n ∈ Ap4Ak,d'où 1

ε − 1 < min
(
Ap4Ak

)
≤ n. Par conséquent, on a 1

ε − 1 < min
(
Ap4

(
∪
k≥q

Ak

)), d'où
d
(
Ap, ∪

k≥q
Ak

)
< ε.Soit A = ∩

n≥0

(
∪

k≥n
Ak

). Montrons que la suite (An)n≥0 converge vers A. On a A = ∩
q≥N

(
∪

k≥q
Ak

).Soit p ≥ N et supposons que Ap 6= A. Soit n ∈ Ap4A. On distingue deux cas :Premier cas : n ∈ Ap. Alors il existe q ≥ N tel que n 6∈ ∪
k≥q

Ak, d'où n ∈ Ap4
(
∪

k≥q
Ak

). Donc ona 1
ε − 1 < min

(
Ap4

(
∪
k≥q

Ak

))
≤ n.Deuxième cas : n ∈ A. Alors pour tout q ≥ N , on a n ∈ Ap4

(
∪
k≥q

Ak

), d'où on a 1
ε − 1 <

min
(
Ap4

(
∪

k≥q
Ak

))
≤ n.Par conséquent, on a 1
ε − 1 < n, d'où 1

ε − 1 < min
(
Ap4A

). Donc on a d(Ap, A) < ε. Ainsi ona montré que pour tout ε > 0, il existe N ∈ N tel que pour tout p ≥ N , on ait d(Ap, A) < ε.Autrement dit, la suite (An)n≥0 converge vers A.A titre d'exemple, on a : si An = {n}, alors on a lim
n→+∞

An = ∅. Si An = {0, 1, . . . , n}, alors on a
lim

n→+∞
An = N.3. Soit A une partie de N. On note F =

{
B ∈ P(N) ; A ⊂ B

}. Soit (Bn)n≥0 une suite dans Ftelle que lim
n→+∞

Bn = B ∈ P(N). D'après 2, on a B = ∩
n≥0

(
∪

k≥n
Bk

). Comme pour tout n ≥ 0, ona A ⊂ Bn, d'où A ⊂ B. Par conséquent, on a B ∈ F . Donc F est un fermé de P(N).4. Soit A une partie �nie de N ; A = {n1, . . . , np}. Soit U =
{
B ∈ P(N) ; A ⊂ B

}
= ∩

1≤i≤p

{
B ∈

P(N) ; ni ∈ B
}. Puisque une intersection �nie d'ouverts est un ouvert, alors on peut supposerque A est réduit à un seul élément, i.e. A = {p}. Pour montrer que U est un ouvert, on montreque son complémentaire P(N) \ U =

{
B ∈ P(N) ; p 6∈ B

} est fermé dans P(N). Soit (Bn)n≥0une suite dans P(N) \ U telle que lim
n→+∞

Bn = B ∈ P(N). D'après 2, on a B = ∩
n≥0

(
∪

k≥n
Bk

). Or
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27pour tout n ≥ 0, p 6∈ Bn, d'où p 6∈ B, donc on a B ∈ P(N) \U . Par conséquent, P(N) \U est unfermé de P(N).5. Soient A ∈ P(N) et ε > 0, alors il existe n ∈ N tel que 1
n+1 < ε. Soit An = {0, . . . , n} ∩ A,alors An est �ni et on a d(An, A) <

1
n+1 < ε. On en déduit que Pf (N) est dense dans P(N).6. Notons d'abord que l'application A 7−→ N \ A est bijective de P(N) dans P(N). Pour tous

A,B ∈ P(N), on a (N \A)4(N \B) = A4B. Par conséquent, l'application A 7−→ N \A est uneisométrie de P(N).7. Soient A,B ∈ P(N) tels que A1 = B1 et A2 = B2. Alors on a :
A =

{
2n+ 1 ; n ∈ A1

}
∪
{
2n ; n ∈ A2

}
=
{
2n + 1 ; n ∈ B1

}
∪
{
2n ; n ∈ B2

}
= B .Donc l'application f est injective. Soient C,D ∈ P(N) et posons A =

{
2n+1 ; n ∈ C

}
∪
{
2n ; n ∈

D
}, alors on a A1 = C et A2 = D. Donc l'application f est surjective. Montrons maintenant lacontinuité de f . On munit l'espace P(N) × P(N) de la distance D∞. Soient A,B ∈ P(N). Alorson a A14B1 =

{
n ; 2n + 1 ∈ A4B

} et A24B2 =
{
n ; 2n ∈ A4B

}. On en déduit facilementque l'on a d(A,B) ≤ D∞
(
(A1, A2), (B1, B2)

)
≤ 2 d(A,B). Par conséquent, l'application f est unhoméomorphisme de P(N) sur P(N)× P(N).8. Soient A,B,C,D ∈ P(N). Montrons que l'on a d(A∪B,C∪D) ≤ D∞

(
(A,B), (C,D)

). Notonsd'abord que l'on peut supposer A ∪ B 6= C ∪ D. Autrement dit, (A ∪ B)4(C ∪ D) 6= ∅. Onvéri�e facilement que l'on a toujours :
(A ∪B)4(C ∪D) ⊂ (A4C) ∪ (B4D) .On distingue trois cas :Premier cas : A4C 6= ∅ et B4D 6= ∅. Alors on a :

min
(
min(A4C),min(B4D)

)
= min

(
(A4C) ∪ (B4D)

)
≤ min

(
(A ∪B)4(C ∪D)

)
,d'où :

min
(
min(A4C) + 1,min(B4D) + 1

)
≤ min

(
(A ∪B)4(C ∪D)

)
+ 1 .Par conséquent, on a d(A ∪B,C ∪D) ≤ max

(
d(A,C), d(B,D)

)
= D∞

(
(A,B), (C,D)

).Deuxième cas : A4C = ∅. Autrement dit, on a A = C. Alors on a min(B4D) ≤ min
(
(A ∪

B)4(C ∪ D)
), d'où min(B4D) + 1 ≤ min

(
(A ∪ B)4(C ∪ D)

)
+ 1. Par conséquent, on a

d(A ∪B,C ∪D) ≤ d(B,D) = max
(
d(A,C), d(B,D)

)
= D∞

(
(A,B), (C,D)

).Troisième cas : B4D = ∅. Autrement dit, on a B = D. Alors on a min(A4C) ≤ min
(
(A ∪

B)4(C ∪ D)
), d'où min(A4C) + 1 ≤ min

(
(A ∪ B)4(C ∪ D)

)
+ 1. Par conséquent, on a

d(A ∪B,C ∪D) ≤ d(A,C) = max
(
d(A,C), d(B,D)

)
= D∞

(
(A,B), (C,D)

).Donc l'application (A,B) 7−→ A ∪B est lipschitzienne, donc continue. L'application (A,B) 7−→
A∩B est la composée des applications continues suivantes : (A,B) 7−→ (N\A,N\B), (A,B) 7−→
A ∪ B et C 7−→ N \ C, donc l'application (A,B) 7−→ A ∩ B est continue de P(N) × P(N) dans
P(N).9. Soit A une partie de N. Comme l'application B 7−→ (A,B) est continue de P(N) dans
P(N) × P(N), on déduit de 8 que les applications B 7−→ A ∩ B et B 7−→ A ∪ B sont conti-nues de P(N) dans P(N).Exercice 2.41. Limite inférieure, limite supérieure d'une suite réelle bornée. À toutesuite réelle bornée (xn)n≥0, on associe les deux suites réelles (an)n≥0 et (bn)n≥0 dé�nies pourtout n ∈ N par :

an = inf{xp ; p ≥ n} et bn = sup{xp ; p ≥ n} .
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28 Chapitre 2. ESPACES MÉTRIQUESLa suite (an)n≥0 est croissante et majorée, donc elle converge vers un réel appelé limite infé-rieure de (xn)n≥0 et noté lim inf
n→+∞

xn ou plus simplement lim inf xn ou lim xn.La suite (bn)n≥0 est décroissante et minorée, donc elle converge vers un réel appelé limite su-périeure de (xn)n≥0 et noté lim sup
n→+∞

xn ou plus simplement lim supxn ou limxn.1. Montrer que l'on a lim inf
n→+∞

xn ≤ lim sup
n→+∞

xn.2. Montrer que (xn)n≥0 est convergente si et seulement si on a lim inf
n→+∞

xn = lim sup
n→+∞

xn, et quedans ce cas, on a lim inf
n→+∞

xn = lim
n→+∞

xn = lim sup
n→+∞

xn .3. Montrer que lim inf
n→+∞

xn et lim sup
n→+∞

xn sont des valeurs d'adhérence de la suite (xn)n≥0.4. Montrer que pour toute valeur d'adhérence x de la suite (xn)n≥0, on a :
lim inf
n→+∞

xn ≤ x ≤ lim sup
n→+∞

xn .Autrement dit, lim inf
n→+∞

xn est la plus petite valeur d'adhérence de (xn)n≥0 et lim sup
n→+∞

xnest la plus grande valeur d'adhérence de (xn)n≥0.5. Montrer sur des exemples que la limite inférieure lim inf
n→+∞

xn peut coïncider ou non avec laborne inférieure inf
n≥0

xn ou avec le plus petit élément min
n≥0

xn (lorsqu'il existe).6. Montrer sur des exemples que la limite supérieure lim sup
n→+∞

xn peut coïncider ou non avecla borne supérieure sup
n≥0

xn ou avec le plus grand élément max
n≥0

xn (lorsqu'il existe).Solution. 1. Puisque (an)n≥0 est croissante, (bn)n≥0 est décroissante et que pour tout n ≥ 0, ona an ≤ bn, alors pour tout n,m ∈ N, on a an ≤ bm. Par conséquent, on a lim
n→+∞

an ≤ lim
n→+∞

bn.Autrement dit, on a lim inf
n→+∞

xn ≤ lim sup
n→+∞

xn.2. Supposons d'abord que (xn)n≥0 converge vers un élément ` ∈ R. Soit ε > 0. Alors il existe
N ∈ N tel que pour tout n ≥ N , on ait ` − ε < xn < ` + ε. Donc, pour tout n ≥ N ,on a ` − ε ≤ an ≤ bn ≤ ` + ε, d'où ` − ε ≤ lim inf

n→+∞
xn ≤ lim sup

n→+∞
xn ≤ ` + ε. Ceci étantvrai pour tout ε > 0, donc on a ` ≤ lim inf

n→+∞
xn ≤ lim sup

n→+∞
xn ≤ `. Par conséquent, on a

lim inf
n→+∞

xn = ` = lim sup
n→+∞

xn.Réciproquement, supposons qu'il existe ` ∈ R tel que lim inf
n→+∞

xn = ` = lim sup
n→+∞

xn. Autrementdit, on a lim
n→+∞

an = ` = lim
n→+∞

bn. Soit ε > 0. Alors il existe N ∈ N tel que pour tout n ≥ N , onait `− ε < an ≤ bn < `+ ε. On en déduit que pour tout n ≥ N , on a `− ε < xn < `+ ε. Doncla suite (xn)n≥0 converge vers `.3. Soient a = lim inf
n→+∞

xn et b = lim sup
n→+∞

xn. Soit ε > 0. Alors il existe N ∈ N tel que pour tout
n ≥ N , on ait a − ε < an < a + ε et b − ε < bn < b + ε. Soient k ∈ N et p = max(N, k),alors on a a − ε < ap < a + ε et b − ε < bp < b + ε. Comme on a ap = inf{xn ; n ≥ p}et bp = sup{xn ; n ≥ p}, alors il existe n ≥ p et m ≥ p tels que a − ε < xn < a + ε et
b− ε < xm < b+ ε. Ainsi, pour tout ε > 0 et pour tout k ∈ N, il existe n ≥ k tel que |a−xn| < εet il existe m ≥ k tel que |b − xm| < ε. Donc a et b sont des valeurs d'adhérence de la suite
(xn)n≥0.4. Soit x une valeur d'adhérence de la suite (xn)n≥0. Soit ε > 0. Alors pour tout k ∈ N, il
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29existe n ≥ k tel que x − ε < xn < x + ε, d'où on a x − ε < bk et ak < x + ε. Par conséquent,on a x − ε ≤ lim sup
n→+∞

xn et lim inf
n→+∞

xn ≤ x + ε. Ceci étant vrai pour tout ε > 0, donc on a
lim inf
n→+∞

xn ≤ x ≤ lim sup
n→+∞

xn.5. Soient x0 = 0 et pour tout n ≥ 1, soit xn = 1
n , alors on a lim inf

n→+∞
xn = inf

n≥0
xn = min

n≥0
xn = 0.Soient y0 = 0 et pour tout n ≥ 1, soit yn = 1, alors on a lim inf

n→+∞
yn = 1 et inf

n≥0
xn = min

n≥0
xn = 0.6. Soient x0 = 1 et pour tout n ≥ 1, soit xn = 1 − 1

n , alors on a lim sup
n→+∞

xn = sup
n≥0

xn =

max
n≥0

xn = 1. Soient y0 = 1 et pour tout n ≥ 1, soit yn = 0, alors on a lim sup
n→+∞

yn = 0 et
sup
n≥0

xn = max
n≥0

xn = 1.Exercice 2.42. Propriétés algébriques des limites inférieures et limites supérieures.Soient (xn)n≥0 et (yn)n≥0 deux suites réelles bornées. Montrer que1. Pour tout λ ≥ 0, on a :
lim inf
n→+∞

λxn = λ lim inf
n→+∞

xn et lim sup
n→+∞

λxn = λ lim sup
n→+∞

xn .2. Pour tout λ ≤ 0, on a :
lim inf
n→+∞

λxn = λ lim sup
n→+∞

xn et lim sup
n→+∞

λxn = λ lim inf
n→+∞

xn .3. On a :
lim inf
n→+∞

xn + lim inf
n→+∞

yn ≤ lim inf
n→+∞

(xn + yn)et
lim sup
n→+∞

(xn + yn) ≤ lim sup
n→+∞

xn + lim sup
n→+∞

yn .4. Donner un exemple de deux suites réelles bornées (xn)n≥0 et (yn)n≥0 telles que l'on ait :
lim inf
n→+∞

xn + lim inf
n→+∞

yn < lim inf
n→+∞

(xn + yn) < lim inf
n→+∞

xn + lim sup
n→+∞

yn < lim sup
n→+∞

(xn + yn)et
lim sup
n→+∞

(xn + yn) < lim sup
n→+∞

xn + lim sup
n→+∞

yn .5. S'il existe n0 ∈ N tel que xn ≤ yn pour tout n ≥ n0, on a alors :
lim inf
n→+∞

xn ≤ lim inf
n→+∞

yn et lim sup
n→+∞

xn ≤ lim sup
n→+∞

yn .Solution. 1. Soit λ ≥ 0. Alors pour tout p ≥ 0, on a :
inf{λxp ; p ≥ n} = λ inf{xp ; p ≥ n} et sup{λxp ; p ≥ n} = λ sup{xp ; p ≥ n} .Par conséquent, on a lim inf

n→+∞
λxn = λ lim inf

n→+∞
xn et lim sup

n→+∞
λxn = λ lim sup

n→+∞
xn.2. Soit λ ≤ 0. Alors pour tout p ≥ 0, on a :

inf{λxp ; p ≥ n} = λ sup{xp ; p ≥ n} et sup{λxp ; p ≥ n} = λ inf{xp ; p ≥ n} .
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30 Chapitre 2. ESPACES MÉTRIQUESPar conséquent, on a lim inf
n→+∞

λxn = λ lim sup
n→+∞

xn et lim sup
n→+∞

λxn = λ lim inf
n→+∞

xn.3. Pour tout n ≥ 0, on a :
inf{xq ; q ≥ n}+ inf{yq ; q ≥ n} ≤ xp + yp, pour tout p ≥ n ,d'où :
inf{xq ; q ≥ n}+ inf{yq ; q ≥ n} ≤ inf{xp + yp ; p ≥ n} .Par conséquent, on a lim inf

n→+∞
xn + lim inf

n→+∞
yn ≤ lim inf

n→+∞
(xn + yn).De même, pour tout n ≥ 0, on a :

xp + yp ≤ sup{xq ; q ≥ n}+ sup{yq ; q ≥ n}, pour tout p ≥ n ,d'où :
sup{xp + yp ; p ≥ n} ≤ sup{xq ; q ≥ n}+ sup{yq ; q ≥ n} .Par conséquent, on a lim sup

n→+∞
(xn + yn) ≤ lim sup

n→+∞
xn + lim sup

n→+∞
yn.4. Il su�t de prendre xn, yn ∈ R tels que :





x4n = 0
x4n+1 = 1
x4n+2 = 2
x4n+3 = 3

et 



y4n = −2
y4n+1 = −3
y4n+2 = 1
y4n+3 = 0 .Alors on a :

lim inf
n→+∞

xn = 0 , lim inf
n→+∞

yn = −3 , lim inf
n→+∞

(xn + yn) = −2 ,

lim sup
n→+∞

xn = 3 , lim sup
n→+∞

yn = 1 , lim sup
n→+∞

(xn + yn) = 3 .5. Supposons qu'il existe n0 ∈ N tel que xn ≤ yn pour tout n ≥ n0. Pour tout n ≥ 0, soient
an = inf{xp ; p ≥ n}, bn = sup{xp ; p ≥ n}, cn = inf{yp ; p ≥ n} et dn = sup{yp ; p ≥ n}.Soit n ≥ n0. Pour tout p ≥ n, on a an ≤ xp ≤ yp, d'où an ≤ cn. Par conséquent, on a
lim inf
n→+∞

xn ≤ lim inf
n→+∞

yn. De même, pour tout p ≥ n, on a xp ≤ yp ≤ dn, d'où bn ≤ dn. Parconséquent, on a lim sup
n→+∞

xn ≤ lim sup
n→+∞

yn.Exercice 2.43. Calculer les limite inférieure et limite supérieure des suites suivantes :
(
(−1)n

)
n≥0

,
(
(−1)n

(
1 + 1

n

) )
n≥1

,
( (

1 + (−1)n

n

)
cos
(nπ
3

) )
n≥1

.Solution. Soit xn = (−1)n, pour tout n ≥ 0. Alors on a x2n+1 = −1, x2n = 1 et −1 ≤ xn ≤ 1,pour tout n ≥ 0. Par conséquent, on a lim inf
n→+∞

xn = −1 et lim sup
n→+∞

xn = 1.Pour tout n ≥ 1, soit yn = (−1)n
(
1 + 1

n

). Alors on a lim
n→+∞

y2n+1 = −1 et lim
n→+∞

y2n = 1, etpour tout n ≥ 0, on a −1 ≤ yn ≤ 1. Par conséquent, on a lim inf
n→+∞

yn = −1 et lim sup
n→+∞

yn = 1.Pour tout n ≥ 1, soient zn =
(
1+ (−1)n

n

)
cos
(
nπ
3

) et tn = cos
(
nπ
3

). Comme on a lim
n→+∞

1+ (−1)n

n =

1, alors on a lim inf
n→+∞

zn = lim inf
n→+∞

tn et lim sup
n→+∞

zn = lim sup
n→+∞

tn. Comme pour tout n ≥ 0, on a
t3(2n+1) = −1, t6n = 1 et −1 ≤ tn ≤ 1, alors on a lim inf

n→+∞
tn = −1 et lim sup

n→+∞
tn = 1.Exercice 2.44. On �xe un entier naturel p ≥ 2 et on pose Np = {0, 1, . . . , p− 1}.
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311. Soit (an)n≥1 une suite dans Np. Montrer que la série ∑
n≥1

an
pn

converge dans [0, 1]. Montrerque +∞∑

n=1

an
pn

= 1 si et seulement si pour tout n ≥ 1, on a an = p− 1.2. Soit (an)n≥1 une suite dans Np. On suppose qu'il existe j ≥ 1 tel que aj 6= p−1 et an = p−1pour tout n ≥ j + 1. Montrer qu'il existe une suite (bn)n≥1 dans Np distincte de (an)n≥1telle que +∞∑

n=1

an
pn

=
+∞∑

n=1

bn
pn

.3. Soit x ∈ [0, 1[.(i) Montrer qu'il existe une unique suite (xn)n≥1 dans Np telle que :(α) n∑

j=1

xj
pj
≤ x <

n∑

j=1

xj
pj

+
1

pn
, pour tout n ≥ 1.(ii) Montrer que (α) est équivalent aux propriétés suivantes.(β) Pour tout j ≥ 1, il existe k ≥ j tel que xk 6= p− 1.(δ) x =

+∞∑

j=1

xj
pj
. (Une telle écriture, véri�ant (β), de x est appelée ledéveloppement p-adique propre de x). Ainsi, par (α), le développementp-adique propre de x est unique.4. En déduire que Q est dense dans R.5. Montrer que l'intervalle [0, 1[ n'est pas dénombrable. En déduire que R n'est pas dénom-brable.Solution. 1. Soit (an)n≥1 une suite dans Np. Pour tout j ≥ 1, on a 0 ≤ aj

pj
≤ p− 1

pj
, d'où

0 ≤
n∑

j=1

aj
pj
≤

n∑

j=1

p− 1

pj
= (p−1)

1
p − 1

pn+1

1− 1
p

= 1− 1

pn
≤ 1, donc la suite ( n∑

j=1

aj
pj

)

n≥1

est positive,croissante et majorée par 1, donc la série∑
n≥1

an
pn

est convergente et on a 0 ≤
+∞∑

n=1

an
pn
≤ 1. Commeon a +∞∑

n=1

p− 1

pn
= 1, alors +∞∑

n=1

an
pn

= 1⇐⇒
+∞∑

n=1

(p− 1)− an
pn

= 0. Puisque (p− 1)− an ≥ 0, pourtout n ≥ 1, on en déduit que +∞∑

n=1

an
pn

= 1⇐⇒ an = p− 1 pour tout n ≥ 1.2. Soit (an)n≥1 une suite dans Np et on suppose qu'il existe j ≥ 1 tel que aj 6= p−1 et an = p−1pour tout n ≥ j + 1. On a +∞∑

n=1

an
pn

=

j−1∑

n=1

an
pn

+
aj
pj

+

+∞∑

n=j+1

p− 1

pn
et +∞∑

n=j+1

p− 1

pn
=

1

pj
, d'où

+∞∑

n=1

an
pn

=

j−1∑

n=1

an
pn

+
aj + 1

pj
, avec aj + 1 ∈ Np. Soit :

bn =





an si n < j ,
aj + 1 si n = j ,
0 si n ≥ j + 1 .
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32 Chapitre 2. ESPACES MÉTRIQUESAlors (bn)n≥1 est une suite dans Np distincte de (an)n≥1 et on a +∞∑

n=1

an
pn

=
+∞∑

n=1

bn
pn

.3(i). Soit x ∈ [0, 1[. Montrons d'abord l'unicité. Supposons donc qu'il existe une suite (xn)n≥1dans Np telle que pour tout n ≥ 1, on ait :
n∑

j=1

xj
pj
≤ x <

n∑

j=1

xj
pj

+
1

pn
.Alors pour tout n ≥ 1, on a :

n∑

j=1

xjp
n−j ≤ pnx <

n∑

j=1

xjp
n−j + 1 .Or on a n∑

j=1

xjp
n−j ∈ N, d'où n∑

j=1

xjp
n−j = E(pnx), la partie entière de pnx, voir propositionC.1.2. On a :E(pnx) = n−1∑

j=1

xjp
n−j + xn = p

n−1∑

j=1

xjp
(n−1)−j + xn = pE(pn−1x

)
+ xn .D'où xn = E(pnx) − pE(pn−1x

). Donc si une telle suite (xn)n≥1 existe, alors elle est forcémentunique.Montrons l'existence. Pour tout n ≥ 1, on pose xn = E(pnx)−pE(pn−1x
). On a xn ∈ Z. Véri�onsque xn ∈ Np et que l'on a la propriété (α). On a pnx − 1 < E(pnx) ≤ pnx et pn−1x − 1 <E(pn−1x

)
≤ pn−1x, d'où pnx − p < pE(pn−1x

)
≤ pnx. Donc on a −pnx ≤ −pE(pn−1x

)
<

−pnx+ p. On en déduit que l'on a pnx− 1− pnx < E(pnx)− pE(pn−1x
)
< pnx− pnx+ p, donc

−1 < xn < p, d'où xn ∈ Np. On montre la propriété (α) par récurrence sur n. Appelons (In)l'inégalité n∑

j=1

xj
pj
≤ x <

n∑

j=1

xj
pj

+
1

pn
. On a x1 = E(px)−pE(x) = E(px), d'où x1 ≤ px < x1+1,donc x1

p
≤ x <

x1
p

+
1

p
. Autrement dit, l'inégalité (I1) est vraie. Supposons que l'inégalité (In)est vraie pour n = n0 − 1, avec n0 ≥ 2, et montrons que l'inégalité (In) est vraie pour n = n0.Par hypothèse, on a donc :

n0−1∑

j=1

xj
pj
≤ x <

n0−1∑

j=1

xj
pj

+
1

pn0−1
.On multiplie par pn0−1, on obtient :

pn0−1
n0−1∑

j=1

xj
pj
≤ pn0−1x < pn0−1

n0−1∑

j=1

xj
pj

+ 1 .Donc on a E(pn0−1x
)
= pn0−1

n0−1∑

j=1

xj
pj
, d'où E(pn0−1x

)

pn0−1
=

n0−1∑

j=1

xj
pj
. On en déduit que l'on a :

n0∑

j=1

xj
pj

=

n0−1∑

j=1

xj
pj

+
xn0

pn0
=

E(pn0−1x
)

pn0−1
+
xn0

pn0
=
pE(pn0−1x

)
+ xn0

pn0
=

E(pn0x
)

pn0
.
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33On a aussi E(pn0x
)
≤ pn0x < E(pn0x

)
+1, d'où E(pn0x

)

pn0
≤ x < E(pn0x

)

pn0
+

1

pn0
. Par conséquent,on a :

n0∑

j=1

xj
pj
≤ x <

n0∑

j=1

xj
pj

+
1

pn0
.Autrement dit, l'inégalité (In) est vraie pour n = n0. Par conséquent, l'inégalité (In) est vraiepour tout n ≥ 1. Donc on a bien la propriété (α).3(ii). Supposons que l'on a (α). Comme on a lim

n→+∞
1

pn
= 0, alors x =

+∞∑

j=1

xj
pj
. Pour montrerque l'on a aussi la propriété (β), on raisonne par l'absurde. On suppose donc que l'on n'a pasla propriété (β). Alors il existe j0 ≥ 1 tel que pour tout k ≥ j0, on ait xk = p − 1. Donc

n0 = inf{j ≥ 1 ; pour tout k ≥ j on ait xk = p− 1} existe et on a 1 ≤ n0 ≤ j0. Si n0 = 1, alorspour tout k ≥ 1, on a xk = p − 1, d'où x =

+∞∑

j=1

xj
pj

= 1, ce qui est impossible. Si n0 > 1, alorson a :
x =

n0−1∑

j=1

xj
pj

+

+∞∑

j=n0

p− 1

pj
=

n0−1∑

j=1

xj
pj

+
1

pn0−1
.Ce qui est impossible car on a par hypothèse x < n0−1∑

j=1

xj
pj

+
1

pn0−1
. Par conséquent, on a bien(β).Réciproquement, montrons que (β) et (δ) impliquent (α). Comme on a x =

+∞∑

j=1

xj
pj
, alors pourtout n ≥ 1, on a n∑

j=1

xj
pj
≤

+∞∑

j=1

xj
pj

= x. D'autre part, on a :
x =

+∞∑

j=1

xj
pj

=

n∑

j=1

xj
pj

+

+∞∑

j=n+1

xj
pj

≤
n∑

j=1

xj
pj

+

+∞∑

j=n+1

p− 1

pj

=

n∑

j=1

xj
pj

+
1

pn
.S'il existe n ≥ 1 tel que x =

n∑

j=1

xj
pj

+
1

pn
, alors on a +∞∑

j=n+1

(p− 1)− xj
pj

= 0, avec (p−1)−xj ≥ 0,pour tout j ≥ n+1, d'où xj = p− 1, pour tout j ≥ n+1, ce qui contredit (β). Donc, pour tout
n ≥ 1, on a x < n∑

j=1

xj
pj

+
1

pn
.
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34 Chapitre 2. ESPACES MÉTRIQUES4. Soit x ∈ R. Alors il existe m ∈ Z \ {0} tel que x
m ∈ [0, 1]. D'après ce qui précède, il existeune suite (rn)n≥0 dans Q tel que x

m = lim
n→+∞

rn, d'où x = lim
n→+∞

mrn, avec mrn ∈ Q, pour tout
n ≥ 1. Par conséquent, Q est dense dans R.5. Supposons que [0, 1[ est dénombrable, et soit ϕ : N∗ −→ [0, 1[ une bijection. On considère
p ≥ 3. Pour tout n ∈ N, ϕ(n) admet un unique développement p-adique propre ϕ(n) = +∞∑

j=1

xn,j
pj

.Pour tout j ≥ 1, soit :
aj =





0 si xj,j 6= 0 ,

1 si xj,j = 0 .Soit x =
+∞∑

j=1

aj
pj
, alors x ∈ [0, 1[ et pour tout n ∈ N∗, on a x 6= ϕ(n). Donc ϕ n'est pas surjective,ce qui est impossible. Par conséquent, [0, 1[ n'est pas dénombrable. Comme on a [0, 1[⊂ R et

[0, 1[ est in�ni non dénombrable, alors R n'est pas dénombrable.
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Chapitre 3ESPACES COMPACTSProposition. Soient X un espace topologique séparé, F une partie fermée de X et K une partiecompacte de X telles que K ∩ F = ∅.1. Si X est régulier, alors il existe deux ouverts U et V dans X tels que K ⊂ U , F ⊂ V et
U ∩ V = ∅.2. Si X est complètement régulier, alors il existe une fonction continue f : X −→ [0, 1] telleque pour tout x ∈ K, on ait f(x) = 1 et pour tout y ∈ F , on ait f(y) = 0.Démonstration. 1. Comme X est régulier, pour tout x ∈ K, il existe deux ouverts disjoints

Ux et Vx dans X tels que x ∈ Ux et F ⊂ Vx. Comme K est compact, il existe un sous-ensemble�ni {x1, · · · , xn} de K tel que K ⊂ n∪
i=1
Uxi

. Soient U =
n∪

i=1
Uxi

et V =
n∩

i=1
Vxi

, alors U et V sontdes ouverts de X tels que K ⊂ U , F ⊂ V et U ∩ V = ∅.2. Comme X est complètement régulier, pour tout x ∈ K, il existe une fonction continue fx de
X dans [0, 1] telle que fx(x) = 0 et pour tout y ∈ F , on ait fx(y) = 1. Comme K est compact, ilexiste un sous-ensemble �ni {x1, · · · , xn} de K tel que K ⊂ n∪

i=1
f−1
xi

([
0, 1

2

[ ). Soit g = fx1 · · · fxn ,alors g est continue de X dans [0, 1] telle que pour tout x ∈ K, on ait 0 ≤ g(x) < 1
2 , et pourtout y ∈ F , on ait g(y) = 1. Soit :

h(t) =





0 si 0 ≤ t ≤ 1
2 ,

4t− 2 si 1
2 ≤ t ≤ 3

4 ,

1 si 3
4 ≤ t ≤ 1 .Alors h est continue de [0, 1] dans [0, 1]. Soit f = 1− h ◦ g, alors f est une fonction continue de

X dans [0, 1] telle que pour tout x ∈ K, on ait f(x) = 1 et pour tout y ∈ F , on ait f(y) = 0. �Théorème. Soit (X, d) un espace métrique. Les propriétés suivantes sont équivalentes.(i) L'espace topologique X est compact.(ii) L'espace métrique (X, d) est précompact et complet.(iii) Toute partie in�nie de X possède au moins un point d'accumulation.(iv) Toute suite de X possède une sous-suite convergente.(v) Pour toute suite décroissante (Fn)n≥0 de parties fermées non vides de X, on a ∩
n≥0

Fn 6= ∅.35
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36 Chapitre 3. ESPACES COMPACTSDémonstration. La preuve de ce théorème est tirée de ([31], p. 117). Montrons l'implication (i)
=⇒ (ii). Par hypothèse, X est compact. D'après la remarque 3.1.6, (X, d) est précompact. Le faitque (X, d) est complet résulte du théorème 2.6.1 et de la proposition 3.1.5 ou des propositions2.6.2 et 3.1.5.Preuve de (ii) =⇒ (iii). Soit A une partie in�nie de X. On va construire par récurrence une suitedécroissante de parties in�nies An de X telle que A0 = A et pour tout n ≥ 1, δ(An) ≤ 2

n , où
δ(An) désigne le diamètre de An. Soient A0 = A et n ∈ N et supposons An construit. Comme
X est précompact, il existe une partie �nie I de X telle que X = ∪

x∈I
B
(
x, 1

n+1

). Comme An estin�ni, il existe x ∈ I tel que B(x, 1
n+1

)
∩ An soit in�ni. On pose alors An+1 = B

(
x, 1

n+1

)
∩ An.Comme An+1 ⊂ B

(
x, 1

n+1

), alors on a δ(An+1 ) = δ(An+1) ≤ 2
n+1 . Puisque (X, d) est completet comme on a lim

n→+∞
δ(An+1 ) = 0, alors il résulte du théorème 2.6.1 qu'il existe z ∈ X tel que

∩
n≥0

An = {z}. Soit V un voisinage de z dans X, alors il existe n ≥ 0 tel que B′(z, 2
n+1

)
⊂ V .Donc pour tout y ∈ An+1, on a d(z, y) ≤ δ(An+1 ) ≤ 2

n+1 , d'où l'on déduit que An+1 ⊂ V . Parconséquent, on a An+1 ⊂ V ∩ A. Ainsi, V ∩ A contient une in�nité d'éléments. Cela prouve que
z est un point d'accumulation de A.Preuve de (iii) =⇒ (iv). Soit (xn)n≥0 une suite dans X. On distingue deux cas :Premier cas : l'ensemble {xn ; n ≥ 0} est �ni. Alors il existe x ∈ X et une partie in�nie D de Ntelle que pour tout n ∈ D, on ait xn = x. Soit ϕ(0) le plus petit élément de D, et par récurrence,
ϕ(n + 1) le plus petit élément de D strictement plus grand que ϕ(n). Alors (xϕ(n))n≥0 est unesous-suite de (xn)n≥0 qui converge vers x.Deuxième cas : l'ensemble {xn ; n ≥ 0} est in�ni. Par hypothèse, cet ensemble possède un pointd'accumulation noté y. Véri�ons que y est une valeur d'adhérence de la suite (xn)n≥0. Soient
ε > 0 et N ∈ N. Soient C = {d(y, xn) ; 0 ≤ n ≤ N et xn 6= y} ∪ {ε} et ε′ = inf(C), alors ε′ > 0.Comme y est un point d'accumulation de l'ensemble {xn ; n ≥ 0}, il existe xn ∈ B(y, ε′) \ {y},d'où n > N . Ainsi, pour tous ε > 0 et N ∈ N, il existe n > N tel que xn ∈ B(y, ε). Donc y estune valeur d'adhérence de la suite (xn)n≥0. Il résulte alors de la proposition 2.2.3 que y est lalimite d'une sous-suite de (xn)n≥0.Preuve de (iv) =⇒ (i). Notons déjà que X est un espace séparé car c'est un espace métrique.Soit (Ui)i∈I un recouvrement ouvert de X. Par le lemme 3.1.1, il existe r > 0 tel que pour tout
x ∈ X, il existe i ∈ I pour lequel B(x, r) ⊂ Ui. Supposons qu'il n'existe pas de sous-ensemble�ni J de I tel que X = ∪

i∈J
Ui. Alors pour toute partie �nie B de X, comme ∪

x∈B
B(x, r) estinclus dans un nombre �ni d'ouverts Ui, il existe y ∈ X tel que d(x, y) ≥ r pour tout x ∈ B. Onchoisit un point x0 ∈ X, puis un point x1 ∈ X tel que d(x0, x1) ≥ r, puis un point x2 ∈ X telque d(x0, x2) ≥ r et d(x1, x2) ≥ r et, par récurrence, une suite (xn)n≥0 dans X telle que pourtous p, q ∈ N avec p 6= q, on ait d(xp, xq) ≥ r. Par conséquent, la suite (xn)n≥0 n'admet aucunesous-suite convergente, c'est une contradiction. Donc il existe bien un sous-ensemble �ni J de Itel que X = ∪

i∈J
Ui. Par conséquent, X est compact.L'implication (i) =⇒ (v) résulte de la proposition 3.1.5.Preuve de (v) =⇒ (iv). Soit (xn)n≥0 une suite dans X. Pour tout n ≥ 0, soit Fn = {xp ; p ≥ n}.Alors (Fn)n≥0 est une suite décroissante de parties fermées non vides de X. Par hypothèse,on a ∩

n≥0
Fn 6= ∅. D'autre part, d'après la proposition 1.7.1, l'intersection ∩

n≥0
Fn est l'ensembledes valeurs d'adhérence de la suite (xn)n≥0. Donc la suite (xn)n≥0 possède au moins une valeurd'adhérence. Il résulte de la proposition 2.2.3 que (xn)n≥0 possède une sous-suite convergente. �Théorème. Soit X un espace topologique. Les propriétés suivantes sont équivalentes.
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37(i) X est un espace complètement régulier.(ii) X est homéomorphe à un sous-espace de [0, 1]J , pour certain ensemble J .Démonstration. Montrons l'implication (i) =⇒ (ii). Soit E = C(X, [0, 1]) l'ensemble des ap-plications continues de X dans I = [0, 1]. On munit IE de la topologie produit et on dé�nitl'application suivante :
ρ : X −→ IE

x 7−→ (f(x))f∈EMontrons que ρ est une application continue injective. Soient x, y ∈ X tels que x 6= y. Puisque
X est complètement régulier, il existe f ∈ E telle que f(x) 6= f(y), d'où ρ(x) 6= ρ(y). Donc ρ estinjective. D'autre part, pour tout f ∈ E, l'application

πf ◦ ρ : X −→ I
x 7−→ f(x)est continue. Il en résulte que ρ est continue.Montrons que ρ est un homéomorphisme de X sur ρ(X). Il reste à montrer que ρ est uneapplication ouverte de X sur ρ(X), i.e. pour tout ouvert U de X, ρ(U) est un ouvert de ρ(X).Si U = X, ρ(U) = ρ(X) est un ouvert de ρ(X). On suppose U 6= X, et donc F = X \ U estun fermé non vide de X. Soit x ∈ U . Puisque X est complètement régulier, il existe h ∈ Etelle que h(x) = 1 et pour tout y ∈ F , on ait h(y) = 0. Soit W l'ouvert dans IE dé�ni par

W = πh
−1
(
]0, 1]

), où πh est la projection canonique
πh : IE −→ I

(xf )f∈E 7−→ xhalors on a W ∩ ρ(X) ⊂ ρ(U). Donc ρ(U) est un voisinage de chacun de ses points, d'où ρ(U) estun ouvert de ρ(X). Par conséquent, ρ est un homéomorphisme de X sur ρ(X). Ainsi, on identi�e
X à ρ(X).Preuve de (ii) =⇒ (i). Supposons qu'il existe un ensemble J tel que X soit homéomorphe àun sous-espace de [0, 1]J . Puisque [0, 1]J est compact, alors [0, 1]J est un espace normal, voircorollaire 3.1.3, donc [0, 1]J est un espace complètement régulier. D'autre part, il est clair quetout sous-espace d'un espace complètement régulier est complètement régulier. Par conséquent,
X est complètement régulier. �Théorème (d'Alembert). Toute fonction polynômiale de C dans C de degré n ≥ 1 possède aumoins une racine dans C.Démonstration. Soit P une fonction polynômiale de C dans C de degré n ≥ 1, i.e. il existe
a0, . . . , an ∈ C tels que P (z) = a0 + a1z + · · · + anz

n, avec n ≥ 1 et an 6= 0, pour tout z ∈ C.Pour tout z 6= 0, on a :
P
(
1
z

)
= a0 +

a1
z

+ · · ·+ an
zn

=
an
zn

[
1 +

n−1∑

p=0

ap
an
zn−p

]
.Comme on a lim

z→0

ap
an
zn−p = 0 et lim

z→0

∣∣∣an
zn

∣∣∣ = +∞, alors on a lim
z→0

∣∣P
(
1
z

)∣∣ = +∞. Par conséquent,il existe R > 0 tel que pour tout z ∈ C véri�ant |z| > R, on ait |P (z)| > |P (0)|. Commel'application z 7−→ |P (z)| est continue de C dans R et comme B′(0, R) = {z ∈ C ; |z| ≤ R} estcompact, alors il existe z0 ∈ B′(0, R) tel que |P (z0)| = inf
|z|≤R

|P (z)|, voir théorème 3.2.2. Or on
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38 Chapitre 3. ESPACES COMPACTSa 0 ∈ B′(0, R), d'où |P (z0)| ≤ |P (0)|. Par conséquent, on a |P (z0)| = inf
z∈C
|P (z)|. On va montrerque P (z0) = 0. Pour tout z ∈ C, soit Q(z) = P (z+ z0), alors on a Q(0) = P (z0), donc P (z0) = 0si et seulement si Q(0) = 0. Puisque l'application z 7−→ z + z0 est bijective de C dans C, alorson a :

|Q(0)| = |P (z0)| = inf
z∈C
|P (z)| = inf

z∈C
|P (z + z0)| = inf

z∈C
|Q(z)| .Comme Q est aussi une fonction polynômiale de C dans C de degré n ≥ 1, alors on a Q(z) =

b0+b1z+· · ·+bnzn, avec n ≥ 1 et bn 6= 0, pour tout z ∈ C, et on a |b0| = inf
z∈C

∣∣b0+b1z+· · ·+bnzn
∣∣.Si b0 = 0, le théorème est démontré. Supposons que b0 6= 0. Alors pour tout z ∈ C, on a

1 ≤
∣∣∣∣1 +

n∑

p=1

cpz
p

∣∣∣∣, où cp =
bp
b0
. Soit n0 = inf{p ∈ N∗ ; cp 6= 0}. Ainsi, pour tout z ∈ C, on a

1 ≤
∣∣∣∣1 + cn0z

n0 +

n∑

p=n0+1

cpz
p

∣∣∣∣. Soit w ∈ C tel que wn0 = −cn0 , alors w 6= 0 et pour tout z ∈ C,on a :
1 ≤

∣∣∣∣1 +
cn0

wn0
zn0 +

n∑

p=n0+1

cp
wp
zp
∣∣∣∣ .Autrement dit, pour tout z ∈ C, on a :

1 ≤
∣∣∣∣1− zn0 +

n∑

p=n0+1

dpz
p

∣∣∣∣ .Où dp = cp
wp

. Donc, pour tout z ∈ C, on a :
1 ≤ |1− zn0 |+

∣∣∣∣
n∑

p=n0+1

dpz
p

∣∣∣∣ .En particulier, pour tout x ∈ ]0, 1[, on a 0 ≤ −xn0 +

∣∣∣∣
n∑

p=n0+1

dpx
p

∣∣∣∣, d'où 1 ≤
∣∣∣∣

n∑

p=n0+1

dpx
p−n0

∣∣∣∣.Ce qui est impossible car lim
x→0

n∑

p=n0+1

dpx
p−n0 = 0. Donc on a bien P (z0) = 0. Autrement dit, lafonction polynômiale P possède au moins une racine dans C. �Théorème (Baire). Soit X un espace localement compact. Alors X est un espace de Baire.Autrement dit, si (Un)n≥0 est une suite d'ouverts denses dans X, alors l'intersection ∩

n≥0
Un estdense dans X.Démonstration. Soit V un ouvert non vide de X, il s'agit de montrer que V ⋂ ∩

n≥0
Un 6= ∅, voirproposition 1.2.4. Comme U0 est dense dans X, alors V ∩ U0 6= ∅, et soit x0 ∈ V ∩ U0. Comme

V ∩ U0 est un ouvert de X, d'après le théorème 3.4.1, il existe un ouvert B0 dans X tel que B0soit compact et x0 ∈ B0 ⊂ B0 ⊂ V ∩ U0.Par récurrence sur n, on construit une suite (Bn)n≥0 d'ouverts non vides dans X tels que pourtout n ≥ 1, Bn soit compact et Bn ⊂ Un ∩Bn−1. En e�et, on a déjà construit B0 et supposons
Bn construit ; comme Un+1 est dense dans X, il existe xn+1 ∈ Un+1 ∩Bn. Comme Un+1 ∩Bn estouvert, il existe un ouvert Bn+1 dans X tel que Bn+1 soit compact et xn+1 ∈ Bn+1 ⊂ Bn+1 ⊂
Un+1 ∩ Bn. Les Bn forment une suite décroissante de compacts non vides dans X. D'après la
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39proposition 3.1.5, on a ∩
n≥0

Bn 6= ∅. Or B0 ⊂ V et, pour tout n ≥ 0, on a Bn ⊂ Un, donc
∩

n≥0
Bn ⊂ V ∩ ∩

n≥0
Un, d'où on a V ∩ ∩

n≥0
Un 6= ∅. Par conséquent, ∩

n≥0
Un est dense dans X. �Théorème (M. Stone, E. �ech). Soit X un espace complètement régulier. Alors il existe unecompacti�cation (β(X), ρ) de X telle que1. Pour tout espace compact Y et toute application continue h : X −→ Y , il existe une(unique) application continue β(h) : β(X) −→ Y telle que le diagramme suivant soitcommutatif.

X Y

β(X)

-h

@
@@Rρ �

���
β(h)2. Pour toute application continue et bornée h : X −→ R, il existe une (unique) applicationcontinue β(h) : β(X) −→ R prolongeant h, i.e. le diagramme suivant est commutatif.

X R

β(X)

-h

@
@@Rρ �

���
β(h)3. Si (X̂, h) est une compacti�cation deX véri�ant la propriété 1 ou la propriété 2, alors X̂ esthoméomorphe à β(X). De façon plus précise, il existe un homéomorphisme g : β(X) −→ X̂tel que le diagramme suivant soit commutatif.

X X

β(X) X̂

-id

?

ρ

?

h

-g4. La compacti�cation (β(X), ρ) est une compacti�cation � maximale � de X. Autrementdit, si (X̂, h) est une compacti�cation de X, il existe une (unique) application continuesurjective g : β(X) −→ X̂ tel que le diagramme suivant soit commutatif.
X X

β(X) X̂

-id

?

ρ

?

h

-g5. Pour tout espace complètement régulier Z et toute application continue h : X −→ Z, ilexiste une (unique) application continue β(h) : β(X) −→ β(Z) telle que le diagrammesuivant soit commutatif.
X Z

β(X) β(Z)

-h

?

ρ

?

ρ

-β(h)
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40 Chapitre 3. ESPACES COMPACTSDémonstration. 1. Soient Y un espace compact et h : X −→ Y une application continue. Soit
CX = C(X, [0, 1]) (resp. CY = C(Y, [0, 1])) l'ensemble des applications continues de X (resp.
Y ) dans [0, 1]. Puisque Y est compact, alors l'application

ρY : Y −→ [0, 1]CY

y 7−→ (g(y))g∈CYréalise un homéomorphisme de Y sur ρY (Y ) = β(Y ). Soit µ : β(Y ) −→ Y l'application réciproquede cet homéomorphisme. L'application h : X −→ Y induit l'application naturelle suivante :
T : CY −→ CX

g 7−→ g ◦ hD'autre part, si on voit [0, 1]CX (resp. [0, 1]CY ) comme l'ensemble des applications de CX (resp.
CY ) dans [0, 1], alors T induit à son tour une application naturelle Φ de [0, 1]CX dans [0, 1]CY .En fait, l'application Φ est dé�nie par :

Φ : [0, 1]CX −→ [0, 1]CY

(tf )f∈CX
7−→ (tg◦h)g∈CYPuisque, pour tout g ∈ CY , l'application

[0, 1]CX −→ [0, 1]
(tf )f∈CX

7−→ tg◦hest continue, alors Φ est continue. Pour tout x ∈ X, on a
(
Φ ◦ ρX

)
(x) = Φ

(
(f(x))f∈CX

)
= ((g ◦ h)(x))g∈CY

= (g(h(x)))g∈CY
= ρY (h(x)) = ρY ◦ h(x) .Autrement dit, on a le diagramme commutatif suivant :

X Y

[0, 1]CX [0, 1]CY

-h

?
ρX

?
ρY

-ΦDonc on a Φ(ρX(X)) ⊂ ρY (Y ) = β(Y ), d'où Φ(β(X)) ⊂ β(Y ). Soit β(h) = µ ◦Φ|β(X)
, alors β(h)est une application continue de β(X) dans Y telle que h = β(h) ◦ ρ. L'unicité de β(h) résulte dufait que ρ(X) est dense dans β(X).2. Ceci résulte immédiatement de 1. Mais donnons une preuve directe sans utiliser 1. Soit h :

X −→ R une application continue et bornée. Soit [a, b] un intervalle fermé borné de R tel que
h(X) ⊂ [a, b], et soit ϕ : [a, b] −→ [0, 1] un homéomorphisme. Alors on a ϕ◦h ∈ CX . Considéronsla projection canonique

πϕ◦h : [0, 1]CX −→ [0, 1]
(tf )f∈CX

7−→ tϕ◦het soit π la restriction de πϕ◦h à β(X). Alors β(h) = ϕ−1 ◦ π est une application continue de
β(X) dans R telle que β(h) ◦ ρ = h. L'unicité de β(h) résulte du fait que ρ(X) est dense dans
β(X).Les propriétés 3, 4 et 5 résultent facilement de 1 et 2. �
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41Théorème (Tietze). Soient X un espace localement compact, K un compact de X et U unouvert de X contenant K. Alors pour tout f ∈ C(K), il existe g ∈ Cc(X) telle que g|K = f ,Supp(g) ⊂ U et sup
x∈X
|g(x)| = sup

x∈K
|f(x)|. Autrement dit, pour toute fonction continue f : K −→

K, il existe une fonction continue g : X −→ K prolongeant f telle que Supp(g) soit compact,Supp(g) ⊂ U et sup
x∈X
|g(x)| = sup

x∈K
|f(x)|.Démonstration. Soit f ∈ C(K). Montrons d'abord que s'il existe g ∈ Cc(X) telle que g|K = fet Supp(g) ⊂ U , alors il existe h ∈ Cc(X) telle que h|K = f , Supp(h) ⊂ U et sup

x∈X
|h(x)| =

sup
x∈K
|f(x)|. En e�et, soit R = sup

x∈K
|f(x)|. Pour tout λ ∈ K, on pose :
ϕ(λ) =





λ si |λ| ≤ R ,
Rλ

|λ| si |λ| > R .Alors ϕ est une application continue de K dans {λ ∈ K ; |λ| ≤ R}. Soit h = ϕ◦g, alors h ∈ Cc(X)telle que h|K = f , Supp(h) ⊂ U et sup
x∈X
|h(x)| = sup

x∈K
|f(x)|.Il est clair que l'on peut supposer f à valeurs dans R, et même que l'on a −1 ≤ f(x) ≤ 1,pour tout x ∈ K. D'autre part, d'après le théorème 3.4.1, il existe un ouvert W de X tel que

K ⊂W ⊂W ⊂ U et W soit compact.Montrons d'abord que siM > 0 et si h : K −→ R est une fonction continue telle que |h(x)| ≤M ,pour tout x ∈ K, alors il existe g ∈ Cc(X, R) telle que :(a) |g(x)| ≤ 1
3M , pour tout x ∈ X.(b) |h(x)− g(x)| ≤ 2

3M , pour tout x ∈ K.(c) Supp(g) ⊂W .En e�et, soient A = f−1
([
− M, −1

3 M
]) et B = f−1

([
1
3M, M

]). Alors A et B sont deuxparties compactes disjointes dans K. D'après le théorème d'Urysohn, théorème 3.6.1, il existe
g ∈ Cc(X, R) telle que Supp(g) ⊂ W , g(x) = −M

3 sur A, g(x) = M
3 sur B et −M

3 ≤ g(x) ≤ M
3 ,pour tout x ∈ X. Par conséquent, pour tout x ∈ X, on a |g(x)| ≤ 1

3M et on a |h(x)−g(x)| ≤ 2
3M ,pour tout x ∈ K.Maintenant, on va construire par récurrence sur n une suite (gn)n≥1

dans Cc(X, R) telle que :(α) |gn(x)| ≤ 1
3

(
2
3

)n−1 , pour tout n ≥ 1 et pour tout x ∈ X.(β) ∣∣∣f(x)− n∑

i=1

gi(x)
∣∣∣ ≤

(
2
3

)n , pour tout n ≥ 1 et pour tout x ∈ K.(γ) Supp(gn) ⊂W , pour tout n ≥ 1.En e�et, comme on a |f(x)| ≤ 1, pour tout x ∈ K, alors on obtient g1 par ce qui précède. Ensuite,supposons que l'on a construit g1, . . . , gn dans Cc(X, R) telles que :
|gi(x)| ≤ 1

3

(
2
3

)i−1
, pour tout i ∈ {1, . . . , n} et pour tout x ∈ X ,

∣∣∣f(x)−
i∑

j=1

gj(x)
∣∣∣ ≤

(
2
3

)i
, pour tout i ∈ {1, . . . , n} et pour tout x ∈ K ,Supp(gn) ⊂W , pour tout i ∈ {1, . . . , n} .
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42 Chapitre 3. ESPACES COMPACTSAlors f − n∑

i=1

gi|K est une fonction continue de K dans R telle que ∣∣∣f(x)− n∑

i=1

gi|K (x)
∣∣∣ ≤

(
2
3

)n,pour tout x ∈ K. On applique de nouveau le raisonnement précédent à f − n∑

i=1

gi|K , on obtientune fonction gn+1 ∈ Cc(X, R) telle que :
|gn+1(x)| ≤ 1

3

(
2
3

)n
, pour tout x ∈ X ,

∣∣∣f(x)−
n+1∑

i=1

gi(x)
∣∣∣ ≤ 2

3

(
2
3

)n
=
(
2
3

)n+1
, pour tout x ∈ K ,Supp(gn+1) ⊂W .Ainsi de suite, on construit la suite (gn)n≥1

. Puisque la série ∑
n≥1

1
3

(
2
3

)n−1 est convergente, ondéduit de la propriété (α) que pour tout x ∈ X, la série ∑
n≥1

gn(x) est convergente. On pose
g(x) =

+∞∑

n=1

gn(x), pour tout x ∈ X. Alors g est une fonction continue de X dans R telle que
|g(x)| ≤

+∞∑

n=1

|gn(x)| ≤
+∞∑

n=1

1
3

(
2
3

)n−1
= 1, pour tout x ∈ X. Comme on a lim

n→+∞

(
2
3

)n
= 0, ondéduit de la propriété (β) que pour tout x ∈ K, on a g(x) = f(x). On déduit de la propriété (γ)que l'on a Supp(g) ⊂W ⊂ U , et donc Supp(g) est compact, i.e. g ∈ Cc(X, R). �Théorème. Soient X, Y des espaces topologiques, avec X séparé et f : X −→ Y une applicationpropre. On a :1. L'espace f(X) est séparé.2. Si X est régulier, alors f(X) est aussi régulier.3. Si X est normal, alors f(X) est aussi normal.4. Si X possède une base dénombrable d'ouverts, alors f(X) possède aussi une base dénom-brable d'ouverts.5. Si X est métrisable, alors f(X) est aussi métrisable.Démonstration. Puisque la restriction ff(X) : X −→ f(X) est propre, on peut supposer que

f est surjective, i.e. f(X) = Y .1. Soient y1, y2 ∈ Y tels que y1 6= y2. Alors f−1({y1}) et f−1({y2}) sont des parties compactesdisjointes de X. D'après la proposition 3.1.2, il existe deux ouverts disjoints U et V dans Xtels que f−1({y1}) ⊂ U et f−1({y2}) ⊂ V . Puisque f est une application fermée, d'après laproposition 1.3.6, il existe deux ouverts V1 et V2 de Y contenant respectivement y1 et y2 tels que
f−1(V1) ⊂ U et f−1(V2) ⊂ V . Par conséquent, on a V1 ∩ V2 = ∅, donc Y est séparé.2. Soient F un fermé de Y et y ∈ Y \ F . Alors f−1(F ) est fermé dans X et on a f−1(F ) ∩
f−1({y}) = ∅. Comme f−1({y}) est une partie compacte de X, d'après la proposition 3.1.3, ilexiste deux ouverts disjoints U et V dans X tels que f−1({y}) ⊂ U et f−1(F ) ⊂ V . Puisque
f est une application fermée, il existe des ouverts U ′ et V ′ dans Y tels que y ∈ U ′, F ⊂ V ′,
f−1(U ′) ⊂ U et f−1(V ′) ⊂ V . Donc U ′ et V ′ sont disjoints. Par conséquent, Y est régulier.

© Dunod, 2011 - Topologie et espaces normés - Nawfal El Hage Hassan



433. On a déjà montré cette propriété dans la proposition 1.9.3.4. Soit (Un

)
n≥0

une base dénombrable d'ouverts de X. Soit :
B =

{
∪
n∈I

Un ; I est un sous-ensemble �ni de N

}
.Alors B est une famille dénombrable d'ouverts de X. Soit B′ =

{
Y \ f(X \ V ) ; V ∈ B

},alors B′ est une famille dénombrable d'ouverts de Y . Véri�ons que B′ est une base d'ouverts de
Y . Soient y ∈ Y et W un ouvert de Y contenant y, d'où on a f−1({y}) ⊂ f−1(W ). Comme
f−1({y}) est une partie compacte de X, alors il existe un sous-ensemble �ni I de N tel que
f−1({y}) ⊂

⋃

n∈I
Un ⊂ f−1(W ). Soit V =

⋃

n∈I
Un, alors V ∈ B et on a y ∈ Y \ f(X \ V ) ⊂W . Parconséquent, B′ est une base dénombrable d'ouverts de Y .5. Pour une preuve de cette propriété, voir ([13], p. 284). �Lemme. Soit Y un espace topologique séparé.1. Si Y est localement compact ou véri�e le premier axiome de dénombrabilité, alors Y estengendré par les compacts.2. Supposons que Y est engendré par les compacts. Soient Z un espace topologique et f :

Y −→ Z une application. Alors f est continue si et seulement si pour tout compact K de
Y , f|K est continue.Démonstration. 1. Soit F une partie de Y . Supposons d'abord que F est fermée dans Y . Ilrésulte du théorème 3.1.1 que si K est une partie compacte de Y , alors F ∩K est fermé dans Y .Réciproquement, supposons que pour toute partie compacte K de Y , F ∩K est fermé dans Y .Premier cas : supposons que Y est localement compact. Soient x ∈ F et K un voisinage compactde x dans Y . Par hypothèse, on a F ∩K = F ∩K. Soit V un voisinage de x dans Y , alors V ∩Kest un voisinage de x dans Y , d'où V ∩K ∩F 6= ∅. Par conséquent, on a x ∈ F ∩K, d'où x ∈ F .Donc on a F = F , i.e. F est fermée dans Y .Deuxième cas : supposons que Y est un espace topologique séparé véri�ant le premier axiome dedénombrabilité. Soit x ∈ F , d'après le corollaire 1.7.1, il existe une suite (xn)n≥0 dans F telle que

lim
n→+∞

xn = x. Comme l'ensemble K = {x} ∪ {xn ; n ≥ 0} est une partie compacte de Y , voirexemple 3.1.1, alors F ∩K est fermé dans Y . Or on a {xn ; n ≥ 0} ⊂ F ∩K, donc x ∈ F ∩K,d'où x ∈ F . Par conséquent, on a F = F , donc F est fermée dans Y .2. Supposons que Y est engendré par les compacts. Soient Z un espace topologique et f : Y −→ Zune application. Si f est continue, il résulte de la proposition 1.4.3 que pour toute partie compacte
K de Y , f|K est continue.Réciproquement, supposons que pour toute partie compacte K de Y , f|K est continue. Soit Gun fermé de Z. Soit K une partie compacte de Y . Comme on a f−1(G) ∩ K = f−1

|K (G), alors
f−1(G) ∩K est fermé dans K. Donc f−1(G) ∩K est fermé dans Y . Par conséquent, f−1(G) estfermé dans Y , donc f est continue. �Théorème. Soient X, Y des espaces topologiques, avec X séparé et f : X −→ Y une applicationcontinue. Les propriétés suivantes sont équivalentes.(i) L'application f est propre.(ii) Pour tout espace topologique Z, l'application f × idZ : (x, z) 7−→ (f(x), z) de X ×Z dans

Y × Z est fermée.
© Dunod, 2011 - Topologie et espaces normés - Nawfal El Hage Hassan



44 Chapitre 3. ESPACES COMPACTS(iii) Pour tout espace topologique séparé Z, l'application f× idZ : (x, z) 7−→ (f(x), z) de X×Zdans Y × Z est propre.Démonstration. Montrons l'implication (i) =⇒ (ii). Soit Z un espace topologique, et posons
h = f × idZ . Pour montrer que l'application h est fermée, d'après la proposition 1.3.6, il su�t demontrer que pour tout (y, z) ∈ Y ×Z et pour tout ouvert U de X×Z tel que h−1

(
{(y, z)}

)
⊂ U ,il existe un voisinage V de (y, z) dans Y ×Z tel que h−1(V ) ⊂ U . Soient (y, z) ∈ Y ×Z et U unouvert deX×Z tel que h−1

(
{(y, z)}

)
⊂ U . Puisque h(X×Z) = f(X)×Z est une partie fermée de

Y ×Z, il su�t de prendre y ∈ f(X). Alors on a h−1
(
{(y, z)}

)
= f−1({y})×{z} ⊂ U , et f−1({y})est une partie compacte non vide de X. D'après la proposition 3.1.4, il existe un ouvert V1 de Xcontenant f−1({y}) et un ouvert V2 de Z contenant {z} tels que h−1

(
{(y, z)}

)
⊂ V1 × V2 ⊂ U .Comme f est fermée, il existe un voisinageW de y dans Y tel que f−1(W ) ⊂ V1. Alors V =W×V2est un voisinage de (y, z) dans Y × Z tel que h−1(V ) = f−1(W ) × V2 ⊂ V1 × V2 ⊂ U . Parconséquent, h est une application fermée.Preuve de (ii) =⇒ (i). En prenant Z l'espace topologique réduit à un seul point, l'espace X×Z esthoméomorphe à X, l'espace Y ×Z est homéomorphe à Y et f × idZ est identi�ée à l'application

f . Alors on en déduit que f est une application fermée.Maintenant, soient Z un espace topologique quelconque, h = f × idZ et y0 ∈ Y , on a h−1({y0}×
Z) = f−1({y0})× Z. Soit h0 = h{y0}×Z : f−1({y0})× Z −→ {y0} × Z, la restriction de h, alors
h0 est une application fermée. Soit p0 : {y0}×Z −→ Z la projection, alors p0 est une applicationfermée. Par conséquent, p0 ◦ h0 : f−1({y0}) × Z −→ Z est une application fermée. Or p0 ◦ h0n'est autre que la projection canonique sur Z, il résulte alors du théorème 3.2.4 que f−1({y0})est une partie compacte de X. Par conséquent, f est une application propre.Preuve de (i) =⇒ (iii). Soit Z un espace topologique séparé. Il résulte de l'implication (i) =⇒(ii) que l'application h = f × idZ est fermée. Comme h est continue, il reste à montrer que pourtout (y, z) ∈ Y × Z, h−1

(
{(y, z)}

) est une partie compacte de X × Z. Or on a h−1
(
{(y, z)}

)
=

f−1({y}) × {z}, et f−1({y}) est une partie compacte de X, donc h−1
(
{(y, z)}

) est une partiecompacte de X × Z. Par conséquent, h = f × idZ est une application propre.En�n, pour montrer l'implication (iii) =⇒ (i), il su�t de faire le même raisonnement que dansla preuve de l'implication (ii) =⇒ (i). �Théorème. Soient X un espace localement compact, R une relation d'équivalence dans X,
G(R) son graphe dans X ×X et q : X −→ X/R l'application quotient. Soient X̃ = X ∪ {∞}le compacti�é d'Alexandro� de X et R∞ la relation d'équivalence dans X̃ dont le graphe est
G(R) ∪ {(∞,∞)}. Les propriétés suivantes sont équivalentes.(i) L'application quotient q est propre.(ii) Le saturé pour R de toute partie compacte de X est un ensemble compact.(iii) La relation R∞ est fermée.(iv) La restriction à G(R) de l'application (x, y) 7−→ y de X ×X dans X est propre.(v) La relation R est fermée et les classes suivant R sont compactes.En outre, lorsque ces propriétés sont véri�ées, alors l'espace X/R est localement compact.Démonstration. Montrons l'implication (i) =⇒ (ii). Rappelons d'abord que le saturé pour
R d'un ensemble A de X est l'ensemble q−1(q(A)). Si q est propre, d'après le théorème 3.7.1,l'espace quotient X/R est séparé. Soit K une partie compacte de X. Comme q est continue,alors q(K) est une partie compacte de X/R. D'après le théorème 3.7.2, q−1(q(K)) est une partiecompacte de X.
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45Preuve de (ii) =⇒ (iii). Soit F une partie fermée de X̃, donc F est une partie compacte de X̃.Si ∞ 6∈ F , alors F est une partie compacte de X et le saturé de F pour R∞ est q−1(q(F )).Donc q−1(q(F )) est une partie compacte de X, d'où q−1(q(F )) est fermée dans X̃ . Supposonsque ∞ ∈ F et soit A = F \ {∞}. Le saturé de F pour R∞ est q−1(q(A)) ∪ {∞}. Pour montrerque q−1(q(F )) ∪ {∞} est fermé dans X̃ , il su�t de montrer que q−1(q(A)) est fermé dans X,voir remarque 3.5.1. D'après le lemme 3.7.2, q−1(q(A)) est fermé dans X si et seulement si pourtoute partie compacte K de X, q−1(q(A)) ∩K est fermé dans X. Soit K une partie compactede X. On a :
q−1(q(A)) ∩K = q−1(q(A)) ∩ q−1(q(K)) ∩K

= q−1
(
q(A) ∩ q(K)

)
∩K

= q−1
(
q(A) ∩ q(q−1(q(K)))

)
∩K

= q−1
(
q
(
A ∩ q−1(q(K))

))
∩K

= q−1
(
q
(
F ∩ q−1(q(K))

))
∩K .Comme F ∩ q−1(q(K)) est une partie compacte de X, alors q−1(q(A))∩K est compact dans X,donc q−1(q(A)) ∩ K est fermé dans X. Par conséquent, q−1(q(A)) est fermé dans X. Donc larelation R∞ est fermée.Preuve de (iii) =⇒ (iv). Comme X̃ est compact, d'après la proposition 3.7.4, la projection cano-nique p2 : (x, y) 7−→ y de X̃× X̃ dans X̃ est propre. Comme R∞ est fermée, D'après le théorème3.8.1, G(R∞) = G(R) ∪ {(∞,∞)} est fermé dans X̃ × X̃. D'après le lemme 3.7.1, la restrictionde p2 à G(R) ∪ {(∞,∞)} est propre. Comme on a p−1

2 (X) = G(R), appliquons une fois de plusle lemme 3.7.1, on déduit que l'application (x, y) 7−→ y de G(R) dans X est propre.Preuve de (iv) =⇒ (v). Par hypothèse, l'application p : (x, y) 7−→ y de G(R) dans X est propre.pour tout y ∈ X, on a p−1({y}) = q−1({q(y)})×{y}, donc q−1({q(y)})×{y} est une partie com-pacte de G(R), d'où q−1({q(y)}) est une partie compacte de X. Donc les classes d'équivalencesuivant R sont compactes. Soit F un fermé de X, alors (F ×X) ∩ G(R) est fermé dans G(R).Or on a q−1(q(F )) = p((F ×X) ∩ G(R)), donc q−1(q(F )) est fermé dans X. Par conséquent, qest une application fermée.L'implication (v) =⇒ (i) est triviale.Lorsque ces propriétés sont véri�ées, on déduit du théorème 3.8.1 que l'espace X̃/R∞ est com-pact. Si q̃ : X̃ −→ X̃/R∞ est l'application quotient, alors q̃(X) est un ouvert de X̃/R∞ car
X = q̃−1(q̃(X)) est ouvert dans X̃ , donc q̃(X) est localement compact. Comme X est saturépour R∞ et ouvert dans X̃, d'après le corollaire 1.4.3, l'espace quotient X/R est homéomorpheà q̃(X), donc X/R est localement compact. �Supplément d'exercicesExercice 3.38. Soit (Xn

)
n≥1

une suite d'ensembles non vides. On pose E =
∏
n≥1

Xn. Pour deuxéléments quelconques distincts x = (xn)n≥1 et y = (yn)n≥1 de E, soit k(x, y) le plus petit entier
n ≥ 1 tel que xn 6= yn. Soit :

d(x, y) =
1

k(x, y)
si x 6= y et d(x, x) = 0 .1. Montrer que d est une distance ultramétrique sur E et que l'espace métrique (E, d) estcomplet.
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46 Chapitre 3. ESPACES COMPACTS2. Montrer que (E, d) est compact si et seulement si Xn est �ni pour tout n ≥ 1.3. Montrer que (E, d) est localement compact si et seulement si Xn est �ni pour tout n ≥ 1,sauf peut-être pour un nombre �ni de valeurs de n.Solution. 1. On fait exactement le même raisonnement comme dans l'exercice 2.19.2. Supposons d'abord que (E, d) est compact. Soit N ≥ 1. Alors il existe η1, . . . , ηp ∈ E telsque E =
p
∪
i=1
B
(
ηi,

1
N

). On a ηi = (xi,n)n≥0, avec xi,n ∈ Xn. Soit a ∈ XN . Supposons a 6∈
{x1,N , . . . , xp,N}, et soit η = (yn)n≥0 ∈ E, avec yN = a et yn = x1,n, si n 6= N . Alors on a
d(ηi, η) ≥ 1

N , pour tout i ∈ {1, . . . , p}, ce qui est impossible. Donc on a XN = {x1,N , . . . , xp,N}.Par conséquent, pour tout n ≥ 1, Xn est �ni.Réciproquement, supposons que pour tout n ≥ 1, Xn est �ni. Comme (E, d) est complet, pourmontrer que (E, d) est compact, il reste à montrer que (E, d) est précompact. Soit ε > 0.Alors il existe N ≥ 1 tel que 1
N < ε. Pour tout n > N , on �xe an ∈ Xn. Soit F = {x =

(xn)n≥1 ∈ E ; xn = an pour tout n > N}. Alors F est un sous-ensemble �ni de (E, d) et on a
E = ∪

x∈F
B(x, ε), donc (E, d) est précompact. Par conséquent, (E, d) est compact.3. Supposons d'abord que Xn est �ni pour tout n ≥ 1, sauf peut-être pour un nombre �ni devaleurs de n. Autrement dit, il existe N ≥ 1 tel que pour tout n > N , Xn soit �ni. Soient

X =
N∏

n=1
Xn et Y =

∏
n≥N+1

Xn. Pour deux éléments quelconques distincts x = (xn)1≤n≤N et
y = (yn)1≤n≤N de X, soit k(x, y) le plus petit entier n ∈ {1, . . . , N} tel que xn 6= yn. Soit :

d1(x, y) =
1

k(x, y)
si x 6= y et d1(x, x) = 0 .Alors d1 est une distance ultramétrique sur X. Soient x ∈ X et ε > 0 tel que ε < 1

N . Alors on a
B(x, ε) = {x}, donc (X, d1) est localement compact.De même, pour deux éléments quelconques distincts x = (xn)n≥N+1 et y = (yn)n≥N+1 de Y , soit
k(x, y) le plus petit entier n ≥ N + 1 tel que xn 6= yn. Soit :

d2(x, y) =
1

k(x, y)
si x 6= y et d2(x, x) = 0 .Alors d2 est une distance ultramétrique sur Y . On déduit de 2 que (Y, d2) est compact. On munitl'espace produit X × Y de la distance d∞ ; d∞((x, y), (x′, y′)) =

max
(
d1(x, x

′), d2(y, y′)
). Alors l'application naturelle de (E, d) sur (X × Y, d∞) est une isomé-trie, donc c'est un homéomorphisme. On en déduit que (E, d) est localement compact.Réciproquement, supposons que (E, d) est localement compact. Soit x = (xn)n≥0 ∈ E, alors ilexiste ε > 0 tel que B′(x, ε) soit compact. Soit N ≥ 1 tel que 1

N < ε. Soit F = {y = (xn)n≥0 ∈
E ; yn = xn, avec 1 ≤ n ≤ N}. Alors F est fermé dans (E, d) et on a F ⊂ B′(x, ε), donc Fest compact. D'autre part, F est homéomorphe à N∏

n=1
{xn}×

∏
n≥N+1

Xn. On déduit de 2 que pourtout n ≥ N + 1, Xn est �ni.Exercice 3.39. Soit (X, d) un espace métrique. Montrer que les propriétés suivantes sont équi-valentes.(i) L'espace métrique (X, d) est précompact.(ii) De toute suite de points de X, on peut extraire une suite de Cauchy.(iii) Pour tout ε > 0, si F est une partie de X telle que pour tout x, y ∈ F , avec x 6= y, on ait
d(x, y) > ε, alors F est �nie.
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47Solution.Montrons l'implication (i) =⇒ (ii). Soit (xn)n≥0 une suite dans X. Soit ε > 0. Comme
(X, d) est précompact, alors il existe a1, . . . , ap ∈ X tels que X =

p
∪
i=1
B
(
ai,

ε
2

). On en déduit qu'ilexiste i ∈ {1, . . . , p} et qu'il existe un sous-ensemble in�ni Aε de N tel que pour tout n ∈ Aε,on ait xn ∈ B(ai, ε2). Donc, pour tout n,m ∈ Aε, on a d(xn, xm) < ε. Ainsi, on a montré quepour tout ε > 0, il existe un sous-ensemble in�ni Aε de N tel que pour tout n,m ∈ Aε, on ait
d(xn, xm) < ε. On va montrer par récurrence qu'il existe une sous-suite (xnk

)k≥0 telle que pourtout k ≥ 0, on ait d(xnk
, xnk+1

) < 1
2k
. En e�et, soit ε0 = 1 = 1

20
, alors il existe un sous-ensemblein�ni A0 de N tel que pour tout n,m ∈ A0, on ait d(xn, xm) < ε0. On pose n0 = min(A0). Soit

ε1 =
1
2 . Comme B0 = A0 \{n0} est un sous-ensemble in�ni de N, alors il existe un sous-ensemblein�ni A1 ⊂ B0 tel que pour tout n,m ∈ A1, on ait d(xn, xm) < ε1. On pose n1 = min(A1). Soit

k ≥ 1 et supposons construits n0, . . . , nk−1 dans N et supposons construits des sous-ensemblesin�nis A0, . . . , Ak−1 de N tels que A0 ⊂ . . . ⊂ Ak−1, ni = min(Ai), avec 0 ≤ i ≤ k−1, et tels quepour tout tout n,m ∈ Ai, on ait d(xn, xm) < 1
2i
. On pose Bk = Ak−1 \ {nk−1} et εk = 1

2k
. Alorsil existe un sous-ensemble in�ni Ak ⊂ Bk tel que pour tout n,m ∈ Ak, on ait d(xn, xm) < 1
2k
. Onpose alors nk = min(Ak). Ainsi, on construit une sous-suite (xnk

)k≥0 telle que pour tout k ≥ 0,on ait d(xnk
, xnk+1

) < 1
2k
. On en déduit que (xnk

)k≥0 est une suite de Cauchy, voir exercice 2.20.Montrons l'implication (ii) =⇒ (iii). Soient ε > 0 et F une partie de X telle que pour tout
x, y ∈ F , avec x 6= y, on ait d(x, y) > ε. Si F est in�nie, alors il existe une application injective
ϕ : N −→ F . Pour tout n ≥ 0, soit xn = ϕ(n), alors (xn)n≥0 est une suite dans X telle quepour tout n,m ∈ N, avec n 6= m, on ait d(xn, xm) > ε. Par conséquent, la suite (xn)n≥0 n'admetaucune sous-suite de Cauchy, ce qui contredit l'hypothèse. Donc F est bien une partie �nie.Montrons l'implication (iii) =⇒ (i). Si (X, d) n'est pas précompact, alors il existe ε > 0 tel quepour toute partie �nie G de X, on ait X 6= ∪

x∈G
B(x, ε). Autrement dit, il existe ε > 0 tel quepour toute partie �nie G de X, il existe x ∈ X tel que d(x, a) ≥ ε, pour tout a ∈ G. Soit x0 ∈ X,alors il existe x1 ∈ X tel que d(x0, x1) ≥ ε. Ensuite, il existe x2 ∈ X tel que d(x0, x2) ≥ ε et

d(x1, x2) ≥ ε. Ainsi de suite, on construit par récurrence une suite (xn)n≥0 de X telle que pourtout n,m ∈ N, avec n 6= m, on ait d(xn, xm) ≥ ε. Donc l'ensemble F = {xn ; n ≥ 0} est in�niet pour tout x, y ∈ F , avec x 6= y, on ait d(x, y) > ε
2 , ce qui contredit l'hypothèse. Donc (X, d)est bien précompact.Exercice 3.40. Soit (X, d) un espace métrique non complet. Il s'agit de montrer qu'il existeune fonction continue non bornée de X dans R. Soit (xn)n≥0 une suite de Cauchy dans X, nonconvergente.1. Montrer que pour tout x ∈ X, la suite (d(x, xn))n≥0 est convergente vers un réel g(x) > 0.2. Montrer que l'application h : x 7−→ 1

g(x) est continue de X dans R et qu'elle n'est pasbornée.Solution. 1. Soit x ∈ X. D'après l'inégalité triangulaire, voir proposition 2.1.1, pour tout n,m ∈
N, on a ∣∣d(x, xn)− d(x, xm)

∣∣ ≤ d(xn, xm). Par conséquent, la suite (d(x, xn))n≥0
est de Cauchydans R, donc convergente car R est complet. Pour tout x ∈ X, on pose g(x) = lim
n→+∞

d(x, xn),alors on a g(x) ≥ 0. Soit x ∈ X. Si g(x) = 0, alors la suite (xn)n≥0 converge vers x dans (X, d),ce qui est impossible. Donc on a g(x) > 0, pour tout x ∈ X.2. Montrons que g est continue. Soit (am)m≥0 une suite dans (X, d) convergeant vers un élément
a ∈ X. Autrement dit, on a lim

m→+∞
d(a, am) = 0. Il s'agit de montrer que l'on a lim

m→+∞
g(am)−

g(a) = 0. On a g(am)−g(a) = lim
n→+∞

[
d(am, xn)−d(a, xn)

], d'où |g(am)−g(a)| = lim
n→+∞

∣∣d(am, xn)−
d(a, xn)

∣∣. D'autre part, pour tout n,m ∈ N, on a ∣∣d(am, xn) − d(a, xn)∣∣ ≤ d(a, am). Soit ε > 0.
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48 Chapitre 3. ESPACES COMPACTSAlors il existe m0 ∈ N tel que pour tout m ≥ m0, on ait d(a, am) < ε. D'où pour tout n ≥ 0 etpour tout m ≥ m0, on a ∣∣d(am, xn) − d(a, xn)∣∣ < ε. Par conséquent, pour tout m ≥ m0, on a
|g(am)−g(a)| ≤ ε. Donc la suite (g(am))m≥0 converge vers g(a). On en déduit que g est continue.Ensuite, l'application h : x 7−→ 1

g(x) est continue de X dans R, voir proposition 1.3.2. Il reste àvéri�er que h n'est pas bornée. Soit A > 0. Comme (xn)n≥0 est de Cauchy, alors il existe N ∈ Ntel que pour tout n ≥ N , on ait d(xN , xn) < 1
A , d'où g(xN ) ≤ 1

A . Donc on a h(xN ) ≥ A. Parconséquent, l'application h n'est pas bornée.Exercice 3.41. Soit (X, d) un espace métrique non précompact. Il s'agit de montrer qu'il existeune fonction continue non bornée de X dans R. D'après l'exercice 3.39, il existe un réel r > 0 etune suite (xn)n≥0 dans X telle que, pour tout n,m ∈ N, avec n 6= m, on ait d(xn, xm) > r.1. Montrer qu'il existe une fonction f : X −→ R telle que f(x) = n
(
r
3−d(x, xn)

) si d(x, xn) <
r
3 et f(x) = 0, si pour tout n ∈ N, on ait d(x, xn) ≥ r

3 .2. Montrer que f est continue de X dans R et qu'elle n'est pas bornée.Solution. 1. Pour tout n ≥ 0, soit Bn = B
(
xn,

r
3

). Puisque, pour tout n,m ∈ N, avec n 6= m, ona d(xn, xm) > r, alors on a Bn∩Bm = ∅, si n 6= m. Soit U = ∪
n≥0

Bn, alors U est un ouvert de X.Soit x ∈ U , alors il existe un unique n ≥ 0 tel que x ∈ Bn. On pose alors f(x) = n
(
r
3 −d(x, xn)

).Si x ∈ F = X \U , on pose f(x) = 0. Alors f est une fonction bien dé�nie de X dans R telle que
f(x) = n

(
r
3 − d(x, xn)

) si d(x, xn) < r
3 et f(x) = 0, si pour tout n ∈ N, on ait d(x, xn) ≥ r

3 . Enplus, une telle fonction est unique.2. Puisque l'on a f(xn) = n r
3 , pour tout n ≥ 0, alors f n'est pas bornée. Comme pour tout

n ≥ 0, f|Bn
est continue et que Bn est un ouvert de X, alors f est continue en tout point de U ,voir proposition 1.4.3. Il reste à montrer la continuité de f en tout point de F . Soient x ∈ F et

B = B
(
x, r3

) . Alors seulement deux cas peuvent se présenter :Premier cas : pour tout n ≥ 0, on a B ∩ Bn = ∅. Alors on a B ⊂ F et f|B = 0, donc f estcontinue en x car B est un ouvert de X.Deuxième cas : il existe un unique N ∈ N tel que B ∩ BN 6= ∅ et donc, pour tout n 6= N , on a
B ∩Bn = ∅. Si d(x, xN ) > r

3 , alors il existe s ∈ R tel que 0 < s < r
3 et B(x, s)∩BN = ∅, d'où ona f|B(x,s)

= 0, donc f est continue en x car B(x, s) est un ouvert de X. Donc, on peut supposer
d(x, xN ) = r

3 . Soit (ap)p≥0 une suite dans X convergeant vers x. Alors il existe p0 ∈ N tel quepour tout p ≥ p0, on ait ap ∈ B. Soit ε > 0. Comme la suite (d(ap, xN )
)
p≥0

converge aussivers d(x, xN ) = r
3 , alors il existe p1 ∈ N tel que pour tout p ≥ p1, on ait ∣∣d(ap, xN ) − r

3

∣∣ < ε
N .Soit p ≥ max(p0, p1). Si ap 6∈ BN , alors on a f(ap) = 0 = f(x). Si ap ∈ BN , alors on a

f(ap) = N
(
r
3 −d(ap, xN )

), d'où |f(ap)− f(x)| = |f(ap)| < ε. Par conséquent, la suite (f(ap))p≥0converge vers f(x). Donc f est continue en x. D'où la continuité de f .Exercice 3.42. Soit (X, d) un espace métrique. Montrer que les propriétés suivantes sont équi-valentes.(i) L'espace (X, d) est compact.(ii) Pour tout espace métrique (Y, d′) et toute application continue f : X −→ Y , f(X) estfermé dans Y .(iii) Toute fonction continue f : X −→ R est bornée.Solution. L'implication (i) =⇒ (ii) résulte du théorème 3.2.1.Montrons l'implication (ii) =⇒ (iii). Soit f : X −→ R une fonction continue. Soit ϕ : R −→ Sdé�nie par ϕ(x) = ( 2x

x2 + 1
,
x2 − 1

x2 + 1

), pour tout x ∈ R. Alors ϕ réalise un homéomorphisme de
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49
R sur S \ {(0, 1)}, voir exemple 3.5.2. Par hypothèse, ϕ(f(X)) = (ϕ ◦ f)(X) est fermé dans S.Donc ϕ(f(X)) est un compact, d'où f(X) est une partie compacte de R. Donc f(X) est bornée.Montrons l'implication (iii) =⇒ (i). Par hypothèse, toute fonction continue de X dans R est bor-née. On déduit alors des exercices 3.40 et 3.41 que (X, d) est complet et précompact. Il résultealors du théorème 3.1.3 que (X, d) est compact.Exercice 3.43. Soit (X, d) un espace métrique. Montrer que X est compact si et seulement sitout sous-espace discret et in�ni de X est non fermé dans X.Solution. Supposons d'abord que (X, d) est compact. Soit Y un sous-espace discret et in�ni de
X. Si Y était fermé dans X, alors Y serait compact, ce qui est impossible, voir exemple 3.1.1.Donc Y n'est pas fermé dans X.Réciproquement, supposons que tout sous-espace discret et in�ni de X est non fermé dans X. Si
(X, d) n'est pas précompact, d'après l'exercice 3.39, il existe ε > 0 et un sous-ensemble in�ni Fde X tel que pour tout x, y ∈ F , avec x 6= y, on ait d(x, y) > ε. Alors F est fermé dans (X, d),voir exercice 2.25, et F muni de la topologie induite par X est discret, ce qui contredit l'hypo-thèse. Donc (X, d) est précompact. Si (X, d) n'est pas complet, il existe une suite de Cauchy
(xn)n≥0 non convergente dans (X, d). Il résulte de l'exercice 2.24 que A = {xn ; n ≥ 0} est in�niet fermé dans (X, d) et que A muni de la topologie induite par X est discret, ce qui contreditl'hypothèse. Donc (X, d) est complet. Par conséquent, (X, d) est compact.Exercice 3.44. Soient X un espace localement compact et X∞ son compacti�é d'Alexandro�.Montrer que les propriétés suivantes sont équivalentes.(i) X est dénombrable à l'in�ni.(ii) {∞} possède un système fondamental dénombrable de voisinages dans X∞.Solution. Montrons l'implication (i) =⇒ (ii). Soit (Kn)n∈N une suite de compacts de X telleque pour tout n ∈ N, on ait Kn ⊂

◦
Kn+1 et X =

∞∪
n=0

Kn, voir théorème 3.4.2. Pour tout n ∈ N,soit Vn = X∞ \ Kn, alors Vn est un ouvert de X∞ et (Vn)n∈N est un système fondamentaldénombrable de voisinages de {∞} dans X∞. En e�et, soit V un ouvert de X∞ contenant {∞},alors K = X∞ \V est un compact de X. On a X =
∞∪
n=0

◦
Kn et ( ◦

Kn

)
n∈N est une suite croissante,donc il existe un n ≥ 0 tel que K ⊂ ◦

Kn, d'où Vn ⊂ X∞\
◦
Kn⊂ X∞ \K = V .Montrons l'implication (ii) =⇒ (i). Soit (Vn)n∈N un système fondamental dénombrable de voisina-ges ouverts de {∞} dans X∞. Pour tout n ∈ N, soit Kn = X∞ \ Vn, alors Kn est une partiecompacte de X. Puisque X∞ est séparé, alors on a ∩

n≥0
Vn = {∞}, d'où :

X = X∞ \ {∞} = X∞ \ ∩
n≥0

Vn = ∪
n≥0

X∞ \ Vn = ∪
n≥0

Kn .Donc X est dénombrable à l'in�ni.Exercice 3.45. Soient X un espace localement compact et non compact, Y un espace topolo-gique, y0 ∈ Y et f : X −→ Y une application continue. On note X̃ = X ∪ {∞} le compacti�éd'Alexandro� de X. Montrer que les conditions suivantes sont équivalentes.(i) L'application f admet en {∞} la limite y0.(ii) L'application f̃ : X̃ −→ Y telle que, pour tout x ∈ X, on ait f̃(x) = f(x) et f̃(∞) = y0est continue.
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50 Chapitre 3. ESPACES COMPACTS(iii) Pour toute partie fermée F de Y ne contenant pas y0, l'ensemble f−1(F ) est un compactdans X.Solution. L'équivalence (i) ⇐⇒ (ii) résulte du corollaire 1.6.1.Montrons l'implication (ii) =⇒ (iii). Soit F une partie fermée de Y ne contenant pas y0. Alors
V = Y \F est un ouvert de Y contenant y0. Comme f̃ est continue, alors f̃−1(V ) est un ouvert de
X̃ contenant {∞}, donc X̃ \ f̃−1(V ) est un compact dans X. Or on a X̃ \ f̃−1(V ) = f̃−1(Y \V ) =
f̃−1(F ) = f−1(F ), donc f−1(F ) est un compact dans X.Montrons l'implication (iii) =⇒ (i). Soit V un voisinage ouvert de y0 dans Y , alors F = Y \V estun fermé de Y ne contenant pas y0. Donc f−1(F ) est un compact dans X. Soit W = X̃ \f−1(F ),alors W est un ouvert de X̃ contenant {∞} et on a f(W ∩X) ⊂ V , donc y0 est une limite de fen {∞}.Exercice 3.46. Soient X un espace topologique séparé et D une partie dense dans X telle que
D 6= X. Soient Y un espace topologique et f : D −→ Y une application propre. Montrer qu'iln'existe aucune application continue de X dans Y prolongeant f .Solution. Supposons le contraire, et soit g : X −→ Y une application continue prolongeant f .Soient x ∈ X \D et Z = D ∪ {x}. Comme l'adhérence de D dans Z est D ∩ Z = X ∩ Z = Z,voir exercice 1.26, alors D est dense dans Z. Notons aussi que la restriction de g à Z est continueet prolonge f . Par conséquent, sans perdre de généralité, on peut supposer X = D ∪ {x}, où
x 6∈ D. Par hypothèse, f−1({g(x)}) est une partie compacte de X et x 6∈ f−1({g(x)}), donc ilexiste deux ouverts disjoints U et V de X tels que x ∈ U et f−1({g(x)}) ⊂ V . Comme D \ Vest fermé dans D, alors f(D \ V ) est fermé dans Y , donc g−1(f(D \ V )) est fermé dans X.D'où on a D \ V ⊂ g−1(f(D \ V )). Comme x 6∈ g−1(f(D \ V )), car g(x) 6∈ f(D \ V ), alors on a
g−1(f(D \ V )) ⊂ D, donc D \ V ⊂ D. On a D = (D \ V ) ∪ V , d'où D = D \ V ∪ V . Comme
x 6∈ V , alors D ⊂ D. Par conséquent, on a X = D, ce qui est impossible. Donc il n'existe aucuneapplication continue de X dans Y prolongeant f .Exercice 3.47. Soit X un espace localement compact. Montrer que les propriétés suivantes sontéquivalentes.(i) X est dénombrable à l'in�ni.(ii) Il existe une application propre f : X −→ [0,+∞[.Solution. Montrons l'implication (ii) =⇒ (i). Soit f : X −→ [0,+∞[ une application propre.Pour tout n ≥ 0, soit Kn = f−1

(
[0, n]

), alors Kn est une partie compacte de X, voir théorème3.7.2, et on a X =
∞∪
n=0

Kn. Donc X est dénombrable à l'in�ni.Montrons l'implication (i) =⇒ (ii). D'après le théorème 3.4.2, il existe une suite (Kn)n∈N decompacts de X telle que pour tout n ∈ N, on ait Kn ⊂
◦

Kn+1 et X =
∞∪
n=0

Kn. D'après le théorème3.6.1 pour tout n ≥ 0, il existe une application continue fn : X −→ [0, 1] telle que fn(x) = 1 pourtout x ∈ Kn et Supp(fn) ⊂ ◦
Kn+1. Pour tout n ≥ 0 et pour tout x ∈ X, on pose gn(x) = 1−fn(x).Alors gn est une fonction continue de X dans [0, 1] telle que gn|Kn

= 0. On pose f =
+∞∑

n=0

gn,alors f est une application propre de X dans [0, +∞[. En e�et, soit x ∈ X, alors il existe N ∈ Ntel que x ∈ KN , d'où on a gn(x) = 0 pour tout n ≥ N , donc f est bien dé�nie et à valeursdans [0, +∞[. Comme on a X =
∞∪
n=0

◦
Kn+1, pour montrer que f est continue, il su�t de montrerque la restriction de f à chaque ◦

Kn+1 est continue. Soit n ≥ 0, pour tout p > n, la fonction gp
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51est nulle sur ◦
Kn+1, donc la restriction de f à ◦

Kn+1 est la somme d'une suite �nie de fonctionscontinues, donc elle est continue. Par conséquent, f est continue sur X. Soit K un compact de
[0,+∞[. Alors il existe N ∈ N tel que K ⊂ [0, N ]. Soit x ∈ f−1(K), alors on a f(x) ≤ N . Si
x ∈ X \KN+1, alors pour tout n ∈ {0, . . . , N}, on a gn(x) = 1, d'où f(x) ≥ N + 1, ce qui estimpossible. Donc on a x ∈ KN+1. Autrement dit, on a f−1(K) ⊂ KN+1. Comme f est continue,alors f−1(K) est fermé dans X, d'où f−1(K) est compact. Il résulte du théorème 3.7.4 que f estune application propre.Exercice 3.48. On munit R de la topologie usuelle et soit f : R −→ R une application continue.Montrer que les propriétés suivantes sont équivalentes.(i) f est une application propre.(ii) lim

|x|→+∞
|f(x)| = +∞, i.e. pour tout A > 0, il existe B > 0 tel que pour tout x ∈

R \ [−B, B], on ait |f(x)| > A.Solution.Montrons l'implication (i) =⇒ (ii). Soit A > 0, alors f−1
(
[−A, A]

) est une partie com-pacte de R, donc il existe B > 0 tel que f−1
(
[−A, A]

)
⊂ [−B, B], d'où pour tout x ∈ R\[−B, B],on a |f(x)| > A. Donc on a lim

|x|→+∞
|f(x)| = +∞.Montrons l'implication (ii) =⇒ (i). Soit K une partie compacte de R, alors K est fermée dans R,d'où f−1(K) est fermé dans R. Soit A > 0 tel queK ⊂ [−A, A]. Alors il existe B > 0 tel que pourtout x ∈ R\[−B, B], on ait |f(x)| > A, d'où f−1(K) ⊂ [−B, B], donc f−1(K) est fermé et bornédans R. Par conséquent, f−1(K) est une partie compacte de R, donc f est une application propre.Exercice 3.49. Soient (Y, d) un espace métrique et f : R −→ Y une application continue etadmettant des limites en −∞ et +∞. Montrer que f est uniformément continue sur R.Solution. On donne deux méthode pour faire cet exercice.Première méthode : puisque f est continue et admet des limites en −∞ et +∞, d'après le corol-laire 1.6.1, f se prolonge par continuité en une application continue f̃ de la droite réelle achevée Rdans Y . Comme R est un espace métrique compact, voir exemple 2.4.2, alors f̃ est uniformémentcontinue. Par conséquent, f est uniformément continue.Deuxième méthode : soient `1 = lim
x→−∞

f(x) et `2 = lim
x→+∞

f(x). Soit ε > 0, alors il existe
A,B ∈ R tels que A < B et pour tout x ≤ A, on ait d(f(x), `1) < ε

2 et pour tout x ≥ B, on ait
d(f(x), `2) <

ε
2 . Comme f est uniformément continue de [A − 2, B + 2] dans Y , alors il existe

0 < η < 1 tel que pour tous x, y ∈ [A− 1, B + 1] véri�ant |x− y| < η, on ait d(f(x), f(y)) < ε.Soient x, y ∈ R tels que |x − y| < η. Si x ≤ A − 1, alors y ≤ A et on a d(f(x), `1) < ε
2 et

d(f(y), `1) <
ε
2 , d'où d(f(x), f(y)) < ε. Si x ∈ [A − 1, B + 1], alors y ∈ [A − 2, B + 2] et on a

d(f(x), f(y)) < ε. Si x ≥ B + 1, alors y ≥ B et on a d(f(x), `2) < ε
2 et d(f(y), `2) < ε

2 , d'où
d(f(x), f(y)) < ε. Par conséquent, pour tout ε > 0, il existe η > 0 tel que pour tous x, y ∈ Rvéri�ant |x− y| < η, on ait d(f(x), f(y)) < ε. Autrement dit, f est uniformément continue.Exercice 3.50. Soit f : R −→ R une fonction continue et tendant vers 0 à l'in�ni.1. Montrer que f est bornée et uniformément continue.2. Montrer que si f prend des valeurs positives et négatives, alors f atteint ses bornes.Solution. 1. Le fait que f est uniformément continue résulte de l'exercice précédent. Le fait que fest bornée résulte de la remarque 3.6.1, mais donnons une preuve directe ici. Puisque f tend vers
0 à l'in�ni, il existe A > 0 tel que pour tout x ∈ R\[−A, A], on ait |f(x)| < 1. Comme f est conti-nue sur le compact [−A, A], d'après le théorème 3.2.2, il existe α, β ∈ R tels que α ≤ f(x) ≤ β,
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52 Chapitre 3. ESPACES COMPACTSpour tout x ∈ [−A, A]. Par conséquent, pour tout x ∈ R, on a |f(x)| ≤ max{1, |α|, |β|}. Donc fest bornée.2. Soient a, b ∈ R tels que f(a) < 0 et f(b) > 0. Soit M = inf(−f(a), f(b)) > 0, alors il existe
A > 0 tel que pour tout x ∈ R \ [−A, A], on ait |f(x)| < M . D'où pour tout x ∈ R \ [−A, A],on a f(a) < f(x) < f(b). Par conséquent, a, b ∈ [−A, A] et on a inf

x∈R
f(x) = inf

x∈[−A,A]
f(x) et

sup
x∈R

f(x) = sup
x∈[−A,A]

f(x). Comme [−A, A] est compact, on déduit du théorème 3.2.2 qu'il existe
x0, x1 ∈ [−A, A] tels que f(x0) = inf

x∈R
f(x) et f(x1) = sup

x∈R
f(x).Exercice 3.51. Montrer que la fonction racine carrée f : t 7−→

√
t de [0, +∞[ dans R est uni-formément continue sur [0, +∞[. Montrer qu'elle n'est pas lipschitzienne sur ]0, +∞[.Solution. Comme f est continue sur le compact [0, 2], alors f est uniformément continue sur

[0, 2], voir théorème 3.2.3. Comme f est dérivable sur ]0, +∞[ et sa dérivée est bornée sur
[1, +∞[, alors f est uniformément continue sur [1, +∞[, voir proposition 2.3.3. Par conséquent,
f est uniformément continue sur [0, +∞[. Si f était lipschitzienne sur ]0, +∞[, il existerait uneconstante k ≥ 0 telle que pour tous x, y ∈ ]0, +∞[, on ait |√x − √y| ≤ k|x − y|. On en déduitque l'on a ∣∣∣√ 1

n+1 −
√

1
n

∣∣∣ ≤ k
∣∣ 1
n+1 − 1

n

∣∣ pour tout n ≥ 1. Donc on a 1 ≤ k
[√

1
n+1 +

√
1
n

], pourtout n ≥ 1, ce qui est impossible car lim
n→+∞

[√
1

n+1 +
√

1
n

]
= 0. Donc f n'est pas lipschitziennesur ]0, +∞[.Exercice 3.52. Soit f : [0, 1] −→ R une fonction dé�nie par :

f(t) =





0 si t = 0 ,

t sin
(
1
t

) si t 6= 0 .Montrer que f est uniformément continue sur [0, 1], mais n'est pas lipschitzienne.Solution. Comme [0, 1] est compact et f est continue, alors f est uniformément continue sur
[0, 1]. Si f était lipschitzienne, il existerait une constante k > 0 telle que pour tous t, s ∈ ]0, 1],on ait |f(t) − f(s)| ≤ k |t − s|. Donc pour tous t, s ∈ ]0, 1], avec t 6= s, on a ∣∣∣∣f(t)− f(s)t− s

∣∣∣∣ ≤ k.Par conséquent, pour tout s ∈ ]0, 1], on a |f ′(s)| ≤ k. Or, pour tout s ∈ ]0, 1], on a f ′(s) =
sin
(
1
s

)
− 1

s cos
(
1
s

), donc si sn = 1
2πn , on a |f ′(sn)| = 2πn, d'où la contradiction. Donc f n'estpas lipschitzienne.Exercice 3.53. Distance de Hausdor� . Soient (X, d) un espace métrique non vide et Hl'ensemble des sous-ensembles fermés bornés non vides de X. Pour tous A,B ∈ H, on pose :

ρ(A,B) = sup
x∈A

d(x,B) et D(A,B) = max(ρ(A,B), ρ(B,A))1. Montrer que D est une distance sur H ; D est appelée la distance de Hausdor�.2. Montrer que x 7−→ {x} est une application isométrique de (X, d) dans (H, D).3. Montrer que (X, d) est précompact si et seulement si, pour tout ε > 0, il existe une partie�nie non vide A de X telle que D(X,A) ≤ ε.4. Supposons (X, d) précompact. Soient ε > 0 et A une partie �nie non vide de X telle que
X = ∪

a∈A
B′(a, ε).
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53(i) Soit B ∈ H et posons C =
{
x ∈ A ; d(x,B) ≤ ε

}. Montrer que C est une partiefermée bornée non vide de X et que D(B,C) ≤ ε.(ii) En déduire que (H, D) est précompact.5. On suppose (X, d) complet. Soit (An)n≥0 une suite dans (H, D) telle que pour tout n ≥ 0,on ait D(An, An+1) < 2−n. Pour tout n ≥ 0, soit Fn = ∪
k≥n

Ak et F = ∩
n≥0

Fn. Montrer que
F est une partie fermée bornée non vide de (X, d) et que la suite (An)n≥0 converge vers
F . En déduire que (H, D) est complet.6. Supposons que (X, d) est compact. En déduire que (H, D) est compact.Solution. 1. D'après la proposition 2.2.4, pour toute partie non vide E de X, l'application

x 7−→ d(x,E) est lipschitzienne de rapport 1, donc pour tous A,B ∈ H, ρ(A,B) existe dans R+.Par conséquent, D est bien dé�nie. Il est clair que l'on a D(A,B) = D(B,A), D(A,B) ≥ 0 etque D(A,A) = 0. Supposons que l'on a D(A,B) = 0, alors ρ(A,B) = 0 et ρ(B,A) = 0, d'oùpour tout x ∈ A, on a d(x,B) = 0 et pour tout y ∈ B, on a d(y,A) = 0. Comme A et B sontfermés dans X, alors on a A = B. Il reste à montrer l'inégalité triangulaire. Soient A,B,C ∈ H.Pour tout x ∈ A et pour tout y ∈ B, on a d(x,C) ≤ d(x, y) + d(y,C) ≤ d(x, y) + ρ(B,C), d'où :
d(x,C) ≤ inf

y∈B

{
d(x, y) + ρ(B,C)

}
= inf

y∈B
d(x, y) + ρ(B,C) = d(x,B) + ρ(B,C) .Donc on a ρ(A,C) ≤ ρ(A,B) + ρ(B,C). Par conséquent, on a ρ(A,C) ≤ D(A,B) + D(B,C).De même, on a ρ(C,A) ≤ D(C,B) + D(B,A) = D(A,B) + D(B,C). Donc on a D(A,C) ≤

D(A,B) +D(B,C). Donc D est bien une distance sur H.2. Pour tout x, y ∈ X, on a ρ({x}, {y}) = d(x, y), d'où D({x}, {y}) = d(x, y). Donc x 7−→ {x}est bien une application isométrique de (X, d) dans (H, D).3. Supposons (X, d) précompact, alors pour tout ε > 0, il existe une partie �nie non vide A de Xtelle que X = ∪
a∈A

B′(a, ε). Soit x ∈ X, alors il existe a ∈ A tel que d(x, a) ≤ ε, d'où d(x,A) ≤ ε.Donc on a ρ(X,A) ≤ ε. Comme on a ρ(A,X) = 0, alors D(X,A) ≤ ε.Réciproquement, supposons que pour tout ε > 0, il existe une partie �nie non vide A de X telleque D(X,A) ≤ ε. Soient ε > 0 et A une partie �nie non vide de X telle que D(X,A) ≤ ε. Alors,pour tout x ∈ X, on a d(x,A) ≤ ε. Comme A est �nie, il existe a ∈ A tel que d(x,A) = d(x, a),d'où d(x, a) ≤ ε. Donc on a X = ∪
a∈A

B′(a, ε). Par conséquent, (X, d) est précompact.4(i). Soient B ∈ H et C =
{
x ∈ A ; d(x,B) ≤ ε

}. Comme C est une partie �nie, alors Cest bornée et fermée dans X. Soit b ∈ B, alors il existe a ∈ A tel que b ∈ B′(a, ε). D'où on a
d(a,B) ≤ d(a, b) ≤ ε, donc a ∈ C. Par conséquent, C est non vide et on a d(b, C) ≤ d(b, a) ≤ ε,d'où ρ(B,C) ≤ ε. Pour tout x ∈ C, on a d(x,B) ≤ ε, d'où ρ(C,B) ≤ ε. Par conséquent, on a
D(B,C) ≤ ε.4(ii). Soit C l'ensemble des parties �nies non vides de A, alors C est un sous-ensemble �ni de Het on a H = B

C∈C
′(C, ε). Donc (H, D) est précompact.5. Pour tout n ≥ 0, on a D(An, An+1) < 2−n, d'où ρ(An, An+1) < 2−n. Donc, pour tout

x ∈ An, on a d(x,An+1) < 2−n. Par conséquent, pour tout x ∈ An, il existe y ∈ An+1 tel que
d(x, y) < 2−n. Ainsi, on trouve, par récurrence, une suite (an)n≥0 telle que pour tout n ≥ 0,
an ∈ An et d(an, an+1) < 2−n. Comme (X, d) est complet, il résulte de l'exercice 2.20 que lasuite (an)n≥0 est convergente. Soit a = lim

n→+∞
an. Comme (Fn)n≥0 est une suite décroissante departies fermées de X et pour tout n ≥ 0, on a an ∈ Fn, alors pour tout n ≥ 0, on a a ∈ Fn, donc

a ∈ F . Par conséquent, F est une partie fermée non vide de X. Soit ε > 0, alors il existe N ∈ Ntel que +∞∑

n=N

2−n < ε
2 . Soit n ≥ N . Soit x ∈ F , on a x ∈ Fn = ∪

k≥n
Ak. Pour tout k ≥ n, on a
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54 Chapitre 3. ESPACES COMPACTS
D(Ak, An) ≤

k−1∑

p=n

D(Ap, Ap+1) <
k−1∑

p=n

2−p < ε
2 . D'où pour tout k ≥ n et pour tout z ∈ Ak, on a

d(z,An) <
ε
2 . Donc on a d(x,An) ≤ ε

2 . On en déduit que F est bornée et que ρ(F,An) ≤ ε
2 , pourtout n ≥ N . Soit y ∈ An. On pose an = y et on construit, comme ci-dessus, une suite (ak)k≥ntelle que pour tout k ≥ n, ak ∈ Ak et d(ak, ak+1) < 2−k. Soit a = lim

k→+∞
ak, alors a ∈ F et ilexiste k > n tel que d(a, ak) < ε

2 . On a d(y, a) ≤ k−1∑

i=n

d(ai, ai+1) <
ε
2 , d'où d(y, a) < ε. Donc ona d(y, F ) < ε. Par conséquent, on a ρ(An, F ) ≤ ε. Finalement, on a D(An, F ) ≤ ε pour tout

n ≥ N . Autrement dit, la suite (An)n≥0 converge vers F . Donc (H, D) est complet, voir exercice2.20.6. Si (X, d) est compact, alors (X, d) est précompact et complet. Il résulte de ce qui précède que
(H, D) est précompact et complet, donc (H, D) est compact.Exercice 3.54. Soient (X, d) un espace métrique compact, (Y, d′) un espace métrique. Onmunit C(X, Y ), l'espace des applications continues de X dans Y , de la distance de la convergenceuniforme d∞ ; pour f, g ∈ C(X, Y ), on a d∞(f, g) = sup

x∈X
d′(f(x), g(x)). On munit l'espace produit

X × Y de la distance d1 ; d1((x, y), (a, b)) = d(x, a) + d′(y, b), pour tous (x, y), (a, b) ∈ X × Y .Soit H l'ensemble des sous-ensembles fermés bornés non vides de (X × Y, d1). On munit H dela distance de Hausdor� associée à d1. Soit G : C(X, Y ) −→ H dé�nie par : G(f) = Gf =
{(x, f(x)) ; x ∈ X} le graphe de f .1. Montrer que G est injective et lipschitzienne.2. Soit H0 l'image de G. Montrer que G est un homéomorphisme de C(X, Y ) sur H0.Solution. 1. Soient f, g ∈ C(X, Y ). Pour tout x ∈ X, on a :

d1
(
(x, f(x)), Gg

)
≤ d1

(
(x, f(x)), (x, g(x))

)
= d′(f(x), g(x)) ≤ d∞(f, g)d'où ρ(Gf , Gg) ≤ d∞(f, g). De même, on a ρ(Gg, Gf ) ≤ d∞(g, f) = d∞(f, g). Par conséquent,on a D(Gf , Gg) ≤ d∞(f, g). Donc G est lipschitzienne. Si on a Gf = Gg, alors pour tout x ∈ X,on a f(x) = g(x), d'où f = g. Donc G est injective.2. Soient f ∈ C(X, Y ) et (fn)n≥0 une suite dans C(X, Y ) telle que (Gfn)n≥0 converge vers Gfdans (H, D). Soit ε > 0. Comme f est uniformément continue, alors il existe 0 < η < ε

2 tel quepour tous x, z ∈ X véri�ant d(x, z) < η, on ait d′(f(x), f(z)) < ε
2 . Comme (Gfn)n≥0 convergevers Gf , alors il existe N ∈ N tel que pour tout n ≥ N , on ait D(Gfn , Gf ) < η < ε

2 . D'où pourtout n ≥ N , on a ρ(Gfn , Gf ) < η < ε
2 . On a ρ(Gfn , Gf ) = sup

x∈X
d1
(
(x, fn(x)), Gf

), donc pour tout
n ≥ N et pour tout x ∈ X, on a d1((x, fn(x)), Gf

)
< η. Donc, pour tout n ≥ N et pour tout

x ∈ X, il existe zn ∈ X tel que d(x, zn) + d′(fn(x), f(zn)) < η. En particulier, on a d(x, zn) < η,d'où d′(f(x), f(zn)) < ε
2 . On en déduit que l'on a :

d′(fn(x), f(x)) ≤ d′(fn(x), f(zn)) + d′(f(x), f(zn)) < η + ε
2 < ε .Donc, pour tout n ≥ N , on a d∞(fn, f) = sup

x∈X
d′(fn(x), f(x)) ≤ ε. Autrement dit, la suite

(fn)n≥0 converge vers f dans (C(X, Y ), d∞). Par conséquent, G est un homéomorphisme de
C(X, Y ) sur H0.
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55Exercice 3.55. Soit (X, d) un espace métrique localement compact séparable. Le but de cetexercice est de montrer que le compacti�é d'Alexandro� X̃ = X ∪ {∞} est métrisable †. Autre-ment dit, on veut dé�nir sur X̂ une distance qui induit la topologie de X̃. Soit (Vn)n≥0 une basedénombrable d'ouverts de X, voir théorème 2.2.1, et soit :
A =

{
(p, q) ∈ N2 ; Vp ⊂ Vq et Vp compact} .L'ensemble A est dénombrable ; posons A = {(pn, qn) ; n ≥ 0}. Pour tout n ≥ 0, soit φn ∈ Cc(X)tel que 0 ≤ φn ≤ 1, φn = 1 sur Vpn et Supp(f) ⊂ Vqn , voir théorème 3.6.1. On pose φn(∞) = 0,voir remarque 3.6.1. Pour tout x, y ∈ X̂, on pose :
D(x, y) =

∞∑

n=0

|φn(x)− φn(y)|
2n

.1. Montrer que D est une distance sur X̃.2. Soit (xm)m≥0 une suite dans X̃. Montrer que lim
m→+∞

D(xm,∞) = 0 si et seulement si pourtout compact K de X, il existe m0 ∈ N tel que pour tout m ≥ m0, on ait xm 6∈ K.3. Soient (xm)m≥0 une suite dans X et x ∈ X. Montrer que lim
m→+∞

D(xm, x) = 0 si etseulement si lim
m→+∞

d(xm, x) = 04. Montrer que la topologie induite par D sur X̂ est égale à la topologie de X̃.Solution. 1. Ceci est trivial.2. Soit (xm)m≥0 une suite dans X̃. Supposons d'abord que lim
m→+∞

D(xm,∞) = 0. Pour tout
m ≥ 0, on a D(xm,∞) =

∞∑

n=0

φn(xm)

2n
. Comme X est localement compact, d'après le théorème3.4.1, pour tout x ∈ X, il existe n ≥ 0 tel que x ∈ Vpn ⊂ Vpn ⊂ Vqn . On en déduit que si Kest un compact de X, alors il existe N ∈ N tel que K ⊂ N∪

n=0
Vpn . Soit ε > 0 tel que ε < 1

2N
.Alors il existe m0 ∈ N tel que pour tout m ≥ m0, on ait ∞∑

n=0

φn(xm)

2n
= D(xm,∞) < ε. Soit

m ≥ m0. Si xm ∈ K, alors il existe n ∈ {0, . . . , N} tel que xm ∈ Vpn , d'où φn(xm) = 1, doncon a D(xm,∞) ≥ 1
2n ≥ 1

2N
> ε, ce qui est impossible. Par conséquent, pour tout m ≥ m0, on a

xm 6∈ K.Réciproquement, supposons que pour tout compact K de X, il existe m0 ∈ N tel que pour tout
m ≥ m0, on ait xm 6∈ K. Soit ε > 0. Alors il existe N ∈ N tel que ∞∑

n=N

1
2n < ε. Soit K =

N∪
n=0

Vpn .Alors K est un compact de X. Par hypothèse, il existe m0 ∈ N tel que pour tout m ≥ m0,on ait xm 6∈ K. Alors pour tout n ∈ {0, . . . , N} et pour tout m ≥ m0, on a φn(xm) = 0.Donc, pour tout m ≥ m0, on a D(xm,∞) =

∞∑

n=N

φn(xm)

2n
≤

∞∑

n=N

1
2n < ε. Par conséquent, on a

lim
m→+∞

D(xm,∞) = 0.3. Soient (xm)m≥0 une suite dans X et x ∈ X. Supposons d'abord que lim
m→+∞

d(xm, x) = 0.
†. Notons que si X est un espace localement compact et si X̃ = X∪{∞} est métrisable, alors X est métrisableet séparable.
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56 Chapitre 3. ESPACES COMPACTSAutrement dit, (xm)m≥0 converge vers x dans (X, d). Soit ε > 0. Alors il existe N ≥ 1 tel que
∞∑

n=N

2
2n < ε

2 . On a :
D(xm, x) =

∞∑

n=0

|φn(xm)− φn(x)|
2n

=
N−1∑

n=0

|φn(xm)− φn(x)|
2n

+
∞∑

n=N

|φn(xm)− φn(x)|
2n

≤
N−1∑

n=0

|φn(xm)− φn(x)|
2n

+

∞∑

n=N

2

2n

<
N−1∑

n=0

|φn(xm)− φn(x)|
2n

+ ε
2 .Comme pour tout n ∈ {0, . . . , N − 1}, φn est continue, alors il existe m0 ∈ N tel que pour tout

n ∈ {0, . . . , N − 1} et pour tout m ≥ m0, on ait |φn(xm)− φn(x)|
2n

< ε
2N . Par conséquent, pourtout m ≥ m0, on a D(xm, x) < ε. Autrement dit, on a lim

m→+∞
D(xm, x) = 0.Réciproquement, supposons que lim

m→+∞
D(xm, x) = 0. On a D(xm, x) =

∞∑

n=0

|φn(xm)− φn(x)|
2n

.Si (xm)m≥0 ne converge pas vers x dans (X, d), alors il existe un voisinage compact W de x dans
(X, d) tel que pour tout m0 ∈ N, il existe m ≥ m0 tel que xm 6∈ W . On en déduit qu'il existe
N ∈ N tel que x ∈ VpN et tel que pour tout m0 ∈ N, il existe m ≥ m0 tel que xm 6∈ VpN . Parconséquent, pour tout m0 ∈ N, il existe m ≥ m0 tel que D(xm, x) ≥

|φN (xm)− φN (x)|
2N

= 1
2N

,ce qui est impossible. Donc (xm)m≥0 converge bien vers x dans (X, d).4. Puisque (X, d) est localement compact et séparable, il résulte de la proposition 3.4.4 que
X est dénombrable à l'in�ni. Par conséquent, tout point de X̃ possède une base dénombrablede voisinages, voir théorème 2.2.1 et exercice 3.44. On déduit alors du théorème 1.7.3 et despropriétés 2 et 3 ci-dessus que l'application identité

X̃ −→ (X̃, D)
x 7−→ xest un homéomorphisme. Par conséquent,la topologie induite par D sur X̂ est égale à la topologiede X̃ .Exercice 3.56. Soit (X, d) un espace métrique avec d bornée. Pour tout x ∈ X, on désigne par

fx la fonction réelle obtenue en prolongeant par continuité la fonction y 7−→ d(x, y) à β(X).1. Montrer que pour tous x ∈ X, y ∈ X et z ∈ β(X), on a fx(z) + fy(z) ≥ d(x, y) et
|fx(z) − fy(z)| ≤ d(x, y). En déduire que pour tout x ∈ X et pour tout z ∈ β(X), on a
fx(z) ≥ 0.2. Montrer que pour tous x ∈ X et z ∈ β(X) tels que z 6= x, on ait fx(z) > 0.
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57Solution. 1. Soient x, y ∈ X. Pour tout z ∈ β(X), soit g(z) = fx(z) + fy(z), alors g estune fonction continue de β(X) dans R et pour tout a ∈ X, on a g(a) = fx(a) + fy(a) =
d(x, a) + d(y, a) ≥ d(x, y). Donc g−1

(
[d(x, y), +∞[

) est un fermé de β(X) contenant X. Comme
X est dense dans β(X), on en déduit que l'on a β(X) ⊂ g−1

(
[d(x, y), +∞[

). Autrement dit,pour tout z ∈ β(X), on a fx(z) + fy(z) ≥ d(x, y). De même, pour tout z ∈ β(X), soit
h(z) =

∣∣fx(z)−fy(z)
∣∣, alors h est une fonction continue de β(X) dans R et pour tout a ∈ X, on a

h(a) =
∣∣fx(a)−fy(a)

∣∣ =
∣∣d(x, a)−d(y, a)

∣∣ ≤ d(x, y). Donc h−1
(
[0, d(x, y)]

) est un fermé de β(X)contenant X. Comme X est dense dans β(X), on en déduit que l'on a β(X) ⊂ h−1
(
[0, d(x, y)]

).Autrement dit, pour tout z ∈ β(X), on a ∣∣fx(z) − fy(z)∣∣ ≤ d(x, y). Pour tout x ∈ X et pourtout z ∈ β(X), on a fx(z) + fx(z) ≥ d(x, x) = 0, d'où fx(z) ≥ 0.2. Soient x ∈ X et z ∈ β(X) tels que z 6= x. Alors il existe un voisinage ouvert Wx de x dans
β(X) et un voisinage ouvert Wz de z dans β(X) tels que Wx ∩Wz = ∅. Si fx(z) = 0, comme
fx est continue, alors pour tout n ≥ 1, il existe un voisinage ouvert Vn de z dans β(X) tel que
Vn ⊂ Wz et pour tout y ∈ Vn, on ait 0 ≤ fx(y) <

1
n . Puisque X est dense dans β(X), alors

Vn ∩X 6= ∅. Donc, pour tout n ≥ 1, il existe xn ∈ X tel que xn 6∈ Wx ∩X et d(x, xn) < 1
n . Parconséquent, la suite (xn)n≥1 converge vers x dans X et pour tout n ≥ 1, xn 6∈ Wx ∩X, d'où lacontradiction. Donc on a bien fx(z) > 0.Exercice 3.57. Soient X un espace discret dénombrable et X̃ = X ∪ {∞} son compacti�éd'Alexandro�. Soient Y un espace discret in�ni non dénombrable et Ỹ = Y ∪{∞} son compacti�éd'Alexandro�. Soit Z =

(
X̃ × Ỹ

)
\ {(∞,∞)}. Comme Z est un ouvert d'un espace compact,alors Z est localement compact, voir corollaire 3.4.3.1. Soient A = X×{∞} et B = {∞}×Y . Montrer que A et B sont des sous-ensembles fermésdisjoints de Z.2. Montrer que Z n'est pas un espace normal.Solution. 1. Comme on a A =

(
X̃ × {∞}

)
∩ Z et B =

(
{∞} × Ỹ

)
∩ Z, alors A et B sont dessous-ensembles fermés de Z. Il est clair que A et B sont disjoints.2. Soient U et V des ouverts de Z tels que A ⊂ U et B ⊂ V . Montrons que l'on a U ∩ V 6= ∅.Notons d'abord que U et V sont aussi des ouverts de l'espace X̃×Ỹ . Pour tout x ∈ X, (x,∞) ∈ U ,donc il existe un ensemble �ni Fx de Y tel que {x} × (Ỹ \ Fx

)
⊂ U . Soit D = ∪

x∈X
Fx , alors

D est un sous-ensemble au plus dénombrable de Y . Soit y ∈ Y \D. Alors on a X × {y} ⊂ Uet (∞, y) ∈ X × {y}. Comme on a aussi (∞, y) ∈ B ⊂ V , on en déduit que U ∩ V 6= ∅. Parconséquent, Z n'est pas un espace normal.
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Chapitre 4ESPACES CONNEXESThéorème. Soit (Xi)i∈I une famille d'espaces topologiques non vides. Alors l'espace topologiqueproduit X =
∏
i∈I
Xi est connexe si et seulement si pour tout i ∈ I, Xi est connexe.Démonstration. Supposons que X est connexe. Comme les projections canoniques pi : X −→

Xi sont continues et surjectives, alors pour tout i ∈ I, Xi est connexe.Réciproquement, supposons que pour tout i ∈ I, Xi est connexe. Montrons d'abord que leproduit de deux espaces topologiques connexes est connexe. Soient Y , Z des espaces topologiquesconnexes et f : Y × Z −→ {0, 1} une application continue. Soit (y, z), (y′, z′) ∈ Y × Z. Puisqueles ensembles {y} × Z et Y × {z} sont connexes et d'intersection non vide, alors leur réunion
A =

(
{y} × Z

)
∪
(
Y × {z}

) est connexe. De même, B =
(
{y′} × Z

)
∪
(
Y × {z′}

) est connexe.Comme on a A∩B 6= ∅, alors A∪B est connexe. Donc la restriction de f à A∪B est constante,d'où f(y, z) = f(y′, z′). Par conséquent, f est constante. Il résulte de la proposition 4.1.1 que
Y × Z est connexe.On déduit, par récurrence, qu'un produit �ni d'espaces topologiques connexes est connexe. Ene�et, supposons que cette propriété est vraie pour n ≥ 2 espaces topologiques connexes, etsoient E1, . . . , En+1 des espaces topologiques connexes. Comme le produit E1 × . . . × En+1 esthoméomorphe au produit de deux espaces topologiques connexes (E1 × . . . × En

)
× En+1, alorsil est connexe.Soit f : X −→ {0, 1} une application continue. Fixons a = (ai)i∈I ∈ X. Comme f est continueen a et {f(a)} est ouvert dans {0, 1}, alors il existe un voisinage V de a dans X tel que pourtout x ∈ V , on ait f(x) = f(a). D'après la dé�nition de la topologie produit, il existe un sous-ensemble �ni J de I et des voisinages Vi de ai dans Xi tel que ∏

i∈I
Vi ⊂ V et pour tout i ∈ I \ J ,on ait Vi = Xi. Ainsi, pour tout x = (xi)i∈I ∈ X tel que xj = aj pour tout j ∈ J , on ait

f(x) = f(a). Fixons y = (yi)i∈I ∈ X, et considérons l'application ϕ :
∏
j∈J

Xj −→ X dé�nie par
ϕ((zj)j∈J) = (xi)i∈I où xi = yi si i ∈ I \ J , et xi = zi si i ∈ J . Alors ϕ est continue. Comme∏
j∈J

Xj est connexe, alors f ◦ ϕ est constante sur ∏
j∈J

Xj . D'où on a :
f(a) = f

(
ϕ
(
(aj)j∈J

))
=
(
f ◦ ϕ

)(
(aj)j∈J

)
=
(
f ◦ ϕ

)(
(yj)j∈J

)
= f

(
ϕ
(
(yj)j∈J

))
= f(y) .Par conséquent, f est constante sur X, donc X est connexe. �Proposition. Soit I un intervalle ouvert de R et f : I −→ R une application continue. Lespropriétés suivantes sont équivalentes.(i) L'application f est ouverte. 59
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60 Chapitre 4. ESPACES CONNEXES(ii) L'application f est injective.(iii) L'application f est strictement monotone.Démonstration. Montrons l'implication (i)=⇒ (ii). Soient x, y ∈ I tels que x < y. Comme f estcontinue et ouverte, il résulte du corollaire précédent que l'on a f([x, y]) = [a, b] et que f(]x, y[)est un intervalle ouvert non vide de R, d'où a 6= b. Or on a f([x, y]) = f
(
]x, y[

)
∪ {f(x), f(y)},d'où {f(x), f(y)} = {a, b}. Par conséquent, on a f(x) 6= f(y). Donc f est injective.Preuve de (ii) =⇒ (iii). Soient A = {(x, y) ∈ I2 ; x < y} et g : A −→ R dé�nie par g(x, y) =

f(y)− f(x). Véri�ons d'abord que A est connexe. Soient (x, y), (x′, y′) ∈ A, et soit t ∈ ]0, 1[, ona tx + (1 − t)x′ < ty + (1 − t)y′, donc pour tout t ∈ [0, 1], on a t(x, y) + (1 − t)(x′, y′) ∈ A.Or l'application t 7−→ t(x, y) + (1 − t)(x′, y′) est continue de [0, 1] dans A, donc pour tous
(x, y), (x′, y′) ∈ A, il existe une partie connexe B de A contenant (x, y) et (x′, y′). Il résulte duthéorème 4.1.1 que A est connexe. Comme g est continue, alors g(A) est un intervalle de R. Or fest injective, donc 0 6∈ g(A). Par conséquent, soit on a g(A) ⊂ ]0, +∞[, soit on a g(A) ⊂ ]−∞, 0[.Donc f est strictement monotone.Preuve de (iii) =⇒ (i). Notons d'abord que f est strictement croissante si et seulement si −fest strictement décroissante. De même, f est ouverte si et seulement si −f est ouverte. Donc,on peut supposer f strictement croissante. Soient x, y ∈ I tels que x < y. Alors pour tout
t ∈ ]x, y[, on a f(x) < f(t) < f(y). Comme f est continue, alors on a f([x, y]) = [f(x), f(y)],d'où f(]x, y[) = ]f(x), f(y)[. Comme tout ouvert de I est réunion d'intervalles ouverts, alors fest une application ouverte. �Notons que dans la preuve de l'implication (ii) =⇒ (iii), l'intervalle I n'a pas besoin d'être ouvert.Corollary. Soient I un intervalle de R et f : I −→ R une application. Soit J = f(I). Alors fest un homéomorphisme de I sur J si et seulement si f est continue et strictement monotone.Démonstration. Si f est un homéomorphisme de I sur J , alors f est continue et injective.Alors il résulte de la proposition précédente que f est strictement monotone.Réciproquement, supposons que f est continue et strictement monotone. Il su�t de traiter lecas où f est strictement croissante. Alors J = f(I) est un intervalle de même nature que I et ona f( ◦

I
)
=

◦
J . D'après la proposition précédente, f est un homéomorphisme de ◦

I sur ◦
J . Il resteà montrer que f−1 : J −→ I est continue en tout point de J\ ◦

J . Supposons, par exemple, que
I = ]−∞, a], et soit z < a. Comme f est continue et injective et comme [z, a] est compact, alors
f réalise un homéomorphisme de [z, a] sur [f(z), f(a)], donc la restriction de f−1 à [f(z), f(a)]est continue. Or [f(z), f(a)] est un voisinage de f(a) dans J , donc f−1 est continue en f(a). Parconséquent, f est un homéomorphisme de I sur J . On fait le même raisonnement pour les autrescas, où I = ]α, a], I = [α, a] et I = [a, +∞[. �Proposition. Soit X un espace compact. Pour tout x ∈ X, la composante connexe de x estl'intersection des voisinages de x à la fois ouverts et fermés dans X.Démonstration. Soient x ∈ X et Cx sa composante connexe. Soit (Ai)i∈I la famille des ouvertset fermés dans X contenant x. Notons que l'ensemble I est non vide car X est à la fois ouvertet fermé dans X et on a x ∈ X. Soit K = ∩

i∈I
Ai. D'après le théorème 4.2.1, pour tout i ∈ I, on a

Cx ⊂ Ai, d'où Cx ⊂ K. Pour montrer l'autre inclusion, il su�t de montrer que K est connexe.Notons d'abord que K est une partie compacte de X. Supposons que K n'est pas connexe.Puisque K est fermé dans X et non connexe, alors il existe deux fermés non vides et disjoints Eet F dans X tels que K = E ∪ F . Donc E et F sont compacts. D'après la proposition 3.1.2, il
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61existe deux ouverts disjoints U et V dans X tels que E ⊂ U et F ⊂ U . Donc on a K ⊂ U ∪ V ,
K ∩ U 6= ∅ et K ∩ V 6= ∅. D'après l'exercice 3.2, il existe un sous-ensemble �ni J de I tel que
A = ∩

j∈J
Aj ⊂ U ∪ V . Notons que A est à la fois ouvert et fermé dans X et on a x ∈ A. Alors

A ∩ U est un ouvert de X. Comme on a A ∩ U = A ∩ (X \ V ), alors A ∩ U est aussi fermédans X. On véri�e de même que A ∩ V est la fois ouvert et fermé dans X. Si x ∈ U , alors on a
K ⊂ A ∩ U ⊂ U , ce qui est impossible car K ∩ V 6= ∅. Si x ∈ V , alors on a K ⊂ A ∩ V ⊂ V , cequi est impossible car K ∩ U 6= ∅. Donc K est bien connexe. Par conséquent, on a Cx = K. �Proposition. Soit (X, d) un espace métrique compact. Les propriétés suivantes sont équiva-lentes.(i) X est localement connexe.(ii) Pour tout ε > 0, X est réunion �nie de connexes de diamètre ≤ ε.Démonstration. Montrons l'implication (i) =⇒ (ii). Soit ε > 0. Pour tout x ∈ X, soit Vx unvoisinage connexe de x dans X tel que Vx ⊂ B

(
x, ε2

). Donc le diamètre de Vx est ≤ ε. Comme
( ◦
Vx
)
x∈X est un recouvrement ouvert de X, alors il existe x1, . . . , xn ∈ X tels que X =

n∪
i=1
Vxi

.Ainsi, X est réunion �nie de connexes de diamètre ≤ ε.Preuve de (ii) =⇒ (i). Soit x ∈ X. Soient ε > 0 et A1, . . . , An un recouvrement de X par desconnexes de diamètre ≤ ε. Quitte à remplacer Ai par Ai, connexe de même diamètre, on peutsupposer que les Ai sont fermés dans X. Soit I = {i ; x ∈ Ai}. On distingue deux cas :Premier cas : I = {1, . . . , n}. Alors X = ∪
i∈I
Ai est connexe et on a X ⊂ B′(x, ε).Deuxième cas : I 6= {1, . . . , n}. Soit J = {1, . . . , n} \ I, alors A = ∪

i∈I
Ai est connexe dans X,

V = ∩
j∈J

(X \ Aj) est un ouvert de X contenant x et on a V ⊂ A ⊂ B′(x, ε). Donc A est unvoisinage connexe de x dans X. Par conséquent, X est localement connexe. �Supplément d'exercicesExercice 4.33. Soit X =
(
{0} × [−1, 1]

)
∪
(
[−1, 1]×{0}

) muni de la topologie induite par R2.1. Montrer que X est compact et connexe.2. Montrer que X \ {(0, 0)} a quatre composantes connexes.3. Soit A = {(0,−1), (1, 0), (0, 1), (−1, 0)}.(i) Soit (x, y) ∈ X\(A∪{(0, 0)}). Montrer que X\{(x, y)} a deux composantes connexes.(ii) Soit (x, y) ∈ X. Montrer que X \ {(x, y)} est connexe si et seulement si (x, y) ∈ A.4. Montrer que X n'est pas homéomorphe à aucune partie de R. En déduire qu'il n'existe pasd'application continue injective de X dans R.Solution. 1. Comme X est fermé et borné dans R2, alors X est compact. Comme {0} × [−1, 1]et [−1, 1]× {0} sont connexes d'intersection non vide, alors X est connexe.2. Soient U− = X ∩
(
] − ∞, 0[×R

), U+ = X ∩
(
]0, +∞[×R

), V − = X ∩
(
R×] − ∞, 0[

) et
V + = X ∩

(
R×]0, +∞[

). Alors U−, U+, V − et V + sont des ouverts dans X \ {(0, 0)} non vides,deux à deux disjoints et connexes tels que X \ {(0, 0)} = U− ∪ U+ ∪ V − ∪ V +. Il résulte duthéorème 4.2.1 que U−, U+, V − et V + sont les composantes connexes de X \ {(0, 0)}.3(i). Soit (x, y) ∈ X \ (A ∪ {(0, 0)}). Il y a quatre cas :Premier cas : x ∈ ] − 1, 0[. Soient U = X ∩
(
] −∞, x[×R

) et V = X ∩
{
(a, b) ∈ R2 ; a > x

}.Alors U et V sont des ouverts dans X \ {(x, y)} non vides, disjoints et connexes tels que
X \ {(x, y)} = U ∪ V . D'après le théorème 4.2.1, U et V sont les composantes connexes de
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62 Chapitre 4. ESPACES CONNEXES
X \ {(x, y)}.Deuxième cas : y ∈ ]0, 1[. Soient U = X ∩

(
R×]y, +∞[

) et V = X ∩
{
(a, b) ∈ R2 ; b < y

}.Alors U et V sont des ouverts dans X \ {(x, y)} non vides, disjoints et connexes tels que
X \ {(x, y)} = U ∪ V . D'après le théorème 4.2.1, U et V sont les composantes connexes de
X \ {(x, y)}. On fait le même raisonnement pour les cas x ∈ ]0, 1[ et y ∈ ]− 1, 0[.3(ii). Soit (x, y) ∈ A. Si, par exemple, (x, y) = (1, 0), alors on a X \ {(x, y)} = ([−1, 1[×{0}) ∪(
{0} × [−1, 1]

), donc X \ {(x, y)} est connexe. De même pour les autres cas.Réciproquement, si (x, y) 6∈ A, il résulte de 2 et de 3(i) que X \{(x, y)} n'est pas connexe. Donc,si X \ {(x, y)} est connexe, alors (x, y) ∈ A.4. Comme X est compact et connexe, si X est homéomorphe à une partie de R, alors cettepartie serait un intervalle fermé borné non vide et non réduit à un point, donc de la forme
[a, b]. Or, pour tout t ∈ [a, b], [a, b] \ {t} est ou bien connexe ou bien a deux composantesconnexes. Comme X \ {(0, 0)} a quatre composantes connexes, alors X n'est pas homéomorpheà aucune partie de R. Comme X est compact, s'il existe une application continue injective de
X dans R, alors X serait homéomorphe à son image qui est une partie de R, ce qui est impossible.Exercice 4.34. Soient X un espace topologique et R une relation d'équivalence dans X telleque les classes d'équivalence suivant R soient connexes. On note q : X −→ X/R l'applicationquotient.1. Montrer que les composantes connexes de X sont saturées par R.2. Montrer que toute partie ouverte et fermée de X est saturée par R.3. Montrer que les composantes connexes de X sont les images réciproques par q des composa-ntes connexes de X/R.Solution. 1. Soit C une composante connexe de X. Soit x ∈ C. Comme q−1

(
{q(x)}

), la classede x suivant R, est connexe et on a C ∩ q−1
(
{q(x)}

)
6= ∅, il résulte du théorème 4.2.1 que

q−1
(
{q(x)}

)
⊂ C. Donc C est saturée par R.2. Soit A une partie à la fois ouverte et fermée de X. Soit x ∈ A. Comme q−1

(
{q(x)}

) est connexeet on a A ∩ q−1
(
{q(x)}

)
6= ∅, il résulte de la proposition 4.1.2 que q−1({q(x)}) ⊂ A. Donc A estsaturée par R.3. Soit C une composante connexe de X. Alors q(C) est une partie connexe de X/R. D'après lethéorème 4.2.1, il existe une composante connexe D de X/R telle que q(C) ⊂ D. De plus D estfermée dans X/R. D'après le théorème 4.1.3, q−1(D) est une partie connexe de X. Comme on a

C ⊂ q−1(q(C)) ⊂ q−1(D), alors C = q−1(D).Exercice 4.35. Pour tout n ∈ N∗, soit Cn =
{
(x, y) ∈ R2 ; x = 1

n et − 1 ≤ y ≤ 1
}. Soit

X = ∪
n≥1

Cn ∪
(
{0}×]0, 1]

)
∪
(
{0} × [−1, 0[

).1. Déterminer les composantes connexes de X.2. Véri�er que X est localement compact.3. Montrer que dans X il y a des points z dont la composante connexe dans X est distinctede l'intersection des ensembles à la fois ouverts et fermés dans X qui contiennent z.Solution. 1. Il est clair que pour tout n ≥ 1, Cn est connexe et fermé dans X. Soit U =
{
(x, y) ∈

R2 ; x > 1
2

}, alors U est un ouvert de R2 et on a U ∩X = C1, donc C1 est aussi ouvert dans X.Soient n ≥ 2 et α, β ∈ R tels que 1
n+1 < α < 1

n < β < 1
n−1 . Soit U = {(x, y) ∈ R2 ; α < x < β},alors U est un ouvert de R2 et on a U ∩X = Cn, donc Cn est aussi ouvert dans X. Il résulte duthéorème 4.2.1 que pour tout n ≥ 1, Cn est une composante connexe de X.Soient A = {0}×]0, 1] et B = {0} × [−1, 0[. Il est clair que A et B sont connexes. Comme
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{0} × [0, 1] et {0} × [−1, 0] sont fermés dans R2 et on a ({0} × [0, 1]

)
∩ X = A et ({0} ×

[−1, 0]
)
∩X = B, alors A et B sont fermés dans X. Soient a = (0, y) ∈ A et Ca la composanteconnexe de a dans X. Alors, pour tout n ≥ 1, Ca∩Cn = ∅. Comme A est connexe, on a A ⊂ Ca.Si Ca∩B 6= ∅, alors on a Ca = A∪ (Ca∩B), avec A et Ca∩B sont des fermés non vides disjointsde X, donc Ca n'est pas connexe, ce qui est impossible. Donc on a Ca = A. On fait le mêmeraisonnement, et on obtient que B est aussi une composante connexe de X.2. C'est clair.3. Soit a = (0, y) ∈ A. Soit U une partie à la fois ouverte et fermée dans X contenant a. Comme

A est connexe, Il résulte de la proposition 4.1.2 que l'on a A ⊂ U . Soit U ′ un ouvert de R2 tel que
U ′ ∩X = U . Soient ε > 0 tel que ]− ε, +ε[×{y} ⊂ U ′ et N ∈ N∗ tel que 1

N < ε. Alors pour tout
n ≥ N , on a U ∩Cn 6= ∅, d'où pour tout n ≥ N , on a Cn ⊂ U . Comme pour tout t ∈ [−1, 0[, on a
(0, t) = lim

n→+∞

(
1
n , t
) et U est fermée dans X, on en déduit que B ⊂ U . Comme pour tout n ≥ 1,

Cn est à la fois ouvert et fermé dans X, on en déduit qu'une partie U de X contenant a est àla fois ouverte et fermée dans X si et seulement s'il existe N ≥ 1 tel que U = X \ N−1∪
n=1

Cn. Doncl'intersection des ensembles à la fois ouverts et fermés dans X qui contiennent a est l'ensemble
A ∪B. Par contre, d'après 2, la composante connexe de a est A.Exercice 4.36. Considérons dans R2 l'espace X = ∪

q∈Q
Dq, où Dq = {(q, y) ; y ∈ R}. Montrerque les Dq sont les composantes connexes de X et que pour tout q ∈ Q, Dq n'est pas ouvert dans

X.Solution. Il est clair que pour tout q ∈ Q, Dq est connexe. Soient a = (q, y0) ∈ Dq et Ca lacomposante connexe de a dans X. Alors on a Dq ⊂ Ca. Supposons que Ca∩Dq′ 6= ∅, avec q′ 6= q,par exemple, q′ < q. Soient α ∈ R \ Q tel que q′ < α < q et U = {(x, y) ∈ R2 ; x < α} et
V = {(x, y) ∈ R2 ; x > α}. Alors on a Ca = (Ca∩U)∪(Ca∩V ) et Ca∩U , Ca∩V sont des ouvertsdisjoints non vides deX. Donc Ca n'est pas connexe, ce qui est impossible. Donc on a Ca∩Dq′ = ∅pour tout q′ 6= q, d'où Ca = Dq. Par conséquent, les Dq sont les composantes connexes de X. Si
Dq est un ouvert de X, alors il existe un ouvert U ′ de R2 tel que Dq = X ∩U ′. Soit ε > 0 tel que
]q − ε, q + ε[×{0} ⊂ U ′. Soit q′ ∈ ]q − ε, q + ε[∩Q tel que q′ 6= q, alors Dq′ ∩ U ′ 6= ∅, d'où on a
Dq∩Dq′ 6= ∅, ce qui est impossible. Par conséquent, pour tout q ∈ Q, Dq n'est pas ouvert dans X.Exercice 4.37. Soient X un espace connexe et A une partie connexe de X.1. Montrer que si U est une partie à la fois ouverte et fermée dans X \ A, alors A ∪ U estconnexe.2. Montrer que si C est une composante connexe de X \ A, alors X \ C est connexe.Solution. 1. Soit f : A ∪ U −→ {0, 1} une application continue. Comme A est connexe,alors f|A est constante. Soit y ∈ {0, 1} tel que pour tout a ∈ A, on ait f(a) = y. Soit
V = X \ (A ∪ U) = (X \ A) \ U . Alors V est à la fois ouverte et fermée dans X \ A. Pourtout z ∈ V , on pose g(z) = y et pour tout x ∈ A ∪ U , on pose g(x) = f(x). Ainsi, on obtientune application de X dans {0, 1}. Comme U est fermé dans X \ A, alors on a U = U ∩X \ A,d'où U = U ∪ (U ∩ A) ⊂ U ∪ A. Donc g|U = f|U est continue. De même, comme V est aussifermé dans X \ A, alors on a V ⊂ V ∪ A. Or pour tout z ∈ V ∪ A, on a g(z) = y, donc g|V estaussi continue. L'adhérence de A dans U ∪ A est A ∩ (U ∪ A), voir exercice 1.24. Comme f estcontinue, alors pour tout x ∈ A ∩ (U ∪ A), on a f(x) = y. Par conséquent, pour tout x ∈ A,on a g(x) = y. Ainsi, g|A est continue. Comme on a X = A ∪ U ∪ V , alors g est continue, voirproposition 1.4.4. Or X est connexe, donc g est constante, d'où f est constante. Par conséquent,
A ∪ U est connexe.
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64 Chapitre 4. ESPACES CONNEXES2. Soit f : X \ C −→ {0, 1} une application continue. Comme A est connexe, alors f|A estconstante. Donc il existe y ∈ {0, 1} tel que pour tout a ∈ A, on ait f(a) = y. Si f n'est pasconstante, alors U = f−1
(
{1−y}

) est un ouvert et fermé non vide dans X \C et on a U ⊂ X \A.D'après 1, C ∪ U est connexe, ce qui est impossible car C est une composante connexe. Parconséquent, f est constante, donc X \ C est connexe.Exercice 4.38. Soit X un espace topologique non vide. Montrer que les propriétés suivantessont équivalentes.(i) L'espace X connexe.(ii) Pour tout recouvrement ouvert �ni (Ui)i∈I de X, il existe un nombre entier n ≥ 1 et deséléments i1, . . . , in de I tels que X =
n∪

k=1
Uik et tels que pour tout k ∈ {1, . . . , n − 1}, onait ik 6= ik+1 et Uik ∩ Uik+1

6= ∅.Solution. Montrons l'implication (ii) =⇒ (i). Soient U et V des ouverts non vides de X tels que
X = U ∪ V . On déduit de l'hypothèse que l'on a U ∩ V 6= ∅. Donc X est connexe.Montrons l'implication (i) =⇒ (ii). Soit (Ui)i∈I un recouvrement ouvert �ni de X. On peut sup-poser que pour tout i ∈ I, on ait U 6= ∅. On va raisonner par récurrence sur le nombre d'élémentsde I. Si I est réduit à un seul élément, l'implication est triviale. Supposons que l'implication estvraie si card(I) = p et montrons qu'alors l'implication est vraie si card(I) = p + 1. Supposonsdonc que l'on a card(I) = p + 1. Soit α ∈ I. Comme X est connexe, alors il existe β ∈ I telque β 6= α et Uα ∩ Uβ 6= ∅. Soit Wα = Uα ∪ Uβ et pour tout i ∈ I \ {α, β}, soit Wi = Ui.Soit J = I \ {β}, alors (Wj)j∈J est un recouvrement ouvert �ni de X et J est de cardinal p.D'après l'hypothèse de récurrence, il existe un entier q ≥ 1 et des éléments j1, . . . , jq de J telsque X =

q
∪

k=1
Wjk et pour tout k ∈ {1, . . . , q − 1}, on ait jk 6= jk+1 et Wjk ∩Wjk+1

6= ∅. Soit
k ∈ {1, . . . , q}. Si k est tel que jk 6= α, alors on pose ik = jk et on a Wjk = Ujk = Uik . Si
k est tel que jk = α, alors on a Wjk−1

= Ujk−1
, Wjk+1

= Ujk+1
, Ujk−1

∩ (Uα ∪ Uβ) 6= ∅ et
(Uα ∪ Uβ) ∩ Ujk+1

6= ∅. Supposons, par exemple, Ujk−1
∩ Uα 6= ∅, les ouverts Uα et Uβ jouent unrôle symétrique. Alors on pose Uik = Uα. Ensuite, on distingue deux cas :Premier cas : si Ujk+1

∩ Uβ 6= ∅, alors on pose Uik′ = Uβ.Deuxième cas : si Ujk+1
∩Uβ = ∅, alors on a Ujk+1

∩Uα 6= ∅. On pose alors Uik′ = Uβ et Uik′′ = Uα.Ainsi, dans les deux cas, on trouve donc un nombre entier n ≥ 1 et des éléments i1, . . . , in de Itels que X =
n∪

k=1
Uik et tels que pour tout k ∈ {1, . . . , n− 1}, on ait ik 6= ik+1 et Uik ∩Uik+1

6= ∅.Par conséquent, l'implication (i) =⇒ (ii) est vraie si card(I) = p+ 1. D'où le résultat.Exercice 4.39. Soient I un intervalle ouvert de R et f : I −→ R une application dérivable.Soient A = {(x, y) ∈ I × I ; x < y} et g : A −→ R dé�nie par g(x, y) = f(y)− f(x)
y − x .1. Montrer que g(A) ⊂ f ′(I) ⊂ g(A).2. Montrer que A est connexe. En déduire que f ′(I) est un intervalle. Autrement dit, f ′ a lapropriété de la valeur intermédiaire.Solution. 1. Soit x ∈ I, alors il existe N ∈ N∗ tel que pour tout n ≥ N , on ait x + 1

n ∈ I.D'où, pour tout n ≥ N , on a (x, x+ 1
n

)
∈ A et f(x+ 1

n

)
− f(x)

1
n

= g
(
x, x+ 1

n

)
∈ g(A). Comme

f est dérivable en x, alors on a f ′(x) = lim
n→+∞

f
(
x+ 1

n

)
− f(x)

1
n

, d'où f ′(x) ∈ g(A). Donc on a
f ′(I) ⊂ g(A). D'autre part, soit (x, y) ∈ A, d'après le théorème des accroissements �nis, il existe
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t ∈ ]x, y[ tel que f(y) − f(x) = f ′(t)(y − x), d'où g(x, y) = f(y)− f(x)

y − x = f ′(t) ∈ f ′(I). Doncon a g(A) ⊂ f ′(I).2. Soient (x, y), (x′, y′) ∈ A et t ∈ ]0, 1[, on a tx + (1 − t)x′ < ty + (1 − t)y′, donc pour tout
t ∈ [0, 1], on a t(x, y)+(1−t)(x′, y′) ∈ A. Or l'application t 7−→ t(x, y)+(1−t)(x′, y′) est continuede [0, 1] dans A, donc A est connexe par arcs, d'où A est connexe. Comme g est continue, alors
g(A) est une partie connexe de R. Il résulte de la proposition 4.1.3 que f ′(I) est un connexe de
R, donc f ′(I) est un intervalle.Exercice 4.40. Soient X un espace éparpillé, Y ⊂ X et A une partie compacte et ouverte dans
Y . Montrer qu'il existe une partie B à la fois ouverte et fermée dans X telle que A = Y ∩B.Solution. Comme A est ouvert dans Y , il existe un ouvert U dans X tel que A = Y ∩U . Or Xest éparpillé, donc il existe une famille (Ui)i∈I de parties ouvertes et fermées dans X telle que
U = ∪

i∈I
Ui, d'où on a A = ∪

i∈I
Y ∩Ui. Comme A est compact dans Y et pour tout i ∈ I, Y ∩Ui estun ouvert de Y , alors il existe un sous-ensemble �ni J de I tel que A = ∪

j∈J
Y ∩Uj = Y ∩

(
∪
j∈J

Uj

).Soit B = ∪
j∈J

Uj , alors B est une partie à la fois ouverte et fermée dans X telle que A = Y ∩B.Exercice 4.41.1. Soit X un sous-ensemble de R. Montrer que X est totalement discontinu si et seulement sipour tous x, y ∈ X tels que x < y, il existe z ∈ R \X tel que x < z < y.2. Montrer que tout sous-espace totalement discontinu de R est éparpillé.3. En déduire que Q est éparpillé.4. Montrer que Q n'est pas extrêmement discontinu.Solution. 1. Supposons d'abord que X est totalement discontinu, et soient x, y ∈ X tels que
x < y. Si pour tout z ∈ R tel que x < z < y, on a z ∈ X, alors le segment [x, y] est connexe nontrivial et on a [x, y] ⊂ X, ce qui est impossible car X est totalement discontinu. Par conséquent,il existe z ∈ R \X tel que x < z < y.Réciproquement, supposons que pour tous x, y ∈ X tels que x < y, il existe z ∈ R \X tel que
x < z < y. Soient x ∈ X et Cx la composante connexe de x dans X. Soit y ∈ X tel que y 6= x,par exemple x < y. Soit z ∈ R\X tel que x < z < y. Soit A = ]−∞, z]∩X = ]−∞, z[∩X, alors
A est une partie à la fois ouverte et fermée dans X telle que x ∈ A. Il résulte de la proposition4.1.2 que l'on a Cx ⊂ A. Or y 6∈ A, donc y 6∈ Cx. Par conséquent, on a Cx = {x}. Autrementdit, X est totalement discontinu.2. Soit X un sous-espace totalement discontinu de R. Montrons que X est éparpillé. Soient x ∈ Xet U un ouvert de X contenant x. Alors il existe a, b ∈ R tels que a < x < b et ]a, b[∩X ⊂ U .D'après 1, il existe a′, b′ ∈ R\X tels que a < a′ < x < b′ < b. Alors A = [a′, b′]∩X = ]a′, b′[∩Xest une partie à la fois ouverte et fermée dans X telle que x ∈ A ⊂ U . Par conséquent, X estéparpillé.3. On a vu, remarque 4.2.1, que Q est totalement discontinu de R, donc Q est éparpillé.4. Soient U = ]−∞, 0[∩Q et V = ]0, +∞[∩Q, alors U et V sont des ouverts disjoints dans Q.Soient U ′ (resp. V ′) l'adhérence de U (resp. V ) dans Q, alors on a U ′ = U ∩ Q et V ′ = V ∩ Q,voir exercice 1.24, d'où 0 ∈ U ′ ∩ V ′. Par conséquent, Q n'est pas extrêmement discontinu.Exercice 4.42. Soit X un espace extrêmement discontinu.1. Soit (xn)n≥0 une suite dans X convergente vers un point x ∈ X. Montrer qu'il existe N ∈ Ntel que pour tout n ≥ N , on ait xn = x.
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66 Chapitre 4. ESPACES CONNEXES2. En déduire que si X est un espace métrique compact et extrêmement discontinu, alors Xest �ni.Solution. 1. Il su�t de montrer que l'ensemble {xn ; n ≥ 0} est �ni. Supposons le contraire,i.e. l'ensemble {xn ; n ≥ 0} est in�ni. Quitte à prendre une sous-suite de (xn)n≥0, on peutsupposer que pour tous n,m ∈ N tels que n 6= m, on ait xn 6= xm et xn 6= x. On va construire,par récurrence, une suite (Un)n≥0 d'ouverts de X tels que pour tout n ≥ 0, xn ∈ Un et pourtout n ≥ 1, on ait Un ∩
( n−1∪

i=0
Ui

)
= ∅. Pour tout n ≥ 0, soit Kn = {xp ; p ≥ n} ∪ {x}. Comme

(xn)n≥0 converge vers x, alors Kn est une partie compacte de X. Comme x0 6∈ K1, d'après laproposition 3.1.2, il existe deux ouverts disjoints U0 et W0 tels que x0 ∈ U0 et K1 ⊂W0. Comme
X est extrêmement discontinu, alors on a U0∩W0 = ∅, d'où on a U0∩K1 = ∅. De même, comme
x1 6∈ K2, il existe un ouvert U ′

1 de X tel que x1 ∈ U ′
1 et U ′

1 ∩K2 = ∅. Soit U1 = (X \ U0) ∩ U ′
1,alors U1 est un ouvert de X contenant x1 et on a U1∩K2 = ∅ et U0∩U1 = ∅. Supposons que l'ona construit des U0, . . . , Un−1 de X tels que pour tout i ∈ {0, . . . , n − 1}, xi ∈ Ui, Ui ∩Ki+1 = ∅et Ui ∩

( i−1∪
j=0

Uj

)
= ∅. Comme xn 6∈ Kn+1, il existe un ouvert U ′

n de X tel que xn ∈ U ′
n et

U ′
n ∩Kn+1 = ∅. Soit Un =

(
X \ n−1∪

i=0
Ui

)
∩ U ′

n, alors Un est un ouvert de X contenant xn et ona Un ∩Kn+1 = ∅. Comme X est extrêmement discontinu, alors n−1∪
i=0

Ui est ouvert dans X, donc
X \ n−1∪

i=0
Ui est fermé dans X. Or on a Un ⊂

(
X \ n−1∪

i=0
Ui

), d'où Un ⊂
(
X \ n−1∪

i=0
Ui

). Autrement dit,on a Un ∩
( n−1∪

i=0
Ui

)
= ∅. On pose U = ∪

n≥0
U2n et V = ∪

n≥0
U2n+1, alors U et V sont des ouvertsdisjoints de X et on a {x2n ; n ≥ 0} ⊂ U , {x2n+1 ; n ≥ 0} ⊂ V . Par conséquent, on a x ∈ U ∩V ,ce qui est impossible. Donc il existe N ∈ N tel que pour tout n ≥ N , on ait xn = x.2. Si X est in�ni, alors il existe une application injective de N dans X. Autrement dit, il existeune suite (xn)n≥0 dans X telle que pour tous n,m ∈ N véri�ant n 6= m, on ait xn 6= xm.Comme X est extrêmement discontinu, il résulte de 1 que cette suite n'admet aucune sous-suiteconvergente, ce qui est impossible car X est métrique compact. Donc X est bien �ni.Exercice 4.43. Donner un exemple d'un espace métrique compact éparpillé qui n'est pas extrê-mement discontinu.Solution. L'espace de Cantor C est métrique compact in�ni et éparpillé, voir proposition 4.5.1et théorème 4.2.2. D'après l'exercice précédent, tout espace métrique compact in�ni n'est pasextrêmement discontinu. Donc C est un espace métrique compact éparpillé non extrêmementdiscontinu.Exercice 4.44. Soient X un espace extrêmement discontinu et Y ⊂ X.1. Montrer que si Y est un ouvert de X, alors Y est extrêmement discontinu.2. Montrer que si Y est dense dans X, alors Y est extrêmement discontinu.Solution. 1. Supposons que Y est un ouvert de X. Soient U et V deux ouverts disjoints dans

Y , alors U et V sont aussi des ouverts disjoints dans X. Comme X est extrêmement discontinu,alors on a U ∩ V = ∅, d'où (U ∩ Y ) ∩ (V ∩ Y ) = ∅. Or U ∩ Y et V ∩ Y sont respectivement lesadhérences de U et V dans Y , voir exercice 1.24, donc Y est un espace extrêmement discontinu.2. On suppose que Y est une partie dense dans X. Soient U et V deux ouverts disjoints dans Y ,alors il existe des ouverts U ′ et V ′ dans X tels que U = Y ∩U ′ et V = Y ∩ V ′. On a U ∩ V = ∅,d'où Y ∩ (U ′ ∩ V ′) = ∅. Comme U ′ ∩ V ′ est un ouvert de X et Y est dense dans X, on déduitde la proposition 1.2.4 que l'on a U ′ ∩ V ′ = ∅. Comme X est extrêmement discontinu, alors
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67on a U ′ ∩ V ′ = ∅, d'où U ∩ V = ∅. Donc on a (U ∩ Y ) ∩ (V ∩ Y ) = ∅. Or U ∩ Y et V ∩ Ysont respectivement les adhérences de U et V dans Y , voir exercice 1.24, donc Y est un espaceextrêmement discontinu.Exercice 4.45. Soit X un espace complètement régulier.1. Montrer que la compacti�cation de Stone-�ech β(X) de X est extrêmement discontinu siet seulement si X est extrêmement discontinu.2. Montrer que si X est un espace discret in�ni, alors β(X) est extrêmement discontinu etn'est pas métrisable.3. En déduire que β(N) est un espace compact, séparable, extrêmement discontinu et n'estpas métrisable.Solution. 1. Supposons que β(X) est extrêmement discontinu. Comme X est dense dans β(X),il résulte de l'exercice précédent que X est extrêmement discontinu.Réciproquement, supposons que X est extrêmement discontinu. Soit U un ouvert de β(X).Comme X est dense dans β(X), d'après l'exercice 1.26, on a U = U ∩X . L'adhérence de U ∩Xdans X estX∩U ∩X , voir exercice 1.24. Comme X est extrêmement discontinu, alors X∩U ∩Xest à la fois ouvert et fermé dans X. D'après la proposition 3.5.1, X ∩ U ∩X est à la fois ouvertet fermé dans β(X). On a :
U = U ∩X ⊂ U ∩X = U ∩X ∩X ⊂ U ∩X = U ∩X = Ud'où on a U = X ∩ U ∩X. Par conséquent, U est ouvert dans β(X). Donc β(X) est extrêmementdiscontinu.2. Si X est discret, alors X est complètement régulier et extrêmement discontinu. Il résulte de 1que β(X) est extrêmement discontinu. Si de plus X est in�ni, on déduit de l'exercice 4.42 que

β(X) n'est pas métrisable.3. Il résulte de 2 que β(N) est extrêmement discontinu non métrisable. Puisque N est dénom-brable et dense dans β(N), alors β(N) est séparable.Exercice 4.46. Soit X un espace topologique séparé. Montrer que les propriétés suivantes sontéquivalentes.(i) X est extrêmement discontinu.(ii) Pour tout sous-ensemble dense Y dans X et pour toute fonction continue f : Y −→ [0, 1],il existe une fonction continue g : X −→ [0, 1] prolongeant f .(iii) Pour tout ouvert U de X et pour toute fonction continue f : U −→ [0, 1], il existe unefonction continue g : X −→ [0, 1] prolongeant f .Solution. Montrons l'implication (i) =⇒ (ii). Soient Y un sous-ensemble dense dans X et f :
X −→ [0, 1] une fonction continue. Pour montrer qu'il existe une fonction continue g : X −→
[0, 1] prolongeant f , d'après le théorème 1.9.3, il su�t de montrer que deux sous-ensemblesde Y complètement séparés dans Y sont aussi complètement séparés dans X. Soient A et Bdeux sous-ensembles de Y complètement séparés dans Y . Donc il existe une fonction continue
h : Y −→ [0, 1] telle que h|A = 0 et h|B = 1. Soient U1 = h−1

([
0, 1

3

[) et U2 = h−1
(]

2
3 , 1

]). Alors
U1 et U2 sont deux sous-ensembles ouverts disjoints dans Y tels que A ⊂ U1 et B ⊂ U2. Soient
V1 et V2 deux ouverts dans X tels que U1 = Y ∩V1 et U2 = Y ∩V2, d'où Y ∩V1∩V2 = ∅. Comme
Y est dense dans X, on déduit de la proposition 1.2.4 que l'on a V1 ∩ V2 = ∅. Comme X estextrêmement discontinu, d'après la proposition 4.2.3, V1 et V2 sont disjoints et à la fois ouverts
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68 Chapitre 4. ESPACES CONNEXESet fermés dans X. Soit g : X −→ [0, 1] dé�nie par g(x) = 0 pour tout x ∈ V1 et g(x) = 1 pourtout x ∈ X \ V1. Alors g est une fonction continue et pour tout x ∈ A, on ait g(x) = 0 et pourtout x ∈ B, on ait g(x) = 1. Donc A et B sont complètement séparés dans X.Montrons l'implication (ii) =⇒ (iii). Soient U un ouvert de X et f : U −→ [0, 1] une fonctioncontinue. Soit Y = U∪
(
X \U

). Alors Y est un sous-ensemble dense dans X. Soit f̃ : Y −→ [0, 1]dé�nie par f̃(x) = f(x), pour tout x ∈ U , et f̃(x) = 0, pour tout x ∈ X \U . Alors f̃ est continue,voir proposition 1.4.4. Par hypothèse, il existe une fonction continue g : X −→ [0, 1] prolongeant
f̃ . En particulier, g prolonge f .Montrons l'implication (iii) =⇒ (i). Soient U et V deux ouverts disjoints dans X. Soit f :
U ∪ V −→ [0, 1] dé�nie par f(x) = 0 pour tout x ∈ U et g(x) = 1 pour tout x ∈ V . Alors f estune fonction continue. Par hypothèse, il existe une fonction continue g : X −→ [0, 1] prolongeant
f . Soient F1 = g−1

([
0, 1

3

]) et F2 = g−1
([

2
3 , 1

]). Alors F1 et F2 sont deux sous-ensembles fermésdisjoints dans X tels que U ⊂ F1 et V ⊂ F2, d'où on a U ∩ V = ∅. Donc X est extrêmementdiscontinu.
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Chapitre 5ESPACES FONCTIONNELSLemme. Soient X un ensemble, (Y, d) un espace métrique, f ∈ Y X et (fn)n≥0 une suite dans
Y X . Soit d′ une distance sur Y uniformément équivalente à d. Alors la suite (fn)n≥0 convergeuniformément vers f pour la distance d si et seulement si elle converge uniformément vers f pour
d′.Démonstration. Puisque d et d′ sont uniformément équivalentes, alors on a :
(∗) Pour tout ε > 0, il existe η > 0 tel que pour tous y, z ∈ Y véri�ant d(y, z) < η, on ait
d′(y, z) < ε.
(∗∗) Pour tout ε > 0, il existe α > 0 tel que pour tous y, z ∈ Y véri�ant d′(y, z) < α, on ait
d(y, z) < ε.Supposons d'abord que (fn)n≥0 converge uniformément vers f pour la distance d. Soit ε > 0,alors il existe N ∈ N tel que pour tout n ≥ N et pour tout x ∈ X, on ait d(fn(x), f(x)) < η. Encombinant ceci avec la propriété (∗), on obtient que pour tout n ≥ N et pour tout x ∈ X, on a
d′(fn(x), f(x)) < ε. Donc (fn)n≥0 converge uniformément vers f pour d′.Réciproquement, supposons que (fn)n≥0 converge uniformément vers f pour d′. Soit ε > 0, alorsil existe N ∈ N tel que pour tout n ≥ N et pour tout x ∈ X, on ait d′(fn(x), f(x)) < α. Encombinant ceci avec la propriété (∗∗), on obtient que pour tout n ≥ N et pour tout x ∈ X, on a
d(fn(x), f(x)) < ε. Donc (fn)n≥0 converge uniformément vers f pour d. �Proposition. Soient [a, b] un intervalle fermé borné de R et (fn)n≥0 une suite d'applicationscontinues de [a, b] dans R. On suppose que :1. Pour tout n ≥ 0, l'application fn est croissante, i.e. pour tous x, y ∈ [a, b] tels que x ≤ y,on ait fn(x) ≤ fn(y).2. La suite (fn)n≥0 converge simplement vers une application continue f de [a, b] dans R.Alors la suite (fn)n≥0 converge uniformément vers f .Démonstration. Comme pour tous n ≥ 0 et x, y ∈ [a, b] tels que x ≤ y , on ait fn(x) ≤ fn(y)et comme la suite (fn)n≥0 converge simplement vers f , alors on a f(x) ≤ f(y). Donc f estcroissante. Soit ε > 0. Comme f est continue et [a, b] est compact, alors f est uniformémentcontinue, donc il existe k ∈ N∗ tel que pour tous x, y ∈ [a, b] véri�ant |x − y| ≤ b−a

k , on ait
|f(x) − f(y)| ≤ ε, d'où f(x) ≤ f(y) ≤ f(x) + ε. Soit xp = a + (b − a) pk , avec p ∈ {0, . . . , k}.Comme on a f(xp) = lim

n→+∞
fn(xp), alors il existe N ∈ N tel que pour tout n ≥ N et pour tout

p ∈ {0, . . . , k}, on ait |fn(xp)−f(xp)| ≤ ε. D'où on a f(xp)−ε ≤ fn(xp) ≤ f(xp)+ε. Soit n ≥ N .69
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70 Chapitre 5. ESPACES FONCTIONNELSSoit x ∈ [a, b], alors il existe p ∈ {1, . . . , k} tel que xp−1 ≤ x ≤ xp. Comme fn est croissante,alors on a fn(xp−1) ≤ fn(x) ≤ fn(xp). D'où on a :
f(xp−1)− ε ≤ fn(xp−1) ≤ fn(x) ≤ fn(xp) ≤ f(xp) + ε .Comme on a |x − xp−1| ≤ b−a

k et |x − xp| ≤ b−a
k , alors on a f(xp−1) ≤ f(x) ≤ f(xp−1) + ε et

f(x) ≤ f(xp) ≤ f(x) + ε. D'où on a :
f(x)− 2ε ≤ f(xp−1)− ε ≤ fn(x) ≤ f(xp) + ε ≤ f(x) + 2ε .Donc on a |f(x) − fn(x)| ≤ 2ε. Par conséquent, pour tout ε > 0, il existe N ∈ N tel que pourtout n ≥ N et pour tout x ∈ [a, b], on ait |f(x)− fn(x)| ≤ 2ε. Autrement dit, la suite (fn)n≥0converge uniformément vers f . �Proposition. Soient I un intervalle de R et (fn)n≥0 une suite de fonctions dérivables de I dans

R. On suppose que1. La suite (fn)n≥0 converge simplement vers une fonction f : I −→ R.2. La suite (f ′n)n≥0 est uniformément convergente vers une fonction g : I −→ R.Alors la fonction f est dérivable sur I et sa dérivée est g.Démonstration. Soit a ∈ I et pour tout x ∈ J = I \ {a}, soient :
hn(x) =

fn(x)− fn(a)
x− a et h(x) =

f(x)− f(a)
x− a .La suite (hn)n≥0 converge simplement sur J vers la fonction h. La fonction hn admet en a lalimite f ′n(a) et la suite (f ′n(a))n≥0 converge vers g(a). Pour avoir le résultat, d'après le théorème5.2.4, il su�t de montrer que la suite (hn)n≥0 converge uniformément sur J vers la fonction h.Soient x ∈ J et p, n ∈ N. D'après le théorème des accroissements �nis, il existe t ∈ I tel que :

fn(x)− fp(x)−
(
fn(a)− fp(a)

)
= (x− a)

(
f ′n(t)− f ′p(t)

)
.D'où on a :

hn(x)− hp(x) = f ′n(t)− f ′p(t) = f ′n(t)− g(t) + g(t) − f ′p(t) .Comme la suite (f ′n)n≥0 converge uniformément sur I vers g, alors pour tout ε > 0, il existeN ∈ Ntel que pour tout n, p ≥ N et pour tout t ∈ I, on ait |f ′n(t) − g(t)| < ε
2 et |g(t) − f ′p(t)| < ε

2 .Donc, pour tout n, p ≥ N et pour tout x ∈ J , on a |hn(x)− hp(x)| < ε. En faisant tendre p versl'in�ni, on obtient que pour tout n ≥ N et pour tout x ∈ J , on a |hn(x)− h(x)| ≤ ε. Autrementdit, la suite (hn)n≥0 converge uniformément sur J vers la fonction h. �Proposition. Soient X un espace topologique, (Y, d) un espace métrique et H une partie de
Y X . Alors H est équicontinue si et seulement si pour tout ε > 0, il existe un ouvert U de X ×Xcontenant la diagonale ∆ = {(x, x) ; x ∈ X} et telle que, pour tout (x, x′) ∈ U et pour tout
f ∈ H, on ait d(f(x), f(x′)) < ε.Démonstration. Soient ε > 0 et U un ouvert de X ×X contenant la diagonale ∆ et telle que,pour tout (x, x′) ∈ U et pour tout f ∈ H, on ait d(f(x), f(x′)) < ε. Soit x0 ∈ X. Comme on a
(x0, x0) ∈ ∆ ⊂ U et U est un ouvert, alors il existe un voisinage ouvert Vx0 de x0 dans X tel que
{x0} × Vx0 ⊂ U . D'où, pour tout x ∈ Vx0 et pour tout f ∈ H, on a d(f(x0), f(x)) < ε. Donc Hest équicontinue en x0. Par conséquent, H est équicontinue.
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71Réciproquement, supposons que H est équicontinue. Soit ε > 0. Posons Ω =
{
(x, x′) ∈ X ×

X ; d(f(x), f(x′)) < ε pour tout f ∈ H
} et U =

◦
Ω. Pour avoir le résultat, il su�t de montrerque U contient la diagonale ∆. Soit x ∈ X. Comme H est équicontinue en x, alors il existeun voisinage ouvert Vx de x dans X tel que pour tout z ∈ Vx et pour tout f ∈ H, on ait

d(f(x), f(z)) < ε
2 . Alors pour tout (z, z′) ∈ Vx × Vx et pour tout f ∈ H, on a d(f(z), f(z′)) ≤

d(f(z), f(x)) + d(f(x), f(z′)) < ε
2 +

ε
2 = ε. Ainsi on a Vx × Vx ⊂ Ω. Or Vx × Vx est un ouvert de

X ×X, donc Vx × Vx ⊂ ◦
Ω= U , d'où on a (x, x) ⊂ U . Par conséquent, on a ∆ ⊂ U . �Lemme. Il existe une suite (Pn)n≥0 de fonctions polynômiales à une variable, à coe�cients réelsconvergeant uniformément sur [0, 1] vers la fonction racine carrée t 7−→ √t. De plus, pour tout

n ≥ 0, on a Pn(0) = 0.Démonstration. On considère la suite de fonctions polynômiales à coe�cients réels (Pn)n≥0dé�nie par récurrence par :
{
P0 = 0 ,

Pn+1(x) = Pn(x) +
1
2

(
x− (Pn(x))

2
)
.Montrons, par récurrence, que pour tout n ∈ N et pour tout x ∈ [0, 1], on a :

(∗) 0 ≤ Pn(x) ≤
√
x et (∗∗) 0 ≤ √x− Pn(x) ≤

2
√
x

2 + n
√
x
.L'inégalité (∗) est vraie à l'ordre n = 0 car P0 = 0. Supposons que l'inégalité (∗) est vraie à l'ordre

n, et montrons qu'elle est vraie à l'ordre n + 1. On a 0 ≤ Pn(x) ≤
√
x, d'où x − (Pn(x))

2 ≥ 0.Donc on a Pn+1(x) ≥ Pn(x) ≥ 0. D'autre part, on a :
√
x− Pn+1(x) =

√
x− Pn(x)− 1

2

(
x− (Pn(x))

2
)
=
[√
x− Pn(x)

][
1− 1

2

(√
x+ Pn(x)

) ]
.Or on a Pn(x) ≤

√
x ≤ 1, d'où [1− 1

2 (
√
x+ Pn(x))

]
≥ 0. Par conséquent, on a Pn+1(x) ≤

√
x.On a :

√
x− Pn(x) ≤

2
√
x

2 + n
√
x
⇐⇒ √

x ≤ 2
√
x

2 + n
√
x
+ Pn(x)

⇐⇒ √
x (2 + n

√
x ) ≤ 2

√
x+ (2 + n

√
x )Pn(x)

⇐⇒ nx ≤ (2 + n
√
x )Pn(x) .Appelons (∗ ∗ ∗) l'inégalité nx ≤ (2 + n

√
x )Pn(x). L'inégalité (∗ ∗ ∗) est vraie à l'ordre n = 0.Supposons que l'inégalité (∗∗∗) est vraie à l'ordre n, et montrons qu'elle est vraie à l'ordre n+1.On a :

[
2 + (n+ 1)

√
x
]
Pn+1(x) =

[
2 + n

√
x+
√
x
][
Pn(x) +

1
2

(
x− (Pn(x))

2
)]

= (2 + n
√
x )Pn(x) +

√
xPn(x) + x− (Pn(x))

2 + αn(x) .Avec αn(x) = (n
√
x +

√
x )12

(
x − (Pn(x))

2
)
≥ 0. Comme on a (2 + n

√
x )Pn(x) ≥ nx et

√
x ≥ Pn(x) ≥ 0, alors on a [2 + (n+1)

√
x ]Pn+1(x) ≥ nx+ (Pn(x))

2 + x− (Pn(x))
2 = (n+1)x.
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72 Chapitre 5. ESPACES FONCTIONNELSDonc l'inégalité (∗ ∗ ∗) est vraie à l'ordre n+ 1.Comme on a 0 ≤ n√x ≤ 2+n
√
x, il résulte de l'inégalité (∗∗) que pour tout n ≥ 1 et pour tout

x ∈ [0, 1], on a |√x− Pn(x)| ≤ 2
n . Par conséquent, la suite (Pn)n≥0 converge uniformément sur

[0, 1] vers la fonction racine carrée. �Lemme. Soient X un espace compact et A une sous-algèbre de (C(X, R), D∞). Alors on a :1. A est une sous-algèbre de C(X, R).2. Pour tout f, g ∈ A, on a sup(f, g), inf(f, g) ∈ A.Démonstration. 1. Soient f, g ∈ A et λ ∈ R. Alors il existe des suites (fn)n≥0 et (gn)n≥0 dans
A convergeant respectivement vers f et g. Comme A est une sous-algèbre de C(X, R), alors pourtout n ≥ 0, on a fn + λgn, fngn ∈ A. D'autre part, pour tout n ≥ 0 et pour tout x ∈ X, on a :

|fn(x) + λgn(x)− (f(x) + λg(x))| ≤ |fn(x)− f(x)|+ |λ||gn(x)− g(x)|

≤ D∞(fn, f) + |λ|D∞(gn, g) .D'où on aD∞(fn+λgn, f+λg) ≤ D∞(fn, f)+|λ|D∞(gn, g). Par conséquent, la suite (fn+λgn)n≥0converge vers f + λg, donc on a f + λg ∈ A.Pour tout n ≥ 0 et pour tout x ∈ X, on a :
fn(x)gn(x)− f(x)g(x) = fn(x)gn(x)− f(x)gn(x) + f(x)gn(x)− f(x)g(x)

= (fn(x)− f(x))gn(x) + f(x)(gn(x)− g(x)) .D'où on a :
D∞(fngn, fg) ≤ D∞(fn, f)D∞(gn, 0) +D∞(f, 0)D∞(gn, g)

≤ D∞(fn, f)
[
D∞(gn, g) +D∞(g, 0)

]
+D∞(f, 0)D∞(gn, g) .Donc la suite (fngn)n≥0 converge vers fg, d'où fg ∈ A. Par conséquent, A est une sous-algèbrede C(X, R).2. Puisque l'on a sup(f, g) =

f + g + |f − g|
2

et inf(f, g) = f + g − |f − g|
2

, il su�t de montrerque pour tout f ∈ A, on a |f | ∈ A, où |f | est la fonction x 7−→ |f(x)|. Notons que pour tout
x ∈ X, on a |f(x)| = √

(f(x))2. Soit f ∈ A. Comme X est compact et f est continue, alors
sup
x∈X
|f(x)| est �ni, donc il existe a > 0 tel que a sup

x∈X
|f(x)| ≤ 1. Pour tout t ∈ [0, 1], soit g(t) = √tet pour tout x ∈ X, soit h(x) = a2(f(x))2, alors h ∈ A et h est une fonction continue de X dans

[0, 1]. D'après le lemme précédent, la suite (Pn ◦h)n≥0 converge vers g ◦h dans (C(X, R), D∞).Comme on a h ∈ A et A est stable par le produit, alors pour tout n > 0, on a hn ∈ A. Comme Aest aussi un sous-espace vectoriel de C(X, R), alors pour toute fonction polynômiale P : R −→ Rtelle que P (0) = 0, on a P ◦ h ∈ A, donc, pour tout n ≥ 0, on a Pn ◦ h ∈ A. Comme A estfermée, alors on a g ◦ h ∈ A. Or on a g ◦ h = a|f |, d'où |f | ∈ A. �Théorème. Soient X un espace localement compact et A une sous-algèbre de C0(X) telle que :1. Pour tout x ∈ X, il existe f ∈ A telle que f(x) 6= 0.2. A sépare les points de X, i.e. pour tous x, y ∈ X tels que x 6= y, il existe f ∈ A telle que
f(x) 6= f(y).
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733. Pour tout f ∈ A, le conjugué f de f appartient à A.Alors A est dense dans (C0(X), D∞).Démonstration. Soient X∞ le compacti�é d'Alexandro� de X. Pour tout f ∈ C0(X), soit :
f∞(x) =

{
f(x) si x ∈ X ,
0 si x =∞ .Alors f∞ ∈ C(X∞). Réciproquement, si g ∈ C(X∞) telle que g(∞) = 0, alors g|X ∈ C0(X),voir remarque 3.6.1. Soit A∞ =

{
f∞ + λ ; f ∈ A , λ ∈ K

}, alors A∞ est sous-algèbre de
C(X∞) véri�ant les hypothèses du théorème de Stone-Weierstrass. Donc A∞ est dense dans
(C(X∞), D∞). Soient f ∈ C0(X) et ε > 0. Alors il existe g ∈ A et λ ∈ K tels que sup

x∈X∞

|f∞(x)−
(g∞(x) + λ)| = D∞(f∞, g∞ + λ) < ε

2 . En particulier, lorsque x = ∞, on a |λ| = |f∞(∞) −
(g∞(∞) + λ)| < ε

2 . Par conséquent, pour tout x ∈ X, on a |f(x) − g(x)| ≤ |f∞(x) − (g∞(x) +
λ)|+ |λ| < ε

2 +
ε
2 = ε. D'où on a D∞(f, g) ≤ ε. Donc A est dense dans (C0(X), D∞). �Supplément d'exercicesExercice 5.16. Soit f : [0, 1] −→ R une fonction continue. Montrer que f = 0 si et seulementsi, pour tout n ∈ N, on a ∫ 1

0
f(t)tndt = 0.Solution. Il est clair que si f = 0, alors pour tout n ∈ N, on a ∫ 1

0
f(t)tndt = 0.Réciproquement, supposons que pour tout n ∈ N, on a ∫ 1

0
f(t)tndt = 0. Considérons l'applicationsuivante :

ϕ : (C([0, 1], R), D∞) −→ R

g 7−→
∫ 1

0
f(t)g(t)dtAlors ϕ est une application continue telle que pour toute fonction polynômiale P , on ait ϕ(P ) = 0.D'après le théorème de Stone�Weierstrass, l'ensemble des fonctions polynômiales est dense dans

(C([0, 1], R), D∞), donc on a ϕ = 0, d'où ∫ 1

0
(f(t))2dt = ϕ(f) = 0. Puisque l'application

t 7−→ (f(t))2 est continue et positive, on en déduit que pour tout t ∈ [0, 1], on a (f(t))2 = 0,d'où f = 0.Exercice 5.17. Soient (X, d) un espace métrique compact et H l'ensemble des sous-ensemblesfermés non vides de X. On munit H de la distance de Hausdor� D, où pour tous A,B ∈ H,on a D(A,B) = max(ρ(A,B), ρ(B,A)) et ρ(A,B) = sup
x∈A

d(x,B). D'après l'exercice 3.53, (H, D)est un espace métrique compact. Pour tout A ∈ H, et pour tout x ∈ X, soit fA(x) = d(x,A).Alors on a fA ∈ C(X, R). On munit C(X, R) de la distance de la convergence uniforme D∞.Montrer que l'application A 7−→ fA est isométrique de (H, D) dans (C(X, R), D∞). En déduireque {fA ; A ∈ H
} est une partie compacte de (C(X, R), D∞).Solution. Soient A,B ∈ H. On a vu, exercice 3.53, que pour tout x ∈ X, on a d(x,B) ≤ d(x,A)+

ρ(A,B), d'où on a fB(x) ≤ fA(x)+D(A,B). De même, on a fA(x) ≤ fB(x)+D(B,A) = fB(x)+
D(A,B), donc on a |fA(x) − fB(x)| ≤ D(A,B). Par conséquent, on a D∞(fA, fB) ≤ D(A,B).Soit a ∈ A, alors on a |fA(a)−fB(a)| = |d(a,A)−d(a,B)| = d(a,B), d'où d(a,B) ≤ D∞(fA, fB).Donc on a ρ(A,B) ≤ D∞(fA, fB). De même, on a ρ(B,A) ≤ D∞(fB , fA) = D∞(fA, fB). On en

© Dunod, 2011 - Topologie et espaces normés - Nawfal El Hage Hassan



74 Chapitre 5. ESPACES FONCTIONNELSdéduit D(A,B) ≤ D∞(fA, fB). Par conséquent, l'application A 7−→ fA est isométrique. Comme
(H, D) est compact, alors {fA ; A ∈ H

} est une partie compacte de (C(X, R), D∞).Exercice 5.18. Sur l'intervalle [0, 1], on considère la suite de polynômes à coe�cients réels
(Pn)n≥0 dé�nis par récurrence par :

{
P0 = 0 ,

Pn+1(x) = Pn(x) +
1
3

(
x− (Pn(x))

3
)
.1. Montrer par récurrence que pour tout n ≥ 0 et que pour tout x ∈ [0, 1], on a :

(∗) 0 ≤ Pn(x) ≤ Pn+1(x) ≤ x
1
3 .2. En déduire, en utilisant le théorème de Dini, que la suite (Pn)n≥0 converge uniformémentsur [0, 1] vers la fonction racine cubique.3. Montrer, par récurrence, que pour tout n ∈ N et pour tout x ∈ [0, 1], on a :

0 ≤ x 1
3 − Pn(x) ≤

3x
1
3

3 + nx
2
3

.4. En déduire, sans utiliser le théorème de Dini, que (Pn)n≥0 converge uniformément sur [0, 1]vers la fonction racine cubique.Solution. 1. Véri�ons que l'inégalité (∗) est vraie à l'ordre n = 0. On a P0(x) = 0, P1(x) =
x
3 ≥ P0(x), et P1(x) ≤ x

1
3 ⇐⇒ x3

27 ≤ x ⇐⇒ x
(
1 − x2

27

)
≥ 0. Donc on a bien P1(x) ≤ x

1
3 pourtout x ∈ [0, 1]. Supposons que l'inégalité (∗) est vraie à l'ordre n, et montrons qu'elle est vraieà l'ordre n + 1. On a Pn+2(x) = Pn+1(x) +

1
3(x − (Pn+1(x))

3) et 0 ≤ Pn(x) ≤ Pn+1(x) ≤ x
1
3 ,d'où (Pn+1(x))

3 ≤ x, donc on a x− (Pn+1(x))
3 ≥ 0. Par conséquent, on a Pn+2(x) ≥ Pn+1(x) ≥

Pn(x) ≥ 0. On a :
x

1
3 − Pn+2(x) = x

1
3 − Pn+1(x)− 1

3

[
x− (Pn+1(x))

3
]

=
[
x

1
3 − Pn+1(x)

][
1− 1

3

(
x

2
3 + x

1
3Pn+1(x) + (Pn+1(x))

2)] .On a 0 ≤ max
(
x

2
3 , x

1
3Pn+1(x), (Pn+1(x))

2
)
≤ 1, d'où 1

3

(
x

2
3 + x

1
3Pn+1(x) + (Pn+1(x))

2
)
≤ 1.Or on a aussi (x 1

3 − Pn+1(x)
)
≥ 0, d'où x 1

3 − Pn+2(x) ≥ 0. Par conséquent, l'inégalité (∗) estvraie à l'ordre n+ 1.2. Pour tout x ∈ [0, 1], la suite de réels (Pn(x))n≥0 est croissante et majorée, par x 1
3 , donc

lim
n→+∞

Pn(x) existe dans [0, 1]. Soit f(x) = lim
n→+∞

Pn(x). De l'équation Pn+1(x) = Pn(x) +

1
3

(
x− (Pn(x))

3
), on déduit que l'on a f(x) = f(x) + 1

3

(
x− f(x)3

), donc on a f(x)3 = x, d'où
f(x) = x

1
3 . Donc la suite (Pn)n≥0 converge simplement vers la fonction continue f . Or (Pn)n≥0est croissante, d'après le théorème de Dini, (Pn)n≥0 converge uniformément vers f .3. Pour tout n ≥ 0 et que pour tout x ∈ [0, 1], on a :

x
1
3 − Pn(x) ≤

3x
1
3

3 + nx
2
3

⇐⇒ nx ≤
(
3 + nx

2
3
)
Pn(x) .
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75Appelons In la dernière inégalité. L'inégalité est vraie si n = 0. Supposons que In est vraie pourcertain n et montrons qu'elle est vraie à l'ordre n+ 1. On a :
[
3 + (n+ 1)x

2
3

]
Pn+1(x) =

(
3 + nx

2
3 + x

2
3

)[
Pn(x) +

1
3

(
x− (Pn(x))

3)]

=
(
3 + nx

2
3

)
Pn(x) + x

2
3Pn(x) + x− (Pn(x))

3 + αn(x) .Avec αn(x) =
(
nx

2
3 + x

2
3

)[
1
3

(
x− (Pn(x))

3)] ≥ 0, donc on a :
[
3 + (n+ 1)x

2
3

]
Pn+1(x) ≥ nx+ x

2
3Pn(x) + x− (Pn(x))

3

≥ nx+ (Pn(x))
3 + x− (Pn(x))

3

= (n+ 1)x .Donc l'inégalité In+1 est vraie.4. La suite (Pn)n≥0 converge uniformément sur [0, 1] vers la fonction racine cubique si pour tout
ε > 0, il existe N ∈ N tel que pour tout n ≥ N et pour tout x ∈ [0, 1], on ait |x 1

3 − Pn| ≤ ε.Soit ε > 0. Alors la suite de réels ( 27

27 + nε2

)

n≥0

converge vers 0, donc il existe N ∈ N telque pour tout n ≥ N , on ait 27

27 + nε2
≤ ε. Pour tout x ∈ [0, 1

27ε
3
], on a 3x

1
3 ≤ ε, donc pourtout n ≥ 0 et pour tout x ∈ [0, 1

27ε
3
], on a ∣∣x 1

3 − Pn

∣∣ ≤ 3x
1
3 ≤ ε. Pour x ∈ [ 1

27ε
3, 1
], on a

x
2
3 ≥ ε2

9
, d'où nx

2
3 ≥ nε2

9
et 3 + nx

2
3 ≥ 27 + nε2

9
. Donc on a ∣∣x 1

3 − Pn(x)
∣∣ ≤ 27x

1
3

27 + nε2
≤ εpour tout n ≥ N . Par conséquent, pour tout n ≥ N et pour tout x ∈ [0, 1], on a ∣∣x 1

3−Pn(x)
∣∣ ≤ ε.Exercice 5.19.Polynômes de Bernstein. Pour tous entiers n ≥ j ≥ 0 et pour tout x ∈ [0, 1],on pose :

pn,j(x) =

(
n

j

)
xj (1− x)n−j .1. Établir les identités suivantes :





n∑

j=0

pn,j(x) = 1 ,

n∑

j=0

j pn,j(x) = nx ,





n∑

j=0

j (j − 1) pn,j(x) = n (n− 1)x2 ,

n∑

j=0

(j − nx)2 pn,j(x) = nx (1− x) .2. Soit f une fonction continue sur [0, 1]. Montrer que les polynômes de Bernstein
fn(x) =

n∑

j=0

f
( j
n

)
pn,j(x)fournissent des approximations uniformes de f sur [0, 1] , ce qui donne une nouvelle dé-monstration explicite du théorème de Weierstrass.
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76 Chapitre 5. ESPACES FONCTIONNELSSolution. 1. On a n∑

j=0

pn,j(x) =

n∑

j=0

(
n

j

)
xj (1− x)n−j = (x+ 1− x)n = 1.On a :

n∑

j=0

j pn,j(x) =

n∑

j=1

j pn,j(x)

=
n∑

j=1

j n!

j!(n − j)!x
j (1− x)n−j

=

n∑

j=1

nx (n− 1)!

(j − 1)!(n − 1− (j − 1))!
xj−1 (1− x)n−1−(j−1)

= nx
n−1∑

k=0

(n− 1)!

k!(n− 1− k)!x
k (1− x)n−1−k

= nx

n−1∑

k=0

pn−1,k(x)

= nx .On a :
n∑

j=0

j(j − 1) pn,j(x) =

n∑

j=2

j(j − 1) pn,j(x)

=
n∑

j=2

j(j − 1)n!

j!(n − j)! x
j (1− x)n−j

=

n∑

j=2

n(n− 1) (n − 2)!

(j − 2)!(n − 2− (j − 2))!
x2xj−2 (1− x)n−2−(j−2)

= n(n− 1)x2
n−2∑

k=0

(
n− 2

k

)
xk (1− x)n−2−k

= n(n− 1)x2
n−2∑

k=0

pn−2,k(x)

= n(n− 1)x2 .On a n∑

j=0

(j − nx)2 pn,j(x) =
n∑

j=0

(
j2 − 2jnx + n2x2

)
pn,j(x) et j2 − 2jnx + n2x2 = j(j − 1) +

(1− 2nx)j + n2x2, d'où :
n∑

j=0

(j − nx)2 pn,j(x) = n(n− 1)x2 + (1− 2nx)nx+ n2x2 = nx(1− x) .2. Soient M = max
x∈[0, 1]

|f(x)| et ε > 0. Comme f est uniformément continue sur [0, 1], voirthéorème 3.2.3, alors il existe η > 0 tel que pour tous x, y ∈ [0, 1] véri�ant |x − y| ≤ η, onait |f(x) − f(y)| < ε
2 . Soit N ∈ N∗ tel que 2M

Nη2
<

ε

2
. Soient n ≥ N et x ∈ [0, 1]. Soient

I =
{
j ∈ {0, . . . , n} ;

∣∣x− j
n

∣∣ ≤ η
} et J =

{
j ∈ {0, . . . , n} ;

∣∣x− j
n

∣∣ > η
}. On a f(x)− fn(x) =
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n∑

j=0

[
f(x)− f

( j
n

)]
pn,j(x), d'où :

∣∣f(x)−fn(x)
∣∣ ≤

n∑

j=0

∣∣f(x)−f
( j
n

)∣∣pn,j(x) =
∑

j∈I

∣∣f(x)−f
( j
n

)∣∣pn,j(x)+
∑

j∈J

∣∣f(x)−f
( j
n

)∣∣pn,j(x) .Si j ∈ I, on a ∣∣f(x)−f( jn)∣∣ < ε
2 et si j ∈ J , on a ∣∣f(x)−f( jn)∣∣ ≤ 2M . Or on a 0 ≤

∑

j∈I
pn,j(x) ≤

n∑

j=0

pn,j(x) = 1, donc |f(x)− fn(x)| ≤ ε
2 + 2M

∑

j∈J
pn,j(x). On a :

nx(1− x) =
n∑

j=0

(j − nx)2 pn,j(x) = n2
n∑

j=0

( j
n − x

)2
pn,j(x)d'où n∑

j=0

( j
n − x

)2
pn,j(x) =

1
nx(1− x). Donc on a :

∑

j∈J

( j
n − x

)2
pn,j(x) ≤

n∑

j=0

( j
n − x

)2
pn,j(x) =

1
nx(1− x) ≤ 1

n .Pour j ∈ J , on a ∣∣x− j
n

∣∣ > η, d'où ( jn−x)2 > η2. Donc on a η2∑
j∈J

pn,j(x) ≤ 1
n , d'où∑

j∈J
pn,j(x) ≤

1

nη2
. Par conséquent, on a 2M

∑

j∈J
pn,j(x) ≤

2M

nη2
≤ 2M

Nη2
<
ε

2
, d'où |f(x) − fn(x)| < ε. Ainsi,pour tout ε > 0, il existe N ∈ N∗ tel que pour tout n ≥ N et pour tout x ∈ [0, 1], on ait

|f(x)− fn(x)| < ε. Autrement dit, la suite (fn)n≥0 converge uniformément vers f sur [0, 1].
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Chapitre 6ESPACES NORMÉSProposition. Soit E un K-espace vectoriel.1. Si A est un sous-ensemble convexe de E, alors pour tout n ∈ N∗, pour toute suite �nie
x1, . . . , xn d'éléments de A et pour toute suite �nie t1 ≥ 0, . . . , tn ≥ 0 tels que n∑

i=1

ti = 1,on a n∑

i=1

tixi ∈ A.2. Si A est un sous-ensemble convexe de E, alors pour tout n ≥ 1, on a nA = A+ · · ·+A︸ ︷︷ ︸
n fois .3. Si A est un sous-ensemble convexe de E tel que 0 ∈ A, alors on a tA ⊂ A pour tout

0 ≤ t ≤ 1.4. Si A et B sont des sous-ensembles convexes de E et λ ∈ K, alors λA et A + B sont desensembles convexes.5. Une intersection de sous-ensembles convexes de E est convexe.6. Soient F est un K-espace vectoriel et f : E −→ F une application a�ne . Autrement dit,il existe b ∈ F et g : E −→ F une application linéaire tels que f = g+b. Alors l'image par f(resp. l'image réciproque) d'un sous-ensemble convexe de E (resp. F ) est un sous-ensembleconvexe de F (resp. E).Démonstration. 1. Montrons cette propriété par récurrence sur n. Il est clair que cette propriétéest vraie pour n = 1. Supposons que cette propriété est vraie pour certain n ≥ 1, et soient
x1, . . . , xn, xn+1 ∈ A et t1 ≥ 0, . . . , tn, tn+1 ≥ 0 tels que n+1∑

i=1

ti = 1. Montrons que l'on a n+1∑

i=1

tixi ∈

A. On peut supposer tn+1 6= 1, donc t = n∑

i=1

ti = 1 − tn+1 6= 0. Pour tout i ∈ {1, . . . , n}, soit
si =

ti
t
, alors on a si ≥ 0 et n∑

i=1

si = 1. Par hypothèse de récurrence, on a n∑

i=1

sixi ∈ A. Comme
C est convexe et on a n+1∑

i=1

tixi = t
( n∑

i=1

sixi

)
+ (1− t)xn+1, alors on a n+1∑

i=1

tixi ∈ A.2. Pour tout sous-ensemble A de E, on a nA ⊂ A+ · · ·+A︸ ︷︷ ︸
n fois . Supposons maintenant que A est79
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80 Chapitre 6. ESPACES NORMÉSconvexe. Soient x1, . . . , xn ∈ A. D'après 1, on a x =

n∑

i=1

1
nxi ∈ A, d'où n∑

i=1

xi = nx ∈ nA. Doncon a aussi A+ · · ·+A︸ ︷︷ ︸
n fois ⊂ nA.3. Soit A un sous-ensemble convexe de A tel que 0 ∈ A. Pour tout x ∈ A et pour tout t ∈ [0, 1],on a tx = tx+ (1− t)0 ∈ A, donc tA ⊂ A.4. Soient A et B des sous-ensembles convexes de E et λ ∈ K. Soient a1, a2 ∈ A, b1, b2 ∈ Bet t ∈ [0, 1], on a tλa1 + (1 − t)λa2 = λ(ta1 + (1 − t)a2) ∈ λA, donc λA est convexe. On a

t(a1 + b1) + (1− t)(a2 + b2) = ta1 + (1− t)a2 + tb1 + (1− t)b2 ∈ A+B, donc A+B est convexe.5. Soit (Ai)i∈I une famille d'ensembles convexes de E. Soient x, y ∈ ∩
i∈I
Ai et t ∈ [0, 1]. Pourtout i ∈ I, on a x, y ∈ Ai, d'où tx + (1 − t)y ∈ Ai, car Ai est convexe. Par conséquent, on a

tx+ (1− t)y ∈ ∩
i∈I
Ai. Donc ∩

i∈I
Ai est un sous-ensemble convexe de E.6. Soient A un sous-ensemble convexe de E et B un sous-ensemble convexe de F . Soient y1, y2 ∈

f(A) = g(A) + b et t ∈ [0, 1]. Il existe a1, a2 ∈ A tels que y1 = f(a1) = g(a1) + b et y2 =
f(a2) = g(a2) + b. On a ty1 + (1 − t)y2 = tg(a1) + tb + (1 − t)g(a2) + (1 − t)b = g(ta1 +
(1 − t)a2) + b = f(ta1 + (1 − t)a2). Comme A est convexe, alors on a ta1 + (1 − t)a2 ∈ A,donc ty1 + (1 − t)y2 ∈ f(A). Par conséquent, f(A) est un sous-ensemble convexe de F . Soient
x1, x2 ∈ f−1(B) et t ∈ [0, 1]. Alors g(x1) + b = f(x1) ∈ B et g(x2) + b = f(x2) ∈ B. Comme
B est convexe, alors tg(x1) + tb + (1 − t)g(x2) + (1 − t)b ∈ B. Or on a f(tx1 + (1 − t)x2) =
g(tx1 + (1 − t)x2) + b = tg(x1) + (1 − t)g(x2) + b = tg(x1) + tb + (1 − t)g(x2) + (1 − t)b, donc
f(tx1 + (1 − t)x2) ∈ B. Autrement dit, on a tx1 + (1 − t)x2 ∈ f−1(B), donc f−1(B) est unsous-ensemble convexe de E. �Proposition. Soient (E, ‖ ‖), (F, ‖ ‖′) des espaces normés et f : E −→ F une applicationlinéaire. Les propriétés suivantes sont équivalentes.(i) f est un homéomorphisme.(ii) f est surjective et il existe α > 0 et β > 0 tels que pour tout x ∈ E, on ait :

α ‖x‖ ≤ ‖f(x)‖′ ≤ β ‖x‖ .Si (E, ‖ ‖) est un espace de Banach, alors (i) et (ii) sont équivalentes à :(iii) f(E) est dense dans F et il existe α > 0 et β > 0 tels que pour tout x ∈ E, on ait :
α ‖x‖ ≤ ‖f(x)‖′ ≤ β ‖x‖ .Démonstration. L'équivalence (i) ⇐⇒ (ii) résulte du théorème 6.3.1. L'implication (ii) =⇒(iii) est triviale. Supposons à présent que l'on a la propriété (iii) et que (E, ‖ ‖) est de Banach.Pour avoir la propriété (ii), il reste à montrer que f est surjective. Soit y ∈ F . Comme f(E) estdense dans F , il existe une suite (xn)n≥0 dans E telle que y = lim

n→+∞
f(xn). Pour tout n,m ∈ N,on a α ‖xn − xm‖ ≤ ‖f(xn) − f(xm)‖′, donc la suite (xn)n≥0 est de Cauchy dans E qui est deBanach. Par conséquent, la suite (xn)n≥0 converge vers un x ∈ E. De l'inégalité ‖f(x)‖′ ≤ β ‖x‖,pour tout x ∈ E, on déduit que f est continue. Donc on a f(x) = lim

n→+∞
f(xn) = y, d'où f estsurjective. �Lemme. Soit E un K -espace vectoriel.1. Soit H un hyperplan de E. Alors il existe une forme linéaire non nulle f sur E telle que

H = ker(f).
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812. Inversement, soit f une forme linéaire non nulle sur E. Alors H = ker(f) est un hyperplande E.3. Soient f et g des formes linéaires sur E. Alors ker(f) = ker(g) si et seulement si il existe
λ ∈ K tel que λ 6= 0 et g = λf .Démonstration. 1. Soit H un hyperplan de E, donc il existe a ∈ E non nul tel que E = H+K aet H ∩K a = {0}. Alors pour tout x ∈ E, il existe un unique (h, λ) ∈ H ×K tel que x = h+ λa.On pose f(x) = λ, alors f est une forme linéaire non nulle sur E telle que H = ker(f) .2. Soit f une forme linéaire non nulle sur E, alors H = ker(f) est un sous-espace vectoriel de Eet il existe x0 ∈ E tel que f(x0) 6= 0. Soit a =

x0
f(x0)

, alors on a f(a) = 1. Pour tout x ∈ E, ona x = x− f(x)a+ f(x)a et f(x− f(x)a) = f(x)− f(x)f(a) = 0, donc x− f(x)a ∈ H = ker(f).Par conséquent, on a E = H +K a et H ∩K a = {0}. Autrement dit, H est un hyperplan de E.3. Soient f et g des formes linéaires sur E. On peut supposer que f et g sont non nulles. Il estclair que s'il existe λ ∈ K tel que λ 6= 0 et g = λf , alors on a ker(f) = ker(g).Réciproquement, supposons que ker(f) = ker(g). Soit a ∈ E tel que f(a) = 1. Alors λ = g(a) 6= 0.D'après 2, on a E = ker(f)+K a. Soit x ∈ E, alors il existe y ∈ ker(f) et µ ∈ K tels que x = y+µa,d'où f(x) = µ et g(x) = µg(a) = λµ = λf(x). Par conséquent, on a g = λf . �Proposition. Soient (E, ‖ ‖) et (F, ‖ ‖′) deux R-espaces normés et f : E −→ F une applicationbornée sur B(0, 1) = {x ∈ E ; ‖x‖ < 1}, et elle véri�e f(x+y) = f(x)+f(y) pour tout x, y ∈ E.Alors f est linéaire et continue.Démonstration. On a f(0) = f(0 + 0) = f(0) + f(0), d'où f(0) = 0. Soit x ∈ E. Montronspar récurrence que pour tout n ∈ N, on a f(nx) = nf(x). On a f(0x) = f(0) = 0 = 0f(x).Supposons que pour un certain n ≥ 1, on a f((n − 1)x) = (n − 1)f(x). Alors on a f(nx) =
f((n− 1)x+ x) = f((n− 1)x) + f(x) = (n− 1)f(x) + f(x) = nf(x). Par conséquent, pour tout
n ∈ N, on a f(nx) = nf(x). On a 0 = f(0) = f(x − x) = f(x) + f(−x), d'où f(−x) = −f(x).Donc, pour tout n ∈ Z, on a f(nx) = nf(x). Pour tout q ∈ N∗, on a f(x) = f

(
q
(
1
qx
))

= qf
(
1
qx
),d'où f

(
1
qx
)
= 1

q f(x). Par conséquent, pour tout p ∈ Z et tout q ∈ N∗, on a f(pqx) = p
qf(x).Par hypothèse, il existe A > 0 tel que pour tout x ∈ E véri�ant ‖x‖ < 1, on ait ‖f(x)‖′ ≤ A.Soient x ∈ E et λ ∈ R. Comme Q est dense dans R, alors il existe une suite (λn)n≥0 dans Qtelle que lim

n→+∞
λn = λ, on en déduit que lim

n→+∞
(λn − λ)x = 0. Soit k ∈ N∗, alors il existe N ∈ Ntel que pour tout n ≥ N , on ait ‖k(λn − λ)x‖ < 1, donc on a ‖f(k(λn − λ)x)‖′ ≤ A. D'autrepart, on a f(k(λn − λ)x) = kλnf(x) − kf(λx), d'où ‖λnf(x) − f(λx)‖ ≤ A

k
. Puisque l'on a

lim
n→+∞

λnf(x) = λf(x), on en déduit que pour tout k ∈ N∗, on a ‖λf(x)− f(λx)‖ ≤ A

k
. On faittendre k vers +∞, on obtient que f(λx) = λf(x). Par conséquent, f est linéaire. La continuitéde f résulte du théorème 6.3.1. �Lemme. Soient E1, . . . , En, F des K-espaces vectoriels et f : E = E1 × · · · × En −→ F uneapplication multilinéaire. Pour tous x = (x1, . . . , xn), a = (a1, . . . , an) ∈ E, on a :

f(x1, . . . , xn)− f(a1, . . . , an) =
n∑

i=1

f(a1, . . . , ai−1, xi − ai, xi+1, . . . , xn) (∗) .Démonstration. On va montrer l'équation (∗) par récurrence sur k ∈ {2, . . . , n}. L'équation
(∗) est vraie pour k = 2, car on a :
f(x1−a1, x2)+f(a1, x2−a2) = f(x1, x2)−f(a1, x2)+f(a1, x2)−f(a1, a2) = f(x1, x2)−f(a1, a2) .
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82 Chapitre 6. ESPACES NORMÉSSupposons que l'équation (∗) est vraie à l'ordre k − 1. On a :
f(x1, . . . , xk)− f(a1, . . . , ak) = f(x1 − a1, x2, . . . , xk) + f(a1, x2, . . . , xk)− f(a1, . . . , ak) .Comme l'application (z2, . . . , zk) 7−→ f(a1, z2, . . . , zk) est multilinéaire de E2 × · · · ×Ek dans F ,on applique l'hypothèse de récurrence, on obtient :

f(a1, x2, . . . , xk)− f(a1, . . . , ak) =
k∑

i=2

f(a1, a2 . . . , ai−1, xi − ai, xi+1, . . . , xk) .D'où on a :
f(x1, . . . , xk)− f(a1, . . . , ak) =

k∑

i=1

f(a1, a2 . . . , ai−1, xi − ai, xi+1, . . . , xk) .Donc l'équation (∗) est vraie pour k = n. �Lemme. Soit (An)n≥0 une suite de parties �nies non vides de N, deux à deux disjointes. Alors ilexiste une permutation σ de N telle que si Rn = σ(An), la suite des parties Rn véri�e max(Rn) <
min(Rn+1) pour tout n ≥ 0, et les éléments de Rn sont consécutifs dans N.Démonstration. Soit A = N\ ∪

n≥0
An. Pour tout n ≥ 0, soit an = Card(An). On distingue deuxcas :Premier cas : on suppose A �nie, et soit a = Card(A). Pour tout p ∈ A, on pose σ(p) = ϕA(p)−1et pour tout p ∈ An, on pose σ(p) = rn + ϕAn(p), où r0 = a− 1 et rn = r0 + a0 + a1 + · · · an−1,si n ≥ 1. Alors σ est une permutation de N véri�ant les propriétés citées dans l'énoncé.Deuxième cas : on suppose A in�nie. Soit γ1 une bijection de A sur N. Soit γ2 une bijection de

∪
n≥0

An sur N dé�nie comme précédemment, i.e. Pour tout p ∈ A0, on pose γ2(p) = ϕA0(p)− 1 etpour tout n ≥ 1 et pour tout p ∈ An, on pose γ2(p) = rn+ϕAn(p), où rn = −1+a0+a1+· · · an−1.Notons que l'on a :
γ2(A0) = {0, . . . , a0 − 1} ,

γ2(An) = {a0 + a1 + · · · an−1, . . . ,−1 + a0 + a1 + . . . an−1 + an}, pour tout n ≥ 1 .Pour tout p ∈ A, on pose γ(p) = 2γ1(p) et pour tout p ∈ ∪
n≥0

An, on pose γ(p) = 2γ2(p)+1, alors γest une permutation de N telle que si on note R′
n = γ(An), alors pour tout n ≥ 0, on amax(R′

n) <
min(R′

n+1), mais les éléments de R′
n ne sont pas consécutifs dans N si Card(R′

n) ≥ 2. Pour tout
n ≥ 0, soit In l'intervalle de N d'extrémités min(R′

n) et max(R′
n). Il existe une permutation δnde In telle que les éléments de δn(R′

n) deviennent consécutifs et on a min(δn(R
′
n)) = min(R′

n)et max(δn(R
′
n)) ≤ max(R′

n). On pose Rn = δn(R
′
n) et soit δ la permutation de N dé�nie par

δ(p) = p si p ∈ N\ ∪
n≥0

In, et pour tout n ≥ 0 et pour tout p ∈ In, δ(p) = δn(p). On pose σ = δ ◦γ,alors σ véri�e les propriétés citées dans l'énoncé. �Théorème. Dans un espace normé de dimension �nie, une famille est sommable si et seulementsi elle est normalement sommable.Démonstration. Soit (E, ‖ ‖) un espace normé de dimension �nie. Comme toutes les normessur E sont équivalentes et la nature d'une famille, le fait d'être, ou non, sommable, est inchangéesi on remplace la norme ‖ ‖ par une norme équivalente, on peut supposer que E = Rn muni de la
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83norme ‖ ‖1 dé�nie par ‖(x1, . . . , xn)‖1 =

n∑

p=1

|xp|. Puisque (Rn, ‖ ‖1) est un espace de Banach, ilrésulte du théorème 6.7.1 que toute famille normalement sommable est sommable dans (Rn, ‖ ‖1).Réciproquement, soit (ai)i∈I une famille sommable dans Rn. Notons d'abord que si (tk)k∈K estune famille �nie dans R, on a ∑
k∈K
|tk| ≤ 2 sup

J⊂K

∣∣∣
∑

j∈J
ti

∣∣∣. En e�et, soient K− =
{
k ∈ K ; tk < 0

}et K+ =
{
k ∈ K ; tk ≥ 0

}, alors on a :
∑

k∈K
|tk| =

∑

k∈K+

tk −
∑

k∈K−

tk

=
∣∣∣
∑

k∈K+

tk

∣∣∣+
∣∣∣
∑

k∈K−

tk

∣∣∣

≤ sup
J⊂K

∣∣∣
∑

j∈J
ti

∣∣∣+ sup
J⊂K

∣∣∣
∑

j∈J
ti

∣∣∣

= 2 sup
J⊂K

∣∣∣
∑

j∈J
ti

∣∣∣ .Pour tout i ∈ I, on a ai = (a1,i, . . . , an,i). Puisque les projections canoniques de Rn sur R sontlinéaires et continues, pour tout p ∈ {1, . . . , n}, la famille (ap,i)i∈I est sommable dans R. Doncl'ensemble {∣∣∣∑
i∈J

ap,i

∣∣∣ ; J partie �nie de I} est majoré. Par conséquent, il existe M > 0 tel quepour toute partie �nie J de I et pour tout p ∈ {1, . . . , n}, on ait ∣∣∣∑
i∈J

ap,i

∣∣∣ ≤ M . Soit J unepartie �nie de I, on a :
∑

i∈J
‖ai‖1 =

∑

i∈J

n∑

p=1

|ap,i| =
n∑

p=1

∑

i∈J
|ap,i| ≤

n∑

p=1

2M = 2M n .Il résulte de la proposition 6.7.1 que la famille (‖ai‖1)i∈I est sommable dans R+. Autrement dit,la famille (ai)i∈I est normalement sommable. �Proposition.1. Soient (ai)i∈I et (bj)j∈J deux familles sommables d'éléments du corps K. Alors la famille
(aibj)(i,j)∈I×J est sommable dans K et on a :

∑

(i,j)∈I×J

aibj =
(∑

i∈I
ai

)(∑

j∈J
bj

)
.2. Si∑ an et∑ bn sont deux séries dans K absolument convergentes. Alors la série

∑( n∑

k=0

akbn−k

) est absolument convergente et on a :
+∞∑

n=0

( n∑

k=0

akbn−k

)
=
( +∞∑

n=0

an

)( +∞∑

n=0

bn

)
.
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84 Chapitre 6. ESPACES NORMÉSDémonstration. 1. Puisque K est un espace normé de dimension �nie, les familles (ai)i∈I et
(bj)j∈J sont aussi absolument sommables. Soit K une partie �nie de I × J , alors il existe unepartie �nie A de I et une partie �nie B de J telles que K ⊂ A×B. On a :

∑

(i,j)∈K
|aibj | ≤

∑

(i,j)∈A×B

|aibj | =
(∑

i∈A
|ai|
)(∑

j∈B
|bj |
)
≤
(∑

i∈I
|ai|
)(∑

j∈J
|bj |
)
< +∞ .Par la proposition 6.7.1, la famille (aibj)(i,j)∈I×J est alors absolument sommable, donc elle estsommable car K est un espace de Banach. D'après le théorème 6.7.4, on a :

∑

(i,j)∈I×J

aibj =
∑

i∈I

(∑

j∈J
aibj

)
=
∑

i∈I

(
ai
∑

j∈J
bj

)
=
(∑

i∈I
ai

)(∑

j∈J
bj

)
.2. Puisque les séries∑ an et∑ bn sont absolument convergentes, d'après le corollaire 6.7.3, lesfamilles (an)n∈N et (bn)n∈N sont absolument sommables, donc sommables et on a∑

n∈N
an =

+∞∑

n=0

anet ∑
n∈N

bn =

+∞∑

n=0

bn. D'après 1, la famille (anbm)(n,m)∈N2 est sommable et on a :
∑

(n,m)∈N2

anbm =
(∑

n∈N
an

)(∑

n∈N
bn

)
=
( +∞∑

n=0

an

)( +∞∑

n=0

bn

)
.Pour tout n ≥ 0, soit In = {(k, n − k) ∈ N2 ; 0 ≤ k ≤ n}, alors (In)n∈N est une partition de N2.D'après les théorèmes 6.7.3 et 6.7.4, la famille (anbm)(n,m)∈N2 est absolument sommable et on a :

∑

n∈N

( n∑

k=0

|akbn−k|
)
=

∑

(n,m)∈N2

|anbm| < +∞ .Donc la série∑( n∑

k=0

akbn−k

) est absolument convergente et on a :
+∞∑

n=0

( n∑

k=0

akbn−k

)
=

∑

(n,m)∈N2

anbm =
( +∞∑

n=0

an

)( +∞∑

n=0

bn

)
. �Proposition. Soient (E, ‖ ‖) un espace normé et F un sous-espace vectoriel fermé de E. Lespropriétés suivantes sont équivalentes.(i) L'espace E est séparable.(ii) Les espaces F et E/F sont séparables.Démonstration. Montrons l'implication (i) =⇒ (ii). Comme tout sous-espace d'un espacemétrique séparable est séparable, alors F est séparable. Soit π : E −→ E/F l'applicationquotient. Soit D = {xn ; n ≥ 0} une partie au plus dénombrable et dense dans E, alors

π(D) = {π(xn) ; n ≥ 0} est une partie au plus dénombrable et dense dans E/F , donc E/F estséparable.Preuve de (ii) =⇒ (i). Soient A = {an ; n ≥ 0} une partie au plus dénombrable et densedans F et B = {π(bn) ; n ≥ 0} une partie au plus dénombrable et dense dans E/F . Soit
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D = {an + bm ; n,m ≥ 0}, alors est au plus dénombrable. Montrons que D est dense dans E.Soient ε > 0 et x ∈ E, alors il existe bm tel que ‖π(x− bm)‖ = ‖π(x)−π(bm)‖ < ε

2 , d'où il existe
z ∈ F tel que ‖x− bm − z‖ < ε

2 . Comme A est dense dans F , il existe an tel que ‖z − an‖ < ε
2 .D'où on a ‖x− (an + bm)‖ ≤ ‖x− bm − z‖ + ‖z − an‖ < ε

2 + ε
2 = ε. Donc D est dense dans E.Par conséquent, E est séparable. �Supplément d'exercicesExercice 6.47. Soient (E, ‖ ‖) un espace normé et A une partie non vide de E telle que pour tout

x ∈ E il existe un unique f(x) ∈ A tel que d(x,A) = ‖x− f(x)‖. Soient x ∈ E et f(x) = a ∈ A.Montrer que pour tout z ∈ [x, a], on a d(z,A) = ‖z − a‖.Solution. On a z = tx+(1− t)a, avec t ∈ [0, 1], d'où x− z = (1− t)(x− a) et z− a = t(x− a).On a :
‖x− a‖ ≤ ‖x− f(z)‖

≤ ‖x− z‖+ ‖z − f(z)‖

≤ ‖x− z‖+ ‖z − a‖

= (1− t)‖x− a‖+ t‖x− a‖ = ‖x− a‖ .Donc on a ‖x−a‖ = ‖x−f(z)‖. Autrement dit, il existe a, f(z) ∈ A tels que d(x,A) = ‖x−a‖ =
‖x− f(z)‖. Par conséquent, on a f(z) = a, d'où d(z,A) = ‖z − a‖.Exercice 6.48. Soit (E, ‖ ‖) un espace vectoriel normé. Montrer que pour tout x ∈ B(0, 1), ona d(x,E \B(0, 1)) = 1− ‖x‖.Solution. Soit y ∈ E \ B(0, 1), on a 1 ≤ ‖y‖ ≤ ‖x‖ + ‖x − y‖, d'où 1 − ‖x‖ ≤ ‖x − y‖. Parconséquent, on a 1 − ‖x‖ ≤ d(x,E \ B(0, 1)). Si x = 0 et ‖y‖ = 1, alors on a ‖x − y‖ = 1, d'où
d(x,E \B(0, 1)) = 1 = 1−‖x‖. On suppose maintenant x 6= 0. Soit y =

x

‖x‖ , alors on a ‖y‖ = 1,d'où y ∈ E\B(0, 1). On a aussi ‖x−y‖ = 1−‖x‖. Par conséquent, on a d(x,E\B(0, 1)) = 1−‖x‖.Exercice 6.49. Soit (X, d) un espace métrique. Montrer que les propriétés suivantes sont équi-valentes.(i) L'espace (X, d) est compact.(ii) L'espace de Banach (Cb(X), ‖ ‖∞
) est séparable.Solution. L'implication (i) =⇒ (ii) résulte de la proposition 3.6.1 et du fait que Cb(X) = C(X)si X est compact.Montrons l'implication (ii) =⇒ (i). Supposons que X n'est pas compact. Montrons d'abord qu'ilexiste une suite (xn)n≥0 dans X n'admettant aucune sous-suite convergente et une suite (rn)n≥0de réels strictement positifs tendant vers 0 telles que les boules ouvertes B(xn, rn) sont deux àdeux disjoints. On distingue deux cas :Premier cas : (X, d) n'est pas précompact. Alors d'après l'exercice 3.39 du supplément, il existeun réel r > 0 et une suite (xn)n≥0 dans X telle que, pour tout n,m ∈ N, avec n 6= m, on ait

d(xn, xm) > r. Il su�t alors de poser rn = r
2(n+1) , pour tout n ≥ 0.Deuxième cas : (X, d) n'est pas complet. Soit (yn)n≥0 une suite de Cauchy non convergente dans

(X, d). D'après l'exercice 3.40 du supplément, pour tout x ∈ X, la suite (d(x, yn))n≥0
convergevers un réel strictement positif, donc il existe tx > 0 et il existe Nx ∈ N tels que pour tout n ≥ Nx,on ait d(x, yn) > tx. On construit alors par récurrence une sous-suite (ynk

)k≥0 de (yn)n≥0 et une
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86 Chapitre 6. ESPACES NORMÉSsuite (tk)k≥0 strictement décroissante dans ]0, +∞[ tendant vers 0 telles que pour tous p, q ∈ N,avec q > p, on ait d(ynp , ynq ) > tp. Il su�t maintenant de poser rp =
tp
2 et xp = ynp , pour tout

p ≥ 0.Pour tout n ≥ 0, soit Bn = B(xn, rn) et on pose :
φn(x) =





1− d(x,xn)
rn

si x ∈ Bn ,

0 si x ∈ X \Bn .Alors φn ∈ Cb(X) et on a φn(X) ⊂ [0, 1], voir exemple 3.6.2. Puisque les Bn sont deux à deuxdisjoints, pour tout α = (αn)n≥0 ∈ {0, 1}N et pour tout x ∈ X, on pose fα(x) = +∞∑

n=0

αnφn(x).Alors on a :1. Pour tout α ∈ {0, 1}N, fα ∈ Cb(X).2. Pour tous α, β ∈ {0, 1}N tels que α 6= β, on a ‖fα − fβ‖∞ = 1.Montrons d'abord que pour tout α ∈ {0, 1}N, on a fα ∈ Cb(X). Il est clair que fα est bornée. Soit
x ∈ X. Montrons que fα est continue en x. Pour tout s > 0, soit As =

{
n ∈ N ; B(x, s)∩Bn 6= ∅

}.Montrons qu'il existe s > 0 tel que l'ensemble As soit �ni. Si pour tout s > 0, l'ensemble As est in-�ni, alors il existe une suite (ak)k≥0 dans X et une sous-suite (xnk
)k≥0 de (xn)n≥0 telles que pourtout k ≥ 0, on ait d(x, ak) < 1

k+1 et d(xnk
, ak) < rnk

. Comme on a lim
k→+∞

rnk
= lim

k→+∞
1

k+1 = 0,alors on en déduit que (xnk
)k≥0 converge vers x, ce qui est impossible, car la suite (xn)n≥0 n'ad-met aucune sous-suite convergente. Par conséquent, il existe bien un s > 0 tel que l'ensemble Assoit �ni. Donc il existe p ∈ N tel que pour tout n > p, on ait B(x, s)∩Bn = ∅. Soit gp =

p∑

n=0

αnφn.Alors gp est continue sur X et on a fα|B(x,s)
= gp|B(x,s)

. Comme B(x, s) est un ouvert de X, onen déduit que fα est continue en x. D'où la continuité de fα. Ainsi, on a fα ∈ Cb(X).Montrons que pour tous α, β ∈ {0, 1}N tels que α 6= β, on a ‖fα − fβ‖∞ = 1. Il est clair quepour tout x ∈ X, on a |fα(x) − fβ(x)| ≤ 1, d'où ‖fα − fβ‖∞ ≤ 1. Comme α 6= β, alors ilexiste n ≥ 0 tel que αn 6= βn, d'où |fα(xn) − fβ(xn)| = |αn − βn| = 1. Par conséquent, on a
‖fα− fβ‖∞ = 1. Comme l'ensemble {0, 1}N n'est pas dénombrable, voir exercice 6.35, on déduitde la proposition 1.2.5 que (Cb(X), ‖ ‖∞

) n'est pas séparable, ce qui contredit l'hypothèse. Donc
X est bien compact.Exercice 6.50. Soit (E, ‖ ‖) un espace normé. Montrer que les propriétés suivantes sont équi-valentes.(i) Il existe une partie compacte K de E telle que E = Vect(K).(ii) L'espace E est séparable.Solution. Montrons l'implication (i) =⇒ (ii). Soit K une partie compacte de E telle que
E = Vect(K). D'après la proposition 3.1.7, K est séparable, donc il existe une partie A de
K au plus dénombrable et dense dans K. On en déduit que A est une partie totale de E. Parconséquent, E est séparable.Montrons l'implication (ii) =⇒ (i). Supposons que E est séparable. On peut supposer E 6= {0}.Alors il existe une suite (xn)n≥1 d'éléments non nuls de E telle que E = {xn ; n ≥ 1}. Soit
K =

{
xn

n ‖xn‖ ; n ≥ 1
}
∪
{
0
}. Alors K est une partie compacte de E telle que E = Vect(K).
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87Exercice 6.51. Montrer que l'espace de Banach (Cb( ]0, 1[, R), ‖ ‖∞) n'est pas séparable.Solution. Ceci résulte de l'exercice 6.49, mais donnons une preuve directe. Il su�t de montrerque Cb( ]0, 1[, R) contient une copie de `∞, voir exercice 6.35. Pour tout n ≥ 1, Soit fn ∈
Cb( ]0, 1[, R) telle que ‖fn‖∞ = 1 et fn(t) = 0 si t 6∈ ] 1

n+1 ,
1
n

[ (une telle fonction existe). Pourtout a = (an)n≥0 ∈ `∞ et pour tout t ∈ [ 1
n+1 ,

1
n

[, on pose Ta(t) = anfn(t). Autrement dit,pour tout t ∈ ]0, 1[= ∞∪
n=1

[
1

n+1 ,
1
n

[, on a T (a)(t) =

∞∑

n=1

anfn(t). Alors T (a) ∈ Cb( ]0, 1[, R) etl'application
T : `∞ −→ Cb( ]0, 1[, R)

a 7−→ T (a)est linéaire et isométrique. Donc on peut considérer `∞ ⊂ Cb( ]0, 1[, R). Comme `∞ n'est passéparable, on en déduit que (Cb( ]0, 1[, R), ‖ ‖∞) n'est pas séparable.Exercice 6.52. Soit (X, d) un espace métrique localement compact. Montrer que X est sépa-rable si et seulement si C0(X) contient une fonction à valeurs strictement positives.Solution. D'après la proposition 3.4.4, X est séparable si et seulement si X est dénombrable àl'in�ni. Supposons d'abord qu'il existe f ∈ C0(X) telle que pour tout x ∈ X, on ait f(x) > 0.Alors, pour tout n ≥ 1, il existe un compact Kn de X tel que pour tout x ∈ X \ Kn, on ait
0 < f(x) < 1

n . On en déduit que l'on a X = ∪
n≥0

Kn. Donc X est dénombrable à l'in�ni.Réciproquement, supposons que X est dénombrable à l'in�ni. Soit (Kn

)
n≥0

une suite exhaustivede compacts de X, voir théorème 3.4.2. D'après le théorème 3.6.1, pour tout n ≥ 0, il existe
φn ∈ Cc(X) telle que φn(X) ⊂ [0, 1], φn(x) = 1, pour tout x ∈ Kn, et Supp(φn) ⊂ ◦

Kn+1.Puisque la série∑
n≥0

1
2nφn est normalement convergente dans l'espace de Banach (C0(X), ‖ ‖∞

),alors f =
+∞∑

n=0

1
2nφn ∈ C0(X). Il est clair que pour tout x ∈ X, on a f(x) > 0.Exercice 6.53. Soient (E, ‖ ‖) un espace normé de dimension in�nie. Montrer qu'il existe unesuite (xn)n≥0 dans E telle que pour tout n ≥ 0, on ait ‖xn‖ = 1 et ‖xn − xm‖ ≥ 1 si n 6= m.Solution. On construit la suite (xn)n≥0 par récurrence sur n. Soit x0 ∈ E tel que ‖x0‖ = 1. Soit

F = Vect(x0) le sous-espace vectoriel engendré par x0. D'après l'exercice 6.42, il existe x1 ∈ Etel que ‖x1‖ = 1 et d(x1, F ) = 1, d'où ‖x0 − x1‖ ≥ d(x1, F ) = 1. Supposons que l'on a construit
x0, x1, · · · , xn ∈ E tels que ‖xi‖ = 1 et ‖xi − xj‖ ≥ 1, si i 6= j, pour tout i, j ∈ {1, . . . , n}.Soit F = Vect({x0, x1, · · · , xn}) le sous-espace vectoriel engendré par x0, x1, · · · , xn. D'aprèsl'exercice précédent, il existe xn+1 ∈ E tel que ‖xn+1‖ = 1 et d(xn+1, F ) = 1, d'où ‖xn+1−xi‖ ≥
d(xn+1, F ) = 1 pour tout i ∈ {1, . . . , n}. Ainsi, on trouve une suite (xn)n≥0 dans E telle quepour tout n ≥ 0, on ait ‖xn‖ = 1 et ‖xn − xm‖ ≥ 1 si n 6= m.Exercice 6.54. (E, ‖ ‖) un espace normé. Soient f et g deux formes linéaires continues nonnulles sur E. Soient Nf = ker(f) et Ng = ker(g). Montrer qu'il existe un homéomorphismelinéaire T : Nf −→ Ng.Solution. Notons d'abord que pour tout x ∈ E \ Nf , on a E = Nf ⊕ Kx, et que si Ng ⊂ Nf ,alors on a Ng = Nf . On suppose Ng 6= Nf , car sinon c'est trivial. Soit h = f|Ng

: Ng −→ K,alors h est une forme linéaire continue non nulle. Soit N = Ng ∩ Nf , alors on a N = ker(h).Donc il existe xg ∈ Ng tel que Ng = N ⊕ Kxg et xg 6∈ Nf . Soit xf ∈ Nf tel que xf 6∈ Ng,alors on a E = N ⊕ Kxg ⊕ Kxf . On peut supposer f(xg) = 1 = g(xf ). Pour tout x ∈ E, soit
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T (x) = x + (f(x) − g(x))xf + (g(x) − f(x))xg, alors T est linéaire et est un homéomorphismede E dans E, car T est continue et T−1 = T . En fait, pour tout y ∈ N et tout α, β ∈ K, on a
T (y + αxf + βxg) = y + βxf + αxg. On a de plus T (Nf ) = Ng.Exercice 6.55. Soient (E, ‖ ‖), (F, ‖ ‖′) deux espaces normés et T : E −→ F une applicationlinéaire continue. Soient a ∈ E et ρ > 0. Montrer que l'on a :

‖T‖ = sup
{‖T (x)− T (a)‖′

ρ
; x ∈ E et ‖x− a‖ = ρ

}
.Solution. Soit β = sup

{‖T (x)− T (a)‖′
ρ

; x ∈ E et ‖x − a‖ = ρ
}, il s'agit de véri�er que l'ona ‖T‖ = β. Rappelons que l'on a ‖T‖ = sup

{
‖T (z)‖′ ; z ∈ E avec ‖z‖ = 1

}. Soit x ∈ E telque ‖x − a‖ = ρ, alors on a ∥∥∥x− a
ρ

∥∥∥ = 1, d'où ‖T (x)− T (a)‖′
ρ

≤ ‖T‖. Donc on a β ≤ ‖T‖.Réciproquement, soit z ∈ E tel que ‖z‖ = 1. Soit x = ρz+a, alors on a ‖x−a‖ = ρ et x− a
ρ

= z,d'où ‖T (z)‖′ = ‖T (x)− T (a)‖′
ρ

≤ β. Donc on a ‖T‖ ≤ β. Par conséquent, on a ‖T‖ = β.Exercice 6.56. Soient (E, ‖ ‖) un espace normé et f : E −→ R une forme linéaire continuenon nulle. Soient α ∈ R et Hα = {x ∈ E ; f(x) = α}. Soient b ∈ E tel que α < f(b) et
δ = d(b,Hα) > 0. Montrer que pour tout x ∈ B′(b, δ), on a α ≤ f(x).Solution. Soit a ∈ E tel que f(a) = α, on a Hα = ker(f) + a. D'après l'exercice 6.43, on a :

δ = d(b,Hα) = d(b, ker(f) + a) = d(b− a, ker(f)) = |f(b)− f(a)|‖f‖ =
f(b)− f(a)
‖f‖ .Soit x ∈ B′(b, δ). Si f(x) < α, alors f(x) < f(a) < f(b), d'où f(b) − f(a) < f(b) − f(x). Parconséquent, on a δ‖f‖ = f(b)− f(a) < f(b)− f(x) ≤ ‖f‖‖b− x‖ ≤ ‖f‖ δ, ce qui est impossible.Donc, pour tout x ∈ B′(b, δ), on a bien α ≤ f(x).Exercice 6.57. Soient (E, ‖ ‖) un espace de Banach, (F, ‖ ‖′) un espace normé et BF = {y ∈

F ; ‖y‖′ ≤ 1}. Soit T : E −→ F une application linéaire telle que T−1(BF ) soit fermé dans E.Montrer que T est continue.Solution. On a F = ∪
n≥1

nBF , d'où E = T−1(F ) = ∪
n≥1

nT−1(BF ). Comme pour tout n ≥ 1,
nT−1(BF ) est fermé dans E, il résulte du théorème de Baire, théorème 2.8.1, qu'il existe n ≥ 1tel que nT−1(BF ) soit d'intérieur non vide dans E. Comme la multiplication dans E parun scalaire non nul est un homéomorphisme de E, alors T−1(BF ) est d'intérieur non videdans E. En particulier, il existe x ∈ E et r > 0 tels que B(x, r) ⊂ T−1(BF ). On a aussi
B(−x, r) = −B(x, r) ⊂ −T−1(BF ) = T−1(−BF ) = T−1(BF ). Pour tout z ∈ B(0, r), on a
z = 1

2(z+x)+ 1
2(z−x), avec z+x ∈ B(x, r) et z−x ∈ B(−x, r). Comme T−1(BF ) est convexe,on en déduit que l'on a z ∈ T−1(BF ). Donc on a B(0, r) ⊂ T−1(BF ). En particulier, T−1(BF )est un voisinage de 0 dans E. Par conséquent, T est continue.Exercice 6.58. Pour tout (x, y) ∈ R2, on pose N(x, y) = sup

t∈R

|x+ ty|
1 + t2

.1. Montrer que N est une norme sur R2.2. Montrer que pour tout (x, y) ∈ R2, on a N(x, y) =
‖(x, y)‖2 + |x|

2
, où ‖ ‖2 désigne la normeeuclidienne sur R2. En déduire que l'on a 1

2‖(x, y)‖2 ≤ N(x, y) ≤ ‖(x, y)‖2.
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89Solution. 1. On aN(x, y) = 0 ⇐⇒ pour tout t ∈ R, |x+ty| = 0 ⇐⇒ (x, y) = (0, 0). Pour tout
λ ∈ R, on a N(λ(x, y)) = N(λx, λy) = sup

t∈R

|λx+ tλy|
1 + t2

= sup
t∈R

|λ| |x+ ty|
1 + t2

= |λ| sup
t∈R

|x+ ty|
1 + t2

=

|λ|N(x, y). Pour tout (x, y), (x′, y′) ∈ R2, on a :
N((x, y) + (x′, y′)) = N(x+ x′, y + y′)

= sup
t∈R

|x+ x′ + ty + ty′|
1 + t2

≤ sup
t∈R

( |x+ ty|
1 + t2

+
|x′ + ty′|
1 + t2

)

≤ sup
t∈R

|x+ ty|
1 + t2

+ sup
t∈R

|x+ ty|
1 + t2

= N(x, y) + (x′, y′) .Donc N est bien une norme sur R2.2. Puisque l'on a N((−x,−y)) = N(x, y) et N((x,−y)) = N(x, y), il su�t de montrer l'éga-lité pour x ≥ 0 et y ≥ 0. Soient x, y ∈ R tels que x ≥ 0 et y ≥ 0. Alors on a N(x, y) =

sup
t∈R

|x+ ty|
1 + t2

= sup
t≥0

x+ ty

1 + t2
. On a N(x, 0) = x =

‖(x, 0)‖2 + |x|
2

, donc on peut aussi suppo-ser y > 0. Pour tout t ≥ 0, soit f(t) =
x+ ty

1 + t2
. Alors f est dérivable sur [0, +∞[, et on a

f ′(t) =
−yt2 − 2xt+ y

(1 + t2)2
. Donc f ′ s'annule seulement en t0 =

−x+
√
x2 + y2

y
sur l'intervalle

[0, +∞[. Par conséquent, on a N(x, y) =
x+ t0y

1 + t20
=
‖(x, y)‖2 + |x|

2
. D'autre part, pour tout

(x, y) ∈ R2, on a 1
2‖(x, y)‖2 ≤

‖(x, y)‖2 + |x|
2

≤ ‖(x, y)‖2, d'où 1
2‖(x, y)‖2 ≤ N(x, y) ≤ ‖(x, y)‖2.Exercice 6.59. Soit E l'ensemble des applications lipschitziennes de [0, 1] dans R. Pour tout fde E, on pose :

‖f‖∞ = sup
0≤t≤1

|f(t)| , N(f) = ‖f‖∞ +K(f) et K(f) = sup
x 6=y

∣∣∣∣
f(x)− f(y)

x− y

∣∣∣∣ .1. Véri�er que E est un sous-espace vectoriel de C([0, 1], R).2. Justi�er l'existence de K(f) et montrer que pour tout f, g ∈ E, on a :
K(f + g) ≤ K(f) +K(g) et ∣∣K(f)−K(g)

∣∣ ≤ K(f − g) .3. Montrer que N est une norme sur E.4. Considérons la suite (fn)n≥1 dans C([0, 1], R) dé�nie par :
fn(x) =





x si 0 ≤ x ≤ 1
n ,

1
n si 1

n ≤ x ≤ 1 .Véri�er que fn ∈ E et montrer que N et ‖ ‖∞ sont deux normes non équivalentes sur E.
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90 Chapitre 6. ESPACES NORMÉS5. Montrer que E est de dimension in�nie.6. Montrer que l'espace (E, N) est de Banach.Solution. 1. C'est trivial.2. Soit f ∈ E, alors il existe k > 0 tel que pour tout x, y ∈ [0, 1], on ait |f(x)− f(y)| ≤ k|x− y|,d'où pour tous x, y ∈ [0, 1] tels que x 6= y, on ait ∣∣∣∣f(x)− f(y)x− y

∣∣∣∣ ≤ k, donc K(f) existe dans R.Pour tout f, g ∈ E, on a :
K(f + g) = sup

x 6=y

∣∣∣∣
f(x) + g(x)− f(y)− g(y)

x− y

∣∣∣∣ .On a aussi :
|f(x) + g(x)− f(y)− g(y)|

|x− y| ≤ |f(x)− f(y)||x− y| +
|g(x) − g(y)|
|x− y| ≤ K(f) +K(g) ,d'où K(f + g) ≤ K(f)+K(g). On en déduit que l'on a K(f) = K(f − g+ g) ≤ K(f − g)+K(g)et K(g) = K(g − f + f) ≤ K(g − f) + K(f) = K(f − g) + K(f). Par conséquent, on a

|K(f)−K(g)| ≤ K(f − g).3. On a N(f) = 0 ⇐⇒ ‖f‖∞ + K(f) = 0 ⇐⇒ ‖f‖∞ ⇐⇒ f = 0. On a N(λf) =
‖λf‖∞+K(λf) = |λ| ‖f‖∞+ |λ|K(f). On a N(f +g) = ‖f +g‖∞+K(f +g) ≤ ‖f‖∞+‖g‖∞+
K(f) +K(g) = N(f) +N(g). Donc N est une norme sur E.4. Si x, y ∈ [0, 1

n

], on a fn(x)− fn(y) = x− y. Si x, y ∈ [ 1n , 1], on a fn(x)− fn(y) = 0. Si x ≤ 1
net y ≥ 1

n , on a |fn(x) − fn(y)| = 1
n − x ≤ y − x = |x − y|. Donc fn est lipschitzienne de [0, 1]dans R, d'où f ∈ E. On a ‖fn‖∞ = 1

n et K(fn) = 1, d'où N(fn) = 1+ 1
n . Donc les deux normes

‖ ‖∞ et N ne sont pas équivalentes, voir remarque 6.1.1.5. Soit B′(0, 2) la boule fermée de centre 0 et de rayon 2 dans (E, N). Alors il existe n0 ∈ Ntel que pour tout n ≥ n0, on ait fn ∈ B′(0, 2). Si E est de dimension �nie, alors B′(0, 2) seraitcompacte, et donc la suite (fn)n≥1 admettrait une sous-suite convergente. Soit (fnk
)k≥1 une tellesous-suite et soit g la limite de (fnk

)k≥1 dans (E, N). Alors la suite (fnk
)k≥1 converge aussi vers

g pour la norme ‖ ‖∞. Comme on a ‖fnk
‖∞ = 1

nk
, alors g = 0, d'où on a lim

k→+∞
N(fnk

) = 0,ce qui est impossible car pour tout k, on a N(fnk
) = 1 + 1

nk
≥ 1. Par conséquent, E est dedimension in�nie.6. Soit (gn)n≥0 une suite de Cauchy dans (E, N). Comme pour tout f ∈ E, on a ‖f‖∞ ≤ N(g),alors (gn)n≥0 est de Cauchy dans (E, ‖ ‖∞) ⊂ (C([0, 1], R), ‖ ‖∞). Comme (C([0, 1], R), ‖ ‖∞)est de Banach, voir proposition 2.6.8, alors il existe g ∈ C([0, 1], R) telle que lim

n→+∞
‖gn−g‖∞ = 0.Pour tout n,m ∈ N, on a :

∣∣K(gn)−K(gm)
∣∣ ≤ K(gn − gm) ≤ N(gn − gm) ,donc la suite (K(gn)

)
n≥0

est de Cauchy dans R, d'où il existe α ∈ R tel que lim
n→+∞

K(gn) = α.Pour tout n ≥ 0 et pour tout x, y ∈ [0, 1], on a |gn(x) − gn(y)| ≤ K(gn)|x − y|. On fait tendre
n vers l'in�ni, on obtient |g(x) − g(y)| ≤ α|x − y|, donc g ∈ E. Soit ε > 0. Alors il existe
k ∈ N tel que pour tout n,m ≥ k, on ait K(gn − gm) ≤ ε. Donc, pour tout x, y ∈ [0, 1] etpour tout n,m ≥ k, on a |gn(x) − gm(x) − gn(y) − gm(y)| ≤ ε|x − y|. On fait tendre m versl'in�ni, on obtient |gn(x) − g(x) − gn(y) − g(y)| ≤ ε|x − y|. D'où on a K(gn − g) ≤ ε pourtout n ≥ k. Comme on a N(gn − g) = ‖gn − g‖∞ +K(gn − g), alors lim

n→+∞
N(gn − g) = 0. Au-trement dit, la suite (gn)n≥0 converge vers g dans (E, N). Donc (E, N) est un espace de Banach.Exercice 6.60. Soit (E, ‖ ‖) un espace normé de dimension in�nie.
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911. Construire une application linéaire bijective non continue T : (E, ‖ ‖) −→ (E, ‖ ‖).2. Pour tout x ∈ E, on pose ‖x‖T = ‖T (x)‖. Montrer que ‖ ‖T est une norme sur E, que Test une application bijective isométrique de (E, ‖ ‖T ) dans (E, ‖ ‖) et que (E, ‖ ‖T ) estde Banach si et seulement si (E, ‖ ‖) est de Banach.3. Montrer que les normes ‖ ‖ et ‖ ‖T ne sont pas équivalentes.Solution. 1. Soient (en)n≥1 une suite in�nie de vecteurs de E linéairement indépendants et V lesous-espace vectoriel de E engendré par (en)n≥1. SoitW un supplémentaire algébrique de V dans
E. On dé�nit une application linéaire T de E dans E par : pour tout x ∈W , on pose T (x) = x,et pour tout n ≥ 1, on pose T (en) = n‖en‖, autrement dit, on a T( n∑

i=1

λiei

)
=

n∑

i=1

λi i‖ei‖.Alors T est une application linéaire bijective non continue de E dans E.2. C'est une simple véri�cation.3. Les normes ‖ ‖ et ‖ ‖T ne sont pas équivalentes car l'application identité x 7−→ x n'est pascontinue de (E, ‖ ‖) dans (E, ‖ ‖T ).Exercice 6.61. Soient (E, ‖ ‖), (F, ‖ ‖′) deux espaces normés et f : E −→ F une applicationlinéaire. Montrer qu'il existe toujours une norme sur E qui rend cette application continue.Solution. Pour tout x ∈ E, on pose ‖x‖′′ = ‖x‖ + ‖f(x)‖′, alors ‖ ‖′′ est une norme sur E quirend l'application linéaire f continue.Exercice 6.62. Soient E = {f ∈ C1([0, 1], R) ; f(0) = 0} et F = C([0, 1], R) . Considéronsl'application dérivée
D : E −→ F

f 7−→ f ′1. On munit E et F de la norme ‖ f ‖∞ = sup
0≤x≤1

|f(x)| . Montrer que D est linéaire bijectivenon continue.2. On munit E de la norme ‖ f ‖ = ‖ f ‖∞ + ‖ f ′ ‖∞ et F de la norme ‖ f ‖∞. Montrer que Dest continue et calculer sa norme d'opérateur ‖D‖ .Solution. 1. Il est clair que D est linéaire et bijective. L'application D−1 associe à touteapplication f ∈ F sa primitive nulle en 0. Autrement dit, on a D−1(f)(x) =

∫ x

0
f(t) dt, d'où :

∣∣D−1(f)(x)
∣∣ ≤

∫ x

0
|f(t)| dt ≤

∫ x

0
‖f‖∞ dt ≤ x‖f‖∞ ≤ ‖f‖∞donc on a ‖D−1(f)‖∞ ≤ ‖f‖∞. Par conséquent, D−1 est continue. Pour tout n ≥ 1, soit

fn(t) = tn, alors on a ‖ fn ‖∞ = 1, mais ‖D(fn) ‖∞ = n, donc D n'est pas continue.2. On a ‖D(f)‖∞ = ‖ f ′‖∞ ≤ ‖ f ‖∞ + ‖ f ′ ‖∞ = ‖ f ‖, donc dans ce cas, D est continue et on a
‖D‖ ≤ 1. Pour tout n ≥ 1, soit gn(t) = tn

n , alors on a ‖ gn ‖ = 1
n + 1 et ‖D(gn)‖∞ = 1. Commeon a ‖D‖ = sup

f 6=0

‖D(f)‖∞
‖ f ‖ , on en déduit que ‖D‖ ≥ 1, donc on a ‖D‖ = 1 .Exercice 6.63. Trouver un espace de Banach E et une application linéaire T : E −→ E noncontinue telle que ker(T ) soit fermé.Solution. Soit E = c0 muni de la norme ‖ ‖∞. Soit f une forme linéaire non continue sur E,une telle f existe car E est de dimension in�nie. Pour tout x = (xn)n≥0 ∈ E, soit T (x) =
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92 Chapitre 6. ESPACES NORMÉS
(f(x), x0, x1, · · · ), alors T est linéaire non continue et ker(T ) = {0}, donc fermé dans E.Exercice 6.64. Soient (E, ‖ ‖) , (F, ‖ ‖′) deux espaces normés et T ∈ L (E; F ) . On supposede plus dim(E) < +∞ . Montrer qu'il existe a ∈ E tel que ‖a‖ = 1 et ‖T‖ = max

‖x‖=1
‖T (x)‖′ =

‖T (a)‖′.Solution. On a ‖T‖ = sup
‖x‖=1

‖T (x)‖′ et l'application x 7−→ ‖T (x)‖′ est continue de E dans R.Comme dim(E) < +∞, alors la sphère S = {x ∈ E ; ‖x‖ = 1} est compacte, on en déduit quequ'il existe a ∈ E tel que ‖a‖ = 1 et ‖T‖ = max
‖x‖=1

‖T (x)‖′ = ‖T (a)‖′.Exercice 6.65. Soient a > 0, b > 0 et T : (R2, ‖ ‖2) −→ (R2, ‖ ‖i) une application linéaire dontla matrice dans la base canonique de R2 est [a b
b a

]. Calculer sa norme quand i = 1, 2 et ∞.Solution. Pour tout (x, y) ∈ R2, on a T (x, y) = (ax+ by, bx+ ay).Premier cas : i = 1. On a :
‖T‖ = max

{
‖T (x, y)‖1 ; ‖(x, y)‖2 = 1

}

= max
{
|ax+ by|+ |bx+ ay| ; x2 + y2 = 1

}

= max
{
|a cos(θ) + b sin(θ)|+ |b cos(θ) + a sin(θ)| ; 0 ≤ θ ≤ 2π

}
.Comme a et b sont de même signe, on a :

‖T‖ = max
{
a cos(θ) + b sin(θ) + b cos(θ) + a sin(θ) ; 0 ≤ θ ≤ π

2

}

= (a+ b) max
{
cos(θ) + sin(θ) ; 0 ≤ θ ≤ π

2

}
.Soit h(θ) = cos(θ) + sin(θ), alors h est dérivable et on a h′(θ) = cos(θ) − sin(θ), donc on a

max
0≤θ≤π

2

h(θ) = h
(
π
4

)
=
√
2. Par conséquent, on a ‖T‖ = √2 (a+ b).Deuxième cas : i = 2. On a :
‖T‖ = max

{
‖T (x, y)‖2 ; ‖(x, y)‖2 = 1

}

= max
0≤θ≤2π

√
a2 + b2 + 2ab sin(2θ)

= a+ b .Troisième cas : i =∞. On a :
‖T‖ = max

{
‖T (x, y)‖∞ ; ‖(x, y)‖2 = 1

}

= max
{
max(|a cos(θ) + b sin(θ)|, |b cos(θ) + a sin(θ)|) ; 0 ≤ θ ≤ 2π

}
.Comme a et b sont de même signe, alors on a :

‖T‖ = max
{
max

(
a cos(θ) + b sin(θ), b cos(θ) + a sin(θ)

)
; 0 ≤ θ ≤ π

2

}

= max

(
max

0≤θ≤π
2

{a cos(θ) + b sin(θ)}, max
0≤θ≤π

2

{b cos(θ) + a sin(θ)}
)
.
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93Soit θ′ = π
2 − θ, alors on a b cos(θ) + a sin(θ) = b sin(θ′) + a cos(θ′), d'où :

‖T‖ = max
{
a cos(θ) + b sin(θ) ; 0 ≤ θ ≤ π

2

}
.Soit h(θ) = a cos(θ) + b sin(θ), alors h est dérivable et on a h′(θ) = −a sin(θ) + b cos(θ), d'où

h′(θ0) = 0 ⇐⇒ tan(θ0) =
b
a . On a 1 + (tan(θ0))

2 =
1

(cos(θ0))2
, d'où cos(θ0) =

a√
a2 + b2

. Ona max
0<θ<π

2

h(θ) = h(θ0) = cos(θ0)[a + b tan(θ0)] =
√
a2 + b2 et max

(
h(0), h

(
π
2

))
= max(a, b) ≤

√
a2 + b2. Par conséquent, on a ‖T‖ = √a2 + b2.Exercice 6.66. On rappelle que l'espace vectoriel des matrices à n lignes et p colonnes Mn,p(K)s'identi�e canoniquement à L (Kp; Kn) grâce aux bases canoniques de Kp et Kn. Ainsi, le choixde normes sur Kp et Kn dé�nit une norme sur L (Kp; Kn), il fournit ainsi une norme sur Mn,p(K).Soit A = [aij ] ∈ Mn,p(K) .1. Montrer que si on munit Kp et Kn de la norme ‖ ‖1, alors on a ‖A‖ = max

1≤j≤p

n∑

i=1

|aij | .2. Montrer que si on munit Kp et Kn de la norme ‖ ‖∞, alors on a ‖A‖ = max
1≤i≤n

p∑

j=1

|aij | .3. Montrer que si on munit Kp et Kn de la norme ‖ ‖2, alors on a :
1√
np

( n,p∑

i,j=1

|aij|2
) 1

2

≤ ‖A‖ ≤
( n,p∑

i,j=1

|aij |2
) 1

2

.Solution. On note (ej)1≤j≤q la base canonique de Kq.1. On a Aej =

n∑

i=1

aijei , d'où n∑

i=1

|aij | = ‖Aej‖1 ≤ ‖A‖ ‖ej‖1 = ‖A‖ . Par conséquent, on a
max
1≤j≤p

n∑

i=1

|aij | ≤ ‖A‖ . Soit x =

p∑

j=1

xjej ∈ Kp, alors on a Ax =

p∑

j=1

xjAej =

p∑

j=1

xj

( n∑

i=1

aijei

)
=

n∑

i=1

( p∑

j=1

xjaij

)
ei, d'où ‖Ax‖1 =

n∑

i=1

∣∣∣∣
p∑

j=1

xjaij

∣∣∣∣ ≤
n∑

i=1

p∑

j=1

|xj | |aij | =
p∑

j=1

|xj|
( n∑

i=1

|aij |
)
≤

(
max
1≤j≤p

n∑

i=1

|aij |
)
‖x‖1. Donc on a ‖A‖ ≤ max

1≤j≤p

n∑

i=1

|aij|. Par conséquent, on a ‖A‖ = max
1≤j≤p

n∑

i=1

|aij |.2. Soit x =

p∑

j=1

xjej ∈ Kp, comme ci-dessus, on a Ax =

n∑

i=1

( p∑

j=1

xjaij

)
ei , d'où ‖Ax‖∞ =

max
1≤i≤n

∣∣∣∣
p∑

j=1

xjaij

∣∣∣∣ ≤ max
1≤i≤n

p∑

j=1

|xj| |aij | ≤ max
1≤i≤n

p∑

j=1

|aij | ‖x‖∞ =

(
max
1≤i≤n

p∑

j=1

|aij|
)
‖x‖∞. Donc ona ‖A‖ ≤ max

1≤i≤n

p∑

j=1

|aij |. Soit εij = 1 si aij ≥ 0 et εij = −1 si aij ≤ 0, alors on a εijaij = |aij |.Soient k ∈ {1, . . . , n} et xk =

p∑

j=1

εkjej , alors on a ‖xk‖∞ = 1 et Axk =

p∑

j=1

εkjAej =
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p∑

j=1

εkj

( n∑

i=1

aijei

)
=

n∑

i=1

( p∑

j=1

εkjaij

)
ei =

( p∑

j=1

εkjakj

)
ek +

∑

i6=k

( p∑

j=1

εkjaij

)
ei =

( p∑

j=1

|akj|
)
ek +

∑

i6=k

( p∑

j=1

εkjaij

)
ei. D'où on a p∑

j=1

|akj | ≤ ‖A(xk)‖∞ ≤ ‖A‖. Par conséquent,on a max
1≤i≤n

p∑

j=1

|aij | ≤ ‖A‖. Donc on a ‖A‖ = max
1≤i≤n

p∑

j=1

|aij | .3. On a |aij | ≤ ( n∑

i=1

|aij |2
) 1

2

= ‖Aej‖2 ≤ ‖A‖ ‖ej‖2 = ‖A‖ , d'où n,p∑

i,j=1

|aij |2 ≤ np ‖A‖2 . Donc ona 1√
np

( n,p∑

i,j=1

|aij|2
) 1

2

≤ ‖A‖ . Soit x ∈ Kp tel que ‖x‖2 = 1. On a Ax = y, avec yi = p∑

j=1

aijxj .D'après l'inégalité de Cauchy�Schwarz, on a |yi| ≤ ( p∑

j=1

|aij|2
) 1

2 ( p∑

j=1

|xj |2
) 1

2 , donc n∑

i=1

|yi|2 ≤

n,p∑

i,j=1

|aij |2 . Par conséquent, on a ‖Ax‖2 ≤ ( n,p∑

i,j=1

|aij |2
)1

2 , d'où ‖A‖ ≤ ( n,p∑

i,j=1

|aij |2
) 1

2 .Exercice 6.67. Soit n ∈ N∗. On munit Mn(K) de la norme ‖[aij ]‖∞ = max
i,j
|ai,j|.1. Déterminer la norme de la forme linéaire tracetr : Mn(K) −→ K

[aij ] 7−→
n∑

i=1

aii2. Soit A ∈Mn(K). Calculer la norme de l'application linéaire suivante :RA : Mn(K) −→ Mn(K)
M 7−→ MASolution. 1. Il est clair que tr est une forme linéaire sur Mn(K). On a ∣∣tr([aij])∣∣ ≤ n∑

i=1

|aii| ≤

n‖[aij]‖∞, donc tr est continue et on a ‖tr‖ ≤ n. Soit In la matrice identité dans Mn(K), alorson a ‖In‖∞ = 1 et tr(In) = n, donc ‖tr‖ = n.2. Soient A = [aij ] et M = [mij ], alors on a MA = [cij ], avec cij =
n∑

k=1

mikakj , d'où |cij | ≤
n∑

k=1

|mik||akj| ≤ ‖M‖∞
n∑

k=1

|akj|. Soit α = max
1≤j≤n

n∑

i=1

|aij |, alors on a ‖MA‖∞ ≤ α‖M‖∞, donc
‖RA‖ ≤ α. Pour tout i, k ∈ {1, . . . , n}, il existe λik ∈ K tel que |λik| = 1 et λikaik = |aik|.Pour tout j ∈ {1, . . . , n}, on pose Mj ∈ Mn(K) dé�nie par Mj = [mik], avec mik = 0 si i 6= 1et m1k = λkj , alors on a ‖Mj‖∞ = 1 et ‖RA(Mj)‖∞ ≥

n∑

i=1

|aij |, d'où ‖RA‖ ≥
n∑

i=1

|aij |. Parconséquent, on a ‖RA‖ = max
1≤j≤n

n∑

i=1

|aij|.
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95Exercice 6.68. Soit E = R[X] l'espace vectoriel des polynômes à coe�cients réels muni de lanorme ‖P‖ = sup
0≤k≤n

|ak|, si P =

n∑

k=0

akX
k ∈ E. On considère les applications linéaires de Esuivantes :

D(P ) = P ′ =
n∑

k=1

kakX
k−1 et ϕ(P ) =

n∑

k=0

ak
k + 1

Xk+1 .1. Montrer que D n'est pas continue, mais ϕ est continue et calculer sa norme.2. Déterminer ϕ ◦D et D ◦ ϕ.Solution. 1. Pour tout n ≥ 1, On a ‖Xn‖ = 1, D(Xn) = nXn−1 et ‖D(Xn)‖ = n. Donc iln'existe aucune constante A > 0 telle que pour tout P ∈ E, on ait ‖D(P )‖ ≤ A‖P‖. Donc Dn'est pas continue. On a ‖ϕ(P )‖ = sup
0≤k≤n

∣∣ ak
k + 1

∣∣ ≤ sup
0≤k≤n

|ak| = ‖P‖, donc ϕ est continue et ona ‖ϕ‖ ≤ 1. On a ϕ(1) = X et ‖ϕ(1)‖ = ‖X‖ = 1, donc ‖ϕ‖ ≥ 1. Par conséquent, on a ‖ϕ‖ = 1.2. On a D ◦ ϕ = idE et ϕ ◦D = idE − ψ, où ψ( n∑

k=0

akX
k
)
= a0 .Exercice 6.69. On considère l'espace normé E = (`∞, ‖ ‖∞).1. Soit S l'application � décalage � ou � shift � dé�nie sur E par S(x) = y, où yn = xn−1 si

n ≥ 1 et y0 = 0. Autrement dit, on a S((x0, x1, x2, . . .)) = (0, x0, x1, x2, . . .) . Montrer que
S ∈ L (E). L'application S est-elle injective ? surjective ?2. Déterminer T ∈ L (E) telle que T ◦S = idE . L'application T est-elle injective ? surjective ?Quelle est l'application S ◦ T ?Solution. 1. Il est clair que S est linéaire et isométrique, donc S ∈ L (E) et est injective. Si

y = (1, 0, 0, . . .), alors y ∈ `∞ et y 6∈ S(`∞), donc S n'est pas surjective.2. Pour tout (x0, x1, x2, . . .) ∈ `∞, on pose T ((x0, x1, x2, . . .)) = (x1, x2, . . .), alors T ∈ L (E) eton a T ◦S = idE , donc T est surjective. On a T ((1, 0, 0, . . .)) = 0, donc T n'est pas injective. Ona S ◦ T ((x0, x1, x2, . . .)) = (0, x1, x2, . . .) .Exercice 6.70. On considère l'espace `∞ muni de la norme ‖ ‖∞, et soit T : `∞ −→ K uneapplication linéaire telle que pour tout x = (xn)n≥0 ∈ `∞, il existe n ∈ N tel que T (x) = xn. Onveut montrer qu'il existe p ∈ N tel que pour tout x = (xn)n≥0 ∈ `∞, on ait T (x) = xp.1. Prouver que T est continue.2. Montrer que la restriction de T à cc est non nulle.3. Montrer qu'il existe p ∈ N tel que T (ep) = 1.4. Soit G =
{
x = (xn)n≥0 ∈ `∞ ; xn ∈ {0, 1} , pour tout n ≥ 0

}. Montrer que pour tout
x = (xn)n≥0 ∈ G, on a T (x) = xp.5. Montrer que F = Vect{G} est égal à l'ensemble des x ∈ `∞ d'image �nie.6. Montrer que F est dense dans `∞ et conclure.Solution. Soit x = (xn)n≥0 ∈ `∞, alors il existe n ∈ N tel que T (x) = xn, d'où |T (x)| = |xn| ≤

‖x‖∞. Donc T est continue et on a ‖T‖ ≤ 1. On a même ‖T‖ = 1 car T (1) = 1.2. Si T|cc = 0, alors T|c0 = 0 car cc est dense dans c0. Mais si x0 = 1 et xn = 1
n si n ≥ 1, alors

x = (xn)n≥0 ∈ c0 et T (x) 6= 0. Donc la restriction de T à cc est non nulle.3. Puisque T|cc 6= 0, alors il existe p ∈ N tel que T (ep) 6= 0. Or T (ep) ∈ {0, 1}, donc on a
T (ep) = 1.4. Soit x = (xn)n≥0 ∈ G.
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96 Chapitre 6. ESPACES NORMÉSPremier cas. Si xp = 0, alors on a ‖x+ep‖∞ = 1, d'où |T (x)+1| = |T (x+ep)| ≤ ‖x+ep‖∞ = 1.Or on a T (x) ∈ {0, 1}, d'où T (x) = 0 = xp.Deuxième cas. Si xp 6= 0, alors xp = 1, d'où x − xpep ∈ G et on applique le premier cas, onobtient T (x− xpep) = 0. Donc on a T (x) = xp.5. Soit F = Vect{G}, le sous-espace vectoriel de `∞ engendré par G. Il est clair que si x ∈ F ,alors x est d'image �nie. Réciproquement, si x = (xn)n≥0 ∈ `∞ est d'image �nie, alors {xn ; n ≥
0} = {a0, . . . , aN}, avec ai 6= aj si i 6= j. Soit Ai = {n ≥ 0 ; xn = ai}. Soit αi = (αn,i)n≥0 dé�nipar αn,i = 1 si n ∈ Ai et αn,i = 0 si n 6∈ Ai. Alors αi ∈ G et on a x =

N∑

i=0

aiα
i, donc x ∈ F .6. Soient x = (xn)n≥0 ∈ `∞ et ε > 0. Pour montrer que F est dense dans `∞, il su�t de trouver

a = (an)n≥0 ∈ F tel que ‖a−x‖∞ < ε. Comme F est un sous-espace vectoriel, on peut supposerque pour tout n ≥ 0, on ait xn ≥ 0. Soit r = ‖x‖∞, alors il existe N ∈ N∗ tel que r
N < ε. Soit

A0 = {n ≥ 0 ; xn = 0} et pour tout k ∈ {1, . . . , N − 1}, soit Ak =
{
n ≥ 0 ; kr

N < xn ≤ (k+1)r
N

},alors les Ak sont deux à deux disjoints et on a N∪
k=0

Ak = N. Pour tout n ∈ Ak, soit an = kr
N , alors

a = (an)n≥0 ∈ F et on a ‖a− x‖∞ ≤ r
N < ε. Donc F est dense dans `∞.Puisque T et l'application x = (xn)n≥0 7−→ xp sont continues de `∞ dans K et coïncident sur F ,on déduit de la proposition 1.5.5 que pour tout x ∈ `∞, on a T (x) = xp.Exercice 6.71. On considère l'espace normé (`∞, ‖ ‖∞). Soient F =

{
x = (xn)n≥0 ∈ `∞ ; 0 <

xn < 1 , pour tout n ≥ 0
} et a =

(
1

n+1

)
n≥0
∈ `∞.1. Véri�er que F n'est pas fermé dans `∞.2. Déterminer d(a, F ).Solution. 1. Pour k ≥ 2, soit Xk =

(
1 − 1

k ,
1
2 ,

1
2 , . . .

), alors on a Xk ∈ F et la suite (Xk)k≥2converge vers l'élément (1, 12 , 12 , . . . ) 6∈ F , donc F n'est pas fermé dans `∞.2. Pour k ≥ 2, soit ak =
(
1− 1

k ,
1
2 ,

1
3 , . . .

), alors on a ak ∈ F et la suite (ak)k≥2 converge vers a,donc on a d(a, F ) = 0.Exercice 6.72. On considère l'espace normé E = C([0, 1]) muni de la norme ‖ ‖1. Montrer queles applications linéaires T suivantes sont continues. Calculer leur norme d'opérateur ‖T‖ et voirsi elle est atteinte sur la sphère unité {f ∈ E ; ‖f‖1 = 1}.1.
T : E −→ E

f 7−→ T (f)où T (f)(x) = ∫ x

0
f(t) dt, pour tout x ∈ [0, 1] .2.

T : E −→ K

f 7−→
∫ 1

0
f(t) dt3.

T : E −→ K

f 7−→
∫ 1

2

0
f(y) dy −

∫ 1

1
2

f(y) dy
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97Solution. 1. On a ‖T (f)‖1 =

∫ 1

0
|T (f)(x)| dx =

∫ 1

0

∣∣∣
∫ x

0
f(t) dt

∣∣∣ dx ≤
∫ 1

0

( ∫ x

0
|f(t)| dt

)
dx ≤

∫ 1

0

(∫ 1

0
|f(t)| dt

)
dx =

∫ 1

0
‖f‖1 dx = ‖f‖1, donc T est continue et on a ‖T‖ ≤ 1. Pour tout

n ≥ 1, soit fn(t) = (n+ 1)(1− t)n, alors on a ‖fn‖1 = 1 et T (fn)(x) = 1− (1− x)n+1 ≥ 0, doncon a ‖T (fn)‖1 = 1− 1
n+2 . Or pour tout n ≥ 1, on a ‖T‖ ≥ ‖T (fn)‖1, d'où ‖T‖ = 1.S'il existe f ∈ E telle que ‖f‖1 = 1 et ‖T‖ = ‖T (f)‖1, alors de l'inégalité :

‖T (f)‖1 ≤
∫ 1

0

( ∫ x

0
|f(t)| dt

)
dx ≤

∫ 1

0

(∫ 1

0
|f(t)| dt

)
dx = ‖f‖1 ,on déduit que pour tout x ∈ [0, 1], on a ∫ 1

0
|f(t)| dt =

∫ x

0
|f(t)| dt. Donc, pour tout t ∈ [0, 1],on a f(t) = 0, ce qui est impossible. Par conséquent, il n'existe aucune f ∈ E telle que ‖f‖1 = 1et ‖T‖ = ‖T (f)‖1.2. On a |T (f)| = ∣∣∣

∫ 1

0
f(t) dt

∣∣∣ ≤
∫ 1

0
|f(t)| dt = ‖f‖1, donc T est continue et on a ‖T‖ ≤ 1.Soit f(t) = 2t, pour tout t ∈ [0, 1], alors on a ‖f‖1 = 1 et on a T (f) = 1. Par conséquent, on a

‖T‖ = 1 = |T (f)|.3. On a |T (f)| = ∣∣∣
∫ 1

2

0
f(t) dt −

∫ 1

1
2

f(t) dt
∣∣∣ ≤

∣∣∣
∫ 1

2

0
f(t) dt

∣∣∣ +
∣∣∣
∫ 1

1
2

f(t) dt
∣∣∣ ≤

∫ 1
2

0
|f(t)| dt +

∫ 1

1
2

|f(t)| dt =
∫ 1

0
|f(t)| dt = ‖f‖1, donc T est continue et on a ‖T‖ ≤ 1. Pour tout t ∈ [0, 1],soit g(t) = 2(1 − 2t), alors g ∈ E et on a T (g) = ‖g‖1 = 1, donc on a ‖T‖ = 1 = |T (g)|.Exercice 6.73. Considérons l'espace normé E = (C([0, 1], R), ‖ ‖1). Soient h ∈ E et ϕh(f) =∫ 1

0
f(t)h(t)dt, pour tout f ∈ E. Montrer que ϕh est forme linéaire continue sur E et calculer sanorme.Solution. Il est clair que ϕ est une forme linéaire sur E. On a :

|ϕh(f)| =
∣∣∣∣
∫ 1

0
f(t)h(t)dt

∣∣∣∣ ≤
∫ 1

0
|f(t)| |h(t)| dt ≤ ‖f‖1 ‖h‖∞ .Donc ϕh est continue et on a ‖ϕh‖ ≤ ‖h‖∞. Si ‖ϕh‖ < ‖h‖∞ alors il existe ε > 0 tel que

‖ϕh‖ + ε < ‖h‖∞. Comme [0, 1] est compact et h est continue, alors il existe a ∈ [0, 1] tel que
‖h‖∞ = |h(a)|. Par conséquent, il existe α > 0 tel que I = [t0 − 2α, t0 + 2α] ⊂ [0, 1], et pourtout t ∈ I, on ait ‖ϕh‖+ ε < |h(t)|. Notons que h est de signe constant sur I. Pour tout n ∈ N∗tel que 1

n < α, soit fn une fonction a�ne telle que fn = 0 sur [0, 1] \ [t0− (α+ 1
n), t0 + (α+ 1

n)
]et fn =

sign(h)
2α

sur [t0 − α, t0 + α]. Alors on a ‖fn‖1 = 1 + 1
2αn et

‖ϕh‖+ ε ≤
∫ t0+α

t0−α
fn(t)h(t)dt ≤

∫ 1

0
fn(t)h(t)dt = ϕh(fn) ≤ ‖ϕh‖ ‖fn‖1 = ‖ϕh‖

(
1 + 1

2αn

)
.On fait tendre n vers l'in�ni, on obtient ‖ϕh‖ + ε ≤ ‖ϕh‖, ce qui est impossible. Donc on a

‖h‖∞ ≤ ‖ϕh‖, d'où ‖ϕh‖ = ‖h‖∞.Exercice 6.74. Soit T : `2 −→ `2 dé�nie par T (x) = ((1 − 1
n+1

)
xn
)
n≥0

, où x = (xn)n≥0 ∈ `2.Montrer que T est linéaire continue qui n'atteint pas sa norme.
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98 Chapitre 6. ESPACES NORMÉSSolution. Il est clair que T est linéaire continue et que l'on a ‖T‖ = 1. Pour tout x = (xn)n≥0 ∈

`2, non nul, on a ‖T (x)‖22 =

+∞∑

n=0

(
1− 1

n+1

)2|xn|2 <
+∞∑

n=0

|xn|2 = ‖x‖22. On en déduit que T n'atteintpas sa norme.Exercice 6.75. Donner un exemple d'un espace normé (E, ‖ ‖) et d'une forme linéaire continue
f sur E telle que ‖f‖ = 1 et |f(x)| < ‖x‖ pour tout x ∈ E \ {0}.Solution. Pour tout x = (xn)n≥0 ∈ `1, on pose f(x) = +∞∑

n=0

(
1− 1

n+1

)
xn. Alors f est une formelinéaire continue sur `1 telle que ‖f‖ = 1 et |f(x)| < ‖x‖1 pour tout x ∈ `1 \ {0}.Exercice 6.76. Soit E =

{
f ∈ C(R, R) ;

∫ +∞

−∞
|f(t)| dt <∞

}.1. Montrer que E est un espace vectoriel et que f 7−→ ‖f‖1 =

∫ +∞

−∞
|f(t)| dt est une normesur E.2. Étudier la convergence de la série de terme général fn dé�ni par fn(t) = e−n

√
|t|. Endéduire que E n'est pas de Banach.3. Pour a > 0, on pose Ta(f) = 1

2a

∫ a

−a
f(t) dt. Montrer que Ta est une forme linéaire continuesur E et calculer sa norme.4. Calculer T (f) = lim

a→0
Ta(f). Montrer que T dé�nit une forme linéaire sur E. Est-ce que Test continue ?Solution. 1. Il résulte des propriétés de l'intégrale généralisée que E est un espace vectoriel etque f 7−→ ‖f‖1 est une norme sur E.2. Pour tout n ≥ 1, on a :

‖fn‖1 =

∫ +∞

−∞
e−n
√

|t| dt = 2

∫ +∞

0
e−n

√
t dt

= 2

∫ 1
n

0
e−n
√

|t| dt+ 2

∫ +∞

1
n

e−n
√

|t| dt

≤ 2
n

∫ 1
n

0

1√
|t|
dt+

4!2

n4

∫ +∞

1
n

1

t2
dt

= 4
n
√
n
+ 4!2

n3 .Donc la série de terme général fn est normalement convergente dans (E, ‖ ‖1). Pour montrerque (E, ‖ ‖1) n'est pas de Banach, d'après le théorème 6.7.1, il su�t de montrer que la série determe général fn n'est pas convergente dans (E, ‖ ‖1). Si la série ∑ fn est convergente dans
(E, ‖ ‖1), alors il existe g ∈ C(R, R) telle que ∫ +∞

−∞
|g(t)| dt <∞ et pour tout ε > 0, il existe Ntel que pour tout n ≥ N , on ait :

∫ +∞

−∞

∣∣∣
n∑

k=1

fk(t) − g(t)
∣∣∣ dt =

∥∥∥
n∑

k=1

fk − g
∥∥∥
1
< ε .
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99Soit α > 0. Alors pour tout n ≥ N , on a ∫ +∞

α

∣∣∣
n∑

k=1

fk(t) − g(t)
∣∣∣ dt < ε. Si t ∈ [α, +∞[, on a

n∑

k=1

fk(t) =

n∑

k=1

(
1

e
√
t

)k

=
1

e
√
t − 1

− 1

en
√
t

1

e
√
t − 1

. On a :
∫ +∞

α

∣∣∣ 1

e
√
t − 1

− g(t)
∣∣∣ dt =

∫ +∞

α

∣∣∣ 1

e
√
t − 1

− g(t)− 1

en
√
t

1

e
√
t − 1

∣∣∣ dt+
∫ +∞

α

1

en
√
t

1

e
√
t − 1

dt

< ε+

∫ +∞

α

1

en
√
t

1

e
√
t − 1

dt

≤ ε+
4!2

n4α2
.Soit n ≥ N tel que 4!2

n4α2 < ε. Alors on a ∫ +∞

α

∣∣∣ 1

e
√
t − 1

− g(t)
∣∣∣ dt < 2ε. Ceci étant vrai pourtout ε > 0, d'où on a ∫ +∞

α

∣∣∣ 1

e
√
t − 1

− g(t)
∣∣∣ dt = 0, donc g(t) = 1

e
√
t − 1

pour tout t ∈ [α, +∞[.Ceci étant vrai pour tout α > 0, donc, pour tout t > 0, on a g(t) = 1

e
√
t − 1

. On en déduit que
g n'est pas continue en 0, ce qui est impossible. Donc la série ∑ fn n'est pas convergente dans
(E, ‖ ‖1). Par conséquent, (E, ‖ ‖1) n'est pas de Banach.3. Il est clair que Ta est linéaire. On a :

|Ta(f)| ≤ 1
2a

∫ a

−a
|f(t)| dt ≤ 1

2a

∫ +∞

−∞
|f(t)| dt = 1

2a‖f‖1 .Donc Ta est continue et on a ‖Ta‖ ≤ 1
2a . Pour tout n ≥ 1, soit fn une fonction a�ne telle que

fn = 0 sur ] −∞, − 1
n − a

]
∪
[
1
n + a, +∞

[ et fn = 1 sur [−a, a], alors on a ‖fn‖1 = 2a + 1
n et

Ta(fn) = 1. Comme on a ‖Ta‖ ≥ Ta(fn)

‖fn‖1
pour tout n ≥ 1, alors ‖Ta‖ ≥ 1

2a . Par conséquent, ona ‖Ta‖ = 1
2a .4. D'après le théorème de la moyenne, on a 1

2a

∫ a

−a
f(t) dt = f(ca), avec ca ∈ [−a, a], d'où on a

T (f) = lim
a→0

Ta(f) = f(0). Il est clair que T est linéaire. Pour tout n ≥ 1, soit fn une fonctiona�ne telle que fn = 0 sur ]−∞, − 1
n

]
∪
[
1
n , +∞

[ et fn(0) = n, alors on a ‖fn‖1 = 1
n et T (fn) = n.Donc T n'est pas continue.Exercice 6.77. Soient (E, ‖ ‖) un espace normé et a ∈ E. Soit A un sous-ensemble borné de Etel que a ∈ A et A est symétrique par rapport à a ; autrement dit, si x ∈ A et y ∈ E tels que

x+ y

2
= a, alors on a y ∈ A.1. Soit A1 =

{
x ∈ A ; ‖x− y‖ ≤ δ(A)

2 , pour tout y ∈ A}. Montrer que a ∈ A1 et que A1 estsymétrique par rapport à a.2. Pour tout n > 1, on pose An =
{
x ∈ An−1 ; ‖x − y‖ ≤ δ(An−1)

2 , pour tout y ∈ An−1

}.Montrer que δ(An) ≤ δ(An−1)
2 et que ∞∩

n=1
An = {a}.3. En déduire que a est unique.
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100 Chapitre 6. ESPACES NORMÉSSolution. 1. Soit x ∈ A, alors il existe y ∈ A tel que x+y
2 = a, d'où on a x − a = a − y et

x− y = x− a+ a− y = 2(x − a). Donc on a ‖x− a‖ = 1
2‖x− y‖ ≤ 1

2δ(A). Par conséquent, ona a ∈ A1. Soient x ∈ A1 et y ∈ E tels que x+y
2 = a. Puisque A1 ⊂ A et A est symétrique parrapport à a, alors y ∈ A. Soit z ∈ A, alors il existe z′ ∈ A tels que z+z′

2 = a = x+y
2 , d'où on a

y− z = x− z′ et ‖y− z‖ = ‖x− z′‖ ≤ 1
2δ(A) car x ∈ A1. Donc on a y ∈ A1. Par conséquent, A1est symétrique par rapport à a.2. Il résulte de 1 que pour tout n > 1, a ∈ An et An est symétrique par rapport à a. Donc ona a ∈ ∞∩

n=1
An. Pour tout x, y ∈ An, on a ‖x − y‖ ≤ δ(An−1)

2 , on en déduit que δ(An) ≤ δ(An−1)
2 ,donc on a δ(An) ≤ δ(A)

2n , d'où lim
n→+∞

δ(An) = 0. Soit x ∈ ∞∩
n=1

An, alors pour tout n ≥ 1, on a
‖x− a‖ ≤ δ(An). On fait tendre n vers +∞, on obtient x = a, donc on a ∞∩

n=1
An = {a}.3. Ceci résulte de ce qui précède.Exercice 6.78. Soient (E, ‖ ‖) un espace normé et a, b ∈ E. On note B1 l'ensemble des points

x de E tels que ‖x− a‖ = ‖x− b‖ = ‖a− b‖
2

.1. Montrer que a+b
2 ∈ B1, B1 est symétrique par rapport à a+b

2 et que δ(B1) ≤ ‖a− b‖.2. Donner un exemple où B1 n'est pas réduit à a+b
2 et que δ(B1) = ‖a− b‖.3. Pour n > 1, soit Bn l'ensembles des points x des Bn−1 tels que pour tout y ∈ Bn−1, onait ‖x − y‖ ≤ δ(Bn−1)

2
. Montrer que pour tout n > 1, on a δ(Bn) ≤

δ(Bn−1)

2
, puis quel'intersection de tous les Bn est réduite à a+b

2 .4. Déduire que toute application isométrique surjective f d'un espace normé réel E sur unespace normé réel F s'écrit f(x) = g(x) + c, où g est une application linéaire, isométriqueet surjective de E dans F , et c est un point de F .Solution. 1. On a a+b
2 − a = b−a

2 et a+b
2 − b = a−b

2 , d'où ∥∥a+b
2 − a

∥∥ =
∥∥a+b

2 − b
∥∥ =

‖a− b‖
2

,donc on a a+b
2 ∈ B1. Il est clair que δ(B1) ≤ ‖a− b‖. Soient x ∈ B1 et y ∈ E tels que x+y

2 = a+b
2 ,alors on a y − a = b − x et y − b = a − x, d'où ‖y − a‖ = ‖y − b‖ = ‖a−b‖

2 , donc on a y ∈ B1.Par conséquent, B1 est symétrique par rapport à a+b
2 .2. Il su�t de prendre E = R2, avec la norme ‖(x, y)‖ = max{|x| , |y|}, a = (0, 0) et b = (2, 0).Alors on a B1 = {(1, y) ; −1 ≤ y ≤ 1} et δ(B1) = ‖a− b‖.3. Ceci résulte de l'exercice précédent.4. On suppose E un espace normé réel, et soient (F, ‖ ‖′) un espace normé réel et f : E −→ Fune application isométrique surjective. Soient g(x) = f(x) − f(0). Alors g est une applicationisométrique surjective de E dans F et on a g(0) = 0. Montrons que g est linéaire. D'après laproposition 6.3.7, il su�t de montrer que pour tout a, b ∈ E, on a g(a + b) = g(a) + g(b).Soient a, b ∈ E et Bn comme ci-dessus, alors on a ∞∩
n=1

Bn =
{
a+b
2

}. Puisque g est injective, ona g( ∞∩
n=1

Bn

)
=

∞∩
n=1

g(Bn). On a g(B1) =

{
g(x) ; ‖x − a‖ = ‖x − b‖ =

‖a− b‖
2

}. Or g estisométrique, alors on g(B1) =

{
g(x) ; ‖g(x)− g(a)‖ = ‖g(x)− g(b)‖ = ‖g(a) − g(b)‖

2

}. Puisque
g est surjective, alors on a g(B1) =

{
z ∈ F ; ‖z − g(a)‖ = ‖z − g(b)‖ = ‖g(a) − g(b)‖

2

}. Soit
F1 = g(B1). Pour tout n > 1, on pose Fn =

{
z ∈ Fn−1 ; ‖z−y‖ ≤ δ(Fn−1)

2 , pour tout y ∈ Fn−1

}.
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101Montrons par récurrence que pour tout n ≥ 1, on a g(Bn) = Fn. On a g(B1) = F1 et supposonsque l'on a g(Bn−1) = Fn−1. On a Bn =
{
x ∈ Bn−1 ; ‖x− y‖ ≤ δ(Bn−1)

2 , pour tout y ∈ Bn−1

}.Puisque g est une application isométrique, alors on a g(Bn) =
{
g(x) ∈ Bn−1 ; ‖g(x) − g(y)‖ ≤

δ(g(Bn−1))

2
, pour tout g(y) ∈ g(Bn−1)

}, donc on a g(Bn) = Fn. D'après 3, on a ∞∩
n=1

g(Bn) =
∞∩
n=1

Fn =
{g(a)+g(b)

2

}. Par conséquent, pour tout a, b ∈ E, on a g( a+b
2

)
= g(a)+g(b)

2 . En remplaçant
b par 0, sachant que g(0) = 0, on obtient que pour tout a ∈ E, g( a2) = g(a)

2 . On en déduit quepour tout a, b ∈ E, on a g(a+b)
2 = g

(
a+b
2

)
= g(a)+g(b)

2 , donc on a g(a + b) = g(a) + g(b). Parconséquent, g est linéaire.Exercice 6.79. Soient (E, ‖ ‖) et (F, ‖ ‖′) deux espaces normés et f ∈ L (E; F ) injective.Montrer que les propriétés suivantes sont équivalentes.(i) f est une application isométrique surjective ;(ii) f(B′(0, 1)) = B′(0, 1) ;(iii) f(S(0, 1)) = S(0, 1) ;(iv) f(B(0, 1)) = B(0, 1).Solution. L'implication (i) =⇒ (ii) est claire. Montrons l'implication (ii) =⇒ (iii). Par hypo-thèse, on a f(B′(0, 1)) = B′(0, 1). Soit y ∈ F tel que ‖y‖′ = 1, alors il existe x ∈ E tel que
0 < ‖x‖ ≤ 1 et f(x) = y, d'où y

‖x‖ = f
( x

‖x‖
)
∈ B′(0, 1) car x

‖x‖ ∈ B′(0, 1). Donc on a
‖y‖′
‖x‖ =

∥∥∥ y

‖x‖
∥∥∥
′
≤ 1, d'où 1 = ‖y‖′ ≤ ‖x‖ ≤ 1. Par conséquent, il existe x ∈ E tel que ‖x‖ = 1 et

f(x) = y, d'où on a S(0, 1) ⊂ f(S(0, 1)). Il reste à montrer l'inclusion réciproque. Soit x ∈ E telque ‖x‖ = 1. Alors f(x) 6= 0 et on a ∥∥∥f( x

‖f(x)‖′
)∥∥∥

′
= 1. Donc il existe z ∈ E tel que ‖z‖ = 1et f(z) = f

( x

‖f(x)‖′
). Comme f est injective, alors on a z =

x

‖f(x)‖′ , donc on a ‖f(x)‖′ = 1,d'où f(S(0, 1)) ⊂ S(0, 1). Par conséquent, on a f(S(0, 1)) = S(0, 1).Montrons l'implication (iii) =⇒ (iv). On a f(S(0, 1)) = S(0, 1), d'où ‖f‖ = 1, donc on a
f(B(0, 1)) ⊂ B(0, 1). Réciproquement, soit y ∈ F tel que ‖y‖′ < 1 et y 6= 0. Alors on a∥∥∥ y

‖y‖′
∥∥∥
′
= 1. Donc il existe x ∈ E tel que ‖x‖ = 1 et f(x) =

y

‖y‖′ , d'où on a f(‖y‖′ x) = y.Or on a ‖ ‖y‖′ x‖ = ‖y‖′ ‖x‖ = ‖y‖′ < 1, donc B(0, 1) ⊂ f(B(0, 1)). Par conséquent, on a
f(B(0, 1)) = B(0, 1).Montrons l'implication (iv) =⇒ (i). Soit y un élément non nul de F , alors ∥∥∥ y

2‖y‖′
∥∥∥
′
= 1

2 < 1.Donc il existe x ∈ B(0, 1) tel que f(x) =
y

2‖y‖′ , d'où f(2‖y‖′ x) = y . Donc f est surjective.Il reste à montrer que f est isométrique. Soit x un élément non nul de E. Pour tout n ≥ 1,on a (1 − 1
n

) x

‖x‖ ∈ B(0, 1), donc (1 − 1
n

) 1

‖x‖‖f(x)‖
′ =

∥∥∥f
((

1 − 1
n

) x

‖x‖
)∥∥∥

′
< 1, d'où on a

(
1− 1

n

)
‖f(x)‖′ < ‖x‖. On fait tendre n vers + l'in�ni, on obtient ‖f(x)‖′ ≤ ‖x‖. Si ‖f(x)‖′ < ‖x‖,alors on a ∥∥∥f( x

‖x‖
)∥∥∥

′
< 1. Donc il existe z ∈ E tel que ‖z‖ < 1 et f(z) = f

( x

‖x‖
). Comme

f est injective, on en déduit que z =
x

‖x‖ , ce qui est impossible car ∥∥∥ x

‖x‖
∥∥∥ = 1. Donc on a

‖f(x)‖′ = ‖x‖. Par conséquent, f est aussi une application isométrique.
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102 Chapitre 6. ESPACES NORMÉSExercice 6.80. Soit (E, ‖ ‖) un K-espace normé. Montrer que l'application
T : L (K; E) −→ E

f 7−→ f(1)est linéaire, bijective et isométrique.Solution. Il est clair que T est linéaire. Soit f ∈ L (K; E), alors pour tout λ ∈ K, on a
f(λ) = f(λ 1) = λ f(1), d'où ‖f‖ = sup

|λ|=1
‖f(λ)‖ = sup

|λ|=1
‖λ f(1)‖ = ‖f(1)‖ = ‖T (f)‖. Par consé-quent, T est isométrique. Il reste à véri�er que T est surjective. Soit x ∈ E, et pour tout λ ∈ K,soit f(λ) = λx, alors f ∈ L (K; E) et on a T (f) = f(1) = x, donc T est surjective.Exercice 6.81. [Transformation d'Abel] Soient (E, ‖ ‖) un espace normé, (ak)1≤k≤n une suite�nie dans E et (λk)1≤k≤n une suite �nie dans K . Pour tout k ∈ {1, . . . , n}, on pose bk =

k∑

i=1

ai.Montrer que l'on a n∑

k=1

λk ak = λn bn +

n−1∑

k=1

(λk − λk+1) bk.Solution. On a b1 = a1 et bk − bk−1 = ak si 2 ≤ k ≤ n, d'où :
n∑

k=1

λk ak = λ1 b1 +

n∑

k=2

λk (bk − bk−1)

= λ1 b1 +
n∑

k=2

λk bk −
n∑

k=2

λk bk−1

= λ1 b1 +
n∑

k=2

λk bk −
n−1∑

k=1

λk+1 bk

=

n∑

k=1

λk bk −
n−1∑

k=1

λk+1 bk

= λn bn +

n−1∑

k=1

(λk − λk+1) bk .Exercice 6.82. [Théorème d'Abel] Soient (E, ‖ ‖) un espace de Banach, (xn)n≥0 une suitedans E et (λn)n≥0 une suite décroissante de nombres positifs telles que :1. Il existe M > 0 tel que pour tout n, p ∈ N, on ait ‖xn + · · · + xn+p‖ ≤M .2. lim
n→+∞

λn = 0 .Montrer que la série∑λn xn est convergente et que pour tout n ≥ 0, on a ∥∥∥∥ +∞∑

k=n

λk xk

∥∥∥∥ ≤ λnM .Solution. Puisque E est un espace de Banach, il su�t de montrer que la série ∑λn xn véri�ele critère de Cauchy. Soient n, p ∈ N et on pose yk =

k∑

i=n

xi si n ≤ k ≤ n + p. On applique la
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103transformation d'Abel aux suites �nies (xn)n≤k≤n+p et (λn)n≤k≤n+p, on obtient :
n+p∑

k=n

λk xk = λn+p yn+p +

n+p−1∑

k=n

(λk − λk+1) ykd'où on a :
∥∥∥∥

n+p∑

k=n

λk xk

∥∥∥∥ ≤ λn+pM +

n+p−1∑

k=n

|λk − λk+1|M = λn+pM +

n+p−1∑

k=n

(λk − λk+1)M = λnM .Comme on a lim
n→+∞

λn = 0, on en déduit que la série∑λn xn véri�e le critère de Cauchy, doncconvergente. Comme pour tout p ≥ 0, on a ∥∥∥∥ n+p∑

k=n

λk xk

∥∥∥∥ ≤ λnM , alors ∥∥∥∥ +∞∑

k=n

λk xk

∥∥∥∥ ≤ λnM .Exercice 6.83. Soient (E, ‖ ‖) un espace de Banach, ∑ xn une série convergente dans E et
(µn)n≥0 une suite décroissante de nombres positifs. Montrer que l'on a :1. Il existe une constante M > 0 telle que pour tout n, p ∈ N, on ait ∥∥∥ n+p∑

k=n

xk

∥∥∥ ≤M .2. La série∑µn xn est convergente.3. Pour tout n ≥ 0, on a ∥∥∥ +∞∑

k=n

µk xk

∥∥∥ ≤ µnM .Solution. Puisque la série ∑xn est convergente, elle est de Cauchy, donc, pour tout ε > 0, ilexiste N ∈ N tel que pour tout n ≥ N et tout p ∈ N, on ait ∥∥∥ n+p∑

k=n

xk

∥∥∥ < ε. On en déduit lespropriétés suivantes :(i) il existe une constante M > 0 telle que pour tout n, p ∈ N, on ait ∥∥∥ n+p∑

k=n

xk

∥∥∥ ≤M ;(ii) si on pose αn = sup
{∥∥∥

n+p∑

k=n

xk

∥∥∥ ; p ∈ N

}, alors la suite de nombres positifs (αn)n≥0 estmajorée par M et on a lim
n→+∞

αn = 0 .Comme dans l'exercice 6.82, on montre que pour tout n, p ∈ N, on a ∥∥∥ n+p∑

k=n

µk xk

∥∥∥ ≤ µn αn ≤

µnM . On a 0 ≤ µn αn ≤ µ0 αn et lim
n→+∞

αn = 0, on en déduit que la série série∑µn xn est deCauchy, donc elle est convergente dans E, et que pour tout n ≥ 0, on a ∥∥∥ +∞∑

k=n

µk xk

∥∥∥ ≤ µnM .Exercice 6.84. Soient (E, ‖ ‖) un espace de Banach, (xi)i∈I une famille sommable d'élémentsde E et (λi)i∈I ∈ `∞(I). Montrer que la famille (λixi)i∈I est sommable.Solution. D'après la remarque 6.7.3, on peut supposer que pour tout i ∈ I, λi ≥ 0. Comme
(λi)i∈I est bornée, il existe r > 0 tel que pour tout i ∈ I, on ait |λi| ≤ r. Pour montrer que
(λixi)i∈I est sommable, il su�t de véri�er que (λixi)i∈I véri�e le critère de Cauchy. Soit ε > 0,
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104 Chapitre 6. ESPACES NORMÉScomme (xi)i∈I véri�e le critère de Cauchy, il existe une partie �nie Jε de I telle que pour toutepartie �nie K de I véri�ant K ∩ Jε = ∅, on ait ∥∥∥∑
i∈K

xi

∥∥∥ < ε

2r
. Soit J une partie �nie de I telleque J ∩ Jε = ∅. Soient n = Card(J) et ϕ : {1, . . . , n} −→ J une application bijective telle quel'application p 7−→ λϕ(p) soit croissante. D'après la transformation d'Abel, exercice 6.81, on a :

∑

i∈J
λixi =

n∑

p=1

λϕ(p)xϕ(p) = λϕ(n)xϕ(n) +
n−1∑

p=1

(
λϕ(p) − λϕ(p+1)

)
xϕ(p) .D'où on a :

∥∥∥
∑

i∈J
λixi

∥∥∥ ≤ λϕ(n)‖xϕ(n)‖+
n−1∑

p=1

(
λϕ(p+1) − λϕ(p)

)
‖xϕ(p)‖

<
rε

2r
+

ε

2r

n−1∑

p=1

(
λϕ(p+1) − λϕ(p)

)
.Or on a n−1∑

p=1

(
λϕ(p+1) − λϕ(p)

)
= λϕ(n) − λϕ(1) ≤ λϕ(n) ≤ r. Donc on a ∥∥∥∑

i∈J
λixi

∥∥∥ < ε. Parconséquent, la famille (λixi)i∈I véri�e le critère de Cauchy, donc (λixi)i∈I est sommable.Exercice 6.85. Soit a ∈ R. Montrer que la famille ((1 + n2 +m2)a
)
(n,m)∈N2 est sommable si etseulement si a < −1.Solution. Pour tout (n,m) ∈ N2, on a 0 ≤ 1 + n2 +m2 ≤ (1 + n +m)2. D'après l'inégalité deHölder, théorème 6.2.1, on a (1+n+m)2 ≤ 3(1+n2+m2), donc la famille ((1+n2+m2)a

)
(n,m)∈N2est sommable si et seulement si la famille ((1 + n +m)2a

)
(n,m)∈N2 est sommable. Pour k ∈ N∗,soit Ik =

{
(n,m) ∈ N2 ; 1 + n+m ≤ k

}, alors on a :
Ik =

k∪
p=1

{
(n,m) ∈ N2 ; 1 + n+m = p

}
=

k∪
p=1

{
(n, p − 1− n) ∈ N2 ; 0 ≤ n ≤ p− 1

}
.Comme on a ∪

k∈N∗
Ik = N2, alors la famille ((1 + n+m)2a

)
(n,m)∈N2 est sommable si et seulementsi l'ensemble des sommes ∑

(n,m)∈Ik

(1 + n+m)2a est borné, voir proposition 6.7.1. Or on a :
∑

(n,m)∈Ik

(1 + n+m)2a =

k∑

p=1

( p−1∑

n=0

p2a
)

=

k∑

p=1

p2a+1 .Donc la famille ((1+n+m)2a
)
(n,m)∈N2 est sommable si et seulement si la série de terme général

p2a+1 est convergente. Par conséquent, la famille ((1 + n2 +m2)a
)
(n,m)∈N2 est sommable si etseulement si a < −1.Exercice 6.86. Normes de Hölder sur C([0, 1]). Soit E = C([0, 1]) l'espace vectoriel desapplications continues de [0, 1] dans K. Soient p ∈ [1, +∞[ et f ∈ E, on pose :

‖f‖∞ = sup
0≤t≤1

|f(t)| et ‖f‖p =
(∫ 1

0
|f(t)|p dt

) 1
p

.
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1051. Montrer que pour tout p ∈ [1, +∞], l'application f 7−→ ‖f‖p est une norme sur E, appeléenorme de Hölder.2. Montrer que lim
p→+∞

‖f‖p = ‖f‖∞.3. Montrer que pour tout p ∈ [1, +∞[, l'espace E muni de la norme ‖ ‖p n'est pas de Banach.Solution. 1. On a déjà vu que f 7−→ ‖f‖∞ est une norme sur E. On suppose p ∈ [1, +∞[.Il est clair que pour tout f ∈ E, on a ‖f‖p = 0 ⇐⇒ f = 0, et que pour tout λ ∈ K , on a
‖λ f‖p = |λ| ‖f‖p. Il reste à montrer l'inégalité de convexité. Pour tout f ∈ E, on a :

∫ 1

0
|f(t)|p dt = lim

n→+∞
1
n

n∑

k=1

∣∣∣f
(
k
n

)∣∣∣
p
.Soient f, g ∈ E. D'après l'inégalité de Minkowski, pour tout n ≥ 1, on a :

(
1
n

n∑

k=1

∣∣∣f
(
k
n

)
+ g
(
k
n

)∣∣∣
p)

1
p

≤
(

1
n

n∑

k=1

∣∣∣f
(
k
n

)∣∣∣
p)

1
p

+
(

1
n

n∑

k=1

∣∣∣g
(
k
n

)∣∣∣
p)

1
p

.On fait tendre n vers +∞, on obtient ‖f + g‖p ≤ ‖f‖p + ‖g‖p. Donc l'application f 7−→ ‖f‖pest bien une norme sur E.2. Soit f ∈ E. Pour tout p ∈ [1, +∞[, on a 0 ≤
∫ 1

0
|f(t)|p dt ≤

∫ 1

0
‖f‖p∞ dt = ‖f‖p∞, d'où

‖f‖p ≤ ‖f‖∞. Soit t0 ∈ [0, 1] tel que ‖f‖∞ = |f(t0)|. Soit ε > 0. Comme f est continue en t0, ilexiste η > 0 tel que pour tout t ∈ [t0 − η, t0 + η] ∩ [0, 1] = [a, b], on ait :
|f(t)| ≥ |f(t0)| − ε

2 = ‖f‖∞ − ε
2 .Pour tout p ∈ [1, +∞[, on a :

‖f‖pp =
∫ 1

0
|f(t)|p dt ≥

∫ b

a
|f(t)|p dt ≥ (b− a)

(
‖f‖∞ − ε

2

)p ≥ η
(
‖f‖∞ − ε

2

)p
.D'où ‖f‖p ≥ η

1
p
(
‖f‖∞ − ε

2

). Puisque l'on a lim
p→+∞

η
1
p = 1, alors il existe p0 ∈ [1, +∞[ tel quepour tout p ≥ p0, on ait ‖f‖∞ − ε < ‖f‖p ≤ ‖f‖∞. Par conséquent, on a lim

p→+∞
‖f‖p = ‖f‖∞.3. Soient p ∈ [1, +∞[ et (fn)n≥1 la suite dans E dé�nie par fn(x) = np si 0 ≤ x ≤ 1

n2p
et

fn(x) =
1√
x
si 1

n2p
≤ x ≤ 1. Comme dans l'exercice 2.32, on montre que (fn)n≥1 est de Cauchydans (E, ‖ ‖p), mais (fn)n≥1 n'est pas convergente. Donc (E, ‖ ‖p) n'est pas de Banach.
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Chapitre 7THÉORÈMES FONDAMENTAUXProposition. Soient (E, ‖ ‖), (F, ‖ ‖′) deux espaces de Banach et T ∈ L (E; F ). Les propriétéssuivantes sont équivalentes.(i) T est injective et T (E) est fermé dans F .(ii) T est un homéomorphisme de E sur T (E).(iii) Il existe δ > 0 tel que pour tout x ∈ E, on ait δ ‖x‖ ≤ ‖T (x)‖′.(iv) On a inf
{
‖T (x)‖′ ; x ∈ E et ‖x‖ = 1

}
> 0.(v) Il n'existe pas de suite (xn)n≥0 dans E telle que ‖xn‖ = 1, pour tout n ≥ 0, et telle que

lim
n→+∞

‖T (xn)‖′ = 0.Démonstration. Montrons l'implication (i) =⇒ (ii). Comme T (E) est fermé dans F , alors
T (E) est un espace de Banach. Puisque T est injective, alors T est bijective de E sur T (E). Ilrésulte du théorème de l'application ouverte que T est un homéomorphisme de E sur T (E).Montrons l'implication (ii) =⇒ (iii). Si T est un homéomorphisme de E sur T (E), alors T−1 :
T (E) −→ E est linéaire continue. Donc il existe δ > 0 tel que pour tout x ∈ E, on ait
‖T−1(T (x))‖ ≤ 1

δ ‖T (x)‖′, d'où on a δ ‖x‖ ≤ ‖T (x)‖′.Montrons l'implication (iii) =⇒ (i). Soit x ∈ E tel que ‖T (x)‖′ = 0, alors on a 0 ≤ δ ‖x‖ ≤ 0,donc x = 0. Par conséquent, T est injective. L'ensemble T (E) est fermé dans F si et seulementsi T (E) = T (E). On a toujours T (E) ⊂ T (E), il reste à montrer l'inclusion réciproque. Soit
y ∈ T (E), alors il existe une suite (xn)n≥0 dans E telle que y = lim

n→+∞
T (xn), donc la suite

(T (xn))n≥0 est de Cauchy dans F . Or pour tout n,m ∈ N, on a δ‖xn − xm‖ ≤ ‖T (xn − xm)‖′ =
‖T (xn)−T (xm)‖′, on en déduit que (xn)n≥0 est une suite de Cauchy dans E, donc elle convergevers un élément x ∈ E. Comme T est continue, on en déduit que lim

n→+∞
T (xn) = T (x), donc ona y = T (x) ∈ T (E). Par conséquent, on a T (E) ⊂ T (E), d'où T (E) = T (E).Il est évident que l'on a les implications (iii) =⇒ (iv) =⇒ (v).Montrons l'implication (v) =⇒ (iii). Soit δ = inf

{
‖T (x)‖′ ; x ∈ E et ‖x‖ = 1

}. Alors pour tout
x ∈ E, on a δ‖x‖ ≤ ‖T (x)‖′. Si δ = 0, alors pour tout n ≥ 0, il existe xn ∈ E tel que ‖xn‖ = 1et ‖T (xn)‖′ ≤ 1

n+1 . Par conséquent, il existe une suite (xn)n≥0 dans E telle que ‖xn‖ = 1, pourtout n ≥ 0 et telle que l'on ait lim
n→+∞

‖T (xn)‖′ = 0. Ce qui est contraire à l'hypothèse. Donc ona bien δ > 0, et alors (iii) est satisfaite. �Proposition. Tout espace de Banach séparable est un quotient de `1.107
© Dunod, 2011 - Topologie et espaces normés - Nawfal El Hage Hassan



108 Chapitre 7. THÉORÈMES FONDAMENTAUXDémonstration. Soit (E, ‖ ‖) un espace de Banach séparable. Soit (an)n≥0 une suite densedans BE(0, 1) et considérons l'application suivante
T : `1 −→ E

(xn)n≥0 7−→
+∞∑

n=0

xnanalors T est bien dé�nie, linéaire et continue et on a B′
E(0, 1) ⊂ T (B′

`1
(0, 1)). Soit N = ker(T ),alors N est un sous-espace vectoriel fermé de `1 et d'après la proposition 6.4.4, il existe uneapplication linéaire injective et continue T̃ : `1/N −→ E telle que le diagramme suivant soitcommutatif.

`1 E

`1/N

-T

@
@@Rπ �

���
T̃Pour que T̃ soit une application isométrique surjective il faut et il su�t que T̃ (B`1/N (0, 1)) =

BE(0, 1), voir exercice 6.79. Soit x̃ ∈ B`1/N (0, 1), d'après la proposition 6.4.3, il existe x ∈
B`1(0, 1) tel que π(x) = x̃. D'où on a T̃ (x̃) = T (x) et ‖T̃ (x̃)‖ = ‖T (x)‖ ≤ ‖x‖1 < 1. Parconséquent, on a T̃ (B`1/N (0, 1)) ⊂ BE(0, 1). On a B′

E(0, 1) ⊂ T (B′
`1
(0, 1)) d'où, par la propo-sition 7.1.2, on a BE(0, 1) ⊂ T (B`1(0, 1)). Comme on a T (B`1(0, 1)) ⊂ T̃ (B`1/N (0, 1)), alors

BE(0, 1) ⊂ T̃ (B`1/N (0, 1)). Par conséquent, on a BE(0, 1) = T̃ (B`1/N (0, 1)). Donc T̃ est une ap-plication linéaire bijective et isométrique. Ainsi, on peut identi�er l'espace de Banach séparable
E à `1/N . �Proposition (dual topologique de c0). On a les propriétés suivantes :1. Soit x = (xn) ∈ `1. L'application

Tx : (`∞, ‖ ‖∞) −→ K

y 7−→ Tx(y) =

+∞∑

n=0

xn ynest une forme linéaire continue sur `∞, de norme égale à ‖x‖1.2. On note aussi Tx la restriction de Tx à c0 et considérons l'application suivante :
T : (`1, ‖ ‖1) −→ (c0

∗, ‖ ‖)
x 7−→ Txalors T est un isomorphisme isométrique de `1 sur le dual topologique de (c0, ‖ ‖∞) .Autrement dit, le dual topologique de (c0, ‖ ‖∞) est (`1, ‖ ‖1).Démonstration. 1. On véri�e, comme dans la proposition 7.4.2, que Tx est une forme linéairecontinue sur `∞ et que l'on a |Tx(y)| ≤ ‖x‖1 ‖y‖∞, d'où ‖Tx‖ ≤ ‖x‖1 . Pour tout n ≥ 0, ilexiste θn ∈ [0, 2π[ tel que xn = |xn| eiθn . Pour tout k ≥ 0, soit ak =

k∑

n=0

e−iθn en. Alors ona ak ∈ c0 ⊂ `∞, ‖ak‖∞ = 1 et Tx(ak) =

k∑

n=0

|xn|, donc on a ‖Tx‖ ≥ k∑

n=0

|xn| . On en déduit
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‖Tx‖ ≥ ‖x‖1 . Par conséquent, on a ‖Tx‖ = ‖x‖1 . Notons aussi que ce raisonnement impliqueque la restriction de Tx à c0 est de norme égale à ‖x‖1 .2. Il est clair que T est linéaire. On a montré ci-dessus que T est aussi isométrique, donc ilreste à montrer que T est surjective. Soit f forme linéaire continue sur c0 . Pour tout n ≥ 0, onpose xn = f(en). Il s'agit de montrer x = (xn)n≥0 ∈ `1 et f = Tx . On dé�nit les ak commeprécédemment, on a k∑

n=0

|xn| = f(ak) ≤ ‖f‖ ‖ak‖∞ = ‖f‖, donc x = (xn)n≥0 ∈ `1 . Pour tout
n ≥ 0, on a Tx(en) = xn = f(en), donc Tx = f sur cc. On a montré, exercice 6.34, que cc estdense dans (c0, ‖ ‖∞), donc on a Tx = f . Par conséquent, T est surjective. �Proposition. Soient (E, p) un K-espace vectoriel semi-normé, (E/F, ‖ ‖) l'espace vectorielnormé séparé de E et π : E −→ E/F l'application quotient. Soient (G, ‖ ‖′) un espace normé et
f : E −→ G une application linéaire.1. Pour qu'il existe une application linéaire continue f̃ : E/F −→ G satisfaisant f̃ ◦ π = f ,il faut et il su�t qu'il existe une constante M > 0 telle que, pour tout x ∈ E, on ait

‖f(x)‖′ ≤Mp(x).
E G

E/F

-f

@
@@Rπ �

���
f̃2. Si un tel f̃ existe, il est unique et sa norme est la plus petite constante M > 0 satisfaisantla propriété 1.Démonstration. 1. S'il existe f̃ ∈ L (E/F ; G) tel que f̃ ◦ π = f , alors pour tout x ∈ E, ona ‖f(x)‖′ = ‖f̃(π(x))‖′ ≤ ‖f̃‖ ‖π(x)‖ = ‖f̃‖ p(x). Réciproquement, supposons qu'il existe uneconstante M > 0 telle que, pour tout x ∈ E, on ait ‖f(x)‖′ ≤ Mp(x). On en déduit que pourtout x ∈ F , on a f(x) = 0, donc F ⊂ ker(f). Par conséquent, il existe une application linéaire

f̃ : E/F −→ G telle que f̃ ◦ π = f . Soit a ∈ E/F , il existe x ∈ E tel que π(x) = a. On a
f̃(a) = f̃(π(x)) = f(x), d'où ‖f̃(a)‖′ = ‖f(x)‖′ ≤ Mp(x) = M‖π(x)‖ = M‖a‖. Donc f̃ estcontinue et on a ‖f̃‖ ≤M .2. Ceci est trivial. �Proposition. Soient (E, ‖ ‖) un espace normé, B une boule ouverte non vide de E et A unensemble convexe borné d'intérieur non vide dans E. Alors ◦

A est homéomorphe à B, A esthoméomorphe à B et Fr(A) est homéomorphe à Fr(B).Démonstration. Sans perdre de généralité, on peut supposer 0 ∈ ◦
A et on peut aussi supposer

B = {x ∈ E ; ‖x‖ < 1}. Soit µA la jauge de A. D'après le théorème 7.6.2 et la proposition7.6.2, µA est positivement homogène et sous-additive, on a {x ∈ E ; µA(x) < 1} ⊂ A ⊂ {x ∈
E ; µA(x) ≤ 1} et il existe une constanteM > 0 telle que pour tout x ∈ E, on ait µA(x) ≤M‖x‖.Pour tout x, y ∈ E, on a µA(x) ≤ µA(x−y)+µA(y), d'où µA(x)−µA(y) ≤ µA(x−y). De même,on a µA(y) − µA(x) ≤ µA(y − x) = µA(x − y). Donc on a |µA(x) − µA(y)| ≤ µA(x − y). Parconséquent, pour tout x, y ∈ E, on a |µA(x) − µA(y)| ≤ M‖x − y‖. En particulier, µA est unefonction continue. On en déduit que l'on a {x ∈ E ; µA(x) < 1} ⊂

◦
A et A ⊂ {x ∈ E ; µA(x) ≤ 1}.Réciproquement, soit x ∈ ◦

A, alors il existe t > 0 tel que (1+t)x ∈ A, d'où µA(x) ≤ 1
1+t < 1. Doncon a ◦

A= {x ∈ E ; µA(x) < 1}. Soit y ∈ E tel que µA(y) ≤ 1. D'après la remarque 7.6.2, pour tout
© Dunod, 2011 - Topologie et espaces normés - Nawfal El Hage Hassan



110 Chapitre 7. THÉORÈMES FONDAMENTAUX
n ≥ 1, on a y ∈ (1+ 1

n)A, d'où n
n+1y ∈ A. Or on a y = lim

n→+∞
n

n+1y, donc y ∈ A. Par conséquent,on a A = {x ∈ E ; µA(x) ≤ 1}. On en déduit aussi que l'on a Fr(A) = {x ∈ E ; µA(x) = 1}.Comme A est borné, alors δ = sup{‖x‖ ; x ∈ A} ∈ ]0, +∞[. Soient x ∈ E et t > 0 tels que
δx ∈ tA, alors il existe a ∈ A tel que δx = ta, d'où δ‖x‖ = ‖δx‖ = ‖ta‖ = t‖a‖ ≤ tδ, donc on a
‖x‖ ≤ t. Par conséquent, on a δµA(x) = µA(δx) ≥ ‖x‖, d'où pour tout x ∈ E, on a ‖x‖

δ
≤ µA(x).On pose f(0) = 0, g(0) = 0 et pour tout x ∈ E \{0}, on pose f(x) = µA(x)

‖x‖ x et g(x) = ‖x‖
µA(x)

x.Il est clair que l'on a f ◦g = g◦f = idE et que f et g sont continues sur E \{0}. Pour tout x ∈ E,on a ‖f(x)‖ = µA(x) et ‖g(x)‖ ≤ δ‖x‖, donc f et g sont aussi continues en 0. Par conséquent,
f est un homéomorphisme. Il est clair que l'on a f( ◦

A
)
= B, f(A ) = B et f(Fr(A)) = Fr(B).D'où le résultat. �Proposition. Soient (E, ‖ ‖) un espace vectoriel normé, A une partie de E, (cx)x∈A une familledans K, indexée par A et M > 0. Alors les propriétés suivantes sont équivalentes.(i) Il existe f ∈ E∗ telle que ‖f‖ ≤M et f(x) = cx pour tout x ∈ A.(ii) Pour tout n ≥ 1, pour tout x1, . . . , xn ∈ A et pour tout λ1, . . . , λn ∈ K, on a :

∣∣∣
n∑

i=1

λicxi

∣∣∣ ≤M
∥∥∥

n∑

i=1

λixi

∥∥∥ .Démonstration. Montrons l'implication (i) =⇒ (ii). Soit f ∈ E∗ telle que ‖f‖ ≤M et f(x) =
cx, pour tout x ∈ A. Alors pour tout n ≥ 1, pour tout x1, . . . , xn ∈ A et pour tout λ1, . . . , λn ∈ K,on a :

∣∣∣
n∑

i=1

λicxi

∣∣∣ =
∣∣∣

n∑

i=1

λif(xi)
∣∣∣ =

∣∣∣f
( n∑

i=1

λixi

)∣∣∣ ≤ ‖f‖
∥∥∥

n∑

i=1

λixi

∥∥∥ ≤M
∥∥∥

n∑

i=1

λixi

∥∥∥ .Preuve de (ii) =⇒ (i). Soit H = Vect(A) le sous-espace vectoriel engendré par A. Soit x ∈ H,alors il existe x1, . . . , xn ∈ A et λ1, . . . , λn ∈ K tels que on a x =

n∑

i=1

λixi. On pose g(x) =

g
( n∑

i=1

λixi

)
=

n∑

i=1

λicxi
. Alors g est bien dé�nie. En e�et, si n∑

i=1

λixi =

n∑

j=1

µjyj , avec xi, yj ∈ Aet λi, µj ∈ K, alors on a ∣∣∣ n∑

i=1

λicxi
−

n∑

j=1

µjcyj

∣∣∣ ≤ M
∥∥∥

n∑

i=1

λixi −
n∑

j=1

µjyj

∥∥∥ = 0, donc on a
n∑

i=1

λicxi
=

n∑

j=1

µjcyj . Par conséquent, g est bien dé�nie. Il est clair que g est linéaire sur H etque pour tout x ∈ H, on a |g(x)| ≤M‖x‖, donc g est continue et on a ‖g‖ ≤M . Par le théorèmede Hahn-Banach, théorème 7.7.3, il existe f ∈ E∗ prolongeant g et telle que ‖f‖ = ‖g‖ ≤M . �Lemme 7.0.1. Soient f, f1, . . . , fn des formes linéaires sur un K-espace vectoriel E. Alors lespropriétés suivantes sont équivalentes.(i) Il existe λi ∈ K tels que f = λ1f1 + · · ·+ λnfn.(ii) Il existe α > 0, β > 0 tels que n∩
i=1
{x ∈ E ; |fi(x)| < α} ⊂ {x ∈ E ; |f(x)| < β}.(iii) Il existe b > 0 tel que pour tout x ∈ E, on ait |f(x)| ≤ b max

1≤i≤n
|fi(x)|.
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111(iv) n∩
i=1

ker(fi) ⊂ ker(f).Démonstration. L'implication (i) =⇒ (ii) est triviale.Preuve de (ii) =⇒ (iii). Soit x ∈ E. Si |f(x)| > β
α max

1≤i≤n
|fi(x)|, on pose y =

βx

f(x)
, alors on a

|f(y)| = β et pour tout 1 ≤ i ≤ n, on a |fi(y)| < α, ce qui est impossible. Donc, pour tout x ∈ E,on a |f(x)| ≤ β
α max

1≤i≤n
|fi(x)|.L'implication (iii) =⇒ (iv) est triviale.Preuve de (iv) =⇒ (i). Considérons l'application linéaire suivante :

T : E −→ Kn

x 7−→ (f1(x), . . . , fn(x))alors T (E) est un sous-espace vectoriel de Kn. Pour tout z = (f1(x), . . . , fn(x)) ∈ T (E), onpose g(z) = f(x). Alors g est bien dé�nie car si (f1(x), . . . , fn(x)) = (f1(y), . . . , fn(y)), alors
x− y ∈ n∩

i=1
ker(fi) ⊂ ker(f), d'où on a f(x) = f(y). De plus g est linéaire. On prolonge g en uneforme linéaire h sur Kn. Alors il existe (λ1, . . . , λn) ∈ Kn tel que pour tout (z1, . . . , zn) ∈ Kn, onait h(z1, . . . , zn) = n∑

i=1

λizi. On en déduit que pour tout x ∈ E, on a f(x) = n∑

i=1

λi fi(x). �Théorème (Helly). Soient (E, ‖ ‖) un espace normé et f1, . . . , fn des formes linéaires continuessur E, M > 0, et c1, . . . , cn ∈ K. Alors les propriétés suivantes sont équivalentes.(i) Pour tout ε > 0, il existe x ∈ E tel que ‖x‖ ≤M + ε et pour tout i, fi(x) = ci.(ii) Pour tout λ1, . . . , λn ∈ K, on a ∣∣∣ n∑

i=1

λici

∣∣∣ ≤M
∥∥∥

n∑

i=1

λifi

∥∥∥.Démonstration. Le résultat est trivialement vrai si tous les ci sont nuls, donc on peut supposerque les ci ne sont pas tous nuls. Montrons l'implication (i) =⇒ (ii). Soient λ1, . . . , λn ∈ K. Parhypothèse, pour tout ε > 0, il existe x ∈ E tel que ‖x‖ ≤M + ε et pour tout i, on ait fi(x) = ci.Alors on a :
∣∣∣

n∑

i=1

λici

∣∣∣ =
∣∣∣

n∑

i=1

λifi(x)
∣∣∣ ≤ ‖x‖

∥∥∥
n∑

i=1

λifi

∥∥∥ ≤ (M + ε)
∥∥∥

n∑

i=1

λifi

∥∥∥ .Ceci étant vrai pour tout ε > 0, on en déduit que l'on a ∣∣∣ n∑

i=1

λici

∣∣∣ ≤M
∥∥∥

n∑

i=1

λifi

∥∥∥.Preuve de (ii) =⇒ (i). Dans un premier temps, on suppose que les formes linéaires f1, . . . , fnsont linéairement indépendantes. Considérons l'application linéaire suivante :
T : E −→ Kn

x 7−→ (f1(x), . . . , fn(x))alors T (E) est un sous-espace vectoriel de Kn. Si T (E) 6= Kn, alors il existe une forme linéaire nonnulle h : Kn −→ K telle que pour tout x ∈ E, on ait h(T (x)) = 0. Il existe aussi (a1, . . . , an) ∈
Kn \ {0} tel que pour tout (z1, . . . , zn) ∈ Kn, on ait h(z1, . . . , zn) = n∑

i=1

aizi. On en déduit quepour tout x ∈ E, on a 0 =

n∑

i=1

ai fi(x), d'où 0 =

n∑

i=1

ai fi, ce qui est impossible, car les f1, . . . , fn
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112 Chapitre 7. THÉORÈMES FONDAMENTAUXsont linéairement indépendantes. Donc on a T (E) = Kn. Par conséquent, il existe x ∈ E tel que
(f1(x), . . . , fn(x)) = (c1, . . . , cn). Autrement dit, F =

{
x ∈ E ; fi(x) = ci, pour tout 1 ≤ i ≤ n}est non vide. Puisque 0 6∈ F et F est fermé dans E, alors il existe r > 0 tel que B(0, r) ∩ F = ∅.Comme F est convexe, d'après le corollaire 7.8.1, il existe f : E −→ K, une forme linéairecontinue telle que pour tout x ∈ B(0, r) et pour tout y ∈ F , on ait Re(f(x)) < Re(f(y)).Comme B(0, r) est symétrique par rapport à 0, alors pour tout x ∈ B(0, r) et pour tout y ∈ F ,on a |Re(f(x))| < Re(f(y)). Donc on a sup

x∈B(0,r)
|Re(f(x))| ≤ inf

y∈F
Re(f(y)). On a :

sup
x∈B(0,r)

|Re(f(x))| = r sup
x∈B(0,r)

∣∣Re(f(xr ))∣∣ = r sup
z∈B(0,1)

|Re(f(z))| = r ‖Re ◦ f‖ .D'après la proposition 7.4.5, on a ‖f‖ = ‖Re ◦ f‖. Par conséquent, on a r‖f‖ ≤ inf
y∈F

Re(f(y)).Montrons que l'on a n∩
i=1

ker(fi) ⊂ ker(f). Soit x ∈ n∩
i=1

ker(fi). Alors pour tout i, on a fi(x) = 0.Soit y0 ∈ F , alors pour tout α ∈ K, on a y0 + αx ∈ F . Donc, pour tout α ∈ K, on a r‖f‖ ≤Re(f(y0)+αf(x)). Ceci implique que f(x) = 0, d'où x ∈ ker(f). Donc on a n∩
i=1

ker(fi) ⊂ ker(f).Il résulte du lemme 7.8.2 qu'il existe λ1, . . . , λn ∈ K tels que f =

n∑

i=1

λifi.Soit ε > 0. Si, pour tout x ∈ F , on a ‖x‖ ≥ M + ε, alors on a B(0,M + ε) ∩ F = ∅. Il résultede ce qui précède qu'il existe f ∈ E∗, non nulle, telle que (M + ε)‖f‖ ≤ inf
y∈F

Re(f(y)) et il existe
λ1, . . . , λn ∈ K tels que f =

n∑

i=1

λifi. Pour tout y ∈ F , on a :Re(f(y)) ≤ |f(y)| = ∣∣∣ n∑

i=1

λifi(y)
∣∣∣ =

∣∣∣
n∑

i=1

λici

∣∣∣ ≤M
∥∥∥

n∑

i=1

λifi

∥∥∥ =M ‖f‖ .D'où on a (M + ε)‖f‖ ≤ M ‖f‖, ce qui est impossible. Par conséquent, il existe x ∈ F tel que
‖x‖ ≤M + ε. D'où on a (i).à présent, on ne suppose plus que les formes linéaires f1, . . . , fn sont linéairement indépendantes.L'inégalité dans (ii) nous dit que les fi ne sont pas toutes nulles. Quitte à permuter les fi, on peutsupposer qu'il existe m ≤ n tel que {f1, . . . , fm} soit une famille libre maximale de {f1, . . . , fn}.Comme la famille {f1, . . . , fm} véri�e aussi la propriété (ii), d'après ce qui précède, pour tout
ε > 0, il existe x ∈ E tel que ‖x‖ ≤ M + ε et pour tout i ∈ {1, . . . ,m}, on ait fi(x) = ci. Pourtout k ∈ {m+ 1, . . . , n}, on a fk =

m∑

i=1

αk,ifi, avec αk,i ∈ K. Comme on a :
|fk(x)− ck| =

∣∣∣∣
m∑

i=1

αk,ici − ck

∣∣∣∣ ≤M
∥∥∥∥

m∑

i=1

αk,ifi − fk
∥∥∥∥ = 0 .Alors on a aussi fk(x) = ck, pour tout k ∈ {m+ 1, . . . , n}. Donc on a bien la propriété (i). �Proposition. Soient E un espace de Banach et F un sous-espace vectoriel fermé de E.1. Si E est ré�exif, alors F est ré�exif.2. E est ré�exif si et seulement si E∗ est ré�exif.Pour une preuve de la proposition précédente, voir chapitre 7 du supplément.
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113Démonstration. 1. Soit
π : E∗ −→ F ∗

f 7−→ f|Fl'application de restriction. Par le théorème 7.7.3, elle est surjective. Soit h ∈ F ∗∗, autrement dit
h est une forme linéaire continue sur F ∗. Alors h ◦ π est une forme linéaire continue sur E∗. Or
E est ré�exif, donc il existe x ∈ E telle que pour tout f ∈ E∗, on ait h(π(f)) = h ◦ π(f) = f(x).Puisque π est surjective, pour avoir le résultat, il su�t de montrer que x ∈ F . Si x 6∈ F , d'aprèsle corollaire 7.7.2, il existe f ∈ E∗ tel que f(x) 6= 0 et f(y) = 0 pour tout y ∈ F . D'où on a
π(f) = 0. Par conséquent, on a 0 = h(π(f)) = f(x), ce qui est impossible. Donc x ∈ F et parconséquent, F est ré�exif.2. Supposons d'abord E ré�exif. Soit X = E∗ et notons JE : E −→ E∗∗ et JX : X −→ X∗∗les applications canoniques. Soit h ∈ X∗∗, autrement dit h est une forme linéaire continue sur
X∗ = E∗∗. Alors h ◦ JE est une forme linéaire continue sur E, donc h ◦ JE ∈ E∗ = X. Montronsque l'on a JX(h ◦ JE) = h. Soit g ∈ X∗ = E∗∗, comme E est ré�exif, il existe a ∈ E tel que
g = JE(a). On a h(g) = h(JE(a)) = (h ◦ JE)(a). D'autre part, on a JX(h ◦ JE)(g) = g(h ◦ JE) =
JE(a)(h ◦JE) = (h ◦JE)(a). Par conséquent, on a h(g) = JX(h ◦JE)(g), pour tout g ∈ X∗, d'où
h = JX(h ◦ JE). Donc X = E∗ est ré�exif.Réciproquement, supposons que E∗ est ré�exif, d'après ce qui précède, E∗∗ est alors ré�exif.Comme E est un sous-espace vectoriel fermé de E∗∗, Il résulte de 1 que E est ré�exif. �Proposition. Soient (E, ‖ ‖), (F, ‖ ‖′) deux espaces de Banach et T ∈ L (E; F ). Les propriétéssuivantes sont équivalentes.(i) T ∗ est surjective.(ii) T est injective et T (E) est fermé dans F .Démonstration. Montrons d'abord l'implication (i) =⇒ (ii). Par hypothèse, T ∗ est surjec-tive. D'après le théorème de l'application ouverte, T ∗ est ouverte, donc il existe r > 0 telque rBE∗(0, 1) ⊂ T ∗(BF ∗(0, 1)). D'après le corollaire 7.9.1, pour tout x ∈ E, on a ‖T (x)‖′ =

sup
f∈BF∗(0,1)

|f(T (x))|, d'où :
‖T (x)‖′ = sup

f∈BF∗(0,1)
|T ∗(f)(x)| ≥ sup

g∈BE∗(0,1)
|rg(x)| = r sup

g∈BE∗(0,1)
|g(x)| = r‖x‖ .Il résulte de la proposition 7.1.4 que T est injective et T (E) est fermé dans F .Montrons l'implication (ii) =⇒ (i). Supposons que T est injective et que T (E) est fermé dans F .D'après la proposition 7.1.4, l'application T : E −→ T (E) est un homéomorphisme. Soit g ∈ E∗,alors g ◦ T−1 : T (E) −→ K est une forme linéaire continue sur T (E). Par le théorème 7.7.3,il existe f ∈ F ∗ tel que f|T (E)

= g ◦ T−1. Donc, pour tout x ∈ E, on a f(T (x)) = g(x), d'où
T ∗(f) = g, donc T ∗ est surjective. �Proposition. Soient (E, ‖ ‖), (F, ‖ ‖′) deux espaces de Banach et T ∈ L (E; F ). Les propriétéssuivantes sont équivalentes.(i) T est surjective.(ii) T ∗ est injective et T ∗(F ∗) est fermé dans E∗.Démonstration. Montrons d'abord l'implication (i) =⇒ (ii). Par hypothèse, T est surjec-tive. D'après le théorème de l'application ouverte, T est ouverte, donc il existe r > 0 tel que

© Dunod, 2011 - Topologie et espaces normés - Nawfal El Hage Hassan



114 Chapitre 7. THÉORÈMES FONDAMENTAUX
rBF (0, 1) ⊂ T (BE(0, 1)). Pour tout f ∈ F ∗, on a :

‖T ∗(f)‖ = ‖f ◦ T‖ = sup
x∈BE(0,1)

|f ◦ T (x)|

= r sup
x∈BE(0,1)

∣∣f
(
1
rT (x)

)∣∣

≥ r sup
y∈BF (0,1)

|f(y)| = r‖f‖ .Il résulte de la proposition 7.1.4 que T ∗ est injective et que T ∗(F ∗) est fermé dans E∗.Montrons l'implication (ii) =⇒ (i). Pour montrer que T est surjective, il su�t de montrer que Test ouverte. D'après les propositions 7.1.1 et 7.1.2, il su�t de montrer qu'il existe r > 0 tel que
rBF (0, 1) ⊂ T (BE(0, 1)). Supposons le contraire, alors il existe une suite (yn)n≥1 dans F telle que
lim

n→+∞
yn = 0 et pour tout n ≥ 1, on ait yn 6∈ T (BE(0, 1)). Donc on a dn = d

(
yn, T (BE(0, 1))

)
>

0. Pour tout n ≥ 1, soit Vn = T (BE(0, 1))+BF (0, dn), alors Vn est un ouvert convexe et équilibré,et on a yn 6∈ Vn. D'après le corollaire 7.8.2, il existe f ∈ F ∗ telle que f(yn) = 1 et pour tout
z ∈ Vn, on ait |f(z)| < 1. On a T (BE(0, 1)) ⊂ Vn, d'où :

‖T ∗(f)‖ = ‖f ◦ T‖ = sup
x∈BE(0,1)

|f ◦ T (x)| ≤ sup
z∈Vn

|f(z)| ≤ 1 .Comme T ∗ est injective et T ∗(F ∗) est fermé dans E∗, d'après la proposition 7.1.4, il existe α > 0tel que pour tout g ∈ F ∗, on ait ‖g‖ ≤ α‖T ∗(g)‖. On en déduit que l'on a ‖f‖ ≤ α. Parconséquent, on a 1 = f(yn) ≤ α‖yn‖, donc lim
n→+∞

‖yn‖ 6= 0, d'où la contradiction. Donc T estbien surjective. �Supplément d'exercicesExercice 7.46. Soit E =
{
(xn)n≥0 ∈ `∞ ; lim

n→+∞
xn existe dans K}.1. Montrer que (E, ‖ ‖∞) est un espace de Banach.2. Montrer que c0 admet un supplémentaire topologique dans E.Solution. 1. Il est clair que E est sous-espace vectoriel de `∞. Pour montrer que (E, ‖ ‖∞)est un espace de Banach, il su�t de montrer que E est fermé dans `∞. Il résulte du théorèmed'interversion des limites, théorème 5.2.4, que E est fermé dans `∞, mais montrons directe-ment que E est fermé dans `∞. Soit (ξp)p≥0 une suite dans E, qui converge vers x ∈ `∞. Ona x = (xn)n≥0 et ξp = (xp,n)n≥0, avec xn, xp,n ∈ K, et pour tout p ≥ 0, il existe λp ∈ Ktel que lim

n→+∞
xp,n = λp. Montrons d'abord que (λp)p≥0 est une suite de Cauchy dans K. Soit

ε > 0, comme (ξp)p≥0 est convergente dans `∞, alors (ξp)p≥0 est de Cauchy, donc il existe p0 ≥ 0tel que pour tout p, q ≥ p0, on ait ‖ξp − ξq‖∞ < ε. D'où pour tout p, q ≥ p0 et pour tout
n ≥ 0, on a |xp,n − xq,n| < ε. On fait tendre n vers l'in�ni, on obtient |λp − λq| ≤ ε, pourtout p, q ≥ p0. Donc la suite (λp)p≥0 est de Cauchy dans K. Par conséquent, il existe λ ∈ Ktel que lim

n→+∞
λp = λ. Montrons que l'on a lim

n→+∞
xn = λ. Soit ε > 0. Comme (ξp)p≥0 convergevers x dans `∞ et (λp)p≥0 converge vers λ dans K, alors il existe p ∈ N tel que |λp − λ| ≤ ε

3et ‖x − ξp‖∞ < ε
3 , d'où pour tout n ≥ 0, on a |xn − xp,n| < ε

3 . Donc, pour tout n ≥ 0, on a
|xn − λ| ≤ |xn − xp,n|+ |xp,n − λp| + |λp − λ| < 2ε

3 + |xp,n − λp|. Comme on a lim
n→+∞

xp,n = λp,alors il existe N ∈ N tel que pour tout n ≥ N , on ait |xp,n − λp| < ε
3 . On en déduit que pour
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115tout n ≥ N , on a |xn − λ| < ε. Donc on a lim
n→+∞

xn = λ. Par conséquent, on a x ∈ E, donc Eest fermé dans `∞.2. Soit e la suite constante égale à 1, i.e. e = (xn)n≥0, avec xn = 1, pour tout n ≥ 0. Alors K eest un supplémentaire topologique de c0 dans E, car K e est un supplémentaire algébrique de c0dans E, et c0 et K e sont fermés dans l'espace de Banach E.Exercice 7.47. Soient (E, ‖ ‖) un espace de Banach et F , G deux sous-espaces vectoriels fermésde E.1. On suppose que F + G est fermé dans E. Montrer qu'il existe une constante c > 0 telleque pour tout z ∈ F +G, il existe x ∈ F et y ∈ G tels que z = x+ y et ‖x‖+ ‖y‖ ≤ c‖z‖.2. On suppose que l'on a F ∩G = {0}. Montrer que les propriétés suivantes sont équivalentes.(i) F +G est fermé dans (E, ‖ ‖).(ii) Il existe une constante c > 0 telle que ‖x‖ + ‖y‖ ≤ c‖x + y‖, pour tous x ∈ F et
y ∈ G.(iii) Il existe une constante α > 0 telle que ‖x‖ ≤ α‖x+ y‖, pour tous x ∈ F et y ∈ G.Solution. 1. On munit l'espace F ×G de la norme ‖ ‖1. Autrement dit, pour tout (x, y) ∈ F ×G,on a ‖(x, y)‖1 = ‖x‖ + ‖y‖. Alors les espaces (F × G, ‖ ‖1) et (F + G, ‖ ‖) sont de Banach.Considérons l'application suivante :

ϕ : F ×G −→ F +G
(x, y) 7−→ x+ y .Alors ϕ est linéaire continue et surjective, donc ϕ est une application ouverte. Par conséquent,il existe c > 0 tel que B(0, 2c) ⊂ ϕ

(
B(0, 1)

). Donc pour tout z ∈ F + G tel que ‖z‖ < 2
c ,il existe (a, b) ∈ F × G tel que ‖a‖ + ‖b‖ < 1 et z = a + b . Soit z un élément non nul de

F + G, alors on a ∥∥∥ z

c‖z‖
∥∥∥ = 1

c < 2
c , donc il existe (a, b) ∈ F × G tel que ‖a‖ + ‖b‖ < 1 et

z

c‖z‖ = a + b . On pose x = c‖z‖a et y = c‖z‖b, alors z = x + y, (x, y) ∈ F × G et on a
‖x‖+ ‖y‖ = c‖z‖

(
‖a‖+ ‖b‖

)
< c‖z‖ .2. L'implication (i) =⇒ (ii) résulte de 1 et du fait que F ∩ G = {0}. L'implication (ii) =⇒ (iii)est triviale.Preuve de (iii) =⇒ (i). Soit (zn)n≥0 une suite dans (F +G, ‖ ‖) qui converge vers un élément zdans (E, ‖ ‖). Alors pour tout n,m ∈ N, il existe xn ∈ F et yn ∈ G tels que zn = xn + yn et ona ‖xn − xm‖ ≤ α‖xn − xm + yn − ym‖ = α‖xn + yn − (xm + ym)‖, donc (xn)n≥0 est une suitede Cauchy dans (F, ‖ ‖) qui est de Banach. Par conséquent, la suite (xn)n≥0 converge vers unélément x ∈ F . Comme pour tout n ≥ 0, on a yn = zn − xn, alors la suite (yn)n≥0 converge versun élément y ∈ E. Puisque G est fermé dans E, alors on a y ∈ G. Donc on a z = x+ y ∈ F +G.Par conséquent, F +G est fermé dans (E, ‖ ‖).Exercice 7.48. Soient F etG deux sous-espaces vectoriels fermés d'un espace de Banach (E, ‖ ‖)tels que F ∩G = {0}. Montrer que F +G est fermé dans E si et seulement si d(SF , SG) > 0.Solution. Supposons d'abord que F +G est fermé dans E. D'après l'exercice précédent, il existeune constante α > 0 telle que pour tous x ∈ F et y ∈ G, on ait ‖x‖ ≤ α‖x− y‖. Par conséquent,pour tous x ∈ SF et y ∈ SG, on a 1

α ≤ ‖x− y‖. D'où on a 0 < 1
α ≤ d(SF , SG).Réciproquement, supposons que l'on a 0 < d(SF , SG). Soit β = inf(d(SF , SG), 4), alors 0 < β ≤ 4et pour tous x ∈ SF et y ∈ SG, on a β ≤ ‖x − y‖. Soient x ∈ F et y ∈ G tels que x 6= 0 et
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116 Chapitre 7. THÉORÈMES FONDAMENTAUX
y 6= 0. D'après l'exercice 6.13, on a 1

4

(
‖x‖ + ‖y‖

) ∥∥∥ x
‖x‖ −

y
‖y‖

∥∥∥ ≤ ‖x − y‖. Par conséquent, on a
β
4‖x‖ ≤ ‖x−y‖. D'où on a ‖x‖ ≤ 4

β‖x−y‖. Donc pour tous x ∈ F et y ∈ G, on a ‖x‖ ≤ 4
β‖x−y‖.Il résulte de l'exercice précédent que F +G est fermé dans E.Exercice 7.49. Soient E, F deux espaces de Banach et T : E −→ F une application linéairecontinue.1. On suppose que T (E) a un supplémentaire algébrique fermé G dans F . Montrer que T (E)est fermé dans F .[On pourra se ramener à ce que T soit injective, puis considérer l'appli-cation de E ×G dans F dé�nie par (x, z) 7−→ T (x) + z].2. En déduire que si T (E) est de codimension �nie, alors T (E) est fermé.Solution. 1. D'après la proposition 6.4.4, il existe une application linéaire continue T̃ de E/ ker(T )dans F telle que le diagramme suivant soit commutatif.

E F

E/ ker(T )

-T

Q
QQsπ �

��3
T̃Comme T̃ est injective et on a T̃ (E/ ker(T )) = T (E), alors on peut supposer que T est injec-tive. Comme G est un sous-espace vectoriel fermé dans F , alors G est un espace de Banach.Considérons l'application suivante :

S : E ×G −→ F
(x, z) 7−→ T (x) + zalors S est linéaire bijective continue. Alors, par le théorème de l'application ouverte, S est unhoméomorphisme. Or E × {0} est fermé dans E ×G, on en déduit que T (E) = S(E × {0}) estfermé dans F .2. Tout supplémentaire algébrique de T (E) est de dimension �nie, donc fermé et on applique 1.Exercice 7.50. Soient F un sous-espace vectoriel d'un espace normé (E, ‖ ‖) et T : F −→ `∞une application linéaire continue. Montrer qu'il existe une application linéaire continue S : E −→

`∞ prolongeant T telle que ‖S‖ = ‖T‖.Solution. Pour tout n ≥ 0, soit fn : `∞ −→ K la forme linéaire continue dé�nie par fn(en) = 1et fn(ep) = 0 si p 6= n. Pour tout x ∈ F , on a T (x) = (fn(T (x)))n≥0. Pour tout n ≥ 0, ona fn ◦ T ∈ F ∗. Par le théorème de Hahn-Banach, théorème 7.7.3, il existe une forme linéairecontinue gn ∈ E∗ prolongeant fn ◦ T telle que ‖gn‖ = ‖fn ◦ T‖. Pour tout x ∈ E, on pose
S(x) = (gn(x))n≥0. Alors S est une application linéaire continue de E dans `∞ prolongeant T ettelle que ‖S‖ = ‖T‖.Remarque 7.0.3. On montrera, voir exercice 10.34 du supplément, que si F est un sous-espacevectoriel d'un espace normé séparable (E, ‖ ‖) et si T : F −→ c0 est une application linéairecontinue, alors il existe une application linéaire continue S : E −→ c0 prolongeant T telle que
‖S‖ ≤ 2‖T‖.Exercice 7.51. Supposons que `∞ est un sous-espace vectoriel fermé d'un espace de Banach
(E, ‖ ‖). Montrer qu'il existe un sous-espace vectoriel fermé N de E tel que E soit la sommedirecte topologique de `∞ et N .Solution. Soit I : `∞ −→ `∞ l'application identité. Par l'exercice précédent, on prolonge I en
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117une application linéaire continue p : E −→ `∞ de norme 1. Alors p est une projection continueet il su�t de prendre N = ker(p), voir corollaire 7.3.2.Exercice 7.52. On munit C([0, 1], R) de la norme ‖ ‖∞ et soit F un sous-espace vectoriel ferméde C([0, 1], R) tel que tout élément f ∈ F est de classe C1 sur [0, 1]. Montrer que F est dedimension �nie.Solution. Considérons l'application dérivée
D : F −→ C([0, 1], R)

f 7−→ f ′alors D est linéaire et le graphe de D est fermé. On en déduit, par le théorème du graphe fermé,que D est continue. Donc il existe N ∈ N∗ tel que pour tout f ∈ F , on ait ‖f ′‖∞ ≤ N ‖f‖∞.Considérons l'application suivante :
T : F −→ RN+1

f 7−→
(
f(0), f

(
1
N

)
, f
(
2
N

)
, . . . , f

(
N−1
N

)
, f(1)

)alors T est linéaire et continue. Montrons que T est injective. Supposons le contraire, alors ilexisterait f ∈ F tel que ‖f‖∞ = 1 et f( i
N ) = 0, pour tout i ∈ {0, . . . , N}. Soit t ∈ [0, 1] tel que

‖f‖∞ = |f(t)| = 1. Soit i ∈ {0, . . . , N} tel que |t− i
N | ≤ 1

2N . Par le théorème des accroissements�nis, on a f(t)− f( i
N ) = (t− i

N )f ′(α). D'où on a |f(t)| ≤ 1
2N |f ′(α)| ≤ 1

2 , ce qui est impossible.Donc T est injective et on a dim(F ) ≤ N + 1.Exercice 7.53. Soient (E, ‖ ‖) un espace normé et (xn)n≥0, (yn)n≥0 deux suites dans E tellesque pour tout n ≥ 0, on ait ‖xn‖ = ‖yn‖ = 1 et lim
n→+∞

‖xn + yn‖ = 2. Pour tout n ≥ 0, soit
zn ∈ [xn, yn]. Montrer que lim

n→+∞
‖zn‖ = 1. En particulier, si x, y ∈ E tels que ‖x‖ = ‖y‖ = 1 et

‖x+ y‖ = 2, alors pour tout z ∈ [x, y], on a ‖x‖ = 1.Solution. On peut supposer que E est un R-espace normé. Par le théorème de Hahn-Banach,pour tout n ≥ 0, il existe fn ∈ E∗ telle que ‖fn‖ = 1 et fn(xn + yn) = ‖xn + yn‖, d'où on a
lim

n→+∞
fn(xn + yn) = 2. Montrons d'abord que les suites (f(xn))n≥0 et (f(yn))n≥0 convergentvers 1 dans R. Si (f(xn))n≥0 ne converge pas vers 1, alors il existe ε > 0 tel que pour tout N ≥ 0,il existe n ≥ N tel que fn(xn) ≤ 1 − ε. Comme la suite (f(xn) + f(yn))n≥0 converge vers 2, ilexiste N0 ≥ 0 tel que pour tout n ≥ N0, on ait 2 − ε

2 < fn(xn) + fn(yn). Soit n ≥ N0 tel que
fn(xn) ≤ 1− ε et 2− ε

2 < fn(xn) + fn(yn), alors on a 1 + ε
2 < fn(yn), d'où 1 < ‖fn‖, ce qui estimpossible. Donc on a bien lim

n→+∞
fn(xn) = 1 et lim

n→+∞
fn(yn) = 1.Soit zn ∈ [xn, yn], alors il existe tn ∈ [0, 1] tel que zn = (1 − tn)xn + tnyn = xn + tn(yn − xn).Donc on a fn(zn) = fn(xn) + tn[fn(yn)− fn(xn)]. On en déduit que l'on a lim

n→+∞
fn(zn) = 1. Oron a fn(zn) ≤ ‖zn‖ ≤ 1, d'où lim

n→+∞
‖zn‖ = 1.Exercice 7.54. Soient (E, ‖ ‖) un espace de Banach et F un sous-espace vectoriel fermé dans

E∗. Pour tout x ∈ E, on pose ‖x‖F = sup{|f(x)| ; f ∈ BF }. Il est clair que ‖ ‖F est unesemi-norme sur E et que l'on a ‖x‖F ≤ ‖x‖, pour tout x ∈ E.1. Montrer que pour tout x ∈ E, on a ‖x‖F = d(J(x), F⊥) (distance dans E∗∗), où J : E −→
E∗∗ est l'application canonique.2. Montrer que les propriétés suivantes sont équivalentes.(i) F est séparante pour E, i.e. pour tout x ∈ E, avec x 6= 0, il existe f ∈ F tel que

f(x) 6= 0.
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118 Chapitre 7. THÉORÈMES FONDAMENTAUX(ii) ‖ ‖F est une norme sur E.(iii) J(E) ∩ F⊥ = {0}.Solution. 1. Soit ı : F −→ E∗ l'injection canonique. D'après le théorème 7.10.1, il existe uneisométrie isomorphisme σ de E∗∗/F⊥ sur F ∗ tel que le diagramme suivant soit commutatif.
E∗∗ F ∗

E∗∗/F⊥

-ı∗

Q
QQsπ �

��3
σOn a ı∗(Λ) = Λ|F , pour tout Λ ∈ E∗∗. Par dé�nition de la norme quotient sur E∗∗/F⊥, on a

‖π(J(x))‖ = d(J(x), F⊥), d'où :
d(J(x), F⊥) = ‖π(J(x))‖

= ‖σ ◦ π(J(x))‖

= ‖ı∗(J(x))‖

= ‖J(x)|F ‖

= sup
f∈BF

|J(x)(f)|

= sup
f∈BF

|f(x)| = ‖x‖F .2. L'équivalence (i) ⇐⇒ (ii) est triviale. L'équivalence (ii) ⇐⇒ (iii) résulte du fait que pour tout
x ∈ E, on a ‖x‖F = d(J(x), F⊥) et du fait que F⊥ est fermé dans E∗∗.Exercice 7.55. Montrer que si f ∈ (`∞)∗ véri�e ‖f‖ = 1 et f(1) = 1, alors on a :1. Pour tout x = (xn)n≥0 ∈ `∞, avec xn ∈ R, pour tout n ≥ 0, on a f(x) ∈ R.2. Pour tout x = (xn)n≥0 ∈ `∞, avec xn ≥ 0, pour tout n ≥ 0, on a f(x) ≥ 0.3. Pour tout x = (xn)n≥0 ∈ `∞, avec xn ∈ R, pour tout n ≥ 0, on a :

inf
n≥0

xn ≤ f((xn)n≥0) ≤ sup
n≥0

xn .Solution. 1. Soit x = (xn)n≥0 ∈ `∞, avec xn ∈ R, pour tout n ≥ 0. On peut supposer ‖x‖∞ ≤ 1.On a f(x) = s + it, avec t, s ∈ R. Supposons que t 6= 0. Quitte à prendre −x, on peut supposer
t > 0. Pour tout n ≥ 0, on a :

|f(n− ix)|2 ≤ ‖f‖ ‖n − ix‖∞2 ≤ ‖n− ix‖∞2 = n2 + ‖x‖2∞ ≤ n2 + 1 .On a aussi f(n− ix) = n+ t− is, d'où |f(n− ix)|2 = n2 + 2nt+ s2 + t2. Par conséquent, pourtout n ≥ 0, on a 2nt+ s2 + t2 ≤ 1, ce qui est impossible. Donc on a t = 0, d'où f(x) = s ∈ R.2. Soit x = (xn)n≥0 ∈ `∞, avec xn ≥ 0, pour tout n ≥ 0. Alors on a 0 ≤ ‖x‖∞ − xn ≤ ‖x‖∞,d'où ∥∥ ‖x‖∞ − x∥∥ ≤ ‖x‖∞. Donc on a ∣∣ ‖x‖∞ − f(x)∣∣ = ∣∣ f(‖x‖∞ − x)∣∣ ≤ ∥∥ ‖x‖∞ − x∥∥ ≤ ‖x‖∞.Or f(x) ∈ R, d'où f(x) ≥ 0.3. Soit x = (xn)n≥0 ∈ `∞, avec xn ∈ R, pour tout n ≥ 0. Alors pour tout n ≥ 0, on a
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inf
n≥0

xn ≤ xn ≤ sup
n≥0

xn, d'où inf
n≥0

xn ≤ f((xn)n≥0) ≤ sup
n≥0

xn.Exercice 7.56. Soit X un espace localement compact.1. Montrer que si le dual topologique de (C0(X), ‖ ‖∞) est séparable, alors X est au plusdénombrable †.2. En déduire que si X est un métrique connexe localement compact qui contient deux pointsdistincts, alors le dual topologique de (C0(X), ‖ ‖∞) n'est pas séparable3. En déduire que le dual topologique de (C([0, 1]), ‖ ‖∞) n'est pas séparable.4. En déduire que (C([0, 1]), ‖ ‖∞) n'est pas ré�exif.Solution. 1. Pour tout x ∈ X et tout f ∈ C0(X), soit δx(f) = f(x), alors δx ∈ C0(X)∗ et on a
‖δx‖ ≤ 1. Soient x, y ∈ X tels que x 6= y, alors on a ‖δx − δy‖ ≤ 2. D'après le théorème 3.6.1, ilexiste f ∈ Cc(X) ⊂ C0(X) telle que f(x) = 1, f(y) = −1 et −1 ≤ f(z) ≤ 1 pour tout z ∈ X.Alors on a ‖f‖∞ = 1 et (δx− δy)(f) = 2, d'où ‖δx− δy‖ ≥ 2. Par conséquent, on a ‖δx− δy‖ = 2.Pour tout x ∈ X, soit Ux = BC0(X)∗(δx, 1), alors (Ux)x∈X est une famille d'ouverts non videsdeux à deux disjoints dans C0(X)∗. Si C0(X)∗ est séparable, on déduit de la proposition 1.2.5que X est au plus dénombrable.2. Ceci résulte de 1 et de l'exercice 4.3.3. Ceci résulte de 2.4. Puisque (C([0, 1]), ‖ ‖∞) est séparable, voir proposition 6.8.5, et C([0, 1])∗ n'est pas sépa-rable, il résulte du corollaire 7.9.2 que (C([0, 1]), ‖ ‖∞) n'est pas ré�exif.Exercice 7.57. Soit (E, ‖ ‖) un R-espace vectoriel normé tel que dim(E) > 1 et soit C unouvert convexe non vide de E tel que 0 6∈ C. Montrer qu'il existe un élément non nul x ∈ E telque C ∩ Rx = ∅.Solution. D'après le lemme 7.8.1, il existe f ∈ E∗ telle que pour tout z ∈ C, on ait f(z) <
f(0) = 0. Comme dim(E) > 1, alors ker(f) 6= {0}. Soit x ∈ ker(f) tel que x 6= 0, alors on a
C ∩ Rx = ∅.On donne une autre solution de cet exercice sans utiliser le lemme 7.8.1. On cherche x ∈ E,
x 6= 0, tel que C ∩ Rx = ∅. On a C ∩ Rx = ∅ si et seulement si pour tout t > 0, x 6∈ tC et
x 6∈ −tC. Soit U = ∪

t>0
tC, alors U est un ouvert de E. Si U ∩−U 6= ∅, alors il existe t1 > 0, t2 > 0et x1, x2 ∈ C tels que t1x1 = −t2x2, d'où on a t1x1 + t2x2

t1 + t2
= 0. Comme C est convexe, alors ona t1x1 + t2x2

t1 + t2
∈ C, c'est une contradiction. Donc on a U ∩ −U = ∅. Puisque l'on a dim(E) > 1,alors E \{0} est connexe, voir exercice 6.20. Par conséquent, U ∪−U est inclus strictement dans

E \ {0}. Soit x ∈ E \ {0} tel que x 6∈ U ∪ −U . Alors on a C ∩ Rx = ∅.Exercice 7.58. Soit (E, ‖ ‖) un espace normé de dimension in�nie. Montrer qu'il existe deuxsous-ensembles convexes C1 et C2 dans E tels que E = C1 ∪ C2, C1 ∩ C2 = ∅, et C1 et C2 sontdenses dans E.Solution. Soit f une forme R�linéaire non continue sur E. Soient C1 = {x ∈ E ; f(x) < 0}et C2 = {x ∈ E ; f(x) ≥ 0}. Alors C1 et C2 sont des ensembles convexes disjoints et on a
E = C1 ∪ C2. Comme f n'est pas continue, d'après la proposition 6.3.6, H = ker(f) est densedans E. Comme on a H ⊂ C2, alors C2 est dense dans E. Soient a ∈ E tel que f(a) = 1 et

†. En fait, la réciproque est aussi vraie : si le dual topologique de (C0(X), ‖ ‖∞) est séparable, alors X est auplus dénombrable.
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h ∈ H, alors f(h − 1

na) = − 1
n < 0, d'où on a h − 1

na ∈ C1. Or on a h = lim
n→+∞

h − 1
na, donc

H ⊂ C1. Par conséquent, C1 est dense dans E.Exercice 7.59. Trouver un espace de Banach (E, ‖ ‖) et F1, F2 deux sous-espaces vectoriels de
E tels que F1 ∩ F2 = {0} et F1, F2 sont denses dans E.Solution. Soient E = C([0, 2π], C) muni de la norme ‖ ‖∞, F1 le sous-espace vectoriel despolynômes à coe�cients dans C et F2 le sous-espace vectoriel des polynômes trigonométriques.Alors on a F1 ∩ F2 = {0}. D'après les corollaires 5.5.1 et 5.5.2, F1, F2 sont denses dans E.Exercice 7.60. Soit (E, ‖ ‖) un espace normé. Une application linéaire continue U : E −→ Eest dite une involution si U ◦ U = idE.1. Montrer que si U : E −→ E est une involution, alors P = 1

2(U + idE) est une projectioncontinue, i.e. P est linéaire continue telle que P ◦ P = P .2. Réciproquement, soit P : E −→ E une projection continue, montrer que U = 2P − idE estune involution.Solution. 1. Il est clair que si U est linéaire continue, alors P est linéaire continue. On a :
P ◦ P = 1

2(U + idE) ◦ 1
2(U + idE)

= 1
4(U ◦ U + U + U + idE)

= 1
4(2U + 2idE) = P.Donc P est une projection continue.2. Il est clair que si P est linéaire continue, alors U = 2P − idE est linéaire continue. On a :

U ◦ U = (2P − idE) ◦ (2P − idE)
= 4P ◦ P − 2P − 2P + idE
= idE.Donc U est une involution.Exercice 7.61. Soient (E, ‖ ‖) un espace normé et y ∈ E tel que y 6= 0. Soit f ∈ E∗ telle que

f(y) = 1. Pour tout x ∈ E, on pose P (x) = f(x)y. Montrer que P : E −→ E est une projectioncontinue telle que Im(P ) = Vect({y}).Solution. Il est clair que P est linéaire, P ◦ P = P et que l'on a Im(P ) = Vect({y}). On a
‖P (x)| ≤ ‖y‖ ‖f‖ ‖x‖, donc P est continue. Par conséquent, P est une projection continue.Exercice 7.62. Soit E = c0 ou `p, avec 1 ≤ p ≤ ∞. Montrer que l'espace normé produit E ×Kest linéairement homéomorphe à E. En déduire que E × F est linéairement homéomorphe à E,pour tout espace normé de dimension �nie F .Solution. Pour tous x = (xn)n≥0 ∈ E et λ ∈ K, on pose T (x, λ) = (λ, x0, x1, . . .) ∈ E. Alors Test une application linéaire bijective de E × K dans E, et on a ‖T (x, λ)‖ ≤ |λ| + ‖x‖, donc Test continue. Comme E×K et E sont de Banach, il résulte du théorème de l'application ouverteque T est un homéomorphisme. Par récurrence, on en déduit que pour tout n ≥ 1, E × Kn estlinéairement homéomorphe à E. Par conséquent, pour tout espace normé de dimension �nie F ,
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E × F est linéairement homéomorphe à E.Exercice 7.63. Soit E = C([0, 1], R) l'espace vectoriel des applications continues de [0, 1] dans
R , muni de la norme ‖f‖1 = ∫ 1

0
|f(t)|dt. Soient F l'ensemble des fonctions constantes sur [0, 1]et G l'ensemble des g ∈ E telles que g(0) = 0. Montrer que E est la somme directe algébriquedes F et G, mais E n'est pas la somme directe topologique des F et G.Solution. Il est clair que F et G sont des sous-espaces vectoriels de E tels que F ∩ G = {0} .Pour tout f ∈ E, on a f = f − f(0) + f(0), avec f(0) ∈ F et f − f(0) ∈ G, donc E est lasomme directe algébrique des F et G. Pour tout n ≥ 1, soit fn ∈ G dé�nie par : fn(0) = 0, fn esta�ne sur [0, 1

n

] et fn(t) = 1 pour tout t ∈ [ 1n , 1]. Alors la suite (fn)n≥1 converge dans E versla fonction constante 1. Donc G n'est pas fermé dans E. Par conséquent, E n'est pas la sommedirecte topologique des F et G, voir proposition 7.3.1.Exercice 7.64. Soient F et G deux sous-espaces vectoriels fermés d'un espace de Banach
(E, ‖ ‖). Montrer que E est la somme directe topologique de F et G si et seulement si E∗est la somme directe topologique de F⊥ et G⊥.Solution. Supposons d'abord queE est la somme directe topologique de F etG. Soit p : E −→ Ela projection continue telle que Im(p) = F et ker(p) = G. Alors p∗ : E∗ −→ E∗ est une projec-tion continue telle que Im(p∗) = G⊥ et ker(p∗) = F⊥. Donc E∗ est la somme directe topologiquede F⊥ et G⊥, voir corollaire 7.3.1.Réciproquement, supposons que E∗ est la somme directe topologique de F⊥ et G⊥. Il résulte dece qui précède que E∗∗ est la somme directe topologique de (F⊥)⊥ et (G⊥)⊥. Soit JE : E −→ E∗∗l'application canonique. Comme on a J(F ) ⊂ (F⊥)⊥ et J(G) ⊂ (G⊥)⊥, alors on a F ∩G = {0}.Soit f ∈ E∗ telle que f|F+G

= 0. Comme on a F⊥∩G⊥ = {0}, alors f = 0. Il résulte du corollaire7.7.3 que F + G est dense dans E. Soit a ∈ E, alors il existe Λ1 ∈ (F⊥)⊥ et Λ2 ∈ (G⊥)⊥ telsque J(a) = Λ1 + Λ2. Soient (xn)n≥0 une suite dans F et (yn)n≥0 une suite dans G telles que
a = lim

n→+∞
xn+ yn. D'où on a J(a) = lim

n→+∞
J(xn)+J(yn). Comme les projections naturelles sur

(F⊥)⊥ et (G⊥)⊥ sont continues, on en déduit que la suite (J(xn))n≥0 converge vers Λ1 et la suite
(J(yn))n≥0 converge vers Λ2. Or J est une application isométrique, donc (xn)n≥0 est de Cauchydans F et (yn)n≥0 est de Cauchy dans G. Puisque F et G sont des Banach, alors il existe x ∈ Fet y ∈ G tels que x = lim

n→+∞
xn et y = lim

n→+∞
yn. Donc on a J(a) = J(x) + J(y), d'où a = x+ y.Par conséquent, E est la somme directe algébrique de F et G. Il résulte de la proposition 7.3.2que E est la somme directe topologique de F et G.Exercice 7.65. Soit (E, ‖ ‖) un espace normé. Soient JE : E −→ E∗∗ et JE∗ : E∗ −→ E∗∗∗ lesapplications canoniques. Montrer que JE∗ ◦ J∗
E : E∗∗∗ −→ E∗∗∗ est une projection continue. Endéduire que E∗∗∗ est la somme directe topologique de JE∗(E∗) et de JE(E)⊥.Solution. Notons d'abord que P = JE∗ ◦ J∗

E est une application linéaire continue. Pour mieuxvisualiser les applications intervenant dans cet exercice, considérons les deux diagrammes com-mutatifs suivants :
E E∗∗

K

-JE

@
@
@@R

JE∗(f)◦JE
?

JE∗(f)

E∗ E∗∗∗

E∗∗∗
?

JE∗

�
J∗
E

�
�

�
�	

P
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122 Chapitre 7. THÉORÈMES FONDAMENTAUXOn a P ◦ P = JE∗ ◦ J∗
E ◦ JE∗ ◦ J∗

E . Pour montrer que P ◦ P = P , il su�t de montrer que pourtout f ∈ E∗, on a J∗
E ◦ JE∗(f) = f . Pour tout f ∈ E∗ et pour tout x ∈ E, on a

J∗
E ◦ JE∗(f)(x) = J∗

E(JE∗(f))(x) =
(
JE∗(f) ◦ JE

)
(x) = JE∗(f)(JE(x)) = JE(x)(f) = f(x) .D'où on a J∗

E ◦JE∗(f) = f . Par conséquent, on a P ◦P = P . Donc P est une projection continue.D'après la remarque 7.10.1, J∗
E est surjective, donc on a P (E∗∗∗) = JE∗(E∗). Comme JE∗ estune application isométrique, alors on a ker(P ) = ker(J∗

E) = JE(E)⊥. Par conséquent, E∗∗∗ estla somme directe topologique de JE∗(E∗) et de JE(E)⊥.Exercice 7.66. Soient E, F deux espaces de Banach et T : E −→ F une application linéairecontinue et surjective. Montrer que les propriétés suivantes sont équivalentes.(i) T admet un inverse à droite, i.e. il existe une application S : F −→ E linéaire continuetelle que T ◦ S = idF .(ii) ker(T ) admet un supplémentaire topologique dans E.Solution.Montrons l'implication (i) =⇒ (ii). Par hypothèse, il existe S : F −→ E linéaire conti-nue telle que T ◦ S = idF . Soit G = S(F ), alors G est un sous-espace vectoriel de E. Montronsque G est fermé dans E. Soient x ∈ E et (yn)n≥0 une suite dans F telle que lim
n→+∞

S(yn) = x.D'où on a S(T (x)) = lim
n→+∞

S(T (S(yn)) = lim
n→+∞

S(yn) = x, donc x ∈ G. Par conséquent, G estfermé dans E. Soit x ∈ G∩ ker(T ), alors on a T (x) = 0 et il existe y ∈ F tel que x = S(y), d'oùon a y = (T ◦ S)(y) = T (S(y)) = T (x) = 0, donc y = 0. D'où on a x = 0. Par conséquent, ona G ∩ ker(T ) = {0}. Pour tout x ∈ E, on a x = x − S(T (x)) + S(T (x)), avec S(T (x)) ∈ G et
x− S(T (x)) ∈ ker(T ), donc E est la somme directe algébrique des ker(T ) et G. Or ker(T ) et Gsont fermés dans l'espace de Banach E, donc E est la somme directe topologique des ker(T ) et
G, voir proposition 7.3.2.Montrons l'implication (ii) =⇒ (i). Par hypothèse, il existe un sous-espace vectoriel fermé G de
E tel que G∩ker(T ) = {0} et E = G+ker(T ). Alors G est un espace de Banach et T|G : G −→ Fest une application linéaire continue et bijective. D'après le théorème de l'application ouverte, ilexiste S : F −→ G ⊂ E linéaire continue telle que pour tout y ∈ F , on ait T (S(y)) = y.Exercice 7.67. Soient E, F deux espaces de Banach et T : E −→ F une application linéairecontinue et injective. Montrer que les propriétés suivantes sont équivalentes.(i) T admet un inverse à gauche, i.e. il existe une application S : F −→ E linéaire continuetelle que S ◦ T = idE .(ii) T (E) admet un supplémentaire topologique dans F .Solution. Montrons l'implication (ii) =⇒ (i). Comme T (E) admet un supplémentaire topo-logique dans F , alors T (E) est fermé dans F , donc de Banach, et la projection naturelle
π : F −→ T (E) est linéaire continue. Puisque T : E −→ T (E) est linéaire continue et bi-jective, d'après le théorème de l'application ouverte, il existe S̃ : T (E) −→ E linéaire continuetelle que pour tout x ∈ E, on ait S̃(T (x)) = x. Soit S = S̃ ◦π, alors S est une application linéairecontinue de F dans E telle que S ◦ T = idE .Montrons l'implication (i) =⇒ (ii). Par hypothèse, il existe S : F −→ E linéaire continue telleque S ◦ T = idE . Montrons que T (E) est fermé dans F . Soient y ∈ F et (xn)n≥0 une suite dans
E telle que lim

n→+∞
T (xn) = y. D'où on a T (S(x)) = lim

n→+∞
T (S(T (xn)) = lim

n→+∞
T (xn) = y, donc

y ∈ T (E). Par conséquent, T (E) est fermé dans E. Puisque ker(S) est un sous-espace vectorielfermé de F , pour montrer que F est la somme directe topologique des T (E) et ker(S), il reste
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123à montrer que F est la somme directe algébrique des T (E) et ker(S). Soit y ∈ T (E) ∩ ker(S),alors il existe x ∈ E tel que y = T (x) et 0 = S(y) = S(T (x)) = x, d'où y = 0. Donc on a
T (E) ∩ ker(S) = {0}. Pour tout y ∈ F , on a y = y − T (S(y)) + T (S(y)), avec T (S(y)) ∈ T (E)et y− T (S(y)) ∈ ker(S), donc on a F = T (E) + ker(S). Par conséquent, F est la somme directealgébrique des T (E) et ker(S).Exercice 7.68. Soit R : `1 −→ c0 dé�nie par : pour tout x = (xn)n≥0 ∈ `1, R(x) = (rn)n≥0, où
rn =

+∞∑

k=n

xk. Montrer que R ∈ L (`1; c0) et donner une formule explicite de R∗ dans L (`1; `∞).Solution. Il est clair que R est bien dé�nie et que R est linéaire. Pour tout n ≥ 0, on a
|rn| ≤

+∞∑

k=n

|xk| ≤ ‖x‖1, donc R est continue et on a ‖R‖ ≤ 1. Si a = (an)n≥0 ∈ `1, on note
Ta ∈ c∗0, dé�nie par Ta((tn)n≥0

)
=

+∞∑

n=0

antn. On a R∗(Ta) = Ta ◦R. Pour tout x = (xn)n≥0 ∈ `1,on a R∗(Ta)(x) =
+∞∑

n=0

an

( +∞∑

k=n

xk

). D'après le corollaire 6.7.4 et la proposition 6.7.5, la famille
(
anxk

)
(n,k)∈N2 est sommable. Soit I =

{
(n, k) ∈ N2 ; k ≥ n

}
=

+∞∪
k=0

{
(n, k) ∈ N2 ; 0 ≤ n ≤ k

}.D'après le corollaire 6.7.2 et le théorème 6.7.4, la famille (anxk)(n,k)∈I est sommable et on a :
+∞∑

n=0

an

( +∞∑

k=n

xk

)
=

∑

(n,k)∈I
anxk =

+∞∑

k=0

( k∑

n=0

an

)
xk .Par conséquent, on a R∗(Ta)

(
(xn)n≥0

)
=

+∞∑

n=0

( n∑

k=0

ak

)
xn. Pour tout n ≥ 0, soit bn =

n∑

k=0

ak,alors b = (bn)n≥0 ∈ `∞ et on a R∗(Ta) = Tb, où Tb ∈ `1∗, dé�nie par Tb((xn)n≥0

)
=

+∞∑

n=0

bnxn. Enidenti�ant c∗0 à `1 et `1∗ à `∞, on obtient R∗ ∈ L (`1; `∞), dé�nie par R∗((an)n≥0

)
= (bn)n≥0,où pour tout n ≥ 0, on a bn =

n∑

k=0

ak.Exercice 7.69. Soient E et F deux espaces de Banach. On suppose qu'il existe une applicationlinéaire isométrique T de E dans F ∗ telle que T ∗◦JF : F −→ E∗ soit une application isométriquede F dans E∗. Montrer que si E est ré�exif, alors on a F = E∗ et E = F ∗.Solution. Soient JE : E −→ E∗∗ et JF : F −→ F ∗∗ les applications canoniques. Par hypothèse,
T ∗ ◦ JF : F −→ E∗ est linéaire et isométrique. Pour tout y ∈ F , on a T ∗(JF (y)) = JF (y) ◦ T .Si T ∗ ◦ JF n'était pas surjective, d'après le corollaire 7.7.2, il existerait h ∈ E∗∗ tel que h 6= 0et h(JF (y) ◦ T ) = 0, pour tout y ∈ F . Comme E est ré�exif, il existe x ∈ E tel que x 6= 0et h = JE(x), d'où JE(x)(JF (y) ◦ T ) = 0, pour tout y ∈ F . Or on a JE(x)(JF (y) ◦ T ) =
(JF (y) ◦T )(x) = JF (y)(T (x)) = T (x)(y), donc T (x)(y) = 0 pour tout y ∈ F , d'où T (x) = 0. Onen déduit que x = 0, car T est isométrique, ce qui est impossible. Par conséquent, T ∗ ◦ JF estsurjective, donc on a F = E∗ et F ∗ = E∗∗ = E.Exercice 7.70. Soient (E ‖ ‖), (F ‖ ‖′) deux espaces de Banach et T ∈ L (E; F ). Montrer que1. T est bijective de E sur F si et seulement si T ∗ est bijective de F ∗ sur E∗.
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124 Chapitre 7. THÉORÈMES FONDAMENTAUX2. T est isométrique et surjective de E sur F si et seulement si T ∗ est isométrique et surjectivede F ∗ sur E∗.Solution. 1. Si T est bijective de E sur F , d'après le théorème de l'application ouverte, il existe
S ∈ L (F ; E) tel que T ◦ S = idF et S ◦ T = idE, d'où on a T ∗ ◦ S∗ = idE∗ et S∗ ◦ T ∗ = idF ∗ .Donc T ∗ est bijective de F ∗ sur E∗.Réciproquement, supposons que T ∗ est bijective de F ∗ sur E∗. D'après les propositions 7.10.47.10.5, T est injective, T (E) est fermé dans F et T (E) est dense dans F , donc T est bijective.2. Supposons d'abord que T est isométrique et surjective de E sur F . Alors on a T (BE(0, 1)) =
BF (0, 1). D'après 1, T ∗ est aussi bijective de F ∗ sur E∗. Il reste à véri�er que T ∗ est isométrique.Pour tout f ∈ F ∗, on a :
‖T ∗(f)‖ = ‖f ◦ T‖ = sup{|f(T (x))| ; x ∈ BE(0, 1)} = sup{|f(y)| ; y ∈ BF (0, 1)} = ‖f‖ .Donc T ∗ est isométrique.Réciproquement, supposons que T ∗ est isométrique et surjective de F ∗ sur E∗. Alors on a

T ∗(BF ∗(0, 1)) = BE∗(0, 1). D'après 1, T est aussi bijective de E sur F . Il reste à véri�er que Test isométrique. D'après le corollaire 7.9.1, on a :
‖T (x)‖ = sup{|f(T (x))| ; f ∈ BF ∗(0, 1)}

= sup{|T ∗(f)(x)| ; f ∈ BF ∗(0, 1)}

= sup{|g(x)| ; g ∈ BE∗(0, 1)} = ‖x‖ .Donc T est isométrique.Exercice 7.71. Montrer que c0 n'est pas linéairement homéomorphe à C([0, 1]).Solution. Si c0 est linéairement homéomorphe à C([0, 1]), d'après l'exercice précédent, `1 = c∗0serait linéairement homéomorphe à C([0, 1])∗. Or `1 est séparable, mais C([0, 1])∗ ne l'est pas,voir exercice 7.56, donc c0 n'est pas linéairement homéomorphe à C([0, 1]).Exercice 7.72. Soient (E, ‖ ‖), (F, ‖ ‖) deux espaces de Banach et A : E −→ F une applicationlinéaire continue surjective. Soit T : `1 −→ F une application linéaire continue. Montrer qu'ilexiste une application linéaire continue S : `1 −→ E telle que A ◦ S = T . Autrement dit, lediagramme suivant est commutatif.
E F

`1

-A

@
@

@I
S

6
TSolution. Notons d'abord que l'on peut supposer T 6= 0. Pour tout n ≥ 0, on a ‖T (en)‖ ≤ ‖T‖.Comme A est une application linéaire continue surjective, d'après le théorème de l'applicationouverte, A est une application ouverte. Donc il existe η > 0 tel que BF (0, η) ⊂ A(BE(0, 1)).Comme pour tout n ≥ 0, on a η

2‖T‖T (en) ∈ BF (0, η), alors il existe zn ∈ BE(0, 1) tel que
η

2‖T‖T (en) = A(zn), d'où on a T (en) = A
(2‖T‖

η
zn

). Autrement dit, il existe une suite bornée
(xn)n≥0 dans E telle que A(xn) = T (en), pour tout n ≥ 0. Soit λ = (λn)n≥0 ∈ `1. Comme la sé-rie ∞∑

n=0

λnxn est absolument convergente et comme (E, ‖ ‖) est de Banach, alors ∞∑

n=0

λnxn existe
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125dans E. On pose ensuite S((λn)n≥0) =

∞∑

n=0

λnxn. Alors S est une application linéaire continuede `1 dans E telle que A ◦ S = T .
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Chapitre 8ESPACES DE HILBERTProposition. Le complété d'un espace préhilbertien est un espace de Hilbert.Démonstration. Soient (E, 〈 , 〉) un K-espace préhilbertien et (H, ‖ ‖) un espace de Banachtels que E soit un sous-espace vectoriel dense dans H et pour tout x ∈ E, on ait ‖x‖ =√〈x, x〉 .Il s'agit de dé�nir un produit scalaire sur H qui induit la norme ‖ ‖. Soient x, y ∈ H. Soient
(xn)n≥0 et (yn)n≥0 des suites dans E telles que xn −→

n→+∞
x et yn −→

n→+∞
y dans H.Véri�ons d'abord que (〈xn, yn〉)n≥0

est une suite de Cauchy dans K. On a :
〈xn, yn〉 − 〈xm, ym〉 = 〈xn, yn〉 − 〈xn, ym〉+ 〈xn, ym〉 − 〈xm, ym〉

= 〈xn, yn − ym〉+ 〈xn − xm, ym〉 .Par l'inégalité de Cauchy-Schwarz, on obtient :
|〈xn, yn〉 − 〈xm, ym〉| ≤ ‖xn‖ ‖yn − ym‖+ ‖xn − xm‖ ‖ym‖ .Comme les suites (‖xn‖)n≥0

et (‖yn‖)n≥0
sont bornées, alors la suite (〈xn, yn〉)n≥0

est de Cauchydans K, donc elle converge dans K.Soient (x′n)n≥0 et (y′n)n≥0 des autres suites dans E telles que x′n −→n→+∞
x et y′n −→n→+∞

y dans H.Montrons que l'on a lim
n→+∞

〈xn, yn〉 = lim
n→+∞

〈x′n, y′n〉. On a :
〈x′n, y′n〉 − 〈xn, yn〉 = 〈x′n, y′n〉 − 〈xn, y′n〉+ 〈xn, y′n〉 − 〈xn, yn〉

= 〈x′n − xn, y′n〉+ 〈xn, y′n − yn〉d'où |〈x′n, y′n〉−〈xn, yn〉| ≤ ‖x′n−xn‖ ‖y′n‖+‖xn‖ ‖y′n−yn‖. Par conséquent, on a lim
n→+∞

〈xn, yn〉 =
lim

n→+∞
〈x′n, y′n〉. On pose :

〈x, y〉1 = lim
n→+∞

〈xn, yn〉 .Alors 〈x, y〉1 est bien dé�ni et on a 〈x, y〉1 ∈ K. On véri�e facilement que 〈 , 〉1 est un produitscalaire sur H tel que pour tout x, y ∈ E, on ait 〈x, y〉1 = 〈x, y〉 et que pour tout z ∈ H, on a
‖z‖ =

√
〈z, z〉1 . Donc (H, ‖ ‖) est un espace de Hilbert. �Proposition. Soient E, F et H des espaces de Hilbert.1. Pour tout T ∈ L (E; F ), on a (T ∗)∗ = T , ‖T ∗‖ = ‖T‖ et ‖T ∗ ◦ T‖ = ‖T ◦ T ∗‖ = ‖T‖2.127
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128 Chapitre 8. ESPACES DE HILBERT2. L'application suivante est semi-linéaire, bijective et isométrique.
A : L (E; F ) −→ L (F ; E)

T 7−→ T ∗3. On a idE∗ = idE, où idE désigne l'application identité de E.4. Pour tout T ∈ L (E; F ) et tout S ∈ L (F ; H), on a (S ◦ T )∗ = T ∗ ◦ S∗.5. Si T ∈ L (E; F ) est un homéomorphisme, alors T ∗ est un homéomorphisme et on a
(T ∗)−1 = (T−1)

∗.Démonstration. 1. Pour tout x ∈ E et tout y ∈ F , on a :
〈y, T (x)〉 = 〈T (x), y〉 = 〈x, T ∗(y)〉 = 〈T ∗(y), x〉 = 〈y, (T ∗)∗(x)〉 .Par conséquent, pour tout x ∈ E, on a T (x) = (T ∗)∗(x), d'où T = (T ∗)∗. On a vu dans laproposition précédente que l'on a ‖T ∗‖ ≤ ‖T‖, on en déduit ‖T‖ = ‖(T ∗)∗‖ ≤ ‖T ∗‖, donc on a

‖T ∗‖ = ‖T‖. On a ‖T ∗ ◦ T‖ ≤ ‖T ∗‖ ‖T‖ = ‖T‖2. Par ailleurs, pour tout x ∈ E, on a :
‖T (x)‖2 = 〈T (x), T (x)〉 = 〈x, T ∗ ◦ T (x)〉 ≤ ‖x‖ ‖T ∗ ◦ T (x)‖ ≤ ‖x‖2 ‖T ∗ ◦ T‖ .D'où on a ‖T‖2 = sup

{
‖T (x)‖2 ; ‖x‖ ≤ 1

}
≤ ‖T ∗ ◦ T‖. On a donc ‖T ∗ ◦ T‖ = ‖T‖2. Enappliquant ce résultat à T ∗, on obtient ‖T ◦ T ∗‖ = ‖(T ∗)∗ ◦ T ∗‖ = ‖T ∗‖2 = ‖T‖2.2. On a ‖A(T )‖ = ‖T ∗‖ = ‖T‖, donc A est isométrique. Soit R ∈ L (F ; E), alors R∗ ∈ L (E; F )et on a A(R∗) = (R∗)∗ = R, donc A est surjective. Par conséquent, A est isométrique et bijective.Soient T, S ∈ L (E; F ) et λ ∈ K. Pour tout x ∈ E et pour tout y ∈ F , on a :

〈(T + λS)(x), y〉 = 〈T (x) + λS(x), y〉

= 〈T (x), y〉+ λ〈S(x), y〉

= 〈x, T ∗(y)〉+ λ〈x, S∗(y)〉

= 〈x, T ∗(y) + λS∗(y)〉

= 〈x, (T ∗ + λS∗)(y)〉 .Par conséquent, on a (T + λS)∗ = T ∗ + λS∗, donc A est semi-linéaire.3. Pour tout x, y ∈ E, on a 〈idE(x), y〉 = 〈x, y〉 = 〈x, idE(y)〉, donc on a idE∗ = idE.4. Soient T ∈ L (E; F ) et S ∈ L (F ; H). Pour tout x ∈ E et pour tout z ∈ H, on a :
〈(S ◦ T )(x), z〉 = 〈S(T (x)), z〉 = 〈T (x), S∗(z)〉 = 〈x, T ∗(S∗(z))〉 = 〈x, (T ∗ ◦ S∗)(z)〉 .Par conséquent, on a (S ◦ T )∗ = T ∗ ◦ S∗.5. Soit T ∈ L (E; F ) et supposons que T est un homéomorphisme, alors T−1 ∈ L (F ; E) eton a T ◦ T−1 = idF et T−1 ◦ T = idE. Il résulte de 3 et 4 que l'on a (T−1)∗ ◦ T ∗ = idF et

T ∗ ◦ (T−1)∗ = idE . Donc T ∗ est un homéomorphisme et on a (T ∗)−1 = (T−1)
∗. �Proposition. Soient (H, 〈 , 〉) un espace de Hilbert et P ∈ L (H) tel que P ◦ P = P . Lespropriétés suivantes sont équivalentes.(i) P est un projecteur orthogonal. Autrement dit, il existe un sous-espace vectoriel fermé Fde H tel que P = PF soit le projecteur orthogonal sur F .
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129(ii) On a P ∗ = P .(iii) On a P ◦ P ∗ = P ∗ ◦ P .(iv) On a Im(P ) = ker(P )⊥.(v) Pour tout x ∈ H, on a 〈P (x), x〉 = ‖P (x)‖2.(vi) On a ‖P‖ ≤ 1.Pour une preuve de la proposition précédente, voir chapitre 8 du supplément.Démonstration. Montrons l'implication (i) =⇒ (ii). Par hypothèse, il existe un sous-espacevectoriel fermé F de H tel que P soit le projecteur orthogonal sur F . D'après la proposition 8.3.7,pour tout x, y ∈ H, on a 〈P (x), y−P (y)〉 = 0 et 〈x−P (x), P (y)〉 = 0, car y−P (y), x−P (x) ∈ F⊥,donc on a :
〈P (x), y〉 = 〈P (x), y − P (y) + P (y)〉

= 〈P (x), y − P (y)〉+ 〈P (x), P (y)〉

= 〈P (x), P (y)〉

= 〈x− P (x), P (y)〉 + 〈P (x), P (y)〉

= 〈x, P (y)〉 .Par conséquent, on a P ∗ = P .L'implication (ii) =⇒ (iii) est triviale.Preuve de (iii) =⇒ (iv). D'après la proposition 8.4.4 et le corollaire 8.3.2, on a Im(P ) = ker(P ∗)⊥.Comme on a P ◦ P = P , alors Im(P ) = ker(idH − P ), donc Im(P ) est fermé dans H, d'où on aIm(P ) = Im(P ). Par conséquent, on a Im(P ) = ker(P ∗)⊥. D'autre part, Pour tout x ∈ H, on a :
‖P (x)‖2 = 〈P (x), P (x)〉 = 〈x, (P ∗ ◦ P )(x)〉 = 〈x, (P ◦ P ∗)(x)〉 = 〈P ∗(x), P ∗(x)〉 = ‖P ∗(x)‖2 .Donc on a ker(P ∗) = ker(P ), d'où Im(P ) = ker(P )⊥.Preuve de (iv) =⇒ (v). Par hypothèse, on a Im(P ) = ker(P )⊥. Comme on a P ◦ P = P , alors

ker(P ) = Im(idH − P ). Par conséquent, on a Im(idH − P ) = Im(P )⊥. En particulier, pour tout
x ∈ H, on a 〈P (x), x− P (x)〉 = 0. D'où on a :

〈P (x), x〉 = 〈P (x), x − P (x) + P (x)〉 = 〈P (x), x− P (x)〉+ 〈P (x), P (x)〉 = ‖P (x)‖2 .Preuve de (v) =⇒ (vi). Par hypothèse, pour tout x ∈ H, on a 〈P (x), x〉 = ‖P (x)‖2. D'aprèsl'inégalité de Cauchy-Schwarz, on a |〈P (x), x〉| ≤ ‖P (x)‖ ‖x‖. Par conséquent, pour tout x ∈ H,on a ‖P (x)‖ ≤ ‖x‖, d'où ‖P‖ ≤ 1.Montrons l'implication (vi) =⇒ (i). Soit F = P (H). Alors F est un sous-espace vectoriel de
H, car P est linéaire. Montrons que F est fermé dans H. Soient (xn)n≥0 une suite dans H et
y ∈ H tels que y = lim

n→+∞
P (xn). Comme P est continue, alors on a P (y) = lim

n→+∞
P (P (xn)) =

lim
n→+∞

P (xn) = y, d'où y = P (y) ∈ F . Donc F est fermé dans H et pour tout y ∈ F , on a
P (y) = y. Soit z ∈ F⊥, alors P (z) = y ∈ F . Donc, pour tout n ≥ 1, on a P

(
y + 1

nz
)
=

P (y)+ 1
nP (z) = y+ 1

ny. D'où on a (1+ 1
n

)2‖y‖2 =
∥∥P
(
y+ 1

nz
)∥∥2 ≤

∥∥y+ 1
nz
∥∥2 = ‖y‖2 + 1

n2‖z‖2.Par conséquent, pour tout n ≥ 1, on a (2n+1)‖y‖2 ≤ ‖z‖2, d'où y = 0. Comme on a H = F+F⊥,on en déduit que P = PF le projecteur orthogonal sur F . �Proposition. Soient (E, 〈 , 〉), (F, 〈 , 〉) des espaces de Hilbert et T ∈ L (E; F ).
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130 Chapitre 8. ESPACES DE HILBERT1. Les propriétés suivantes sont équivalentes.(i) T ∗ ◦ T = idE .(ii) Pour tout x, y ∈ E, on a 〈T (x), T (y)〉 = 〈x, y〉.(iii) Pour tout x ∈ E, on a ‖T (x)‖ = ‖x‖. Autrement dit, T est isométrique.2. On suppose que T est isométrique. Alors on a :(a) L'image d'un sous-espace vectoriel fermé de E par T , est un sous-espace fermé de F .(b) Si G un sous-espace vectoriel de E, alors on a T (G⊥) ⊂ T (G)⊥.(c) Soit P = T ◦ T ∗, alors P est le projecteur orthogonal sur T (E).Démonstration. 1. Montrons l'implication (i) =⇒ (ii). Par hypothèse, on a T ∗◦T = idE . Alors,pour tout x, y ∈ E, on a 〈T (x), T (y)〉 = 〈x, T ∗(T (y))〉 = 〈x, (T ∗ ◦ T )(y)〉 = 〈x, y〉.Montrons l'implication (ii) =⇒ (iii). Pour tout x ∈ E, on a :
‖T (x)‖2 = 〈T (x), T (x)〉 = 〈x, x〉 = ‖x‖2d'où ‖T (x)‖ = ‖x‖.L'implication (iii) =⇒ (ii) résulte de la proposition 8.2.1, propriétés 4 et 5.Montrons l'implication (ii) =⇒ (i). Pour tout x, y ∈ E, on a :
〈x, y〉 = 〈T (x), T (y)〉 = 〈x, (T ∗ ◦ T )(y)〉 .Donc, pour tout y ∈ E, on a y = (T ∗ ◦ T )(y). Autrement dit, on a T ∗ ◦ T = idE .2. On suppose que T est isométrique.2(a). Soit H un sous-espace vectoriel fermé de E. Soient y ∈ F et (xn)n≥0 une suite dans H telleque y = lim

n→+∞
T (xn). Comme T ∗ est continue, alors on a T ∗(y) = lim

n→+∞
T ∗(T (xn)) = lim

n→+∞
xn,donc T ∗(y) ∈ H. Comme on a T ◦ T ∗ ◦ T = T , alors (T ◦ T ∗)(y) = lim

n→+∞
(T ◦ T ∗)(T (xn)) =

lim
n→+∞

T (xn) = y. Par conséquent, on a y = T (T ∗(y)) ∈ T (H). Donc T (H) est fermé dans F .2(b). Soient x ∈ G⊥ et y ∈ T (G). Alors il existe z ∈ G tel que y = T (z). On a 〈T (x), y〉 =
〈T (x), T (z)〉 = 〈T ∗(T (x)), z〉 = 〈x, z〉 = 0, d'où T (x) ∈ T (G)⊥. Par conséquent, on a T (G⊥) ⊂
T (G)⊥.2(c). Soit P = T ◦ T ∗. Alors on a P = P ∗ et P ◦ P = T ◦ T ∗ ◦ T ◦ T ∗ = T ◦ idH ◦ T ∗ =
T ◦ T ∗ = P . D'après la proposition précédente, P est le projecteur orthogonal sur P (E). On a
P (E) = T (T ∗(E)) ⊂ T (E). On a aussi T = T ◦ T ∗ ◦ T = P ◦ T , d'où T (E) ⊂ P (E). Donc on a
P (E) = T (E). Par conséquent, P est le projecteur orthogonal sur T (E). �Théorème. Soit (H, 〈 , 〉) un espace de Hilbert. Alors toute famille orthonormale dans H estcontenue dans une base hilbertienne de H. En particulier, Tout espace de Hilbert non nul admetune base hilbertienne.Démonstration. Soit (ei)i∈I une famille orthonormale dans H. Soit B l'ensemble des famillesorthonormales dans H, contenant les ei, i ∈ I. Montrons que B muni de l'inclusion est inductif.Soit {Bj ; j ∈ J} une partie totalement ordonnée de B. Soient x, y ∈ ∪

j∈J
Bj , alors il existe j ∈ Jtel que x, y ∈ Bj . Donc on a 〈x, x〉 = 1, 〈y, y〉 = 1 et 〈x, y〉 = 0. Il s'ensuit que ∪

j∈J
Bj est unélément de B, majorant tous les Bj . Donc B est inductif. Par le lemme de Zorn, B possède unélément maximal B. Soit x ∈ B⊥. Si x 6= 0, alors B ∪ { x

‖x‖
} est élément de B et majore B,ce qui contredit la maximalité de B. Donc on a B⊥ = 0. Il résulte du corollaire 8.3.3 que B esttotal. Donc B est une base hilbertienne de H. �
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131Théorème. Soit (H, 〈 , 〉) un espace de Hilbert. Deux bases hilbertiennes de H ont mêmecardinal.Démonstration. Si H est de dimension �nie n, alors toute base hilbertienne de H est aussiune base algébrique, donc son cardinal est n. On suppose maintenant que H est de dimensionin�nie. Soient (xi)i∈I et (ej)j∈J deux bases hilbertiennes de H. Alors I et J sont des ensemblesin�nis. Soit D = {(i, j) ∈ I × J ; 〈xi, ej〉 6= 0}. D'après le théorème 8.6.1, pour tout i ∈ I, ona 0 6= ‖xi‖2 =
∑

j∈J
|〈xi, ej〉|2, donc, pour tout i ∈ I, il existe j ∈ J tel que 〈xi, ej〉 6= 0. Parconséquent, l'application (i, j) 7−→ i de D dans I est surjective, d'où on a Card(I) ≤ Card(D).D'autre part, pour tout j ∈ J , on a aussi ‖ej‖2 =

∑

i∈I
|〈xi, ej〉|2. D'après la proposition 6.7.3,l'ensemble Ij = {i ∈ I ; 〈xi, ej〉 6= 0} est au plus dénombrable. Soit fj : Ij −→ N une applicationinjective. On a D = ∪

j∈J
Ij × {j}, et soit f : D −→ J × N dé�nie par f(i, j) = (j, fj(i)) si i ∈ Ij .Alors f est une application injective. Par conséquent, on a Card(D) ≤ Card(J × N). Or on aCard(J ×N) = Card(J), car J est in�ni, donc on a Card(I) ≤ Card(J). On échange le rôle de Iet J , on obtient aussi Card(J) ≤ Card(I). Finalement, on a Card(I) = Card(J). �Supplément d'exercicesExercice 8.38. [Noyaux reproduisants] Soient X un ensemble et CX l'espace vectoriel desapplications de X dans C. Soit H un sous-espace vectoriel de CX muni d'une structure d'espacede Hilbert. On note 〈 , 〉 le produit scalaire sur H et ‖ ‖ la norme associée.1. Montrer que les propriétés suivantes sont équivalentes.(i) Pour tout x ∈ X, la forme linéaire dé�nie sur H par f 7−→ f(x) est continue.(ii) Il existe une application K de X ×X dans C véri�ant� pour tout y ∈ X, l'application K(., y) : x 7−→ K(x, y) appartient à H ;� pour tout f ∈ H et tout y ∈ X, 〈f,K(., y)〉 = f(y).Dans ce cas, une telle application K est unique et appelée le noyau reproduisantde H.2. Supposons que H possède le noyau reproduisant K.(a) Montrer que pour tout n ∈ N∗ et pour tout ξ = (x1, . . . , xn) ∈ Xn, l'application
Tn,ξ : Cn × Cn −→ C

(
(λi)1≤i≤n, (µi)1≤i≤n

)
7−→

n∑

i,j=1

K(xi, xj)λiµjest une forme hermitienne positive.Une application de X × X dans C véri�ant la propriété (a) ci-dessus est appeléeapplication de type positif de X ×X dans C(b) Soit E un sous-espace vectoriel fermé de H. Montrons que E possède un noyau repro-duisant K1 et que pour tout f ∈ H, l'application y 7−→ 〈f,K1(., y)〉 est la projectionorthogonale de f sur E. Soient K2 le noyau reproduisant de E⊥. Montrer que K1+K2est le noyau reproduisant de H.
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132 Chapitre 8. ESPACES DE HILBERT(c) Soient (xi)1≤i≤n une suite �nie de points de X et (ai)1≤i≤n une suite de n nombrescomplexes. On suppose que le déterminant det
([
K(xi, xj)

]) soit non nul, de sorteque le système d'équations linéaires n∑

j=1

cjK(xi, xj) = ai, 1 ≤ i ≤ n, a une solutionunique (ci)1≤i≤n. Soit A =
{
f ∈ H ; f(xi) = ai , 1 ≤ i ≤ n

}. Montrer que f0 =
n∑

j=1

cjK(., xj) ∈ A et que inf
f∈A
‖f‖ = ‖f0‖. En déduire que si x ∈ X tel que K(x, x) 6= 0et si B =

{
f ∈ H ; f(x) = 1}, alors l'application g0 =

K(., x)

K(x, x)
∈ B et que

inf
g∈B
‖g‖ = ‖g0‖.(d) Montrer que la famille (K(., y)

)
y∈X est totale dans H.(e) Supposons de plus que X est un espace topologique séparable et que H ⊂ C(X, C) ⊂

CX . Montrer que H est séparable.Solution. 1. L'implication (ii) =⇒ (i) est triviale. Montrons l'implication (i) =⇒ (ii). Soit y ∈ X.Comme f 7−→ f(y) est une forme linéaire continue sur H, d'après le théorème de représentationde Riesz, il existe un unique K(., y) ∈ H tel que pour tout f ∈ H, on ait 〈f,K(., y)〉 = f(y).D'autre part, K(., y) est une application de X dans C, donc on pose K(x, y) = K(., y)(x) ∈ C.Ainsi, on dé�nit une application K : X × X −→ C véri�ant les propriétés (i) et (ii). L'unicitéd'une telle application K est triviale.2(a). Soient n ∈ N∗ et ξ = (x1, . . . , xn) ∈ Xn. Notons d'abord que pour tout x, y ∈ X, on a :
K(x, y) = K(., y)(x) = 〈K(., y),K(., x)〉 .Par conséquent, on a K(x, y) = K(y, x). Il est clair que Tn,ξ est une forme sesquilinéaire sur Cn.D'autre part, on a :

n∑

i,j=1

K(xi, xj)λiλj =
〈 n∑

i=1

λiK(., xi) ,

n∑

i=1

λiK(., xi)
〉
≥ 0 .Par conséquent, Tn,ξ est une forme hermitienne positive sur Cn.2(b). Soit E un sous-espace vectoriel fermé de H. Puisque, pour tout x ∈ X, la forme linéaire

f 7−→ f(x) est continue sur H, alors f 7−→ f(x) est aussi continue sur E. On déduit de 1 que
E possède un noyau reproduisant K1. Soit P la projection orthogonale de H sur E. Pour tout
f ∈ H, on a f = P (f)+ f −P (f), avec f −P (f) ∈ E⊥, d'où 〈f −P (f),K1(., y)〉 = 0, pour tout
y ∈ X. Donc on a 〈f,K1(., y)〉 = 〈P (f),K1(., y)〉 = P (f)(y), pour tout y ∈ X. Par conséquent,
y 7−→ 〈f,K1(., y)〉 est la projection orthogonale de f sur E.Comme E⊥ est un sous-espace vectoriel fermé de H, il résulte de ce qui précède que E⊥ possèdeun noyau reproduisant K2. Soit f ∈ H, on a :
〈f,K1(., y)+K2(., y)〉 = 〈P (f),K1(., y)〉+〈f−P (f),K2(., y)〉 = P (f)(y)+(f−P (f))(y) = f(y) .On déduit de 1(ii) que K1 +K2 est le noyau reproduisant de H.2(c). Par dé�nition de (ci)1≤i≤n, f0 = n∑

j=1

cjK(., xj) ∈ A. Puisque A est convexe non vide et fermédans H, d'après le théorème de la projection, il existe un unique h ∈ A tel que inf
f∈A
‖f‖ = ‖h‖.
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133De plus, h est caractérisé par Re(〈−h, f −h〉) ≤ 0, pour tout f ∈ A, voir proposition 8.3.5. Pourtout f ∈ A, on a :
〈−f0, f − f0〉 = −〈f0, f〉+ 〈f0, f0〉

= −
n∑

i=1

ci〈K(., xi), f〉+
n∑

i=1

n∑

j=1

cicj〈K(., xi),K(., xj)〉

= −
n∑

i=1

cif(xi) +
n∑

i=1

n∑

j=1

cicjK(xj , xi)

= −
n∑

i=1

cif(xi) +

n∑

i=1

ci

( n∑

j=1

cjK(xi, xj)
)

= −
n∑

i=1

cif(xi) +

n∑

i=1

ciai = 0 .Donc on a Re(〈−f0, f − f0〉) ≤ 0, pour tout f ∈ A. Par conséquent, on a f0 = h. Donc on a
inf
f∈A
‖f‖ = ‖f0‖.Pour avoir la deuxième partie, il su�t de prendre n = 1.2(d). Soit f ∈ H tel que 〈f,K(., y)〉 = 0, pour tout y ∈ X. On déduit de 1(ii) que f(y) = 0, pourtout y ∈ X, donc on a f = 0. Il résulte du corollaire 8.3.3 que la famille (K(., y)

)
y∈X est totaledans H.2(e). Comme X est un espace topologique séparable, alors il existe une suite (yn)n≥0 dense dans

H. Montrons que la suite (K(., yn)
)
n≥0

est totale dans H. Soit f ∈ H tel que 〈f,K(., yn)〉 = 0,pour tout n ≥ 0. On déduit de 1(ii) que f(yn) = 0, pour tout n ≥ 0. Comme f est continuede X dans C, alors on a f(y) = 0, pour tout y ∈ X. Autrement dit, on a f = 0. On déduit ducorollaire 8.3.3 que la suite (K(., yn)
)
n≥0

est totale dans H. Il résulte de la proposition 6.8.2 que
H est séparable.Remarque 8.0.4. Étant donné un ensemble X et une application de type positifK : X×X −→
C, on peut montrer qu'il existe un espace de Hilbert H ⊂ CX dont le noyau reproduisant est K.Exercice 8.39. Soit C([0, 1]) l'espace vectoriel des applications continues de [0, 1] dans K munidu produit scalaire dé�ni par (f, g) 7−→ 〈f, g〉 =

∫ 1

0
f(t)g(t) dt, pour tout f, g ∈ C([0, 1]). Onnote ‖ ‖2 la norme associée au produit scalaire et on note L2([0, 1]) l'espace de Hilbert complétéde (C([0, 1]), 〈 , 〉

), voir proposition 8.2.3. Soit ı : C([0, 1]) −→ L2([0, 1]) l'injection canonique.Soit E un sous-espace vectoriel de C([0, 1]) tel que ı(E) soit fermé dans L2([0, 1]).1. Montrer que E est fermé dans C([0, 1]) muni de la norme ‖ ‖∞.2. Montrer qu'il existe M > 0 tel que pour tout f ∈ E, on ait ‖f‖∞ ≤M ‖f‖2.3. Montrer que, pour tout t ∈ [0, 1], il existe un unique élément gt ∈ ı(E) tel que pour tout
f ∈ E, on ait 〈ı(f), gt〉 = f(t). Montrer que ‖gt‖2 ≤M .4. Soit (f1, . . . , fn) une suite �nie d'éléments de E telle que (ı(f1), . . . , ı(fn)) soit une familleorthonormale de ı(E). Montrer que, pour tout t ∈ [0, 1], on a n∑

k=1

∣∣fk(t)
∣∣2 ≤ ‖gt‖22.
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134 Chapitre 8. ESPACES DE HILBERT5. En déduire que E est de dimension �nie.Solution. 1. Soient (fn)n≥0 une suite dans E et f ∈ C([0, 1]) tels que lim
n→+∞

‖fn − f‖∞ = 0.Comme on a ‖fn−fm‖2 ≤ ‖fn−fm‖∞, pour tout n,m ∈ N, alors (ı(fn))n≥0 est de Cauchy dans
ı(E) qui est de Banach. Par conséquent, il existe g ∈ E tel que lim

n→+∞
‖ı(fn)− ı(g)‖2 = 0. Commeon a aussi lim

n→+∞
‖ı(fn)− ı(f)‖2 = 0, d'où ı(f) = ı(g), donc on a f = g ∈ E. Par conséquent, Eest fermé dans C([0, 1]) muni de la norme ‖ ‖∞.2. D'après 1, l'espace (E, ‖ ‖∞) est de Banach. Puisque la restriction de ı est linéaire continueet bijective de (E, ‖ ‖∞) dans (ı(E), ‖ ‖2), on déduit du théorème de l'application ouverte qu'ilexiste M > 0 tel que pour tout f ∈ E, on ait ‖f‖∞ ≤M ‖f‖2.3. Soit t ∈ [0, 1]. Alors on a |f(t)| ≤ ‖f‖∞ ≤ M ‖f‖2 = M ‖ı(f)‖2, pour tout f ∈ E. Doncevt : ı(f) 7−→ f(t) est une forme linéaire continue sur l'espace de Hilbert (ı(E), ‖ ‖2). D'aprèsle théorème de représentation de Riesz, il existe un unique élément gt ∈ ı(E) tel que pour tout

f ∈ E, on ait 〈ı(f), gt〉 = f(t). En plus, on a ‖gt‖2 = ‖evt‖ ≤M .4. Soit t ∈ [0, 1]. D'après l'inégalité de Bessel, on a n∑

k=1

∣∣〈ı(fk), gt〉
∣∣2 ≤ ‖gt‖22. Comme pour tout

k ∈ {1, . . . , n}, on a 〈ı(fk), gt〉 = fk(t), d'où n∑

k=1

∣∣fk(t)
∣∣2 ≤ ‖gt‖22.5. Supposons que E est de dimension in�nie, alors il existe une suite (fn)n≥1 dans E telle que lafamille (ı(fn))n≥1 soit orthonormale de ı(E). On déduit de 3 et 4 que pour tout n ≥ 1 et pourtout t ∈ [0, 1], on a n∑

k=1

∣∣fk(t)
∣∣2 ≤M2, d'où :

n =

n∑

k=1

‖fk‖22 =
n∑

k=1

∫ 1

0

∣∣fk(t)
∣∣2 dt ≤

∫ 1

0
M2 dt = M2 .Ce qui est impossible. Par conséquent, E est de dimension �nie.Exercice 8.40. [Théorème de Motzkin]. Soit A un ensemble fermé dans Rn tel que pour tout

x ∈ Rn, il existe un unique point f(x) ∈ A tel que d(x,A) = ‖x − f(x)‖, où ‖ ‖ est la normeeuclidienne dans Rn. Il s'agit de montrer qu'alors A est convexe.1. Montrer que l'application f : Rn −→ A est continue.Par la suite, on suppose que A n'est convexe et on cherche à aboutir à une contradiction. Soit
U = Rn \A.2. Montrer qu'il existe x1, x2 ∈ A tels que x1 6= x2 et ]x1, x2[⊂ U .3. Soit c = x1 + x2

2
. Véri�er qu'il existe r0 > 0 tel que B′(c, r0) ⊂ U et montrer qu'il existe uneboule ouverte de rayon maximal B(b, ρ) parmi les boules ouvertes B(x, r) qui contiennent

B(c, r0) et qui sont incluses dans U .4. Véri�er qu'il existe a ∈ A tel que B′(b, ρ)∩A = {a}. Soit v ∈ Rn tel que le produit scalaire
〈v, b−a〉 > 0. Montrer qu'il existe η > 0 tel que pour tout t ∈ ]0, η], on ait d(b+ tv,A) > ρ.En déduire que l'on a ‖b − c‖ + r0 = ρ et qu'il existe y ∈ Rn tel que ‖b − y‖ = ρ et
‖c− y‖ = r0 et que les trois points b, c et y soient alignés.5. Soit v = y − a. Montrer qu'il existe ρ′ > ρ et t > 0 tel que B(c, r0) ⊂ B(b + tv, ρ′) et
B(b+ tv, ρ′) ⊂ U . En conclure que l'on a une contradiction.
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135Solution. 1. Soit (xn)n≥0 une suite dans Rn convergeant vers un point x ∈ Rn. On a ‖f(xn)‖ ≤
‖xn − f(xn)‖ + ‖xn‖ = d(xn, A) + ‖xn‖. Comme les suites (d(xn, A))n≥0 et (‖xn‖)n≥0 sontconvergentes, alors la suite (f(xn))n≥0 est bornée. Donc il existe un compact K de Rn tel que
K ⊂ A et f(xn) ∈ K, pour tout n ≥ 0. Par conséquent, pour montrer que la suite (f(xn))n≥0converge vers f(x), il su�t de montrer que f(x) est l'unique valeur d'adhérence de la suite
(f(xn))n≥0. Soient (xnk

)k≥0 une sous-suite de (xn)n≥0 et y ∈ K ⊂ A tels que lim
k→+∞

f(xnk
) = y.On a :

‖x− f(x)‖ = d(x,A) = lim
k→+∞

d(xnk
, A) = lim

k→+∞
‖xnk

− f(xnk
)‖ = ‖x− y‖ .Par unicité de la projection sur A, on a f(x) = y. Donc f(x) est l'unique valeur d'adhérence dela suite (f(xn))n≥0. Par conséquent, la suite (f(xn))n≥0 converge vers f(x). Autrement dit, fest continue.2. On a supposé que A n'est pas convexe, donc il existe a0, a1 ∈ A tels que a0 6= a1 et [a0, a1] 6⊂ A.Donc il existe s ∈]0, 1[ tel que (1−s)a0+sa1 ∈ U . Pour tout t ∈ [0, 1], on pose at = (1−t)a0+ta1.Soient t1 = inf

{
t ∈]0, s] ; [at, as] ⊂ U

} et t2 = sup
{
t ∈ [s, 1[ ; [as, at] ⊂ U

}. Comme Uest un ouvert, car A est fermé, et l'application t 7−→ at est continue de [0, 1] dans Rn, alors
x1 = at1 , x2 = at2 ∈ A, x1 6= x2 et ]x1, x2[⊂ U .3. Soit c = x1 + x2

2
∈ U . Comme U est un ouvert de Rn, alors il existe r0 > 0 tel que B(c, 2r0) ⊂

U , d'où B′(c, r0) ⊂ U . Soient x ∈ Rn et r > 0 tels que B(c, r0) ⊂ B(x, r) ⊂ U . On a B(x, r) ⊂ Usi et seulement si r ≤ d(x,A). D'autre part, d'après l'exercice 6.3, on a B(c, r0) ⊂ B(x, r) siet seulement si ‖x − c‖ + r0 ≤ r. Ainsi, si X est l'ensemble des (x, r) ∈ Rn×]0, +∞[ tels que
B(c, r0) ⊂ B(x, r) ⊂ U , alors on a X =

{
(x, r) ∈ Rn × R ; ‖x − c‖ + r0 ≤ r ≤ d(x,A)

}.Donc X est fermé dans Rn × R. Montrons que X est aussi borné. Soit (x, r) ∈ X. Comme on a
{x1, x2} ∩B(x, r) = ∅, alors :

2r2 ≤ ‖x− x1‖2 + ‖x− x2‖2

= 1
2

(
‖2x− (x1 + x2)‖2 + ‖x1 − x2‖2

)

= 2‖x− c‖2 + 1
2‖x1 − x2‖2 .D'autre part, on a ‖x− c‖2 + r20 + 2r0‖x− c‖ =
(
‖x− c‖+ r0

)2 ≤ r2. D'où on a :
r20 + 2r0‖x− c‖ ≤ r2 − ‖x− c‖2 ≤ 1

4‖x1 − x2‖2 .Donc ‖x − c‖ est borné et on en déduit que r est aussi borné. Donc X est bien borné. Parconséquent, X est un compact. Comme l'application (x, r) 7−→ r est continue, alors il existe
(b, ρ) ∈ X tel que ρ = max

{
r ; (x, r) ∈ X

}.4. Comme on a B(b, ρ) ⊂ U , alors on a ρ ≤ d(b,A). Si ρ < d(b,A), alors il existe ε > 0tel que ρ + ε < d(b,A), d'où B(b, ρ + ε) ⊂ U , ce qui est impossible. Donc on a ρ = d(b,A).Soit a = f(b) ∈ A, alors on a ρ = d(b,A) = ‖b − a‖, donc a ∈ B′(b, ρ) ∩ A. D'autre part, si
z ∈ B′(b, ρ) ∩ A, alors on a ρ = d(b,A) ≤ ‖b− z‖ ≤ ρ, d'où ‖b− z‖ = d(b,A). Par unicité de laprojection sur A, on a z = f(b) = a. Par conséquent, on a bien B′(b, ρ) ∩ A = {a}. Soit v ∈ Rn
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136 Chapitre 8. ESPACES DE HILBERTtel que 〈v, b − a〉 > 0. Pour tout t > 0, soit at = f(b+ tv) ∈ A. On a :
(
d(b+ tv,A)

)2
= ‖b+ tv − at‖2

= ‖b− at‖2 + t2‖v‖2 + 2t〈v, b − at〉

= ‖b− at‖2 + t2‖v‖2 + 2t
(
〈v, b − a〉+ 〈v, a− at〉

)

≥ ρ2 + t2‖v‖2 + 2t
(
〈v, b− a〉+ 〈v, a − at〉

)
.Comme f est continue, alors on a a = lim

t→0
at, d'où lim

t→0
〈v, a − at〉 = 0. Par conséquent, il existe

η > 0 tel que pour tout t ∈ ]0, η], on ait 〈v, b − a〉 + 〈v, a − at〉 > 0. Donc, pour tout t ∈ ]0, η],on a (d(b + tv,A)
)2
> ρ2, d'où d(b + tv,A) > ρ. Pour tout t ∈ ]0, η], soit ρt tel que ρ < ρt <

d(b+ tv,A). Comme on a B(b+ tv, ρt) ⊂ U et ρt > ρ, alors B(c, r0) 6⊂ B(b+ tv, ρt), donc on a
ρ < ρt < ‖b + tv − c‖ + r0. On fait tendre t vers 0, on obtient ρ ≤ ‖b − c‖ + r0 ≤ ρ, donc on a
‖b− c‖ + r0 = ρ. Notons aussi que d'après le choix de r0, on a ρ > r0. Soit y = 1

ρ−r0

(
ρc− r0b

),alors on a c = r0
ρ b+

ρ−r0
ρ y, donc b, c et y sont alignés. On a b− y = ρ

ρ−r0
(b− c), d'où ‖b− y‖ = ρ.On a c− y = r0

ρ−r0
(b− c), d'où ‖c− y‖ = r0.5. Soit v = y − a. On a ‖y − b‖2 = ‖y − a + a − b‖2 = ‖y − a‖2 − 2〈y − a, b − a〉 + ‖b − a‖2,d'où 〈v, b − a〉 = 〈y − a, b − a〉 = 1

2‖y − a‖2 > 0, car y ∈ U . On a b − c = ρ−r0
ρ (b − y), d'où

〈v, b−c〉 = ρ−r0
ρ 〈y−a, b−y〉. On a ‖b−a‖2 = ‖y−a+b−y‖2 = ‖y−a‖2+2〈y−a, b−y〉+‖b−y‖2d'où 〈y − a, b− y〉 = −1

2‖y − a‖2. Donc on a 〈v, b− c〉 = −ρ−r0
2ρ ‖y − a‖2 < 0. On a :

‖b+ tv − c‖2 = ‖b− c‖2 + t2‖v‖2 + 2t〈v, b− c〉

= ‖b− c‖2 + t
(
t‖y − a‖2 − ρ−r0

ρ ‖y − a‖2
)

= ‖b− c‖2 + t‖y − a‖2
(
t− ρ−r0

ρ

)
.Par conséquent, pour tout t ∈ ]0, ρ−r0

ρ

], on a ‖b+tv−c‖ ≤ ‖b−c‖ = ρ−r0. Soit β = inf
(
η, ρ−r0

ρ

).D'après 4, pour tout t ∈ ]0, β], on a aussi ρ < d(b+ tv,A), donc si ρt véri�e ρ < ρt < d(b+ tv,A),avec t ∈ ]0, β], on a B(c, r0) ⊂ B(b + tv, ρt) ⊂ U et ρt > ρ. Ce qui est impossible. Donc A estbien convexe.Exercice 8.41. Soient H un espace de Hilbert, E un sous-espace vectoriel de H, F un espacenormé et T : E −→ F une application linéaire continue.1. Montrer que si E est fermé dans H, alors T se prolonge en une application linéaire continuede H dans F .2. Montrer que si F est de Banach, alors T se prolonge en une application linéaire continuede H dans F .Solution. 1. On suppose E fermé dans H. Soit P : H −→ E la projection orthogonale. Alors
P est linéaire continue et pour tout x ∈ E, on a P (x) = x. Soit S = T ◦ P , alors S est linéairecontinue de H dans F telle que pour tout x ∈ E, on ait S(x) = T (x).2. D'après la proposition 6.3.5, il existe T̃ : E −→ F une application linéaire continue prolon-geant T . Ensuite, on applique 1 à E et T̃ .Exercice 8.42. On munit Kn de la structure hermitienne canonique. L'espace L (Kn) s'identi�eà l'espace Mn(K) des matrices à n lignes et n colonnes et à coe�cients dans K.
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1371. Calculer la norme d'opérateur d'une matrice diagonale
A =




λ1 0 . . . 0
0 λ2 . . . 0... ... . . . ...
0 0 . . . λn


2. Calculer la norme d'opérateur d'une matrice carrée réelle symétrique, respectivement com-plexe hermitienne.3. Calculer la norme d'opérateur des matrices [0 1

1 1

] et [
1 2
0 1

] .Solution. 1. Soit (ei)1≤i≤n la base hilbertienne canonique de Kn. On a 〈Aei, ei〉 = λi, d'où
max
1≤i≤n

|λi| ≤ ‖A‖ . Soit x ∈ Kn, on a Ax =

n∑

i=1

λixiei, donc :
‖Ax‖22 =

n∑

i=1

|λi|2 |xi|2 ≤
(

max
1≤i≤n

|λi|2
) n∑

i=1

|xi|2 =
(

max
1≤i≤n

|λi|
)2
‖x‖22 .D'où on a ‖Ax‖2 ≤ ( max

1≤i≤n
|λi|
)
‖x‖2 . Par conséquent, on a ‖A‖ ≤ max

1≤i≤n
|λi| . Finalement, on a

‖A‖ = max
1≤i≤n

|λi| .2. Si A est une matrice carrée réelle symétrique ou complexe hermitienne, alors il existe P ∈Mn(K) tel que P ∗P = PP ∗ = In et
P ∗AP =




λ1 0 . . . 0
0 λ2 . . . 0... ... . . . ...
0 0 . . . λn


où les λi sont les valeurs propres de A. D'après 1, on a ‖P ∗AP‖ = max

1≤i≤n
|λi| . On a ‖P ∗‖2 =

‖P‖2 = ‖P ∗P‖ = 1, d'où ‖P ∗‖ = ‖P‖ = 1 et ‖P ∗AP‖ ≤ ‖P ∗‖ ‖A‖ ‖P‖ = ‖A‖ . On a aussi A =
P (P ∗AP )P ∗, on en déduit ‖A‖ ≤ ‖P ∗AP‖. Par conséquent, on a ‖A‖ = ‖P ∗AP‖ = max

1≤i≤n
|λi|,où les λi sont les valeurs propres de A.3. Si A =

[
0 1
1 1

], alors A est réelle symétrique et admet λ1 = 1+
√
5

2 et λ2 = 1−
√
5

2 comme valeurspropres. Il résulte de 2 que l'on a ‖A‖ = 1+
√
5

2 . Si A =

[
1 2
0 1

], alors A∗A =

[
1 2
2 5

] est réellesymétrique et admet λ1 = 3 + 2
√
2 et λ2 = 3 − 2

√
2 comme valeurs propres. Il résulte de 2 quel'on a ‖A‖2 = ‖A∗A‖ = 3 + 2

√
2, donc ‖A‖ =√3 + 2

√
2 .Exercice 8.43. Soient (H, 〈 , 〉) un espace de Hilbert et T ∈ L (H).1. Soit y ∈ T (H). Montrer que l'ensemble {x ∈ H ; T (x) = y} est une partie non vide ferméeconvexe de H. En déduire qu'il existe un unique R(y) ∈ H tel que T (R(y)) = y et telque pour tout x ∈ H véri�ant T (x) = y, on ait ‖R(y)‖ ≤ ‖x‖. Montrer en plus que l'on a

R(x) ∈ ker(T )⊥.2. Montrer que l'application y 7−→ R(y) est linéaire de T (H) dans H.
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138 Chapitre 8. ESPACES DE HILBERTSolution. 1. On a {x ∈ H ; T (x) = y} = T−1({y}). Puisque y ∈ T (H), on a T−1({y}) 6= ∅.Comme T est continue, alors T−1({y}) est une partie fermée de H. Comme T est linéaire,alors T−1({y}) est convexe. D'après le théorème de la projection, théorème 8.3.1, il existe ununique R(y) ∈ T−1({y}) tel que ‖R(y)‖ ≤ ‖x‖, pour tout x ∈ T−1({y}). On a R(y) = a + b,avec a ∈ ker(T ) et b ∈ ker(T )⊥ et on a ‖R(y)‖2 = ‖a‖2 + ‖b‖2. On a aussi y = T (R(y)) =
T (a) + T (b) = 0 + T (b) = T (b), donc b ∈ T−1({y}) et on a ‖b‖ ≤ ‖R(y)‖. Par l'unicité de R(y),on obtient R(y) = b ∈ ker(T )⊥.2. Soient y, z ∈ T (H) et λ ∈ K. On a T (R(y) + λR(z)) = T (R(y)) + λT (R(z)) = y + λz, donc
R(y)+λR(z) ∈ T−1({y+λz}). Soit x ∈ T−1({y+λz}), on a T (x) = y+λz = T (R(y)+λR(z)),d'où x − (R(y) + λR(z)

)
= c ∈ ker(T ). Comme on a R(y) + λR(z) ∈ ker(T )⊥, d'après le théo-rème de Pythagore, on a ‖x‖2 = ‖c‖2 + ‖R(y)+λR(z)‖2. Donc on a ‖R(y)+λR(z)‖ ≤ ‖x‖. Parconséquent, on a R(y) + λR(z) = R(y + λz). Donc y 7−→ R(y) est bien une application linéairede T (H) dans H.Exercice 8.44. Soient (H, 〈 , 〉) un espace de Hilbert et S, T ∈ L (H). Montrer que les propriétéssuivantes sont équivalentes.(i) S(H) ⊂ T (H).(ii) Il existe A ∈ L (H) tel que S = T ◦A.Solution. Il est clair que (ii) =⇒ (i). Montrons l'implication (i) =⇒ (ii). Par hypothèse, on a

S(H) ⊂ T (H). Autrement dit, pour tout x ∈ H, on a S(x) ∈ T (H). D'après l'exercice précédent,il existe une application linéaire R : T (H) −→ H telle que R(T (H)) ⊂ ker(T )⊥ et pour tout
y ∈ T (H), on ait T (R(y)) = y. Soit A = R ◦S, alors A est une application linéaire de H dans Htelle queA(H) ⊂ ker(T )⊥ et pour tout x ∈ H, on ait (T◦A)(x) = T (A(x)) = T (R(S(x))) = S(x).D'où on a S = T ◦A. Il reste à montrer que A est continue. D'après le théorème du graphe fermé,il su�t de montrer que le graphe de A est fermé. Soit (xn)n≥0 une suite dans H telle que (xn)n≥0converge vers un élément x ∈ H et (A(xn))n≥0 converge vers un élément y ∈ H. Comme T et Ssont continues, alors on a :

T (A(x)) = S(x) = lim
n→+∞

S(xn) = lim
n→+∞

T (A(xn)) = T (y) .Donc on a y − A(x) ∈ ker(T ). Comme on a A(H) ⊂ ker(T )⊥ et ker(T )⊥ est fermé, alors
y −A(x) ∈ ker(T )⊥. Donc on a y −A(x) ∈ ker(T ) ∩ ker(T )⊥, d'où y = A(x). Par conséquent, legraphe de A est fermé.Exercice 8.45. Soient (H, 〈 , 〉) un espace de Hilbert, T : H −→ H et S : H −→ H desapplications telles que pour tout x, y ∈ H, on ait 〈T (x), y〉 = 〈x, S(y)〉. Montrer que T et S sontlinéaires continues et que l'on a T ∗ = S.Solution. Véri�ons d'abord que T est linéaire. Soient x, z ∈ H et λ ∈ K. Pour tout y ∈ H, ona :
〈T (x+λz), y〉 = 〈x+λz, S(y)〉 = 〈x, S(y)〉+λ〈z, S(y)〉 = 〈T (x), y〉+λ〈T (z), y〉 = 〈T (x)+λT (z), y〉 .On en déduit que l'on a T (x + λz) = T (x) + λT (z), donc T est linéaire. Pour véri�er la conti-nuité de T , il su�t de montrer que le graphe de T est fermé dans H ×H. Soit (x, y) ∈ G(T ),alors il existe une suite (xn)n≥0 dans H telle que lim

n→+∞
xn = x et lim

n→+∞
T (xn) = y. Pourtout n ≥ 0 et pour tout z ∈ H, on a 〈T (xn), z〉 = 〈xn, S(z)〉. En passant à la limite, on obtient

〈y, z〉 = 〈x, S(z)〉. Mais on a 〈x, S(z)〉 = 〈T (x), z〉. Ainsi, pour tout z ∈ H, on a 〈y−T (x), z〉 = 0,d'où y = T (x). Donc G(T ) est fermé. Par conséquent T est continue. Ainsi, on a T ∈ L (H).
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139D'après la proposition 8.4.2, pour tout x, y ∈ H, on a 〈T (x), y〉 = 〈x, T ∗(y)〉. Donc, pour tout
y ∈ H, on a S(y) = T ∗(y), d'où S = T ∗.Exercice 8.46. Soient (H, 〈 , 〉) un espace de Hilbert et P : H −→ H une application telle que
P ◦ P = P et pour tout x, y ∈ H, on ait 〈P (x), y〉 = 〈x, P (y)〉. Montrer que P est linéaire etcontinue, puis que P est la projection orthogonale sur un sous-espace vectoriel fermé de H.Solution. Ceci résulte de l'exercice précédent et de la proposition 8.4.6.Exercice 8.47. Soient E, F des espaces de Hilbert et T ∈ L (E; F ).1. Montrer que l'on a ker(T ) = ker(T ∗ ◦ T ).2. Montrer que l'on a T (E) = (T ◦ T ∗)(F ).Solution. 1. Il est clair que l'on a l'inclusion ker(T ) ⊂ ker(T ∗ ◦ T ). Réciproquement, soit
x ∈ ker(T ∗ ◦ T ), alors on a T ∗(T (x)) = 0. D'où on a 〈T (x), T (x)〉 = 〈x, T ∗(T (x))〉 = 〈x, 0〉 = 0.Donc on a T (x) = 0. Autrement dit, on a x ∈ ker(T ). Par conséquent, on a ker(T ) = ker(T ∗ ◦T ).2. On a (T ◦ T ∗)(F ) = T (T ∗(F )) ⊂ T (E), d'où (T ◦ T ∗)(F ) ⊂ T (E). D'après la proposition8.4.4, on a T (E)⊥ = ker(T ∗) et ((T ◦ T ∗)(F ))⊥ = ker(T ◦ T ∗). D'après 1, on a ker(T ∗) =
ker((T ∗)∗ ◦T ∗) = ker(T ◦T ∗). Donc on a T (E)⊥ = ((T ◦T ∗)(F ))⊥. D'après le corollaire 8.3.2, ona F = T (E)⊕ T (E)⊥ et F = (T ◦ T ∗)(F )⊕ ((T ◦ T ∗)(F ))⊥. Comme on a (T ◦ T ∗)(F ) ⊂ T (E),on en déduit que l'on a T (E) = (T ◦ T ∗)(F ).Exercice 8.48. Soient (H, 〈 , 〉) un espace de Hilbert, F et G des sous-espaces vectoriels fermésde H. Soient P et Q les projections orthogonales sur F et G respectivement. Montrer que lespropriétés suivantes sont équivalentes.(i) F ⊂ G.(ii) Q ◦ P = P .(iii) P ◦Q = P .(iv) Q− P est un projecteur orthogonal.(v) Pour tout x ∈ H, on a ‖P (x)‖ ≤ ‖Q(x)‖.Solution. En prenant l'adjoint, on obtient l'équivalence (ii) ⇐⇒ (iii).Montrons l'implication (i) =⇒ (iii). Pour tout x, y ∈ H, on a 〈(P ◦ Q)(x), y〉 = 〈P (Q(x)), y〉 =
〈Q(x), P (y)〉 = 〈x,Q(P (y))〉. Comme on a P (y) ∈ F ⊂ G, alors on a Q(P (y)) = P (y), donc ona 〈(P ◦ Q)(x), y〉 = 〈x, P (y)〉 = 〈P (x), y〉. Par conséquent, on a (P ◦ Q)(x) = P (x), pour tout
x ∈ H. Autrement dit, on a P ◦Q = P .Montrons l'implication (iii) =⇒ (iv). On a (Q−P )∗ = Q∗−P ∗ = Q−P et (Q−P ) ◦ (Q−P ) =
Q ◦ Q − Q ◦ P − P ◦ Q + P ◦ P = Q − P − P + P = Q − P . Donc Q − P est un projecteurorthogonal, voir proposition 8.4.6.
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140 Chapitre 8. ESPACES DE HILBERTMontrons l'implication (iv) =⇒ (v). Pour tout x ∈ H, on a :
‖Q(x)‖2 − ‖P (x)‖2 = 〈Q(x), Q(x)〉 − 〈P (x), P (x)〉

= 〈(Q∗ ◦Q)(x), x〉 − 〈(P ∗ ◦ P )(x), x〉

= 〈Q(x), x〉 − 〈P (x), x〉

= 〈(Q− P )(x), x〉

= 〈(Q− P )(x), (Q − P )(x)〉

= ‖(Q− P )(x)‖2 ≥ 0 .Donc on a ‖P (x)‖ ≤ ‖Q(x)‖.Montrons l'implication (v) =⇒ (i). Supposons que pour tout x ∈ H, on a ‖P (x)‖ ≤ ‖Q(x)‖. Soit
x ∈ F , alors on a P (x) = x, d'où ‖x‖ ≤ ‖Q(x)‖. Comme on a ‖x‖2 = ‖Q(x)‖2 + ‖x − Q(x)‖2,on en déduit ‖x−Q(x)‖ = 0, d'où on a x = Q(x) ∈ G. Par conséquent, on a F ⊂ G.Exercice 8.49. Soient (H, 〈 , 〉) un espace de Hilbert, F et G des sous-espaces vectoriels fermésde H. Soient P et Q les projections orthogonales sur F et G respectivement. Montrer que lespropriétés suivantes sont équivalentes.(i) F et G sont orthogonaux.(ii) Q ◦ P = 0.(iii) P ◦Q = 0.(iv) P +Q est un projecteur orthogonal.Solution. En passant à l'adjoint, on obtient l'équivalence (ii) ⇐⇒ (iii).Montrons l'implication (i) =⇒ (iii). Pour tout x, y ∈ H, on a 〈(P ◦ Q)(x), y〉 = 〈P (Q(x)), y〉 =
〈Q(x), P (y)〉 = 0, donc P ◦Q = 0.Montrons l'implication (iii) =⇒ (iv). Soit R = P +Q. Alors on a R∗ = R et R2 = P 2 +P ◦Q+
Q ◦ P +Q2 = P +Q = R. Il résulte de la proposition 8.4.6 que R est un projecteur orthogonal.Montrons l'implication (iv) =⇒ (i). Comme P + Q est un projecteur orthogonal, alors ona P ◦ Q + Q ◦ P = 0. D'où, pour tout x ∈ F , on a P (Q(x)) + Q(x) = 0. Donc on a
0 = 〈Q(x) − P (Q(x)), Q(x)〉 = 〈2Q(x), Q(x)〉 = 2‖Q(x)‖2, d'où Q(x) = 0. Par conséquent,pour tout y, z ∈ H, on a 〈P (y), Q(z)〉 = 〈Q(P (y)), z〉 = 〈0, z〉 = 0. Donc F et G sont orthogo-naux.Exercice 8.50. Soient E, F des espaces de Hilbert et T ∈ L (E; F ). On dit que T est uneisométrie partielle si pour tout x ∈ ker(T )⊥, on a ‖T (x)‖ = ‖x‖. Soit S ∈ L (E; F ). Montrerque les propriétés suivantes sont équivalentes.(i) S = S ◦ S∗ ◦ S.(ii) S∗ ◦ S est un projecteur orthogonal.(iii) S ◦ S∗ est un projecteur orthogonal.(iv) S est une isométrie partielle.Solution. Montrons l'implication (i) =⇒ (ii). Soit p = S∗ ◦ S, alors on a p = p∗ et p ◦ p =
S∗ ◦ S ◦ S∗ ◦ S = S∗ ◦ S = p. Donc p est un projecteur orthogonal.
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141Preuve de (ii) =⇒ (iii). Soit q = S ◦ S∗, alors on a q = q∗ et q ◦ q = S ◦ S∗ ◦ S ◦ S∗ = S ◦ p ◦ S∗.D'après l'exercice 8.47, on a S∗(F ) = (S∗ ◦ S)(E) = p(E) = p(E). D'où, pour tout x ∈ F , ona p(S∗(x)) = S∗(x). Donc on a p ◦ S∗ = S∗. Par conséquent, on a q ◦ q = q. Donc q est unprojecteur orthogonal.Preuve de (iii) =⇒ (iv). Par hypothèse, q = S ◦S∗ est un projecteur orthogonal. On a ker(S)⊥ =
S∗(H). Soit y ∈ S∗(H), alors il existe x ∈ H tel que y = S∗(x). On a :

‖S(y)‖2 = ‖(S ◦ S∗)(x)‖2 = 〈(S ◦ S∗)(x), (S ◦ S∗)(x)〉 = 〈q(x), q(x)〉et
〈q(x), q(x)〉 = 〈q(x), x〉 = 〈(S ◦ S∗)(x), x〉 = 〈S∗(x), S∗(x)〉 = ‖y‖2 .Donc on a ‖S(y)‖ = ‖y‖ . On en déduit que pour tout z ∈ S∗(H) = ker(S)⊥, on a ‖S(z)‖ = ‖z‖.Donc S est une isométrie partielle.Preuve de (iv) =⇒ (i). Soit x ∈ ker(S), alors on a S(x) = 0 = (S◦S∗◦S)(x). Soient H = ker(S)⊥et T la restriction de S à H. Alors H est un espace hilbertien, T ∈ L (H; F ) et pour tout x ∈ H,on a ‖T (x)‖ = ‖S(x)‖ = ‖x‖. Il résulte de la proposition prop 8.4.7 que l'on a T ∗ ◦ T = idH .Comme pour tout y ∈ F , on a T ∗(y) = S∗(y), voir exemple 8.4.1, on en déduit que pour tout

x ∈ ker(S)⊥, on a x = (S∗◦S)(x), d'où S(x) = (S◦S∗◦S)(x). Comme on a E = ker(S)+ker(S)⊥,alors S = S ◦ S∗ ◦ S.Remarque 8.0.5. Soient E, F des espaces de Hilbert et S ∈ L (E; F ).1. On déduit de l'exercice précédent que S est une isométrie partielle si et seulement si sonadjoint S∗ ∈ L (F ; E) est une isométrie partielle.2. On suppose S une isométrie partielle. Alors on a :(i) Il résulte de la dé�nition d'une isométrie partielle que S(E) et S∗(F ) sont respective-ment des sous-espaces vectoriels fermés de F et E.(ii) Soient p = S∗◦S et q = S◦S∗. D'après l'exercice précédent, p et q sont des projecteursorthogonaux et on a S = S ◦ p = q ◦ S. De plus, p est la projection orthogonale sur
S∗(F ) = ker(S)⊥ et q est la projection orthogonale sur S(E).Exercice 8.51. Soient (H, 〈 , 〉) un espace de Hilbert et S, T ∈ L (H) deux isométries partielles.Montrer que les propriétés suivantes sont équivalentes.(i) T = S ◦ T ∗ ◦ T .(ii) S∗ ◦ T = T ∗ ◦ T .(iii) S ◦ T ∗ = T ◦ T ∗.Solution. Montrons l'implication (i) =⇒ (ii). Par hypothèse, on a T = S ◦ T ∗ ◦ T , d'où

S∗ ◦ T = S∗ ◦ S ◦ T ∗ ◦ T . D'après la remarque précédente, S∗ ◦ S est la projection ortho-gonale sur ker(S)⊥ et T ∗ ◦ T est la projection orthogonale sur ker(T )⊥. Pour montrer que
S∗ ◦ S ◦ T ∗ ◦ T = T ∗ ◦ T , il su�t de montrer l'inclusion ker(T )⊥ ⊂ ker(S)⊥, voir exercice8.48. Soit x ∈ ker(T )⊥. Alors on a T (x) = S((T ∗ ◦ T )(x)) = S(x), d'où ‖x‖ = ‖T (x)‖ = ‖S(x)‖.Comme S est une isométrie partielle, on en déduit que l'on a x ∈ ker(S)⊥. Donc on a bien
ker(T )⊥ ⊂ ker(S)⊥.Preuve de (ii) =⇒ (iii). Par hypothèse, on a S∗ ◦T = T ∗ ◦T , d'où S∗ ◦T ◦T ∗ = T ∗ ◦T ◦T ∗ = T ∗.Soient U = T ∗ et V = S∗. Alors U et V sont des isométries partielles et on a U = V ◦U∗ ◦U . Ilrésulte de ce qui précède que l'on a V ∗ ◦ U = U∗ ◦ U . Autrement dit, on a S ◦ T ∗ = T ◦ T ∗Preuve de (iii) =⇒ (i). Par hypothèse, on a S ◦ T ∗ = T ◦ T ∗, d'où S ◦ T ∗ ◦ T = T ◦ T ∗ ◦ T = T .Exercice 8.52. Soient (H, 〈 , 〉) un espace de Hilbert et R ∈ L (H). Montrer que les propriétéssuivantes sont équivalentes.
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142 Chapitre 8. ESPACES DE HILBERT(i) Il existe un sous-espace vectoriel fermé E deH tel que pour tout x ∈ H, on ait x+R(x) ∈ Eet x−R(x) ∈ E⊥.(ii) Il existe un sous-espace vectoriel fermé E de H tel que pour tous y ∈ E et z ∈ E⊥, on ait
R(y + z) = y − z.(iii) On a R2 = idH et R = R∗.(iv) On a R2 = idH et R est normal.(v) L'opérateur P = 1

2(R+ idH) est un projecteur orthogonal.Solution. Montrons l'implication (i) =⇒ (ii). Pour tout x ∈ H, on x+R(x), R(x) +R2(x) ∈ Eet x−R(x), R(x)−R2(x) ∈ E⊥. D'où on a x−R2(x) ∈ E et x−R2(x) ∈ E⊥. Par conséquent, ona x−R2(x) = 0. Autrement dit, on a R2 = idH . D'autre part, on a x =
x+R(x)

2
+
x−R(x)

2
,avec x+R(x)

2
∈ E et x−R(x)

2
∈ E⊥, d'où on a R(x) =

R(x) +R2(x)

2
+
R(x)−R2(x)

2
=

x+R(x)

2
− x−R(x)

2
.Preuve de (ii) =⇒ (iii). Soit x ∈ H, alors il existe y ∈ E et z ∈ E⊥ tels que x = y + z. D'où ona R2(x) = R(R(x)) = R(y − z) = R(y + (−z)) = y − (−z) = y + z = x, donc R2 = idH . Soient

a, b ∈ H. Alors on a a = y + z et b = y′ + z′, avec y, y′ ∈ E et z, z′ ∈ E⊥. Donc on a :
〈R(a), b〉 = 〈y − z, y′ + z′〉 = 〈y, y′〉 − 〈z, z′〉 = 〈y + z, y′ − z′〉 = 〈a,R(b)〉 .Par conséquent, on a R = R∗.L'implication (iii) =⇒ (iv) est triviale.Preuve de (iv) =⇒ (v). Soit P = 1

2(R + idH), alors on a :
P 2 = P ◦ P =

1

4
(R+ idH) ◦ (R+ idH) =

1

4
(R2 + 2R + idH) =

1

4
(2R + 2idH) = P .Comme R est normal, il est clair que P l'est aussi. Il résulte alors de la proposition 8.4.6 que Pest un projecteur orthogonal.Preuve de (v) =⇒ (i). Par hypothèse, P = 1

2 (R + idH) est un projecteur orthogonal. Soit
E = P (H). Alors E est un sous-espace vectoriel fermé de H. On a R = 2P − idH , donc, pourtout x ∈ H, on a R(x) = 2P (x) − x, d'où x+ R(x) = 2P (x) ∈ E et x− R(x) = 2x − 2P (x) =
2(x− P (x)) ∈ E⊥.Exercice 8.53. Soient (H, 〈 , 〉) un espace de Hilbert et S, T ∈ L (H) deux opérateurs auto-adjoints. Montrer que S ◦ T = 0 si et seulement si S(H)⊥T (H).Solution. Pour tout x, y ∈ H, on a 〈T (x), S(y)〉 = 〈(S ◦T )(x), S(y)〉. On en déduit que S ◦T = 0si et seulement si S(H)⊥T (H).Exercice 8.54. Soient (H, 〈 , 〉) un espace de Hilbert et T ∈ L (H) un opérateur auto-adjoint.Soit A une partie de H tel que T (A) ⊂ A. Montrer que l'on a T (A⊥) ⊂ A⊥.Solution. Pour tous x ∈ A⊥ et y ∈ A, on a 〈T (x), y〉 = 〈x, T (y)〉 = 0, d'où T (x) ∈ A⊥. Doncon a T (A⊥) ⊂ A⊥.Exercice 8.55. Soient (H, 〈 , 〉) un espace de Hilbert et P ∈ L (H) un projecteur orthogonaltel que P 6= 0 et P 6= idH . Montrer que 0 et 1 sont les seules valeurs propres de P .Solution. Comme P est un projecteur orthogonal tel que P 6= 0 et P 6= idH , alors il existe
x, y ∈ H tels que x 6= 0, y 6= 0 et P (x) = 0 et P (y) = y. Donc 0 et 1 sont des valeurs propres de
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P . Soit λ ∈ K une valeur propre de P , alors il existe z ∈ H tel que z 6= 0 et P (z) = λz. D'oùon a λz = P (z) = P (P (z)) = P (λz) = λP (z) = λ2z. Donc on a λ = λ2. Par conséquent, on a
λ ∈ {0, 1}.Exercice 8.56. Soient (H, 〈 , 〉) un espace de Hilbert et T ∈ L (H). Supposons queH admet unebase hilbertienne formée de vecteurs propres de T . Montrer que T est normal, i.e. T ◦T ∗ = T ∗◦T .Solution. Soit (ei)i∈I une base hilbertienne de H formée de vecteurs propres de T . Pour tout
i ∈ I, il existe λi ∈ K tel que T (ei) = λiei. Pour tout i, j ∈ I, on a 〈T ∗(ej), ei〉 = 〈ej , T (ei)〉 =
〈ej , λiei〉 = λi〈ej , ei〉, d'où :

〈T ∗(ej), ei〉 =





λj si i = j ,

0 si i 6= j .Par conséquent, on a T ∗(ej) = λjej , pour tout j ∈ I. D'autre part, Pour tout x ∈ H, il existeune famille (αi)i∈I dans K telle que x =
∑

i∈I
αiei et∑

i∈I
|αi|2 < +∞. D'où on a T (x) =∑

i∈I
λiαieiet T ∗(x) =

∑

i∈I
λiαiei. Donc on a (T ◦ T ∗)(x) = (T ∗ ◦ T )(x) =

∑

i∈I
|λi|2αiei. Par conséquent, ona T ◦ T ∗ = T ∗ ◦ T .Exercice 8.57. Soient (H, 〈 , 〉) un espace de Hilbert, T ∈ L (H) un opérateur auto-adjoint,i.e. T = T ∗, et x ∈ H tel que ‖x‖ = 1 et ‖T‖ = ‖T (x)‖.1. Montrer que l'on a T 2(x) = ‖T‖2x. Autrement dit, x est un vecteur propre de T 2 associéà la valeur propre ‖T‖2 = ‖T 2‖.2. Soit y = ‖T‖x − T (x). Montrer que l'on a T (y) = −‖T‖y. En déduire que ‖T‖ ou −‖T‖est une valeur propre de T .Solution. 1. On a ‖T‖ = ‖T (x)‖, d'où :

‖T‖2 = ‖T (x)‖2 = 〈T (x), T (x)〉 = 〈T 2(x), x〉 = 〈x, T 2(x)〉 .On a :
〈T 2(x)− ‖T‖2x, T 2(x)− ‖T‖2x〉 = 〈T 2(x), T 2(x)〉 − ‖T‖2〈T 2(x), x〉 − ‖T‖2〈x, T 2(x)〉+ ‖T‖4

= 〈T 2(x), T 2(x)〉 − ‖T‖4 − ‖T‖4 + ‖T‖4

= 〈T 2(x), T 2(x)〉 − ‖T‖4 .
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144 Chapitre 8. ESPACES DE HILBERTD'autre part, on a :
‖T‖4 = ‖T (x)‖4 =

(
〈T (x), T (x)〉

)2

= 〈T 2(x), x〉〈T 2(x), x〉

≤ ‖T 2(x)‖ ‖x‖ ‖T 2(x)‖ ‖x‖

= ‖T 2(x)‖2

= 〈T 2(x), T 2(x)〉

= 〈T 4(x), x〉

≤ ‖T‖4 ‖x‖

= ‖T‖4 .D'où on a ‖T‖4 = 〈T 2(x), T 2(x)〉. Par conséquent, on a 〈T 2(x) − ‖T‖2x, T 2(x) − ‖T‖2x〉 = 0.Autrement dit, on a T 2(x) = ‖T‖2x.2. Soit y = ‖T‖x − T (x). Alors on a T (y) + ‖T‖y = ‖T‖2x − T 2(x) = 0, d'où T (y) = −‖T‖y.Si y = 0, alors on a T (x) = ‖T‖x, donc x est un vecteur propre de T associé à la valeur propre
‖T‖. Si y 6= 0, alors y est un vecteur propre de T associé à la valeur propre −‖T‖.Exercice 8.58. Soient (H, 〈 , 〉) un espace de Hilbert et T ∈ L (H) tel que ‖T‖ ≤ 1.1. Soit x ∈ H. Montrer que T (x) = x si et seulement si 〈T (x), x〉 = ‖x‖2. En déduire que l'ona ker(I − T ) = ker(I − T ∗).2. Montrer que l'on a Im(I − T )⊥ = ker(I − T ) et en déduire que l'on a H = ker(I − T ) ⊕Im(I − T ).3. Pour tout n ≥ 1, on pose Sn =

I + T + · · ·+ T n

n+ 1
. Montrer que pour tout x ∈ H, on a

lim
n→+∞

Sn(x) = P (x), où P est la projection orthogonale sur ker(I − T ).Solution. 1. Soit x ∈ H. Si T (x) = x, alors on a 〈T (x), x〉 = 〈x, x〉 = ‖x‖2.Réciproquement, supposons que l'on a 〈T (x), x〉 = ‖x‖2. On peut aussi supposer x 6= 0. Alorson a :
‖x‖2 = 〈T (x), x〉 ≤ ‖T (x)‖ ‖x‖ ≤ ‖T‖ ‖x‖2 ≤ ‖x‖2 .D'où on a 〈T (x), x〉 = ‖T (x)‖ ‖x‖. D'après l'exercice 8.4, il existe alors a > 0 tel que T (x) = ax,d'où on a a‖x‖2 = a〈x, x〉 = 〈ax, x〉 = 〈T (x), x〉 = ‖x‖2. Par conséquent, on a a = 1, et donc

T (x) = x.
© Dunod, 2011 - Topologie et espaces normés - Nawfal El Hage Hassan



145Soit x ∈ H, on a :
x ∈ ker(I − T ) ⇐⇒ T (x) = x

⇐⇒ 〈T (x), x〉 = ‖x‖2

⇐⇒ 〈x, T ∗(x)〉 = ‖x‖2

⇐⇒ 〈T ∗(x), x〉 = ‖x‖2

⇐⇒ T ∗(x) = x (car ‖T ∗‖ ≤ 1)

⇐⇒ x ∈ ker(I − T ∗) .Donc on a ker(I − T ) = ker(I − T ∗).2. D'après la proposition 8.4.4, on a Im(I − T )⊥ = ker((I − T )∗) = ker(I − T ∗) = ker(I − T ).D'après le corollaire 8.3.1, on a H = ker(I − T ) ⊕ ker(I − T )⊥. Or on a ker(I − T )⊥ =
(Im(I − T )⊥)⊥ = Im(I − T ), d'où H = ker(I − T )⊕ Im(I − T ).3. Soit x ∈ ker(I − T ), alors on a T (x) = x, d'où pour tout k ≥ 1, on a T k(x) = x. Donc ona Sn(x) = x, d'où lim

n→+∞
Sn(x) = x = P (x). Soit y ∈ Im(I − T ), alors il existe z ∈ H tel que

(I − T )(z) = y. On a Sn(y) =
(I + T + · · ·+ T n) ◦ (I − T )(z)

n+ 1
=

(I − T n+1)(z)

n+ 1
et ‖T n+1‖ ≤

‖T‖n+1 ≤ 1, d'où ‖Sn(y)‖ ≤ ‖z‖ + ‖T n+1(z)‖
n+ 1

≤ 2‖z‖
n+ 1

. Donc on a lim
n→+∞

‖Sn(y)‖ = 0. Soit
x ∈ Im(I − T ). Soit ε > 0, alors il existe y ∈ Im(I−T ) tel que ‖x− y‖ < ε. On a ‖Sn‖ ≤ 1, d'où
‖Sn(x)− Sn(y)‖ = ‖Sn(x− y)‖ ≤ ‖Sn‖ ‖x− y‖ < ε. Donc on a ‖Sn(x)‖ < ε+ ‖Sn(y)‖. Commeon a lim

n→+∞
‖Sn(y)‖ = 0, alors il existe N ∈ N tel que pour tout n ≥ N , on ait ‖Sn(y)‖ < ε.Donc, pour tout n ≥ N , on a ‖Sn(x)‖ < 2ε. Autrement dit, on a lim

n→+∞
‖Sn(x)‖ = 0, d'où

lim
n→+∞

Sn(x) = 0 = P (x). Par conséquent, pour tout x ∈ H, on a lim
n→+∞

Sn(x) = P (x), où P estla projection orthogonale sur ker(I − T ).Exercice 8.59. Soient (H, 〈 , 〉) un espace de Hilbert et T ∈ L (H) un opérateur positif.1. Montrer que pour tout S ∈ L (H), l'opérateur S∗ ◦T ◦S est positif, et que pour tout n ≥ 0,
T n est positif.2. Montrer que pour tout x, y ∈ H, on a |〈T (x), y〉|2 ≤ 〈T (x), x〉 〈T (y), y〉.3. Montrer que si de plus, l'opérateur idH − T est positif, alors pour tout x ∈ H, on a
〈T (x), T (x)〉 ≤ 〈T (x), x〉.4. Montrer que les propriétés suivantes sont équivalentes.(i) L'opérateur idH − T est positif.(ii) L'opérateur T − T 2 est positif.(iii) On a ‖T‖ ≤ 1.Désormais, on suppose de plus que idH − T est positif.5. Montrer que pour tout n ≥ 0, T n − T n+1 est positif.6. Montrer que pour tout x ∈ H, la suite (〈T n(x), x〉

)
n≥0

est convergente dans K.7. Montrer que pour tout x ∈ H, la suite (T n(x)
)
n≥0

est convergente dans H.
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146 Chapitre 8. ESPACES DE HILBERT8. Soit P : H −→ H l'application dé�nie par P (x) = lim
n→+∞

T n(x), pour tout x ∈ H. Montrerque P est un projecteur orthogonal tel que T ◦ P = P .9. Montrer que P est le projecteur orthogonal sur ker(T − idH).Solution. 1. Il est clair que S∗ ◦ T ◦ S est auto-adjoint. D'autre part, pour tout x ∈ H, on a
〈(S∗ ◦ T ◦ S)(x), x〉 = 〈T (S(x)), S(x)〉 ≥ 0, donc S∗ ◦ T ◦ S est positif.On montre par récurrence que pour tout n ≥ 0, T n est positif. Notons d'abord que pour tout
n ≥ 0, T n est auto-adjoint. Par convention, on a T 0 = idH , donc c'est un opérateur positif. Parhypothèse, T est positif. Soit n ≥ 2 et supposons que pour tout 0 ≤ k ≤ n, T k est positif. On a
T n+1 = T ◦ T n−1 ◦ T , et T n−1 est positif par hypothèse, il résulte de ce qui précède que T n+1est positif.2. Pour tout x, y ∈ H, on pose ϕ(x, y) = 〈T (x), y〉. Alors ϕ est une forme hermitienne positivesur H. D'après l'inégalité de Cauchy-Schwarz, on a |〈T (x), y〉|2 ≤ 〈T (x), x〉 〈T (y), y〉.3. Soient x ∈ H et y = T (x). D'après 2, on a :

0 ≤ 〈T (x), T (x)〉2 = |〈T (x), y〉|2 ≤ 〈T (x), x〉 〈T (y), y〉 = 〈T (x), x〉 〈T (T (x)), T (x)〉 .Comme idH−T est positif, alors on a 〈T (x), T (x)〉−〈T (T (x)), T (x)〉 = 〈(idH−T )(T (x)), T (x)〉 ≥
0, d'où 0 ≤ 〈T (T (x)), T (x)〉 ≤ 〈T (x), T (x)〉. Par conséquent, on a 0 ≤ 〈T (x), T (x)〉 ≤ 〈T (x), x〉.4. Montrons l'implication (i) =⇒ (ii). Notons d'abord que T − T 2 est auto-adjoint. Par hypo-thèse, idH − T est positif, alors il résulte de 3 que pour tout x ∈ H, on a 0 ≤ 〈T 2(x), x〉 =
〈T (x), T (x)〉 ≤ 〈T (x), x〉, d'où 0 ≤ 〈(T − T 2)(x), x〉. Par conséquent, T − T 2 est positif.Preuve de (ii) =⇒ (iii). Pour tout x ∈ H, on a ‖T (x)‖2 = 〈T (x), T (x)〉 = 〈T 2(x), x〉 ≤
〈T (x), x〉 ≤ ‖T (x)‖ ‖x‖, d'où ‖T (x)‖ ≤ ‖x‖. Par conséquent, on a ‖T‖ ≤ 1.Preuve de (iii) =⇒ (i). Notons d'abord que idH − T est auto-adjoint. Pour tout x ∈ H, on a
〈(idH−T )(x), x〉 = 〈x, x〉−〈T (x), x〉. D'après l'inégalité de Cauchy-Schwarz, on a 0 ≤ 〈T (x), x〉 ≤
‖T (x)‖ ‖x‖ ≤ ‖x‖2 = 〈x, x〉, d'où 〈x, x〉 − 〈T (x), x〉 ≥ 0. Par conséquent, idH − T est positif.5. Soit n ≥ 0. Si n = 2p est pair, alors on a T n − T n+1 = T 2p − T 2p+1 = T p ◦ (idH − T ) ◦ T p. Si
n = 2p+ 1 est impair, on a T n − T n+1 = T 2p+1 − T 2p+2 = T p ◦ (T − T 2) ◦ T p. Il résulte de 1 et4 que T n − T n+1 est positif.6. Pour tout x ∈ H, on a 0 ≤ 〈(T n − T n+1)(x), x〉 = 〈T n(x), x〉 − 〈T n+1(x), x〉. Donc la suite(
〈T n(x), x〉

)
n≥0

est positive et décroissante, donc convergente dans K.7. Soit x ∈ H. Pour tout n,m ∈ N, on a :
‖T n(x)− Tm(x)‖2 = 〈T n(x)− Tm(x), T n(x)− Tm(x)〉

= 〈T n(x), T n(x)〉 − 〈T n(x), Tm(x)〉+ 〈Tm(x), Tm(x)〉 − 〈Tm(x), T n(x)〉

= 〈T 2n(x), x〉 − 〈T n+m(x), x〉+ 〈T 2m(x), x〉 − 〈T n+m(x), x〉

≤ |〈T 2n(x), x〉 − 〈T n+m(x), x〉| + |〈T 2m(x), x〉 − 〈T n+m(x), x〉| .Puisque la suite (〈T n(x), x〉
)
n≥0

est convergente vers un tx ∈ K, alors pour tout ε > 0, il existe
N ∈ N tel que pour tout n ≥ N , on ait |〈T n(x), x〉−tx| < ε

4 . Par conséquent, pour tout n,m ≥ N ,on a :
|〈T 2n(x), x〉 − 〈T n+m(x), x〉| ≤ |〈T 2n(x), x〉 − tx|+ |tx − 〈T n+m(x), x〉| < ε

4 +
ε
4et

|〈T 2m(x), x〉 − 〈T n+m(x), x〉| ≤ |〈T 2m(x), x〉 − tx|+ |tx − 〈T n+m(x), x〉| < ε
4 + ε

4 .
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147Par conséquent, pour tout n,m ≥ N , on a ‖T n(x)− Tm(x)‖2 < ε. Donc la suite (T n(x)
)
n≥0

estde Cauchy, donc convergente dans H.8. Il est clair que P est une application linéaire. D'autre part, pour tout n ≥ 0 et pour tout
x ∈ H, on a ‖T n(x)‖ ≤ ‖T n‖ ‖x‖ ≤ ‖T‖n ‖x‖ ≤ ‖x‖, d'où on a ‖P (x)‖ ≤ ‖x‖. Donc P estcontinue. Pour tout x, y ∈ H, on a :

〈P (x), y〉 = lim
n→+∞

〈T n(x), y〉

= lim
n→+∞

〈x, T n(y)〉

= lim
n→+∞

〈T n(y), x〉

= lim
n→+∞

〈T n(y), x〉

= 〈P (y), x〉 = 〈x, P (y)〉 .Donc on a P = P ∗. Autrement dit, P est auto-adjoint. Pour tout x, y ∈ H, on a :
〈(P ◦ T )(x), y〉 = 〈P (T (x)), y〉 = lim

n→+∞
〈T n(T (x)), y〉 = lim

n→+∞
〈T n+1(x), y〉 = 〈P (x), y〉 .D'où on a P ◦ T = P . Donc on a P = P ∗ = T ◦ P . On en déduit que pour tout n ≥ 0, on a

P ◦ T n = T n ◦ P = P . On a aussi :
〈P 2(x), y〉 = 〈P (P (x)), y〉 = lim

n→+∞
〈T n(P (x)), y〉 = lim

n→+∞
〈(T n ◦ P )(x), y〉 = 〈P (x), y〉 .Donc on a P 2 = P . Par conséquent, P est un projecteur orthogonal.9. Soit x ∈ ker(T − idH). Alors on a T (x) = x. On en déduit que pour tout n ≥ 0, on a

T n(x) = x. Donc on a 〈P (x), y〉 = lim
n→+∞

〈T n(x), y〉 = 〈x, y〉, pour tout y ∈ H. Par conséquent,on a P (x) = x, d'où x ∈ P (H).Réciproquement, soit x ∈ P (H), alors on a P (x) = x, d'où x = P (x) = (T ◦P )(x) = T (P (x)) =
T (x). Donc on a x ∈ ker(T − idH). Par conséquent, on a P (H) = ker(T − idH). Donc P est leprojecteur orthogonal sur ker(T − idH).Exercice 8.60. Soit (H, 〈 , 〉) un C-espace de Hilbert non nul. Pour T ∈ L (H), on pose :

N(T ) = sup
{
|〈T (x), x〉| ; ‖x‖ = 1

}
.Notons que d'après la proposition 8.7.5, si T ∈ L (H) est un opérateur auto-adjoint, alors on a

N(T ) = ‖T‖.1. Montrer que l'application T 7−→ N(T ) est une norme sur L (H), et que pour tout T ∈
L (H), on a N(T ) = N(T ∗).2. Montrer que pour tout T ∈ L (H), on a l'inégalité :

N(T ) ≤ ‖T‖ ≤ 2N(T ) . (8.1)En particulier, les normes N et ‖ ‖, sur L (H), sont équivalentes.3. Montrer que l'équation (8.1) serait faux si H était un R-espace de Hilbert.
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148 Chapitre 8. ESPACES DE HILBERT4. Montrer que si dim(H) ≥ 2, la constante 2 ne peut être remplacée dans l'équation (8.1)par aucune constante strictement plus petite.Solution. 1. Soit T ∈ L (H). Il est clair que si T = 0, alors N(T ) = 0. Réciproquement,supposons que N(T ) = 0. Il résulte de la proposition 8.7.6 que l'on a T = 0. Pour tous T ∈ L (H)et λ ∈ C, on a |〈λT (x), x〉| = |λ| |〈T (x), x〉|, pour tout x ∈ H. D'où on a N(λT ) = |λ|N(T ).Pour tous T, S ∈ L (H) et pour tout x ∈ H, on a :
|〈(T + S)(x), x〉| = |〈T (x), x〉 + 〈S(x), x〉| ≤ |〈T (x), x〉| + |〈S(x), x〉| ≤ N(T )‖x‖2 +N(T )‖x‖2On en déduit que l'on a N(T +S) ≤ N(T )+N(S). Donc l'application T 7−→ N(T ) est bien unenorme sur L (H). Pour tout T ∈ L (H) et pour tout x ∈ H, on a :

|〈T (x), x〉| = |〈x, T ∗(x)〉| = |〈T ∗(x), x〉| = |〈T ∗(x), x〉| .Par conséquent, on a N(T ) = N(T ∗).2. Soit T ∈ L (H). D'après le corollaire 8.4.1, on a ‖T‖ = sup
{
|〈T (x), y〉| ; ‖x‖ = ‖y‖ = 1

}. Onen déduit que l'on a N(T ) ≤ ‖T‖. Montrons l'autre inégalité. Soit T ∈ L (H). Alors T1 = T + T ∗

2et T2 = T − T ∗

2i
sont des opérateurs auto-adjoints et on a T = T1+ iT2. Donc on a ‖T‖ ≤ ‖T1‖+

‖T2‖ et ‖T1‖ = N(T1) et ‖T2‖ = N(T2). Par conséquent, on a ‖T‖ ≤ N(T1) +N(T2) ≤ 2N(T ).3. Soient H = R2, muni de sa structure euclidienne canonique, et pour tout (x, y) ∈ R2, on pose
T (x, y) = (y,−x). Alors T est linéaire continue de H dans H et on a ‖T‖ = 1. En plus, pourtout pour tout (x, y) ∈ R2, on a 〈T (x, y), (x, y)〉 = 0. Donc on a N(T ) = 0. Par conséquent,l'application T 7−→ N(T ) n'est plus une norme sur L (H) et l'équation (8.1) n'est plus valable.4. Soient H = C2, muni de sa structure hermitienne canonique, et pour tout (z1, z2) ∈ C2, on pose
T (z1, z2) = (0, z1). Alors H est un C-espace hilbertien de dimension 2 et T est linéaire continuede H dans H et on a ‖T‖ = 1. Pour tout pour tout (z1, z2) ∈ C2, on a 〈T (z1, z2), (z1, z2)〉 = z1z2.D'où on a |〈T (z1, z2), (z1, z2)〉| = |z1| |z2| ≤ 1

2

(
|z1|2+|z2|2

). Par conséquent, on a N(T ) = 1
2 . Doncla constante 2 ne peut être remplacée dans l'équation (8.1) par aucune constante strictement pluspetite. Notons en�n que tout C-espace de Hilbert de dimension ≥ 2 contient une copie de C2.
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Chapitre 9ESPACES VECTORIELSTOPOLOGIQUESProposition. Soient (E, T ) un espace vectoriel topologique et B une partie de E. Les propriétéssuivantes sont équivalents.(i) B est bornée.(ii) Pour toute suite (xn)n≥0 dans B et pour toute suite (λn)n≥0 dans K telle que lim
n→+∞

λn = 0,on ait lim
n→+∞

λnxn = 0.Démonstration. Montrons l'implication (i) =⇒ (ii). Soient (xn)n≥0 une suite dans B et
(λn)n≥0 une suite dans K telle que lim

n→+∞
λn = 0. Soit V un voisinage équilibré de 0 dans

E. Comme B est bornée, alors il existe s > 0 tel que B ⊂ sV . Comme on a lim
n→+∞

λns = 0,alors il existe N ∈ N tel que pour tout n ≥ N , on ait |λns| ≤ 1. D'où pour tout n ≥ N , on a
λnsV ⊂ V , car V est équilibré. Donc pour tout n ≥ N , on a λnxn ∈ λnB ⊂ λnsV ⊂ V . Parconséquent, on a lim

n→+∞
λnxn = 0.Preuve de (ii) =⇒ (i). Supposons que B n'est pas bornée, alors il existe un voisinage V de 0dans E tel que pour tout n ≥ 0, on ait B 6⊂ (n + 1)V . Pour tout n ≥ 0, soit xn ∈ B tel que

xn 6∈ (n + 1)V . Ainsi, on trouve une suite (xn)n≥0 dans B telle que la suite ( 1
n+1xn

)
n≥0

neconverge pas vers 0, ce qui contredit l'hypothèse. Par conséquent, B est bornée. �Proposition. Soient E,F deux espaces vectoriels topologiques et T : E −→ F une applicationlinéaire. Les propriétés suivantes sont équivalentes.(i) T est uniformément continue, i.e. pour tout voisinage V de 0 dans F , il existe un voisinage
U de 0 dans E tel que pour tout x, y ∈ E véri�ant x− y ∈ U , on ait T (x)− T (y) ∈ V .(ii) T est continue.(iii) T est continue en 0.Démonstration. Montrons l'implication (i) =⇒ (ii). Soient x0 ∈ E et W un voisinage de T (x0)dans F . Alors V = −T (x0)+W est un voisinage de 0 dans F . Donc il existe un voisinage U de 0dans E tel que pour tout x, y ∈ E véri�ant x− y ∈ U , on ait T (x)− T (y) ∈ V . Alors x0 +U estun voisinage de x0 dans E et pour tout x ∈ x0+U , on a T (x)−T (x0) ∈ −T (x0)+W , d'où pourtout x ∈ x0 + U , on a T (x) ∈W . Donc T est continue en x0. Par conséquent, T est continue.L'implication (ii) =⇒ (iii) est triviale.Preuve de (iii) =⇒ (i). Soit V un voisinage de 0 dans F . Comme T est continue en 0, alors il149
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150 Chapitre 9. ESPACES VECTORIELS TOPOLOGIQUESexiste un voisinage U de 0 dans E tel que pour tout z ∈ U , on ait T (z) ∈ V . Soient x, y ∈ Etels que x− y ∈ U , alors on a T (x)−T (y) = T (x− y) ∈ V . Par conséquent, T est uniformémentcontinue. �Proposition. Soient E,F deux espaces vectoriels topologiques et T : E −→ F une applicationlinéaire. Considérons les propriétés suivantes :(i) T est continue.(ii) T est bornée.(iii) Si (xn)n≥0 est une suite dans E telle que xn −→
n→+∞

0, alors (T (xn)) est une suite bornéedans F .(iv) Si (xn)n≥0 est une suite dans E telle que xn −→
n→+∞

0, alors T (xn) −→
n→+∞

0.1. On a les implications suivantes : (i) =⇒ (ii) =⇒ (iii) et (i) =⇒ (iv).2. Si E est métrisable, alors on a les équivalences (i)⇐⇒ (ii)⇐⇒ (iii)⇐⇒ (iv).Démonstration. 1. Montrons l'implication (i) =⇒ (ii). Soit B une partie bornée dans E. Soit
W un voisinage de 0 dans F . Comme T est continue, il existe un voisinage V de 0 dans E tel que
T (V ) ⊂ W . Comme B est bornée, il existe s > 0 tel que B ⊂ sV , d'où T (B) ⊂ sT (V ) ⊂ sW .Par conséquent, T (B) est bornée. Autrement dit, T est une application bornée.Comme toute suite convergente est bornée, voir proposition 9.1.7, on a l'implication (ii) =⇒ (iii).En�n, l'implication (i) =⇒ (iv) résulte du théorème 1.7.3.2. On suppose maintenant que E est métrisable. Alors (iv) =⇒ (i) résulte du théorème 1.7.3 etde la proposition précédente. Pour avoir le résultat, il reste à montrer l'implication (iii) =⇒ (iv).Soit (xn)n≥0 une suite convergente vers 0 dans E. D'après le lemme 9.1.2, il existe une suite
(tn)n≥0 dans ]0, +∞[ telle que lim

n→+∞
tn = +∞ et telle que la suite (tnxn)n≥0 converge vers 0.Donc la suite (T (tnxn))n≥0 est bornée. Comme on a lim

n→+∞
1
tn

= 0, d'après la proposition 9.1.6,la suite ( 1
tn
T (tnxn)

)
n≥0

converge vers 0. Donc la suite (T (xn))n≥0 converge vers 0. �Théorème. Soit (E, T ) un espace vectoriel topologique de dimension �nie n. Alors il existe unhoméomorphisme linéaire T de Kn sur E, où Kn est muni de n'importe quelle norme ‖ ‖.Démonstration. Soit (e1, . . . , en) une base de E et considérons l'application
T : Kn −→ E

(x1, . . . , xn) 7−→
n∑

i=1

xieiAlors T est linéaire bijective. Soit (ξp)p≥0 une suite dans Kn, qui converge vers un élément
x = (x1, . . . , xn) ∈ Kn. Pour tout p ≥ 0, on a ξp = (x1,p, . . . , xn,p) et pour tout i ∈ {1, · · · , n}, ona lim

p→+∞
xi,p = xi. Comme les applications (λ, y) 7−→ λy et (y, z) 7−→ y + z sont respectivementcontinues de K×E dans E et de E×E dans E, on déduit que l'on a lim

p→+∞

n∑

i=1

xi,pei =

n∑

i=1

xiei.Donc on a lim
p→+∞

T (ξp) = T (x). Par conséquent, T est continue. Il reste à montrer que T−1est continue. D'après la proposition 9.1.10, il su�t de montrer que T−1 est continue en 0. Soit
B =

{
x ∈ Kn ; ‖x‖ ≤ 1

}. D'après le théorème 6.6.2, B est compact, donc T réalise unhoméomorphisme de B sur T (B), car E est séparé. Autrement dit, la restriction de T−1 à T (B)
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151est continue. Pour montrer que T−1 est continue en 0, il su�t de montrer que T (B) contient unvoisinage de 0 dans E. Soit S =
{
x ∈ Kn ; ‖x‖ = 1

}, alors S est compact. Comme T est aussibijective, alors T (S) est une partie compacte de E telle que 0 6∈ T (S). D'après la proposition9.1.5, il existe un voisinage équilibré V de 0 dans E tel que V ∩ T (S) = ∅. Véri�ons que l'on a
V ⊂ T (B). Soit y ∈ V . Si y 6∈ T (B), alors il existe x ∈ Kn tel que ‖x‖ > 1 et T (x) = y. Comme
V est équilibré, alors T( x

‖x‖
)
=

1

‖x‖y ∈ V , ce qui est impossible, car x

‖x‖ ∈ S. Donc on a bien
V ⊂ T (B). �Proposition. Soient (E, T ) un espace vectoriel topologique et A une partie à la fois convexe etvoisinage de 0 dans E. Alors A est absorbante et la jauge µA de A véri�e les propriétés suivantes :1. La fonction µA est sous-additive et positivement homogène et on a :

{x ∈ E ; µA(x) < 1} ⊂ A ⊂ {x ∈ E ; µA(x) ≤ 1} .2. Si A est équilibrée, alors µA est une semi-norme continue sur E et on a :
◦
A= {x ∈ E ; µA(x) < 1} et A = {x ∈ E ; µA(x) ≤ 1} .3. Si A est ouverte, on a A = {x ∈ E ; µA(x) < 1} et µA est semi-continue supérieurement.4. Si A est fermée, on a A = {x ∈ E ; µA(x) ≤ 1} et µA est semi-continue inférieurement.Démonstration. 1. Puisque A est un voisinage de 0, il résulte de la proposition 9.1.2 que Aest absorbante. Donc µA est bien dé�nie et d'après le théorème 7.6.2, µA est sous-additive etpositivement homogène et on a {x ∈ E ; µA(x) < 1} ⊂ A ⊂ {x ∈ E ; µA(x) ≤ 1}.2. Supposons de plus que A est équilibrée. D'après le théorème 7.6.2, µA est une semi-norme sur

E. Comme on a A ⊂ {x ∈ E ; µA(x) ≤ 1}, alors {x ∈ E ; µA(x) ≤ 1} est un voisinage de 0dans E. Il résulte alors du lemme précédent que µA est continue. Donc {x ∈ E ; µA(x) < 1}est ouvert dans E et {x ∈ E ; µA(x) ≤ 1} est fermé dans E. On déduit de 1 que l'on a
{x ∈ E ; µA(x) < 1} ⊂

◦
A et A ⊂ {x ∈ E ; µA(x) ≤ 1}. Soit x ∈ ◦

A, alors il existe ε > 0 tel que
(1+ ε)x ∈ A, d'où µA(x) ≤ 1

1+ε < 1. Par conséquent, on a ◦
A= {x ∈ E ; µA(x) < 1}. Soit z ∈ Etel que µA(z) ≤ 1, alors pour tout n ≥ 1, il existe an ∈ A tel que z

1 + 1
n

= an. Donc la suite
(an)n≥1 converge vers z, d'où z ∈ A. Par conséquent, on a A = {x ∈ E ; µA(x) ≤ 1}.3. Supposons A ouverte, et soit x ∈ A. Alors il existe ε > 0 tel que (1 + ε)x ∈ A, d'où µA(x) ≤
1

1+ε < 1. Par conséquent, on a A = {x ∈ E ; µA(x) < 1}. Pour tout α ≤ 0, on a {x ∈
E ; µA(x) < α} = ∅, et donc c'est un ouvert de E. Si α > 0, on a {x ∈ E ; µA(x) < α} = αA,et donc c'est un ouvert de E. Par conséquent, µA est semi-continue supérieurement.4. Supposons A fermée. Soit x ∈ E tel que µA(x) ≤ 1. Alors pour tout n ≥ 1, il existe an ∈ Atel que x

1 + 1
n

= an. Donc la suite (an)n≥1 converge vers x, d'où x ∈ A. Par conséquent, on a
A = {x ∈ E ; µA(x) ≤ 1}. Pour tout α > 0, on a {x ∈ E ; µA(x) ≤ α} = αA et donc c'est unfermé de E. On a aussi {x ∈ E ; µA(x) = 0} = ∩

n≥1

1
nA, voir remarque 7.6.2, et donc c'est unfermé de E. Par conséquent, µA est semi-continue inférieurement. �Lemme. Soient E un espace vectoriel, (Fi)i∈I une famille d'espaces vectoriels topologiques etpour tout i ∈ I, soit fi : E −→ Fi une application linéaire. On suppose de plus que la famille

(fi)i∈I est séparante, i.e. pour tout x ∈ E tel que x 6= 0, il existe i ∈ I tel que fi(x) 6= 0. Alors
E muni de la topologie initiale associée à la famille (fi)i∈I est un espace vectoriel topologique.De plus, si pour tout i ∈ I, Fi est localement convexe, alors E est localement convexe.
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152 Chapitre 9. ESPACES VECTORIELS TOPOLOGIQUESDémonstration. D'après la proposition 1.4.1, l'application (x, y) 7−→ x + y est continue de
E × E dans E si et seulement si pour tout i ∈ I, l'application (x, y) 7−→ fi(x) + fi(y) estcontinue de E × E dans Fi. Or l'application (x, y) 7−→ (fi(x), fi(y)) est continue de E × Edans Fi × Fi, et l'application (a, b) 7−→ a+ b est continue de Fi × Fi dans Fi, donc l'application
(x, y) 7−→ fi(x)+fi(y) est continue deE×E dans Fi. Par conséquent, l'application (x, y) 7−→ x+yest continue de E × E dans E.De même, l'application (λ, x) 7−→ λx est continue de K × E dans E si et seulement si pourtout i ∈ I, l'application (λ, x) 7−→ λfi(x) est continue de K × E dans Fi. Or l'application
(λ, x) 7−→ (λ, fi(x)) est continue de K × E dans K × Fi, et l'application (λ, a) 7−→ λa estcontinue de K × Fi dans Fi, donc l'application (λ, x) 7−→ λfi(x) est continue de K × E dans
Fi. Par conséquent, l'application (λ, x) 7−→ λx est continue de K × E dans E. En�n, comme lafamille (fi)i∈I est séparante, il résulte du lemme 1.5.1 que E est séparé. Par conséquent, E munide la topologie initiale associée à la famille (fi)i∈I est un espace vectoriel topologique. Commel'image réciproque d'un ensemble convexe par une application linéaire est un ensemble convexe,on en déduit, voir lemme 1.4.1, que si pour tout i ∈ I, Fi est localement convexe, alors E estlocalement convexe. �Théorème. Soient E et F deux espaces vectoriels topologiques et Γ une famille d'applicationslinéaires continues de E dans F . Soit K un compact convexe de E tel que pour tout x ∈ K,
Γx =

{
f(x) ; f ∈ Γ

} soit un sous-ensemble borné de F . Alors il existe une partie bornée D de
F telle que f(K) ⊂ D pour tout f ∈ Γ.Démonstration. Soit D = ∪

x∈K
Γx. Il s'agit de montrer que D est une partie bornée de F . Soit

W un voisinage de 0 dans F . Soit U un voisinage équilibré fermé de 0 dans F tel que U+U ⊂W .Soit A = ∩
f∈Γ

f−1(U), alors A est fermé dans E. Si x ∈ K, alors Γx est borné dans F et donc ilexiste n ≥ 1 tel que Γx ⊂ nU , d'où x ∈ nA. Par conséquent, on a K = ∪
n≥1

(K ∩ nA). Puisque
K ∩ nA est fermé, dans K, d'après le théorème de Baire, théorème 3.4.4, il existe n ≥ 1 tel que
K ∩ nA soit d'intérieur non vide relativement à K. Soit x0 un point dans un tel intérieur. Alorsil existe un voisinage équilibré V de 0 dans E tel que K ∩ (x0 + V ) ⊂ (K ∩ nA) ⊂ nA. Puisque
K−x0 est compact, donc borné, il existe un entier p > 1 tel que K ⊂ x0+pV . Soit x ∈ K et soit
z =

(
1− 1

p

)
x0 +

1
px, alors z ∈ K, car K est convexe. De plus, on a z−x0 = 1

p(x−x0) ∈ V , donc
z ∈ nA. Puisque pour tout f ∈ Γ, on a f(nA) = nf(A) ⊂ nU et puisque x = pz − (p − 1)x0,alors on a f(x) = pf(z)− (p− 1)f(x0) ∈ pnU − (p− 1)nU = pnU + (p− 1)nU ⊂ pnU + pnU =
pn(U + U) ⊂ pnW . Ainsi, on a D ⊂ pnW , ce qui prouve que D est bornée. �Lemme. Soient (E, T ) un R-espace vectoriel topologique, C un convexe ouvert non vide de Eet b ∈ E avec b 6∈ C. Alors il existe f ∈ E∗ tel que f(x) < f(b) pour tout x ∈ C.Démonstration. Quitte à faire une translation, on peut supposer 0 ∈ C. Soit µC la jaugede C. D'après la proposition 9.2.2, µC est positivement homogène, sous-additive et C = {x ∈
E ; µC(x) < 1}. On a aussi µC(b) ≥ 1 car b 6∈ C. Posons

f : R b −→ R

tb 7−→ talors f est une forme linéaire sur R b et pour tout t ∈ R, on a f(tb) ≤ µC(tb). En e�et, si t ≤ 0,on a f(tb) = t ≤ 0 ≤ µC(tb). Si t > 0, on a µC(tb) = tµC(b) ≥ t = f(tb) car µC(b) ≥ 1. D'après lethéorème 7.7.1, on peut prolonger f en une forme linéaire sur E encore notée f telle que pour tout
x ∈ E, on ait f(x) ≤ µC(x). Pour tout x ∈ C, on a f(x) < 1 et −1 < −f(x) = f(−x). Donc pour
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153tout x ∈ C ∩−C, on a |f(x)| < 1. Or C ∩−C est un voisinage de 0, on déduit de la proposition9.1.12 que f est continue. De plus, pour tout x ∈ C, on a f(x) ≤ µC(x) < 1 = f(b). �Lemme. Soient E un K-espace vectoriel et A1, . . . , An des sous-ensembles non vides convexesdans E. Alors conv(A1 ∪ · · · ∪ An) est l'ensemble des sommes n∑

i=1

tixi, où xi ∈ Ai pour tout
i ∈ {1, . . . , n} et t1 ≥ 0, . . . , tn ≥ 0 tels que n∑

i=1

ti = 1.Démonstration. Soit C l'ensemble des sommes n∑

i=1

tixi, où xi ∈ Ai pour tout i ∈ {1, . . . , n} et
t1 ≥ 0, . . . , tn ≥ 0 tels que n∑

i=1

ti = 1. Il est clair que l'on a A1∪· · ·∪An ⊂ C ⊂ conv(A1∪· · ·∪An).Pour montrer que C = conv(A1 ∪ · · · ∪ An), il su�t de montrer que C est un sous-ensembleconvexe. Soient xi, yi ∈ Ai pour tout i ∈ {1, . . . , n} et t1 ≥ 0, . . . , tn ≥ 0, s1 ≥ 0, . . . , sn ≥ 0 telsque n∑

i=1

ti = 1 et n∑

i=1

si = 1. Soit t ∈ ]0, 1[, alors on a :
t

n∑

i=1

tixi + (1− t)
n∑

i=1

siyi =

n∑

i=1

(tti + (1− t)si)
ttixi + (1− t)siyi
tti + (1− t)si

.Or on a tti + (1− t)si ≥ 0, n∑

i=1

tti + (1− t)si = 1 et ttixi + (1− t)siyi
tti + (1− t)si

∈ Ai car Ai est convexe.D'où on a t n∑

i=1

tixi + (1− t)
n∑

i=1

siyi ∈ C, donc C est convexe. �Proposition. Soit A un sous-ensemble non vide de Rn.1. Si x ∈ conv(A), alors il existe a1, . . . , an+1 ∈ A et t1 ≥ 0, . . . , tn+1 ≥ 0 tels que n+1∑

i=1

ti = 1et n+1∑

i=1

tiai = x.2. On munit Rn de la topologie usuelle. Si A est compact, alors conv(A) est compacte.Démonstration. 1. D'après la proposition 9.5.1, il existe k ∈ N, a1, . . . , ak+1 ∈ A et t1 ≥
0, . . . , tk+1 ≥ 0 tels que k+1∑

i=1

ti = 1 et k+1∑

i=1

tiai = x. Pour avoir le résultat, il su�t de montrerque si k > n, alors il existe c1 ≥ 0, . . . , ck+1 ≥ 0 tels que k+1∑

i=1

ci = 1 et k+1∑

i=1

ciai = x et il existe
j ∈ {1, . . . , k + 1} tel que cj = 0. On peut supposer que ti > 0 pour tout i ∈ {1, . . . , k + 1}.Considérons l'application linéaire

T : Rk+1 −→ Rn × R

(s1, . . . , sk+1) 7−→
(

k+1∑

i=1

siai,

k+1∑

i=1

si

)

© Dunod, 2011 - Topologie et espaces normés - Nawfal El Hage Hassan



154 Chapitre 9. ESPACES VECTORIELS TOPOLOGIQUESComme k > n, alors ker(T ) 6= {0}, et donc il existe (s1, . . . , sk+1) ∈ Rk+1\{0} tel que k+1∑

i=1

siai = 0et k+1∑

i=1

si = 0. Soit λ = inf
{

ti
si

; si 6= 0
}, alors il existe j ∈ {1, . . . , k + 1} tel que λ =

tj
sj

et on a
λsi ≤ ti pour tout i ∈ {1, . . . , k+1}. On pose ci = ti−λsi, alors ci ≥ 0, cj = 0 et on a k+1∑

i=1

ci = 1.De plus, on a x =
n+1∑

i=1

tiai =
n+1∑

i=1

tiai − λ
k+1∑

i=1

siai =
k+1∑

i=1

ciai.2. Soit S l'ensemble des t = (t1, . . . , tn+1) ∈ Rn+1 tels que t1 ≥ 0, . . . , tn+1 ≥ 0 et n+1∑

i=1

ti = 1.D'après 1, conv(A) est l'image de S × An+1 par l'application continue (t, a1, . . . , an+1) 7−→
n+1∑

i=1

tiai. Or S ×An+1 est compact, donc conv(A) est compacte. �Supplément d'exercicesExercice 9.45. Soit K l'ensemble des vecteurs 0 et 1
n+1en, n ≥ 0 dans l'espace de Banach

(c0, ‖ ‖∞).1. Montrer que K est compact.2. Montrer que conv(K) est compact mais que conv(K) n'est pas l'enveloppe convexe de sespoints extrémaux.Solution. 1. Comme on a ∥∥ 1
n+1en∥∥∞ = 1, alors la suite ( 1

n+1en)n≥0
converge vers 0 dans

(c0, ‖ ‖∞), donc K est compact.2. Puisque (c0, ‖ ‖∞) est un espace de Banach, il résulte du théorème 9.5.1 que conv(K) estcompact. D'après le théorème 9.5.4, tous les points extrémaux de conv(K) appartiennent à K.Comme dans l'exercice 9.42, on véri�e que l'on a :conv(K) =
{ n∑

p=0

tp
p+ 1

ep ; n ≥ 0, t0 ≥ 0, . . . , tn ≥ 0 et n∑

p=0

tp ≤ 1
}
.On en déduit que si x ∈ conv(K) = conv(K), alors x = (xn)n≥0 ∈ c0, avec 0 ≤ xn ≤ 1

n+1 , pourtout n ≥ 0. Soient n ≥ 0 et x = (xn)n≥0, y = (yn)n≥0 ∈ conv(K) tels que 1
n+1en = 1

2x + 1
2y.Alors on a 1

n+1 = 1
2xn +

1
2yn. Or on a 0 ≤ xn ≤ 1

n+1 et 0 ≤ yn ≤ 1
n+1 , d'où 1

n+1 = xn = yn. Pourtout p 6= n, on a 0 = 1
2xp +

1
2yp, avec 0 ≤ xp et 0 ≤ yp, donc on a 0 = xp = yp. Par conséquent,on a x = y = 1

n+1en, donc 1
n+1en est un point extrémal de conv(K). De même, si x, y ∈ conv(K)tels que 0 = 1

2x+
1
2y. Alors on a 0 = x = y. Donc 0 est aussi un point extrémal de conv(K). Parconséquent, l'ensemble des points extrémaux de conv(K) est K. Soit x =

(
1

2p+1(p+1)

)
p≥0

, alors
x ∈ conv(K), mais x 6∈ conv(K). Par conséquent, conv(K) n'est pas l'enveloppe convexe de sespoints extrémaux.Exercice 9.46. Soient (E, T ) un espace vectoriel topologique et F un sous-espace vectorielfermé E. Soient Tπ la topologie quotient sur l'espace vectoriel quotient E/F et π : (E, T ) −→
(E/F, Tπ) l'application quotient. Rappelons qu'un ensemble U de E/F est ouvert dans (E/F, Tπ)si et seulement si π−1(U) est ouvert dans (E, T ). De même, pour les ensembles fermés dans
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(E/F, Tπ). Rappelons aussi que π est une application linéaire continue. Voir la proposition 1.4.10et la discussion précédant la proposition 6.4.3.1. Montrer que π est une application ouverte et que E/F muni de la topologie Tπ est unespace vectoriel topologique.2. Montrer que si B est une base locale de E, alors les ensembles π(V ), où V ∈ B, formentune base locale de (E/F, Tπ).3. Montrer que si (E, T ) est localement convexe (resp. localement borné, resp. métrisable,resp. normable), alors il en est de même pour (E/F, Tπ).4. Montrer que si (E, T ) est un F-espace, ou un espace de Fréchet, ou un espace de Banach,il en est de même pour (E/F, Tπ).Solution. 1. Soit U un ouvert dans E, alors on a π−1(π(U)) = U + F , donc π−1(π(U)) estouvert dans E, voir corollaire 9.1.1, d'où π(U) est ouvert dans E/F . Donc π est une applicationouverte.Notons d'abord que {0} est fermé dans E/F car π−1({0}) = F est fermé dans E. Pour tout
(x, y) ∈ E × E, soit f(x, y) = x + y et pour tout (a, b) ∈ E/F × E/F , soit fπ(a, b) = a + b.Montrons que l'application fπ est continue de E/F × E/F dans E/F . Notons d'abord que lediagramme suivant est commutatif.

E × E E

E/F × E/F E/F

-f

?

π×π

?

π

-fπSoit V un ouvert de E/F . Puisque π × π est surjective, alors on a :
f−1
π (V ) = (π × π)((π × π)−1(f−1

π (V ))) .Comme on a π ◦ f = fπ ◦ (π × π), alors on a :
(π × π)−1(f−1

π (V )) = (fπ ◦ (π × π))−1(V ) = (π ◦ f)−1(V ) = f−1(π−1(V )) .Par conséquent, on a f−1
π (V ) = (π×π)(f−1(π−1(V ))). Comme f et π sont continues et π×π estune application ouverte, alors f−1

π (V ) est un ouvert de E/F ×E/F . Donc fπ est une applicationcontinue.Pour tout (λ, x) ∈ K × E, soit g(λ, x) = λx et pour tout (λ, a) ∈ K × E/F , soit gπ(λ, a) = λa.Montrons que l'application gπ est continue de K×E/F dans E/F . On fait le même raisonnementqu'auparavant. Notons d'abord que le diagramme suivant est commutatif.
K× E E

K× E/F E/F

-g

?
idK×π

?
π

-gπComme idK × π est une application surjective et ouverte, et comme g et π sont continues, alors
gπ est continue. Donc E/F muni de la topologie Tπ est un espace vectoriel topologique.2. Soit B une base locale de E. Comme π est une application continue et ouverte, on en déduitque les ensembles π(V ), où V ∈ B, forment une base locale de (E/F, Tπ).
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156 Chapitre 9. ESPACES VECTORIELS TOPOLOGIQUES3. Comme l'image d'un ensemble convexe par une application linéaire est un ensemble convexe,on déduit de 2 que si (E, T ) est localement convexe, il en est de même pour (E/F, Tπ). Comme πest une application continue, il résulte de la proposition 9.1.11 que π est une application bornée.Puisque π est aussi une application ouverte, on en déduit que (E/F, Tπ) est localement borné.Supposons maintenant (E, T ) métrisable et soit d une distance invariante par translation sur Edont la topologie associée est T . Pour tout x, y ∈ E, on pose :
dπ(π(x), π(y)) = inf

{
d(x− y, z) ; z ∈ F

}
.On véri�e facilement que dπ est bien dé�nie et qu'elle est une distance invariante par translationsur E/F . On véri�e également que pour tout r > 0, on a π({x ∈ E ; d(x, 0) < r}) = {z ∈

E/F ; dπ(z, 0) < r}. On déduit de 2 que la topologie induite par dπ sur E/F est la topologiequotient Tπ. Donc l'espace quotient (E/F, Tπ) est bien métrisable. Finalement, on a montré,proposition 6.4.3, que si (E, T ) est normable alors (E/F, Tπ) est normable.4. Supposons que (E, T ) est un F-espace, et soit d une distance invariante par translation sur Edont la topologie associée est T . D'après 3, l'espace quotient (E/F, Tπ) est métrisable et dπ estune distance invariante par translation sur E/F dont la topologie est la topologie quotient Tπ.Montrons que E/F muni de la distance dπ est complet. Soit (zn)n≥0 une suite de Cauchy dans
(E/F, dπ). On véri�e exactement comme dans la démonstration de la proposition 6.4.5 qu'il existeune sous-suite (zϕ(n))n≥0 de (zn)n≥0 telle que pour tout n ≥ 0, on ait dπ(zϕ(n+1), zϕ(n)) < 2−n,et qu'il existe une suite (xn)n≥0 dans E telle pour tout n ≥ 0, on ait d(xn+1, xn) < 2−n et
π(xn) = zϕ(n). Alors la suite (xn)n≥0 est de Cauchy dans (E, d), donc elle converge vers un élé-ment x ∈ E. Or π est continue, on en déduit que (zϕ(n))n≥0 converge vers π(x). Par conséquent,la suite (zn)n≥0 converge vers π(x), voir proposition 2.6.2. Donc (E/F, dπ) est un F-espace. Ilrésulte de ce que l'on vient de montrer et de 3 que si (E, T ) est un espace de Fréchet, alors ilen est de même pour (E/F, Tπ). Finalement, on a montré, proposition 6.4.3 et proposition 6.4.5,que si (E, T ) est un espace de Banach, alors (E/F, Tπ) est un espace de Banach.Exercice 9.47. Soient G et F deux sous-espaces vectoriels d'un espace vectoriel topologique
(E, T ) tels que F soit fermé et G soit de dimension �nie. Montrer que G + F est fermé dans
(E, T ).Solution. Considérons l'espace vectoriel topologique quotient (E/F, Tπ) et soit π : (E, T ) −→
(E/F, Tπ) l'application quotient. Alors π(G) est sous�espace vectoriel de dimension �nie de E/F ,donc π(G) est fermé dans E/F , voir corollaire 9.1.4. Or on a F +G = π−1(π(G)) et π est conti-nue, donc F +G est fermé dans E.Exercice 9.48. Soient E, F deux espaces vectoriels topologiques et f : E −→ F une applicationlinéaire. Soient H un sous-espace vectoriel fermé de E tel que H ⊂ ker(f) et π : E −→ E/Hl'application quotient. Alors il existe une application linéaire f̃ : E/H −→ F telle que f̃ ◦π = f ,voir proposition 6.4.4. Autrement dit, le diagramme suivant est commutatif.

E F

E/H

-f

@
@@Rπ �

���
f̃1. Montrer que f est continue si et seulement si f̃ est continue.2. Montrer que f est ouverte si et seulement si f̃ est ouverte.
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157Solution. 1. Puisque l'on a f = f̃ ◦π, d'après la proposition 1.4.10, f est continue si et seulementsi f̃ est continue.2. Supposons que f̃ est un application ouverte. D'après l'exercice 9.46, l'application quotient πest ouverte, on en déduit que f est une application ouverte car la composée de deux applicationsouvertes est une application ouverte.Réciproquement, supposons que f est une application ouverte. Soit U un ouvert de E/H. Alors
π−1(U) est un ouvert de E et on a f(π−1(U)) = (f̃ ◦ π)(π−1(U)) = f̃(π(π−1(U))) = f̃(U), donc
f̃(U) est ouvert dans F . Par conséquent, f̃ est une application ouverte.Exercice 9.49. Soient E, F deux espaces vectoriels topologiques, avec dim(F ) < ∞ et f :
E −→ F une application linéaire.1. Montrer que si f est surjective, alors f est ouverte.2. On suppose que ker(f) est fermé. Montrer que f est continue.Solution. 1. Soit G un sous-espace vectoriel de E tel que dim(G) = dim(F ) et tel que E soit lasomme directe algébrique des ker(f) et G. Puisque l'application

ker(f)×G −→ E
(x1, x2) 7−→ x1 + x2est continue et bijective, alors l'application inverse
E −→ ker(f)×G
x 7−→ (π1(x), π2(x))est ouverte. D'après la proposition 1.4.7, la projection canonique
ker(f)×G −→ G
(x1, x2) 7−→ x2est ouverte. On en déduit que la projection naturelle π2 : E −→ G est une application linéairesurjective et ouverte. Pour tout x ∈ E, on a f(x) = f(π2(x)) et on pose S(π2(x)) = f(x). Alors Sest une application linéaire bijective de G sur F . De plus, le diagramme suivant est commutatif.
E F

G

-f

@
@Rπ2 �

��
SComme on a dim(G) = dim(F ) < +∞ , alors S est un homéomorphisme, voir corollaire 9.1.3.Or on a f = S ◦ π2, donc f est une application ouverte.2. Comme ker(f) est un sous-espace vectoriel fermé de E, alors E/ ker(f) est un espace vectorieltopologique et il existe une application linéaire injective f̃ : E/ ker(f) −→ F telle que f̃ ◦ π = f ,voir proposition 6.4.4. Autrement dit, le diagramme suivant est commutatif.

E F

E/ ker(f)

-f

Q
QQsπ �

��3
f̃Comme f̃ est injective et dim(F ) < +∞, alors dim(E/ ker(f)) < +∞. Il s'ensuit que f̃ estcontinue, voir corollaire 9.1.3. Par conséquent, f est continue.
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158 Chapitre 9. ESPACES VECTORIELS TOPOLOGIQUESDé�nition 9.0.2. Soient E un R-espace vectoriel et A une partie non vide de E. On appellehyperplan d'appui de A, un hyperplan a�ne H contenant au moins un point de A et tel que
A soit inclus dans l'un des demi-espaces fermés déterminés par H. Autrement dit, il existe uneforme linéaire non nulle f sur E, α ∈ R et a ∈ A tels que f(a) = α et A ⊂ {x ∈ E ; f(x) ≤ α}ou A ⊂ {x ∈ E ; f(x) ≥ α}. Dans ce cas, on dit aussi que H est un hyperplan d'appui de A en
a ou que H est un hyperplan d'appui de A passant par le point a.Notons que si f est une forme linéaire non nulle sur E, pour qu'il existe un hyperplan d'appuide A parallèle à l'hyperplan ker(f), il faut et il su�t que l'une des bornes de l'ensemble f(A)soit �nie et appartienne à f(A).Exercice 9.50. Soient E un R-espace vectoriel topologique et A une partie non vide de E.1. Montrer que si H est un hyperplan d'appui de A, alors on a H∩ ◦

A= ∅. En déduire que
H ∩ A ⊂ Fr(A).2. Montrer que si ◦

A 6= ∅, les hyperplans d'appui de A sont fermés.3. Montrer que si A est compact, pour tout hyperplan fermé H0 de E, il existe un hyperpland'appui fermé de A parallèle à H0.4. Montrer que si A est convexe et fermée et si ◦
A 6= ∅, alors par tout point de Fr(A) passe unhyperplan d'appui fermé de A en ce point.5. Montrer que si A est fermée tel que ◦

A 6= ∅ et si par tout point de Fr(A), il passe unhyperplan d'appui de A, alors A est convexe.6. On suppose que E = Rp et que A est une partie convexe non vide de Rp telle que A 6= Rp.Montrer que pour tout x ∈ A ∩ Fr(A) passe un hyperplan d'appui fermé de A en x.Solution. 1. Soit H un hyperplan d'appui de A. Alors il existe une forme linéaire non nulle fsur E et α ∈ R tels que H = {x ∈ E ; f(x) = α} et A ⊂ {x ∈ E ; f(x) ≤ α}. Si H∩ ◦
A 6= ∅,alors on a ◦

H 6= ∅, d'où ◦
ker(f) 6= ∅. Il résulte de la proposition 9.1.4 que l'on a ker(f) = E,ce qui est impossible car f est non nulle. Donc on a bien H∩

◦
A= ∅. Par conséquent, on a

H ∩ A ⊂ A\
◦
A⊂ Fr(A).2. Soient H un hyperplan d'appui de A et f une forme linéaire non nulle sur E et α ∈ R telsque H = {x ∈ E ; f(x) = α} et A ⊂ {x ∈ E ; f(x) ≤ α}. D'après 1, on a ◦

A⊂ {x ∈ E ; f(x) <

α} = Dα. Si ◦
A 6= ∅, alors on a ◦

Dα 6= ∅, d'où ◦
D0 6= ∅. Donc ker(f) n'est pas dense dans E. Ondéduit de la proposition 9.1.12 que f est continue, donc H est fermé.3. On suppose A compact et soit f une forme linéaire continue non nulle sur E telle que H0 =

ker(f). Comme A est compact et f est continue, alors il existe a ∈ A tel que sup
x∈A

f(x) = f(a) = αexiste dans R. Alors l'hyperplan a�ne fermé H = {x ∈ E ; f(x) = α} est un hyperplan d'appuide A parallèle à H0.4. On suppose que A est convexe fermée et que ◦
A 6= ∅. Soit z ∈ Fr(A). Comme ◦

A est un ouvertconvexe non vide tel que z 6∈ ◦
A, d'après le théorème 9.4.1, il existe f ∈ E∗ et α ∈ R tels quepour tout a ∈ ◦

A, on ait f(a) < α ≤ f(z). D'après la proposition 9.1.3, on a A =
◦
A. Comme fest continue, on en déduit que pour tout a ∈ A, on a f(a) ≤ α ≤ f(z). Or A est fermée, donc

z ∈ A. Par conséquent, H = {x ∈ E ; f(x) = α} est un hyperplan d'appui fermé de A passantpar le point z.5. Supposons que A n'est pas convexe, alors il existe x, y ∈ A et z ∈ ]x, y[ tel que z 6∈ A. Comme
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◦
A 6= ∅, alors il existe a ∈ ◦

A tel que a 6∈ {tx + (1 − t)y ; t ∈ R}. Comme ]a, z[ est connexe eton a ]a, z[∩
◦
A 6= ∅ et ]a, z[∩ (E \ A) 6= ∅, alors on a ]a, z[∩Fr(A) 6= ∅. Soit u ∈ ]a, z[∩Fr(A).Par hypothèse, il existe une forme linéaire non nulle f sur E et α ∈ R tels que f(u) = α et

f(b) ≤ α, pour tout b ∈ A. Comme on a u ∈ conv({x, y, a}) et u 6∈ [a, y] ∪ [x, y] ∪ [x, a],alors il existe t, s, r ∈]0, 1[ tels que t + s + r = 1 et u = ta + sx + ry. D'où on a α = f(u) =

tf(a) + sf(x) + rf(y) ≤ tf(a) + sα + rα. Comme a ∈ ◦
A, d'après 1, on a f(a) < α, donc on a

α < tα+ sα+ rα = α, ce qui est impossible. Donc A est bien un ensemble convexe.6. On suppose E = Rp et A une partie convexe non vide de Rp telle que A 6= Rp. Soient
x ∈ A∩Fr(A) et (xn)n≥0 une suite dans Rp \A convergente vers x. D'après l'exercice 7.39, pourtout n ≥ 0, il existe une forme linéaire continue fn sur Rp telle que ‖fn‖ = 1 et pour tout a ∈ A,on ait fn(a) ≤ fn(xn). Comme Rp∗ est de dimension �nie, alors la sphère unité dans (Rp∗, ‖ ‖)est compacte. Donc, il existe une sous-suite (fnk

)k≥1 de (fn)n≥1, qui converge vers f ∈ Rp∗, d'oùon a ‖f‖ = 1. Comme pour tout k ≥ 0 et pour tout a ∈ A, on a fnk
(a) ≤ fnk

(xnk
) et comme ona f(a) = lim

k→+∞
fnk

(a) et f(x) = lim
k→+∞

fnk
(xnk

), alors pour tout a ∈ A, on a f(a) ≤ f(x). Soient
α = f(x) et H = {z ∈ Rp ; f(z) = α}, alors H est un hyperplan d'appui fermé de A passantpar x.Exercice 9.51. Soient (E, 〈 , 〉) un espace de Hilbert réel et B la boule unité fermée de H.Déterminer les hyperplans d'appui de B.Solution. Soit b ∈ B tel que ‖b‖ = 1. Comme B est convexe fermée et on a ◦

B 6= ∅, d'aprèsl'exercice précédent, il existe un hyperplan d'appui fermé H de B passant par le point b. Soient
f ∈ E∗, non nulle, et α ∈ R tels que b ∈ H = {x ∈ E ; f(x) = α} et B ⊂ {x ∈ E ; f(x) ≤ α}.D'après le théorème de Riesz, théorème 8.4.1, il existe z ∈ E tel que pour tout x ∈ E, on ait
f(x) = 〈x, z〉. De plus, on a ‖z‖ = ‖f‖. Pour tout x ∈ B, on a f(x) ≤ α et on a −B = B,d'où α ≥ 0 et on a |f(x)| ≤ α, pour tout x ∈ B. On en déduit que l'on a ‖f‖ ≤ α. On a aussi
‖f‖ ≥ |f(b)| = α, d'où ‖z‖ = ‖f‖ = α. On a z = λb+ y, avec λ ∈ R et y ∈ E tel que 〈b, y〉 = 0et ‖z‖2 = λ2+ ‖y‖2. Donc on a α = f(b) = 〈b, z〉 = λ, d'où y = 0 et on a z = αb. Autrement dit,on a f(x) = 〈x, αb〉, pour tout x ∈ E. Par conséquent, on a ker(f) = {b}⊥, d'où H = {b}⊥ + b.Par conséquent, pour tout b ∈ B tel que ‖b‖ = 1, il existe un unique hyperplan d'appui de Bpassant par b, à savoir l'hyperplan tangent à B en b.Exercice 9.52. Soit B la boule unité fermée de l'espace de Banach c0, considéré comme un
R-espace de Banach et soit f la forme R-linéaire continue sur c0 dé�nie par f(x) = +∞∑

n=0

Re(xn)
2n

,où x = (xn)n≥0 ∈ c0. Montrer qu'il n'existe aucun hyperplan d'appui de B parallèle à l'hyperplanfermé H = ker(f).Solution. Supposons qu'il existe un hyperplan d'appui de B parallèle à l'hyperplan fermé
H = ker(f). Alors il existe α ∈ R tel que pour tout x = (xn)n≥0 ∈ B, on ait +∞∑

n=0

Re(xn)
2n

≤ αet il existe a = (an)n≥0 ∈ B tel que +∞∑

n=0

Re(an)
2n

= α. Pour tout p ≥ 0, soit ξp =

p∑

k=0

ek,alors ξp ∈ B, d'où p∑

k=0

1

2k
≤ α. On fait tendre p vers l'in�ni, on obtient 2 ≤ α. Comme on a
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160 Chapitre 9. ESPACES VECTORIELS TOPOLOGIQUES
α =

+∞∑

n=0

Re(an)
2n

≤
+∞∑

n=0

1

2n
= 2, alors on a +∞∑

n=0

Re(an)
2n

= 2. Par conséquent, pour tout n ≥ 0, ona Re(an) = 1, ce qui est impossible car a ∈ c0. Donc il n'existe aucun hyperplan d'appui de Bparallèle à l'hyperplan fermé H = ker(f).Exercice 9.53. Soient A un ensemble compact non vide d'un R-espace normé (E, ‖ ‖) et
δ = δ(A) le diamètre de A.1. Montrer que la distance de deux hyperplans d'appui de A est au plus égale à δ.2. Montrer qu'il existe a, b ∈ A tels que ‖a − b‖ = δ. Montrer qu'il existe deux hyperplansd'appui parallèles de A, passant respectivement par a et b, et dont la distance est égale à

δ.Solution. 1. Soient H1 et H2 deux hyperplans d'appui de A, alors on a H1∩A 6= ∅ et H2∩A 6= ∅,d'où d(H1,H2) ≤ d(H1 ∩ A,H2 ∩A) ≤ δ.2. On a δ = sup
{
d(x, y) x, y ∈ A

}. Comme A est compact non vide et l'application (x, y) 7−→
‖x−y‖ est continue de A×A dans R, alors il existe a, b ∈ A tels que ‖a−b‖ = δ. Soit B = B′(a, δ)la boule fermée de centre a et de rayon δ dans E. Comme B est convexe fermée et on a ◦

B 6= ∅et b ∈ Fr(B), d'après l'exercice 9.50, il existe une forme linéaire continue non nulle f sur E telleque pour tout x ∈ B, on ait f(x) ≤ f(b) et on a f(a) < f(b) car a ∈ ◦
B. Comme pour tout x ∈ B,on a aussi 2a − x ∈ B, on en déduit que pour tout x ∈ B, on a |f(x) − f(a)| ≤ f(b) − f(a).Comme on a ‖f‖ = sup

{ |f(x)− f(a)|
δ

; x ∈ E tel que ‖x − a‖ = δ

}, voir exercice 6.55,alors ‖f‖ =
f(b)− f(a)

δ
=
f(b)− f(a)
‖a− b‖ . Soient Ha = {x ∈ E ; f(x) = f(a)} = ker(f) + a et

Hb = {x ∈ E ; f(x) = f(b)} = ker(f) + b. Alors Hb est un hyperplan d'appui de A passant par
b. D'après la remarque 6.4.1 et l'exercice 6.43, on a d(Ha,Hb) =

|f(b)− f(a)|
‖f‖ =

f(b)− f(a)
‖f‖ ,d'où d(Ha,Hb) = δ. Il reste à montrer que Ha est un hyperplan d'appui de A passant par a. Soit

x ∈ A. Si f(x) < f(a), alors on a f(x) < f(a) < f(b), d'où f(b) − f(a) < f(b) − f(x). Doncon a ‖a− b‖ ‖f‖ = f(b)− f(a) < f(b)− f(x) ≤ ‖f‖ ‖b− x‖, d'où ‖a− b‖ < ‖b− x‖, ce qui estimpossible. Par conséquent, pour tout x ∈ A, on f(a) ≤ f(x). Donc Ha est bien un hyperpland'appui de A passant par a et parallèle à Hb.Remarque. On déduit de l'exercice 9.15 et de l'exercice 9.50, propriété 1, que si A est unsous-ensemble convexe non vide de Rn, alors les propriétés suivantes sont équivalentes.(i) ◦
A= ∅.(ii) Il existe un hyperplan a�ne H de Rn tel que A ⊂ H.(iii) Pour tout x ∈ A, il existe un hyperplan d'appui de A passant par x.L'exercice qui va suivre est une sorte de généralisation de cette remarque.Exercice 9.54. Soit A une partie non vide convexe fermée d'un R-espace de Banach séparable

(E, ‖ ‖). Montrer que les propriétés suivantes sont équivalentes.(i) A est contenue dans un hyperplan a�ne fermé de E.(ii) Pour tout x ∈ A, il existe un hyperplan d'appui fermé de A passant par x.Solution. L'implication (i) =⇒ (ii) est triviale. En e�et, si B est une partie non vide de E et si
H est hyperplan a�ne fermé de E tel que B ⊂ H, alors pour tout x ∈ B, H est un hyperplan
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161d'appui fermé de B passant par x.Montrons l'implication (ii) =⇒ (i). Sans perdre de généralité, on peut supposer 0 ∈ A. Soit
(xn)n≥1 une suite dense dans A. On pose yn = xn si ‖xn‖ ≤ 1 et yn =

xn
‖xn‖

si ‖xn‖ > 1. Soit
n ≥ 1. Si ‖xn‖ > 1, alors yn =

(
1 − 1

‖xn‖
)
0 + 1

‖xn‖xn ∈ A, donc (yn)n≥1 est une suite dans A.D'après l'exercice 9.22, la série de terme général yn
2n

est convergente dans E et on a a =

+∞∑

n=1

yn
2n
∈

A. Par hypothèse, il existe un hyperplan d'appui fermé de A en a. Autrement dit, il existe uneforme linéaire continue non nulle f sur E telle que pour tout x ∈ A, on ait f(x) ≤ f(a). On vamontrer que A est contenue dans l'hyperplan a�ne fermé H = {x ∈ A ; f(x) = f(a)}. S'il existe
n ≥ 1 tel que f(yn) < f(a), alors on a f(a) = +∞∑

n=1

f(yn)

2n
<

+∞∑

n=1

f(a)

2n
= f(a), ce qui est impossible.Donc pour tout n ≥ 1, on a f(yn) = f(a) ≥ 0 = f(0). Donc pour tout n ≥ 0, on a f(xn) ≥ 0.Comme la suite (xn)n≥1 est dense dans A, alors pour tout x ∈ A, on a f(x) ≥ 0. S'il existe

x ∈ A tel que ‖x‖ > 1, alors il existe n ≥ 1 tel que ‖xn‖ > 1, d'où ‖xn‖f(a) = f(xn) ≤ f(a).Par conséquent, on a f(a) = 0 et on a A ⊂ ker(f) = {x ∈ E ; f(x) = 0 = f(a)}. Si pourtout x ∈ A, on a ‖x‖ ≤ 1, alors pour tout n ≥ 1, on a ‖xn‖ ≤ 1 et donc, pour tout n ≥ 1,on a f(xn) = f(a). Comme la suite (xn)n≥1 est dense dans A, alors pour tout x ∈ A, on a
f(x) = f(a). Par conséquent, on a A ⊂ ker(f) = {x ∈ E ; f(x) = f(a)}.Exercice 9.55[théorème de Minkowski]. En utilisant la notion d'hyperplan d'appui, montrerque si K est un compact convexe non vide de Rn, alors on a K = conv(e(K)), i.e. K estl'enveloppe convexe de ses points extrémaux.Solution. On montre ce résultat par récurrence sur n. Il est clair que le résultat est vrai si
n = 1. Supposons que le résultat est vrai pour tout compact convexe non vide de Rn−1. Soit
K un compact convexe non vide de Rn. D'après l'exercice 9.44, on a K = conv(e(K)) si etseulement si Fr(K) ⊂ conv(e(K)). Soit x ∈ Fr(K). D'après l'exercice 9.50, il existe un hyperpland'appui fermé H de K en x. Soient h une forme linéaire continue non nulle sur Rn et α ∈ Rtels que h(x) = α, H = ker(h) + x = {z ∈ Rn ; h(z) = α} et K ⊂ {z ∈ Rn ; h(z) ≤ α}.Alors K ∩ H est un compact convexe non vide. Montrons que l'on a e(K ∩ H) = e(K) ∩ H.Il est clair que l'on a e(K) ∩ H ⊂ e(K ∩ H). Réciproquement, soient z ∈ e(K ∩ H) ⊂ Het a, b ∈ K tels que z = 1

2a + 1
2b. On a h(z) = 1

2h(a) +
1
2h(b), avec h(z) = α et h(a) ≤ α,

h(b) ≤ α, donc h(a) = h(b) = h(z) = α, d'où on a a, b ∈ K ∩H. Comme z est un point extrémalde K ∩ H, on déduit que l'on a a = b = z. Par conséquent, on a z ∈ e(K) ∩ H. Donc on abien e(K ∩ H) = e(K) ∩ H. Soit f : Rn−1 −→ ker(h) une application linéaire bijective. Alorsl'application
g : Rn−1 −→ H = ker(h) + x

z 7−→ f(z) + xest une application a�ne et c'est un homéomorphisme. D'après l'exercice 9.38, pour toute partieconvexe non vide A de Rn−1, on a e(g(A)) = g(e(A)). SoitK ′ = g−1(K∩H), alorsK ′ est compactconvexe non vide de Rn−1. D'après l'hypothèse de récurrence, on a K ′ = conv(e(K ′)). Parconséquent, on a K∩H = conv(e(K ∩H)) = conv(e(K)∩H) ⊂ conv(e(K), d'où x ∈ conv(e(K).Ainsi, on a montré que l'on a Fr(K) ⊂ conv(e(K)). Donc on a K = conv(e(K)).Remarque 9.0.6. Soit K un compact non vide de Rn. On déduit de la proposition 9.5.2, ducorollaire 9.5.4 et de l'exercice précédent que l'on a conv(K) = conv(e(K)).
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162 Chapitre 9. ESPACES VECTORIELS TOPOLOGIQUESRemarque 9.0.7. Soit K un sous-ensemble non vide, compact et convexe de Rn. On déduit del'exercice précédent et de la proposition 9.5.2 que tout point de K est une combinaison convexed'au plus n+ 1 points extrémaux de K.Exercice 9.56. Soit K un sous-ensemble non vide, compact et convexe d'un espace vectorieltopologique E. Montrer que si K est métrisable, alors l'ensemble des points extrémaux de K estune intersection dénombrable d'ensembles ouverts de K.Solution. Soit d une distance sur K dé�nissant la topologie induite par E sur K. Pour tout
n ≥ 1, soit Fn =

{
x ∈ K ; il existe y, z ∈ K avec x = y+z

2 et d(y, z) ≥ 1
n

}. Montrons que
Fn est fermé dans K. Soient (xk)k≥0 une suite dans Fn et x ∈ K tels que lim

k→+∞
xk = x. Pourtout k ≥ 0, soit yk, zk ∈ K tels que xk = yk+zk

2 et d(yk, zk) ≥ 1
n . Comme K est compact etmétrisable, toute suite de K admet une sous-suite convergente dans K. Quitte à prendre dessous-suites, on peut supposer que (yk)k≥0 et (zk)k≥0 convergent respectivement vers y, z ∈ K.Par conséquent, on a x = y+z

2 et d(y, z) ≥ 1
n , d'où x ∈ Fn. Donc Fn est bien fermé dans K.Comme on a e(K) = K \ ∪

n≥1
Fn = ∩

n≥1
K \ Fn, alors e(K) est une intersection dénombrabled'ensembles ouverts de K.Exercice 9.57. Soient E, F des K-espaces vectoriels et f : E −→ F une application. Rappelonsque f est dite a�ne s'il existe une application linéaire g : E −→ F et s'il existe b ∈ F telsque f = g + b. Il est clair que f est a�ne si et seulement si f − f(0) est linéaire de E dans F .On suppose maintenant que E et F sont des R-espaces vectoriels. Montrer que les propriétéssuivantes sont équivalentes.(i) L'application f est a�ne.(ii) Pour tout x, y ∈ E et pour tout t ∈ [0, 1], on a f(tx+ (1− t)y) = tf(x) + (1− t)f(y).Solution. Montrons l'implication (i) =⇒ (ii). Soient g : E −→ F une application linéaire et

b ∈ F tels que f = g + b. Pour tous x, y ∈ E et t ∈ [0, 1], on a :
f(tx+ (1− t)y) = g(tx+ (1− t)y) + b

= tg(x) + (1− t)g(y) + b

= t(g(x) + b) + (1− t)(g(y) + b)

= tf(x) + (1− t)f(y) .Montrons l'implication (ii) =⇒ (i). Par hypothèse, pour tout x, y ∈ E et pour tout t ∈ [0, 1], ona f(tx + (1 − t)y) = tf(x) + (1 − t)f(y). Soit g = f − f(0). Il s'agit de montrer que g est uneapplication linéaire de E dans F . Notons d'abord que g(0) = 0. Pour tout x, y ∈ E, on a :
f
(
x
2

)
= f

(
1
2x+ 1

20
)
= 1

2f(x) +
1
2f(0) ,

f
(y
2

)
= f

(
1
2y +

1
20
)
= 1

2f(y) +
1
2f(0) ,

f
(x+y

2

)
= f

(
1
2x+ 1

2y
)
= 1

2f(x) +
1
2f(y) .Donc on a f(x+y

2

)
+ f(0) = f

(
x
2

)
+ f
(y
2

), d'où f(x+ y)+ f(0) = f
(2x+2y

2

)
+ f(0) = f(x)+ f(y).Par conséquent, on a :

g(x+ y) = f(x+ y)− f(0) = f(x+ y)+ f(0)− 2f(0) = f(x)− f(0)+ f(y)− f(0) = g(x)+ g(y) .
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163On en déduit par récurrence que pour tout x ∈ E et pour tout n ∈ N, on a g(nx) = ng(x). Ona aussi 0 = g(0) = g(x + (−x)) = g(x) + g(−x), d'où g(−x) = −g(x). Pour tout t ∈ [0, 1], ona f(tx) = f(tx + (1 − t)0) = tf(x) + (1 − t)f(0), d'où f(tx) − f(0) = t(f(x) − f(0)), donc ona g(tx) = tg(x). Soit s ≥ 0, alors il existe n ≥ 1 tel que 0 ≤ s
n ≤ 1, d'où g(sx) = g( sn (nx)) =

s
ng(nx) = n s

ng(x) = sg(x). Soit s ≤ 0, on a g(sx) = g(−s(−x)) = −sg(−x) = −s(−g(x)) =
sg(x). Par conséquent, g est une application linéaire de E dans F .Dé�nition 9.0.3. Soient C une partie convexe d'un K-espace vectoriel E et f : C −→ R uneapplication. On dit que f est une application convexe si pour tout x, y ∈ C et tout t ∈ [0, 1],on a f((1− t)x+ ty) ≤ (1− t)f(x) + tf(y).Exemple 9.0.2. Si E est un R-espace vectoriel et si f : E −→ R est une application a�ne,alors f est une fonction convexe sur E.Exemple 9.0.3. Soit (E, ‖ ‖) un espace normé. Alors la fonction x 7−→ ‖x‖ est une fonctionconvexe sur E.Exercice 9.58. Soit (E, ‖ ‖) un espace normé. Pour tout x ∈ E, on pose f(x) = ‖x‖2. Montrerque f est une fonction convexe sur E.Solution. Pour tout x, y ∈ E et t ∈ [0, 1], on a :

f(tx+ (1− t)y) = ‖tx+ (1− t)y‖2

≤
(
t‖x‖+ (1− t)‖y‖

)2

= t2‖x‖2 + (1− t)2‖y‖2 + 2t(1− t)‖x‖‖y‖ .D'autre part, on a :
tf(x) + (1− t)f(y)−

(
t2‖x‖2 + (1− t)2‖y‖2 + 2t(1− t)‖x‖‖y‖

)
= t(1− t)

(
‖x‖ − ‖y‖

)2
≥ 0 .D'où on a f((1−t)x+ty) ≤ (1−t)f(x)+tf(y). Autrement dit, f est une fonction convexe sur E.Exercice 9.59. Soient (E, ‖ ‖) un espace normé et A une partie non vide de E. Pour tout

x ∈ E, on pose f(x) = d(x,A). Montrer que f est une fonction convexe sur E.Solution. Soient x, y ∈ E et t ∈ [0, 1]. Pour tout a ∈ A, on a :
f(tx+ (1− t)y) ≤ ‖tx+ (1− t)y − a‖

= ‖tx+ (1− t)y − ta− (1 − t)a‖

≤ t‖x− a‖+ (1− t)‖y − a‖ .D'où on a :
f(tx+ (1− t)y) ≤ inf

a∈A
t‖x− a‖+ (1− t)‖y − a‖

= t inf
a∈A
‖x− a‖+ (1− t) inf

a∈A
‖y − a‖

= tf(x) + (1− t)f(y) .
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164 Chapitre 9. ESPACES VECTORIELS TOPOLOGIQUESDonc f est bien une fonction convexe sur E.Exercice 9.60. Soient E un K-espace vectoriel, C une partie convexe de E et f : C −→ R uneapplication. Montrer que les propriétés suivantes sont équivalentes.(i) f est convexe.(ii) L'ensemble epi(f) = {(x, t) ∈ C × R ; f(x) ≤ t
}, appelé épigraphe de f , est une partieconvexe de E × R.

x

f(x)

t epi(f)
C

R

(iii) Pour tout n ∈ N, pour toute suite �nie x1, . . . , xn d'éléments de C et pour toute suite �nie
t1 ≥ 0, . . . , tn ≥ 0 tels que n∑

i=1

ti = 1, on a f( n∑

i=1

tixi

)
≤

n∑

i=1

tif(xi).Solution.Montrons l'implication (i) =⇒ (ii). Supposons f convexe. Soient (x, t1), (y, t2) ∈ epi(f)et s ∈ ]0, 1[. On a s(x, t1)+ (1− s)(y, t2) = (sx+(1− s)y, st1+(1− s)t2). Comme f est convexe,alors on a f(sx+(1−s)y) ≤ sf(x)+(1−s)f(y) ≤ st1+(1−s)t2, donc (sx+(1−s)y, st1+(1−s)t2) ∈epi(f). Par conséquent, epi(f) est une partie convexe de E × R.Montrons l'implication (ii) =⇒ (iii). Soient x1, . . . , xn ∈ C et t1 ≥ 0, . . . , tn ≥ 0 tels que n∑

i=1

ti =

1. Pour tout i ∈ {1, . . . , n}, on a (xi, f(xi)) ∈ epi(f). Par hypothèse, epi(f) est un ensembleconvexe, alors il résulte de la proposition 6.1.3 que l'on a n∑

i=1

ti(xi, f(xi)) ∈ epi(f). Or on a
( n∑

i=1

tixi,

n∑

i=1

tif(xi)
)
=

n∑

i=1

ti(xi, f(xi)), d'où f( n∑

i=1

tixi

)
≤

n∑

i=1

tif(xi).Finalement, l'implication (iii) =⇒ (i) est triviale.Remarque 9.0.8. Lorsque f est une application convexe dé�nie sur un ensemble convexe C ⊂ E,alors les ensembles {x ∈ C ; f(x) ≤ t} et {x ∈ C ; f(x) < t} sont convexes pour tout t ∈ R.La réciproque n'est pas vraie. En e�et, soient E = R, C = [0, +∞[ et pour tout x ∈ C, soit
f(x) = [x], la partie entière de x. Alors l'application f n'est pas convexe et pourtant les ensembles
{x ∈ C ; f(x) ≤ t} et {x ∈ C ; f(x) < t} sont convexes pour tout t ∈ R.Exercice 9.61. Soient E un R-espace vectoriel et C un ensemble convexe non vide de E × R.Soit K = p(C) la projection de C sur E, K est un ensemble convexe non vide de E car p estune application linéaire. Pour tout x ∈ K, on pose f(x) = inf

{
s ∈ R ; (x, s) ∈ C

}. Montrer que
f est une fonction convexe sur l'ensemble convexe K.Solution. Pour tout z ∈ K, on pose Az =

{
s ∈ R ; (z, s) ∈ C

}. Soient x, y ∈ K et t ∈ [0, 1].Soient s, s′ ∈ R tels que (x, s), (y, s′) ∈ C. Alors on a :
(tx+ (1− t)y, ts+ (1− t)s′) = t(x, s) + (1− t)(y, s′) ∈ C ,
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165d'où :
f(tx+ (1− t)y) ≤ ts+ (1− t)s′ .Donc on a :

f(tx+ (1− t)y) ≤ inf
s∈Ax

ts+ (1− t)s′ = tf(x) + (1− t)s′ .Par conséquent, on a :
f(tx+ (1− t)y) ≤ inf

s′∈Ay

tf(x) + (1− t)s′ = tf(x) + (1− t)f(y) .Donc f est bien une fonction convexe.Exercice 9.62. Soient E un K-espace vectoriel et f : E −→ R une application positivementhomogène. Alors f est sous-additive si et seulement si f est convexe.Solution. Supposons d'abord que f est sous-additive. Pour tout x, y ∈ E et pour tout t ∈ [0, 1],on a f(tx+ (1− t)y ≤ f(tx) + f((1− t)y) = tf(x) + (1− t)f(y), donc f est convexe.Réciproquement, supposons que f est convexe. Alors on a :
f(x+ y) = f

(
2
(
x
2 + y

2

))
= 2f

(
x
2 + y

2

)
≤ 2
(
1
2f(x) +

1
2f(y)

)
= f(x) + f(y) .Donc f est sous-additive.Exercice 9.63. Soient E un K-espace vectoriel et f : E −→ R+ une application positivementhomogène. Montrer que les propriétés suivantes sont équivalentes.(i) f est une fonction convexe.(ii) f est sous-additive.(iii) L'ensemble Cf = {x ∈ E ; f(x) ≤ 1} est convexe.Solution. L'équivalence (i) ⇐⇒ (ii) résulte de l'exercice précédent. L'implication (ii) =⇒ (iii)est claire. Montrons l'implication (iii) =⇒ (ii). Supposons donc Cf convexe, et déduisons la sous-additivité de f . Soient x, y ∈ E et s, t ∈ R tels que s > f(x) et t > f(y), alors x

s ,
y
t ∈ Cf .Comme Cf est convexe, on en déduit que l'on a z = s

s+t
x
s + t

s+t
y
t ∈ Cf . Or z = x+y

s+t , donc on a
f(x+ y) ≤ s+ t. Par conséquent, on a f(x+ y) ≤ f(x) + f(y).Exercice 9.64. Soient I un ensemble non vide, (Ci)i∈I une famille d'ensembles convexes nonvides d'un K-espace vectoriel E et pour tout i ∈ I, soit fi : Ci −→ R une fonction convexe.Supposons que C =

{
x ∈ ∩

i∈I
Ci ; sup

i∈I
fi(x) < +∞

}
6= ∅. Montrer que C est un ensemble convexede E et que l'application x 7−→ f(x) = sup

i∈I
fi(x) est une fonction convexe sur C.Solution. Soient x, y ∈ C et t ∈ [0, 1]. Pour tout i ∈ I, tx+ (1− t)y ∈ Ci et on a :

fi(tx+ (1− t)y) ≤ tfi(x) + (1− t)fi(y) ≤ tf(x) + (1− t)f(y) ,d'où sup
i∈I

fi(tx + (1 − t)y) ≤ tf(x) + (1 − t)f(y) < +∞. Donc tx + (1 − t)y ∈ C et on a
f(tx+ (1 − t)y) ≤ tf(x) + (1 − t)f(y). Autrement dit, C est un ensemble convexe et f est unefonction convexe sur C.Exercice 9.65. Soient E un K-espace vectoriel, A un ensemble convexe de E et f : A −→ Rune fonction convexe.

© Dunod, 2011 - Topologie et espaces normés - Nawfal El Hage Hassan



166 Chapitre 9. ESPACES VECTORIELS TOPOLOGIQUES1. Montrer que si A est absorbant et f non constante, alors f ne peut atteindre sa bornesupérieure dans A au point 0.2. Montrer que l'ensemble des points de A où f atteint sa borne inférieure dans A est convexe.Solution. 1. On suppose A absorbant. Supposons que f atteint sa borne supérieure dans Aau point 0. Autrement dit, pour tout x ∈ A, on a f(x) ≤ f(0). Soit x ∈ A. Alors il existe
s > 0 tel que −sx ∈ A. Soit t = s

1+s , alors t ∈ ]0, 1[ et on a 0 = (1 − t)(−sx) + tx. D'où on a
f(0) ≤ (1 − t)f(−sx) + tf(x) ≤ (1 − t)f(0) + tf(x), donc tf(0) ≤ tf(x). Par conséquent, pourtout x ∈ A, on a f(x) = f(0). Donc f est constante.2. Soient t ∈ [0, 1] et a, b ∈ A tels que f(a) ≤ f(x) et f(b) ≤ f(x) pour tout x ∈ A. Alors on a
f(ta+ (1− t)b) ≤ tf(a) + (1− t)f(b) ≤ tf(x) + (1− t)f(x) = f(x). Par conséquent, l'ensembledes points de A où f atteint sa borne inférieure dans A est convexe.Exercice 9.66. Soient U un ouvert convexe non vide d'un espace vectoriel topologique E et
f : U −→ R une application convexe. Montrer que les propriétés suivantes sont équivalentes.(i) f est continue.(ii) Il existe un point a ∈ U tel que f soit continue en a.(iii) Il existe un ouvert non vide V de U dans lequel f est majorée.(iv) f est localement majorée. Autrement dit, pour tout x ∈ U , il existe un voisinage Vx de xdans E dans lequel f est majorée.Solution. Les implications (i) =⇒ (ii) =⇒ (iii) et (i) =⇒ (iv) =⇒ (iii) sont triviales. Il reste àmontrer l'implication (iii) =⇒ (i). Supposons donc qu'il existe un ouvert non vide V de U danslequel f est majorée. SoitM > 0 tel que pour tout x ∈ V , on ait f(x) ≤M . Soit y ∈ V . Montronsd'abord que f est continue en y. Soit W un voisinage équilibré de 0 dans E tel que y +W ⊂ V .Soit ε > 0, alors il existe η ∈ ]0, 1[ tel que η(M − f(y)) < ε. Notons aussi que y + ηW est unvoisinage de y dans E tel que y+ηW ⊂ y+W ⊂ V . Soit z ∈ y+ηW , alors z = y+ηa, avec a ∈W .On a z = (1−η)y+η(y+a), d'où f(z) ≤ (1−η)f(y)+ηf(y+a) ≤ (1−η)f(y)+ηM . Donc on a
f(z)−f(y) ≤ η(M−f(y)). D'autre part, on a y = 1

1+ηz+
(
1− 1

1+η

)
(y−a) et y−a ∈ y+W ⊂ V ,d'où f(y) ≤ 1

1+ηf(z)+
(
1− 1

1+η

)
f(y−a) ≤ 1

1+ηf(z)+
Mη
1+η . Donc on a −η(M−f(y)) ≤ f(z)−f(y).Par conséquent, on a |f(z)−f(y)| ≤ η(M −f(y)) < ε. Donc f est continue en y. Pour compléterla démonstration, il su�t de montrer que pour tout x ∈ U , il existe un voisinage Vx de x dans Etel que Vx ⊂ U et dans lequel f est majorée. Soit x ∈ U . Comme U est un ouvert, alors il existe

t > 1 tel que tx+ (1− t)y ∈ U . Soit W ′ un voisinage équilibré de 0 dans E tel que W ′ ⊂ W et
x+W ′ ⊂ U , alors x+(1− 1

t

)
W ′ est un voisinage de x dans E tel que x+(1− 1

t )W
′ ⊂ x+W ′ ⊂ Uet y+W ′ ⊂ y+W ⊂ V . Montrons que f est majorée dans x+(1− 1

t )W
′. Soit z = x+

(
1− 1

t

)
a,avec a ∈W ′. On a z = x−

(
1− 1

t

)
y +

(
1− 1

t

)
(y + a) = 1

t

(
tx+ (1− t)y

)
+
(
1− 1

t

)
(y + a), d'oùon a :

f(z) ≤ 1
t f(tx+ (1− t)y) +

(
1− 1

t

)
f(y + a) ≤ 1

t f(tx+ (1− t)y) +
(
1− 1

t

)
M .Donc f est bien majorée dans x+ (1− 1

t )W
′.Exercice 9.67. Soient U un ouvert convexe non vide d'un espace vectoriel topologique E et

f : U −→ R une application convexe. Montrer que les propriétés suivantes sont équivalentes.(i) f est continue.(ii) Il existe un point a ∈ U et il existe t ∈ R tels que (a, t) ∈
◦epi(f).
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167Solution. Montrons l'implication (i) =⇒ (ii). Soit a ∈ U . D'après l'exercice précédent, il existeun voisinage ouvert Va de a dans E tel que Va ⊂ U et tel que la restriction de f à Va soit majoréepar un réel s. Soient ε > 0 et t = s + ε. Alors on a (a, t) ∈ Va ×
]
s+ ε

2 , s +
3ε
2

[
⊂ epi(f). Doncon a (a, t) ∈

◦epi(f).Montrons l'implication (ii) =⇒ (i). Soient a ∈ U et t ∈ R tels que (a, t) ∈
◦epi(f), alors il existeun voisinage ouvert W de a dans E tel que W × {t} ⊂ epi(f). Soit V = W ∩ U , alors V est unvoisinage ouvert de a dans E tel que V ⊂ U et pour tout x ∈ V , on ait f(x) ≤ t. Il résulte del'exercice précédent que f est continue.Exercice 9.68. Soient U un ouvert convexe non vide de Rn et f : U −→ R une applicationconvexe. Montrer que f est continue.Solution. Sans perdre de généralité, on peut supposer 0 ∈ U . Comme U est un ouvert nonvide de Rn, alors on a Vect(U) = Rn, voir proposition 9.1.4. Soient a1, . . . , an ∈ U tel que

A = {a1, . . . , an} soit une base de l'espace vectoriel Rn. Soit a0 = 0, on a conv(A ∪ {0}) ={ n∑

i=0

tiai ; ti ≥ 0 et n∑

i=0

ti = 1

}. Soit M = max
0≤i≤n

f(ai), alors pour tout z =

n∑

i=0

tiai ∈conv(A∪ {0}), on a f(z) ≤ n∑

i=0

tif(ai) ≤
n∑

i=0

tiM =M . Donc f est majorée dans conv(A∪ {0}).Comme conv(A∪ {0}) est d'intérieure non vide, voir remarque 9.6.2, il résulte de l'exercice 9.66que f est continue.Exercice 9.69. Soit (E, ‖ ‖) un espace normé.1. Soient r > 0 et g : B(0, r) −→ R une fonction convexe telle que pour tout x ∈ B(0, r), onait |g(x)| ≤ 1. Montrer que pour tout x, y ∈ B(0, r
2

), on a |g(x) − g(y)| ≤ 5
r‖x− y‖.2. En déduire que si U est un ouvert non vide E et si f : U −→ R est une fonction convexecontinue, alors f est localement lipschitzienne.Solution. 1. Soient x, y ∈ B

(
0, r

2

). Supposons que l'on a g(y) − g(x) > 5
r‖x − y‖. Soit z =

y +
r(y − x)
2‖x− y‖ . Alors z ∈ B(0, r) et on a y =

1

2‖x− y‖+ r

(
rx + 2‖x − y‖z

). Comme g estconvexe, alors on a g(y) ≤ 1

2‖x− y‖+ r

(
rg(x) + 2‖x − y‖g(z)

). On en déduit que l'on a
2‖x − y‖g(y) + r(g(y) − g(x)) ≤ 2‖x − y‖g(z). Par conséquent, on a −2‖x − y‖ + 5‖x − y‖ ≤
2‖x− y‖g(z), d'où 3

2 ≤ g(z), ce qui est impossible. Donc on a bien g(y)− g(x) ≤ 5
r‖x− y‖. Onen déduit que pour tout x, y ∈ B(0, r

2), on a |g(x) − g(y)| ≤ 5
r‖x− y‖.2. Soit x0 ∈ U . Comme f est continue en x0, alors il existe r > 0 tel que B(x0, r) ⊂ U et tel quepour tout x ∈ B(x0, r), on ait |f(x) − f(x0)| ≤ 1. On a B(x0, r) = x0 + B(0, r), et pour tout

z ∈ B(0, r), on pose g(z) = f(x0 + z) − f(x0). Alors g est une fonction convexe et pour tout
z ∈ B(0, r), on a |g(z)| ≤ 1. D'après 1, pour tout a, b ∈ B(0, r

2

), on a |g(a) − g(b)| ≤ 5
r‖a− b‖,d'où |f(x0+a)−f(x0+ b)| ≤ 5

r‖a− b‖ = 5
r‖x0+a− (x0+ b)‖. Or on a B(x0, r

2

)
= x0+B

(
0, r

2

).Par conséquent, pour tout x, y ∈ B
(
x0,

r
2

), on a |f(x) − f(y)| ≤ 5
r‖x − y‖. Donc f est bienlocalement lipschitzienne.Exercice 9.70. Soit (E, ‖ ‖) un espace normé.1. Soit C un convexe non vide de E et f : U −→ R une fonction convexe et lipschitzienne derapport K. Pour tout x ∈ E, on pose F (x) = inf

{
f(z) +K‖z− x‖ ; z ∈ C

}. Montrer que
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168 Chapitre 9. ESPACES VECTORIELS TOPOLOGIQUES
F est une fonction convexe de E dans R et lipschitzienne de rapport K telle que pour tout
x ∈ C, on ait F (x) = f(x).2. Soit U un ouvert non vide de (E, ‖ ‖) et g : U −→ R une fonction convexe continue.Montrer que pour tout a ∈ U , il existe r > 0 et il existe h : E −→ R une fonction convexecontinue tels que B(a, r) ⊂ U et h|B(a,r)

= g|B(a,r)
.Solution. 1. Soient a ∈ C et x ∈ E. Pour tout z ∈ C, on a f(a) − f(z) ≤ K‖a − z‖ ≤

K‖a − x‖ + K‖x − z‖, d'où f(a) − K‖a − x‖ ≤ f(z) + K‖z − x‖. Donc F est bien dé�nie. Ilest clair que pour tout x ∈ C, on a F (x) = f(x). Pour tout x, y ∈ E, on a f(z) +K‖z − x‖ ≤
f(z)+K‖z−y‖+K‖y−x‖, d'où F (x) ≤ F (y)+K‖y−x‖. On en déduit que pour tout x, y ∈ E,on a |F (x)− F (y)| ≤ K‖y − x‖. Donc F est lipschitzienne de rapport K. Il reste à montrer que
F est convexe. Soient x, y ∈ E et t ∈ [0, 1]. Pour tout z ∈ C, on a :

f(z) +K‖z − (tx+ (1− t)y)‖ = tf(z) + (1− t)f(z) +K‖t(z − x) + (1− t)(z − y)‖

≤ tf(z) + (1− t)f(z) + tK‖z − x‖+ (1− t)K‖z − y‖

= t(f(z) +K‖z − x‖) + (1− t)(f(z) +K‖z − y‖) .Par conséquent, on a F (tx + (1 − t)y) ≤ tF (x) + (1 − t)F (y). Donc F est bien une fonctionconvexe.2. Il su�t de combiner 1 et l'exercice précédent.Exercice 9.71. Soient C une partie convexe fermée d'un R-espace localement convexe E et
f : C −→ R une application convexe et semi-continue inférieurement.1. Montrer que epi(f) est une partie convexe et fermée de E × R.2. Soit ϕ une forme linéaire continue sur E×R. Montrer qu'il existe b ∈ R et v ∈ E∗ tels quepour tout (x, t) ∈ E × R, on ait ϕ(x, t) = v(x) + bt.3. Soient x ∈ C et ε > 0. En appliquant le théorème 9.4.1 à epi(f) et (x, f(x) − ε), montrerqu'il existe u ∈ E∗ et a ∈ R tels que f(x)−ε ≤ u(x)+a et pour tout y ∈ C, u(y)+a ≤ f(y).4. En déduire qu'il existe une famille (gi)i∈I de fonctions a�nes continues de E dans R telleque pour tout x ∈ C, on ait f(x) = sup

i∈I
gi(x).Solution. 1. Comme f est une fonction convexe, il résulte de l'exercice 9.60 que epi(f) est unepartie convexe de E×R. Comme f est semi-continue inférieurement, il résulte de l'exercice 1.44que epi(f) est fermée dans C ×R. Or C ×R est fermé dans E ×R, donc epi(f) est fermée dans

E × R.2. Soit ϕ une forme linéaire continue sur E × R. Pour tout x ∈ E, on pose v(x) = ϕ((x, 0)), etsoit b = ϕ((0, 1)), alors v ∈ E∗, b ∈ R et pour tout (x, t) ∈ E × R, on a :
ϕ(x, t) = ϕ((x, 0)) + tϕ((0, 1)) = v(x) + bt .3. Comme epi(f) est une partie convexe et fermée de E × R telle que (x, f(x) − ε) 6∈ epi(f),d'après le théorème 9.4.1, il existe une forme linéaire continue ϕ sur E × R telle que pour tout

y ∈ C, on ait ϕ((y, f(y))) < ϕ((x, f(x) − ε)). D'après 2, il existe alors b ∈ R et v ∈ E∗ tels quepour tout y ∈ C, on ait v(y) + bf(y) < v(x) + (f(x)− ε)b. Donc on a bf(x) < (f(x)− ε)b, d'où
b < 0. Par conséquent, pour tout y ∈ C, on a :

−1
b v(y)− f(y) < −1

b

(
v(x) + (f(x)− ε)b

)
.

© Dunod, 2011 - Topologie et espaces normés - Nawfal El Hage Hassan



169Soient u = −1
b v et a = 1

b

(
v(x) + (f(x)− ε)b

), alors u ∈ E∗, a ∈ R, f(x)− ε = u(x) + a et pourtout y ∈ C, on a u(y) + a ≤ f(y).4. Soit A l'ensemble des fonctions a�nes continues g de E dans R telle que pour tout x ∈ C, onait g(x) ≤ f(x). D'après 3, A 6= ∅ et donc pour tout x ∈ C, on a sup
g∈A

g(x) ≤ f(x). Soit x ∈ C.D'après 3, pour tout n ∈ N∗, il existe gn ∈ A telle que f(x)− 1
n ≤ gn(x) ≤ sup

g∈A
g(x). On fait tendre

n vers l'in�ni, on obtient f(x) ≤ sup
g∈A

g(x). Par conséquent, pour tout x ∈ C, on a f(x) = sup
g∈A

g(x).Exercice 9.72. Soient I un intervalle de R et f : I −→ R une fonction. Montrer que lespropriétés suivantes sont équivalentes.(i) f est une fonction convexe.(ii) Pour tous x, y, z ∈ I tels que x < y < z, on a :
(z − x)f(y) ≤ (z − y)f(x) + (y − x)f(z) ,

f(z)− f(x)
z − x ≤ f(z)− f(y)

z − y ,
f(y)− f(x)

y − x ≤ f(z)− f(x)
z − x et f(y)− f(x)

y − x ≤ f(z)− f(y)
z − y .(iii) Pour tout a ∈ I, l'application

t 7−→ ϕ(t) =
f(t)− f(a)

t− aest croissante sur I \ {a}.(iv) Pour tous x, y, z ∈ I tels que x < y < z, on a f(y)− f(x)
y − x ≤ f(z)− f(y)

z − y .(v) Pour tous x, y, z ∈ I tels que x < y < z, le déterminant
∣∣∣∣∣∣

1 1 1
x y z

f(x) f(y) f(z)

∣∣∣∣∣∣est positif.Solution. Montrons l'implication (i) =⇒ (ii). Soient x, y, z ∈ R tels que x < y < z. Soit
t =

y − x
z − x , alors t ∈ ]0, 1[, 1− t = z − y

z − x et on a y = (1− t)x+ tz. Comme f est convexe, alorson a f(y) ≤ (1− t)f(x) + tf(z), d'où :
(z − x)f(y) ≤ (z − y)f(x) + (y − x)f(z) .On a : f(y)− f(z) ≤ (1− t)f(x) + tf(z)− f(z) = (1− t)(f(x)− f(z)), d'où :

f(z)− f(x)
z − x ≤ f(z)− f(y)

z − y .On a aussi f(y)− f(x) ≤ t(f(z)− f(x)), d'où :
f(y)− f(x)

y − x ≤ f(z)− f(x)
z − x et f(y)− f(x)

y − x ≤ f(z)− f(y)
z − y .
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170 Chapitre 9. ESPACES VECTORIELS TOPOLOGIQUESLes implications (ii) =⇒ (iii) =⇒ (iv) sont triviales.Montrons l'équivalence (iv) ⇐⇒ (v). Soient x, y, z ∈ I tels que x < y < z. On a :
∣∣∣∣∣∣

1 1 1
x y z

f(x) f(y) f(z)

∣∣∣∣∣∣
=

∣∣∣∣∣∣

1 1 0
x y z − y

f(x) f(y) f(z)− f(y)

∣∣∣∣∣∣

=

∣∣∣∣∣∣

1 0 0
x y − x z − y

f(x) f(y)− f(x) f(z)− f(y)

∣∣∣∣∣∣

= (y − x)(f(z) − f(y))− (z − y)(f(y)− f(x))

= (y − x)(z − y)
(
f(z)− f(y)

z − y − f(y)− f(x)
y − x

)
.Par conséquent, on a bien l'équivalence (iv) ⇐⇒ (v).Montrons l'implication (iv) =⇒ (i). Soient x, z ∈ I tels que x < z. Soient t ∈ ]0, 1[ et y =

tx+ (1− t)z. Comme on a x < y < z, alors par hypothèse, on a f(y)− f(x)
y − x ≤ f(z)− f(y)

z − y . Onen déduit que l'on a :
f(y) ≤ z − y

z − xf(x) +
y − x
z − xf(z) .Or on a z − y

z − x = t et y − x
z − x = 1 − t, d'où f(y) ≤ tf(x) + (1 − t)f(z). Donc f est une fonctionconvexe.Exercice 9.73. Soient I un intervalle de R et f : I −→ R une fonction.1. Montrer que si f est une fonction convexe, alors pour tout a ∈ ◦

I, les dérivées à gauche
f

′

g(a) et à droite f ′

d(a) existent dans R et on a f ′

g(a) ≤ f
′

d(a).2. Montrer que si f est continue sur I et dérivable sur ◦
I, alors f est convexe si et seulementsi f ′ est croissante sur ◦

I.3. Montrer que si f est continue sur I et deux fois dérivable sur ◦
I, alors f est convexe si etseulement si f ′′ est positive sur ◦

I.Solution. 1. Soit a ∈ ◦
I. Pour tout x ∈ I \ {a}, on pose ϕ(x) = f(x)−f(a)

x−a . Soient s, t ∈ I tels que
s < a < t. D'après l'exercice précédent, la fonction s 7−→ ϕ(s) est croissante sur ] −∞, a[∩ Iet majorée par ϕ(t), alors f ′

g(a) = lim
s →
s<a

a
ϕ(s) existe dans R et on a f ′

g(a) ≤ ϕ(t). De même, lafonction t 7−→ ϕ(t) est croissante sur I∩ ]a, +∞[ et minorée par f ′

g(a), donc f ′

d(a) = lim
t →
t>a

a
ϕ(t)existe dans R et on a f ′

g(a) ≤ f
′

d(a).2. On suppose que f est continue sur I et dérivable sur ◦
I . Supposons d'abord que f est convexe.Soient a, b ∈ ◦

I tels que a < b. On a f ′(a) = f
′

g(a) ≤ f
′

d(a) ≤
f(b)− f(a)

b− a ≤ f ′

g(b) ≤ f
′

d(b) = f ′(b).Donc f ′ est croissante sur ◦
I.Réciproquement, supposons que f ′ est croissante sur ◦

I. Soient x, y, z ∈ I tels que x < y < z.
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171Comme f est continue sur I et dérivable sur ◦
I, d'après le théorème des accroissements �nis ilexiste a ∈ ]x, y[ et b ∈ ]y, z[ tels que f(y)− f(x)

y − x = f ′(a) et f(z)− f(y)
z − y = f ′(b). Or f ′ estcroissante, donc on a f(y)− f(x)

y − x ≤ f(z)− f(y)
z − y . Il résulte de l'exercice précédent que f est unefonction convexe.3. Ceci résulte de 2 et du théorème des accroissements �nis.
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Chapitre 10TOPOLOGIES FAIBLE ET ∗-FAIBLEProposition (Schur). Dans l'espace de Banach (`1, ‖ ‖1) une suite est convergente pour lanorme si et seulement si elle est faiblement convergente.Démonstration. Soit (ξk)k≥0 une suite dans (`1, ‖ ‖1), qui converge faiblement vers un élément
ξ ∈ `1. Il s'agit de montrer que l'on a lim

k→+∞
‖ξk − ξ‖1 = 0. Quitte à remplacer ξk par ξk − ξ, onpeut supposer ξ = 0. Notons que pour tout k ≥ 0, on a ξk = (xk,n)n≥0, avec xk,n ∈ K. Rappelons,voir proposition 7.4.2, que (ξk)k≥0 converge faiblement vers 0 si et seulement si pour tout élément

y = (yn)n≥0 ∈ `∞, on a lim
k→+∞

∞∑

n=0

xk,nyn = 0. Par conséquent, on peut aussi supposer que pourtout k, n ∈ N, on a xk,n ∈ R. On déduit aussi que pour tout n ≥ 0, on a lim
k→+∞

xk,n = 0. Donc,pour tout p ≥ 0, on a lim
k→+∞

p∑

n=0

|xk,n| = 0. On raisonne par l'absurde en supposant que (ξk)k≥0converge faiblement vers 0, mais (‖ξk‖1)k≥0
ne converge pas vers 0. Alors il existe ε > 0 tel quepour tout k ≥ 0, il existe k′ ≥ k tel que ‖ξk′‖1 ≥ ε. En multipliant par 2

ε , puis en extrayantune sous-suite, on peut supposer que pour tout k ≥ 0, on a ‖ξk‖1 > 1. Alors, on va construirepar récurrence une sous-suite (ξϕ(k))k≥0 de (ξk)k≥0 et une sous-suite d'entiers (nk)k≥0 telles que
n0 = 0 et pour tout k ≥ 0, on ait :

|zk,nk+1|+ · · ·+ |zk,nk+1
| > 3

4

∥∥ξϕ(k)
∥∥
1

(10.1)où ξϕ(k) = (zk,n)n≥0. En e�et, soit n0 = 0. Comme on a lim
k→+∞

xk,0 = 0, alors il existe un r0 ∈ N telque pour tout k ≥ r0, on ait |xk,0| < 1
4 <

1
4‖ξk‖1. D'où, pour tout k ≥ r0, on a ∞∑

j=1

|xk,j| > 3
4‖ξk‖1.On pose ϕ(0) = r0 et on choisit n1 tel que n1∑

j=1

|xr0,j| > 3
4‖ξr0‖1. Supposons que l'on a construit

n0, . . . , np et ϕ(0), . . . , ϕ(p − 1) véri�ant l'équation (10.1). Comme on a lim
k→+∞

np∑

j=0

|xk,j| = 0,alors il existe rp > ϕ(p − 1) tel que pour tout k ≥ rp, on ait np∑

j=0

|xk,j| < 1
4 < 1

4‖ξk‖1. D'où,pour tout k ≥ rp, on a ∞∑

j>np

|xk,j| > 3
4‖ξk‖1. On pose ϕ(p) = rp et on choisit np+1 tel que173
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174 Chapitre 10. TOPOLOGIES FAIBLE ET ∗-FAIBLE
np+1∑

j>np

|xrp,j| > 3
4‖ξrp‖1. Soit y = (yn)n≥0 ∈ `∞, dé�ni par y0 = sgn(z0,0) et yn = sgn(zk,n) si

nk < n ≤ nk+1. Alors on a :
∞∑

n=0

zk,nyn ≥
nk+1∑

n=nk+1

|xk,n| −
nk∑

n=0

|xk,n| −
∞∑

n=nk+1+1

|xk,n|

= 2

( nk+1∑

n=nk+1

|xk,n|
)
− ‖ξϕ(k)‖1

> 3
2‖ξϕ(k)‖1 − ‖ξϕ(k)‖1

= 1
2‖ξϕ(k)‖1

> 1
2 .Ce qui contredit le fait que la suite (ξϕ(k))k≥0 converge faiblement vers 0. Par conséquent,(

‖ξk‖1
)
k≥0

converge bien vers 0. �Proposition. Soit (E, T ) un espace vectoriel topologique tel que E∗ sépare les points de E. Alors
E∗ muni de la topologie ∗-faible est métrisable si et seulement si E admet une base algébrique�nie ou dénombrable.Démonstration. Si E admet une base algébrique �nie, il résulte de la proposition 10.1.2 que
E∗ muni de la topologie ∗-faible est normable, donc métrisable. Supposons maintenant que Eadmet une base algébrique dénombrable (en)n≥0. La famille des parties �nies et non vides de Nest dénombrable. Soit (In)n≥0 une telle famille. Pour tout m ≥ 0, soit :

Vn,m =
{
f ∈ E∗ ; |f(ek)| < 1

m+1 , pour tout k ∈ In} .Alors (Vn,m)(n,m)∈N2 est une famille dénombrable de voisinages ouverts de 0 dans E∗ muni dela topologie ∗-faible. Pour montrer que E∗ est métrisable, d'après le théorème 9.1.1, il su�tde montrer que (Vn,m)(n,m)∈N2 est une base locale de E∗. Soient x1, . . . , xp ∈ E, ε > 0, et
V =

{
f ∈ E∗ ; |f(xi)| < ε , pour tout 1 ≤ i ≤ p

}. Comme (en)n≥0 est base algébrique de E,alors il existe n ≥ 0 tel que x1, . . . , xp ∈ Vect({ek ; k ∈ In}). Pour tout i, avec 1 ≤ i ≤ p, il existe
αi,k ∈ K tels que xi = ∑

k∈In
αi,kek. Soit m ≥ 0 tel que ∑

k∈In

1

m+ 1
|αi,k| < ε, pour tout 1 ≤ i ≤ p.Alors on a Vn,m ⊂ V . Par conséquent, (Vn,m)(n,m)∈N2 est une base locale de E∗. Donc E∗ munide la topologie ∗-faible est métrisable.Réciproquement, supposons que E∗ muni de la topologie ∗-faible est métrisable. Soit (Wn

)
n≥0une base locale dénombrable de E∗. Pour tout n ≥ 0, il existe un sous-ensemble �ni An de E et

εn > 0 tels que Vn =
{
f ∈ E∗ ; |f(x)| < εn , pour tout x ∈ An

}
⊂Wn. Soit A = ∪

n≥0
An. Alors Aest un sous-ensemble au plus dénombrable de E. Montrons que l'on a Vect(A) = E. Soit y ∈ E,alors V = {f ∈ E∗ ; |f(y)| < 1} est un voisinage de 0 dans E∗ muni de la topologie ∗-faible.Donc il existe n ≥ 0 tel que Vn ⊂ V . Pour tout x ∈ E, soit J(x) : E∗ −→ K la forme linéairedé�nie par J(x)(f) = f(x), pour tout f ∈ E∗. Ainsi, on a :

Vn =
{
f ∈ E∗ ; |J(x)(f)| < εn , pour tout x ∈ An

}
⊂ V =

{
f ∈ E∗ ; |J(y)(f)| < 1

}
.
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175D'après le lemme 7.8.2, il existe αx ∈ K tels que J(y) = ∑

x∈An

αxJ(x). Autrement dit, pour tout
f ∈ E∗, on a f(y) = f

( ∑

x∈An

αxx
). Comme E∗ sépare les points de E, alors on a y =

∑

x∈An

αxx,donc y ∈ Vect(A), d'où on a Vect(A) = E. �Proposition Soient X un espace compact et E = C(X) muni de la norme ‖ ‖∞. Alors on a
e(BE∗) =

{
λδx ; x ∈ X et λ ∈ K , avec |λ| = 1

}.Démonstration. Rappelons d'abord que δx est la forme linéaire continue sur E dé�nie par
δx(f) = f(x), pour tout f ∈ E. Soit A =

{
λδx ; x ∈ X et λ ∈ K , avec |λ| = 1

}. Comme on a
A ⊂ BE∗ et BE∗ est convexe et ∗-faiblement compact, alors on a conv(A) ⊂ BE∗, l'adhérenceest pour la topologie ∗-faible. Montrons d'abord que l'on a conv(A) = BE∗ . Supposons queconv(A) 6= BE∗ et soit µ ∈ BE∗ tel que µ 6∈ conv(A). D'après les théorèmes 9.4.1 et 10.1.1, ilexiste f ∈ E et α, β ∈ R tels que pour tout x ∈ X et pour tout λ ∈ K avec |λ| = 1, on aitRe(λf(x)) < α < β < Re(µ(f)). On en déduit que pour tout x ∈ X, on a |f(x)| < α < β <Re(µ(f)) ≤ ‖f‖∞. Par conséquent, on a ‖f‖∞ < α < β < ‖f‖∞, d'où la contradiction. Donc ona bien conv(A) = BE∗ . Puisque l'application (λ, x) 7−→ λδx est continue de K×X dans E∗, munide la topologie ∗-faible, on en déduit que A est ∗-faiblement compact. On déduit du théorème9.5.4 que l'on a e(BE∗) ⊂ A. Pour avoir le résultat, il reste à montrer que pour tout x ∈ X etpour tout λ ∈ K avec |λ| = 1, λδx est un point extrémal de BE∗ . Soient x ∈ X, t ∈ ]0, 1[ et
µ1, µ2 ∈ BE∗ tels que δx = tµ1 + (1 − t)µ2. Soit 1 la fonction constante égale à 1 sur X, alorson a 1 = δx(1) = tµ1(1) + (1 − t)µ2(1). Or on a |µ1(1)| ≤ 1 et |µ2(1)| ≤ 1, d'où µ1(1) = 1et µ2(1) = 1, voir exercice 9.32. Soit f ∈ BE telle que f ≥ 0 sur X et f(x) = 0. Alors on a
‖1 − f‖∞ = 1 et 1 = δx(1 − f) = tµ1(1 − f) + (1 − t)µ2(1 − f), d'où on a µ1(1 − f) = 1 et
µ2(1 − f) = 1. Donc on a µ1(f) = 0 et µ2(f) = 0. Soit f ∈ BE telle que f(x) = 0, alors on a
f = g − h+ i(p − q), avec g, h, p, q ∈ BE , g ≥ 0, h ≥ 0, p ≥ 0 et q ≥ 0 sur X et g(x) = h(x) =
p(x) = q(x) = 0. Il résulte de ce qui précède que l'on a µ1(g) = µ1(h) = µ1(p) = µ1(q) = 0et µ2(g) = µ2(h) = µ2(p) = µ2(q) = 0. Donc on a µ1(f) = µ2(f) = 0. Autrement dit, on a
ker(δx) ⊂ ker(µ1) et ker(δx) ⊂ ker(µ2). Par conséquent, il existe a, b ∈ K tels que µ1 = aδx et
µ2 = bδx. D'où on a δx = taδx+(1−t)bδx. Donc on a 1 = ta+(1−t)b. Comme on a µ1, µ2 ∈ BE∗ ,alors |a| ≤ 1 et |b| ≤ 1, on en déduit a = b = 1. Par conséquent, on a µ1 = µ2 = δx. Ainsi,
δx est un point extrémal de BE∗. Soit λ ∈ K avec |λ| = 1. Véri�ons que λδx est aussi un pointextrémal de BE∗ . Soient t ∈ ]0, 1[ et µ1, µ2 ∈ BE∗ tels que λδx = tµ1 + (1 − t)µ2. Alors on a
δx = t

µ1
λ

+ (1 − t)µ2
λ
, avec µ1

λ
,
µ2
λ
∈ BE∗ . Il résulte du raisonnement ci-dessus que l'on a alors

δx =
µ1
λ

=
µ2
λ
, d'où λδx = µ1 = µ2. Donc λδx est bien un point extrémal de BE∗. �Lemme. Soient (E, ‖ ‖) un R-espace normé et x ∈ E \ {0}. Les propriétés suivantes sontéquivalentes.(i) La norme ‖ ‖ est Gâteaux di�érentiable en x.(ii) Pour tout h ∈ E, lim

t→0

‖x+ th‖ − ‖x‖
t

existe dans R.(ii) Pour tout h ∈ E, lim
t→0

‖x+ th‖+ ‖x− th‖ − 2‖x‖
t

= 0.Démonstration. L'application (i) =⇒ (ii) résulte immédiatement de la dé�nition.L'application (ii) =⇒ (iii) résulte de l'égalité suivante :
‖x+ th‖ − ‖x‖

t
− ‖x− th‖ − ‖x‖−t =

‖x+ th‖+ ‖x− th‖ − 2‖x‖
t

. (10.2)
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176 Chapitre 10. TOPOLOGIES FAIBLE ET ∗-FAIBLEPreuve de (iii) =⇒ (i). Soit h ∈ E. Puisque l'application suivante
R −→ R

t 7−→ ‖x+ th‖est convexe, alors :
G−

x (h) = lim
t→0−

‖x+ th‖ − ‖x‖
t

et G+
x (h) = lim

t→0+

‖x+ th‖ − ‖x‖
texistent dans R et on a G−

x (h) ≤ G+
x (h), voir exercice 9.73. Par hypothèse, on a :

lim
t→0

‖x+ th‖+ ‖x− th‖ − 2‖x‖
t

= 0 .Il résulte de l'égalité (10.2) que l'on a G−
x (h) = G+

x (h). Autrement dit, lim
t→0

‖x+ th‖ − ‖x‖
t

existedans R. Pour tout h ∈ E, soit Gx(h) = lim
t→0

‖x+ th‖ − ‖x‖
t

. Il s'agit de montrer que Gx est uneforme linéaire continue sur E. On a :
Gx(−h) = lim

t→0

‖x− th‖ − ‖x‖
t

= − lim
t→0

‖x− th‖ − ‖x‖
−t = −Gx(h) .On a Gx(0) = 0, et pour tout λ ∈ R \ {0}, on a :

Gx(λh) = lim
t→0

‖x+ tλh‖ − ‖x‖
t

= λ lim
t→0

‖x+ tλh‖ − ‖x‖
λ

= λGx(h) .Pour tout h1, h2 ∈ E et pour tout s ∈ [0, 1], on a :
‖x+ t(sh1 + (1− s)h2)‖ − ‖x‖ = ‖s(x+ th1) + (1− s)(x+ th2)‖ − s‖x‖ − (1− s)‖x‖

≤ s‖x+ th1‖+ (1 − s)‖x+ th2‖ − s‖x‖ − (1− s)‖x‖

= s
(
‖x+ th1‖ − ‖x‖

)
+ (1− s)

(
‖x+ th2‖ − ‖x‖

)
.Par conséquent, on a Gx(sh1+(1−s)h2) ≤ sGx(h1)+(1−s)Gx(h2). On déduit de ce qui précèdeque l'on a Gx(h1 + h2) = 2Gx(

1
2h1 +

1
2h2) ≤ Gx(h1) + Gx(h2). On a aussi Gx(h1) + Gx(h2) =

−Gx(−h1)−Gx(−h2) ≤ −Gx(−h1−h2) = Gx(h1+h2). Donc on aGx(h1+h2) = Gx(h1)+Gx(h2).Par conséquent, Gx est une forme R-linéaire sur E. On a :
∣∣∣∣
‖x+ th‖ − ‖x‖

t

∣∣∣∣ =
∣∣‖x+ th‖ − ‖x‖

∣∣
|t| ≤ ‖x+ th− x‖

|t| = ‖h‖ ,d'où |Gx(h)| ≤ ‖h‖, donc Gx est continue. De plus, on a Gx(x) = ‖x‖, d'où ‖Gx‖ = 1. �Théorème. Soient (E, ‖ ‖) un espace normé et x ∈ E \ {0}. Les propriétés suivantes sontéquivalentes.(i) La norme ‖ ‖ est Gâteaux di�érentiable en x, quand on considère (E, ‖ ‖) comme un
R-espace normé.(ii) Pour toutes suites (fn)n≥0 et (gn)n≥0 dans SE∗ véri�ant lim

n→+∞
fn(x) = lim

n→+∞
gn(x) = ‖x‖,la suite (fn − gn)n≥0 converge ∗-faiblement vers 0 dans E∗.
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177(iii) Il existe une unique f ∈ E∗ telle ‖f‖ = 1 et f(x) = ‖x‖.Démonstration. Rappelons d'abord que si (fn)n≥0 est une suite dans E∗, alors (fn)n≥0 converge
∗-faiblement vers 0 dans E∗ si et seulement si pour tout h ∈ E, la suite (fn(h))n≥0 converge vers
0 dans K. D'autre part, d'après la proposition 7.4.5, on peut considérer dans ce théorème que
(E, ‖ ‖) est un R-espace normé.Montrons l'implication (i) =⇒ (ii). Soient (fn)n≥0 et (gn)n≥0 deux suites dans SE∗ véri�ant
lim

n→+∞
fn(x) = lim

n→+∞
gn(x) = ‖x‖. Soit h ∈ E. Comme la norme ‖ ‖ est Gâteaux di�érentiableen x, d'après le lemme précédent, on a :

lim
t→0

‖x+ th‖+ ‖x− th‖ − 2‖x‖
t

= 0 .Soit ε > 0, alors il existe η > 0 tel que pour tout t ∈ R véri�ant |t| ≤ η, on ait :
∣∣∣∣
‖x+ th‖+ ‖x− th‖ − 2‖x‖

t

∣∣∣∣ < ε .Comme on a lim
n→+∞

fn(x) = lim
n→+∞

gn(x) = ‖x‖, alors il existe N ∈ N tel que pour tout n ≥ N ,on ait max
(
| ‖x‖ − fn(x)|, | ‖x‖ − gn(x)|

)
< ηε. On a :

fn(h)− gn(h) =
fn(ηh) − gn(ηh)

η

=
fn(x+ ηh) + gn(x− ηh)− fn(x)− gn(x)

η

=
fn(x+ ηh) + gn(x− ηh)− 2‖x‖ + ‖x‖ − fn(x) + ‖x‖ − gn(x)

η

≤ ‖x+ ηh‖ + ‖x− ηh‖ − 2‖x‖
η

+
‖x‖ − fn(x) + ‖x‖ − gn(x)

η

< 3ε , pour tout n ≥ N .De même, on a −(fn(h) − gn(h)) = fn(−h) − gn(−h) < 3ε, pour tout n ≥ N . Par conséquent,pour tout n ≥ N , on a |fn(h)− gn(h)| < 3ε. Autrement dit, la suite (fn(h)− gn(h))n≥0 convergevers 0 dans R.Preuve de (ii) =⇒ (i). Supposons que l'on n'a pas (i), i.e. la norme ‖ ‖ n'est pas Gâteaux di�éren-tiable en x. Alors il existe h ∈ E et il existe ε > 0 tels que pour tout η > 0, il existe t ∈ R véri�ant
0 < |t| ≤ η et on ait ‖x+ th‖+ ‖x− th‖ − 2‖x‖

t
≥ ε. Par conséquent, il existe une suite (tn)n≥0dans R\{0} telle que lim

n→+∞
tn = 0 et pour tout n ≥ 0, on ait ‖x+ tnh‖+ ‖x− tnh‖ − 2‖x‖

tn
≥ ε.D'après le théorème de Hahn-Banach, corollaire 7.7.1, pour tout n ≥ 0, il existe fn, gn ∈ SE∗telles que fn(x+ tnh) = ‖x+ tnh‖ et gn(x− tnh) = ‖x− tnh‖. On a |fn(tnh)| ≤ ‖tnh‖ = |tn| ‖h‖et |gn(tnh)| ≤ ‖tnh‖ = |tn| ‖h‖, donc lim

n→+∞
fn(tnh) = lim

n→+∞
gn(tnh) = 0. On a fn(x) =

fn(x+tnh)−fn(tnh) = ‖x+tnh‖−fn(tnh) et gn(x) = gn(x−tnh)+gn(tnh) = ‖x−tnh‖+gn(tnh),
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178 Chapitre 10. TOPOLOGIES FAIBLE ET ∗-FAIBLEdonc lim
n→+∞

fn(x) = lim
n→+∞

gn(x) = ‖x‖. On a :
fn(h)− gn(h) =

fn(tnh)− gn(tnh)
tn

=
fn(x+ tnh) + gn(x− tnh)− fn(x)− gn(x)

tn

=
‖x+ tnh‖ + ‖x− tnh‖ − fn(x)− gn(x)

tn

≥ ‖x+ tnh‖ + ‖x− tnh‖ − 2‖x‖
tn

≥ ε .Donc la suite (fn − gn)n≥0 ne converge pas ∗-faiblement vers 0 dans E∗. Donc on n'a pas (ii).Preuve de (ii) =⇒ (iii). D'après le théorème de Hahn-Banach, corollaire 7.7.1, il existe f ∈ E∗telle ‖f‖ = 1 et f(x) = ‖x‖. Supposons qu'il existe g ∈ E∗ telle ‖g‖ = 1 et g(x) = ‖x‖. D'après(ii), la suite constante (f − g) converge ∗-faiblement vers 0 dans E∗. Autrement dit, pour tout
h ∈ E, on a f(h)− g(h) = 0. D'où on a f = g.Preuve de (iii) =⇒ (ii). Soient (fn)n≥0 et (gn)n≥0 deux suites dans SE∗ véri�ant lim

n→+∞
fn(x) =

lim
n→+∞

gn(x) = ‖x‖. Si (fn − gn)n≥0 ne converge pas ∗-faiblement vers 0 dans E∗, il existe y ∈ Eet il existe ε > 0 tel que pour tout N ∈ N, il existe n ≥ N tel que |fn(y) − gn(y)| ≥ ε. Quitteà prendre une sous-suite, on peut supposer que pour tout n ≥ 0, on a |fn(y) − gn(y)| ≥ ε.D'après le théorème d'Alaoglu, BE∗ munie de la topologie ∗-faible est compacte, donc il existe
f, g ∈ BE∗ tels que (f, g) soit une valeur d'adhérence de la suite ((fn, gn))n≥0

dans BE∗ ×BE∗ ,voir proposition 3.1.5. Or, pour tout z ∈ E, l'application (h, p) 7−→ (h(z), p(z)) est continue de
E∗ ×E∗ dans K×K, E∗ étant muni de la topologie ∗-faible, donc pour tout z ∈ E, (f(z), g(z))est une valeur d'adhérence de la suite ((fn(z), gn(z)))n≥0

. On en déduit que l'on a f(x) = ‖x‖ et
g(x) = ‖x‖ et que f(y)− g(y) est une valeur d'adhérence de la suite ((fn(y)− gn(y)))n≥0

, d'oùon a |f(y)− g(y)| ≥ ε. Donc on a ‖f‖ = ‖g‖ = 1, f 6= g et f(x) = g(x) = ‖x‖, ce qui contredit(iii). Par conséquent, (fn − gn)n≥0 converge ∗-faiblement vers 0 dans E∗. �Proposition (Clarkson). Pour tout 1 < p < +∞, l'espace de Banach (`p, ‖ ‖p) est uniformé-ment convexe.Démonstration. Puisque la fonction t 7−→ tp est strictement convexe sur ]0, +∞[, alors pourtous s > 0, t > 0 tels que s 6= t, on a (s+ t

2

)p
<
sp + tp

2
. Après quelques véri�cations, on endéduit que pour tous x, y ∈ K tels que x 6= y, on a ∣∣∣x+ y

2

∣∣∣
p
<
|x|p + |y|p

2
. Notez aussi que pourtous x, y ∈ K, on a ∣∣∣x+ y

2

∣∣∣
p
≤ |x|

p + |y|p
2

. Soient ε > 0 et :
C =

{
(x, y) ∈ K2 ;

|x|p + |y|p
2

= 1 et ∣∣∣x− y
2

∣∣∣
p
≥ ε
}
.Alors C est un compact. Soit ρ = inf

{ |x|p + |y|p
2

−
∣∣∣x+ y

2

∣∣∣
p
; (x, y) ∈ C

}, alors ρ > 0. Parhomogénéité, on en déduit que pour tous x, y ∈ K véri�ant ∣∣∣x− y
2

∣∣∣
p
≥ ε
|x|p + |y|p

2
, on a alors
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ρ
|x|p + |y|p

2
≤ |x|

p + |y|p
2

−
∣∣∣x+ y

2

∣∣∣
p. Pour montrer que (`p, ‖ ‖p) est uniformément convexe,il su�t de montrer que pour tout ε > 0, il existe δ > 0 tel que pour tout x, y ∈ `p véri�ant

‖x‖p ≤ 1, ‖y‖p ≤ 1 et ∥∥∥x+ y

2

∥∥∥
p

p
> 1 − δ, on ait ∥∥∥x− y

2

∥∥∥
p

p
< 2ε. Soient ε > 0 et ρ > 0 dé�nicomme ci-dessus, alors il existe δ > 0 tel que δ < ρ ε. Soient x, y ∈ `p tels que ‖x‖p ≤ 1 et

‖y‖p ≤ 1 et soit A =

{
n ≥ 0 ;

∣∣∣xn − yn
2

∣∣∣
p
≥ ε |xn|

p + |yn|p
2

}. On a :
∥∥∥x− y

2

∥∥∥
p

p
=

+∞∑

n=0

∣∣∣xn − yn
2

∣∣∣
p

=
∑

n∈N\A

∣∣∣xn − yn
2

∣∣∣
p
+
∑

n∈A

∣∣∣xn − yn
2

∣∣∣
p

≤ ε
∑

n∈N\A

|xn|p + |yn|p
2

+
∑

n∈A

|xn|p + |yn|p
2

≤ ε+ 1
ρ

∑

n∈A

[ |xn|p + |yn|p
2

−
∣∣∣xn + yn

2

∣∣∣
p]

≤ ε+ 1
ρ

+∞∑

n=0

[ |xn|p + |yn|p
2

−
∣∣∣xn + yn

2

∣∣∣
p]

≤ ε+ 1
ρ

[
1−

+∞∑

n=0

∣∣∣xn + yn
2

∣∣∣
p]

= ε+ 1
ρ

[
1−

∥∥∥x+ y

2

∥∥∥
p

p

]

< ε+ 1
ρδ

< 2ε .Par conséquent, (`p, ‖ ‖p) est bien uniformément convexe. �Proposition. Soit (E, ‖ ‖) un espace normé. Les propriétés suivantes sont équivalentes.(i) L'espace (E, ‖ ‖) est uniformément convexe.(ii) Pour toutes suites (xn)n≥0 et (yn)n≥0 dans SE véri�ant lim
n→+∞

∥∥∥xn + yn
2

∥∥∥ = 1, on a
lim

n→+∞
‖xn − yn‖ = 0.(iii) Pour toutes suites (xn)n≥0 et (yn)n≥0 dans (E, ‖ ‖) telles que (xn)n≥0 soit bornée et

lim
n→+∞

[
2‖xn‖2 + 2‖yn‖2 − ‖xn + yn‖2

]
= 0, on a lim

n→+∞
‖xn − yn‖ = 0.Démonstration. Montrons l'implication (i) =⇒ (ii). Soient (xn)n≥0 et (yn)n≥0 deux suites dans

SE telles que lim
n→+∞

∥∥∥xn + yn
2

∥∥∥ = 1. Si la suite (‖xn − yn‖)n≥0
ne converge pas vers 0, dans R,
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180 Chapitre 10. TOPOLOGIES FAIBLE ET ∗-FAIBLEalors il existe ε > 0 tel que pour tout N ≥ 0, il existe n ≥ N tel que ‖xn − yn‖ ≥ ε. Parhypothèse, (E, ‖ ‖) est uniformément convexe, donc il existe δ > 0 tel que pour tout N ≥ 0, ilexiste n ≥ N tel que ∥∥∥xn + yn
2

∥∥∥ ≤ 1− δ. Par conséquent, la suite (∥∥∥xn + yn
2

∥∥∥
)
n≥0

ne convergepas vers 1, d'où la contradiction. Donc on a bien lim
n→+∞

‖xn − yn‖ = 0.Preuve de (ii) =⇒ (iii). Soient (xn)n≥0 et (yn)n≥0 deux suites dans (E, ‖ ‖) telles que (xn)n≥0soit bornée et lim
n→+∞

[
2‖xn‖2 + 2‖yn‖2 − ‖xn + yn‖2

]
= 0. Puisque l'on a :

[
2‖xn‖2 + 2‖yn‖2 − ‖xn + yn‖2

]
≥ 2‖xn‖2 + 2‖yn‖2 −

(
‖xn‖+ ‖yn‖

)2
=
(
‖xn‖ − ‖yn‖

)2 ≥ 0 .On en déduit que l'on a lim
n→+∞

[
‖xn‖ − ‖yn‖

]
= 0. Ainsi, la suite (yn)n≥0 est bornée. Puisque lasuite (‖xn−yn‖)n≥0

est bornée, pour montrer que (‖xn−yn‖)n≥0
converge vers 0, d'après la pro-position 3.1.5, il su�t de montrer que 0 est l'unique valeur d'adhérence de la suite (‖xn−yn‖)n≥0

.Soient t ≥ 0 et k 7−→ nk une application strictement croissante de N tels que lim
k→+∞

‖xnk
−ynk

‖ =
t. Comme on a lim

k→+∞

[
‖xnk

‖ − ‖ynk
‖
]
= 0, quitte à prendre des sous-suites, on peut considérerque l'on a lim

k→+∞
‖xnk

‖ = lim
k→+∞

‖ynk
‖ = a ≥ 0. Si a = 0, alors on a lim

k→+∞
‖xnk

− ynk
‖ = 0, d'où

t = 0. Si a > 0, alors on a lim
k→+∞

‖xnk
+ ynk

‖ = 2a, car on a lim
k→+∞

[
2‖xnk

‖2 + 2‖ynk
‖2 − ‖xnk

+

ynk
‖2
]
= 0. On a xnk

‖xnk
‖ ,

ynk

‖ynk
‖ ∈ SE et lim

k→+∞

∥∥∥ xnk

‖xnk
‖ +

ynk

‖ynk
‖
∥∥∥ = 2, d'après (ii), on a alors

lim
k→+∞

∥∥∥ xnk

‖xnk
‖ −

ynk

‖ynk
‖
∥∥∥ = 0. D'où on a lim

k→+∞
‖xnk

− ynk
‖ = 0, donc t = 0. Par conséquent, ona lim

n→+∞
‖xn − yn‖ = 0.Preuve de (iii) =⇒ (i). Supposons que (E, ‖ ‖) n'est pas uniformément convexe. Alors il existe

ε > 0 tel que pour tout n ≥ 0, il existe xn, yn ∈ SE véri�ant ‖xn−yn‖ ≥ ε et 0 ≤ 1−
∥∥∥xn + yn

2

∥∥∥ ≤
1

n+1 . Or on a :
0 ≤

(
‖xn‖ − ‖yn‖

)2 ≤
[
2‖xn‖2 + 2‖yn‖2 − ‖xn + yn‖2

]
= 4− ‖xn + yn‖2 ,d'où lim

n→+∞

[
2‖xn‖2 + 2‖yn‖2 − ‖xn + yn‖2

]
= 0, mais pour tout n ≥ 0, on a ‖xn − yn‖ ≥ ε. Cequi contredit (iii). �Théorème (Milman-Pettis). Tout espace de Banach uniformément convexe est ré�exif.Démonstration. Soit (E, ‖ ‖) un espace de Banach uniformément convexe et soit η ∈ E∗∗ telque ‖η‖ = 1. Soit J : E −→ E∗∗ l'application canonique. Il s'agit de montrer qu'il existe x ∈ E telque J(x) = η. D'après le théorème de Goldstine, il existe une famille �ltrante croissante (xλ)λ∈Λdans BE telle que (J(xλ))λ∈Λ converge vers η pour la topologie ∗-faible. On véri�e facilement,comme dans la proposition 10.2.1, propriété 4, que (‖J(xλ)‖)λ∈Λ converge vers 1 = ‖η‖. D'où

(
‖xλ‖

)
λ∈Λ converge vers 1. Par conséquent, (J( xλ

‖xλ‖
))

λ∈Λ
converge vers η pour la topologie

∗-faible. Donc on peut supposer que (xλ)λ∈Λ dans SE. Soit I = Λ × Λ, et on décrète que pour
(λ1, µ1), (λ2, µ2) ∈ I, on a (λ1, µ1) ≤ (λ2, µ2) si λ1 ≤ λ2 et µ1 ≤ µ2. Alors (J(xλ + xµ

2

))
(λ,µ)∈Iest une famille �ltrante croissante qui converge vers η pour la topologie ∗-faible. Comme ona ‖η‖ = 1 et pour tout (λ, µ) ∈ I, on a ∥∥∥J(xλ + xµ

2

)∥∥∥ ≤ 1, on véri�e facilement, commedans la proposition 10.2.1, propriété 4, que la famille �ltrante croissante (∥∥∥J(xλ + xµ
2

)∥∥∥
)
(λ,µ)∈I
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181converge vers 1 = ‖η‖. D'où la famille �ltrante croissante (∥∥∥xλ + xµ
2

∥∥∥
)
(λ,µ)∈I

converge vers 1.Soit ε > 0. Comme (E, ‖ ‖) est uniformément convexe, il existe δ > 0 tel que pour tout x, y ∈ SEvéri�ant 1− δ < ∥∥∥x+ y

2

∥∥∥, on ait ‖x− y‖ < ε. Alors il existe λ0 ∈ Λ tel que pour tout λ, µ ∈ Λvéri�ant λ0 ≤ λ et λ0 ≤ µ, on ait 1 − δ <
∥∥∥xλ + xµ

2

∥∥∥. Donc, pour tout λ, µ ∈ Λ véri�ant
λ0 ≤ λ et λ0 ≤ µ, on a ‖xλ − xµ‖ < ε. Par conséquent, la famille �ltrante croissante (xλ)λ∈Λest de Cauchy dans (E, ‖ ‖), donc elle converge, pour la norme, vers un élément x ∈ E. D'oùla famille �ltrante croissante (J(xλ))λ∈Λ converge vers J(x) pour la norme dans E∗∗. Donc lafamille �ltrante croissante (J(xλ))λ∈Λ converge vers J(x) pour la topologie ∗-faible. Comme lalimite est unique, on en déduit que η = J(x). Par conséquent, (E, ‖ ‖) est ré�exif. �Supplément d'exercicesExercice 10.20. Soit E = C([0, 1]) l'espace de Banach des fonctions continues sur [0, 1] et àvaleurs dans K, muni de la norme ‖ ‖∞. Pour tout t ∈ [0, 1], soit δt ∈ E∗ dé�nie par δt(f) = f(t),et soit Λ ∈ E∗ dé�nie par Λ(f) = ∫ 1

0
f(t) dt, pour tout f ∈ E. Dans tout cet exercice, on munit

E∗ de la topologie ∗-faible.1. Montrer que l'application t 7−→ δt est continue de [0, 1] dans E∗. En déduire que K =
{δt ; 0 ≤ t ≤ 1} est compact.2. Montrer que Λ ∈ conv(K).3. Montrer que si T ∈ conv(K), alors pour tout f ∈ E véri�ant f(t) ≥ 0, pour tout t ∈ [0, 1],on a T (f) ≥ 0.4. Soit M = Vect(Λ,K), i.e. le sous-espace vectoriel de E∗ formé de toutes les combinaisonslinéaires �nies c0Λ + c1δt1 + · · · + cnδtn , où ci ∈ K. Notez que conv(K) ⊂ M et que
M ∩ conv(K) est l'enveloppe convexe fermé de K dans M . Montrer que Λ est un pointextrémal de M ∩ conv(K), et pourtant Λ n'appartient pas à K, voir théorème 9.5.4.Solution. 1. D'après l'exercice 10.17, l'application t 7−→ δt est continue de [0, 1] dans E∗. Comme

[0, 1] est compact, alors K = {δt ; 0 ≤ t ≤ 1} est compact.2. Pour tout f ∈ E, on a :
Λ(f) =

∫ 1

0
f(t) dt = lim

n→+∞
1
n

n∑

k=1

f
(
k
n

)
= lim

n→+∞

(
1
n

n∑

k=1

δ k
n

)
(f) .Or on a 1

n

n∑

k=1

δ k
n
∈ conv(K), d'où Λ ∈ conv(K).3. Soit P =

{
T ∈ E∗ ; T (f) ≥ 0 si f ∈ E et f ≥ 0

}. Il est clair que que P est convexe et fermédans E∗ pour la topologie ∗-faible. Comme on a K ⊂ P , on en déduit que l'on a conv(K) ⊂ P .4. Soient T, S ∈ M ∩ conv(K) tels que Λ = 1
2(T + S). Soient c0, . . . , cn, d0, . . . , dn ∈ K et

t1, . . . , tn, s1, . . . , sn ∈ [0, 1] tels que T = c0Λ+c1δt1+ · · ·+cnδtn et S = d0Λ+d1δs1+ · · ·+dnδsn .On peut bien sûr supposer que les ti sont deux à deux distingues et que les si sont aussi deuxà deux distingues. Comme T, S ∈ conv(K) ⊂ P , alors pour tout i ∈ {0, . . . , n}, on a ci ≥ 0 et
di ≥ 0. On a (1− 1

2c0− 1
2d0)Λ =

n∑

i=1

ci
2
δti +

n∑

i=1

di
2
δsi . On peut construire facilement une fonctiona�ne positive non nulle f sur [0, 1] telle que Λ(f) 6= 0 et telle que f(ti) = f(si) = 0, pour tout
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182 Chapitre 10. TOPOLOGIES FAIBLE ET ∗-FAIBLE
i ∈ {1, . . . , n}. Par conséquent, on a 1 − 1

2c0 − 1
2d0 = 0, d'où n∑

i=1

ci
2
δti +

n∑

i=1

di
2
δsi = 0. Commepour tout i ∈ {1, . . . , n}, on a ci ≥ 0 et di ≥ 0, alors pour tout i, on a ci = di = 0. On a aussi

1 = 1
2c0 +

1
2d0, avec c0 ≥ 0 et d0 ≥ 0, d'où c0 = d0 = 1. Par conséquent, on a T = S = Λ. Donc

Λ est bien un point extrémal de M ∩ conv(K).Exercice 10.21. Soient X un espace topologique et f : X −→ R une application.1. Montrer que si f est semi-continue inférieurement, alors pour tout x ∈ X et pour toutesuite (xn)n≥0 dans X convergeant vers x, on a f(x) ≤ lim inf
n→+∞

f(xn).2. Montrer que si tout point de X possède une base dénombrable de voisinages et si pour tout
x ∈ X et pour toute suite (xn)n≥0 dans X convergeant vers x, on a f(x) ≤ lim inf

n→+∞
f(xn),alors f est semi-continue inférieurement.Solution. 1. Soit ε > 0. Alors il existe un voisinage V de x dans X tel que pour tout y ∈ V , on ait

f(x)− ε < f(y). Comme (xn)n≥0 converge vers x, alors il existe N ∈ N tel que pour tout n ≥ N ,on ait xn ∈ V . Donc, pour tout n ≥ N , on a f(x) − ε < f(xn), d'où f(x) − ε ≤ lim inf
n→+∞

f(xn).Comme ceci étant vrai pour tout ε > 0, on en déduit que l'on a f(x) ≤ lim inf
n→+∞

f(xn).2. Supposons que f n'est pas semi-continue inférieurement. Alors il existe x ∈ X et il existe ε > 0tels que pour tout voisinage V de x dans X, il existe y ∈ V tel que f(y) ≤ f(x)− ε. Soit (Vn)n≥0une base dénombrable de voisinages de x dans X telle que Vn+1 ⊂ Vn, pour tout n ≥ 0. Alorspour tout n ≥ 0, il existe xn ∈ Vn tel que f(xn) ≤ f(x)− ε. Alors la suite (xn)n≥0 converge vers
x dans X et on a lim inf

n→+∞
f(xn) ≤ f(x)− ε < f(x), ce qui contredit l'hypothèse. Donc f est biensemi-continue inférieurement.Exercice 10.22. Soit (E, ‖ ‖) un espace normé.1. Montrer que l'application x 7−→ ‖x‖ est semi-continue inférieurement pour la topologiefaible sur E.2. En déduire que si (xn)n≥0 est une suite dans E convergeant faiblement vers un x ∈ E,alors on a ‖x‖ ≤ lim inf

n→+∞
‖xn‖.3. Donner un exemple d'un espace normé, où l'application x 7−→ ‖x‖ n'est pas faiblementcontinue.Solution. 1. Pour tout t ∈ R, l'ensemble {x ∈ E ; ‖x‖ ≤ t} est convexe et fermé pour lanorme, donc il est faiblement fermé. Par conséquent, l'application x 7−→ ‖x‖ est semi-continueinférieurement pour la topologie faible sur E.2. Ceci résulte de 1 et de l'exercice précédent. Notons que l'on a montré cette propriété dans laproposition 10.2.1.3. Il su�t de prendre E = `p, avec p ∈ ]1, +∞[, voir remarque 10.2.1.Exercice 10.23. Soit (E, ‖ ‖) un espace de Banach séparable. Soit (xn)n≥0 une suite dense dans

SE. Pour tout f ∈ E∗, on pose T (f) = (f(xn)
2n

)
n≥0

.1. Montrer que T est une application linéaire continue de E∗ dans `2.2. Montrer que T est aussi continue de E∗, muni de la topologie ∗-faible, dans `2 muni de latopologie faible.
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183Solution. 1. Il est clair que T est une application linéaire de E∗ dans `2. Pour tout f ∈ E∗, ona :
‖T (f)‖2 =

(
+∞∑

n=0

|f(xn)|2
4n

) 1
2

≤
(

+∞∑

n=0

‖f‖2
4n

) 1
2

=
2√
3
‖f‖ .Donc T est continue de E∗, muni de la norme, dans `2.2. Soit y = (tn)n≥0 ∈ `2. Montrons que l'application

Ty : E∗ −→ K

f 7−→
+∞∑

n=0

tnf(xn)

2nest continue de E∗, muni de la topologie ∗-faible dans K. Comme la série∑
n≥0

tnxn
2n

est absolumentconvergente, alors ∑
n≥0

tnxn
2n

est convergente dans E et on a Ty(f) = f
( +∞∑

n=0

tnxn
2n

). Par consé-quent, Ty est continue de E∗, muni de la topologie ∗-faible dans K. On déduit de la proposition7.4.4 que T est continue de E∗, muni de la topologie ∗-faible, dans `2 muni de la topologie faible.Exercice 10.24. Soit (E, ‖ ‖) un espace normé. Montrer que les propriétés suivantes sontéquivalentes.(i) BE est séparable pour la topologie faible.(ii) SE est séparable pour la topologie faible.(iii) E est séparable pour la topologie faible.(iv) E est séparable pour la norme.Solution. Montrons l'implication (i) =⇒ (ii). Soit A un ensemble au plus dénombrable et densedans BE. Soit x ∈ SE . Alors il existe une famille �ltrante croissante (xλ)λ∈Λ dans A convergentevers x pour la topologie faible. D'après l'exercice 10.22, l'application y 7−→ ‖y‖ est semi-continueinférieurement pour la topologie faible sur E. Donc, pour tout ε > 0, il existe un voisinage V de
x dans E pour la topologie faible tel que pour tout y ∈ V , on ait ‖x‖ − ε < ‖y‖. Soit λ0 ∈ Λtel que pour tout λ ≥ λ0, on ait xλ ∈ V . Alors pour tout λ ≥ λ0, on a 1 − ε < ‖xλ‖ ≤ 1,d'où lim

λ∈Λ
‖xλ‖ = 1. Par conséquent, on a lim

λ∈Λ
xλ
‖xλ‖

= x, pour la topologie faible. On en déduitque l'ensemble { y

‖y‖ ; y ∈ A \ {0}
} est au plus dénombrable et dense dans SE, donc SE estséparable pour la topologie faible.L'implication (ii) =⇒ (i) résulte de l'exercice 10.11.Montrons l'implication (i) =⇒ (iii). Soit x ∈ E tel que ‖x‖ > 1. Alors il existe n ∈ N∗ telque x

n ∈ BE . Comme A est dense dans BE pour la topologie faible, alors il existe une famille�ltrante croissante (zλ)λ∈Λ dans A convergente vers x
n pour la topologie faible, d'où (nzλ)λ∈Λconverge vers x pour la topologie faible. Par conséquent, l'ensemble {ny ; n ≥ 1 et y ∈ A} estdénombrable et dense dans E pour la topologie faible, donc E est séparable pour la topologiefaible.L'implication (iii) =⇒ (iv) résulte de la proposition 10.2.6.Montrons l'implication (iv) =⇒ (i). Comme E est séparable pour la norme, alors BE est séparablepour la norme car tout sous-espace d'un espace métrique séparable est séparable, voir remarque2.4.1. Par conséquent, BE est séparable pour la topologie faible car la topologie faible est moins�ne que la topologie associée à la norme.
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184 Chapitre 10. TOPOLOGIES FAIBLE ET ∗-FAIBLERemarque 10.0.9. Soit (E, ‖ ‖) un espace normé. On fait le même raisonnement comme dansl'exercice précédent et on montre que BE∗ est séparable pour la topologie ∗-faible si et seulementsi SE∗ est séparable pour la topologie ∗-faible.Exercice 10.25. Montrer que (`∞)∗ est séparable pour la topologie ∗-faible.Solution. Comme l'espace normé (`1, ‖ ‖1) est séparable, on déduit de la proposition 10.2.6 que
`1 muni de la topologie faible est séparable. On déduit alors de la remarque 10.1.5 et du théorèmede Goldstine, corollaire 10.2.1, que (`1)∗∗ est séparable pour la topologie ∗-faible. Comme (`1)∗est isométriquement isomorphe à `∞, voir proposition 7.4.2, alors (`∞)∗ est séparable pour latopologie ∗-faible.Exercice 10.26. Montrer que tout sous-ensemble faiblement compact de `∞ est séparable pourla norme.Solution. Soit C un sous-ensemble faiblement compact de `∞. D'après l'exercice précédent etla proposition 10.2.7, C est métrisable pour la topologie faible. Donc C est séparable pour latopologie faible. Soit A un ensemble au plus dénombrable et faiblement dense dans C. D'aprèsle théorème 10.1.2, on a conv(A)w = conv(A)‖ ‖∞ . Or conv(A)‖ ‖∞ est séparable pour la normeet on a C ⊂ conv(A)w, donc C est séparable pour la norme.Exercice 10.27. Soit f : `1 = c∗0 −→ K dé�nie par f(x) = ∞∑

n=0

xn, pour tout x = (xn)n≥0 ∈ `1.Il est clair que f est une forme linéaire continue quand on munit `1 de la norme. Montrer que fn'est pas continue quand on munit `1 = c∗0 de la topologie ∗-faible.Solution. Pour tout n ≥ 0, soit Tn ∈ c∗0 dé�ni par Tn(y) = yn, pour tout y = (yn)n≥0 ∈ c0.Alors la suite (Tn)n≥0 converge vers 0 pour la topologie ∗-faible, mais on a f(Tn) = 1, pour tout
n ≥ 0. Donc f n'est pas continue quand on munit `1 = c∗0 de la topologie ∗-faible.Exercice 10.28. Soit (E, ‖ ‖) un espace de Banach ré�exif.1. Montrer que pour tout f ∈ BE∗ , il existe un point extrémal x de BE tel que ‖f‖ = f(x).2. Montrer que si E est de dimension in�nie, alors e(BE) n'est pas dénombrable.Solution. 1. D'après les propositions 6.3.1 et 7.4.5, on a ‖f‖ = sup

x∈BE

|Re(f(x))| = sup
x∈BE

Re(f(x)).Comme (E, ‖ ‖) est de Banach ré�exif, alors BE est compact pour la topologie faible. D'après lecorollaire 9.5.3, il existe alors un point extrémal x de BE tel que ‖f‖ = Re(f(x)). D'autre part,on a |f(x)| ≤ ‖f‖, d'où Im(f(x)) = 0 et Re(f(x)) = f(x). Donc on a bien ‖f‖ = f(x).2. Notons d'abord que d'après la proposition 10.2.8, e(BE) est un ensemble in�ni. Raisonnonspar l'absurde et supposons que e(BE) est dénombrable, i.e. e(BE) = {xn ; n ≥ 0}. Pour tout
n ≥ 0, soit Fn = {f ∈ BE∗ ; ‖f‖ = f(xn)}. D'après 1, on a BE∗ = ∪

n≥0
Fn. Comme BE∗ estcompact pour la topologie ∗-faible et comme pour tout n ≥ 0, Fn est fermé pour la topologie

∗-faible, on déduit du théorème de Baire, théorème 3.4.4, qu'il existe n ≥ 0 tel que l'intérieur de
Fn dans BE∗ n'est pas vide. On en déduit qu'il existe g ∈ Fn tel que ‖g‖ < 1 et qu'il existe ε > 0et z1, . . . , zp ∈ E tels que pour tout f ∈ BE∗ véri�ant |f(zi)−g(zi)| < ε, pour tout i ∈ {1, . . . , p},on ait f ∈ Fn. Soit N =

p
∩
i=1

ker(J(zi))∩ker(J(xn)) = {f ∈ E∗ f(xn) = f(z1) = · · · = f(zp) = 0},
N est un sous-espace vectoriel de E∗. Comme E est de dimension in�nie et donc E∗ est de di-mension in�nie, il résulte du lemme 7.8.2 que N est non nul. Par conséquent, il existe f ∈ g+Ntel que ‖f‖ = 1, d'où on a 1 = ‖f‖ = f(xn) = g(xn) = ‖g‖ < 1, ce qui est impossible. Donc
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185l'ensemble e(BE) n'est pas dénombrable.Exercice 10.29. Soient A un sous-ensemble non vide convexe, borné et fermé dans un espacede Banach (E, ‖ ‖) et J : E −→ E∗∗ l'application canonique. Montrer que A est compact pourla topologie faible si et seulement si J(A) et J(A)w∗ ont les mêmes points extrémaux dans E∗∗.Solution. Si A est compact pour la topologie faible, alors J(A) est compact pour la topologie
∗-faible sur E∗∗, d'où on a J(A) = J(A)

w∗, donc J(A) et J(A)w∗ ont évidemment les mêmespoints extrémaux dans E∗∗.Pour montrer la réciproque, on suppose que A n'est pas compact pour la topologie faible. D'aprèsle théorème 10.2.8, il existe f ∈ E∗ tel que pour tout a ∈ A, on ait Re(f(a)) 6= sup
x∈A

Re(f(x)).Comme A est borné, alors J(A)w∗ est compact pour la topologie ∗-faible. On applique le corollaire9.5.3 au compact J(A)w∗ et à la forme linéaire continue Λ 7−→ Λ(f) sur E∗∗, on trouve un pointextrémal Λ0 de J(A)w∗ tel que :Re(Λ0(f)) = sup

Λ∈J(A)
w∗

Re(Λ(f)) = sup
x∈A

Re(J(x)(f)) = sup
x∈A

Re(f(x)) .Par conséquent, Λ0 6∈ J(A). Donc J(A) et J(A)w∗ n'ont pas les mêmes points extrémaux dans
E∗∗.Exercice 10.30. Soient (E, ‖ ‖) un espace normé, (F, ‖ ‖′) un espace normé strictement convexeet T : E −→ F une application linéaire continue et injective. Pour tout x ∈ E, on pose ‖x‖r =
‖x‖ + ‖T (x)‖′. Montrer que ‖ ‖r est une norme équivalente à la norme ‖ ‖ et que (E, ‖ ‖r) eststrictement convexe.Solution. Il est clair que ‖ ‖r est une norme sur E. D'autre part, pour tout x ∈ E, on a
‖x‖ ≤ ‖x‖r ≤ (1+ ‖T‖) ‖x‖. Donc les deux normes ‖ ‖ et ‖ ‖r sont équivalentes. Soient x, y ∈ Etels que (x, y) soit libre. Comme T est injective, alors (T (x), T (y)) est libre dans F . Puisque
(F, ‖ ‖′) est strictement convexe, il résulte de la proposition 10.3.1 que l'on a ‖T (x) + T (y)‖′ <
‖T (x)‖′ + ‖T (y)‖′. Par conséquent, on a :

‖x+ y‖r = ‖x+ y‖+ ‖T (x) + T (y)‖′

≤ ‖x‖+ ‖y‖+ ‖T (x) + T (y)‖′

< ‖x‖+ ‖y‖+ ‖T (x)‖′ + ‖T (y)‖′

= ‖x‖r + ‖y‖r .On déduit de la proposition 10.3.1 que (E, ‖ ‖r) est strictement convexe.Exercice 10.31. Soit E = C([0, 1]) l'espace vectoriel des fonctions continues sur [0, 1] et àvaleurs dans K. Pour tout f ∈ E, on pose ‖f‖ =
√
‖f‖2∞ + ‖f‖22, où ‖f‖∞ = sup

0≤x≤1
|f(x)| et

‖f‖2 =

(∫ 1

0
|f(x)|2 dx

) 1
2 . Montrer que ‖ ‖ est une norme sur E telle (E, ‖ ‖) soit strictementconvexe, mais (E, ‖ ‖) ne soit pas uniformément convexe.Solution. On véri�e facilement que ‖ ‖ est une norme sur E. Montrons que (E, ‖ ‖) est stric-tement convexe. Soient f, g ∈ E tels que (f, g) soit une famille libre. Comme (E, ‖ ‖2) est
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186 Chapitre 10. TOPOLOGIES FAIBLE ET ∗-FAIBLEun espace préhilbertien, alors (E, ‖ ‖2) est strictement convexe, voir exercice 8.4, d'où on a
‖f + g‖2 < ‖f‖2 + ‖g‖2. Donc on a :

‖f + g‖ =
√
‖f + g‖2∞ + ‖f + g‖22

<

√(
‖f‖∞ + ‖g‖∞

)2
+
(
‖f‖2 + ‖g‖2

)2

≤
√
‖f‖2∞ + ‖f‖22 +

√
‖g‖2∞ + ‖g‖22

= ‖f‖+ ‖g‖ .On déduit de la proposition 10.3.1 que (E, ‖ ‖) est strictement convexe.Montrons que (E, ‖ ‖) n'est pas uniformément convexe. Pour tout n ≥ 1, soit fn = 1 la fonctionconstante égale à 1 sur [0, 1], et soit :
gn(x) =





nx si 0 ≤ x ≤ 1
n ,

1 si 1
n ≤ x ≤ 1 .Alors on a ‖fn‖2 = 2, lim

n→+∞
‖gn‖2 = 2 et lim

n→+∞
‖fn + gn‖2 = 8, d'où :

lim
n→+∞

[
2‖fn‖2 + 2‖gn‖2 − ‖fn + gn‖2

]
= 0 ,mais on a ‖fn − gn‖2 ≥ ‖fn − gn‖2∞ ≥ 1. Donc la propriété (iii) de la proposition 10.4.3 n'estpas véri�ée. Par conséquent, (E, ‖ ‖) n'est pas uniformément convexe.Exercice 10.32. Soient (E, ‖ ‖) un espace normé uniformément convexe.1. Soient x0 ∈ E et r > 0. Montrer que l'ensemble des points extrémaux de la boule fermée

B′(x0, r) =
{
x ∈ E ; ‖x− x0‖ ≤ r

} est la sphère S(x0, r) = {x ∈ E ; ‖x− x0‖ = r
}.2. Soient A un sous-ensemble de E et a ∈ A. On suppose qu'il existe x0 ∈ E et r > 0 tels que

‖a− x0‖ = r et A ⊂ B′(x0, r). Montrer que a est un point extrémal de A.Solution. 1. Puisque l'application x 7−→ x0 + rx est linéaire et homéomorphisme de E, il su�tde montrer que l'on a e(BE) = SE. On déduit de la remarque 9.5.2 que l'on a e(BE) ⊂ SE . Ré-ciproquement, soit x ∈ SE. Montrons que x est un point extrémal de BE. D'après la proposition9.5.3, il su�t de montrer que pour tout y, z ∈ BE véri�ant x = y+z
2 , on a y = z = x. Soient

y, z ∈ BE tels que x = y+z
2 . Alors on a 1 = ‖x‖ ≤ 1

2‖y‖ + 1
2‖z‖ ≤ 1, d'où ‖y‖ = ‖z‖ = 1. Si

y 6= z, alors on a ‖y − z‖ = ε > 0. Comme (E, ‖ ‖) est uniformément convexe, alors il existe
δ > 0 tel que ∥∥y+z

2

∥∥ ≤ 1 − δ < 1, ce qui est impossible. Donc on a y = z, d'où x = y = z. Parconséquent, x est un point extrémal de BE.2. D'après 1, a est un point extrémal de B′(x0, r). Comme on a A ⊂ B′(x0, r), alors a est unpoint extrémal de A.Exercice 10.33. Soit (E, ‖ ‖) un espace normé tel que le dual topologique (E∗, ‖ ‖) soit uni-formément convexe. Soient f, fn ∈ SE∗ . Montrer que la suite (fn)n≥0 converge vers f pour lanorme si et seulement si (fn)n≥0 converge ∗-faiblement vers f .Solution. Il est clair que si (fn)n≥0 converge vers f pour la norme, alors (fn)n≥0 converge ∗-faiblement vers f .
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187Réciproquement, supposons que (fn)n≥0 converge ∗-faiblement vers f . Soient ε > 0 et x ∈ SE telsque |f(x)| > 1−ε. On a 2 ≥ ‖fn+f‖ ≥ |fn(x)+f(x)| et lim
n→+∞

|fn(x)+f(x)| = 2|f(x)| > 2−2ε,donc on a lim
n→+∞

‖fn + f‖ = 2. Il résulte de la proposition 10.4.3 que l'on a lim
n→+∞

‖fn − f‖ = 0.Exercice 10.34. Soient F un sous-espace vectoriel d'un espace normé séparable (E, ‖ ‖) et
T : F −→ c0 une application linéaire continue. Le but de cet exercice est de montrer qu'il existeune application linéaire continue S : E −→ c0 prolongeant T telle que ‖S‖ ≤ 2‖T‖.Sans perdre de généralité, on peut supposer ‖T‖ = 1.Pour tout n ≥ 0, soit fn : c0 −→ K la forme linéaire continue dé�nie par fn(en) = 1 et fn(ep) = 0si p 6= n. Alors on a T (x) = (fn ◦ T (x)))n≥0, pour tout x ∈ F . Comme fn ◦ T ∈ F ∗, d'aprèsle théorème de Hahn-Banach, théorème 7.7.3, il existe une forme linéaire continue gn ∈ E∗prolongeant fn ◦ T telle que ‖gn‖ = ‖fn ◦ T‖ ≤ ‖fn‖ ‖T‖ = 1. Puisque (E, ‖ ‖) est séparable,d'après le théorème d'Alaoglu et le théorème 10.2.4, BE∗ est compact et métrisable pour latopologie ∗-faible. Soit d une distance induisant la topologie ∗-faible sur BE∗. Rappelons, voirla démonstration du théorème 10.2.4, que si (xp)p≥0 est une suite dense dans SE, alors pourtout f, g ∈ BE∗, on a d(f, g) = +∞∑

p=0

1

2p
|f(xp) − g(xp)|. Soient F⊥ = {f ∈ E∗ ; F ⊂ ker(f)} et

K = BE∗ ∩ F⊥.1. Montrer que si g est une valeur d'adhérence de la suite (gn)n≥0 pour la topologie ∗-faible,alors on a g ∈ K.2. Montrer que l'on a lim
n→+∞

d(gn,K) = 0.3. Véri�er qu'il existe une suite (hn)n≥0 dans K telle que lim
n→+∞

d(gn, hn) = 0. Pour tout
x ∈ E, on pose S(x) = (gn(x) − hn(x))n≥0. Montrer que S est une application linéairecontinue de E dans c0 prolongeant T telle que ‖S‖ ≤ 2.Solution. 1. Soit g une valeur d'adhérence de la suite (gn)n≥0. Comme BE∗ est compact etmétrisable pour la topologie ∗-faible, alors g ∈ BE∗ et il existe une sous-suite (gni

)i≥0 de (gn)n≥0convergeant vers g pour la topologie ∗-faible. Alors pour tout x ∈ E, on a g(x) = lim
i→+∞

gni
(x).Pour tout x ∈ F , on a gni

(x) = fni
◦ T (x), d'où lim

i→+∞
gni

(x) = 0 car T (x) ∈ c0. Donc, pour tout
x ∈ F , on a g(x) = 0, d'où g ∈ F⊥. Donc on a bien g ∈ K.2. Comme (d(gn,K)

)
n≥0

est une suite bornée dans R, pour montrer que lim
n→+∞

d(gn,K) = 0, ilsu�t de montrer que 0 est l'unique valeur d'adhérence de la suite (d(gn,K)
)
n≥0

. Soit α ∈ R unevaleur d'adhérence de la suite (d(gn,K)
)
n≥0

. Alors il existe une application strictement croissante
ϕ : N −→ N telle que α = lim

n→+∞
d(gϕ(n),K). Comme (gϕ(n))n≥0 est une suite dans le compact

BE∗, alors (gϕ(n))n≥0 possède une valeur d'adhérence g ∈ BE∗, d'où g est une valeur d'adhérencede la suite (gn)n≥0. D'après 1, on a alors g ∈ K. Par conséquent, on a α = d(g,K) = 0, d'où
lim

n→+∞
d(gn,K) = 0.3. Comme on a d(gn,K) = inf

h∈K
d(gn, h), alors pour tout n ≥ 0, il existe hn ∈ K tel que

d(gn, hn) < d(gn,K) + 1
n+1 , d'où on a lim

n→+∞
d(gn, hn) = 0. Pour tout x ∈ E, on pose S(x) =

(gn(x) − hn(x))n≥0. Montrons d'abord que pour tout x ∈ E, on a lim
n→+∞

gn(x) − hn(x) = 0.
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188 Chapitre 10. TOPOLOGIES FAIBLE ET ∗-FAIBLEPuisque l'on a d(gn, hn) = +∞∑

p=0

1

2p
|gn(xp)− hn(xp)|, alors pour tout p ≥ 0, on a :
lim

n→+∞
gn(xp)− hn(xp) = 0 .Comme la suite (gn − hn)n≥0 est bornée dans E∗ pour la norme, on en déduit que pour tout

x ∈ E, on a lim
n→+∞

gn(x) − hn(x) = 0. Donc S est bien une application linéaire de E dans c0.Pour tout x ∈ F , on a hn(x) = 0, donc S prolonge T . D'autre part, pour tout x ∈ E, on a
|gn(x)−hn(x)| ≤ |gn(x)|+ |hn(x)| ≤ ‖gn‖ ‖x‖+‖hn‖ ‖x‖ ≤ 2‖x‖. Par conséquent, on a ‖S‖ ≤ 2.
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Chapitre 11GROUPES TOPOLOGIQUESProposition. Soient G un groupe topologique et A, B deux parties de G.1. On a A = ∩
V ∈V

AV , où V est l'ensemble des voisinages de e dans G.2. Si U est un ouvert de G, alors U−1, AU et UA sont des ouverts de G.3. Si A est une partie fermée de G et B est une partie compacte de G, alors AB et BA sontdes parties fermées de G.4. Si G est séparé et si A et B sont des parties compactes de G, alors AB et BA sont desparties compactes de G.Démonstration. 1. Soit x ∈ E, on a x ∈ A si et seulement si pour tout voisinage V de e dans
G, on a (xV ) ∩A 6= ∅. Ceci est équivalent à x ∈ AV −1. Or V est un voisinage de e dans G si etseulement si V −1 est un voisinage de e dans G, donc on a A = ∩

V ∈V
AV .2. Comme l'application x 7−→ x−1 est un homéomorphisme de G, alors U−1 est un ouvert de G.On a AU = ∩

a∈A
aU = ∩

a∈A
La(U) et UA = ∩

a∈A
Ua = ∩

a∈A
Ra(U). Or pour tout a ∈ G, La et Rasont des homéomorphismes de G, voir remarque 11.1.1, donc AU et UA sont des ouverts de G.3. Montrons que G \AB est ouvert dans G. Soit z ∈ G \AB, alors on a zB−1 ∩A = ∅. Puisquel'application f : (x, y) 7−→ xy−1 de G ×G dans G est continue, alors f−1(G \ A) est un ouvertde G × G contenant le compact {z} × B. D'après la proposition 3.1.4, il existe un ouvert Ude G contenant z tel que U × B ⊂ f−1(G \ A), d'où UB−1 = f(U × B) ⊂ G \ A. Donc on a

UB−1 ∩ A = ∅, d'où U ∩ AB = ∅. Par conséquent, G \ AB est ouvert dans G. Autrement dit,
AB est fermé dans G. De même, BA est fermée dans G.4. Puisque A × B est compact, AB est séparée et l'application (a, b) 7−→ ab est continue etsurjective de A×B sur AB, alors AB est compacte. De même, BA est compacte. �Proposition. Soit G un groupe topologique séparé. Alors on a :1. G est un espace régulier.2. Soient A un compact de G et B un fermé de G tels que A ∩ B = ∅. Alors il existe unvoisinage ouvert W de e dans G tel que AW ∩BW = ∅.Démonstration. 1. Soient x ∈ G et F une partie fermée de G tels que x 6∈ F , d'où e 6∈ x−1F .Soit U = G \ x−1F , alors U est un ouvert de G contenant e. Soit f : G × G −→ G dé�nie par
f(x, y) = xy−1. Comme f est continue en (e, e), il existe un ouvert V de G contenant e tel que
V V −1 ⊂ U . Alors xV et FV sont des ouverts de G tels que x ∈ xV et F ⊂ FV . Véri�ons que xVet FV sont disjoints. Si (xV ) ∩ FV 6= ∅, alors il existe a, b ∈ V et y ∈ F tels que xa = yb, d'où189
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190 Chapitre 11. GROUPES TOPOLOGIQUES
ab−1 = x−1y ∈ (x−1F )∩U , ce qui est impossible. Donc on a (xV )∩FV = ∅. Par conséquent, Gest un espace régulier.2. Soit a ∈ A. Comme on a A ∩B = ∅, alors e 6∈ a−1B. D'après 1, il existe un voisinage ouvert
Va de e dans G tel que aVa ∩ BVa = ∅. Soit Wa un voisinage ouvert de e dans G tel que
WaWa ⊂ Va. Comme A est compact et on a A ⊂ ∪

a∈A
aWa et aWa est un ouvert de G, pour tout

a ∈ A, alors il existe a1, . . . , an ∈ A tels que A ⊂ n∪
i=1
aiWai . Soit W =

n∩
i=1
Wai , alors W est unvoisinage ouvert de e dans G tel que AW ⊂ n∪

i=1
aiWaiW ⊂

n∪
i=1
aiWaiWai ⊂

n∪
i=1
aiVai . On a aussi

BW ⊂ n∩
i=1
BWai ⊂

n∩
i=1
BVai . Comme pour tout i ∈ {1, . . . , n}, on a aiVai ∩ BVai = ∅, alors on a

( n∪
i=1

aiVai
)
∩
( n∩
i=1

BVai
)
= ∅, d'où AW ∩BW = ∅. �Proposition. Soient G un groupe topologique et G0 la composante connexe de e dans G. Alorson a :1. G0 est sous-groupe distingué et fermé dans G.2. Pour tout x ∈ G, la composante connexe de x dans G est xG0 = G0x.3. Le groupe topologique quotient G/G0 est séparé et totalement discontinu.4. Si G est localement connexe, alors G/G0 est un groupe discret.Démonstration. 1. Puisque l'application

f : G×G −→ G
(x, y) 7−→ xy−1est continue et G0 ×G0 est connexe, alors f(G0 ×G0) est une partie connexe de G contenant e,donc on a f(G0 ×G0) ⊂ G0. Autrement dit, G0 est un sous-groupe de G. Soit x ∈ G. Puisquel'application

g : G −→ G
y 7−→ xyx−1est continue, alors xG0x

−1 = g(G0) est une partie connexe de G contenant e, donc on a xG0x
−1 ⊂

G0. Par conséquent, G0 est distingué. Notons en�n que toute composante connexe d'un pointdans un espace topologique est fermée, voir théorème 4.2.1.2. Comme G0 est un sous-groupe distingué de G, alors pour tout x ∈ G, on a xG0 = G0x. Soient
x ∈ G et Cx la composante connexe de x dans G. Comme l'application y 7−→ xy est continuede G dans G, alors xG0 est une partie connexe de G contenant x, d'où on a xG0 ⊂ Cx. Puisquel'application y 7−→ x−1y est continue de G dans G, alors x−1Cx est une partie connexe de Gcontenant e, donc on a x−1Cx ⊂ G0, d'où Cx ⊂ xG0. Par conséquent, on a Cx = xG0.3. Comme G0 est un sous-groupe fermé de G, il résulte de la proposition 11.2.1 que le groupetopologique quotient G/G0 est séparé. Pour montrer que G/G0 est totalement discontinu, d'après2, il su�t de montrer que la composante connexe de l'élément neutre dans le groupe topologiquequotient G/G0 est réduit à l'élément neutre. Soit G′

0 la composante connexe de l'élément neutredans le groupe topologique quotient G/G0. D'après 1, G′
0 est un sous-groupe distingué dans

G/G0. Soit q : G −→ G/G0 l'application quotient. Comme q est un morphisme de groupes, alors
G′ = q−1(G′

0) est un sous-groupe distingué de G et on a G0 ⊂ G′. Soit ϕ : G′ −→ G′
0 dé�nipar ϕ(x) = q(x). Alors ϕ est un morphisme de groupes continue, surjective et ouverte. D'aprèsla proposition 11.2.3, G′/G0 est homéomorphe à G′

0, donc G′/G0 est connexe. Il résulte de laproposition 11.2.4 que G′ est connexe. D'où on a G′ ⊂ G0. Par conséquent, on a G′ = G0. Donc
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191la composante connexe de l'élément neutre dans le groupe topologique quotient G/G0 est réduità l'élément neutre.4. Puisque G est localement connexe, alors ◦
G0 6= ∅. Il résulte du théorème 11.2.1 que G0 estouvert dans G. On déduit de la proposition 11.2.1 que le groupe topologique quotient G/G0 estdiscret. �Théorème. Soit G un groupe topologique séparé opérant continûment sur un espace localementcompact X. Alors les propriétés suivantes sont équivalentes.(i) G opère proprement sur X.(ii) Pour tout compact K de X, l'ensemble GK =

{
g ∈ G ; K ∩ gK 6= ∅

} est relativementcompact dans G.(iii) Pour tous x, y ∈ X, il existe des voisinages ouverts U et V dans X de x et y respectivementtels que l'ensemble {g ∈ G ; U ∩ gV 6= ∅
} soit relativement compact dans G.(iv) (a) Pour tout x ∈ X, il existe un voisinage ouvert U de x dans X tel que l'ensemble{

g ∈ G ; U ∩ gU 6= ∅
} soit relativement compact dans G.(b) L'espace des orbites X/G est séparé.Démonstration. Puisque X est localement compact, il résulte du théorème 3.7.4 que l'appli-cation
f : G×X −→ X ×X

(g, x) 7−→ (gx, x)est propre si et seulement si pour tout compact K ′ de X×X, f−1(K ′) est un compact de G×X.Montrons l'implication (i) =⇒ (ii). Soit K un compact de X. Comme l'application f est propre,alors f−1(K×K) =
{
(g, x) ∈ G×X ; x, gx ∈ K

} est un compact de G×X. Puisque la projectioncanonique p1 : G×X −→ G est continue, alors p1(f−1(K ×K)) est une partie compacte de G.Or on a GK = {g ∈ G ; K ∩ gK 6= ∅} ⊂ p1(f
−1(K ×K)), donc GK est relativement compactdans G.Preuve de (ii) =⇒ (i). Soit K ′ un compact de X ×X. Alors il existe un compact de X tel que

K ′ ⊂ K × K. Pour montrer que f−1(K ′) est un compact de G × X, il su�t de montrer que
f−1(K×K) est un compact de G×X car f−1(K ′) est fermé dans G×X. Or on a f−1(K×K) ⊂
GK ×K ⊂ GK × K et GK est compact de G, donc f−1(K × K) est compact de G ×X, car
f−1(K ×K) est déjà fermé dans G×X.Montrons l'implication (ii) =⇒ (iii). Soient x, y ∈ X. Comme X est localement compact, il existedeux voisinages ouverts U et V dans X de x et y respectivement tels que U et V soient compacts.Alors K = U ∪V est un compact de X. Par hypothèse, l'ensemble GK =

{
g ∈ G ; K ∩ gK 6= ∅

}est relativement compact dans G. Or on a {g ∈ G ; U ∩gV 6= ∅
}
⊂ GK , donc {g ∈ G ; U ∩gV 6=

∅
} est relativement compact dans G.Preuve de (iii) =⇒ (ii). Soit K un compact de X. Soit x ∈ K. Pour tout y ∈ K, il existedeux voisinages ouverts Ux,y et Vx,y dans X de x et y respectivement tels que Ax,y =

{
g ∈

G ; Ux,y ∩ gVx,y 6= ∅
} soit relativement compact dans G. Comme K est compact, alors il existe

y1, . . . , yn ∈ K tels que K ⊂ n∪
i=1
Vx,yi . Soient Ux =

n∩
i=1
Ux,yi et Vx =

n∪
i=1
Vx,yi , alors Ux estun voisinage ouvert de x dans X et Vx est un ouvert de X tels que K ⊂ Vx et Ax =

{
g ∈

G ; Ux ∩ gVx 6= ∅
} soit relativement compact dans G. Comme K est compact, alors il existe

x1, . . . , xp ∈ K tels que K ⊂ p
∪
j=1

Uxj
. Soient U =

p
∪
j=1

Uxj
et V =

p
∩
j=1

Vxj
, alors U et V sont desouverts de X tels que K ⊂ U , K ⊂ V et tels que {g ∈ G ; U ∩ gV 6= ∅

} soit relativementcompact dans G. Or on a GK =
{
g ∈ G ; K ∩ gK 6= ∅

}
⊂
{
g ∈ G ; U ∩ gV 6= ∅

}, donc GK est
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192 Chapitre 11. GROUPES TOPOLOGIQUESrelativement compact dans G.Preuve de (i) =⇒ (iv). Comme on a (i) ⇐⇒ (iii), il est clair que pour tout x ∈ X, il existe unvoisinage ouvert U de x dans X tel que l'ensemble {g ∈ G ; U ∩ gU 6= ∅
} soit relativementcompact dans G. Comme G opère proprement sur X, on déduit de la proposition 11.3.3 quel'espace des orbites X/G est séparé.Preuve de (iv) =⇒ (iii). Soit q : X −→ X/G l'application quotient. Soient x, y ∈ X. Si q(x) 6=

q(y), comme X/G est séparé, alors il existe des voisinages ouverts U et V dans X de x et yrespectivement tels que GU ∩ GV = ∅, d'où {g ∈ G ; U ∩ gV 6= ∅
} est vide. Supposons que

q(x) = q(y), alors il existe h ∈ G tel que y = hx. Par hypothèse, il existe un voisinage ouvert Ude x dans X tel que l'ensemble {g ∈ G ; U ∩ gU 6= ∅
} soit relativement compact dans G. Soit

V = hU , alors V est un voisinage ouvert de y dans X et on a :
{
g ∈ G ; U ∩ gV 6= ∅

}
=
{
g ∈ G ; U ∩ ghU 6= ∅

}
=
{
g ∈ G ; U ∩ gU 6= ∅

}
h−1 .Donc {g ∈ G ; U ∩ gV 6= ∅

} est relativement compact dans G car l'application g 7−→ gh−1 estun homéomorphisme de G. �Lemme (racine carrée d'une matrice positive). Soient A et B deux matrices positives deMn(K).1. Pour tout α > 0, A+ αIn est inversible.2. Si A2 = B2, alors on a A = B.3. Il existe une unique matrice positive C de Mn(K) telle que C2 = A. La matrice C est diteracine carrée de A.Démonstration. 1. Comme A est une matrice positive, d'après la proposition 11.4.1, il existe
λ1 ≥ 0, . . . , λn ≥ 0 et il existe P ∈ Mn(K) tels que :

PP ∗ = P ∗P = In et A = P




λ1 0 . . . 0
0 λ2 . . . 0... ... . . . ...
0 0 . . . λn


P

∗ .D'où on a :
A+ αIn = P




λ1 + α 0 . . . 0
0 λ2 + α . . . 0... ... . . . ...
0 0 . . . λn + α


P

∗ .Comme pour tout j ∈ {1, . . . , n}, on a λj + α > 0, alors la matrice :



λ1 + α 0 . . . 0
0 λ2 + α . . . 0... ... . . . ...
0 0 . . . λn + α


est inversible dans Mn(K). Par conséquent, A est inversible.2. Puisque A et B sont auto-adjoints, alors on a ker(A) = ker(A2) = ker(B2) = ker(B). Soit

λ une valeur propre de A2 = B2 telle que λ 6= 0, alors on a λ > 0. Il est clair que l'on a
ker(A−

√
λIn) ⊂ ker(A2− λIn). D'autre part, on a A2−λIn = (A+

√
λIn)(A−

√
λIn). D'après
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1931, A +
√
λIn est inversible, donc on a ker(A2 − λIn) ⊂ ker(A −

√
λIn). Par conséquent, on a

ker(A2 − λIn) = ker(A−
√
λIn). Or on a A2 = B2, d'où :

ker(A−
√
λIn) = ker(A2 − λIn) = ker(B2 − λIn) = ker(B −

√
λIn) .Ainsi, les restrictions de A et B aux sous-espaces propres de A2 = B2 sont égales, Kn étant lasomme directe de ces sous-espaces propres, voir propositions 8.7.9 et 8.7.10, on en déduit quel'on a A = B.3. Comme A est une matrice positive de Mn(K), d'après la proposition 11.4.1, il existe λ1 ≥

0, . . . , λn ≥ 0 et il existe P ∈ Mn(K) tels que :
PP ∗ = P ∗P = In et A = P




λ1 0 . . . 0
0 λ2 . . . 0... ... . . . ...
0 0 . . . λn


P

∗ .Soit :
C = P




√
λ1 0 . . . 0
0

√
λ2 . . . 0... ... . . . ...

0 0 . . .
√
λn


P

∗ .Alors C est une matrice positive de Mn(K) telle que C2 = A. L'unicité résulte de 2.
�Proposition. On a les propriétés suivantes :1. GL(n,K) est un ouvert dense dans Mn(K).2. L'ensemble des matrices diagonalisables est dense dans Mn(C).Démonstration. 1. Comme l'application déterminant est continue de Mn(K) dans K, voirexemple 6.6.1, alors GL(n,K) =

{
A ∈ Mn(K) ; det(A) 6= 0

} est un ouvert de Mn(K). Soient
A ∈ Mn(K) et µ1, . . . , µp les valeurs propres non nulles de A. Soient r = inf

1≤i≤p
|µi| et N ∈ N∗ telque 1

N < r. Alors pour tout k ≥ N , la matrice A− 1
k In est inversible et la suite (A− 1

k In
)
k≥Nconverge vers A dans Mn(K), donc GL(n,K) est dense dans Mn(K).2. Soit A ∈ Mn(C), alors il existe une matrice inversible P dans Mn(C) et une matrice triangulairesupérieure B telles que A = PBP−1, où :

B =




λ1 0 . . . . . . 0
0 λ2 0 . . . 0... 0

. . . . . . ...... ... . . . . . . 0
0 0 . . . 0 λn



+




0 x12 . . . . . . x1n
0 0 x23 . . . x2n... ... . . . . . . ...
0 0 . . . 0 x(n−1)n

0 0 . . . . . . 0



.Les λi sont les valeurs propres de A. Si tous les λi sont distincts, alors A est diagonalisable.Supposons que card({λ1, . . . , λn}) = m, avec 1 ≤ m < n. Donc on a {λ1, . . . , λn} = {µ1, . . . , µm},avec µi 6= µj si i 6= j. Soit r > 0 tel que B(µi, r)∩B(µj, r) = ∅ si i 6= j. Comme la suite (n

p

)
p≥1tend vers 0, alors il existe p0 ≥ 1 tel que pour tout p ≥ p0, on ait n

p < r. Alors pour tout p ≥ p0,
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194 Chapitre 11. GROUPES TOPOLOGIQUESles nombres complexes λq + q
p , pour q ∈ {1, . . . , n}, sont deux à deux distincts. Pour tout p ≥ p0,posons Ap = PBpP

−1, avec :
Bp =




λ1 +
1
p 0 . . . . . . 0

0 λ2 +
2
p 0 . . . 0... 0

. . . . . . ...... ... . . . . . . 0
0 0 . . . 0 λn + n

p



+




0 x12 . . . . . . x1n
0 0 x23 . . . x2n... ... . . . . . . ...
0 0 . . . 0 x(n−1)n

0 0 . . . . . . 0



.

Alors Ap est diagonalisable et la suite (Ap

)
p≥p0

converge vers A dans Mn(C). Donc l'ensembledes matrices diagonalisables est dense dans Mn(C). �Proposition. On a les propriétés suivantes :1. Le groupe compact SO(n) est connexe par arcs.2. Le groupe compact O(n) a deux composantes connexes dont celle contenant In est SO(n).3. Le groupe topologique GL(n,R) a deux composantes connexes dont celle contenant In estGL+(n,R) =
{
A ∈ Mn(R) ; det(A) > 0

} qui est de plus connexe par arcs.Démonstration. Si n = 1, on a M1(R) = R, SO(1) = {1}, O(1) = {−1, 1} et GL(1,R) =
R \ {0}, donc les trois propriétés sont triviales. Donc on peut supposer n ≥ 2.1. Soit A ∈ SO(n). D'après la proposition 11.4.2, il existe P ∈ O(n) et il existe une matricediagonale par blocs de la forme D = Diag(Ir,−Is, R(θ1), . . . , R(θp)) tels que A = PDP ∗,où R(θk) =

[
cos(θk) − sin(θk)
sin(θk) cos(θk)

], avec θk ∈ ]0, π[, pour tout k ∈ {1, . . . , p}. Comme on a
det(A) = 1, alors le nombre s est pair. On peut donc écrire −Is sous la forme d'une ma-trice diagonale de s

2 blocs de la forme R(π) = [cos(π) − sin(π)
sin(π) cos(π)

]. Pour tout t ∈ [0, 1], on pose
A(t) = PDiag(Ir, R(tπ), . . . , R(tπ), R(tθ1), . . . , R(tθp))P ∗, alors A(t) ∈ SO(n), t 7−→ A(t) estcontinue et A(0) = In et A(1) = A. Par conséquent, SO(n) est connexe par arcs.2. Soit O−(n) =

{
A ∈ O(n) ; det(A) = −1

} et soit B ∈ O−(n) dé�nie par :
B =




−1 0 . . . 0
0 1 . . . 0... ... . . . ...
0 0 . . . 1


 .Alors l'application A 7−→ BA est un homéomorphisme de SO(n) sur O−(n), donc O−(n) estconnexe. Or on a O(n) = SO(n) ∪ O−(n), avec SO(n) ∩ O−(n) = ∅ et SO(n), O−(n) sontdes fermés non vides dans O(n), on déduit du théorème 4.2.1 que SO(n) et O−(n) sont lescomposantes connexes de O(n).3. Soit G0 la composante connexe de In dans GL(n,R). Comme l'application ϕ : A 7−→ det(A)est continue de GL(n,R) dans R \ {0}, alors ϕ(G0) est une partie connexe de R \ {0} contenant

1, d'où pour tout A ∈ G0, on a det(A) > 0. Autrement dit, on a G0 ⊂ GL+(n,R). Pour montrerque l'on a G0 = GL+(n,R), il reste à montrer que GL+(n,R) est connexe. On va montrer parrécurrence que GL+(n,R) est connexe. On a GL+(1,R) = ]0, +∞[, donc GL+(1,R) est connexe.
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195Soit n ≥ 2 et supposons que GL+(n − 1,R) est connexe. Soit H le sous-groupe de GL+(n,R)formé des matrices de GL+(n,R), dont la première colonne est :



1
0...
0


 .Comme l'application

Rn−1 ×GL+(n− 1,R) −→ H

((x2, . . . , xn), A) 7−→




1 x2 . . . xn
0... A
0


est continue et surjective et comme Rn−1 × GL+(n − 1,R) est connexe, alors H est connexe.Considérons l'application suivante :

f : GL+(n,R) −→ Rn \ {0}
[aij] 7−→ (a11, a21, . . . , an1)Il est clair que f est continue et surjective. L'application f est la restriction de l'application

h : Mn(R) −→ Rn

[aij] 7−→ (a11, a21, . . . , an1)Comme h est continue, linéaire et surjective, alors h est une application ouverte, voir théorème7.1.1. Puisque GL+(n,R) est un ouvert de Mn(R) et Rn \ {0} est un ouvert de Rn, on en déduitque f est aussi une application ouverte. Notons aussi que si A,B ∈ GL+(n,R), alors A−1B ∈ H siet seulement si f(A) = f(B). On déduit alors du corollaire 1.4.1 qu'il existe un homéomorphisme
f̃ : GL+(n,R)/H −→ Rn \ {0} tel que le diagramme suivant soit commutatif.GL+(n,R) Rn \ {0}GL+(n,R)/H

-f

HHHHjq �����*

f̃Or Rn \ {0} est connexe car n ≥ 2, d'où GL+(n,R)/H est connexe. Il résulte de la proposition11.2.4 que GL+(n,R) est connexe. Montrons maintenant que GL(n,R) a deux composantesconnexes. Soit GL−(n,R) = {A ∈ Mn(R) ; det(A) < 0} et soit B ∈ GL−(n,R) dé�nie par :
B =




−1 0 . . . 0
0 1 . . . 0... ... . . . ...
0 0 . . . 1


 .Alors l'application A 7−→ BA est un homéomorphisme de GL+(n,R) sur GL−(n,R), doncGL−(n,R) est connexe. On a GL(n,R) = GL+(n,R)∪GL−(n,R) et GL+(n,R), GL−(n,R) sontdes ouverts non vides disjoints dans GL(n,R), alors on déduit du théorème 4.2.1 que GL+(n,R)et GL−(n,R) sont les composantes connexes de GL(n,R). Comme GL+(n,R) est aussi ouvertdans l'espace normé Mn(R), alors GL+(n,R) est connexe par arcs, voir proposition 6.1.5. �
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196 Chapitre 11. GROUPES TOPOLOGIQUESSupplément d'exercicesExercice 11.20. Rappelons que l'on a :
S3 =

{
(z0, z1) ∈ C2 ; |z0|2 + |z1|2 = 1

} et S2 =
{
(z, t) ∈ C× R ; |z|2 + t2 = 1

}
.Considérons l'application de Hopf suivante :

η : S3 −→ S2

(z0, z1) 7−→
(
2z0z1, |z0|2 − |z1|2

)Montrer que S2 est homéomorphe à S3/S1. En déduire que CP1 est homéomorphe à S2.Solution. Il est clair que η est une application continue. Véri�ons que η est surjective. Soit
(z, t) ∈ S2. Soient z0 =

√
1+t
2 ei arg(z) et z1 =

√
1−t
2 , alors on a (z0, z1) ∈ S3 et η(z0, z1)) = (z, t).Donc η est surjective. Soient (z0, z1), (z

′
0, z

′
1) ∈ S3, alors on a η((z0, z1)) = η((z′0, z

′
1)) si etseulement si il existe λ ∈ S1 tel que (z′0, z

′
1) = λ(z0, z1). Comme η est aussi une applicationfermée car S3 est compact, on déduit du corollaire 1.4.1 qu'il un homéomorphisme η̃ de S3/S1dans S2 tel que le diagramme suivant soit commutatif.

S3 S2

S3/S1

-η

@
@@Rq �

���
η̃Donc l'espace S3/S1 est homéomorphe à S2. D'après l'exercice 11.19, S3/S1 est homéomorphe à

CP1. Par conséquent, CP1 est homéomorphe à S2.Exercice 11.21. Considérons l'application suivante :
β : S1 −→ S1

z 7−→ z2Montrer que S1 est homéomorphe à S1/S0. En déduire que RP1 est homéomorphe à S1.Solution. Il est clair que β est une application continue et surjective. En plus, β est une appli-cation fermée car S1 est compact. Soient z, z′ ∈ S1, alors on a β(z) = β(z′) si et seulement si
z′ = ±z. Autrement dit, on a β(z) = β(z′) si et seulement si il existe λ ∈ S0 = {−1, 1} tel que
z′ = λz. On déduit alors du corollaire 1.4.1 qu'il un homéomorphisme β̃ de S1/S0 dans S1 telque le diagramme suivant soit commutatif.

S1 S1

S1/S0

-β

@
@@Rq �

���
β̃Donc l'espace S1/S0 est homéomorphe à S1. D'après l'exercice 11.19, S1/S0 est homéomorphe à

RP1. Par conséquent, RP1 est homéomorphe à S1.
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197Dé�nition 11.0.4. 1. Soit H un hyperplan de R3. On appelle ré�exion d'hyperplan Hl'opérateur T ∈ L (R3) dé�ni par T (x) = x, pour tout x ∈ H et T (y) = −y, pourtout y ∈ H⊥. Autrement dit, un opérateur T ∈ L (R3) est une ré�exion s'il existe unebase orthonormale B′ = (V1, V2, V3) de R3 telle que la matrice de T dans la base B′ est

−1 0 0
0 1 0
0 0 1


.2. Soit F un sous-espace vectoriel de dimension 1 de R3. On appelle retournement ourenversement d'axe F l'opérateur T ∈ L (R3) dé�ni par T (x) = x, pour tout x ∈ Fet T (y) = −y, pour tout y ∈ F⊥. Autrement dit, un opérateur T ∈ L (R3) est uneretournement s'il existe une base orthonormale B′′ = (W1,W2,W3) de R3 telle que lamatrice de T dans la base B′′ est 1 0 0

0 −1 0
0 0 −1


.Notez que si T ∈ L (R3), alors T est une ré�exion si et seulement si −T est un retournement.Exercice 11.22. Soit ‖ ‖2 la norme euclidienne sur R3.1. Soient x, y ∈ R3 tels que ‖x‖2 = ‖y‖2 = 1 et x 6= y. Montrer que la ré�exion d'hyperplan

H = {x− y}⊥ échange x et y.2. Montrer que tout T ∈ SO(3) est produit de deux ré�exions.3. Montrer que tout T ∈ SO(3) est produit de deux retournement.Solution. 1. Soit S la ré�exion d'hyperplan H = {x − y}⊥. Posons z = x − y. On peut écrire
x = x+y

2 + z
2 , avec x + y ∈ H car 〈x + y, z〉 = 〈x + y, x − y〉 = ‖x‖22 − ‖y‖22 = 0. Donc

S(x) = x+y
2 − z

2 = y.2. Soit T ∈ SO(3). Si T = I3, on a T =



−1 0 0
0 1 0
0 0 1





−1 0 0
0 1 0
0 0 1


. Supposons maintenant

T 6= I3. D'après le corollaire 11.4.1, on a dim(ker(T − idR3)) = 1. Soit v ∈ R3 tel que ‖v‖2 = 1et T (v) = v. Soit x ∈ R3 tel que 〈x, v〉 = 0 et ‖x‖2 = 1. Soit y = T (x), alors 〈y, v〉 = 0 car
{v}⊥ est stable par T , et on a ‖y‖2 = 1 et x 6= y. Soit S la ré�exion d'hyperplan H = {x− y}⊥.On a S ◦ T (v) = S(T (v)) = S(v) = v et S ◦ T (x) = S(T (x)) = S(y) = x. Comme on a
S ◦ T ∈ O(3) \ SO(3), on en déduit que S ◦ T est une ré�exion. On a aussi T = S ◦ (S ◦ T ), d'oùle résultat.3. Soit T ∈ SO(3). D'après 2, il existe deux ré�exions S1, S2 telles que T = S1 ◦ S2, d'où on a
T = (−S1) ◦ (−S2) et −S1,−S2 sont deux retournements.Exercice 11.23. Le but de cet exercice est de démontrer que RP3 est homéomorphe à SO(3). Soit
E =

{
A ∈ M2(C) ; A = A∗ et tr(A) = 0

}. Toute matrice de E est de la forme [ a b+ ic
b− ic −a

],avec a, b, c ∈ R. Donc E est un R-espace vectoriel de dimension 3. On pose :
A1 =

[
0 1
1 0

]
, A2 =

[
0 i
−i 0

]
, A3 =

[
1 0
0 −1

]
.Alors (A1, A2, A3) est une base de E. Pour tout A,B ∈ E, on pose 〈A,B〉 = 1

2 tr(AB), alors〈
,
〉 est un produit scalaire sur E et (A1, A2, A3) est une base orthonormale de E. Donc on peutidenti�er E muni de 〈 , 〉 à l'espace euclidien R3.
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198 Chapitre 11. GROUPES TOPOLOGIQUES1. Montrer que pour tout A ∈ E, on a A2 = ‖A‖2I2 et que pour tout U ∈ SU(2), on a
UAU−1 ∈ E.2. Montrer que pour tout U ∈ SU(2), l'application φU : A 7−→ UAU−1 est un opérateurunitaire de E.3. En identi�ant L (E) à M3(R), montrer que l'application suivante

φ : SU(2) −→ O(3)
U 7−→ φUest un morphisme de groupes continue.4. Montrer que pour tout U ∈ SU(2), on a φU ∈ SO(3).5. Montrer que ker(φ) = {I2,−I2}. Autrement dit, pour tout U1, U2 ∈ SU(2), on a φU1 = φU2si et seulement si U2 = ±U1.6. Montrer que l'application φ : SU(2) −→ SO(3) est surjective.7. En déduire que SU(2)/ ker(φ) est homéomorphe à SO(3) et qu'alors RP3 est homéomorpheà SO(3).Solution. 1. Soit A =

[
a b+ ic

b− ic −a

]
∈ E, avec a, b, c ∈ R. Alors on a :

A2 =

[
a2 + b2 + c2 0

0 a2 + b2 + c2

]
= (a2 + b2 + c2)I2 .D'autre part, on a ‖A‖2 =

〈
A,A

〉
= 1

2tr(A2) = a2 + b2 + c2, d'où A2 = ‖A‖2I2. Pour tout
U ∈ SU(2), on a (UAU−1)∗ = (U−1)∗A∗U∗ = UAU−1 et tr(UAU−1) = tr(U−1UA) = tr(A) = 0,donc UAU−1 ∈ E.2. Il est clair que φU est linéaire continue de E dans E. D'autre part, pour tout A,B ∈ E, on a :

〈φU (A), φU (B)〉 =
〈
UAU−1, UBU−1

〉

= 1
2tr(UAU−1UBU−1)

= 1
2tr(UABU−1)

= 1
2tr(U−1UAB)

= 1
2tr(AB) =

〈
A,B

〉
.Donc φU est un opérateur unitaire de E.3. Comme pour tout A ∈ E, l'application U 7−→ UAU−1 = φU (A) est continue de SU(2) dans

E, alors l'application φ est continue de SU(2) dans O(3). D'autre part, pour tout U1, U2 ∈ SU(2)et pour tout A ∈ E, on a φU1U2(A) = U1U2AU
−1
2 U−1

1 = φU1(φU2(A)) = (φU1 ◦ φU2)(A), donc
φU1U2 = φU1 ◦ φU2 . Autrement dit, φ est un morphisme de groupes.4. Comme φ est continue et φI2 = I3 et comme SU(2) est connexe, alors φ(SU(2)) est une partieconnexe de O(3) contenant I3, d'où φ(SU(2)) ⊂ SO(3), voir proposition 11.4.7.5. Soit U ∈ SU(2) tel que pour tout A ∈ E, on ait φU (A) = A, alors pour tout A ∈ E, ona UA = AU . On a U =

[
α −β
β α

] avec α, β ∈ C et |α|2 + |β|2 = 1. On déduit des équations
A1U = UA1 et A2U = UA2 que l'on a β = 0, α ∈ R et α2 = 1, d'où U = ±I2. Autrement dit,
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199on a ker(φ) = {I2,−I2}.6. Soit A ∈ E tel que ‖A‖ = 1. Posons U = iA, alors on a U∗ = −iA∗ = −iA = −U . Ona aussi U2 = −A2. D'après 1, on a A2 = ‖A‖2I2 = I2, d'où U2 = −I2. On en déduit que
U−1 = −U = U∗, donc U ∈ SU(2). On a φU (A) = UAU−1 = −UAU = −(iA)A(iA) = A3 = A.D'autre part, de l'équation U2 = −I2, on déduit φU ◦ φU = φU2 = φ−I2 = φI2 = idE . Comme ona φU 6= idE , on en déduit que pour tout B ∈ E tel que 〈A,B〉 = 0, on a φU (B) = −B. Autrementdit, φU est le renversement d'axe la droite passant par A. D'après l'exercice précédent, le groupeSO(3) est engendré par les renversements. Comme φ(SU(2)) est un sous-groupe de SO(3), onen déduit que l'on a φ(SU(2)) = SO(3). Autrement dit, l'application φ : SU(2) −→ SO(3) estsurjective.7. On déduit du corollaire 11.3.1 que SU(2)/{−I2, I2} est homéomorphe à SO(3). On déduit alorsdes exercices 11.17 et 11.19 que RP3 est homéomorphe à SO(3).Exercice 11.24. Pour tout n ≥ 1, on munit Rn de la norme euclidienne ‖ ‖2. Soit :

Sn =
{
x ∈ Rn+1 ; ‖x‖2 = 1

}
.1. Montrer que O(n+ 1) (resp. SO(n+ 1)) opère transitivement sur Sn.2. Montrer que le stabilisateur de e1 = (1, 0, . . . , 0) ∈ Sn est O(n) (resp. SO(n)).3. En déduire que O(n+ 1)/O(n) et SO(n+ 1)/SO(n) sont homéomorphes à Sn.Solution. 1. Rappelons d'abord, voir proposition 8.7.1, que pour tout x ∈ Rn+1 et pour tout

A ∈ O(n+ 1), on a ‖Ax‖2 = ‖x‖2. Par conséquent, l'applicationO(n+ 1)× Sn −→ Sn

(A, x) 7−→ Axest bien une action continue de O(n+ 1) sur Sn.Soit x ∈ Sn. Alors x est le premier vecteur d'une base orthonormée de Rn+1. Quitte à changer ledernier vecteur de cette base en son opposé, on peut supposer que le déterminant de cette baseest strictement positif. On déduit de la proposition 8.7.1 qu'il existe A ∈ SO(n + 1) telle que
Ae1 = x. Par conséquent, l'action de SO(n+ 1) sur Sn est transitive.2. Soit Se1 le stabilisateur de e1 par l'action de SO(n+1) sur Sn. Il est clair que si A ∈ SO(n+1),alors on a Ae1 = e1 si et seulement si A =




1 0 . . . 0
0... B
0


, avec B ∈ SO(n). Par conséquent,l'application SO(n) −→ Se1

B 7−→




1 0 . . . 0
0... B
0


est un morphisme de groupes et aussi un homéomorphisme. Donc on identi�e Se1 à SO(n).3. On déduit du théorème 11.3.1 que SO(n+ 1)/SO(n) est homéomorphe à Sn.On fait le même raisonnement pour montrer que O(n + 1)/O(n) est homéomorphe à Sn.Remarque 11.0.10. Pour tout n ≥ 1, on munit Cn de la norme euclidienne ‖ ‖2. Soit :

S2n+1 =
{
x ∈ R2n+2 = Cn+1 ; ‖x‖2 = 1

}
.
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200 Chapitre 11. GROUPES TOPOLOGIQUESOn montre exactement comme dans l'exercice précédent que l'on a les résultats suivants :1. U(n+ 1) (resp. SU(n + 1)) opère transitivement sur S2n+1.2. Le stabilisateur de e1 = (1, 0, . . . , 0) ∈ S2n+1 est U(n) (resp. SU(n)).3. U(n+ 1)/U(n) et SU(n + 1)/SU(n) sont homéomorphes à S2n+1.Exercice 11.25. Soit f : R −→ R une fonction. On dit que f est périodique s'il existe T ∈ Rtel que T 6= 0 et f(x + T ) = f(x) pour tout x ∈ R. Un tel T est appelée une période de f .Désormais, on suppose que f est continue et périodique.1. Soit G la réunion de {0} et de l'ensemble des périodes de f . Montrer que G est un sous-groupe additif fermé de R, et que si f est non constante, alors G est discret.2. Montrer que f est bornée et uniformément continue.Solution. 1. On a 0 ∈ G, et puisque f est périodique, alors G 6= {0}. Pour tous T, S ∈ G et pourtout x ∈ R, on a f(x+T−S) = f(x−S+T ) = f(x−S) = f(x−S+S) = f(x), donc T −S ∈ G.Par conséquent, G est un sous-groupe additif de R. Soit (Tn)n≥0 une suite de G convergeant versun élément T ∈ R. Pour tout n ≥ 0 et pour tout x ∈ R, on a f(x + Tn) = f(x). Comme f estcontinue, alors on a f(x + T ) = lim
n→+∞

f(x + Tn) = f(x), donc T ∈ G. Par conséquent, G estfermé dans R. Si f n'est pas constante, alors il existe T ∈ R tel que T 6∈ G, donc G n'est pasdense dans R. D'après l'exercice 11.1, il existe alors α > 0 tel que G = αZ, donc G est discret.Notons que α est la plus petite période strictement positive de f .2. On a f(x − T ) = f(x − T + T ) = f(x), donc il existe T > 0 tel que f(x + T ) = f(x) pourtout x ∈ R. On a f(R) = f([0, T ]) et f est continue, donc f est bornée. Puisque f est continueet [−T, T ] est compact, alors f est uniformément continue sur [−T, T ], donc, pour tout ε > 0, ilexiste 0 < η < T tel que pour tous x, y ∈ [−T, T ] véri�ant |x− y| < η, on ait |f(x)− f(y)| < ε.Il s'agit maintenant de montrer que f est uniformément continue sur R. Soient x, y ∈ R tels que
|x − y| < η. On fait la division euclidienne de x et y par T , on obtient p, q ∈ Z et r, s ∈ [0, T [tels que x = pT + r et y = qT + s. On a |x− y| < η < T , d'où q ∈ {p− 1, p, p+1}. On distinguetrois cas :Premier cas : q = p. Alors on a |x− y| = |r − s|, d'où |r − s| < η. Donc on a |f(r)− f(s)| < ε.Or on a f(x) = f(pT + r) = f(r) et f(y) = f(qT + s) = f(s), d'où |f(x)− f(y)| < ε.Deuxième cas : q = p−1. Alors on a y = qT+s = (p−1)T+s = pT+s−T , d'où x−y = r−(s−T )et r, s− T ∈ [−T, T ] et |r − (s− T )| < η. Donc on a |f(r)− f(s− T )| < ε. Or on a f(x) = f(r)et f(y) = f(s− T ), d'où |f(x)− f(y)| < ε.Troisième cas : q = p+ 1. Alors on a x = pT + r = (p + 1)T + r − T et y = (p + 1)T + s, d'où
x− y = (r − T )− s et r − T, s ∈ [−T, T ] et |(r − T )− s| < η. Donc on a |f(r − T )− f(s)| < ε.Or on a f(x) = f(r − T ) et f(y) = f(s), d'où |f(x)− f(y)| < ε.Ainsi, pour tout ε > 0, il existe η > 0 tel que pour tous x, y ∈ R véri�ant |x − y| < η, on ait
|f(x)− f(y)| < ε. Donc f est uniformément continue sur R.Exercice 11.26. Soient G un groupe topologique et H un sous-groupe fermé de G. Montrer quele normalisateur N(H) =

{
x ∈ G ; xHx−1 = H

} de H est un sous-groupe fermé de G.Solution. Il est clair que N(H) est un sous-groupe de G. Soit h ∈ H. Les applications
fh : G −→ H

x 7−→ xhx−1 et gh : G −→ H
x 7−→ x−1hxsont continues. Comme H est fermé dans G, alors Ah = f−1
h (H) et Bh = g−1

h (H) sont fermésdans G. Or on a N(H) = ∩
h∈H

Ah ∩Bh, donc N(H) est fermé dans G.
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201Exercice 11.27. Soit G un groupe topologique séparé opérant continûment sur un espace to-pologique séparé X. Soient K une partie compacte de G et F une partie fermée de X. Montrerque KF =
{
gx ; g ∈ K et x ∈ F} est fermé dans X.Solution. Considérons l'application suivante :

f : K ×X −→ X
(g, x) 7−→ gxD'après la proposition 11.3.7, f est une application propre. Comme K×F est fermé dans K×X,alors KF = f(K × F ) est fermé dans X.Exercice 11.28. Soit G un groupe topologique séparé opérant continûment et proprement surun espace topologique séparé X. Soient F une partie fermée de G et K une partie compacte de

X. Montrer que FK est une partie fermée de X.Solution. D'après la proposition 11.3.5, l'application
fK : G×K −→ X

(g, x) 7−→ gxest propre. Comme F ×K est fermé dans G×K, alors FK = fK(F ×K) est fermé dans X.Exercice 11.29. Soient G un groupe topologique séparé, K une partie compacte de G et F unepartie fermée de G. Montrer que ∪
g∈K

gFg−1 est fermé dans G.Solution. Le groupe G opérant continûment à gauche sur lui-même par l'action
G×G −→ G
(g, x) 7−→ gxg−1D'après la proposition 11.3.7, l'application

f : K ×G −→ G
(g, x) 7−→ gxg−1est propre. Or K × F est fermé dans K ×G, d'où ∪

g∈K
gFg−1 = f(K × F ) est fermé dans G.Exercice 11.30. Soient G un groupe topologique localement compact et H un sous-groupe dis-cret de G tel que l'espace homogène G/H soit compact. Montrer que pour tout h ∈ H, l'ensemble{

ghg−1 ; g ∈ G
} est fermé dans G.Solution. Soit q : G −→ G/H l'application quotient. Comme G/H est compact, d'après laproposition 11.3.1, il existe un compact K de G tel que q(K) = G/H, d'où G = KH. Soit

h ∈ H. Soit g ∈ G, alors il existe k ∈ K et h1 ∈ H tels que g = kh1, d'où ghg−1 = kh1hh
−1
1 k−1.Comme H est un sous-groupe discret de G, il résulte du théorème 11.2.1 que H est fermé dans

G. Comme l'ensemble Fq =
{
h1hh

−1
1 ; h1 ∈ H

} est fermé dans H car H est discret, alors Fq estfermé dans G. Comme on a {ghg−1 ; g ∈ G
}
= ∪

k∈K
kFdk

−1, on déduit de l'exercice précédentque l'ensemble {ghg−1 ; g ∈ G
} est fermé dans G.Exercice 11.31. Soit G un groupe topologique séparé opérant continûment et librement sur unespace topologique séparé X. Soit GR le graphe de la relation d'équivalence R sur X dont lesclasses sont les orbites des points de X. Autrement dit, soit (x, y) ∈ X×X, alors on a (x, y) ∈ GRsi et seulement si il existe g ∈ G tel que gy = x. Soient y ∈ Y et g, h ∈ G tels que gy = hy, alors
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202 Chapitre 11. GROUPES TOPOLOGIQUES
h−1gy = y. Comme G opère librement sur X, alors on a h−1g = e, d'où g = h. Donc pour tout
(x, y) ∈ GR, il existe un unique g ∈ G tel que gy = x. Pour tout (x, y) ∈ GR, on pose ϕ(x, y)l'unique élément de G tel que ϕ(x, y)y = x. Ainsi, on dé�nit une application ϕ : GR −→ G,appelée application canonique de GR dans G.En utilisant les propositions 1.5.6 et 3.7.1, montrer que les propriétés suivantes sont équivalentes.(i) G opère proprement sur X.(ii) L'espace des orbites X/G est séparé et l'application canonique ϕ : GR −→ G est continue.Solution. Puisque l'application quotient q : X −→ X/G est ouverte, on déduit de la proposition1.5.6 que l'espace des orbites X/G est séparé si et seulement si GR est fermé dans X ×X. Pardé�nition, G opère proprement sur X si l'application

T : G×X −→ X ×X
(g, y) 7−→ (gy, y)est propre. Comme T est une application continue injective, d'après la proposition 3.7.1, T estpropre si et seulement si T (G × X) = GR est fermé dans X × X et si on désigne par S l'ap-plication T considérée comme application de G × X dans T (G × X) = GR, alors S est unhoméomorphisme. Or S est une application continue bijective dont l'application réciproque estl'application (x, y) 7−→ (ϕ(x, y), y). Donc S est un homéomorphisme si et seulement si ϕ est uneapplication continue de GR dans G. Ainsi, on obtient l'équivalence (i) ⇐⇒ (ii).Exercice 11.32. Considérons l'action naturelle de O(n) sur Rn dé�nie par :O(n)× Rn −→ Rn

(A, x) 7−→ AxMontrer que l'action de O(n) sur Rn est propre, mais n'est pas libre et que Rn/O(n) est homéo-morphe à [0,+∞[.Solution. Puisque O(n) est compact, il résulte du théorème 11.3.2 que l'action de O(n) sur Rnest propre. L'action de O(n) sur Rn n'est pas libre car pour tout A ∈ O(n), on a A0 = 0, où 0est le vecteur nul de Rn.L'application
N : Rn −→ [0,+∞[

x 7−→ ‖x‖2est continue et surjective. D'après la proposition 3.7.3, N est aussi une application fermée. Deplus, N est constante sur les orbites car si x, y ∈ Rn et si A ∈ O(n) tels que Ax = y, alors ona ‖y‖2 = ‖Ax‖2 = ‖x‖2. Notons aussi que d'après la proposition 8.7.1, si x, y ∈ Rn tels que
‖y‖2 = ‖x‖2, alors il existe A ∈ O(n) telle que Ax = y. D'après le corollaire 1.4.1, il existe unhoméomorphisme Ñ : Rn/O(n) −→ [0,+∞[ tel que le diagramme suivant soit commutatif.

Rn [0,+∞[

Rn/O(n)

-N

Q
Q
QQsq �

�
��3

Ñ
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Chapitre 12ALGÈBRES DE BANACHProposition. Soient A une algèbre unitaire sur C et x ∈ A tel que SpA(x) 6= ∅.1. Soit P ∈ C[X], un polynôme, on a SpA(P (x)) = P (SpA(x)) = {P (λ) ; λ ∈ SpA(x)}.2. Si x ∈ GL(A), on a SpA(x−1
)
=
{
λ−1 ; λ ∈ SpA(x)}.Démonstration. 1. Ce résultat est trivial si P est constant, donc on peut supposer P nonconstant. Soit λ ∈ SpA(x), alors on a x − λ 6∈ GL(A) et P (X) − P (λ) ∈ C[X] admettant

λ comme racine, donc P (X) − P (λ) = (X − λ)Q(X,λ) = Q(X,λ)(X − λ). Supposons que
P (x)− P (λ) ∈ GL(A), alors il existe y ∈ A tel que y(P (x)− P (λ)) = (P (x)− P (λ))y = 1, d'où
yQ(x, λ)(x−λ) = (x−λ)Q(x, λ)y = 1, ceci implique x−λ ∈ GL(A), d'où la contradiction. Doncon a bien P (λ) ∈ SpA(P (x)).Réciproquement, soit µ ∈ SpA(P (x)), alors P (x)−µ 6∈ GL(A). Comme on a P (X)−µ = α

n∏
i=1

(X−

λi), avec α ∈ C∗, et les λi sont les racines du polynôme P (X)−µ, alors P (x)−µ = α
n∏

i=1
(x−λi).Si pour tout i ∈ {1, ..., n}, on a x− λi ∈ GL(A), alors P (x)− µ ∈ GL(A), d'où la contradiction.Donc il existe i ∈ {1, . . . , n} tel que x− λi 6∈ GL(A), d'où λi ∈ SpA(x) et on a P (λi) = µ.2. Soit x ∈ GL(A). Alors pour tout λ ∈ SpA(x) ∪ SpA(x−1

), on a λ 6= 0. Soit λ ∈ C tel que
λ 6= 0. On a x−1 − 1

λ = − 1
λx

−1(x− λ). Comme − 1
λx

−1 ∈ GL(A), on en déduit que λ ∈ SpA(x)si et seulement si λ−1 ∈ SpA(x−1
). Par conséquent, on a SpA(x−1

)
=
{
λ−1 ; λ ∈ SpA(x)}. �Théorème. Soit B une sous-algèbre fermée unitaire d'une algèbre de Banach unitaire (A, ‖ ‖).On suppose de plus que l'on a 1B = 1A. Alors on a :1. GL(B) est ouvert et fermé dans B ∩GL(A).2. Pour tout x ∈ B, on a SpA(x) ⊂ SpB(x) et C\SpB(x) est ouvert et fermé dans C\SpA(x).3. Pour tout x ∈ B, on a Fr(SpB(x)) ⊂ Fr(SpA(x)).4. Soit x ∈ B. Si SpA(x) 6= SpB(x), alors SpB(x) est la réunion de SpA(x) et de quelquescomposantes connexes bornées de C \ SpA(x).5. Soit x ∈ B. Si C \ SpA(x) est connexe, alors on a SpA(x) = SpB(x).6. Soit x ∈ B. Si SpB(x) est d'intérieur vide, alors on a SpA(x) = SpB(x).Démonstration. 1. D'après le corollaire 12.1.1, GL(B) est ouvert dans B. On a aussi GL(B) ⊂GL(A), voir Appendice E. Donc GL(B) est ouvert dans B ∩ GL(A). Montrons maintenant queGL(B) est fermé dans B ∩GL(A). Soient x ∈ B ∩GL(A) et (xn)n≥0 une suite dans GL(B), quiconverge vers x. Alors la suite (x−1

n

)
n≥0

converge vers x−1 dans A. Comme B est fermée dans A,203
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204 Chapitre 12. ALGÈBRES DE BANACHalors on a x−1 ∈ B. Par conséquent, on a x ∈ GL(B). Donc GL(B) est fermé dans B ∩GL(A).2. Soit x ∈ B. D'après le corollaire 12.3.2, on a SpA(x) ⊂ SpB(x). Comme C \ SpB(x) estouvert dans C et on a C \ SpB(x) ⊂ C \ SpA(x), alors C \ SpB(x) est ouvert dans C \ SpA(x).Montrons que C \ SpB(x) est fermé dans C \ SpA(x). Soient (λn)n≥0 une suite dans C \ SpB(x)et λ ∈ C \ SpA(x) tels que lim
n→+∞

λn = λ. Alors pour tout n ≥ 0, on a x− λn ∈ GL(B) et on a
lim

n→+∞
x−λn = x−λ ∈ B∩GL(A). Il résulte de 1 que l'on a x−λ ∈ GL(B), d'où λ ∈ C\SpB(x).Donc C \ SpB(x) est aussi fermé dans C \ SpA(x).3. Soit x ∈ B. Soit λ ∈ Fr(SpB(x)). Comme on a Fr(SpB(x)) = SpB(x)∩C \ SpB(x), car SpB(x)est fermé dans C, alors λ ∈ SpB(x) et il existe une suite (λn)n≥0 dans C \ SpB(x) convergeantvers λ. Donc on a x − λ 6∈ GL(B), et pour tout n ≥ 0, on a x − λn ∈ GL(B). Comme la suite

(x − λn)n≥0 converge vers x − λ, il résulte de 1 que x − λ 6∈ GL(A), donc on a λ ∈ SpA(x).Comme on a aussi λn ∈ C \ SpB(x) ⊂ C \ SpA(x), alors λ ∈ Fr(SpA(x)). Par conséquent, on aFr(SpB(x)) ⊂ Fr(SpA(x)).4. Soit x ∈ B tel que SpA(x) 6= SpB(x). D'après 2, C \ SpB(x) est ouvert et fermé dans C \SpA(x). Donc SpB(x) \ SpA(x) est non vide et à la fois ouvert et fermé dans C \ SpA(x), doncSpB(x) \ SpA(x) est une réunion de quelques composantes connexes bornées de C \ SpA(x).5. Soit x ∈ B. D'après 2, C \ SpB(x) est ouvert et fermé dans C \ SpA(x). Donc, si C \ SpA(x)est connexe, alors on a C \ SpB(x) = C \ SpA(x), d'où SpA(x) = SpB(x).6. Soit x ∈ B. Si SpB(x) est d'intérieur vide, alors on a SpB(x) = Fr(SpB(x)), d'où SpB(x) ⊂Fr(SpA(x)) ⊂ SpA(x). Par conséquent, on a SpA(x) = SpB(x). �Théorème (Beurling). Soient (A, ‖ ‖) une algèbre de Banach unitaire et x ∈ A. La suite(
‖xn‖ 1

n

)
n≥1

est convergente dans R et on a r(x) = lim
n→+∞

‖xn‖ 1
n = inf

n≥1
‖xn‖ 1

n .Démonstration. On peut supposer x 6= 0. Soit λ ∈ SpA(x). D'après la proposition 12.3.2, on a
λn ∈ SpA(xn), d'où |λn| ≤ ‖xn‖. Donc on a |λ| ≤ ‖xn‖ 1

n . Par conséquent, on a |λ| ≤ inf
n≥1
‖xn‖ 1

n .On en déduit que l'on a r(x) ≤ inf
n≥1
‖xn‖ 1

n ≤ lim inf
n→+∞

‖xn‖ 1
n ≤ lim sup

n→+∞
‖xn‖ 1

n . Pour avoir lerésultat, il reste à montrer que l'on a lim sup
n→+∞

‖xn‖ 1
n ≤ r(x). Soit U =

{
λ ∈ C ; |λ| < 1

r(x)

},si r(x) 6= 0. Si r(x) = 0, on prend U = C. Alors pour tout λ ∈ U , 1 − λx ∈ GL(A). Soit fune forme linéaire continue sur A. D'après le corollaire 12.1.1, la fonction λ 7−→ f
(
(1 − λx)−1

)est holomorphe sur U . Donc il existe une suite (αn)n≥0 dans C tel que pour tout λ ∈ U , onait f((1 − λx)−1
)
=

+∞∑

n=0

αnλ
n. Par ailleurs, pour tout λ ∈ C tel que |λ| < 1

‖x‖ , on a λ ∈ Uet (1 − λx)−1 =
+∞∑

n=0

λnxn, voir théorème 12.1.1. Par conséquent, pour tout λ ∈ C tel que
|λ| < 1

‖x‖ , on a f
(
(1 − λx)−1

)
=

+∞∑

n=0

f(xn)λn. On en déduit que pour tout n ≥ 0, on a
f(xn) = αn, voir un cours sur les fonctions holomorphes. Finalement, pour tout λ ∈ U , ona f((1 − λx)−1

)
=

+∞∑

n=0

f(λnxn). En particulier, pour tout λ ∈ U , on a lim
n→+∞

f(λnxn) = 0.Donc la suite (f(λnxn))n≥0 est bornée dans C. On déduit du théorème de Banach-Steinhaus,voir exercice 7.8, que la suite (λnxn)n≥0 est bornée dans (A, ‖ ‖). Autrement dit, il existe une
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205constante 0 < Mλ < +∞ telle que pour tout n ≥ 1, on ait ‖λnxn‖ ≤ Mλ, d'où ‖xn‖ 1
n ≤ M

1
n

λ

|λ| ,si λ 6= 0. Par conséquent, on a lim sup
n→+∞

‖xn‖ 1
n ≤ 1

|λ| . Autrement dit, pour tout µ ∈ C tel que
r(x) < |µ|, on a lim sup

n→+∞
‖xn‖ 1

n ≤ |µ|. Donc on a lim sup
n→+∞

‖xn‖ 1
n ≤ r(x). �Théorème. Soient X un espace compact et A = C(X) muni de la norme ‖ ‖∞. C'est une algèbrede Banach commutative unitaire.1. Pour tout fermé F de X, on pose IF =

{
f ∈ A ; f(x) = 0 , pour tout x ∈ F}. Alors IFest un idéal bilatère fermé de A.2. L'application T : F 7−→ IF est bijective de l'ensemble des fermés de X sur l'ensemble desidéaux bilatères fermés de A.3. Tout idéal bilatère fermé de A est l'intersection des idéaux bilatères maximaux de A lecontenant.4. Pour tout x ∈ X, l'application suivante est un caractère de A.

δx : A −→ C

f 7−→ f(x)5. L'application suivante est un homéomorphisme.
δ : X −→ Â

x 7−→ δxDémonstration. 1. Il est clair que pour tout fermé F de X, IF est un idéal bilatère fermé de
A.2. Soient F et G deux fermés de X tels que F 6= G. Alors, on peut supposer qu'il existe x ∈ Xtel que x ∈ F et x 6∈ G. D'après le théorème d'Urysohn, théorème 3.6.1, il existe f ∈ A telle que
f(x) = 1 et f(y) = 0, pour tout y ∈ G. Alors on a f ∈ IG, mais f 6∈ IF , d'où IF 6= IG. Doncl'application T est injective. Montrons que T est surjective. Soit I un idéal bilatère fermé de A.Soit F = ∩

f∈I
f−1({0}), alors F est fermé dans X et on a I ⊂ IF . Montrons que l'on a IF ⊂ I.Soit f ∈ IF . Soit ε ∈ ]0, 1[, et posons K = {x ∈ X ; |f(x)| ≥ ε}, alors K est une partie compactede X et on a K∩F = ∅. Pour tout x ∈ K, il existe fx ∈ I tel que |fx(x)| > 2, car x 6∈ F . Comme

fx est continue, il existe un voisinage ouvert Vx de x dans X tel que pour tout y ∈ Vx, on ait
|fx(y)| > 1. Comme (Vx)x∈K est un recouvrement ouvert de K, alors il existe x1, . . . , xn ∈ Ktels que K ⊂ n∪

i=1
Vxi

. Soit g =

n∑

i=1

fxi
fxi

, alors g ∈ I. Soit h = sup(g, ε), alors h est continue et
h(y) ≥ ε, pour tout y ∈ X, donc on a h ∈ GL(A). Montrons que l'on a ‖f − gh−1f‖∞ ≤ ε. Soit
x ∈ K, alors il existe i tel que x ∈ Vxi

, donc |fxi
(x)| > 1, d'où g(x) > 1 > ε. Par conséquent, ona h(x) = g(x), donc |f(x)− g(x)h−1(x)f(x)| = 0. Soit x ∈ X \K, alors on a |f(x)| < ε. Puisque

0 ≤ g(x)h−1(x) ≤ 1, alors on a |f(x)− g(x)h−1(x)f(x)| = |f(x)| |1 − g(x)h−1(x)| ≤ |f(x)| < ε.Par conséquent, on a ‖f − gh−1f‖∞ ≤ ε. Comme on gh−1f ∈ I et ε est assez petit, alors on a
f ∈ I = I. Donc on a bien I = IF . On en déduit que l'application T est surjective.3. D'après 2, les idéaux bilatères maximaux de A sont de la forme Ix = {f ∈ A ; f(x) = 0}, avec
x ∈ X. Soit I un idéal bilatère fermé de A. Il existe un fermé F de X tel que I = IF . Commeon a IF = ∩

x∈F
Ix, alors I est l'intersection des idéaux bilatères maximaux de A le contenant.
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206 Chapitre 12. ALGÈBRES DE BANACH4. Il est clair que pour tout x ∈ X, δx est un caractère de A.5. Il est clair que δ est une application continue. Comme X est un espace compact, pour avoirle résultat, il reste à véri�er que δ est bijective. Montrons d'abord que δ est injective. Soient
x, y ∈ X tels que x 6= y. D'après le théorème d'Urysohn, 3.6.1, il existe f ∈ A = C(X) telle que
f(x) 6= f(y). D'où on a δx(f) 6= δy(f). Donc δ est injective. Montrons que δ est surjective. Soit
χ un caractère de A. D'après la proposition 12.4.3, ker(χ) est un idéal bilatère fermé maximalde A. D'après 2, il existe x ∈ X tel que ker(χ) = Ix = {f ∈ A ; f(x) = 0} = ker(δx). Une foisde plus, d'après la proposition 12.4.3, on a alors χ = δx. Donc δ est bien surjective. �Supplément d'exercicesExercice 12.22. Soient (A, ‖ ‖) une algèbre de Banach unitaire et x ∈ A. Pour tout λ ∈
C\SpA(x), on pose R(λ) = (x−λ)−1. L'ensemble C\SpA(x) est appelé l'ensemble résolvant de
x et l'application λ 7−→ R(λ) est appelée la résolvante de x. Rappelons, théorème 12.1.1, que si
λ ∈ C tel que |λ| > ‖x‖, alors λ ∈ C\SpA(x) et on a R(λ) = (x−λ)−1 = −1

λ

+∞∑

n=0

xn

λn
= −

+∞∑

n=0

xn

λn+1
.D'où on a ‖R(λ)‖ ≤ 1

|λ| − ‖x‖ .1. Montrer que pour tout λ, µ ∈ C \ SpA(x), on a R(λ)−R(µ) = (λ− µ)R(λ)R(µ).2. Montrer que λ 7−→ R(λ) est C-di�érentiable et que l'on a R′(λ) = (R(λ))2.Solution. 1. Pour tous λ, µ ∈ C \ SpA(x), on a :
(λ− µ)R(λ)R(µ) = (λ− µ)(x− λ)−1(x− µ)−1

= ((x− µ)− (x− λ))(x− λ)−1(x− µ)−1

= (x− µ)(x− λ)−1(x− µ)−1 − (x− λ)(x− λ)−1(x− µ)−1

= (x− λ)−1 − (x− µ)−1 = R(λ)−R(µ) .2. Rappelons d'abord que C \ SpA(x) est un ouvert de C. Pour tous λ, µ ∈ C \ SpA(x), avec
µ 6= λ, on a R(µ)−R(λ)

µ− λ = R(λ)R(µ). D'après le corollaire 12.1.1, l'application λ 7−→ R(λ) estcontinue sur C\SpA(x), donc on a lim
µ→λ
µ6=λ

R(µ)−R(λ)
µ− λ = (R(λ))2. Par conséquent, λ 7−→ R(λ) est

C-di�érentiable et l'on a R′(λ) = (R(λ))2, pour tout λ ∈ C \ SpA(x).Exercice 12.23. Soient (H, 〈 , 〉) un espace de Hilbert complexe séparable de dimension in�nieet (ep)p≥1 une base hilbertienne de H. Soit T ∈ A = L (H) tel que T (ep) = 1
2p ep+1, pour tout

p ≥ 1. Montrer que l'on a r(T ) = 0, mais que T n'est pas nilpotent.Solution.On montre par récurrence que pour tout p, n ≥ 1, on a T n(ep) =
1
2p

1
2p+1 · · · 1

2p+n−1 ep+n.Par conséquent, T n'est pas nilpotent. Soient x ∈ H et ε > 0. On a x =
+∞∑

p=1

λpep, avec ‖x‖2 =
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+∞∑

p=1

|λp|2, et il existe q ≥ 1 tel que q+1
22q

< ε et +∞∑

p=q+1

|λp|2 < 1. On a :
T n(x) =

+∞∑

p=1

λpT
n(ep) =

+∞∑

p=1

λp
1
2p

1
2p+1 · · · 1

2p+n−1 ep+n ,d'où :
‖T n(x)‖2 =

+∞∑

p=1

|λp|2
[
1
2p

1
2p+1 · · · 1

2p+n−1

]2

=

q∑

p=1

|λp|2
[
1
2p

1
2p+1 · · · 1

2p+n−1

]2
+

+∞∑

p=q+1

|λp|2
[
1
2p

1
2p+1 · · · 1

2p+n−1

]2
.Pour tout p ≥ q + 1, on a 1

2p
1

2p+1 · · · 1
2p+n−1 ≤

(
1
2p

)n−1
= 1

2p(n−1) ≤ 1
2q(n−1) . Pour tout 1 ≤ p ≤ qet pour tout n ≥ q, on a 1

2p
1

2p+1 · · · 1
2p+n−1 ≤ 1

2q
1

2q+1 · · · 1
2n ≤

(
1
2q

)n−q
= 1

2q(n−q) . Par conséquent,on a ‖T n(x)‖2 ≤ 1
22q(n−q)

q∑

p=1

|λp|2 + 1
22q(n−1) , pour tout n ≥ q. Comme pour tout s, t ≥ 0, on a

(s + t)
1
n ≤ s

1
n + t

1
n , on déduit que l'on a ‖T n(x)‖ 2

n ≤ 2
2q2

n

22q

q∑

p=1

|λp|
2
n + 2

2q
n

22q
= αn. Puisque l'ona lim

n→+∞
αn =

q + 1

22q
< ε, il existe N ≥ 1 tel que pour tout n ≥ N , on ait ‖T n(x)‖ 2

n < ε. Parconséquent, on a lim
n→+∞

‖T n(x)‖ 1
n = 0. On déduit de l'exercice 12.10 que l'on a r(T ) = 0.Exercice 12.24. Soient A une algèbre de Banach unitaire et M > 0 une constante.1. Montrer que si pour tout x, y ∈ A, on a ‖xy‖ ≤M‖yx‖, alors A est commutative.2. Montrer que si pour tout x ∈ A, on a ‖x‖ ≤Mr(x), alors A est commutative.3. Montrer que si pour tout x ∈ A, on a ‖x‖2 ≤M‖x2‖, alors A est commutative.Solution. 1. Puisque pour tout x, y ∈ A, on a ‖xy‖ ≤M‖yx‖, alors pour tout u ∈ GL(A), on a

‖u−1yu‖ ≤M‖y‖. En particulier, pour tout λ ∈ C, on a ‖e−λxyeλx‖ ≤M‖y‖. Soit f une formelinéaire continue sur A. Alors l'application λ 7−→ f(e−λxyeλx) est holomorphe sur C et bornée.Par le théorème de Liouville, cette application est constante, donc on a f(e−λxyeλx) = f(y), pourtout λ ∈ C. Ceci étant vrai, pour toute forme linéaire continue sur A, alors on a e−λxyeλx = y,pour tout λ ∈ C. Par conséquent, pour tout λ ∈ C, on a yeλx = eλxy. On en déduit que l'on a
yx = xy. Autrement dit, A est commutative.2. Pour tout tout x, y ∈ A, on a ‖xy‖ ≤ Mr(xy) = Mr(yx) ≤ M‖yx‖. On déduit de 1 qu'alors
A est commutative.3. Par hypothèse, pour tout x ∈ A, on a ‖x‖2 ≤ M‖x2‖. On en déduit, par récurrence, quepour tout n ≥ 0, on a ‖x‖2n ≤M2n−1‖x2n‖, d'où ‖x‖ ≤M1−2−n‖x2n‖ 1

2n . Par conséquent, on a
‖x‖ ≤Mr(x). Il résulte de 2 que A est commutative.Exercice 12.25. Soient (A, ‖ ‖) une algèbre de Banach unitaire et x ∈ A. On dit que x est undiviseur de zéro topologique s'il existe une suite (xn)n≥0 dans A telle que pour tout n ≥ 0,on ait ‖xn‖ = 1 et telle que lim

n→+∞
‖xnx‖ = lim

n→+∞
‖xxn‖ = 0.
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208 Chapitre 12. ALGÈBRES DE BANACH1. Montrer que si x est diviseur de zéro topologique, alors x 6∈ GL(A).2. Montrer que tout élément de Fr(GL(A)) est un diviseur de zéro topologique.3. En déduire que si x ∈ A et si λ ∈ Fr(SpA(x)), alors x−λ est un diviseur de zéro topologique.4. En déduire que si x ∈ A tel que r(x) = 0, alors x est un diviseur de zéro topologique.5. En déduire que si A 6= C, alors A contient un diviseur de zéro topologique non nul.Solution. 1. Soient x un diviseur de zéro topologique et (xn)n≥0 une suite dans A telle que pourtout n ≥ 0, on ait ‖xn‖ = 1 et telle que lim
n→+∞

‖xnx‖ = lim
n→+∞

‖xxn‖ = 0. Si x ∈ GL(A), alorson a 1 = ‖xn‖ = ‖xnxx−1‖ ≤ ‖xnx‖ ‖x−1‖, d'où 1 ≤ 0, ce qui est impossible. Donc on a bien
x 6∈ GL(A).2. Soit y ∈ Fr(GL(A)). Comme GL(A) est un ouvert dans A, alors y 6∈ GL(A) et il existe unesuite (yn)n≥0 dans GL(A) convergeant vers y. D'après l'exercice 12.13, quitte à prendre une sous-suite, on peut supposer que lim

n→+∞
‖y−1

n ‖ = +∞. Pour tout n ≥ 0, soit xn =
y−1
n

‖y−1
n ‖

. Alors on a
‖xn‖ = 1 et xny = xny − xnyn + xnyn = xn(y − yn) +

1A

‖y−1
n ‖

, donc ‖xny‖ ≤ ‖y − yn‖+ 1

‖y−1
n ‖

.Par conséquent, on a lim
n→+∞

‖xny‖ = 0. De même, on a lim
n→+∞

‖yxn‖ = 0. Donc y est un diviseurde zéro topologique.3. Soient x ∈ A et λ ∈ Fr(SpA(x)) = SpA(x) ∩C \ SpA(x). Alors on a x− λ 6∈ GL(A) et il existeune suite (λn)n≥0 dans C\SpA(x) telle que lim
n→+∞

λn = λ. Alors pour tout n ≥ 0, x−λn ∈ GL(A)et on a lim
n→+∞

x − λn = x − λ. Donc on a x − λ ∈ Fr(GL(A)). Il résulte de 2 que x − λ est undiviseur de zéro topologique.4. Soit x ∈ A. Si r(x) = 0, alors on a SpA(x) = {0}, d'où Fr(SpA(x)) = {0}. Il résulte de 3 que
x = x− 0 est un diviseur de zéro topologique.5. Supposons que A 6= C. D'après le théorème de Mazur, théorème 12.3.2, il existe x ∈ A tel que
x 6= 0 et x 6∈ GL(A). Alors pour tout λ ∈ C, on a x − λ 6= 0. Soit λ ∈ Fr(SpA(x)). D'après 3,
x− λ est un diviseur de zéro topologique.Exercice 12.26. Soient X un espace compact et A = C(X) munie de la norme ‖ ‖∞. Soit f ∈ A.Montrer que f est un diviseur de zéro topologique si et seulement si f n'est pas inversible.Solution. D'après l'exercice précédent, si f est un diviseur de zéro topologique, alors f n'est pasinversible.Réciproquement, supposons que f n'est pas inversible. Alors il existe x ∈ X tel que f(x) = 0.Si f = 0, il est clair que f est un diviseur de zéro topologique. Supposons donc f 6= 0,d'où ‖f‖∞ 6= 0. Comme on a 0 ∈ SpA( ff) =

{
|f(x)| ; x ∈ X

}
⊂ [0, +∞[, alors on a

0 ∈ Fr(SpA( ff)). Il résulte de l'exercice précédent que ff est un diviseur de zéro topolo-gique. Soit (gn)n≥0 une suite dans A telle que pour tout n ≥ 0, on ait ‖gn‖∞ = 1 et telle que
lim

n→+∞
‖gnff‖∞ = lim

n→+∞
‖ffgn‖∞ = 0. On pose hn = gn

f

‖f‖∞
, alors pour tout n ≥ 0, on a

‖gn‖∞ = 1 et on a lim
n→+∞

‖hnf‖∞ = lim
n→+∞

‖fhn‖∞ = 0. Donc f est un diviseur de zéro topolo-gique.Exercice 12.27. Soient X un espace compact, (B, ‖ ‖) une algèbre de Banach unitaire et ϕ :
C(X) −→ B un morphisme d'algèbres unitaires isométrique. Montrer que pour tout f ∈ C(X),on a SpB(ϕ(f)) = SpC(X)(f).Solution. D'après la proposition 12.3.3, on a SpB(ϕ(f)) ⊂ SpC(X)(f). Réciproquement, soit
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λ ∈ SpC(X)(f). Alors f − λ n'est pas inversible dans C(X). D'après l'exercice précédent, f − λest un diviseur de zéro topologique. Soit (gn)n≥0 une suite dans C(X) telle que pour tout n ≥ 0,on ait ‖gn‖∞ = 1 et telle que lim

n→+∞
‖gn(f − λ)‖∞ = lim

n→+∞
‖(f − λ)gn‖∞ = 0. Comme ϕ estun morphisme d'algèbres unitaires isométrique, alors pour tout n ≥ 0, on a ‖ϕ(gn)‖ = 1 et on a

lim
n→+∞

‖ϕ(gn)(ϕ(f)− λ)‖ = lim
n→+∞

‖(ϕ(f)−λ)ϕ(gn)‖ = 0. Donc ϕ(f)− λ est un diviseur de zérotopologique dans B. D'après l'exercice 12.25, ϕ(f) − λ n'est pas inversible dans B. Donc on a
λ ∈ SpB(ϕ(f)). Par conséquent, on a SpB(ϕ(f)) = SpC(X)(f).Exercice 12.28. Soient (H, 〈 , 〉) un espace de Hilbert complexe et T ∈ A = L (H).1. Montrer que si T n'est pas injectif ou si T (H) n'est pas fermé dansH, alors il existe une suite

(xn)n≥0 dans H telle que ‖xn‖ = 1, pour tout n ≥ 0 et telle que l'on ait lim
n→+∞

‖T (xn)‖ = 0.2. Montrer que si T (H) n'est pas fermé dans H, alors T et T ∗ sont des diviseurs de zérotopologiques.3. Montrer que si T et T ∗ ne sont pas injectifs, alors T et T ∗ sont des diviseurs de zérotopologiques.Solution. 1. Ceci résulte de la proposition 7.1.4.2. Comme T (H) n'est pas fermé dansH, d'après la proposition 7.10.7, T ∗(H) n'est pas fermé dans
H. D'après 1, il existe deux suites (xn)n≥0 et (yn)n≥0 dans H telles que ‖xn‖ = ‖yn‖ = 1, pourtout n ≥ 0 et telles que l'on ait lim

n→+∞
‖T (xn)‖ = 0 et lim

n→+∞
‖T ∗(yn)‖ = 0. Pour tout x, y ∈ H,soit Θx,y ∈ L (H) dé�ni par Θx,y(z) = 〈z, y〉x, pour tout z ∈ H. Alors on a ‖Θx,y‖ = ‖x‖ ‖y‖et Θ∗

x,y = Θy,x. Pour tout n ≥ 0, soit Tn = Θxn,yn ∈ L (H). Alors on a ‖Tn‖ = 1. Montrons quel'on a lim
n→+∞

‖T ◦ Tn‖ = lim
n→+∞

‖Tn ◦ T‖ = 0. Soit x ∈ H tel que ‖x‖ ≤ 1. On a x = λnyn + zn,avec λn ∈ C et zn ∈ H tels que 〈zn, yn〉 = 0 et ‖x‖2 = |λn|2 + ‖zn‖2, d'où |λn| ≤ ‖x‖ ≤ 1. Ona Tn(x) = λnxn, d'où T ◦ Tn(x) = λnT (xn). Donc on a ‖T ◦ Tn(x)‖ ≤ |λn| ‖T (xn)‖ ≤ ‖T (xn)‖.On en déduit que l'on a ‖T ◦ Tn‖ ≤ ‖T (xn)‖. Par conséquent, on a lim
n→+∞

‖T ◦ Tn‖ = 0. On a
‖Tn ◦ T‖ = ‖T ∗ ◦ T ∗

n‖ et comme précédemment, on véri�e que l'on a ‖T ∗ ◦ T ∗
n‖ ≤ ‖T ∗(yn)‖. Parconséquent, on a lim

n→+∞
‖Tn ◦ T‖ = 0. Donc T est un diviseur de zéro topologique. Comme on a

(T ∗)∗ = T , on déduit de ce qui précède que T ∗ est aussi un diviseur de zéro topologique.3. Si T et T ∗ ne sont pas injectifs, on déduit de 1, qu'il existe deux suites (xn)n≥0 et (yn)n≥0dans H telles que ‖xn‖ = ‖yn‖ = 1, pour tout n ≥ 0 et telles que l'on ait lim
n→+∞

‖T (xn)‖ = 0et lim
n→+∞

‖T ∗(yn)‖ = 0. On fait le même raisonnement comme dans 2 pour montrer que T et T ∗sont des diviseurs de zéro topologiques.Exercice 12.29. Soit (A, ‖ ‖) une algèbre normée unitaire.1. Soient x, y ∈ A tels que xy − yx = 1A. Montrer que pour tout n ≥ 0, on a
xyn+1 − yn+1x = (n+ 1)yn .2. En déduire qu'il n'existe aucun x, y ∈ A tels que xy − yx = 1A.3. Soit (E, ‖ ‖) un espace normé non réduit à 0. En déduire que pour tout A,B ∈ L (E), ona A ◦B −B ◦A 6= idE .Solution. 1. On va montrer par récurrence l'égalité :

xyn+1 − yn+1x = (n+ 1)yn . (12.1)
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210 Chapitre 12. ALGÈBRES DE BANACHOn a xy − yx = 1A, d'où (xy − yx)y = y et y(xy − yx) = y. On additionne les deux égalités, onobtient xy2−y2x = 2y. Donc l'égalité (12.1) est vraie pour n = 0 et n = 1. Supposons que l'égalité(12.1) est vraie à l'ordre n−1 et à l'ordre n et montrons qu'alors l'égalité (12.1) est vraie à l'ordre
n + 1. On a, par hypothèse de récurrence, xyn − ynx = nyn−1 et xyn+1 − yn+1x = (n + 1)yn.D'où on a (xyn+1 − yn+1x)y = (n + 1)yn+1 et y(xyn+1 − yn+1x) = (n + 1)yn+1. On additionneles deux égalités, on obtient :

xyn+2 + yxyn+1 − yn+1xy − yn+2x = (2n + 2)yn+1 .On regroupe les termes, on obtient :
xyn+2 + y(xyn − ynx)y − yn+2x = (2n + 2)yn+1 .Par conséquent, on a xyn+2 − yn+2x = (n + 2)yn+1. Autrement dit, l'égalité (12.1) est vraie àl'ordre n+ 1.2. Supposons qu'il existe x, y ∈ A tels que xy − yx = 1A. D'après 1, pour tout n ≥ 0, on a

xyn+1 − yn+1x = (n + 1)yn. Montrons d'abord que pour tout n ≥ 1, on a yn 6= 0. S'il existe
n ≥ 1 tel que yn = 0, on déduit de l'égalité xyn − ynx = nyn−1 que yn−1 = 0, et ainsi de suite,on obtient y = 0, ce qui est impossible. Donc, pour tout n ≥ 0, on a yn 6= 0, d'où ‖yn‖ 6= 0. Del'égalité xyn+1−yn+1x = (n+1)yn, on déduit que l'on a (n+1)‖yn‖ ≤ 2‖x‖ ‖y‖ ‖yn‖. Donc, pourtout n ≥ 0, on a (n + 1) ≤ 2‖x‖ ‖y‖. En faisant tendre n vers +∞, on obtient +∞ ≤ 2‖x‖ ‖y‖,ce qui est impossible. Donc, pour tout x, y ∈ A, on a xy − yx 6= 1A.3. Comme L (E) est une algèbre normée unitaire, on déduit de 2 que si E 6= 0, pour tout
A,B ∈ L (E), on a A ◦B −B ◦ A 6= idE.Exercice 12.30. Soit E = C∞([0, 1], C) muni de la norme ‖ ‖∞. Pour tout f ∈ E, on pose
D(f) = f ′ et M(f)(t) = tf(t) pour tout t ∈ [0, 1].1. Montrer que M ∈ L (E) et que l'on a D ◦M −M ◦D = idE.2. En déduire que D n'est pas continue.Solution. 1. Il est clair que D et M sont linéaires de E dans E. Pour tout f ∈ E et pourtout t ∈ [0, 1], on a |M(f)(t)| = t|f(t)| ≤ |f(t)| ≤ ‖f‖∞, donc on a ‖M(f)‖∞ ≤ ‖f‖∞. Parconséquent, M est continue. On a aussi (D ◦M −M ◦D)(f)(t) = f(t) + tf ′(t)− tf ′(t) = f(t),pour tout t ∈ [0, 1], d'où D ◦M −M ◦D = idE .2. On déduit de l'exercice précédent que D n'est pas continue.Exercice 12.31. Soit A = C1([0, 1], C) =

{
f : [0, 1] −→ C de classe C1

} munie de la norme
‖f‖ = ‖f‖∞ + ‖f ′‖∞.1. Montrer que A est une algèbre de Banach unitaire.2. Pour tout t ∈ [0, 1], soit f0(t) = t. Montrer que la sous-algèbre engendrée par f0 et 1A estdense dans A.3. Pour tout t ∈ [0, 1], soit δt ∈ Â, dé�ni par δt(f) = f(t), pour tout f ∈ A. Montrer que l'ona Â =

{
δt ; t ∈ [0, 1]

} et que l'application t 7−→ δt est un homéomorphisme de [0, 1] sur
Â.4. En déduire que pour tout f ∈ A, on a r(f) = ‖f‖∞ et que la transformation de Gelfandest l'injection canonique de (A, ‖ ‖) dans (C([0, 1]), ‖ ‖∞).5. En déduire que la transformation de Gelfand n'est ni isométrique ni surjective.
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2116. Montrer que tout idéal bilatère fermé de A n'est pas l'intersection des idéaux bilatèresmaximaux de A le contenant.Solution. 1. Il est clair que ‖ ‖ est une norme sur l'algèbre unitaire A. Pour tout f, g ∈ A, on a
(fg)′ = f ′g + fg′, d'où :

‖fg‖ = ‖fg‖∞ + ‖f ′g + fg′‖∞

≤ ‖f‖∞ ‖g‖∞ + ‖f ′‖∞ ‖g‖∞ + ‖f‖∞ ‖g′‖∞

≤ ‖f‖∞ ‖g‖∞ + ‖f ′‖∞ ‖g‖∞ + ‖f‖∞ ‖g′‖∞ + ‖f ′‖∞ ‖g′‖∞

=
(
‖f‖∞ + ‖f ′‖∞

) (
‖g‖∞ + ‖g′‖∞

)
= ‖f‖ ‖g‖ .Donc (A, ‖ ‖) est une algèbre normée unitaire. Il reste à montrer que (A, ‖ ‖) est de Banach. Soit

(fn)n≥0 une suite de Cauchy dans (A, ‖ ‖). Alors (fn)n≥0 et (f ′n)n≥0 sont des suites de Cauchydans l'espace de Banach (C([0, 1]), ‖ ‖∞). Par conséquent, il existe f, g ∈ C([0, 1]) tels que
lim

n→+∞
‖fn− f‖∞ = 0 et lim

n→+∞
‖f ′n− g‖∞ = 0, voir proposition 2.6.8. Comme pour tout n ≥ 0 etpour tout t ∈ [0, 1], on a fn(t)− fn(0) = ∫ t

0
f ′n(s) ds, alors on a f(t)− f(0) = ∫ t

0
g(s) ds. Donc

f est dérivable sur l'intervalle [0, 1] et on a f ′ = g, d'où f ∈ A. De plus, on a lim
n→+∞

‖fn − f‖ =
lim

n→+∞
‖fn − f‖∞ + lim

n→+∞
‖f ′n − f ′‖∞ = 0, donc (fn)n≥0 converge vers f dans (A, ‖ ‖). Parconséquent, (A, ‖ ‖) est une algèbre de Banach unitaire.2. Soit B la sous-algèbre de A engendrée par f0 et 1A. Soit f ∈ A. On a f − f(0)1A ∈ A et

(f − f(0)1A)(0) = 0, et comme f(0)1A ∈ B, on peut supposer que f(0) = 0. Soit ε > 0. D'aprèsle théorème de Stone-Weierstrass, théorème 5.4.2, il existe g ∈ B tel que ‖f ′− g‖∞ < ε. Comme
g ∈ B, alors il existe a0, . . . , an ∈ C tels que g =

n∑

k=0

akf
k
0 . Soit h =

n∑

k=0

ak
k + 1

fk+1
0 , alors h ∈ B,

h(0) = 0 et on a ‖f ′ − h′‖∞ < ε. Pour tout t ∈ [0, 1], on a f(t) − h(t) = ∫ t

0
(f ′(s) − h′(s)) ds,d'où |f(t) − h(t)| ≤

∫ t

0
|f ′(s) − h′(s)| ds ≤ t ‖f ′ − h′‖∞ ≤ ‖f ′ − h′‖∞ < ε. Donc on a

‖f − h‖∞ ≤ ‖f ′ − h′‖∞. Par conséquent, on a ‖f − h‖ < 2ε. On en déduit que B est densedans (A, ‖ ‖).3. Notons d'abord que pour tout f ∈ A, on a SpA(f) = {
f(t) ; t ∈ [0, 1]

}. Soit χ ∈ Â. Alorson a χ(f0) ∈ SpA(f0) = [0, 1], donc il existe t ∈ [0, 1] tel que χ(f0) = t = δt(f0). On a aussi
χ(1A) = δt(1A), donc pour tout b ∈ B, on a χ(b) = δt(b). Comme B est dense dans A, alors ona χ = δt. Par conséquent, on a Â =

{
δt ; t ∈ [0, 1]

}. Comme l'application t 7−→ δt est bijectiveet continue de [0, 1] dans Â et comme [0, 1] est compact, alors t 7−→ δt est un homéomorphismede [0, 1] sur Â.4. Pour tout f ∈ A, on a r(f) = sup
{
|λ| ; λ ∈ SpA(f)}. Comme on a SpA(f) =

{
f(t) ; t ∈

[0, 1]
}, alors r(f) = ‖f‖∞. Pour tout f ∈ A, on a f̂(δt) = δt(f) = f(t). Donc, après avoiridenti�é [0, 1] à Â, la transformation de Gelfand n'est autre que l'injection canonique de (A, ‖ ‖)dans (C([0, 1]), ‖ ‖∞).5. On déduit de 4 que la transformation de Gelfand n'est ni isométrique ni surjective.6. Soit I =

{
f ∈ A ; f(0) = f ′(0) = 0

}, alors I est un idéal bilatère fermé de A. D'après 3,les idéaux bilatères maximaux de A sont les ker(δt). Par conséquent, il existe un unique idéalbilatère maximal de A contenant I, à savoir ker(δ0). Comme on a f0 ∈ ker(δ0) et f0 6∈ I, alors I
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212 Chapitre 12. ALGÈBRES DE BANACHn'est pas l'intersection des idéaux bilatères maximaux de A le contenant.Exercice 12.32. Soit (A, ‖ ‖) une algèbre de Banach unitaire. Soient x ∈ A et f : R −→ A uneapplication di�érentiable telle que f(0) = 1 et f ′(t) = xf(t), pour tout t ∈ R. Montrer que pourtout t ∈ R, on a f(t) = etx.Solution. Pour tout t ∈ R, soit g(t) = etx. Alors on a g(0) = 1. Soit t0 ∈ R. Pour tout t ∈ R telque t 6= t0, on a :
g(t) − g(t0)
t− t0

=
etx − et0x
t− t0

=
e(t−t0)x − 1A

t− t0
et0x = xet0x + S(t) .Avec S(t) = (t − t0)

( +∞∑

n=2

(t− t0)n−2xn

n!

)
et0x. Pour t ∈ R tel que |t − t0| < 1, on a alors

‖S(t)‖ ≤ |t − t0|e‖x‖‖et0x‖. Donc on a lim
t→t0

g(t)− g(t0)
t− t0

= xet0x. Par conséquent, l'application
g est di�érentiable sur R et pour tout t ∈ R, on a g′(t) = xetx = xg(t) = g(t)x. Pour tout
t ∈ R, soit h(t) = e−txf(t). Alors h est di�érentiable sur R et on a h′(t) = 0 pour tout t ∈ R, et
h(0) = 1. Par conséquent, pour tout t ∈ R, on a h(t) = 1. Autrement dit, pour tout t ∈ R, on a
f(t) = etx.
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Appendice AÉLÉMENTS DE LA THÉORIE DESENSEMBLES
Le principal concept de la théorie des ensembles est celui d'appartenance ; siX est un ensemble,la relation x ∈ X signi�e que x est un élément de l'ensemble X, ou encore qu'il appartientà X ; la négation de cette relation s'écrit x 6∈ X.Si X et Y sont deux ensembles, la relation Y ⊂ X signi�e que chaque élément de Y est unélément de X. Dans ce cas, on dit que Y est inclus dans X, ou que Y est un sous-ensembleou une partie de X ; la négation de Y ⊂ X s'écrit Y 6⊂ X.Deux ensembles X et Y sont dits égaux, noté X = Y , si et seulement si X ⊂ Y et Y ⊂ X. End'autres termes, deux ensembles sont égaux si et seulement s'ils possèdent les mêmes éléments.Ainsi, la notion d'ensemble ne comporte pas autre chose que ce qui est spéci�é par la donnéedes éléments. Dans la pratique, lorsque l'on veut démontrer l'égalité de deux ensembles, il fautprouver les deux inclusions.L'ensemble dont les éléments sont exactement les objets x1, x2, . . . , xn se note {x1, x2, . . . , xn}.En particulier, si x est un objet, l'ensemble {x} est appelé le singleton d'élément x.A.1 Opérations sur les ensemblesPartie d'un ensemble dé�nie par une relation. Étant donné un ensemble X et une pro-priété P , il existe un sous-ensemble unique de X dont les éléments sont tous les éléments x ∈ Xpour lesquels P (x) est vraie ; ce sous-ensemble s'écrit {x ∈ X ; P (x)

}. Par exemple on a
X =

{
x ∈ X ; x = x

}. L'ensemble ∅X =
{
x ∈ X ; x 6= x

} est appelé le sous-ensemble videde X ; il ne possède aucun élément. Si X et Y sont deux ensembles, on a ∅X = ∅Y , en d'autrestermes tous les ensembles vides sont donc égaux et, pour cette raison, ils seront tous représentéspar ∅. Donc pour tout ensemble X, on a ∅ ⊂ X.Notez que l'on doit distinguer entre un élément et un sous-ensemble d'un ensemble donné. Parexemple, l'ensemble {∅} est non vide, car ∅ ∈ {∅}, et donc on a ∅ 6= {∅}.Ensemble des parties d'un ensemble. Si X est un ensemble, il existe un unique ensembledont les éléments sont tous les sous-ensembles de X ; on le note P(X). On a donc ∅ ∈ P(X),
X ∈P(X) et

A ⊂ X ⇐⇒ A ∈P(X).En particulier, on a :
a ∈ X ⇐⇒ {a} ⊂ X ⇐⇒ {a} ∈P(X).213
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214 Chapitre A. ÉLÉMENTS DE LA THÉORIE DES ENSEMBLESDi�érence de deux ensembles ; complémentaire d'une partie. Si X et A sont deux en-sembles, l'ensemble {x ∈ X ; x 6∈ A} s'appelle la di�érence de l'ensemble X et de l'ensemble
A, on le note X \ A. Si, de plus, A ⊂ X, alors X \ A s'appelle le complémentaire de A dans
X, et peut aussi se noter {XA.Intersection et réunion de deux ensembles. L'intersection de deux ensembles X et Y ,notée X ∩ Y , est l'ensemble formé de tous les éléments qui appartiennent à la fois à X et Y . End'autres termes, on a :

x ∈ X ∩ Y ⇐⇒ x ∈ X et x ∈ Y.Deux ensembles dont l'intersection est ∅ sont dits disjoints.La réunion de deux ensembles X et Y , notée X ∪ Y , est l'ensemble formé de tous les élémentsqui appartiennent à l'un au moins des deux ensembles X, Y . En d'autres termes, on a :
x ∈ X ∪ Y ⇐⇒ x ∈ X ou x ∈ Y.Produit cartésien. Le produit cartésien est un de plus importante construction en théorie desensembles. Il nous permet d'exprimer plusieurs concepts en termes d'ensembles. A deux objets a,

b, est associé un nouvel objet que l'on note (a, b) et que l'on appelle le couple (a, b). L'opérationconsistant à former des couples est soumise à une seule règle d'emploi, que voici : pour que l'onait (a, b) = (c, d) il faut et il su�t que l'on ait a = c et b = d. En particulier, on a (a, b) = (b, a)si et seulement si a = b. Ne pas confondre le couple (a, b) avec l'ensemble à deux éléments {a, b}.Soient X et Y deux ensembles, le produit cartésien (ou simplement produit) de X et Y , noté
X × Y , est l'ensemble des couples (x, y), où x décrit X et y décrit Y . Autrement dit, on a :

X × Y =
{
(x, y) ; x ∈ X et y ∈ Y }.On dé�nit de façon analogue le produit de n ensembles :Soient X1,X2, . . . ,Xn n ensembles, on a :

X1 ×X2 × · · · ×Xn =
{
(x1, x2, . . . , xn) ; pour tout i, on ait xi ∈ Xi

}
.Un élément z = (x1, x2, . . . , xn) de X1×X2×· · ·×Xn est appelé un n-uples et xi s'appelle la iièmecoordonnée de z. Soient (x1, x2, . . . , xn) et (y1, y2, . . . , yn) deux éléments de X1×X2× · · · ×Xn,alors on a (x1, x2, . . . , xn) = (y1, y2, . . . , yn) si et seulement si pour tout i ∈ {1, . . . , n}, on a

xi = yi. Si X est un ensemble, on notera Xn le produit cartésien de X par lui-même n fois.Proposition A.1.1. Soient X, Y et Z des ensembles.1. On a X ∩ Y ⊂ X ⊂ (X ∪ Y ), X ∩ ∅ = ∅, X ∪ ∅ = X, X \X = ∅ et X \ ∅ = X.2. On a X ∩ (Y ∪ Z) = (X ∩ Y ) ∪ (X ∩ Z), X ∪ (Y ∩ Z) = (X ∪ Y ) ∩ (X ∪ Z),
(X ∪ Y )× Z = (X × Z) ∪ (Y × Z), (X ∩ Y )× Z = (X × Z) ∩ (Y × Z).3. Soient A et B deux parties de X, alors on a :

X \ (X \ A) = A, A \B = A ∩ (X \B) ,

X \ (A ∩B) = (X \ A) ∪ (X \B), X \ (A ∪B) = (X \A) ∩ (X \B).4. Soient A et B deux parties de X, alors A ⊂ B si et seulement si l'une des propriétéssuivantes est véri�ée :
A ∩B = A, A ∪B = B, X \B ⊂ X \A, A ∩ (X \B) = ∅, (X \ A) ∪B = X.
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A.2. Applications 215A.2 ApplicationsSoient X et Y deux ensembles. Se donner une application f de X dans Y , que l'on note
f : X −→ Y , c'est faire correspondre, à chaque élément x de X, un unique élément de Y , quel'on note f(x). Si x ∈ X et y ∈ Y tels que y = f(x), on dit que y est la valeur de f en x, ouque y est l'image de x par f et x est un antécédent de y. L'ensemble X s'appelle l'ensemblede départ et l'ensemble Y s'appelle l'ensemble d'arrivée de f . Le graphe de l'application f ,noté Γf , est le sous-ensemble de X × Y , dé�ni par :

Γf =
{
(x, y) ∈ X × Y ; y = f(x)

}
=
{
(x, f(x)) ∈ X × Y ; x ∈ X

}
.Notons qu'un sous-ensemble G de X × Y est le graphe d'une application de X dans Y si etseulement si pour tout x ∈ X, il existe un unique y ∈ Y tel que (x, y) ∈ G. D'ailleurs, c'est ainsique la plupart des auteurs dé�nit une application de X dans Y .Le mot fonction est synonyme du mot application. En général, on emploie le mot fonctionlorsque l'ensemble d'arrivée est un sous-ensemble de R ou C.Soient X, Y deux ensembles et f une application de X dans Y . Lorsque pour tout x ∈ X, f(x)est donné explicitement, pour désigner f , on utilise la notation x 7−→ f(x) ou

f : X −→ Y
x 7−→ f(x)

ou X −→ Y
x 7−→ f(x)Égalité de deux applications. Si X, Y , X ′, Y ′ sont des ensembles et si f : X −→ Y ,

g : X ′ −→ Y ′ sont des applications, on a f = g si et seulement si on a X = X ′, Y = Y ′ et
f(x) = g(x) pour tout x ∈ X.Composition des applications. Soient X, Y , Z des ensembles et f : X −→ Y , g : Y −→ Zdes applications. La composée de f et g, notée g ◦ f , est l'application de X dans Z dé�nie par
g ◦ f(x) = g(f(x)) pour tout x ∈ X.Soient T un ensemble et h : Z −→ T une application. Alors on a h ◦ (g ◦ f) = (h ◦ g) ◦ f et cetteapplication est notée h ◦ g ◦ f .Restriction et prolongement. Soient X, Y des ensembles et A un sous-ensemble de X. Soit
f : X −→ Y une application. On appelle restriction de f à A l'application f|A : A −→ Y telleque pour tout x ∈ A, on ait f|A(x) = f(x).Soient h : A −→ Y et g : X −→ Y des applications. On dit que g est un prolongement de h sipour tout x ∈ A, on a g(x) = h(x). Autrement dit, g est un prolongement de h si la restrictionde g à A est égale à h.Notation. Soient X et Y deux ensembles. Les applications de X dans Y constituent un ensembleque l'on note F (X,Y ), et parfois Y X , notation particulièrement commode quand X est unensemble �ni. L'ensemble F (X,Y ) s'identi�e à un sous-ensemble de P(X × Y ).Exemple A.2.1. 1. Pour tout ensemble X, l'application idX : X −→ X qui à tout élément

x associe x s'appelle l'application identique, ou identité, de X.2. Si A est une partie d'un ensemble X, on appelle injection canonique de A dans X,l'application  de A dans X, notée parfois  : A ↪→ X, dé�nie par (x) = x pour tout
x ∈ A.
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216 Chapitre A. ÉLÉMENTS DE LA THÉORIE DES ENSEMBLES3. Si A est une partie d'un ensemble X, on appelle fonction indicatrice, ou caractéristiquede A, la fonction de A dans l'ensemble à deux éléments {0, 1}, notée χA ou 1A, donnéepar :
χA(x) =





1 si x ∈ A ,

0 si x 6∈ A .4. Soient X, Y deux ensembles et f : X −→ Y une application. On dit que f est constantes'il existe y0 ∈ Y tel que pour tout x ∈ X, on ait f(x) = y0.5. Soient X et Y deux ensembles. Les applications
X × Y −→ X
(x, y) 7−→ x

,
X × Y −→ Y
(x, y) 7−→ ysont appelées respectivement les projections canoniques sur X et Y .A.3 Images directes et réciproquesSoient X, Y des ensembles et f une application de X dans Y . Pour tout A ⊂ X et B ⊂ Y , onpose :

f(A) =
{
y ∈ Y ; il existe x ∈ A, avec y = f(x)

}
=
{
f(x) ; x ∈ A

}
,

f−1(B) =
{
x ∈ X ; f(x) ∈ B

}
.L'ensemble f(A) est appelé l'image directe de A par f ; f(X) est appelé simplement l'imagede f et noté Im(f). L'ensemble f−1(B) est appelé l'image réciproque de B par f . On a

f(A) ⊂ Im(f) ⊂ Y et f−1(B) ⊂ X. Ainsi, on obtient les deux applications suivantes :
f̂ : P(X) −→ P(Y )

A 7−→ f(A)
,

f̌ : P(Y ) −→ P(X)
B 7−→ f−1(B)Proposition A.3.1. Soient X, Y des ensembles et f : X −→ Y une application. On a lespropriétés suivantes :1. On a f(∅) = ∅, f−1(∅) = ∅ et f−1(Y ) = X.2. Pour tout A ⊂ X, on a A ⊂ f−1(f(A)).3. Pour tout B ⊂ Y , on a f(f−1(B)) ⊂ B.4. Pour A ⊂ X et B ⊂ Y , on a f(A) ⊂ B ⇐⇒ A ⊂ f−1(B).5. Pour tous B1 ⊂ Y et B2 ⊂ Y , on a :

f−1(B1 ∪B2) = f−1(B1) ∪ f−1(B2) et f−1(B1 ∩B2) = f−1(B1) ∩ f−1(B2).6. Pour tous A1 ⊂ X et A2 ⊂ X, on a :
f(A1 ∪ A2) = f(A1) ∪ f(A2) et f(A1 ∩ A2) ⊂ f(A1) ∩ f(A2).7. Pour tous B1 ⊂ Y et B2 ⊂ Y tels que B1 ⊂ B2, on a f−1(B1) ⊂ f−1(B2).8. Pour tous A1 ⊂ X et A2 ⊂ X tels que A1 ⊂ A2, on a f(A1) ⊂ f(A2).9. Pour tout B ⊂ Y , on a f−1(Y \B) = X \ f−1(B).10. En général, si A ⊂ X, on a f(X \ A) 6= Y \ f(A).11. Soient Z un ensemble et g : Y −→ Z une application. Pour tous A ⊂ X et D ⊂ Z, on a

(g ◦ f)(A) = g(f(A)) et (g ◦ f)−1(D) = f−1(g−1(D)).
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A.4. Applications injectives, surjectives et bijectives 217A.4 Applications injectives, surjectives et bijectivesDé�nition A.4.1. Soient X, Y des ensembles et f : X −→ Y une application de X dans Y .1. On dit que f est injective ou que c'est une injection, si toutes les fois deux élémentsdistincts de X ont pour images par f deux éléments distincts de Y . Autrement dit, f estinjective si pour tout x, x′ ∈ X, on a :
x 6= x′ =⇒ f(x) 6= f(x′) .Ou ce qui revient au même :Pour tout x, x′ ∈ X, on a :
f(x) = f(x′) =⇒ x = x′ .2. On dit que f est surjective ou que c'est une surjection, si tout élément de Y est l'imagepar f d'au moins un élément de X. Autrement dit, f est surjective si pour tout y ∈ Y , ilexiste x ∈ X tel que y = f(x). Donc f est surjective si l'on a f(X) = Y .3. On dit que f est bijective ou que c'est une bijection, si tout élément de Y est l'imagepar f d'un élément et d'un seul de X. Autrement dit, f est bijective si pour tout y ∈ Y , ilexiste un unique x ∈ X tel que y = f(x).Notons qu'une application f est bijective si et seulement si f est injective et surjective.Proposition A.4.1. SoientX, Y , Z des ensembles et f : X −→ Y , g : Y −→ Z des applications.On a les propriétés suivantes :1. Si g ◦ f est injective, alors f est injective.2. Si g ◦ f est surjective, alors g est surjective.3. S'il existe une application h : Y −→ X telle que h ◦ f = idX , alors f est injective et h estsurjective.Proposition A.4.2. Soient X, Y des ensembles et f : X −→ Y une application. Les propriétéssuivantes sont équivalentes.(i) f est bijective.(ii) Il existe une application g : Y −→ X telle que g ◦ f = idX et f ◦ g = idY .Dans ce cas, l'application g est unique et elle est bijective. On l'appelle application réciproquede f et on la note f−1.Proposition A.4.3. Soient X, Y des ensembles et f : X −→ Y une application. Les propriétéssuivantes sont équivalentes.(i) f est injective.(ii) Pour tout A ⊂ X, on a A = f−1(f(A)).(iii) Pour tout A ⊂ X, on a f(X \ A) ⊂ Y \ f(A).(iv) Pour tous A1 ⊂ X et A2 ⊂ X, on a f(A1 ∩ A2) = f(A1) ∩ f(A2).Proposition A.4.4. Soient X, Y des ensembles et f : X −→ Y une application. Les propriétéssuivantes sont équivalentes.(i) f est surjective.(ii) Pour tout B ⊂ Y , on a A = f(f−1(B)) = B.
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218 Chapitre A. ÉLÉMENTS DE LA THÉORIE DES ENSEMBLES(iii) Pour tout A ⊂ X, on a Y \ f(A) ⊂ f(X \ A).Corollaire A.4.1. Soient X, Y des ensembles et f : X −→ Y une application. Les propriétéssuivantes sont équivalentes.(i) f est bijective.(ii) Pour tout A ⊂ X, on a f(X \ A) = Y \ f(A).A.5 FamillesSoit I un ensemble non vide. Une famille d'ensembles indexée par I, est la donnée pour chaque
i ∈ I un ensemble Ai. On note une telle famille par (Ai)i∈I . S'il existe un ensemble X tel quepour tout i ∈ I, on ait Ai ⊂ X, on dit alors que l'on a une famille de parties de X, indexéepar I. Donc se donner une famille de parties d'un ensemble X, indexée par I, revient à se donnerune application f : I −→P(X) ; on prend Ai = f(i).Soient X un ensemble et T une partie de P(X), alors on peut considérer T comme une famillede parties de X, à l'aide de l'injection canonique  : A 7−→ A de T dans P(X). Chaque élémentde T est alors indexée par lui-même.Soient I et E deux ensembles non vides. Une famille d'éléments de E, indexée par I, est uneapplication de I dans E. Si f est une famille d'éléments de E, indexée par I, l'élément f(i) senote usuellement xi et la famille f elle-même se note (xi)i∈I . Il faut prendre soin de distinguerla famille (xi)i∈I du sous-ensemble de E de ses valeurs {xi ; i ∈ I}.Notons que si A est une partie non vide de E, on peut considérer A comme une famille d'élémentsde E, à l'aide de l'injection canonique  : a 7−→ a de A dans E. Chaque élément de A est alorsindexée par lui-même. Dans la suite, on identi�era souvent une partie A d'un ensemble E à lafamille qu'elle dé�nit.Soit X un ensemble, alors se donner une famille de parties de X, indexée par I, revient à sedonner une famille d'éléments de P(X), indexée par I.Intersection et réunion d'une famille d'ensembles. Soient I un ensemble non vide et (Ai)i∈Iune famille d'ensembles, il existe un unique ensemble dont les éléments sont exactement ceux quiappartiennent à chacun des ensembles Ai. Cet ensemble, noté ∩

i∈I
Ai, est appelé intersection dela famille (Ai)i∈I . En d'autres termes, on a :

x ∈ ∩
i∈I
Ai ⇐⇒ ∀ i ∈ I, x ∈ Ai.Il existe aussi un unique ensemble dont les éléments sont exactement ceux qui appartiennent àl'un au moins des ensembles Ai. Cet ensemble, noté ∪

i∈I
Ai, est appelé réunion (ou union) de lafamille (Ai)i∈I . En d'autres termes, on a :

x ∈ ∪
i∈I
Ai ⇐⇒ ∃ i ∈ I tel que x ∈ Ai.Soient X un ensemble et T une partie de P(X). On dé�nit l'intersection et la réunion desensembles de T , comme étant l'intersection et la réunion de la famille que T dé�nit. Cette in-tersection et cette réunion se notent respectivement ∩

A∈T
A et ∪

A∈T
A.Notons que si (Ai)i∈I est une famille de parties de X, alors on a

∩
i∈I
Ai =

{
x ∈ X ; pour tout i ∈ I, x ∈ Ai

} et ∪
i∈I

Ai =
{
x ∈ X ; il existe i ∈ I, avec x ∈ Ai

}
.
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A.5. Familles 219Exemple A.5.1. Soit X un ensemble non vide et considérons l'application x 7−→ {x} de Xdans P(X), alors ({x})x∈X est une famille de parties de X et on a ∪
x∈X
{x} = X et ∩

x∈X
{x} = ∅si X a au moins deux éléments.Remarque A.5.1. Soient (Ai)i∈I une famille d'ensembles et A = ∪

i∈I
Ai. Alors on peut considérerla famille (Ai)i∈I comme une famille de parties de A car pour tout i ∈ I, on a Ai ⊂ A.Il y a plusieurs résultats concernant l'intersection et la réunion d'une famille d'ensembles. On secontente de donner la proposition suivante :Proposition A.5.1. Soient I, X deux ensembles non vides et (Ai)i∈I une famille de parties de

X.1. On a X \ ( ∪
i∈I

Ai

)
= ∩

i∈I
(X \Ai) et X \ ( ∩

i∈I
Ai

)
= ∪

i∈I
(X \Ai).2. Si J est un sous-ensemble non vide de I, on a ∪

i∈J
Ai ⊂ ∪

i∈I
Ai et ∩

i∈I
Ai ⊂ ∩

i∈J
Ai.3. Si (Di)i∈I est une autre famille de parties de X telle que pour pour tout i ∈ I, on ait

Ai ⊂ Di, alors on a :
(
∪
i∈I

Ai

)
⊂
(
∪
i∈I

Di

) et (
∩
i∈I

Ai

)
⊂
(
∩
i∈I

Di

)
.4. Si D est une partie de X, on a :

(
∪
i∈I

Ai

)
∩D = ∪

i∈I
(Ai ∩D) et (

∩
i∈I

Ai

)
∪D = ∩

i∈I
(Ai ∪D).5. Soient J , Y des ensembles non vides, (Bj)j∈J une famille de parties de Y et f : X −→ Yune application. Alors on a

f−1
(
∪
j∈J

Bj

)
= ∪

j∈J
f−1(Bj) , f−1

(
∩
j∈J

Bj

)
= ∩

j∈J
f−1(Bj)

f
(
∪
i∈I

Ai

)
= ∪

i∈I
f(Ai) , f

(
∩
i∈I

Ai

)
⊂ ∩

i∈I
f(Ai) .En général l'inclusion précédente est stricte et qu'il y a égalité si f est injective.Remarque. Soit (Xn)n≥0 une suite de parties d'un ensemble X. Alors il existe une suite (Yn)n≥0de parties de X telle que1. Yn ⊂ Xn pour tout n ≥ 0.2. Les Yn sont deux à deux disjoints.3. ∪

n∈N
Xn = ∪

n∈N
Yn.En e�et, il su�t de prendre Y0 = X0, et pour tout n ≥ 1, on pose Yn = Xn \

( n−1∪
k=0

Xk

).Axiome du choix. Soit I un ensemble non vide, et pour tout i ∈ I, soit Ai un ensemble nonvide. Alors il existe une application f : I −→ ∪
i∈I
Ai telle que pour tout i ∈ I, on ait f(i) ∈ Ai.Une autre manière d'énoncer l'axiome du choix est la suivante :Pour tout ensemble non vide X, il existe une application f : P(X) \ {∅} −→ X telle que pourtoute partie A ⊂ X, A 6= ∅, on ait f(A) ∈ A.Produit d'une famille d'ensembles. Étant donné deux ensembles A1 et A2, le produit car-tésien A1 ×A2 peut être considéré comme l'ensemble des applications f de {1, 2} dans A1 ∪A2telles que f(1) ∈ A1 et f(2) ∈ A2. Cette observation nous permet d'étendre la notion du produitcartésien à une famille d'ensembles.
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220 Chapitre A. ÉLÉMENTS DE LA THÉORIE DES ENSEMBLESDé�nition A.5.1. Soient (Ai)i∈I une famille d'ensembles et A = ∪
i∈I
Ai. On appelle produitde la famille (Ai)i∈I , et on note ∏

i∈I
Ai, l'ensembles des applications f : I −→ A telles que pourtout i ∈ I, on ait f(i) ∈ Ai. Autrement dit, le produit ∏

i∈I
Ai est l'ensemble des familles (xi)i∈Id'éléments de A telles que tout i ∈ I, on ait xi ∈ Ai.Si pour tout i ∈ I, on a Ai 6= ∅, alors ∏

i∈I
Ai 6= ∅. Cette propriété est un axiome équivalent àl'axiome du choix.Si pour tout i ∈ I, on a Ai = E, l'ensemble E étant �xé, le produit ∏

i∈I
Ai se note EI et dans cecas, EI n'est autre que l'ensemble F (I,E) des applications de I dans E.Revenons au produit général ∏

i∈I
Ai. Pour tout j ∈ I, l'application

pj :
∏
i∈I
Ai −→ Aj

(xi)i∈I 7−→ xjest appelée la jième projection canonique. De manière générale, si J est une partie non videde I, l'application
pJ :

∏
i∈I
Ai −→ ∏

i∈J
Ai

(xi)i∈I 7−→ (xi)i∈Jqui, à toute famille (xi)i∈I fait correspondre sa restriction à J , s'appelle la projection d'indice
J . En vertu de l'axiome du choix, pJ est une application surjective si tous les Ai sont non vides.A.6 Relations d'équivalenceSoit X un ensemble. Une relation binaire R sur X est une partie ΓR de X×X. Au lieu d'écrire
(x, y) ∈ ΓR, on écrit xR y. L'ensemble ΓR s'appelle aussi le graphe de R. On dit qu'une relationbinaire R sur X est :� ré�exive si pour tout x ∈ X, on a xRx. Autrement dit, R est ré�exive si ΓR contient ladiagonale {(x, x) ; x ∈ X} de X ×X ;� symétrique si pour tout x, y ∈ X tels que xR y, on a yRx. Autrement dit, R est symé-trique si ΓR est une partie invariante par l'application (x, y) 7−→ (y, x) de X × X danslui-même ;� antisymétrique si pour tout x, y ∈ X, on a l'implication (xR y et yRx) =⇒ x = y ;� transitive si pour tout x, y, z ∈ X, on a l'implication (xR y et yR z) =⇒ xR z.Soit R une relation binaire sur un ensemble �ni X, dont le graphe est ΓR. Les éléments de
X s'appellent les sommets de ΓR. Les couples (x, y) ∈ ΓR s'appellent les arcs de ΓR ; x estl'origine de l'arc (x, y), et y son extrémité. Un arc (x, x) ∈ ΓR s'appelle une boucle de ΓR.Cette terminologie correspond à la représentation géométrique usuelle des graphes, dont les�gures ci-dessous donne trois exemples.

b b

b

b b b b

b
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A.6. Relations d'équivalence 221Le graphe de gauche est non ré�exif, non symétrique et non transitif sur un ensemble à troiséléments. Le graphe du milieu est ré�exif, antisymétrique et transitif sur un ensemble à deuxéléments. Le graphe de droite est ré�exif, symétrique et transitif sur un ensemble à trois éléments.Dé�nition A.6.1. On appelle relation d'équivalence sur un ensemble X toute relation binairesur X qui est à la fois ré�exive, symétrique et transitive.Dé�nition A.6.2. Soit R une relation d'équivalence sur un ensemble X. Pour tout x ∈ X, onappelle classe d'équivalence de x suivant R, ou modulo R, l'ensemble Cx =
{
y ∈ X ; xR y

}.On appelle quotient de X par R, et on le note X/R, l'ensemble des classes d'équivalences de
R. Autrement dit, on a X/R =

{
Cx ; x ∈ X

}
⊂ P(X). L'application q : x 7−→ Cx de X dans

X/R s'appelle l'application quotient, ou la projection canonique de X sur X/R.Exemple A.6.1. 1. Soit X un ensemble, la relation x = y, dont le graphe est la diagonale{
(x, x) ; x ∈ X

} de X ×X, est une relation d'équivalence. Dans ce cas, pour tout x ∈ X,on a Cx = {x}.2. Soit X un ensemble d'individus, et R la relation sur X dé�nie par xR y ⇐⇒ x et y ontmême âge. Alors R une relation d'équivalence sur X.3. Soit n ∈ Z. Si m,m′ ∈ Z, on dit que m est congru à m′ modulo n et on écrit m ≡ m′ [n]s'il existe k ∈ Z tel que m − m′ = kn. C'est une relation d'équivalence. Lorsque n ≥ 1,l'ensemble quotient de Z par la relation de congruence modulo n est noté Z/nZ, etl'application de {0, 1, · · · , n−1} dans Z/nZ qui à m associe Cm est bijective. En particulier,l'ensemble quotient Z/nZ a n éléments.4. La relation R dé�nie sur l'ensemble R par :
xR y ⇐⇒ ∃ k ∈ Z, x− y = 2kπest une relation d'équivalence sur R, appelée relation de congruence modulo 2π. L'en-semble quotient de R par la relation de congruence modulo 2π est noté R/2πZ, et l'appli-cation de [0, 2π[ dans R/2πZ qui à x associe Cx est bijective.5. Soit F = Z× (Z \ {0}). Pour tous (a, b), (a′, b′) ∈ F , on pose :
(a, b)R (a′, b′)⇐⇒ ab′ = ba′Alors R est une relation d'équivalence sur F .Exemple A.6.2. Soient X, Y des ensembles et f : X −→ Y une application. On peut dé�nirsur X la relation d'équivalence Rf donnée par : pour x, y ∈ X, on a :
xRf y ⇐⇒ f(x) = f(y).Dans ce cas, pour tout x ∈ X, on a Cx = f−1

(
{f(x)}

).Notons que si R est une relation d'équivalence sur un ensemble X et q : X −→ X/R estl'application quotient. Alors on a q(x) = q(y) si et seulement si xR y. Donc on a R = Rq,c'est-à-dire, ΓR = ΓRq .Exemple A.6.3. Soient X un ensemble et P(X) l'ensemble des parties de X. Soit F une partiede X et R la relation dé�nie sur P(X) par :
ARB ⇐⇒ A ∩ F = B ∩ F .Alors R est une relation d'équivalence sur P(X).
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222 Chapitre A. ÉLÉMENTS DE LA THÉORIE DES ENSEMBLESDé�nition A.6.3. On appelle partition d'un ensemble non vide X toute famille (Ai)i∈I departies de X véri�ant les trois conditions suivantes :1. Pour tout i ∈ I, on a Ai 6= ∅.2. Pour tout i, j ∈ I tels que i 6= j, on ait Ai ∩ Aj 6= ∅.3. On a ∪
i∈I
Ai = X.Remarque A.6.1. Soient X, Y des ensembles et (Ai)i∈I une famille de parties de X telle que

∪
i∈I
Ai = X. Supposons que pour tout i ∈ I, il existe une application fi : Ai −→ Y telle que pourtout i, j ∈ I, on ait fi|Ai∩Aj

= fj|Ai∩Aj

. Alors il existe une unique application f : X −→ Y telleque pour tout i ∈ I, f soit un prolongement de fi.Cas particulier : supposons (Ai)i∈I une partition de X et que pour tout i ∈ I, il existe uneapplication fi : Ai −→ Y . Alors il existe une unique application f : X −→ Y telle que pour tout
i ∈ I, on ait f|Ai

= fi.Lemme A.6.1. Soit R une relation d'équivalence sur un ensemble non vide X. Pour tout x, y ∈
X, les propriétés suivantes sont équivalentes.(i) xR y.(ii) Cx = Cy.(iii) Cx ⊂ Cy.(iv) Cx ∩ Cy 6= ∅.Proposition A.6.1. Soit X un ensemble non vide.1. Si R est une relation d'équivalence sur X, alors X/R est une partition de X. Autrementdit, X/R possède les propriétés suivantes :(i) Pour tout A ∈ X/R, on a A 6= ∅.(ii) Pour tout A,B ∈ X/R tels que A 6= B, on a A ∩B = ∅.(iii) On a ∪

A∈X/R
A = X.De plus, on a ΓR = ∪

A∈X/R
A×A ⊂ X ×X.2. Réciproquement, si (Ai)i∈I est une partition de X, on peut dé�nir sur X la relation d'équi-valence R′ donnée par : pour x, y ∈ X, on a

xR′ y ⇐⇒ il existe i ∈ I tel que x, y ∈ Ai.Dans ce cas, on a :(i) Pour x ∈ X et i ∈ I, on a Cx = Ai ⇐⇒ x ∈ Ai.(ii) X/R′ =
{
Ai ; i ∈ I

}.(iii) ΓR′ = ∪
i∈I
Ai ×Ai ⊂ X ×X.Donc, se donner une relation d'équivalence sur un ensemble X revient à se donner une partitionde X.Proposition A.6.2 (propriété universelle de l'application quotient). Soient R une re-lation d'équivalence sur un ensemble X et q : X −→ X/R l'application quotient. Soient Y unensemble et f : X −→ Y une application. Si f est constante sur les classes d'équivalences sui-vant R, autrement dit, pour tout x, y ∈ X véri�ant xR y, on a f(x) = f(y), alors il existe une
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A.7. Relations d'ordre 223unique application g : X/R −→ Y telle que f = g ◦ q. Autrement dit le diagramme suivant estcommutatif.
X Y

X/R

-f

@
@@Rq �

���
gDe plus on a :1. L'application g est surjective si f l'est.2. L'application g est injective si les relations d'équivalences R et Rf sont égales.L'application g est construite de la manière suivante : soit a ∈ X/R, il existe x ∈ X tel que

a = Cx ; l'élément f(x) ne dépend pas du choix de x dans la classe a ; on pose g(a) = f(x).A.7 Relations d'ordreDé�nition A.7.1. On appelle relation d'ordre sur un ensemble X toute relation binaire sur
X qui est à la fois ré�exive, antisymétrique et transitive.Un ensemble muni d'une relation d'ordre est appelé un ensemble ordonné. Le plus souvent,une relation d'ordre sera notée ≤. Lorsqu'il en est ainsi, la relation x ≤ y et x 6= y se note x < y.Un ensemble X muni d'une relation d'ordre ≤ sera souvent noté (X, ≤). Deux éléments x et yd'un ensemble ordonné (X, ≤) sont dits comparables si l'on a x ≤ y ou y ≤ x. On dit qu'unensemble X, muni d'une relation d'ordre ≤, est totalement ordonné par ≤, ou que ≤ est unerelation d'ordre total, si pour tout x, y ∈ X, on a soit x ≤ y, soit y ≤ x.Exemple A.7.1. 1. Les ensembles N, Z, Q et R sont totalement ordonnés pour l'ordre usuel.2. Sur l'ensemble N des entiers naturels la relation � divise �, notée | et dé�nie par :

m |n⇐⇒ ∃ k ∈ N, n = kmest une relation d'ordre non totale.3. Sur l'ensemble X = {a, b, c, d}, la relation dont le graphe est :
ΓR = {(a, a), (b, b), (c, c), (d, d), (a, b), (b, c), (a, c), (d, c)}est une relation d'ordre.4. Soit X un ensemble, sur l'ensemble P(X), la relation d'inclusion A ⊂ B est une relationd'ordre. Si X a au moins deux éléments, P(X) n'est pas totalement ordonné par ⊂.5. Soient X un ensemble quelconque et (Y, ≤) un ensemble ordonné. Sur l'ensemble F (X,Y )des applications de X dans Y , on peut dé�nir la relation d'ordre suivante : pour f, g ∈

F (X,Y ), on a :
f � g ⇐⇒ pour tout x ∈ X, on a f(x) ≤ g(x).6. Soient (E, ≤) et (F, �) des ensembles ordonnés. On dé�nit sur E × F la relation R par :

(x, y)R (x′, y′)⇐⇒
(
x ≤ x′ et x 6= x′

) ou (x = x′ et y � y′
)
.Alors R est une relation d'ordre sur E × F , appelée ordre lexicographique.
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224 Chapitre A. ÉLÉMENTS DE LA THÉORIE DES ENSEMBLESDé�nition A.7.2. Soient (X, ≤) un ensemble ordonné et A une partie de X.1. S'il existe M ∈ X tel que pour tout x ∈ A, on ait x ≤ M , on dit que A est majorée, etque M est un majorant de A.2. S'il existe m ∈ X tel que pour tout x ∈ A, on ait m ≤ x, on dit que A est minorée, etque m est un minorant de A.3. On dit que A est bornée si elle est à la fois majorée et minorée.4. S'il existe un élément a ∈ A tel que pour tout x ∈ A, on ait x ≤ a, cet élément est unique, àcause de l'antisymétrie de ≤ ; on l'appelle le plus grand élément de A, il est aussi appelél' élément maximum de A et on le note maxA.5. S'il existe un élément a ∈ A tel que pour tout x ∈ A, on ait a ≤ x, cet élément est unique ;on l'appelle le plus petit élément de A, il est aussi appelé l'élément minimum de A eton le note minA.6. Si l'ensemble des majorants de A admet un plus petit élément, qui est alors unique, cetélément est appelé la borne supérieure de A et se note supA . Autrement dit, supA estun majorant de A et pour tout majorant M de A, on a supA ≤M .7. Si l'ensemble des minorants de A admet un plus grand élément, qui est alors unique, cetélément est appelé la borne inférieure de A et se note inf A. Autrement dit, inf A est unminorant de A et pour tout minorant m de A, on a m ≤ inf A.8. Un élément x de X est dit maximal s'il n'existe pas d'élément y ∈ X tel que x ≤ y et
x 6= y. Autrement dit, un élément x de X est maximal si pour tout z ∈ X véri�ant x ≤ z,on a x = z.9. Un élément x de X est dit minimal s'il n'existe pas d'élément y ∈ X tel que y ≤ x et
x 6= y. Autrement dit, un élément x de X est minimal si pour tout z ∈ X véri�ant z ≤ x,on a x = z.Notons que tout élément maximum est maximal, mais la réciproque est fausse ; de même toutélément minimum est minimal, mais la réciproque est fausse. Dans un ensemble totalementordonné, les notions d'éléments maximum et maximal (resp. minimum et minimal) coïncident.Exemple A.7.2. Soit X un ensemble non vide. On munit P(X) de la relation d'ordre ⊂(inclusion). Alors l'ensemble ∅ est le plus petit élément et l'ensemble X est le plus grand élémentde P(X). Si T est une partie non vide de P(X), alors T possède une borne supérieure et uneborne inférieure et on a supT = ∪

A∈T
A et inf T = ∩

A∈T
A.Proposition A.7.1. Soient (X, ≤) un ensemble totalement ordonné et A une partie de X.1. Pour qu'un élément b ∈ X soit la borne supérieure de A, il faut et il su�t que les deuxconditions suivantes soient véri�ées :(i) Pour tout x ∈ A, on a x ≤ b.(ii) Pour tout élément c ∈ X tel que c < b, il existe un élément a ∈ A tel que c < a.2. Pour qu'un élément b ∈ X soit la borne inférieure de A, il faut et il su�t que les deuxconditions suivantes soient véri�ées :(i) Pour tout x ∈ A, on a b ≤ x.(ii) Pour tout élément c ∈ X tel que b < c, il existe un élément a ∈ A tel que a < c.
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A.7. Relations d'ordre 225Applications à valeurs dans un ensemble ordonné. Soient (X, ≤) un ensemble ordonné, Aun ensemble non vide quelconque et f : A −→ X une application. Considérons la partie f(A) de
X. Si max f(A) existe, on l'appelle maximum de f et on le note max

x∈A
f(x). Si sup f(A) existe,on l'appelle borne supérieure de f et on le note sup

x∈A
f(x). On introduit de même min

x∈A
f(x) et

inf
x∈A

f(x).Soit (xi)i∈I une famille d'éléments de X, alors A = {xi ; i ∈ I} est une partie de X. Si maxAexiste, on l'appelle maximum de la famille (xi)i∈I et on le note max
i∈I

xi. On dé�nit de même
min
i∈I

xi, sup
i∈I

xi et inf
i∈I

xi.Dé�nition A.7.3. Soit (X, ≤) un ensemble totalement ordonné.1. Un sous-ensemble I de X est un intervalle si, pour tous x, z ∈ I et y ∈ X tels que
x ≤ y ≤ z, on ait y ∈ I.2. Pour tout a, b ∈ X tels que a ≤ b, on dé�nit les ensembles suivants, appelés :

[a, b] =
{
x ∈ X ; a ≤ x ≤ b

} (intervalle fermé) ,
]a, b] =

{
x ∈ X ; a < x ≤ b

} (intervalle semi-ouvert) ,
[a, b[ =

{
x ∈ X ; a ≤ x < b

} (intervalle semi-ouvert) ,
]a, b[ =

{
x ∈ X ; a < x < b

} (intervalle ouvert) .Parfois l'ensemble [a, b] est appelé segment.On dé�nit de même, pour a ∈ X,
[a, → [= {x ∈ X ; a ≤ x} et ]a, → [= {x ∈ X ; a < x} ,et de façon analogue
]←, a] = {x ∈ X ; x ≤ a} et ]←, a[= {x ∈ X ; x < a} .On parle alors de demi-droites (fermées ou ouvertes).Dé�nition A.7.4. Soient (X, ≤), (Y, �) deux ensembles ordonnés et f : X −→ Y une applica-tion.1. On dit que f est croissante si pour tout a, b ∈ X tels que a ≤ b, on ait f(a) � f(b).2. On dit que f est strictement croissante si pour tout a, b ∈ X tels que a < b, on ait

f(a) ≺ f(b).3. On dit que f est décroissante si pour tout a, b ∈ X tels que a ≤ b, on ait f(b) � f(a).4. On dit que f est strictement décroissante si pour tout a, b ∈ X tels que a < b, on ait
f(b) ≺ f(a).5. On dit que f est monotone si f est croissante ou décroissante.6. On dit que f est strictement monotone si f est strictement croissante ou strictementdécroissante.
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226 Chapitre A. ÉLÉMENTS DE LA THÉORIE DES ENSEMBLESExemple A.7.3. Soient X, Y deux ensembles et f : X −→ Y une application. On munit P(X)et P(Y ) de la relation d'ordre ⊂ (inclusion). Alors on a :1. L'application
P(X) −→ P(X)
A 7−→ X \Aest strictement décroissante.2. Les applications

f̂ : P(X) −→ P(Y )
A 7−→ f(A)

et f̌ : P(Y ) −→ P(X)
B 7−→ f−1(B)sont croissantes.Proposition A.7.2. On a les propriétés suivantes.1. Toute application monotone et injective est strictement monotone.2. Toute application strictement monotone f d'un ensemble totalement ordonné (X, ≤) dansun ensemble ordonné (Y, �) est injective.Dé�nition A.7.5. Soit (X,≤) un ensemble ordonné.1. On dit qu'une partie A de X est totalement ordonnée si A munie de la restriction de ≤est totalement ordonnée, i.e. si pour tout x, y ∈ A, on a soit x ≤ y, soit y ≤ x.2. On dit que X est inductif si toute partie totalement ordonnée de X est majorée.Théorème A.7.1 (lemme de Zorn). Tout ensemble ordonné inductif possède un élément maxi-mal.Corollaire A.7.1. On a les conséquences suivantes du lemme de Zorn.1. Dans un ensemble ordonné inductif, tout élément est majoré par un élément maximal.2. Tout espace vectoriel admet une base.3. Tout sous-espace vectoriel d'un espace vectoriel admet un supplémentaire.Dé�nition A.7.6. Soit (X, ≤) un ensemble ordonné. On dit que X est bien ordonné ou que

≤ est un bon ordre si toute partie non vide de X admet un plus petit élément.Notez que tout ensemble bien ordonné est totalement ordonné, et que toute partie non vide etmajorée d'un ensemble bien ordonné possède une borne supérieure.Théorème A.7.2 (Zermelo). Les propriétés suivantes sont équivalentes.(i) L'axiome du choix.(ii) Le lemme de Zorn.(iii) Tout ensemble peut être muni d'une relation de bon ordre.
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A.8. Ensembles dénombrables 227A.8 Ensembles dénombrablesOn désigne par N l'ensemble des entiers naturels, i.e.
N = {0, 1, 2, 3, . . .} .On suppose connues toutes les propriétés élémentaires de N, surtout les propriétés de l'additionet de la multiplication sur N. Rappelons simplement que l'ensemble N est totalement ordonnépar la relation d'ordre naturel suivante : pour n,m ∈ N, on a :

n ≤ m ⇐⇒ il existe p ∈ N tel que m = n+ p.Théorème A.8.1. L'ensemble N possède les propriétés fondamentales suivantes :1. Toute partie non vide de N admet un plus petit élément, et toute partie non vide et majoréede N admet un plus grand élément.2. Pour tout m,n ∈ N, on a n < m ⇐⇒ n+ 1 ≤ m.Le théorème ci-dessus entraîne le théorème de la récurrence qui est un des plus importants moyensdu raisonnement mathématique.Théorème A.8.2 (principe de récurrence). Soient n0 ∈ N et P (n) une propriété (égalité,inégalité, etc.) dépendant d'un entier naturel n ≥ n0. Si P (n0) est vraie et si pour tout entiernaturel n ≥ n0, l'implication P (n) =⇒ P (n0) est vraie, alors P (n) est vraie pour tout entiernaturel n ≥ n0.Exemple A.8.1. Pour tout entier naturel n, on a l'inégalité 2n > n. En e�et, soit P (n) l'inéga-lité : 2n > n. On a 20 = 1 et 1 > 0, donc P (0) est vraie. Soit n un entier naturel. Supposons P (n)est vraie et démontrons que P (n + 1) est vraie. On a 2n+1 = 2n × 2 = 2n + 2n. Par hypothèsede récurrence, on a l'inégalité 2n > n. On en déduit l'inégalité 2n+1 > n + 2n. Puisque l'on a
2n ≥ 1, il vient 2n+1 > n+ 1. On a ainsi démontré que pour tout entier naturel n, l'implication
(P (n) =⇒ P (n+ 1)) est vraie. Le principe de récurrence a�rme que l'inégalité 2n > n est alorsvraie pour tout entier naturel n.Dé�nition A.8.1. Soit X un ensemble. Une suite d'éléments de X est une famille d'élémentsde X indexée par l'ensemble N.Comme pour les familles, si f : N −→ X est une suite d'éléments de X, l'image f(n) d'un n ∈ Npar f sera notée xn et sera appelée terme d'ordre n de la suite f ; la suite elle-même f serareprésentée par la notation (xn)n≥0 ou (xn)n∈N ou simplement (xn).Théorème A.8.3. Soient X un ensemble non vide, a ∈ X et f une application de X dans X.Alors il existe une unique suite (xn)n≥0 d'éléments de X telle que x0 = a et pour tout n ≥ 1, onait xn+1 = f(xn).On désigne par Z l'ensemble des entiers relatifs, i.e.

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, 4, . . .} .En tant qu'ensemble, Z est le quotient de N× N par la relation d'équivalence suivante :
(n,m)R (p, q) ⇐⇒ n+ q = p+m.La classe dont (n, 0) est un représentant est identi�é à n et la classe dont (0, n) est un repré-sentant est identi�é à −n. L'ensemble N est une partie de Z auquel on prolonge l'addition et lemultiplication. La relation d'ordre total dont N est muni se prolonge à Z. Pour p, q ∈ Z, on a :

p ≤ q ⇐⇒ q − p ∈ N .
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228 Chapitre A. ÉLÉMENTS DE LA THÉORIE DES ENSEMBLESThéorème A.8.4 (division euclidienne). Soit (a, b) ∈ Z×N∗, alors il existe un unique couple
(q, r) ∈ Z× N tel que a = bq + r et 0 ≤ r < b.On note Z∗ = Z \{0}. L'ensemble Z×Z∗ est appelé l'ensemble des fractions. On considère sur
Z× Z∗ la relation d'équivalence suivante : pour (p, q), (p′, q′) ∈ Z× Z∗,

(p, q)R (p′, q′) ⇐⇒ pq′ = p′q .On appelle ensemble des nombres rationnels l'ensemble quotient Z× Z∗/R, on le note Q. Laclasse d'une fraction (p, q) ∈ Z× Z∗ est noté p
q
. On a donc p

q
=
p′

q′
si et seulement si pq′ = p′q.On peut considérer l'ensemble Z comme un sous-ensemble de Q en identi�ant tout n ∈ Z à

n
1 ∈ Q. Si les fractions (a, b) et (a′, b′) (resp. (c, d) et (c′, d′)) sont équivalentes, alors les fractions
(ad + cb, bd) et (a′d′ + c′b′, b′d′) sont équivalentes. Il en est de même des fractions (ac, bd) et
(a′c′, b′d′). Cela permet de dé�nir la somme et le produit de deux rationnels en posant :

a

b
+
c

d
=
ad+ bc

bd
et a

b

c

d
=
ac

bd
.Notons que la somme et le produit sur Q prolongent ceux sur Z. La relation d'ordre total sur Zse prolonge aussi à Q. Pour p

q
,
p′

q′
∈ Q, on pose :

p

q
≤ p′

q′
⇐⇒ pq′ ≤ qp′ ⇐⇒ qp′ − pq′ ∈ N.Notons que l'ensemble Q muni de l'ordre ci-dessus est totalement ordonné, mais il n'est pas bienordonné car l'ensemble A =

{
x ∈ Q ; 0 < x < 1

} n'a pas de plus petit élément. En e�et, si
r =

p

q
∈ A, alors s = p

q + 1
< r et s ∈ A.Dé�nition A.8.2. Deux ensembles X et Y sont dits équipotents s'il existe une bijection de

X sur Y .Théorème A.8.5 (Zermelo-Cantor-Bernstein). Soient X et Y deux ensembles. On a :1. Ou bien il existe une injection de X dans Y , ou bien il existe une injection de Y dans X.2. S'il existe à la fois une injection de X dans Y et une injection de Y dans X, alors X et Ysont équipotents.Remarque A.8.1. Soit X un ensemble.1. L'application x 7−→ {x} est une injection de X dans P(X).2. Les ensembles X et P(X) ne sont pas équipotents.3. L'application A 7−→ χA de P(X) dans l'ensemble F (X, {0, 1}) des applications de X dans
{0, 1} est une bijection. Donc P(X) et F (X, {0, 1}) sont équipotents.4. Si Y est un ensemble et f : X −→ Y est une application surjective, comme conséquencede l'axiome du choix, il existe une application g : Y −→ X telle que f ◦ g = idY . Enparticulier, Y est équipotent à une partie de X.Dé�nition A.8.3. 1. Un ensemble non vide X est dit �ni s'il existe n ∈ N∗ tel que X estéquipotent à l'ensemble {1, 2, . . . , n}. Par convention l'ensemble vide est �ni. Un ensemblenon �ni est dit in�ni.
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A.8. Ensembles dénombrables 2292. Un ensemble X est dit dénombrable s'il est équipotent à l'ensemble N.3. Un ensemble X est dit au plus dénombrable s'il est �ni ou s'il est dénombrable.Proposition A.8.1. Soient X un ensemble �ni et f : X −→ X une application. Les propriétéssuivantes sont équivalentes.(i) f est injective.(ii) f est surjective.(iii) f est bijective.On en déduit que l'ensemble N est in�ni.Proposition A.8.2. On a les propriétés suivantes :1. Pour qu'un ensemble X soit in�ni, il faut et il su�t qu'il existe une injection de N dans
X.2. Si A est une partie in�nie de N, alors la suite (an)n≥0 dé�nie par :

a0 = minA et an = minA \ {a0, . . . , an−1} pour n ≥ 1 .est une bijection de N sur A. On en déduit qu'une partie quelconque de N est soit �nie, soitdénombrable.3. Si B est un ensemble et f : N −→ B est une surjection, alors B est �ni ou dénombrable.4. L'application suivante est une bijection
N× N −→ N

(n,m) 7−→ (n+m)(n+m+1)
2 +mdonc N× N est dénombrable. On en déduit que tout produit �ni d'ensembles dénombrablesest dénombrable.5. Les ensembles Z et Q sont dénombrables.6. Toute réunion d'une famille au plus dénombrable d'ensembles dénombrables est dénom-brable.7. Si X est un ensemble in�ni et D est un ensemble au plus dénombrable, alors X ∪D et Xsont équipotents.8. Soit Pf (N) l'ensemble des parties �nies de N. L'application

Pf (N) −→ N

A 7−→
∑

n∈A
2nest une bijection. Donc Pf (N) est dénombrable.9. L'ensemble P(N) est in�ni et non dénombrable.
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230 Chapitre A. ÉLÉMENTS DE LA THÉORIE DES ENSEMBLES
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Appendice BQUELQUES STRUCTURESALGÉBRIQUESB.1 Groupes, anneaux, corpsUne loi de composition interne sur un ensemble non vide G est une application de G × Gdans G que l'on note généralement (x, y) 7−→ x ? y. Au lieu du signe ?, on utilise aussi +, ×, .,
◦, etc.Dé�nition B.1.1. Soit G un ensemble non vide muni d'une loi de composition interne ?. Ondit que (G, ?), ou G, est un groupe si l'on a les propriétés suivantes :1. La loi ? est associative : pour tout x, y, z ∈ G, on a (x ? y) ? z = x ? (y ? z).2. La loi ? possède un élément neutre : il existe un élément e ∈ G, appelé élément neutre,tel que pour tout x ∈ G, on ait x ? e = e ? x = x.3. Tout élément de G possède un inverse : pour tout x ∈ G, il existe y ∈ G tel que x ? y =

y ? x = e. Dans ce cas, on dit que y est un inverse de x.Un groupe G est commutatif ou abélien si pour tout x, y ∈ G, on a x ? y = y ? x.On montre que dans un groupe G, l'élément e qui véri�e, pour tout x ∈ G, x ? e = e ? x = x, estunique ; il est appelé l'élément neutre de G. On montre aussi que pour tout x ∈ G, l'élément yde G tel que x ? y = y ? x = e est unique ; il est noté x−1 et appelé l'inverse de x.Dans un groupe abélien, la loi de composition interne est souvent notée additivement, on écrit
x + y au lieu x ? y ; l'élément neutre est alors noté 0, l'inverse d'un élément x est noté −x etappelé opposé de x, et on écrit x− y pour x+ (−y).Exemple B.1.1. 1. Si G = {e} et ? dé�nie par e ? e = e, alors (G, ?) est un groupe abélien,appelé groupe trivial.2. Si G = {e, a} et ? dé�nie par e ? e = e, e ? a = a ? e = a et a ? a = e, alors (G, ?) est ungroupe abélien.3. L'ensemble Z muni de l'addition est un groupe abélien.4. Soit X un ensemble non vide et SX l'ensemble des applications bijectives de X sur X. Onmunit SX de la loi de composition des applications (f, g) 7−→ f ◦ g. Alors SX devient ungroupe dont l'élément neutre est l'application identité de X. Lorsque X est un ensemble�ni de cardinal n, par exemple X = {1, 2, . . . , n}, le groupe SX se note Sn et s'appelle legroupe symétrique d'ordre n. 231
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232 Chapitre B. QUELQUES STRUCTURES ALGÉBRIQUESDé�nition B.1.2. Soient (G, ?) un groupe et H un sous-ensemble non vide de G. On dit que
H est un sous-groupe de G si l'on a les propriétés suivantes :1. Pour tout x, y ∈ H, on a x ? y ∈ H.2. Pour tout x ∈ H, on a x−1 ∈ H.Si de plus, pour tout x ∈ G et tout h ∈ H, on a x?h?x−1 ∈ H, on dit que H est un sous-groupedistingué ou normal de G. Dans ce cas, on note H CG.Notons que les conditions 1 et 2 ci-dessus sont équivalentes à la condition suivante :Pour tout x, y ∈ H, on a x ? y−1 ∈ H.Dé�nition B.1.3. Soient (G, ?), (G′, ?′) deux groupes et f : G −→ G′ une application. On ditque f est un morphisme de groupes de G dans G′ si pour tout x, y ∈ G, on a f(x ? y) =
f(x)?′ f(y). Si e′ est l'élément neutre de G′, l'ensemble f−1(e′) =

{
x ∈ G ; f(x) = e

} est appelénoyau de f . On le note ker(f).Notation. Soit (G, ?) un groupe d'élément neutre e. Pour tout n ∈ Z et tout x ∈ G, on dé�nitpar récurrence :
x0 = e, xn = xn−1 ? x, pour n ≥ 1 ; et si n < 0, xn = (x−1)

−n
.Lorsque la loi sur G est notée additivement, on dé�nit :

nx = 0 si n = 0, nx = x+ x+ · · ·+ x︸ ︷︷ ︸
n fois si n ≥ 1, et nx = (−n)(−x) si n < 0 .dans ce cas, l'application n 7−→ xn (resp. n 7−→ nx) est un morphisme de groupes de (Z,+) dans

(G, ?) (resp. (G, +)).Exemple B.1.2. 1. Si G est un groupe d'élément neutre e, alors {e} est un sous-groupedistingué de G.2. Tout sous-groupe d'un groupe abélien est distingué.3. Si f : G −→ G′ est un morphisme de groupes, alors ker(f) est un sous-groupe distingué de
G.Groupe quotient. Soient (G, ?) un groupe et H sous-groupe distingué de G. On dé�nit sur

G la relation d'équivalence suivante : pour tout x, y ∈ G, xR y ⇐⇒ x−1 ? y ∈ H. Notonsque la classe d'équivalence d'un élément x ∈ G est l'ensemble xH =
{
x ? h ; h ∈ H

}. On note
G/H l'ensemble quotient de G par R. On va dé�nir une structure de groupe sur G/H. Pour tout
x, y ∈ G, on pose xH · yH = (x ? y)H. Puisque H est un sous-groupe distingué de G, l'opération
· est bien dé�nie, et on obtient ainsi une loi de composition interne sur G/H. On véri�e sanspeine que l'ensemble G/H muni de la loi · est un groupe, appelé groupe quotient de G par H.Notons que l'élément neutre de G/H est l'ensemble H, et l'inverse d'un élément xH est l'élément
x−1H. Notons en�n que la surjection canonique

G −→ G/H
x 7−→ xHest un morphisme de groupes.Dé�nition B.1.4. Soit A un ensemble non vide muni de deux lois de composition interne, uneloi appelée addition ou somme et notée (x, y) 7−→ x+ y, et une loi appelée multiplication ouproduit et notée (x, y) 7−→ x ·y. On dit que A ou (A, +, ·) est un anneau si l'on a les propriétéssuivantes :
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B.1. Groupes, anneaux, corps 2331. (A, +) est un groupe abélien, dont l'élément neutre est noté 0.2. Le produit est associatif, i.e. pour tout x, y, z ∈ A, on a (x · y) · z = x · (y · z).3. Le produit est distributif par rapport à l'addition, i.e. pour tout x, y, z ∈ A, on a :
x · (y + z) = x · y + x · z et (y + z) · x = y · x+ z · x.Si le produit est commutatif, autrement dit si pour tout x, y ∈ A, on a x · y = y · x, on dit quel'anneau A est commutatif. S'il existe un élément de A, noté 1A ou 1, tel que pour tout x ∈ A,on ait 1 · x = x · 1 = x, on dit que l'anneau A est unitaire ou unifère. L'élément 1 s'il existe, ilest unique et il est appelé l'unité de A.Exemple B.1.3. 1. L'ensemble Z muni de l'addition et de la multiplication est un anneaucommutatif et unitaire.2. L'ensemble A = {0, 1} muni des lois :

1 + 0 = 0 + 1 = 0, 0 + 0 = 1 + 1 = 0, 0 · 0 = 0 · 1 = 1 · 0 = 0, et 1 · 1 = 1est un anneau commutatif unitaire.Remarque B.1.1. Soit (A, +, ·) un anneau. Alors on a :1. Pour tout x ∈ A, on a 0 · x = x · 0 = 0.2. Pour tout x, y ∈ A, on a x · (−y) = (−x) · y = −(x · y).3. Pour tout n ∈ Z et tout x, y ∈ A, on a x · (ny) = (nx) · y = n(x · y).4. Pour tout x, y ∈ A, on a (−x) · (−y) = x · y.Le symbole de la multiplication dans l'anneau A sera en général omis, et on écrit xy pour x · y.Notation. Soit (A, +, ·) un anneau. Si a ∈ A et n est un entier positif, on dé�nit an parrécurrence :
a1 = a et an = an−1a si n ≥ 2.Proposition B.1.1 (formule du binôme). Soit A un anneau. Pour tout a, b ∈ A tels que

ab = ba et pour tout entier n ≥ 1, on a :
(a+ b)n = an +

n−1∑

p=1

Cp
na

n−pbp + bn .Dé�nition B.1.5. Soient A, A′ deux anneaux. On appelle morphisme d'anneaux de A dans
A′ toute application f : A −→ A′ véri�ant les propriétés suivantes :1. Pour tout x, y ∈ A, on a f(x+ y) = f(x) + f(y).2. Pour tout x, y ∈ A, on a f(xy) = f(x)f(y).Si A et A′ sont unitaires, on exige aussi que l'on a f(1A) = 1A′ .Dé�nition B.1.6. Soient (A, +, ·) un anneau et I une partie non vide de A. On dit que I estun idéal bilatère de A si l'on a les propriétés suivantes :1. I est un sous-groupe de (A, +).2. Pour tout x ∈ I et tout a ∈ A, on a ax ∈ I et xa ∈ I.
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234 Chapitre B. QUELQUES STRUCTURES ALGÉBRIQUESSoient A un anneau et I un idéal bilatère de A. Soit A/I l'ensemble quotient de A par la relationd'équivalence suivante : pour tout x, y ∈ A, on a :
xR y ⇐⇒ x− y ∈ I.Notons que la classe d'équivalence d'un élément x ∈ A est l'ensemble x + I = {x + a ; a ∈ I}.Pour tout x, y ∈ A, on pose :

(x+ I) + (y + I) = x+ y + I et (x+ I) · (y + I) = xy + I .On véri�e que l'on dé�nit ainsi sur A/I deux lois de composition interne.Théorème B.1.1. Soient A un anneau et I un idéal bilatère de A. Alors l'ensemble quotient
A/I muni des lois dé�nies ci-dessus est un d'anneau, appelé anneau quotient de A par I. Deplus, on a :1. La surjection canonique π : A −→ A/I est un morphisme d'anneaux.2. Si A est commutatif, alors A/I est commutatif.3. Si A est unitaire, pour que A/I soit un corps il faut et il su�t que l'idéal bilatère I soitmaximal dans l'ensemble des idéaux bilatères de A autres que A, ordonné par inclusion.Dé�nition B.1.7. Un corps est un anneau unitaire K non nul dans lequel tout élément x autreque 0 admet un inverse pour la multiplication, i.e. pour tout x ∈ K tel que x 6= 0, il existe y ∈ Ktel que xy = yx = 1.Notons que si K est un corps, alors K∗ = K \ {0} est un groupe pour la multiplication.On dit qu'un corps K est commutatif s'il l'est en tant qu'anneau. Autrement dit si pour tout
x, y ∈ K, on a xy = yx.On appelle morphisme de corps tout morphisme des anneaux sous-jacents.Exemple B.1.4. L'ensemble Q est un corps commutatif.Dé�nition B.1.8. Soient (K, +, ·) un corps et K′ un sous-ensemble non vide de K. On dit que
K′ est un sous-corps de K si l'on a les propriétés suivantes :1. K′ est un sous-groupe de (K,+).2. Pour tout x, y ∈ K′, on a xy ∈ K′.3. Pour tout x ∈ K′ \ {0}, on a x−1 ∈ K′.4. On a 1 ∈ K′.Dé�nition B.1.9. On dit qu'un corps K est de caractéristique nulle si pour tout n ≥ 1, ona n1 = 1 + · · ·+ 1︸ ︷︷ ︸

n fois 6= 0.Proposition B.1.2. Soit (K, +, ·) un corps de caractéristique nulle. Alors l'application
ψ : Q −→ K

p

q
7−→ (q1)−1(p1)est un morphisme de corps injectif. Donc on peut considérer que Q est un sous-corps de K.
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Appendice CLE CORPS DES NOMBRES RÉELS RC.1 Corps commutatifs totalement ordonnésDé�nition C.1.1. On appelle corps commutatif totalement ordonné tout corps commutatif
K muni d'une relation d'ordre total ≤ qui véri�e les conditions de compatibilité suivantes :1. Pour tout x, y ∈ K tels que x ≤ y et pour tout z ∈ K, on a z + x ≤ z + y.2. Pour tout x, y ∈ K tels que x ≤ y et pour tout z ∈ K tel que 0 ≤ z, on a zx ≤ zy.On pose :

K+ =
{
x ∈ K ; 0 ≤ x

} et K ∗
+ =

{
x ∈ K ; 0 < x

}
.Un élément de K+ est dit positif et un élément de K+ est dit strictement positif.Remarque C.1.1. Soient K un corps commutatif totalement ordonné et x, y ∈ K.1. On a x ≤ y ⇐⇒ −y ≤ −x. En particulier, on a 0 ≤ x ⇐⇒ −x ≤ 0.2. Si 0 ≤ x et 0 ≤ y, alors on a 0 ≤ x+ y et 0 ≤ xy.3. Si x ≤ 0 et y ≤ 0, alors on a 0 ≤ xy.4. Si x ≤ 0 et 0 ≤ y, alors on a xy ≤ 0.5. On a 0 ≤ x2.6. On a 0 < x ⇐⇒ 0 < x−1.Si P est une partie non vide d'un corps commutatif K, on note :

−P =
{
− x ; x ∈ P

}
, P + P =

{
x+ y ; x, y ∈ P

} et PP =
{
xy ; x, y ∈ P

}
.Théorème C.1.1. 1. Dans un corps commutatif totalement ordonné K, l'ensemble K+ deséléments positifs véri�e :

K+ +K+ ⊂ K+ , K+K+ ⊂ K+ , K+ ∩ (−K+) = {0} et K+ ∪ (−K+) = K .2. Réciproquement, soient K un corps commutatif et P une partie de K véri�ant :
P + P ⊂ P , PP ⊂ P , P ∩ (−P ) = {0} et P ∪ (−P ) = K .Alors il existe une unique relation d'ordre total sur K qui en fasse un corps commutatiftotalement ordonné et dont l'ensemble des éléments positifs soit P .235
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236 Chapitre C. LE CORPS DES NOMBRES RÉELS RLa preuve de la première partie du théorème est triviale. Dans la deuxième partie du théorème,la relation que l'on considère est la suivante : x ≤ y ⇐⇒ y − x ∈ P .Dé�nition C.1.2. Soit K un corps commutatif totalement ordonné. On pose :
x+ = max(x, 0) , x− = max(−x, 0) et |x| = max(x,−x) =





x si 0 ≤ x ,

−x si x ≤ 0 .L'élément |x| est dit valeur absolue de x.Théorème C.1.2. Soit K un corps commutatif totalement ordonné. Alors on a :1. Pour tout x ∈ K, on a x = x+ − x−, |x| = x+ + x− et | − x| = |x|.2. Pour tout x ∈ K, on a 0 ≤ |x|, et |x| = 0 ⇐⇒ x = 0.3. Pour tout x, y ∈ K, on a | |x| − |y| | ≤ |x+ y| ≤ |x|+ |y|.4. Pour tout x, y ∈ K, on a |xy| = |x| |y|.Dé�nition C.1.3. Soit K un corps commutatif totalement ordonné.1. On dit qu'une suite (xn)n∈N d'éléments de K est convergente dans K ou qu'elle convergedans K s'il existe un élément l ∈ K véri�ant la condition suivante :Pour tout ε ∈ K ∗
+, il existe N ∈ N tel que pour tout n ∈ N véri�ant n ≥ N , on aitl'inégalité |xn − l| < ε.On véri�e alors que si un tel élément l ∈ K existe, il est unique ; on l'appelle la limite dela suite (xn)n∈N et on dit que la suite converge vers l ou a pour limite l ou encore tendvers l, et on écrit l = lim

n→+∞
xn.2. On dit qu'une suite (xn)n∈N d'éléments de K est majorée (resp. minorée) s'il existe

M ∈ K tel que pour tout n ∈ N, on ait xn ≤M (resp.M ≤ xn). Une suite à la fois majoréeet minorée est dite bornée.On véri�e facilement qu'une suite (xn)n∈N d'éléments de K est bornée s'il existe M ∈ K ∗
+tel que pour tout n ∈ N, on ait |xn| ≤M .3. On dit qu'une suite (xn)n∈N d'éléments de K est une suite de Cauchy si :Pour tout ε ∈ K ∗

+, il existe N ∈ N tel que pour tout p, q ∈ N véri�ant p ≥ N et q ≥ N , onait l'inégalité |xp − xq| < ε.On véri�e facilement que toute suite convergente est de Cauchy et que toute suite deCauchy est bornée.4. On dit que K est complet si toute suite de Cauchy d'éléments de K est convergente dans
K.Dé�nition C.1.4. Un corps commutatif totalement ordonné K est dit archimédien si pourtout x ∈ K ∗

+ et tout y ∈ K+, il existe n ∈ N tel que y ≤ nx.Proposition C.1.1. Le corps Q est un corps commutatif totalement ordonné, archimédien, maisil n'est pas complet.Démonstration. Par construction Q est un corps commutatif totalement ordonné. Véri�onsque Q est archimédien. Soient x ∈ Q ∗
+ et y ∈ Q+, on a x =

a

p
et y =

b

q
avec b ∈ N, a, p, q ∈ N ∗

+.
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C.1. Corps commutatifs totalement ordonnés 237On a y ≤ nx ⇐⇒ bp ≤ naq, donc il su�t de prendre n = bp, puisque aq ≥ 1. Pour montrer que
Q n'est pas complet, on considère les suites d'éléments de Q dé�nies par :

xn =

n∑

k=0

1

k!
, yn = xn +

1

nn!
si n ≥ 1 et y0 = y1 .Alors pour tout n ≥ 1, on a xn < xn+1, yn+1 < yn et 0 ≤ yn−xn ≤ 1

n . Puisque Q est archimédien,pour tout ε ∈ Q ∗
+, il existe N ∈ N∗ tel que 1 < Nε, d'où pour tout n ∈ N tel que n ≥ N , on ait

0 < 1
n ≤ 1

N < ε. Par conséquent, la suite ( 1n)n∈N∗ converge vers 0 dans Q.Si n ≥ p ≥ N , on a xN ≤ xp ≤ xn ≤ yn ≤ yp ≤ yN , d'où |xn − xp| ≤ |yN − xN | ≤ 1
N < ε.Par conséquent, la suite (xn)n∈N est de Cauchy. Il s'agit maintenant de montrer que (xn)n∈Nn'est pas convergente dans Q. Raisonnons par l'absurde et supposons que (xn)n∈N converge versun élément p

q ∈ Q. On a yn = yn − xn + xn et la suite (yn − xn)n∈N converge vers 0, on endéduit que (yn)n∈N converge aussi vers p
q ∈ Q. On montre facilement que pour tout n ≥ 1, ona xn < p

q < xn + 1
nn! = yn, d'où q!xq < q!pq < q!xq +

1
q < q!xq + 1, ce qui est impossible car

q!xq, q!
p
q ∈ N. Donc la suite (xn)n∈N ne converge pas dans Q, et par conséquent Q n'est pascomplet. �Proposition C.1.2. Soit K un corps commutatif totalement ordonné. Alors on a :1. K est de caractéristique nulle. Donc K contient Q comme un sous-corps.2. Si K est archimédien, on a(i) Pour tout x ∈ K, il existe un unique élément [x] ∈ Z tel que [x] ≤ x < [x] + 1. Un telélément [x] est appelé la partie entière de x.(ii) Pour tout a ∈ K et tout b ∈ K ∗

+, il existe un unique couple (q, r) ∈ Z × K tel que
a = bq + r et 0 ≤ r < b.3. K est archimédien si et seulement si Q est dense dans K, i.e. pour tout x, y ∈ K tels que

x < y, il existe r ∈ Q tel que x < r < y.Démonstration. 1. Pour tout x ∈ K, on a 0 ≤ x2. Compte tenu de 12 = 1, on en déduit quel'on a 0 ≤ 1, et même 0 < 1, puisque le corps K est non nul. On en déduit par récurrence quepour tout entier n ≥ 1, on a n1 6= 0. Donc K est de caractéristique nulle. Le fait que K contient
Q comme un sous-corps résulte de la proposition B.1.2.2(i). Soit x ∈ K. Puisque K est archimédien, il existe p ∈ N∗ tel que x ≤ p1 = p. Donc, pour tout
n ∈ Z tel que n ≤ x, on a n ≤ p. De même, il existe q ∈ N tel que −x ≤ q, d'où on a −q ≤ x.Ainsi l'ensemble {n ∈ Z ; n ≤ x

} est une partie non vide et majorée de Z ; elle admet un plusgrand élément que l'on note [x]. Alors on a [x] ≤ x < [x] + 1. L'unicité de [x] est triviale.2(ii). Soient a ∈ K et b ∈ K ∗
+. Soit q = [ab ] ∈ Z la partie entière de a

b , alors on a q ≤ a
b < q + 1,d'où on a bq ≤ a < bq+1. Soit r = a−bq, alors on a a = bq+r et 0 ≤ r < b. Véri�ons l'unicité ducouple (q, r). Soient (q, r), (q′, r′) ∈ Z×K tels que a = bq + r = bq′ + r′, 0 ≤ r < b et 0 ≤ r′ < b.Si q > q′, on a q − q′ ∈ N∗. Or 0 ≤ r, on en déduit que l'on a r′ = b(q − q′) + r > b, ce qui estimpossible, donc on a q ≤ q′. De même on a q′ ≤ q, d'où on a q = q′, et par conséquent, on a

r = r′.3. Supposons d'abord que Q est dense dans K. Soient a ∈ K ∗
+ et b ∈ K+, alors il existe x, y ∈ Q ∗

+tels que 0 < x < a et b < y < b+ 1. Q étant archimédien, alors il existe n ∈ N tel que y ≤ nx,d'où b < y ≤ nx ≤ na. Par conséquent, K est archimédien.Réciproquement, supposons K archimédien. Soient x, y ∈ K tels que x < y. Alors on a 0 < y−x.Donc il existe m ∈ N∗ tel que 0 < 1 < m(y−x), d'où on a 1+mx < my. Soient n = [mx] ∈ Z la
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238 Chapitre C. LE CORPS DES NOMBRES RÉELS Rpartie entière demx et p = n+1 ∈ Z. Alors on a p−1 ≤ mx < p, d'où x < p
m et p ≤ 1+mx < my.Par conséquent, on a x < p

m < y. Or p
m ∈ Q, donc Q est dense dans K. �Dé�nition C.1.5. Soit K un corps commutatif totalement ordonné.1. Soient (xn)n∈N une suite d'éléments de K. On dit qu'un élément l ∈ K est une valeurd'adhérence de (xn)n∈N si pour tout ε ∈ K ∗

+ et pour tout N ∈ N, il existe n ∈ N véri�ant
n ≥ N tel que l'on ait l'inégalité |xn − l| < ε.2. On dit que K possède la propriété de Bolzano-Weierstrass si toute suite bornéed'éléments de K admet au moins une valeur d'adhérence.3. Deux suites (xn)n∈N et (yn)n∈N d'éléments de K sont dites adjacentes si (xn)n∈N estcroissante, (yn)n∈N est décroissante, et si la suite (yn − xn)n∈N tend vers 0.4. On dit queK possède la propriété des intervalles emboîtés si pour toute suite ([an, bn])n∈Nd'intervalles fermés dans K véri�ant(i) Pour tout n ∈ N, on a [an+1, bn+1] ⊂ [an, bn].(ii) La suite (bn − an)n∈N tend vers 0.Alors l'intersection ∩

n≥0
[an, bn] est réduite à un seul élément.Théorème C.1.3. Soit K un corps commutatif totalement ordonné. Les propriétés suivantessont équivalentes.(i) Toute partie majorée et non vide de K admet une borne supérieure.(ii) Toute partie minorée et non vide de K admet une borne inférieure.(iii) Toute suite d'éléments de K croissante et majorée converge.(iv) Toute suite d'éléments de K décroissante et minorée converge.(v) Deux suites adjacentes d'éléments de K convergent vers la même limite.(vi) K est archimédien et complet.(vii) K est archimédien et possède la propriété des intervalles emboîtés.(viii) K est archimédien et possède la propriété de Bolzano-Weierstrass.Le théorème suivant montre qu'il existe, à isomorphisme algébrique près, au plus une structurede corps commutatif totalement ordonné archimédien complet.Théorème C.1.4. Soient K et K′ deux corps commutatifs totalement ordonnés archimédienscomplets. Alors il existe un isomorphisme de corps de K sur K′ prolongeant l'identité de Q et cetisomorphisme est strictement croissante.C.2 Une construction de RIl y a bien des façons de construire R à partir du corps des nombres rationnels Q, mais une telleconstruction n'a qu'un intérêt purement théorique, car deux corps commutatifs totalement ordon-nés archimédiens complets sont isomorphes. Dans ce paragraphe, on va esquisser une constructionde R en utilisant les suites de Cauchy dans Q.On note C l'ensemble des suites de Cauchy dans Q. Si x = (xn)n∈N et y = (yn)n∈N sont deséléments de C, on pose :

x+ y = (xn + yn)n∈N et xy = (xnyn)n∈N.
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C.2. Une construction de R 239Alors on véri�e facilement que x + y et xy sont aussi des éléments de C et que l'ensemble Cmuni de l'addition et de la multiplication dé�nies ci-dessus est un anneau commutatif unitairedont l'élément neutre pour l'addition est la suite constante dont tous les termes sont égaux à 0,et l'élément unité pour la multiplication est la suite constante dont tous les termes sont égaux à 1.On note C0 l'ensemble des suites dans Q qui convergent vers 0. Alors C0 est un idéal bilatèremaximal dans C. D'après le théorème B.1.1, l'anneau quotient C/C0 est un corps commutatif. Pardé�nition, ce corps est le corps des nombres réels R. Notons aussi que la surjection canonique
π : C −→ R = C/C0 est un morphisme d'anneaux.Avant de dé�nir une relation d'ordre sur R, notons que si (xn)n∈N est une suite de Cauchy dansun corps commutatif totalement ordonné K, qui ne converge pas vers 0, alors il existe un élément
ε ∈ K ∗

+ et un entier N ∈ N tel que ou bien pour tout n ∈ N véri�ant n ≥ N , on ait xn ≥ ε, oubien pour tout n ∈ N véri�ant n ≥ N , on ait xn ≤ −ε.Soit C+ = C0∪
{
(xn)n∈N ∈ C ; il existe N ∈ N tel que xn > 0 pour tout n ≥ N}. On appelle réelspositifs les éléments de l'ensemble R+ = π(C+). Notons que si x = (xn)n∈N ∈ C, on a π(x) ∈ R+si et seulement si x ∈ C+. On véri�e que l'on a :

R+ + R+ ⊂ R+ , R+R+ ⊂ R+ , R+ ∩ (−R+) = {0} et R+ ∪ (−R+) = R .On dé�nit alors une relation d'ordre sur R en décrétant que pour tout t, r ∈ R, on a t ≤ r ⇐⇒
r − t ∈ R+. On véri�e alors facilement que R muni de cette relation d'ordre est un corps com-mutatif totalement ordonné.Montrons que R est archimédien. Soient t et r des éléments strictement positifs de R. Notons
x = (xn)n∈N et y = (yn)n∈N des éléments de C+ tels que π(x) = t et π(y) = r. Puisque
y = (yn)n∈N est une suite de Cauchy, elle est bornée. Donc il existe M ∈ Q ∗

+ tel que pour tout
n ∈ N, on ait −M ≤ yn ≤ M . D'autre part, comme la suite x = (xn)n∈N ne tend pas vers 0,alors il existe ε ∈ Q ∗

+ et N ∈ N tels que pour tout n ∈ N véri�ant n ≥ N , on ait xn > ε. Puisque
Q est archimédien, il existe p ∈ N tel que pε > M , donc pour tout n ∈ N véri�ant n ≥ N , on a
pxn − yn ≥ pε−M > 0. Cela signi�e que l'on a pt > r et donc R est archimédien.Plongement de Q dans R. Considérons l'application φ : Q −→ C qui à tout rationnel r ∈ Q asso-cie la suite constante n 7−→ r. C'est un morphisme d'anneaux, alors ψ = π ◦φ est un morphismede corps de Q dans R, injectif et strictement croissante. De plus le morphisme de corps ψ est lemême que celui dé�ni dans la proposition B.1.2. Notons que si α ∈ R ∗

+, alors il existe ε ∈ Q ∗
+tel que ψ(ε) ≤ α. En e�et, soit x = (xn)n∈N ∈ C+ tel que π(x) = α, alors il existe ε ∈ Q ∗

+ et
N ∈ N tels que pour tout n ≥ N , on ait xn ≥ ε, ce qui implique ψ(ε) ≤ α.On en déduit les deux résultats suivants :1. Si (tn)n∈N est une suite dans R ; alors (tn)n∈N converge vers a ∈ R si et seulement si pour tout
ε ∈ Q ∗

+, il existe N ∈ N tel que pour tout n ≥ N , on ait |tn − a| < ψ(ε).2. Si (xn)n∈N est une suite dans Q qui converge vers un élément a ∈ Q, alors la suite (ψ(xn))n∈Nconverge vers ψ(a) dans R.Désormais, on identi�e Q au sous-corps ψ(Q) de R. On a montré ci-dessus que R est archimédien,alors il résulte de la proposition C.1.2 que Q est aussi dense dans R.Il reste à montrer que R est complet. Auparavant, on montre le résultat suivant qui dit entreautre que Q est dense dans R :
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240 Chapitre C. LE CORPS DES NOMBRES RÉELS RSoit x = (xn)n∈N un élément de C, et on pose t = π(x) ∈ R. Alors la suite (ψ(xn))n∈N convergevers t dans R. En e�et, puisque (xn)n∈N est de Cauchy dans Q, alors pour tout ε ∈ Q ∗
+, il existe

N ∈ N tel que pour tous n ≥ N et p ≥ N , on ait |xn − xp| < ε. Soit m ∈ N tel que m ≥ N .On a t − ψ(xm) = π(x − φ(xm)) et pour tout n ≥ N , on a |xn − xm| < ε. On en déduit que
|t− ψ(xm)| ≤ ψ(ε). Par conséquent, la suite (ψ(xn))n∈N converge vers t dans R.On peut maintenant achever la démonstration de la complétude. Soit (tn)n∈N une suite de Cau-chy dans R. D'après ce qui précède, chaque tn est limite d'une suite de rationnels. Ainsi, pourtout n ∈ N, il existe rn ∈ Q tel que |tn− rn| < 1

n+1 . En fait, on devrait noter ψ(rn) au lieu de rnet de même avec 1
n+1 , mais on ne le fait pas pour ne pas alourdir inutilement les choses. Alorson véri�e que la suite r = (rn)n∈N est de Cauchy dans Q, donc r ∈ C et on montre alors que lasuite (tn)n∈N converge vers π(r) ∈ R. Donc R est complet.Dorénavant on n'aura plus à utiliser la dé�nition de R comme anneau quotient, et on peutmaintenant énoncer le résultat central de ce paragraphe.Théorème C.2.1. Il existe un unique, à isomorphisme près, corps commutatif totalement or-donné archimédien complet, appelé corps des nombres réels et noté R. De plus, on a :1. Le corps Q est un sous-corps dense dans R.2. Le corps R possède toutes les propriétés citées dans le théorème C.1.3.C.3 Autres propriétés de RDé�nition C.3.1. Q étant identi�é à un sous-corps de R, les éléments de R \ Q sont ditsnombres irrationnels.Proposition C.3.1. Pour tout x ∈ R et tout ε ∈ R ∗

+, il existe u ∈ Q et v ∈ R \ Q tels que
|u− x| < ε et |v − x| < ε. Autrement dit, Q et R \Q sont denses dans R.Démonstration. On a vu, preuve de la proposition C.1.1, que la suite (xn)n∈N, où xn =

n∑

k=0

1

k!est de Cauchy dans R et non convergente dans Q, donc (xn)n∈N converge vers un élément irra-tionnel e. Si x ∈ Q, il su�t de prendre u = x et v = x+ e
n , où n ∈ N∗ tel que e

n < ε.Si x ∈ R \ Q, on prend v = x. Pour tout n ∈ N∗, on a nx = qn + rn, avec qn ∈ Z et rn ∈ R telque 0 ≤ rn < 1. D'où on a x =
qn
n

+
rn
n
, avec 0 ≤ rn

n
≤ 1

n
. Par conséquent, on a lim

n→+∞
rn
n

= 0,on en déduit qu'il existe N ∈ N∗ tel que ∣∣∣x− qN
N

∣∣∣ < ε, on prend alors u =
qN
N

. �Théorème C.3.1. L'ensemble R des nombres réels n'est pas dénombrable.Rappelons aussi les deux théorèmes fondamentaux suivants :Théorème C.3.2. Soient a, b ∈ R tels que a ≤ b et f : [a, b] −→ R une application continue.Alors il existe c, d ∈ R tels que c ≤ d et f([a, b]) = [c, d].Théorème C.3.3 (théorème des accroissements �nis). Soient a, b ∈ R tels que a < b et
f : [a, b] −→ R une application continue. Si f est dérivable sur ]a, b[, alors il existe c ∈ ]a, b[ telque :

f(b)− f(a) = (b− a)f ′(c) .
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Appendice DLE CORPS DES NOMBRESCOMPLEXES CD.1 Construction du corps des nombres complexesOn dé�nit dans R2 une addition et une multiplication (ou un produit) de la manière suivante :Pour tout (x, y), (x′, y′) ∈ R2,
(x, y) + (x′, y′) = (x+ x′, y + y′) ,

(x, y)(x′, y′) = (xx′ − yy′, xy′ + x′y) .On véri�e facilement que R2 muni l'addition et du produit est un corps commutatif dont l'élémentneutre pour l'addition est (0, 0) et l'élément neutre pour le produit est (1, 0). De plus l'inverse,pour le produit, de tout élément (x, y) 6= (0, 0) est donné par ( x

x2 + y2
,
−y

x2 + y2

).Dé�nition D.1.1. Le corps R2, muni de l'addition et du produit ci-dessus, est appelé corpsdes nombres complexes et il est noté C. Ses éléments z = (x, y) sont appelés des nombrescomplexes.Proposition D.1.1. L'application
ϕ : R −→ C

x 7−→ (x, 0)est un morphisme de corps injectif.L'injection ϕ permet d'identi�er le corps R des nombres réels à son image ϕ(R) = {(x, 0) ; x ∈ R}dans le corps C des nombres complexes. Autrement dit, on peut considérer que R est un sous-corps de C. Pour cette raison, et par abus de notations, on écrit les nombres complexes quisont de la forme (x, 0) simplement x. Grâce à cette identi�cation, on va donner une nouvellereprésentation, ou écriture, des nombres complexes :
z = (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x+ iyoù i = (0, 1). De plus, on a i2 = (0, 1)(0, 1) = (−1, 0) = −(1, 0) = −1. Ainsi, dans ce nouveaucorps C, l'élément −1 possède une racine carrée.Le produit s'écrit dans cette représentation :

(x+ iy)(x′ + iy′) = xx′ + xiy′ + iyx′ + i2yy′ = xx′ − yy′ + i(xy′ + x′y) .241
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242 Chapitre D. LE CORPS DES NOMBRES COMPLEXES CDe même, l'inverse d'un nombre complexe z 6= 0 sera désigné simplement z−1 ou 1

z
, alors que

zz′−1, lorsque z′ 6= 0, sera représenté par z

z′
. Autrement dit, on a par dé�nition, z

z′
= z

1

z′
.Remarque D.1.1. Soient z, z′ ∈ C tel que z′ 6= 0. Alors pour tout a ∈ C tel que a 6= 0, on a

z

z′
=
az

az′
. En e�et, on a :

az

az′
= (az)(az′)−1 = aza−1z′−1 = zz′−1 =

z

z′
.Dé�nition D.1.2. Soit z = x + iy un nombre complexe, avec x, y ∈ R. Alors x, que l'on noteRe(z), est appelé partie réelle de z et y, que l'on note Im(z), est appelé partie imaginairede z.D.2 Conjugué et module d'un nombre complexeDé�nition D.2.1. Soit z = x + iy un nombre complexe, avec x, y ∈ R. Le nombre complexe

z = x − iy est appelé le conjugué de z. Le module de z, noté |z|, est le nombre réel positif
|z| =

√
x2 + y2.

|z|

0

z

z

x

i

y

−y

+

b

bNotons que le module d'un nombre complexe généralise la notion de valeur absolue d'un nombreréel.Proposition D.2.1. Soient z, z′ ∈ C, on a :1. Re(z) = z + z

2
et Im(z) =

z − z
2i

;2. z + z′ = z + z′ et zz′ = zz′ ;3. ( z
z′

)
=
z

z′
, si z′ 6= 0 ;4. z ∈ R⇐⇒ z = z.Démonstration. 1. On a z = x+ iy et z = x− iy, avec x, y ∈ R, d'où z + z = 2x = 2Re(z) et

z − z = 2iy = 2iIm(z). Donc on a Re(z) = z + z

2
et Im(z) =

z − z
2i

.2. On a z′ = x′+iy′, avec x′, y′ ∈ R, d'où z+z′ = x+x′+i(y+y′) et zz′ = xx′−yy′+i(xy′+x′y).Donc on a :
z + z′ = x+ x′ − i(y + y′) = x− iy + x′ − iy′ = z + z′ ,

zz′ = xx′ − yy′ − i(xy′ + x′y) = (x− iy)(x′ − iy′) = zz′ .
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D.2. Conjugué et module d'un nombre complexe 2433. On suppose z′ 6= 0. Comme on a ( z
z′

)
= z
( 1

z′

), il su�t de montrer que l'on a ( 1

z′

)
=

1

z′
. Oron a 1

z′
=

x′

x′2 + y′2
− i y′

x′2 + y′2
, d'où ( 1

z′

)
=

x′

x′2 + y′2
+ i

y′

x′2 + y′2
=

x′ + iy′

x′2 + y′2
=

z′

z′z′
=

1

z′
.4. Supposons d'abord z ∈ R, alors z = x+ i0, avec x ∈ R, d'où z = x− i0 = x = z.Réciproquement, supposons que z = z, alors on a z = x+ iy = x− iy, d'où 2iy = 0, donc y = 0.Par conséquent, on a z = x ∈ R. �Proposition D.2.2. Soient z, z′ ∈ C, on a :1. |Re(z)| ≤ |z| et |Im(z)| ≤ |z| ;2. |z| = 0⇐⇒ z = 0 ;3. zz = |z|2 et |z| = |z| ;4. |zz′| = |z| |z′| ;5. ∣∣∣ z

z′

∣∣∣ = |z||z′| , si z′ 6= 0 ;6. |z + z′| ≤ |z|+ |z′| ;7. ∣∣ |z| − |z′| ∣∣ ≤ |z + z′|.Démonstration. 1. On a z = x+ iy, avec x, y ∈ R, d'où |Re(z)| = |x| = √x2 ≤√x2 + y2 = |z|et |Im(z)| = |y| =
√
y2 ≤

√
x2 + y2 = |z|.2. On a z = 0 ⇐⇒ x = 0 et y = 0 ⇐⇒

√
x2 + y2 = 0 ⇐⇒ |z| = 0.3. On a zz = (x+ iy)(x− iy) = x2 + y2 = |z|2 et |z| =√x2 + y2 =

√
x2 + (−y)2 = |z|.4. On a z′ = x′ + iy′, avec x′, y′ ∈ R, d'où zz′ = xx′ − yy′ + i(xy′ + x′y). Donc on a :

|zz′|2 = (xx′ − yy′)2 + (xy′ + x′y)2

= x2x′2 − 2xx′yy′ + y2y′2 + x2y′2 + 2xx′yy′ + x′2y2

= x2x′2 + y2y′2 + x2y′2 + x′2y2

= (x2 + y2)(x′2 + y′2)

= |z|2 |z′|2.D'où on a |zz′| = |z| |z′|.5. On suppose z′ 6= 0. Comme on a ∣∣∣ z
z′

∣∣∣ =
∣∣∣z 1
z′

∣∣∣ = |z|
∣∣∣ 1
z′

∣∣∣, il su�t de montrer que l'on a ∣∣∣ 1
z′

∣∣∣ =
1

|z′| . On a 1

z′
=

x′

x′2 + y′2
−i y′

x′2 + y′2
, d'où ∣∣∣ 1

z′

∣∣∣
2
=

x′2

(x′2 + y′2)2
+

y′2

(x′2 + y′2)2
=

1

x′2 + y′2
=

1

|z′|2 .Donc on a ∣∣∣ 1
z′

∣∣∣ = 1

|z′| .
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244 Chapitre D. LE CORPS DES NOMBRES COMPLEXES C6. On a :
|z + z′|2 = (z + z′)( z + z′ )

= (z + z′)( z + z′ )

= zz + zz′ + z′z + z′z′

= |z|2 + |z′|2 + zz′ + zz′

= |z|2 + |z′|2 + 2Re(zz′ )
≤ |z|2 + |z′|2 + 2|Re(zz′ )|
≤ |z|2 + |z′|2 + 2|zz′|

= |z|2 + |z′|2 + 2|z| |z′|

= |z|2 + |z′|2 + 2|z| |z′|

=
(
|z|+ |z′|

)2
.D'où on a |z + z′| ≤ |z|+ |z′|.7. On a z = z+ z′+(−z′). D'après 6, on a |z| = |z+ z′+(−z′)| ≤ |z+ z′|+ |− z′| = |z+ z′|+ |z′|,d'où |z| − |z′| ≤ |z + z′|. De même, on a −(|z| − |z′|) = |z′| − |z| ≤ |z′ + z| = |z + z′|. Parconséquent, on a ∣∣ |z| − |z′| ∣∣ ≤ |z + z′|. �D.3 Représentation géométrique des nombres complexesRappels de trigonométrie. Pour tout θ ∈ R, on a sin(θ), cos(θ) ∈ [−1, 1] et on a (cos(θ))2 +

(sin(θ))2 = 1. Réciproquement, soit (x, y) ∈ R2 tel que x2 + y2 = 1, alors il existe un unique
θ ∈ [0, 2π[ tel que x = cos(θ) et y = sin(θ).Pour tout θ, α ∈ R, on a (cos(θ), sin(θ)) = (cos(α), sin(α)) si et seulement si il existe k ∈ Z telque θ − α = 2kπ. On a les formules utiles suivantes :

cos(−θ) = cos(θ) , sin(−θ) = − sin(θ) ,

cos(θ + θ′) = cos(θ) cos(θ′)− sin(θ) sin(θ′) ,

sin(θ + θ′) = sin(θ) cos(θ′) + cos(θ) sin(θ′) .

θ 0
π

6

π

4

π

3

π

2
π

cos(θ) 1

√
3

2

√
2

2

1

2
0 −1

sin(θ) 0
1

2

√
2

2

√
3

2
1 0
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D.3. Représentation géométrique des nombres complexes 245On déduit de ce qui précède les formules suivantes :
cos(θ +

π

2
) = − sin(θ) , sin(θ +

π

2
) = cos(θ) ,

cos(θ + π) = − cos(θ) , sin(θ + π) = − sin(θ) ,

cos(π − θ) = − cos(θ) , sin(π − θ) = sin(θ) ,

cos(2θ) = cos(θ + θ) = (cos(θ))2 − (sin(θ))2 = 2(cos(θ))2 − 1 = 1− 2(sin(θ))2 ,

sin(2θ) = sin(θ + θ) = 2 sin(θ) cos(θ) .Soit z = x+ iy ∈ C, avec x, y ∈ R, tel que z 6= 0. Alors on a :
z =

√
x2 + y2

(
x√

x2 + y2
+ i

y√
x2 + y2

)
= |z|

(
x√

x2 + y2
+ i

y√
x2 + y2

)Comme on a : (
x√

x2 + y2

)2

+

(
y√

x2 + y2

)2

= 1alors il existe un unique θ ∈ [0, 2π[ tel que cos(θ) = x√
x2 + y2

et sin(θ) = y√
x2 + y2

. Autrementdit, il existe un unique θ ∈ [0, 2π[ tel que z = |z|(cos(θ) + i sin(θ)).Dé�nition D.3.1. Pour tout nombre complexe non nul z, l'unique réel θ ∈ [0, 2π[ tel que
z = |z|(cos(θ) + i sin(θ)) est appelé l'argument principal de z et se note Arg(z).

0

Arg(z) z

x

i

y

+

b

Notation. Pour tout θ ∈ R, on pose :
eiθ = cos(θ) + i sin(θ)Proposition D.3.1. On a les propriétés suivantes :1. ∣∣eiθ∣∣ = 1 ;2. eiθ = ei(−θ) ;3. eiθeiθ′ = ei(θ+θ′) ;4. eiθ = eiθ

′ ⇐⇒ il existe k ∈ Z tel que θ − θ′ = 2kπ.
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246 Chapitre D. LE CORPS DES NOMBRES COMPLEXES CDémonstration. 1. On a ∣∣eiθ∣∣ =√(cos(θ))2 + (sin(θ))2 =
√
1 = 1.2. On a eiθ = cos(θ) + i sin(θ) = cos(θ)− i sin(θ) = cos(−θ) + i sin(−θ) = ei(−θ).3. On a :

eiθeiθ
′

=
(
cos(θ) + i sin(θ)

)(
cos(θ′) + i sin(θ′)

)

=
(
cos(θ) cos(θ′)− sin(θ) sin(θ′)

)
+ i
(
sin(θ) cos(θ′) + cos(θ) sin(θ′)

)

= cos(θ + θ′) + i sin(θ + θ′)

= ei(θ+θ′).4. On a :
eiθ = eiθ

′ ⇐⇒ cos(θ) + i sin(θ) = cos(θ′) + i sin(θ′)

⇐⇒ cos(θ) = cos(θ′) et sin(θ) = sin(θ′)

⇐⇒ il existe k ∈ Z tel que θ − θ′ = 2kπ.

�Proposition D.3.2. On a les propriétés suivantes :1. Pour tout z ∈ C tel que z 6= 0, on a z = |z|eiArg(z).2. Soit z = reiα, avec r > 0 et α ∈ R, alors |z| = r et il existe k ∈ Z tel que Arg(z)−α = 2kπ.3. Soient z, z′ ∈ C tels que z 6= 0 et z′ 6= 0. Alors z = z′ si et seulement si |z| = |z′| et ilexiste k ∈ Z tel que Arg(z) −Arg(z′) = 2kπ.4. Soient z = reiθ et z′ = r′eiθ
′ , avec r, r′, θ, θ′ ∈ R, alors on a zz′ = rr′ei(θ+θ′) et z

z′
=

r

r′
ei(θ−θ′), si r′ 6= 0.Démonstration. 1. On a :

z = x+iy =
√
x2 + y2

(
x√

x2 + y2
+i

y√
x2 + y2

)
= |z|

(
cos(Arg(z))+i sin(Arg(z))) = |z|eiArg(z)2. Soit z = reiα, avec r > 0 et α ∈ R, d'où z = r cos(α) + ir sin(α), donc on a |z| =√

(r2 cos(θ))2 + r2(sin(θ))2 =
√
r2 = r. Par conséquent, on a z = |z|eiα = |z|eiArg(z), d'où

eiα = eiArg(z). On déduit de la proposition précédente qu'il existe k ∈ Z tel que Arg(z)−α = 2kπ.3. Soient z, z′ ∈ C tels que z 6= 0 et z′ 6= 0. Si z = z′, alors on a |z| = |z′| et Arg(z) = Arg(z′).Réciproquement, supposons que |z| = |z′| et qu'il existe k ∈ Z tel que Arg(z) − Arg(z′) = 2kπ.Alors on a z = |z|eiArg(z) = |z′|eiArg(z′) = z′.4. Soient z = reiθ et z′ = r′eiθ
′ . Alors on a zz′ = rr′eiθeiθ

′
= rr′ei(θ+θ′). D'autre part, si z′ 6= 0,alors on a :

z

z′
=

reiθ

r′eiθ′
=

reiθeiθ
′

r′eiθ′eiθ′
=
reiθei(−θ′)

r′|eiθ′ |2 =
r

r′
ei(θ−θ′) .

�Dé�nition D.3.2. Soit z un nombre complexe. L'écriture z = x+ iy, avec x, y ∈ R, est appeléela forme algébrique ou aussi la forme cartésienne de z. Si z 6= 0, l'écriture z = reiθ, avec
r > 0, est appelée la forme polaire ou aussi la forme trigonométrique de z.
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D.4. Racines carrées et équations de second ordre dans C 247Notons que ces deux écritures sont reliées par les relations :




x = r cos(θ)

y = r sin(θ)
et 




r =
√
x2 + y2

cos(θ) =
x√

x2 + y2

sin(θ) =
y√

x2 + y2Insistons sur le fait que θ est seulement dé�ni modulo 2π, sauf si on précise que θ = Arg(z).Proposition D.3.3 (formules d'Euler). Pour tout θ ∈ R, on a :
cos(θ) =

eiθ + ei(−θ)

2
et sin(θ) =

eiθ − ei(−θ)

2i
.Démonstration. 1. Comme on a eiθ = cos(θ) + i sin(θ) et ei(−θ) = cos(−θ) + i sin(−θ) =

cos(θ)− i sin(θ), on en déduit que l'on a cos(θ) =
eiθ + ei(−θ)

2
et sin(θ) = eiθ − ei(−θ)

2i
. �Proposition D.3.4 (formule de Moivre). Pour tout θ ∈ R et pour tout n ∈ N, on a :

(eiθ)n = einθ .Autrement dit, on a ( cos(θ) + i sin(θ)
)n

= cos(nθ) + i sin(nθ).Démonstration. 1. On démontre cette formule par récurrence sur n. La formule est évidemmentvraie pour n = 0. Supposons la formule vraie à l'ordre n− 1, i.e. que l'on a (eiθ)n−1 = ei(n−1)θ.On en déduit que (eiθ)n = eiθ(eiθ)n−1 = ei(1+n−1)θ = einθ. Par conséquent, la formule de Moivreest vraie pour tout n ∈ N. �D.4 Racines carrées et équations de second ordre dans CDé�nition D.4.1. Soit a ∈ C. On appelle racine carrée de a tout nombre complexe z tel que
z2 = a.Ainsi, le nombre complexe a = 0 possède une unique racine carrée z = 0.Proposition D.4.1. Soit a ∈ C tel que a 6= 0. Alors a possède exactement deux racines carrées
{z0,−z0}.Démonstration. Supposons que z0 est une racine carrée de a, i.e. z20 = a. Alors on a (−z0)2 =
z20 = a, donc −z0 est aussi une racine carrée de a. Soit z une racine carrée de a, i.e. z2 = a, alorson a z2−z20 = 0, d'où (z−z0)(z+z0) = 0. Donc on a z = z0 ou z = −z0. Pour compléter la preuve,il reste à déterminer une racine carrée de a. Si on connaît a sous forme polaire a = reiθ, avec
r > 0, alors il su�t de prendre z0 =

√
rei

θ
2 . Supposons que a est donné sous forme cartésienne

a = Re(a) + iIm(a). Soit z = x+ iy, avec x, y ∈ R, alors on a z2 = x2 − y2 + 2ixy. Donc on a :
z2 = a⇐⇒





x2 − y2 = Re(a)
2xy = Im(a)
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248 Chapitre D. LE CORPS DES NOMBRES COMPLEXES CPar ailleurs, on a x2 + y2 = |z|2 = |z2| = |a|, d'où :
z2 = a⇐⇒





x2 − y2 = Re(a)
x2 + y2 = |a|

2xy = Im(a)Donc on a x2 = |a|+ Re(a)
2

et y2 = |a| − Re(a)
2

. Comme on a |a|+ Re(a)
2

≥ 0 et |a| − Re(a)
2

≥
0, car on a toujours |Re(a)| ≤ |a|, on trouve alors :





x = ±
√
|a|+ Re(a)

2

y = ±
√
|a| − Re(a)

2La condition 2xy = Im(a) permet de déterminer les signes ±.Ainsi, si Im(a) ≥ 0, alors xy ≥ 0 et par conséquent x et y sont de même signe. Les racines sontalors z0 et −z0, avec :
z0 =

√
|a|+ Re(a)

2
+ i

√
|a| − Re(a)

2
.Par contre, si Im(a) ≤ 0, alors xy ≤ 0 et par conséquent x et y sont de signe opposé. Les racinessont alors z0 et −z0, avec :

z0 =

√
|a|+ Re(a)

2
− i
√
|a| − Re(a)

2
.

�Exemple D.4.1. Calculons les racines carrées de a = 3− 4i. Soit z = x+ iy ∈ C, on résout lesystème suivant :




x2 − y2 = Re(a) = 3

x2 + y2 = |a| = 5

2xy = Im(a) = −4On trouve x = ±2 et y = ±1 avec xy < 0. Donc les racines carrées de a sont z0 = 2 − i et
−z0 = −2 + i.Dé�nition D.4.2. Une équation de degré 2 dans C est une équation de la forme az2+bz+c = 0,avec a, b, c ∈ C et a 6= 0.
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D.5. Racines n-ièmes d'un nombre complexe 249Il s'agit de déterminer tous les z ∈ C tels que az2 + bz + c = 0. On a :
az2 + bz + c = a

[
z2 +

b

a
z
]
+ c

= a
[
z2 + 2

b

2a
z
]
+ c

= a

[(
z +

b

2a

)2
− b2

4a2

]
+ c

= a

[(
z +

b

2a

)2
−
(b2 − 4ac

4a2

)]
.Soit ∆ = b2− 4ac, alors on a az2 + bz+ c = a

[(
z+

b

2a

)2
− ∆

4a2

]. Soit δ une racine carrée de ∆,i.e. δ ∈ C tel que δ2 = ∆. Alors on a :
az2 + bz + c = a

[(
z +

b

2a

)2
−
( δ
2a

)2]

= a

[
z +

b

2a
− δ

2a

] [
z +

b

2a
+

δ

2a

]

= a

[
z −

(−b+ δ

2a

)] [
z −

(−b− δ
2a

)]
.Donc les solutions de l'équation az2 + bz + c = 0 sont :

z1 =
−b+ δ

2a
et z2 =

−b− δ
2a

.Exemple D.4.2. Résoudre dans C l'équation z2 + z + 1 = 0. Dans cet exemple, on a a = b =
c = 1. Soit ∆ = b2 − 4ac = −3 = 3i2, alors δ = i

√
3 est une racine carrée de ∆. Les solutionssont donc :

z1 =
−1 + i

√
3

2
et z2 =

−1− i
√
3

2
.D.5 Racines n-ièmes d'un nombre complexeDé�nition D.5.1. Soient n un entier ≥ 1 et a ∈ C. On appelle racine n-ième de a tout nombrecomplexe z tel que zn = a.Ainsi, le nombre complexe a = 0 possède une unique racine n-ième z = 0.Proposition D.5.1. Soient n un entier ≥ 1 et a ∈ C tel que a 6= 0. L'équation zn = a aexactement n solutions distinctes dans C. Ce sont les nombres complexes :

zk = |a| 1n e
i

(Arg(a)
n

+
2kπ

n

)

, k ∈ {0, 1, · · · , n − 1} .
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250 Chapitre D. LE CORPS DES NOMBRES COMPLEXES CDémonstration. Comme a 6= 0, on a a = |a|eiArg(a) et toute solution z de l'équation zn = aest forcément non nul, donc z aura une forme trigonométrique z = ρeiθ, où θ ∈ R et ρ > 0. Ona zn = ρneinθ, d'où :
zn = a⇐⇒





ρn = |a|

nθ = Arg(a) + 2kπ, k ∈ Z

⇐⇒





ρ = |a| 1n

θ =
Arg(a)
n

+
2kπ

n
, k ∈ ZDonc les solutions de l'équation zn = a sont :

zk = |a| 1n e
i

(Arg(a)
n

+
2kπ

n

)

, k ∈ Z .Pour compléter la preuve, il reste à montrer les deux propriétés suivantes :1. Les solutions z0, z1, · · · , zn−1 sont deux à deux distinctes.2. Si k ∈ Z, alors il existe r ∈ {0, 1, · · · , n− 1} tel que zk = zr.1. Soient p, q ∈ {0, 1, · · · , n−1} tels que zp = zq. Alors on a ei(Arg(a)n
+
2pπ

n

)

= e
i

(Arg(a)
n

+
2qπ

n

),d'où il existe m ∈ Z tel que Arg(a)
n

+
2pπ

n
=

Arg(a)
n

+
2qπ

n
+ 2mπ. Donc on a p − q = mn, onen déduit que m = 0, d'où p = q.2. Soit k ∈ Z. On fait la division euclidienne de k par n, on obtient p ∈ Z et r ∈ {0, 1, · · · , n− 1}tels que k = pn+ r, d'où on a :

zk = |a| 1n e
i

(Arg(a)
n

+
2kπ

n

)

= |a| 1n e
i

(Arg(a)
n

+
2pnπ + 2rπ

n

)

= |a| 1n e
i

(Arg(a)
n

+
2rπ

n

)

ei2pπ = zr .

�Exemple D.5.1. Cherchons les solutions de l'équation z4 = 8(−1 + i
√
3).On a z4 = 16

(−1
2

+ i

√
3

2

)
= 24e

2πi
3 . Donc les solutions sont :

zk = 2e
i

(2π
12

+
2kπ

4

)

= 2e
i

(π
6
+
kπ

2

)

, k ∈ {0, 1, 2, 3} .Dé�nition D.5.2. On appelle racine n-ième de l'unité toute solution de l'équation zn = 1.Ce sont donc les nombres complexes :
zk = e

2kπi
n , k ∈ {0, 1, · · · , n− 1} .

y

x0
b

b

b

b

b

b

b

b

b

1

e
2πi

9

e
4πi

9

e
6πi

9

e
8πi

9

e
10πi

9

e
12πi

9

e
14πi

9

e
16πi

9

2π
9

Disposition des racines 9-ièmes de l'unité sur le cercle-unité
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D.5. Racines n-ièmes d'un nombre complexe 251Ce sont les sommets d'un polygone régulier inscrit dans le cercle-unité.Remarque D.5.1. Soient a ∈ C tel que a 6= 0 et z, z′ deux racines de l'équation zn = a. Alorson a zn = z′n, d'où (z′
z

)n
= 1. Donc il existe k ∈ {0, 1, · · · , n− 1} tel que z′

z
= e

2kπi
n , d'où on a

z′ = ze
2kπi
n . Ainsi, on obtient les racines n-ièmes d'un nombre complexe non nul a en multipliantl'une d'entre elles par les racines n-ièmes de l'unité.Théorème D.5.1 (d'Alembert). Soient n un entier ≥ 1 et a0, . . . , an ∈ C tel que an 6= 0.Alors l'équation a0 + a1z + · · ·+ anz

n = 0 admet au moins une racine dans C. Autrement dit, ilexiste α1, . . . , αn ∈ C tels que a0 + a1z + · · · + anz
n = an

n∏
i=1

(z − αi), pour tout z ∈ C.Ce théorème a été démontré au chapitre 3 de ce supplément.
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252 Chapitre D. LE CORPS DES NOMBRES COMPLEXES C
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Appendice EALGÈBRESDans cet Appendice, K désigne un corps commutatif quelconque.Dé�nition E.0.3. Une algèbre A sur le corps K est un K -espace vectoriel muni d'une appli-cation bilinéaire, appelée multiplication et notée
A×A −→ A
(x, y) 7−→ xytelle que pour tout x, y, z ∈ A, on ait x(yz) = (xy)z (associativité) †.On dit qu'une algèbre A est unitaire ou unifère s'il existe un élément non nul noté 1A dans

A tel que pour tout x ∈ A, on ait x1A = 1Ax = x. Un tel élément est alors unique, et appelél'unité de A. Dans certains cas, on convient, pour tout λ ∈ K, de noter λ l'élément λ 1A de A.Cette convention est justi�ée par le fait que l'application λ 7−→ λ 1A de K dans A est injective,et par la relation λx = (λ 1A)x.Soit A une algèbre unitaire. Un élément a de A est dit inversible s'il existe un élément b de Atel que ab = ba = 1A. Dans ce cas, b est unique, appelé l'inverse de a et noté a−1. On noteGL(A) l'ensemble des éléments inversibles de A. C'est un groupe pour la multiplication, dontl'élément neutre est l'unité de A.On dit qu'une algèbre A est commutative si pour tout x, y ∈ A, on a xy = yx.Dé�nition E.0.4. Soient A une algèbre et B, I des sous-espaces vectoriels de A.1. On dit que B est une sous-algèbre de A si pour tous x, y ∈ B, on a xy ∈ B.2. On dit que I est un idéal bilatère de A si pour tout a ∈ A et pour tout x ∈ I, on a ax ∈ Iet xa ∈ I.Il est clair que tout idéal bilatère de A est une sous-algèbre de A. Notons aussi que {0} et A sontdes idéaux bilatères de A.Remarque E.0.2. Soit A une algèbre.1. Si (Bj)j∈J est une famille de sous-algèbres de A, alors ∩
j∈J

Bj est une sous-algèbre de A. Parconséquent, pour tout sous-ensemble non vide S de A, il existe une plus petite sous-algèbrede A contenant S, à savoir l'intersection des sous-algèbres de A contenant S. Une tellesous-algèbre est appelée la sous-algèbre de A engendrée par S. Par exemple, si S = {a}est un singleton, la sous-algèbre de A engendrée par S est le sous-espace vectoriel de Aengendré par les an, où n ∈ N∗.
†. En général l'associativité ne fait pas partie de la dé�nition d'une algèbre, mais dans cet Appendice on neconsidère que des algèbres associatives. 253
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254 Chapitre E. ALGÈBRES2. Si (Ij)j∈J est une famille d'idéaux bilatères de A, alors ∩
j∈J

Ij est un idéal bilatère de A. Parconséquent, pour tout sous-ensemble non vide S de A, il existe un plus petit idéal bilatèrede A contenant S, à savoir l'intersection des idéaux bilatères de A contenant S. Un telidéal bilatère est appelé l'idéal bilatère de A engendré par S.Dé�nition E.0.5. Soient A et B deux algèbres et ϕ : A −→ B une application K-linéaire de
A dans B. On dit que ϕ est un morphisme ou homomorphisme d'algèbres de A dans B sil'on a ϕ(xy) = ϕ(x)ϕ(y) pour tous x, y ∈ A. Si de plus A et B sont unitaires et ϕ(1A) = 1B ,on dit que ϕ est un morphisme d'algèbres unitaires. Un isomorphisme d'algèbres est unmorphisme d'algèbres bijectif.Proposition E.0.2. Soient A et B deux algèbres unitaires et ϕ : A −→ B un morphismed'algèbres.1. Si ϕ est unitaire, alors on a ϕ(GL(A)) ⊂ GL(B).2. Si B = K et si ϕ est non nul, alors ϕ est unitaire. En particulier, pour tout x ∈ GL(A),on a ϕ(x) 6= 0.Démonstration. 1. Soit x ∈ GL(A). Alors on a xx−1 = x−1x = 1A. Comme ϕ est unitaire, onen déduit que l'on a ϕ(x)ϕ(x−1) = ϕ(x−1)ϕ(x) = ϕ(1A) = 1B . Donc ϕ(x) est inversible et on a
(ϕ(x))−1 = ϕ(x−1).2. Supposons que B = K et que ϕ est non nul. Alors il existe a ∈ A tel que ϕ(a) 6= 0. Commeon a ϕ(a) = ϕ(a1A) = ϕ(a)ϕ(1A), alors ϕ(1A) = 1. Donc ϕ est unitaire. �Corollaire E.0.1. Soit B une sous-algèbre unitaire d'une algèbre unitaire A telle que 1B = 1A,alors l'injection canonique i : B ↪→ A est un morphisme algèbres unitaires. Ceci implique quel'on a GL(B) ⊂ GL(A).Algèbre quotientSoient A une algèbre et I un idéal bilatère de A. Soient A/I l'espace vectoriel quotient et
π : A −→ A/I l'application quotient, c'est une application linéaire. Pour tous a, b ∈ A et pourtous x, y ∈ I, on a (a+x)(b+y) = ab+ay+xb+xy, avec ay+xb+xy ∈ I. Par conséquent, si onpose π(a)π(b) = π(ab), c'est un produit bien dé�ni sur A/I. On véri�e facilement que A/I munide ce produit est une algèbre, appelée l'algèbre quotient de A par I, et π est un morphismed'algèbres.Décomposition canonique d'un morphismeSoient A, B deux algèbres et ϕ un morphisme d'algèbres de A dans B. Alors ϕ(A) est une sous-algèbre de B, ker(ϕ) est un idéal bilatère de A et il existe un unique morphisme d'algèbres ϕ de
A/ kerϕ dans B tel que ϕ = ϕ ◦ π, i.e. le diagramme suivant est commutatif.

A B

A/ kerϕ

-ϕ

Q
QQsπ �

��3
ϕDe plus ϕ est injectif. Cette décomposition est appelée la décomposition canonique de ϕ.De manière générale, si I est un idéal bilatère de A tel que I ⊂ ker(ϕ), alors il existe un unique
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255morphisme d'algèbres ϕ : A/I −→ B tel que ϕ = ϕ◦π, i.e. le diagramme suivant est commutatif.
A B

A/I

-ϕ

@
@Rπ �

��
ϕProduit �ni d'algèbresSoit (Ai)1≤ i≤n une suite �nie d'algèbres, alors n∏

i=1
Ai muni du produit (ai)1≤ i≤n(bi)1≤ i≤n =

(aibi)1≤ i≤n est une algèbre, appelée l'algèbre produit des algèbres (Ai)1≤ i≤n. Si toutes les Aisont unitaires, n∏
i=1
Ai l'est aussi.Adjonction d'une unité à une algèbreSoit A une algèbre surK. Soit A+ = A×K, comme espace vectoriel. Pour tous (x, α), (y, β) ∈ A+,on pose :

(x, α)(y, β) = (xy + αy + βx, αβ) .Alors A+ muni de ce produit est une algèbre unitaire avec (0, 1) comme unité, et l'application
a 7−→ i(a) = (a, 0) est un morphisme d'algèbres injectif de A dans A+, donc on identi�e A à sonimage dans A+. De plus A est un idéal bilatère de A+ et l'algèbre quotient A+/A est isomorpheà l'algèbre K. L'algèbre A+ est dite l'algèbre obtenue par adjonction d'une unité à A, A avecou sans unité. On a aussi la propriété universelle suivante :Si ϕ : A −→ B est un morphisme d'algèbres et si B est unitaire, alors il existe un uniquemorphisme d'algèbres unitaires ϕ+ : A+ −→ B tel que ϕ = ϕ+ ◦ i, i.e. le diagramme suivant estcommutatif.

A B

A+

-ϕ

@
@Ri �

��
ϕ+Remarque E.0.3. Si A est une algèbre unitaire, alors l'application ϕ : (a, λ) 7−→ (a− λ 1A, λ)est un isomorphisme d'algèbres unitaires de A×K sur A+.
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