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INTRODUCTION

E document est constitué d’une série de suppléments pour mon livre Topoloie Générale et
Espaces Normés. Je donne dans ce document certaines démonstrations que j’ai omises dans
mon livre et je donne aussi 223 exercices avec leurs solutions. Egalement, pour rappeler le lecteur
certaines notions que j’ai utilisées dans mon livre, j’ai ajouté quelques appendices surtout un sur
la théorie des ensembles et un autre sur le corps des nombres réels.
J’accueillerai avec plaisir et gratitude toutes remarques et suggestions envoyées a ’adresse élec-
tronique suivante : nawfal.elhage-hassan@univ-orleans.fr
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Chapitre 1

ESPACES TOPOLOGIQUES

Proposition. Soient f et g deux applications continues d’un espace topologique X dans R, alors
on a :

1. L’application f+ g : x> f(z) + g(x) est continue de X dans R.
2. L’application fg:x+—— f(z)g(x) est continue de X dans R.

f(z)
g(z)

Démonstration. 1. Soit o € X. Montrons que f + g est continue en zg. Soit € > 0. Comme
f est continue en xg, alors il existe un voisinage Vi de g dans X tel que pour tout = € Vi, on
ait | f(x) — f(2o0)| < 5. De méme, comme g est continue en xg, alors il existe un voisinage V5 de
ro dans X tel que pour tout x € Vo, on ait |g(x) — g(xo)| < §. Soit V' = Vi N V3, alors V' est un
voisinage de zg dans X et pour tout x € V', on a :

est continue de X dans R.

3. Si g ne s’annule pas, ’application i T x>
g

[f (@) + 9(z) = f(w0) = g(xo)| < |f(2) = fzo)| +19(z) — g(z0)| <5+ 5 =¢.

Donc f + g est continue en xg. Par conséquent, f + g est continue.
2. Soit g € X. Montrons que fg est continue en zy. Soit € > 0. Soit :

= 1in ° .
"= ind (1’ () 11 If(wo)\>

Alors 7 > 0 et on a n(|g(zo)| + 1) + |f(20)|n < e. Comme f et g sont continues en zg, alors
il existe un voisinage V' de xo dans X tel que pour tout x € V, on ait |f(x) — f(xo)| < n et
lg(x) — g(xo)| < n. Donc pour tout z € V, on a :

[f(@)g(x) = f(zo)g(xo)l = [f(x)g(x) = f(xo)g(x) + f(wo)g(x) — f(x0)g(zo)]
< [f(z) = fzo)llg(@)| + | (zo)[ lg(z) = g(0)]
< |f(@) = f(=o)l (Ig(zo)| +n) + |f(zo)| lg(x) — g(zo)]

< n(lg(xo)| +n) + [ f(zo)ln < e.

Donc fg est continue en xg. Par conséquent, fg est continue.

1
3. D’apreés 2, il suffit de montrer que I'application — : £ — —— est continue de X dans R.
g

g(z)

© Dunod, 2011 - Topologie et espaces normés - Nawfal El Hage Hassan



2 Chapitre 1. ESPACES TOPOLOGIQUES

2
€

Soient zg € X et € > 0. Soit n = inf |g(2$0)| ) |g(;0)| , alors n > 0. Comme ¢ est continue en
xo, alors il existe un voisinage V' de zy dans X tel que pour tout = € V, on ait |g(z) — g(xo)| < 7.
Alors pour tout x € V, on a @ < |g(z)| et

‘ L1 | _ o) —glzo)l _ 2lg(z) —ggxo)l _ 2 <.

g9(x)  glzo)|  lg(@)|lg(z0)| l9(zo)| lg(zo)|

o1 : ) 1 :
Donc ’application — est continue en xzy. Par conséquent, — est continue. |
g g

Proposition. Soient X, Y des espaces topologiques et f : X — Y une application. Les pro-
priétés suivantes sont équivalentes.

(i) f est une application fermée.

(ii) Pour tout sous-ensemble B de Y et pour tout ouvert U dans X tel que f~%(B) C U, il
existe un ouvert V dans Y tel que B C Vet f~5(V) CU.

(iii) Pour tout point y € Y et pour tout ouvert U dans X tel que f_l({y}) C U, il existe un
voisinage V' de y dans Y tel que f~1(V) C U.

Démonstration. Montrons I'implication (i) = (ii). Soient B un sous-ensemble de Y et U un
ouvert de X tels que f~1(B) C U. Soit F = X \U, alors F est fermé dans X et on a f(F)NB = {.
Comme f est une application fermée, alors f(F') est un fermé de Y. Donc V =Y \ f(F) est un
ouvert de Y contenant Betona f1(V)=X\ f"!(f(F)) Cc X\F =U.

Preuve de (ii) = (i). Soient F' un fermé de X et A = f(F'). Alors X \ F est un ouvert de X et
ona f~1(Y\A) C X\ F. Donc il existe un ouvert V de Y tel que Y\ A C Vet f~1(V) C X \F.
Par conséquent, on a V =Y \ A, d’oit A est un fermé de Y. Donc f est une application fermée.
L’implication (ii) == (iii) est triviale.

Preuve de (iii) = (ii). Supposons que pour tout point y € Y et pour tout ouvert U dans X
tel que f_l({y}) C U, il existe un voisinage V de y dans Y tel que f~1(V) C U. Soient B un
sous-ensemble de Y et U un ouvert dans X tels que f~1(B) C U. Pour tout y € B, il existe un

voisinage ouvert V,, de y dans Y tel que f _1(Vy) c U. Soit V = UBVy, alors V est un ouvert de
ye

Ytelque BCV et f/(V) = U f71(V,) CU. u
Y

Proposition. Soient X, Y deux espaces topologiques et f : X — Y une application continue
surjective. On munit X/R de la topologie quotient. Les propriétés suivantes sont équivalentes.

(i) L’application f: X/Ry — Y est un homéomorphisme.

ii) L’image par f de tout ouvert de X saturé pour R¢ est un ouvert de Y.
(i) g f
iii) L’image par f de tout fermé de X saturé pour Ry est un fermé de Y.
g f
)

(iv) Pour toute partie U de Y, U est ouvert dans Y si et seulement si f~1(U) est un ouvert de
X.

(v) Pour toute partie F de Y, F est fermé dans Y si et seulement si f~1(F) est un fermé de
X.

Démonstration. Montrons I'implication (i) = (ii). Soit U un ouvert de X saturé pour Ry,
d’ott on a U = ¢ 1(q(U)). Par conséquent, q(U) est un ouvert de X/R. Comme [ est un
homéomorphisme et f(U) = f(q(U)), on en déduit que f(U) est un ouvert de Y.
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Preuve de (ii) = (i). Notons d’abord que fest bijective car f est surjective. Puisque f est
continue, alors f est continue. Il reste & montrer que f est ouverte. Soit W un ouvert de X /Ry,
alors ¢~ (W) est un ouvert de X saturé pour Ry. Par conséquent, f (q_l(W)) est un ouvert de

Y.Orona f(¢g ' (W)) = f(q(q_l(W))) = f(W), donc f(W) est un ouvert de Y.

Les équivalences (ii) <= (iii) et (iv) <= (v) s’obtiennent par passage aux complémentaires.
Prewve de (i) = (iv). Soit U une partie de Y, on a f~1(U) = ¢~ (f~(U)). Puisque f est un
homéomorphisme de X/Ry sur Y, U est un ouvert de Y si et seulement si FHU) est un ouvert
de X/Ry si et seulement si q_l(f_l(U)) = f~YU) est un ouvert de X.

Preuwve de (iv) = (i). L’application f est continue et bijective. Il reste a montrer que f est

ouverte. Soit W un ouvert de X/Ry, on a f_l(f(W)) = q_l(f_l(f(W))) = ¢~ 1(W), donc
f_l(f(W)) est un ouvert de X, d’oit f(W) est un ouvert de Y. [

Proposition. Soient (z,),>0 une suite dans un espace topologique X et £ € X.
1. Si ¢ est une limite de la suite (x,,),>0, alors ¢ est une valeur d’adhérence de (x,,)n>0.

2. Si X est séparé et si (x,),>0 est convergente dans X, alors sa limite est unique et c’est la
seule valeur d’adhérence de la suite (xy,)n>0.

3. Si (xn)n>0 converge vers £, alors toute sous-suite de (z,)n>0 converge également vers /.

4. La suite (zp,)n>0 converge vers une limite ¢ si et seulement si les sous-suites (25, )n>0 €t
(X2n+1)n>0 convergent vers £

5. Si ¢ est une valeur d’adhérence d’une sous-suite de (z,)n>0, alors ¢ est une valeur d’adhé-
rence de (zp)n>0-

6. Si ¢ est une limite d’une sous-suite de (z,)n>0, alors ¢ est une valeur d’adhérence de
(xn)n>0. Réciproquement, si £ admet une base dénombrable de voisinages et si ¢ est une
valeur d’adhérence de (z,,)n>0, alors ¢ est une limite d’une sous-suite de (2, )n>0-

Démonstration. 1. Il résulte immeédiatement de la définition 1.7.1 que si £ est une limite de la
suite (2, )n>0, alors £ est une valeur d’adhérence de (z,,)n>0.

2. Ceci résulte de la proposition 1.6.3 et de la remarque 1.7.2. Mais donnons une preuve directe.
On suppose ici que X est séparé et que la suite (zy,)n>0 converge vers une limite £ € X. D’aprés
1, ¢ est aussi une valeur d’adhérence de (x,,)n,>0. Donc il suffit de montrer que ¢ est la seule valeur
d’adhérence de (x5, )n>0- Soit £ une valeur d’adhérence de (z,,)n>0. Si £ # ¢/, comme X est séparé,
il existe un voisinage V de ¢ dans X et un voisinage W de ¢’ dans X tels que VNW = (). Puisque
¢ est une limite de la suite (z,,)n>0, il existe N € N tel que pour tout n > N, on ait x, € V.
Comme ¢’ est une valeur d’adhérence de (x,)n>0, il existe n > N tel que x, € W. D’oi on a
VNW # 0, ce qui est impossible. Donc on a ¢/ = /.

3. Ceci résulte de la proposition 1.6.5, mais on va donner une preuve directe en n’utilisant que
les définitions. Soit (zy, )k>0 une sous-suite de (xy,),>0, alors pour tout & > 0, on a ny > k. Soit
V un voisinage de £ dans X, alors il existe N € N tel que pour tout n > N, on ait x,, € V. Alors
pour tout £ > N, on a ny > ny > N, d'ou z,, € V. Donc la sous-suite (x,, )y>0 converge vers
L.

4. Ceci résulte de la proposition 1.6.4 et de la remarque 1.7.2. Mais donnons une preuve directe. Il
résulte de 3 que si (25, ),>0 converge vers une limite ¢, alors les sous-suites (z2p,)n>0 €t (Z2n+1)n>0
convergent vers /.

Réciproquement, supposons que les sous-suites (Z2p,)n>0 €t (T2p41)n>0 convergent vers £. Soit V'
un voisinage de ¢ dans X. Alors il existe N1 € N tel que pour tout n > Ny, on ait x9, € V, et il
existe Ny € N tel que pour tout n > N, on ait x9,4+1 € V. Soit N = max(2N7,2Ns + 1), alors
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4 Chapitre 1. ESPACES TOPOLOGIQUES

N € N et pour tout n > N, on a z, € V. Donc (x,,),>0 converge vers £.

5. Supposons que £ est une valeur d’adhérence d’une sous-suite (x,, )r>0. Soient V' un voisinage
de ¢ dans X et N € N. Alors il existe k € N tel que £ > N et z,, € V. Or on a n; > k, d’ou
ng > N et z,, € V. Donc £ est une valeur d’adhérence de (xy,)n>0-

6. I1 résulte de 1 et 5 que si £ est une limite d’une sous-suite de (x,)n>0, alors £ est une valeur
d’adhérence de (zy,)n>0. Réciproquement, supposons que ¢ est une valeur d’adhérence de (z,)n>0
et que ¢ admet une base dénombrable de voisinages dans X. Soit (V”)n>0 une telle base. Pour

<o est une base dénombrable de voisinages de ¢
n>0

dans X telle que pour tout n > 0, on ait U,41 C U,. On construit par récurrence une sous-suite
(@, ) k>0 telle que pour tout k > 0, on ait z,, € Uy. Soit ng = inf {n >0; x, € Uo}. Soit k£ > 1
et supposons nj_1 construit, on pose alors ny = inf {n > Np—1; Ty € Uk}. Alors (l”nk)kzo est
une sous-suite de (x,),>0 telle que pour tout £ > 0, on ait z,, € Uy. Montrons que (zp,)r>0
converge vers £. Soit V' un voisinage de ¢ dans X, il existe ky € N tel que Uy, C V. Alors pour
tout k > ko, on a U, C Uy, C V, d’ott z,,, € Uy C V. Donc (x,, )r>0 converge vers £. |

tout n > 0, on pose U, = lﬁoVk’ alors (Un)

Théoréme (Urysohn). Soient X un espace topologique et Y un sous-ensemble de X. Alors les
propriétés suivantes sont équivalentes.

(i) Pour toute fonction continue f : Y — [—1, 1], il existe une fonction continue g : X —
[—1, 1] prolongeant f.

(ii) Pour tous a,b € R tels que a < b et pour toute fonction continue f : Y — [a, b], il existe
une fonction continue g : X — [a, b] prolongeant f.

(iii) Deux sous-ensembles complétement séparés dans Y sont aussi complétement séparés dans
X.

Démonstration. Montrons I'implication (i) = (ii). Soient a,b € R tels que a < b et soit
f Y — [a, b] une fonction continue. Soit ¢ : [a, ] — [—1, 1] un homéomorphisme, voir
exemple 1.4.1. Alors ¢ o f est une fonction continue de Y dans [~1, 1]. Par hypothése, il existe
une fonction continue f : X — [~1, 1] prolongeant ¢ o f. Alors g = ¢! o f est une fonction
continue de X dans [a, b] prolongeant f.

Preuve de (ii) = (iii). Soient A et B deux sous-ensembles de Y complétement séparés dans Y.
Soit f : Y — [0, 1] une fonction continue telle que f|, = 0 et f|, = 1. Par hypothése, il existe
une fonction continue g : X — [0, 1] prolongeant f. Alors on a aussi g, = 0 et g, =1. Donc
A et B sont complétement séparés dans X.

Preuwve de (iii) = (i). Montrons d’abord que si M > 0 et si f : ¥ — R est une fonction
continue telle que | f(z)| < M, pour tout € Y, alors il existe une fonction continue g : X — R
telle que :

(a) |g(z)] < %M, pour tout x € X.

(b) |f(z) — g(z)| < 2M, pour tout z € Y.
En effet, soient A = f_l([—M, %M]) et B = f_l([%M, M]) Alors A et B sont complétement
séparés dans Y par f. Par hypothése, A et B sont complétement séparés dans X, donc il existe
une fonction continue h : X — [0, 1] telle que h|, = 0 et hj, = 1. Pour tout z € X, soit
g(z) = %M (h(z) — 3). Alors g est une fonction continue de X dans R vérifiant les propriétés (a)
et (b).
Soit f : Y — [—1, 1] une fonction continue. On va construire par récurrence sur n une suite
(9")n>1 de fonctions continues de X dans R telle que :

(@) |gn(x)] < %(%)n_l, pour tout n > 1 et pour tout z € X.
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(B) ‘f(:r) - Zgz(a:)‘ < (2)", pour tout n > 1 et pour tout = € Y.
i=1

En effet, comme on a |f(x)| < 1, pour tout x € Y, alors on obtient g1 par ce qui précéde. Ensuite,
supposons que l'on a construit des fonctions continues g1, ..., g, de X dans R telles que :

lgi(x)] < %(%)2_1 , pour tout i € {1,...,n} et pour tout z € X ,

i
‘f(:r) - Zg](a:)‘ < (%)Z, pour tout i € {1,...,n} et pour tout x € Y.
j=1

i=1

Alors f — Zgi‘y est une fonction continue de Y dans R telle que ‘f(m) — Zgﬂy(az)‘ < (3)",
i=1

pour tout = € Y. On applique de nouveau le raisonnement précédent a f — Z Jil.., on obtient

i=1

[y

une fonction continue g,+1 : X — R telle que :

gn+1(z)] < 3(3)", pour tout z € X,

‘f(m) - Zgl(az)‘ < %(%)n = (%)nH , pour tout z € Y.
i=1

Ainsi de suite, on construit la suite (9”)n>1' Puisque la série Z %(%)n_l est convergente, on
B n>1
déduit de la propriété () que pour tout z € X, la série Z gn(x) est convergente. On pose
n>1

“+00
g(z) = Zgn(:r), pour tout x € X. Alors g est une fonction continue de X dans R telle que
n=1

+o0 +oo
lg(z)] < nz_:l‘gn(x” < ;%(%)n_l = 1, pour tout x € X. Comme on a nll)r}rloo (%)n = 0, on
déduit de la propriété () que pour tout z € Y, on a g(x) = f(x). Donc g est une fonction
continue de X dans [—1, 1] prolongeant f. [ |

Théoréme (Tietze). Soit X un espace topologique séparé. Alors les propriétés suivantes sont
équivalentes.

(i) X est un espace normal.

(ii) Pour tous a,b € R tels que a < b, pour tout ensemble fermé A dans X et pour toute fonction
continue f : A — [a, b], il existe une fonction continue g : X — [a, b] prolongeant f.

(iii) Pour tout ensemble fermé A dans X et pour toute fonction continue f: A — R, il existe
une fonction continue g : X — R prolongeant f.

Démonstration. Montrons l'implication (i) == (ii). Soient a,b € R tels que ¢ < b, A un
sous-ensemble fermé de X et f : A — [a, b] une fonction continue. Pour montrer qu’il existe
une fonction continue g : X — [a, b] prolongeant f, d’aprés le théoréme précédent, il suffit de
montrer que deux sous-ensembles de A complétement séparés dans A sont aussi complétement
séparés dans X. Soient C et D deux sous-ensembles de A complétement séparés dans A. Donc il

existe une fonction continue b : A — [0, 1] telle que by, = 0 et hy, = 1. Soient F = h~1([0, 1])
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6 Chapitre 1. ESPACES TOPOLOGIQUES

et G =ht! ( [%, 1] ) Alors F' et G sont des sous-ensembles fermés disjoints dans A tels que C C F
et D C G, dou F et G sont des sous-ensembles fermés disjoints dans X. Comme X est normal,
d’aprés le théoréme 1.10.2, F' et GG sont complétement séparés dans X. Par conséquent, C' et D
sont complétement séparés dans X.

Preuve de (ii) = (i). Si X n’est pas un espace normal, alors il existe des sous-ensembles fermés
disjoints E et F' dans X tels que pour tous ouverts U et V dans X tels que E C U et F C V,
on ait UNV # (. Alors EU F est un fermé de X et 'application f : EUF — [0, 1] définie
par f(x) = 0six € E, et f(r) = 1si ¢ € F est continue, mais on ne peut pas prolonger f
par continuité & I’espace X tout entier, ce qui contredit I’hypothése. Donc X est bien un espace
normal.

Pour montrer implication (iii) = (i), on fait exactement le méme raisonnement comme ci-
dessus.

Preuve de (i) = (iii). Soient A un sous-ensemble fermé de X et f : A — R une fonction
continue. Soit ¢ : R — ] — 1, 1] un homéomorphisme, voir exemple 1.4.1. Alors po f: A —
] — 1, 1] est une fonction continue. Comme X est normal, d’aprés la propriété (ii), il existe une
fonction continue h : X — [—1, 1] telle que pour tout € A, on ait h(z) = (¢ o f)(x). Soit
B =nhn"! ({—1,1}), alors B est un fermé de X tel que BN A = (). Soit ¢ : X — [0, 1] une

fonction continue telle que 1, = 1 et 1|, = 0. Pour tout x € X, on pose f(x) = h(z)i(x), alors

f est une fonction continue de X dans ] — 1, 1] prolongeant ¢ o f. Soit g = ¢~ 1o f, alors g est
une fonction continue de X dans R prolongeant f. |

Supplément d’exercices

Exercice 1.36. Soit (X;);c; une famille d’espaces topologiques et pour tout i € I, soit 4; un
sous-espace topologique de X;. Montrer que la topologie induite sur A = [[ A; par la topologie
i€l
produit sur X = [[X; coincide avec la topologie produit des topologies des sous-espaces A;.
el

Solution. Pour montrer que la topologie induite sur A par celle de X coincide avec la topologie
produit des topologies des sous-espaces A;, d’aprés la proposition 1.4.7, il suffit de montrer que
si A est muni de la topologie induite par celle de X, alors pour tout espace topologique E, une
application g : F —> A est continue si et seulement si pour tout i € I, p; o g est continue de
E dans A;, ou p; est la projection canonique de A sur A;. Notons également p; la projection

canonique de A sur A;. Alors on a le diagramme commutatif suivant :

X
{Pi
v .

— s+ X

g 7

A
\ {pi
piog

A

E

<
<

O ¢ désigne l'injection canonique. Supposons d’abord que pour tout ¢ € I, 'application p; o g
est continue de E dans A;. Alors pour tout i € I, p; o109 = 10 p; o g est continue de E dans
X;. On en déduit que 20 g est continue de E dans X. Il résulte de la proposition 1.4.6 que g est
continue de E dans A.

Réciproquement, supposons que g est continue de F dans A muni de la topologie induite par celle
de X. Alors 20 g est continue de F dans X, d’ou pour tout ¢ € I, 20p; 0g = p; 020 g est continue
de F dans X;. Il résulte de la proposition 1.4.6 que pour tout i € I, p;og est continue de £ dans A;.
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Exercice 1.37. Soient (Y;);c; une famille d’espaces topologiques, Z un espace topologique, A

une partie de Z et a € A.

1. Soient X un ensemble et pour chaque ¢ € I, soit f; : X — Y; une application. On munit
X de la topologie initiale associée & la famille (f;);er. Soit g : A — X une application.
Montrer qu'un point £ € X est une limite de g en a si et seulement si pour tout i € I, f;(¢)
est une limite de f; o g en a.

2. On munit [[Y; de la topologie produit. En déduire qu’une application g : A — [[Y;

i€l iel
admet (¢;);c; comme limite en a si et seulement si pour tout ¢ € I, ¢; est une limite de
piogena,oup;: [[Y: — Y est la projection canonique.
1€l
Solution. 1. Supposons d’abord que ¢ € X est une limite de g en a. Puisque les f; sont continues
en ¢, d’apres le corollaire 1.6.2, pour tout ¢ € I, f;(¢) est une limite de f; o g en a.
Réciproquement, supposons que pour tout i € I, f;(¢) est une limite de f; o g en a. Soit U
un ouvert de X contenant £. D’aprés le lemme 1.4.1, il existe un sous-ensemble fini J de I tel
que pour tout ¢ € J, il existe un ouvert U; de Y; contenant f;({) tels que ﬂin_l(Ui) cU.
1€
Or pour tout i € J, il existe un voisinage W; de a dans X tel que (f; o g)(W; N A) C Uj,
d'ou g(W; N A) C ;7 HU;). Soit W = OJWZ-, alors W est un voisinage de a dans X et on a
1€

g(W N A) CU. Donc ¢ est une limite de g en a.
2. Ceci résulte immeédiatement de 1.

Exercice 1.38. Soit R une relation d’équivalence ouverte sur un espace topologique X. Montrer
que si X admet une base dénombrable d’ouverts, alors il en est de méme pour ’espace topolo-
gique quotient X/R.

Solution. Soit (V},)nen une base dénombrable d’ouverts de X. Puisque 'application quotient
g : X — X/R est ouverte, alors pour tout n € N, ¢(V;,) est un ouvert de X/R. Montrons que
(q(V))nen est une base d’ouverts de X/R. Soit U un ouvert non vide de X/R, alors ¢~ (U)
est un ouvert non vide de X, donc il existe un sous-ensemble J de N tel que ¢~ *(U) = nLEJJVn.
Puisque ¢ est surjective, alors on a U = ¢(¢~1(U)) = nLEJJq(Vn). Par conséquent, (¢(V;,))nen est

une base dénombrable d’ouverts de X/R.

Exercice 1.39. Soient X un espace topologique et I' un sous-groupe du groupe des homéomor-
phismes de X. Soit Rr la relation d’équivalence sur X définie par :

xRry < ilexiste o0 €T tel que y=o0(x).

On note 'espace topologique quotient X/T".
1. Montrer que Rr est une relation d’équivalence ouverte sur X.
2. Montrer que Rr n’est pas en général une relation d’équivalence fermée sur X.

3. Montrer que si I' un sous-groupe fini, alors Rr est une relation d’équivalence ouverte et
fermée sur X.

Solution. 1. Soient ¢ : X — X/T" I'application quotient et U un ouvert de X. On a ¢~ *(q(U)) =
UFO'(U). Or pour tout o € ', o(U) est ouvert dans X, donc ¢~ *(¢(U)) est ouvert dans X. Par
(4SS

conséquent, ¢(U) est un ouvert de X/T", donc ¢ est une application ouverte.
2.51 X =Ret I' =Q, le groupe Q agit par translation sur R, alors pour tout € R, {z} est
fermé dans R et ¢! ({q(m)}) est dense mais n’est pas fermé dans R. Donc Rr n’est pas une
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relation d’équivalence fermée dans R.

3. Il reste a montrer que ¢ est aussi une application fermée. Soit F' un fermé de X. On a

g q(F)) = UFO'(F). Or pour tout o € T', o(F') est fermé dans X, et c’est une réunion finie,
S

donc ¢ 1(q(U)) est fermé dans X. Par conséquent, q(U) est un fermé de X/T', donc g est une
application fermée.

Exercice 1.40. Soient R une relation d’équivalence sur un espace topologique X et ¢ : X —
X/R Dapplication quotient. Montrer que les conditions suivantes sont équivalentes.

(i) La relation R est ouverte.
(ii) L’intérieur de toute partie de X saturée pour R est saturé pour R.
(iii) L’adhérence de toute partie de X saturée pour R est saturé pour R.
Solution. Montrons l'implication (i) == (ii). Soit A une partie de X saturée pour R, i.e
o

o ~ =

A = q Y(q(A)). Puisque I'application ¢ est ouverte, par la proposition 1.3.3, on a q( A ) Cq(A).
(o]

/-/O\ /_/%

Comme ¢ est aussi continue, on a ¢~ ( g(A4) ) C ¢ '(q(A)). Par conséquent, on a :

o o

o o ~ = —_——
AcqM(g(A)) ca(e(A))cqg(e(A)=A.
D’oti on a ;1: q_l(q( ;1 )), donc ;1 est saturé pour R.

Preuve de (ii) = (i). Soit U un ouvert de X. Posons A = q1(q(U)), alors A est saturé pour

q
R, donc A est saturé pour R. Autrement dit, on a A q (q( ;1 )) Par conséquent, q( ;1 ) est
un ouvert de X/R. Puisque ¢ est surjective, on a q(A q(U) OronaU C ql(qU)) = A,

) =
dott U C A et donc on a q(U) c q( A ). Comme ¢( A ) est un ouvert de X/R contenu dans
[e] /'/O\ /-/O\
q(A) = q(U), alors on a q( A) Cq(U). Par conséquent, on a q(U) =¢q(U). Autrement dit, ¢(U)

est ouvert dans X/R. Donc I'application quotient ¢ est ouverte.
L’équivalence (ii) <= (iii) résulte du fait qu'une partie A de X est saturée pour R si et seule-

[ o
ment si son complémentaire X \ A est saturé pour R et de la relation X \ A = X\ A.

Exercice 1.41. Soient R une relation d’équivalence sur un espace topologique X et ¢ : X —
X/R Dapplication quotient. Montrer que les propriétés suivantes sont équivalentes.

(i) R est fermée.

(ii) Pour tout # € X et pour tout ouvert U de X contenant la classe de z, ¢~ ({g(x)}), il
existe un ouvert V de X saturé pour R tel que ¢~ ({g(z)}) C V C U.

En déduire que si R est fermée, alors pour tout = € X et pour tout voisinage V de la classe de
x dans X, ¢(V) est un voisinage de ¢(z) dans X/R.

Solution. Montrons l'implication (i) = (ii). Soient x € X et U un ouvert de X contenant
g ' ({g(z)}). Soit F = X \ U, alors F est un fermé de X. Comme on a ¢ ({g(z)}) N F = 0,
alors on a g(x) & q(F). Soit W = (X/R)\ ¢(F). Comme R est fermée, alors W est un ouvert de
X/Retonaqg t(W)Nng(q(F)=0.0ronaF Cq(qF)),douV =g (W) est un ouvert
de X saturé pour R tel que q_l({q(aj)}) cVcU.

Preuve de (ii) == (i). Soit F' un fermé de X. Soit U = X \ F, alors U est un ouvert de X. Si
pour tout € U, on a ¢~ ({g(z)}) N F # 0, alors on a ¢(F) = X/R et donc ¢(F) est fermé
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dans X/R. Supposons maintenant que ’ensemble V = {x e U; q_l({q(aj)}) NnNF = (Z)} est
non vide. Par hypothése, pour tout x € V, il existe un ouvert W, de X saturé pour R tel que
q_l({q(x)}) C W, C U. Puisque W, est saturé pour R, alors pour tout y € W,, on a aussi

q_l({q(y)}) C Wy, d’ou W, C V. Par conséquent, on a V = UVWw, donc V est un ouvert de X
S

saturé pour R. Comme on a ¢ '(q(F)) = X \ V, alors ¢ 1 (q(F)) est fermé dans X, d’ou q(F)
est fermé dans X/R. Par conséquent, ’application quotient ¢ est fermé.

Supposons maintenant que R est fermée. Alors pour tout x € X et pour tout voisinage V de la
classe de x dans X, il existe un ouvert U de X saturé pour R tel que ¢~ !({¢(z)}) CU C V. Par
conséquent, ¢(U) est un ouvert de X/R contenant g(x) et contenu dans ¢(V'). Donc ¢(V') est un
voisinage de ¢(x) dans X/R.

Exercice 1.42. Soient X, Y des espaces topologiques et f : X — Y une application continue.

1. Soient A et B des parties de X telles que A = B. Montrer que l'on a f(A) = f(B).

2. Soit A une partie de X. Montrer que si A est dense dans X et f(X) est dense dans Y,
alors f(A) est dense dans Y. En particulier, si A est dense dans X et f est surjective, alors
f(A) est dense dans Y.

f(?) CLB) Si Ziﬁ, alors on a f(A) C f(Z) = f(E) C f(B)et f(B) C f
f(A)Cf(A)JdOHC f(A):f(B)_ - _

2. Par hypothése, on a A = X et f(X) =Y. D’aprés 1, on a f(A) = f(X), dou f(A) =Y, ie.
f(A) est dense dans Y.

Solution. 1. Puisque f est continue, il résulte du théoréme 1.3.1 que 'on a f(Z) C f(A) et

Exercice 1.43. Soient T,¢; = {R,0} U{]a, +00[; a € R} et Toes = {R, 0} U{]— 00, a[; a € R}.
Montrer que Tge; et Tses sont des topologies sur R.
Solution. Par définition, on a R, € Tg;. Pour tout a,b € R, on a Ja, +oo[N]b, +oo[=
Jmax(a,b), +00[ € Tsei- Soit (a;)ier une famille d’éléments de R. Si in§ a; = —0o,0n a ,Ul]az', +oo]
1€ 1€
=R € Ty Si in§ a;=a€R,ona 'Uf]ai, +oo[=]a, +00[ € Tsei. Donc Ty est bien une topologie
1€ 1€

sur R. On fait le méme raisonnement pour montrer que 7.5 est aussi une topologie sur R.

Définition 1.0.1. Soient X un espace topologique et f : X — R une application. On dit que
f est semi-continue inférieurement (resp. semi-continue supérieurement) si pour tout
teR, f‘l(]t, +oo[) (resp. f_l(] — 0, t[)) est un ouvert de X.

Remarque 1.0.1. Soient X un espace topologique et f : X — R une application. Soit g = — f,
alors pour tout ¢ € R,ona g~!(]—oo0, t[) = fH(]—¢, +oc[) et g~ (Jt, +oo[) = f1(]— o0, —t]).
On en déduit que f est semi-continue inférieurement si et seulement si —f est semi-continue
supérieurement.

Exemple 1.0.1. Soient A un sous-ensemble d’un espace topologique X et 14 la fonction indi-
catrice de A. Pour tout t € R, on a :

0 s t>1,
1,7'(Jt, +o0]) = A si 0<t<1,
X si t<0.
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1] si t<0,
1a7'(J—o00,t)) =¢ X\A si 0<t<1,
X si 1<t.

Par conséquent, on a :

1.

La fonction 14 : X — R est semi-continue inférieurement si et seulement si A est ouvert
dans X.

. La fonction 14 : X — R est semi-continue supérieurement si et seulement si A est fermé

dans X.

. La fonction 14 : X — R est continue si et seulement si A est & la fois ouvert et fermé

dans X.

Exercice 1.44. Soient X un espace topologique et f : X — R une application.

1.

Montrer que f est semi-continue inférieurement (resp. semi-continue supérieurement) si,
pour tout x € X et pour tout € > 0, il existe un voisinage V de = dans X tel que pour
tout y € V, on ait f(y) > f(x) —e (resp. f(y) < f(x)+¢).

Montrer que si f est continue de X dans R muni de sa topologie usuelle, alors f est
semi-continue inférieurement et supérieurement. Montrer qu’inversement si f est a la fois
semi-continue inférieurement et supérieurement, alors f est continue.

. Montrer que f est semi-continue inférieurement (resp. semi-continue supérieurement) si et

seulement si elle est continue de X dans R muni de la topologie Ts¢; (resp. Tses)-

. Montrer que f est semi-continue inférieurement si et seulement si I’ensemble epi(f) =

{(a:, t)e X xR; f(z) < t}, appelé épigraphe de f, est une partie fermée de X x R.

epi(f)

Qb N
>

Solution. 1. Supposons d’abord que f est semi-continue inférieurement. Soient z € X et € > 0,
alors V = f_l(]f(.’L‘) — & —I—OO[) est un ouvert de X contenant x et pour tout y € V, on a
fy) > fz) —e.

Réciproquement, supposons que pour tout x € X et pour tout € > 0, il existe un voisinage V' de
x dans X tel que pour tout y € V', on ait f(y) > f(x) —e. Soient a € R et z € f_l(]a, +oo[),
alors f(z) > a. Soit ¢ = f(x) —a > 0, il existe un voisinage V' de = dans X tel que pour tout
y eV, onait f(y) > f(z) —e =a, doa V C f~!(a, +00[). Ainsi, f~!(Ja, +o0]) est voisinage
de chacun de ses points, donc f_l(]a, +oo[) est un ouvert de X, voir proposition 1.1.2. Par
conséquent, f est semi-continue inférieurement.

Pour montrer la deuxiéme partie de la propriété, on utilise ce que 'on vient de démontrer et la
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remarque 1.0.1.

2. Ceci n’est autre que la traduction de 1’exercice 1.34.

3. Ceci résulte immédiatement de la définition de la topologie Tse; (resp. Tses)-

4. Supposons d’abord que epi(f) est fermé dans X x R. Soient a € R et x € f_l(]a, +oo[). Alors
onaa< f(x),dou (z,a) & epi(f). Comme (X xR)\epi(f) est ouvert dans X x R, alors il existe
un voisinage ouvert V, de x dans X et il existe € > 0 tels que Vx]Ja—e,a+¢[C (X xR)\ epi(f).
Donc pour tout y € V,, on a a < f(y). Autrement dit, on a V,, C f_l(]a, +oo[). On en déduit
que f _1(]a, —I—OO[) est un ouvert de X. Donc f est semi-continue inférieurement.
Réciproquement, supposons que f est semi-continue inférieurement. Soit Y ’ensemble R muni
de la topologie Tge;. Alors les applications

XxXR — Y xY . YXxY — Y
(x,t) +— (f(z),—1) (s,t) > s+t

sont continues. Par conséquent, I’application g : (x,t) — f(x) — t est semi-continue inférieure-
ment de X x R dans R, d’ou epi(f) = g_l(] — 0, 0]) est fermé dans X x R.

Exercice 1.45. Soient X un espace topologique et I une partie de R. On dit qu’une application
f : I — X est continue a gauche (resp. continue a droite) en un point ¢ € I si pour tout
voisinage V de f(t) dans X, il existe € > 0 tel que pour tout s €|t — ¢, t] NI, on ait f(s) € V
(resp. s € [t, t +¢[N I, on ait f(s) € V).
1. Montrer que si f est continue en ¢t € I, I est muni de la topologie induite par R, alors elle
est continue & gauche et & droite en t. Montrer qu’inversement, si f est continue a la fois
& gauche et a droite en ¢, alors elle est continue en .

2. Montrer que f est continue a gauche (resp. a droite) en t € I si et seulement si elle est
continue en ¢ lorsque I est muni de la topologie induite par T; (resp. T,) décrite dans
I’exercice 1.16.

Solution 1. Supposons que f est continue en ¢. Soit V un voisinage de f(¢) dans X, alors il
existe € > 0 tel que pour tout s € |t—¢, t+e[N1, on ait f(s) € V. Par conséquent, f est continue
a gauche et & droite en ¢.

Réciproquement supposons que f est continue & gauche et & droite en ¢t. Soit V' un voisinage
de f(t) dans X, alors il existe 1,2 > 0 tels que pour tout s €]t — ey, t| N I, on ait f(s) € V,
et pour tout s € [t, t +e3[N I, on ait f(s) € V. Soit € = inf(e1,e2), alors € > 0 et pour tout
selt—e, t+¢e[NI,ona f(s) € V.Donc f est continue en ¢.

2. Puisque les ensembles |t — e, t| N I (resp. [t, t +€[NI), avec € > 0, forment un systéme fon-
damental de voisinages de t dans I lorsque I est muni de la topologie induite par 7; (resp. T),
alors on en déduit que f est continue a gauche (resp. a droite) en t € I si et seulement si f est
continue en t lorsque I est muni de la topologie induite par T; (resp. T,).

Exercice 1.46. Soit f : R — R définie par :

0 si L0,
fle)=< = si 0<x<1,
1 si x>1.

Montrer que f est une application continue fermée, mais f n’est pas une application ouverte.

Solution. On a R =] — 0o, 0] U [0, 1] U [0, +o0[ est la réunion de trois fermés, et la restriction
de f a chacun de ces fermés est continue, donc f est continue, voir proposition 1.4.4. Soit F' un
fermé de R, on a f(F) = (FN[0, 1])UA, ou A € {0,{0},{1}}, donc f est une application fermeée.
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On a f(]O, 1[) = {0} qui n’est pas ouvert dans R, donc f n’est pas une application ouverte.

Exercice 1.47. Soient X = {(z,y) € R? ; 2y =1} U {(0,0)} muni de la topologie induite par
R? et considérons I’application suivante :

m o X — R
(x,y) — @

Montrer que 7; est une application continue bijective, mais 7; n’est pas un homéomorphisme.
Solution. Il est clair que 7 est bijective. Puisque m; est la restriction sur X de la projection
canonique (z,y) — z de R? sur R, alors 7 est continue. L’application inverse T ! est définie par :
't (x) = (z,1) siz#0et 711(0) = (0,0). L’application m; " n’est pas continue car la suite de
terme général z,, = % tend vers 0 dans R, mais la suite (711_ ! (a:n)) -, est pas convergente dans X.
Exercice 1.48. Soient X = [0, 1]U[2, 3] et Y = [0, 2] munis de la topologie induite par R. Soit
f X — Y définie par :

x si z €0, 1],

flz) =
r—1 si z€][2 3.

Montrer que f est une application continue surjective fermée, mais f n’est pas une application
ouverte.

Solution. L’espace X est la réunion de deux fermés et la restriction de f & chacun de ces fer-
meés est continue, donc f est continue, voir proposition 1.4.4. Par ailleurs, il est clair que f est
surjective. L’intervalle [0, 1] est ouvert dans X, mais son image par f n’est pas ouverte dans Y,
donc f n’est pas une application ouverte. Soit F' un fermé de X. Puisque X est fermé dans R,
alors F est fermé dans R et on a f(F) = (FN[0,1]) U [(FN[2,3]) —1]. Comme F N [0,1] et
(FN[2,3]) — 1 sont fermés dans R, alors f(F) est fermé dans R. Or on a f(F) C Y, donc f(F)
est fermé dans Y. Par conséquent, f est une application fermée.

Exercice 1.49. Soient X, Y deux espaces topologiques et f : X — Y une application fermée.
Soit U un ouvert dans X. Montrer que ensemble B = {y € Y ; f~'({y}) C U} est un ouvert
de Y.

Solution. Soit y € B, alors on a f~'({y}) C U. D’aprés la proposition 1.3.6, il existe un voisi-
nage V de y dans Y tel que f~1(V) C U, d’ott on ay € V C B. Par conséquent, B est voisinage
de chacun de ses points, donc B est un ouvert de Y, voir proposition 1.1.2.

Exercice 1.50. Soient X un espace topologique régulier, R une relation d’équivalence sur X et
q : X — X/R lapplication quotient.
1. Montrer que si R est fermée, alors G(R) = {(:13, y) € XXX ; aij} est fermé dans X x X.

2. En déduire que si R est ouverte et fermée, alors ’espace topologique quotient X /R est
séparé.

Solution. 1. Montrons que (X x X)\ G(R) est ouvert dans X x X. Soit (z,y) € (X x X)\G(R),
alors on a g(z) # q(y). Puisque g est fermeée, alors ¢~ ({g(y)}) est un fermé de X ne conte-
nant pas x. Puisque X est régulier, il existe deux ouverts disjoints V et W dans X tels que
¢ '({q(y)}) CV et € W. Puisque ¢ est fermeée, d’aprés l'exercice 1.37, il existe un ouvert U
de X saturé pour R tel que ¢~'({g(y)}) C U C V. Alors on a ¢(U) N g(W) = 0. Par consé-
quent, U x W est un ouvert X x X contenant (z,y) tel que (U x W) N G(R) = (. D’ott on a
(,y) eU xW C (X x X))\ G(R). Donc (X x X)\ G(R) est un ouvert de X x X.
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2. Ceci résulte de 1 et de la proposition 1.5.6.

Exercice 1.51. Soient X un espace topologique, F' une partie fermée de X et R la relation
d’équivalence dans X obtenue en identifiant entre eux tous les éléments de F'; autrement dit, la
relation d’équivalence dont les classes sont F' et les ensembles {z} pour z € X \ F.

1. Montrer que si X est régulier, alors I’espace topologique quotient X /R est séparé.
2. Montrer que si X est normal, alors I’espace topologique quotient X /R est normal.

Solution. 1. Soient ¢ : X — X/R l'application quotient et U = X \ F. Soient x,y € X tels
que ¢(x) # ¢(y). On distingue deux cas :

Premier cas : x,y € U. Puisque X est séparé et U est un ouvert de X, il existe deux ouverts
disjoints V et W dans X telsque z € V. C U et y € W C U. Alors V et W sont saturés pour R
et donc ¢(V') et q(W) sont deux ouverts disjoints dans X /R contenant respectivement g(z) et
q(y)-

Deuziéme cas : x € U et y € F. Puisque X est régulier, il existe deux ouverts disjoints V et W
dans X telsquex € V.C U et F C W. Alors V et W sont saturés pour R et donc ¢(V) et ¢(W)
sont deux ouverts disjoints dans X /R contenant respectivement g(x) et g(y).

Par conséquent, I'espace topologique quotient X/R est séparé.

2. Soit G un fermé de X. Alors on a ¢ '(¢(G)) = FUG si GNF # 0 et ¢ Y(q(G)) = G si
GNF ={.Donc ¢ (q(Q)) est fermé dans X. Par conséquent, R est une relation d’équivalence
fermée dans X. On déduit du corollaire 1.9.1 que X /R est un espace normal.

Exercice 1.52. Soient X et Y deux espaces réguliers. Montrer que ’espace topologique produit
X XY est régulier.

Solution. Puisque X et Y sont séparés, alors X x Y est séparé, voir proposition 1.5.3. Soient
(z,y) € X XY et F une partie fermée de X x Y tels que (z,y) ¢ F. Comme (z,y) € (X xY)\F
qui est ouvert dans X X Y, alors il existe un ouvert U, de X contenant x et un ouvert V,, de Y’
contenant y tels que (Ux X Vy) NF = (). Comme X et Y sont réguliers, d’aprés la proposition 1.9.1,
il existe un ouvert U de X et un ouvert V.de Y telsquex €e U CU CUz et y eV CV CV,,
dotona (UxV)NF =0.Soit W= ((X\U)xY)U(X x(Y\V)). Alors W est un ouvert
de X XY tel que FF C W et (U X V) N W = (). Par conséquent, X x Y est régulier.

Remarque 1.0.2. Le produit de deux espaces normaux n’est pas en général un espace normal.
Par exemple, si X = R muni de la topologie Ty, voir exercice 1.16, alors X est un espace normal,
mais X X X n’est pas normal, voir ([13], p. 80).
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Chapitre 1. ESPACES TOPOLOGIQUES
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Chapitre 2

ESPACES METRIQUES

Proposition. Soient (X, d) un espace métrique et A, B deux parties non vides de X.
1. Si A C B, alors on a §(A4) < d(B)
Oua §(7A) = 5(A).
Pour tout x € X et tout > 0, on a §(B(x,r)) < o(B'(x,r)) < 2r.
On o d(A, B) = d(A,B) = d(A.B) = d(A,B).
On a 0(AUB) < 0(A) +d(B) + d(A,B). Donc si A et B sont bornées, alors AU B est
borné.

ok W

Démonstration. 1. On suppose A C B. Pour tout z,y € A, on a d(z,y) < 6(B), d'our §(A) <
o(B). B B
2. D’aprés ce qui précede, on a §(A4) < (5(A). Réciproquement, soient z,y € A, d’apreés la

proposition 2.2.3, il existe des suites (zp)n>0 €t (Yn)n>0 dans A telles que ll)I_iI_l T, = T et
- n o0

lim y,=y. Donona lim d(z,,y,) = d(z,y), voir remarque 2.2.1. Or pour tout n > 0, on
n—-+0o n—-+o0o

a d(zn,yn) < 6(A), don d(x,y) < 6(A). Par conséquent, on a §( A) < §(A).
3.0n ad(B(x,r)) < §(B'(x,r)). Solent y, z € B'(z,r), alors on a d(y, 2) < d(y,x)+d(x,z) < 2r,
d’on 6(B'(z,7)) < 2r.

4. Puisque A C Aet B C B, alorsonad(z,g) gd(Z,B)gd(A,B) et d(z F) < (A )§
d(A,B). Soient x € A et y € B, alors il existe des suites (a,)n>0 et (by)n>0 dans A et B
respectivement telles que EI_E an = et ll)rJrrl b, =y. D’oton a hIJJra d(ap,by) = d(x,y). Or

pour tout n > 0, on a d(A, B) < d(an, b,), dou d(A, B) < d(z,y). Doncona d(A, B) < d( A, B).
Par conséquent, on a d(A4, B) = d(Z, B) = d(A,E) = d(Z,B).

5. Soient x,y € AUB. Siz,y € A,alorson ad(x,y) < 6(A) <0(A)+(B)+d(A,B). Siz,y € B,
alors on a d(z,y) < 0(B) < 0(A)+46(B)+d(A, B). Supposons maintenant x € A et y € B. Pour
tout a € A et tout b € B, on a d(z,y) < d(z,a) + d(a,b) + d(b,y) < (A) + d(a,b) + 6(B). Par
conséquent, on a d(z,y) < §(A) +0(B) + d(A,B), d'on 6(AUB) <§(A)+0(B)+d(A,B). R

Proposition (Tietze). Soient A un fermé d'un espace métrique (X, d) et f: A — [a, b] une
fonction continue. On suppose de plus que 'on a 1 < a. Pour tout z € X, on pose :

f(zx) si x €A,
g(x) =
flydz,y)
ylr€1£ W si x ¢ A.

Alors g est une fonction continue de X dans [a, b] prolongeant f.

15
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16 Chapitre 2. ESPACES METRIQUES

Démonstration. Puisque A est fermé dans X, il résulte de la proposition 2.2.4 que pour tout
x ¢ A, onad(x,A) >0, donc g est bien définie, et par définition g prolonge f. Soit x € X \ A.
Pour tout y € A, on a d(x, A) < d(x,y), d’ou :

fd(z,y) _ d(z,y)

inf < .
WG S Tima) S @A) )
Comme on a inf dx,y) =1, on en déduit que inf f(z) < g(x) <sup f(z) < b. Par conséquent
ver d(a, A) ~ Inf /() < 9(@) < sup £(2) < ,
<b.

< inf = inf t =
onaa < inf f(z) = inf g(z) e 2161)139(9:) jggﬂz)

o o
Il reste & montrer la continuité de g. Puisque A est un ouvert de X et la restriction de g a A est

o]
continue, alors g est continue sur 4. Puisque X \ A est un ouvert de X, pour montrer que g est sur
X\ 4, il suffit de montrer que la restriction de g & X \ A est continue, voir proposition 1.4.3. Pour

tout z € X \ 4, on a g(z) = in}qu(y)d(m,y) et application x — d(z, A) est continue
€

1
d(l‘, A) Y
sur X, donc pour montrer que la restriction de g & X \ A est continue, il suffit de montrer que la
restriction de application x — h(z) = Z}Ielij]‘"(g,/)al(ﬂr:,y) a X \ A est continue. Pour tous x,z €
X\ A et pour tout y € A, on a f(y)d(z,y) < f(y)d(z,y) + f(y)d(z,z) < f(y)d(z,y) +bd(z, 2),
d’ott on a h(z) < h(x) + bd(x,z). De méme, on a h(x) < h(z) + bd(z,z). Par conséquent, on
a |h(xz) — h(z)| < bd(x,z). Donc la restriction de h & X \ A est continue. Il reste & montrer la
continuité de g en tout point = € A\ /01 Soit € > 0. Puisque f est continue en z, il existe n > 0 tel
que pour tout z € ANB(x,n), on ait |f(x)— f(2)| < e. Soient B = ANB(x,n) et C = A\ B. Soit
z € B(z, ) N(X \ A). Pour tout y € C, on a d(z,y) > d(y,z) — d(z,2) >n— 5 >n—12 =1,
d’ou Z}g(fff(y)d(z,g,/) > 2. D’autre part, on a f(x)d(z,x) < bgs = 2. Par conséquent, on a

iggf(y)d(z,y) = iggf(y)d(z,y). Comme f(z) —e < f(y) < f(x) + € pour tout y € B et
y y

inf d(z,y) = d(z,4), alors on a (f(z) —€)d(z,4) < if f(y)d(z,y) < (f(z) +e)d(z,4) d'ou
y y

f(z)—e < g(2) < f(z)+e. Par conséquent, pour tout z € B(z, £)N(X\A), ona |f(z)—g(z)| < e.
Orona ANB(z,4) C AN B(z,n) et pour tout z € AN B(z, 5), on a f(z) = g(z), donc pour
tout z € B(z, 4;), on a |f(z) — g(z)| <. Donc g est continue en z. [

Proposition. Soit f : R — R une fonction uniformément continue. Alors il existe deux
constantes positives A et B telles que pour tout x € R, on ait |f(z)| < A|z| + B.

Démonstration. Comme f est uniformément continue, alors pour tout € > 0, il existe n > 0
tel que pour tous x,y € R vérifiant |z — y| < n, on ait |f(z) — f(y)| < e. En prenant ¢ = 1, on
obtient n > 0 tel que pour tous x,y € R vérifiant |[x — y| < n, on ait |[f(x) — f(y)] < 1. On a
()= FO) < Vet |F(2n)— f(n)] < 1, doi | ()] < 1+ F(O)] et [F2n)] < 1+1F(n)] < 2+ F(0)].
Par récurrence, pour tout n € N, on a |f(nn)| < |f(0)|+n =|f(0)] + %(m]) Soit x > 0, alors il
existe n > 1 tel que nn < @ < (n+1)n, n est la partie entiére de . Alors on a [ f(z) — f(nn)| < 1
car |z — nn| < n. Par conséquent, on a :

[f(2)] < T4 |f(nmm)] <1+ [f(0)] + £ (nm) < 1+ |f(0)] + 1.

Soient A = % et B =1+41f(0)|, alors pour tout > 0, on a |f(z)| < A|x|+ B. Soit g(x) = f(—x),
alors g est uniformément continue, et on a |g(0)| = |f(0)] et |[z—y| <n = |g(z)—g(y)| < 1. Par
ce qui précede, on a alors |g(x)| < A|x| + B pour tout > 0. Dot on a |f(—z)| < A| —z|+ B
pour tout x > 0. Par conséquent, pour tout x € R, on a |f(x)| < Alz| + B. [ |
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Proposition. Soit ((Xn, dn))n>0 une suite d’espaces métriques. Considérons ’ensemble produit
X = [] Xy, des suites (a:n)nzo,_oﬂ Ty € Xp. Pour = (25)n>0 et y = (yn)n>0 dans X, on pose :

n>0
+oo
Doo(,y) = sup inmin Ldn(zn,yn)), Di(x,y)= inmin Ldn(Tn,yn)) et
n>0 2 n=0 2

—+00

1 dn(@n,yn)
D = I v d(z )
(2, y) nz:% 27 1+ dp(7n, Yn)

Alors Dy, D1 et D sont trois distances topologiquement équivalentes sur X, et la topologie
associée a 1'une de ces distances coincide avec la topologie produit sur X.

1

1
Démonstration. D’aprés la proposition 2.3.5, pour tout n > 0, ) om min(dy, 1) et — sont

dp,
2n14d,
des distances sur X, et par conséquent, D, D1 et D sont des distances sur X.
Veérifions que les topologies associées aux distances D, et D7 coincident avec la topologie produit
sur X. Puisque, pour tout n > 0, les distances d,, et min(1,d,,) sont uniformément équivalentes
sur X, et donc elles définissent la méme topologie sur X,, on peut supposer que d, < 1, et donc
Dy, et Dy sont définies par :

+oo
1 1
Doo(,y) = Sup o —dn(Tn,yn),  Dilz,y) = o dn (@, Yn) -
n n=0

Alors pour tout n > 0, les projections canoniques py, : (X, Do) — (Xp, dn) et p, 2 (X, D1) —
(X, dy) sont lipschitziennes de rapport 2", donc continues. Par conséquent, les topologies asso-
ciées aux distances Do, et D1 sont toutes deux plus fines que la topologie produit sur X.

Réciproquement, soient z = (zp,)p>0 € X, r > 0 et Byo(x,r) la boule ouverte de centre x et de

1 N
rayon r dans (X, Dy). Soit N € N tel que oN <7 Alors on a Boo(z,7) = ﬁopgl(Bn(:rn, 2"r)),
n=

ou By (xn,2"r) est la boule ouverte de centre x,, et de rayon 2"r dans (X,, d,). Donc Buo(x,1)
est un ouvert de X pour la topologie produit. Par conséquent, la topologie associée a la distance
Do, coincide avec la topologie produit sur X.

De méme, soit B(z,r) la boule ouverte de centre x et de rayon r dans (X, Dp). Soit N € N tel

r r
que 5 < 7 Soit ¥ = (Yn)n>0 € X tel que pour tout n < N, on ait dy(zp,yn) < T Alors on a :

AR
DXt

io 1_r<2 1)+1<r+r_r
o4 oN oN T 9 T 9
N+1

n=

N N
Donc on a x € ngopgl(Bn(:rn, %)) C B(z,r). Comme ngopgl(Bn(a:n, ﬁ)) est un ouvert de X

pour la topologie produit, on en déduit que B(z,r) est un voisinage de x pour la topologie
produit. Par conséquent, la topologie associée a la distance D; est moins fine que la topologie
produit, donc les deux topologies coincident sur X.

Pour tout xz,y € X, on a D(z,y) < Di(x,y). Donc la topologie associée a la distance D est

moins fine que la topologie produit sur X. Réciproquement, soient x = (z)n>0 € X, r > 0 et

. r - ¥y
N € N. Soit ' = NI alors 7/ > 0 et on a B(z,1') C py' (Bn(zn,7)), oit B(z,7') est la

boule ouverte de centre z et de rayon 7 dans (X, D). Donc py' (Bn(xn,7)) est un voisinage de @
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18 Chapitre 2. ESPACES METRIQUES

pour la topologie associée a la distance D. On en déduit que la topologie produit sur X est moins
fine que la topologie associée a la distance D. Par conséquent, les deux topologies coincident sur
X. |

Proposition. Soient (X;, d;), 1 < i < p, une famille finie d’espaces métriques. Alors I'espace
métrique produit X = X; X --- x X, est complet si et seulement si pour tout ¢ € {1,...,p},
(Xi, d;) est complet. En particulier, pour tout p > 1, les espaces métriques RP et CP sont
complets.

Démonstration. On munit 'espace X de la distance D.,. Supposons d’abord que (X, D) est
complet. Soit a = (ai,...,a,) € X. Pour tout ¢ € {1,...,p}, Iapplication

z; — (a1,...,0i-1,%i, Qit1, -, ap)

est isomeétrique et son image est fermée dans X, donc compléte. Par conséquent, (X;, d;) est com-
plet. Réciproquement, supposons que les espaces métriques (X;, d;) sont complets. Soit (xy,)n>0 =
((a:lm,...,a:p,n))nzo une suite de Cauchy dans (X, Do, ). Puisque pour tout i € {1,...,p} et

pour tout n,m > 0, on a di(Tin, Tim) < Doo(Tn,xm), alors pour tout i € {1,...,p}, la suite

(in)n>0 est de Cauchy dans (Xj, d;), donc il existe x; € X; tel que lir}rl Zin = x;. Alors
- n——+0oo

x = (r1,...,2p) € X et (x,)n>0 converge vers x dans (X, Dy ). Par conséquent, (X, Dy,) est

complet. u

Théoréme (Cantor). Soit (X, d) un espace métrique. Les propriétés suivantes sont équivalentes.
(i) L’espace (X, d) est complet.
(ii) L’intersection de toute suite décroissante (F,),>0 de parties fermées non vides de (X, d)
telle que lim §(F,) = 0 contient un point et un seul.
n——+00
(iii) Toute famille filtrante croissante de Cauchy dans (X, d) est convergente.
Démonstration. Montrons l'implication (i) == (ii). Soit (F},)n>0 suite décroissante de parties
fermées non vides de (X, d) telle que lirJrrl d(F,) = 0. Pour tout n > 0, soit x,, € F,. Soit
n—-+0oo
¢ > 0, puisque lirJrrl d(F,) = 0, il existe N € N tel que pour tout n > N, on ait §(F,) < e.
n—-+0oo

Comme la suite (F},),>0 est décroissante, pour tout n,m > N, on a zp,z, € Fy. D’ou on
a d(zpn,rm) < 0(Fn) < e. Par conséquent, la suite (z,,)n>0 est de Cauchy dans (X, d), donc il

existe x € X tel que Erjra z, = . Soit p € N, alors pour tout n > p, ona x,, € F;,, C F,. Comme
n o

F}, est fermé, alors on a x € F),. Par conséquent, on a x € QOF"' Soit y € QOF"’ alors pour tout
n> n>
n>0,ona0<d(yz,) <§F,). Comme ona lim 6(F,) =0et lim d(y,z,) =d(y,x), on
n—-+0o n——+00
en déduit que d(y,z) =0, i.e. y =z, d’ou QOF = {z}.
nz
Preuve de (ii) = (i). Soit (zy)n>0 une suite de Cauchy dans (X, d). Pour tout n > 0, soient
Ap ={xp; p>n}et F, = A,. Alors (Fy,)n>0 est une suite décroissante de parties fermées non
vides de X, et pour tout n > 0, on a 6(F,) = 6(A,). Comme (z,),>0 est de Cauchy, alors on a
nll}I-lr-loo 0(A,) =0, d'on HEIEOO d(F,,) = 0. Par conséquent, il existe z € X tel que ngan = {z}.
Or pour tout n >0, on a 0 < d(x,,x) < §(Fy,), d’on lilgrl d(xn,x) = 0. Autrement dit, la suite
n——+0o0

(n)n>0 converge vers z. Par conséquent, (X, d) est complet.
L’implication (iii) == (i) est triviale.
Preuve de (1) = (iii). Soit (x))aea une famille filtrante croissante de Cauchy dans (X, d). Alors

© Dunod, 2011 - Topologie et espaces normés - Nawfal El Hage Hassan



19

il existe une suite (A, )n>0 dans A telle que pour tout n > 0, on ait A, < A\pqq et d(zy,z,) < n+r1
pour tout A, pu € A vérifiant A, < X et A\, < p. En particulier, pour tout m > n > 0, on a
d(xy,,Tx,) < n+r1 Donc la suite (zy,)n>0 est de Cauchy dans (X, d). Par hypothéese, (X, d)
est complet, donc (z),)n>0 converge vers un élément z € X. Soit ¢ > 0. Alors il existe ng € N
tel que ﬁ < 5 et d(zy,,,2) < §. Alors pour tout A € A vérifiant A, < A, on a d(z),z) <
d(zx, 2y, ) +d(@s,,,7) < n01+1 + 5 < e. Par conséquent, la famille filtrante croissante (x)xea
converge vers x. [

Théoréme. Soient X un espace de Baire, (Y, d) un espace métrique, f une application de X
dans Y et (f,)n>0 une suite d’applications continues de X dans Y telle que pour tout z € X, la
suite (fn(z))n>0 converge vers f(z) dans Y. Soit C' I'ensemble des points de X en lesquels f est
continue. Alors C' est dense dans X.

Démonstration. Pour n € N et € > 0, on pose :
Foe= {m € X ; d(fp(z), fy(x)) < e pour tout p,q > n}

Comme l'application z —— d(f,(z), fy(z)) est continue de X dans R, alors F}, . est fermé dans
X. De plus, pour tout n > 0, on a Fy, . C F,y1.. Soit z € X. Comme la suite (f,(z))n>0 est
convergente, alors (fy,(z))n>0 est de Cauchy, donc il existe n € N tel que pour tout p,q > n, on

o
ait d(fp(x), fy(z)) < e, dou & € F, .. Par conséquent, on a X = L>J0Fn,5. Soit U, = L>J0 Fe.
n n

Comme X est un espace de Baire, il résulte de la proposition 2.8.1 que U, est dense dans X. On
en déduit que kglU 1 est dense dans X, car les U 1 sont des ouverts de X. Pour avoir le résultat,

il suffit de montrer que kglU 1 C C'. Autrement dit, pour tout point = € kglU 1, f est continue

en x. Soient xy € kglU% et ¢ > 0. Il existe k > 1 tel que % < §. Comme zg € U%, il existe n > 0

e]
tel que x9 € F, 1. Comme f, est continue en xo, il existe un voisinage ouvert U de g dans X

1.
'

o (o]
tel que U CFn% et d(fn(z), fu(20)) < 5 pour tout z € U. Comme on a U CFm%, alors pour

tout p > n et pour tout z € U, on a d(f,(), fn(z)) < 3 < £. En faisant tendre p vers 400, on
obtient d(f(z), fo(z)) < 7 < £ pour tout z € U. En particulier, on a d(f(zo), fn(20)) < &. Par
conséquent, pour tout x € U, on a :

d(f (@), f(x0)) < d(f (), fu(x)) + d(fu(2), fn(x0)) + d(fu(20), f(z0)) <5+ 5+ 5 =¢.
Donc f est continue en xg. |

Supplément d’exercices

Exercice 2.34. Soient (X, d) un espace métrique et A une partie de X.
1. On suppose que toute suite de Cauchy dans A converge dans X. Montrer que A est complet.

2. On suppose que A est complet. Soit (z,,),>0 une suite de Cauchy dans X. On suppose que
la suite (d(zn, A))n>0 tend vers 0. Montrer que la suite (z,)n>0 est convergente.

Solution. 1. Soit (z,,),>0 une suite de Cauchy dans A. Pour tout n > 0, il existe a,, € A tel que

d(an, ) < n+r1 D’ot, pour tous n,m € N, on a :

d(ap, am) < d(an, zn) + d(zn, Tm) + d(ZTm, am) < n+r1 + d(zp, Tm) + mL—i-l .
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Par conséquent, (ay,)n>0 est de Cauchy dans A. Par hypothése, la suite (ay)n>0 converge vers un

élément x € X. Donc x € A et on a 0 < d(xy,z) < d(zy,an) + d(an,z) < n+r1 + d(ap,x), d’ou

lilgrl d(xn,x) = 0. Autrement dit, la suite (z,,),>0 converge vers z, donc A est complet.
n—-—+0oo -
1

2. Pour tout n > 0, soit a, € A tel que d(zn, an) < d(xp, A)+ 577, dottona lim d(zy,a,) = 0.

n—-4oo
Comme on a :

d(an,am) < d(an,xn) + d(Tn, Tm) + d(Tm, am)

On en déduit que (ay)n>0 est de Cauchy dans A. Puisque A est complet, alors il existe z € A
tel que lim d(a,,x) =0.O0ron a0 < d(x,,z) < d(z,,a,) +d(ay,x), dou lim d(x,,z) = 0.
n—-+o00 n—+-00

Autrement dit, la suite (x,),>0 converge vers z.

Exercice 2.35. Soit f : [—1, 1] x R — R une application continue et considérons 1’équation
différentielle sur [—1, 1] suivante :

{ o' (t) = f(t,z(t)) (2.1)

1. Soit x : [-1, 1] — R une fonction continue. Montrer que z est une solution de I’équation

t
(2.1) si et seulement si pour tout t € [—1, 1], on ait z(t) = a +/ f(s,x(s))ds.
0

2. On suppose qu’il existe une constante k € [0, 1] telle que pour tous (z1,x2) € R? et
t € [-1, 1], on ait |f(t,z1) — f(t,x2)| < k|z1 — x2|. Montrer que I’équation (2.1) admet
une unique solution.

Solution. 1. Si z vérifie ’équation (2.1), alors pour tout t € [—1, 1], on a :

z(t) = z(0) +/0 '(s)ds=a +/0 f(s,x(s))ds.

t
Réciproquement, si z(t) = a +/ f(s,z(s))ds pour tout t € [—1, 1], alors z est de classe C*

sur [—1, 1], 2(0) = a et on a x’(t)oz f(t,z(t)) pour tout t € [—1, 1]. Donc x est une solution de
I’équation (2.1).
2. Soit E = C([—l, 1], R) I'ensemble des applications continues de [—1, 1] dans R muni de
la distance de la convergence uniforme d.,. D’aprés la proposition 2.6.8, (F, d) est complet.
Considérons ’application
®: (F,dy) — (E,dx)
x —  D(x)

¢
ou ®(z)(t) = a +/ f(s,z(s))ds pour tout t € [—1, 1]. Soit # € E, alors x est une solution

0
I'équation (2.1) si et seulement si ®(x) = x. Pour tout =,y € E et pour tout ¢t € [—1, 1], on a
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IN

[t]
/ kla(s) — y(s)| ds
0

IN

It
/ kdso(x,y)ds
0

Donc on a doo (®(z), P(y)) < kdoo(z,y). Autrement dit, ® est contractante. D’apres le théoréme
du point fixe, il existe alors un unique = € E tel que ®(x) = x. Donc ’équation (2.1) admet une

unique solution.

Exercice 2.36. On considére 'espace E = C([—1, 1], R) des applications continues de [—1, 1]
dans R muni de la distance de la convergence uniforme d.

1. Montrer que I'application ® de F dans lui-méme définie par :

O(z)(t) =a +/O cos(s?)x(s)ds

est contractante.

2. En déduire que I'équation différentielle

admet une unique solution sur [—1, 1].

Solution. 1. Pour tout x,y € E et pour tout t € [—1, 1], on a :

B(a)(t) — B(y)(t) = /0 [cos(s)a(s) — cos(s”)y(s)] ds.

d’ou :

|@(2)(t) — @ (y)(1)]

IN

[t]
[ leosts2i) — st s
|t]
< [ ottt ds
1
< [ sttt

1
= doo(a:,y)/o cos(s?) ds .
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1
Soit k = [ cos(s?)ds, alorsona 0 < k < 1 et doo (®(2), ®(y)) < kdoo(z,7). Donc ® est contrac-
tante.
2. Soit z € E, alors z est une solution de I’équation différentielle si et seulement si ®(x) = x.
Comme (F, d) est complet et ® est contractante, d’aprés le théoréme du point fixe, il existe
alors un unique z € E tel que ®(z) = z.

Exercice 2.37. Soit f: R — R une fonction de classe C', et considérons 1’équation différen-
tielle sur [—1, 1] suivante :
(£ =se0) 22)
z(0) =a

1. On suppose qu'il existe k €10, 1| tel que pour tout s € R, on ait |f/(s)| < k. Montrer que
Péquation (2.2) admet une unique solution.

2. Plus généralement, on suppose que f’ est bornée sur R. Autrement dit, il existe M > 0 tel
que pour tout s € R, on ait |f'(s)] < M. Montrer que 1’équation (2.2) admet une unique
solution.

Solution. 1. Soit £ = C([—1, 1],R) I’ensemble des applications continues de [—1, 1] dans R
muni de la distance de la convergence uniforme do,. D’aprés la proposition 2.6.8, (E, d) est
complet. Considérons ’application

O: (B, do) — (FE,dw)

x —  O(x)
ou ¢(x =a —I—/ f(z(s))ds pour tout t € [—1, 1]. Soit z € E, alors x est une solution
de l’equatlon (2.2) si et seulement si ®(x) = x. Puisque pour tout s € R, on a |f(s)] < k,

d’aprés la prop051t10n 2.3.3, f est contractante de rapport k, i.e. pour tout a,b € R, on a
|f(a) = f(b)| < kla—b|. Pour tout z,y € E et pour tout ¢t € [—1, 1], on a :

O(z)(t) — 2 (y)(t) :/0 [f(x(s) = f(y(s))] ds,

d’ou :
Il
0(@)(t) - 2() ()] < /0 F(@(5)) — F(y(s))] ds
||
< /0 kla(s) - y(s)| ds
< . kdso(x,y)ds

0

Donc on a deo (P(x), P(y)) < kdso(z,y). Autrement dit, ® est contractante. D’aprés le théoréme
du point fixe, il existe alors un unique z € E tel que ®(x) = z.

2. Comme ci-dessus, pour tout a,b € R, on a |f(a) — f(b)] < M |a — b|, et pour tout x,y €
E, on a dy(®(x),®(y)) < Mdy(z,y). Donc ® n’est pas forcément contractante. Considérons
'application ®2 = ® o ® de F dans E. Pour tout z,y € E et pour tout ¢t € [~1, 1], on a :

®*(x)(t) — 2*(y)(1) :/0 [f(@(x)(s)) — f(2(y)(5))] ds,
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d’ou :
@2 (z)(t) — @3(y)(1)]

IN

[¢]
[ 7@ - raws] s

||
< /0 M |®(2)(s) — B(y)(s)] ds.

Comme ci-dessus, on a aussi |®(z)(s) — ®(y)(s)| < M doo(z,y) |s|, donc on a :

|t]
102(2)(t) — D2(y)(8)] < M? ooz, ) / s/ ds,
0

d’ou :
2

[@2(a)(1) ~ B2(0)(0)] < "5 1 doclr,).

De méme, on montre par récurrence que pour tout n > 0, on a :

() (1) — B ()(0)] < o] decl ).

n

MTL
Par conséquent, on a dso (2" (z), " (y)) < — doo(z,y). Orona lim —- =0, donc il existe
n n—+oo n!

n > 1 tel que ®" soit contractante. D’aprés le corollaire 2.6.2, il existe alors un unique x € F tel
que ®(z) = x.

Exercice 2.38. Soit d la distance euclidienne sur C. Pour tous z et w de C, on pose :

dlz,w) = |z —w si 0,z et w sont alignés
(z,w) = | \ : gnés,
d(z,w) =

d(z,0) +d(0,w) = |2| + |w| sinon.

1. Montrer que d’ est une distance sur C.

2. Déterminer les boules ouvertes de cette distance.

3. L’application id¢ est-elle continue de (C, d') dans (C, d) ?

4. L’application id¢ est-elle continue de (C, d) dans (C, d')?

5. Montrer que U'espace (C, d’) est complet.
Solution. 1. Il est clair que pour tous z,w € C, on a d'(z,w) > 0, d'(2,w) = d'(w, z) et que
d'(z,w) =0 <= z = w. Il reste & montrer I'inégalité triangulaire, i.e. pour tous a,b,c € C, on
a d'(a,c) < d'(a,b) + d'(b,c). Notons d’abord que pour tous z,w € C, on a d(z,w) < d'(z,w).
On distingue deux cas :
Premier cas : 0, a et ¢ sont alignés, alors on a d'(a,c) = d(a,c) < d(a,b) + d(b,c) < d'(a,b) +
d'(b,c).
Deuziéme cas : 0, a et ¢ ne sont pas alignés, alors ou bien 0, a et b ne sont pas alignés ou bien
0, b et ¢ ne sont pas alignés. Donc on a d'(a,c) = d(0,a) + d(0,¢) et

d(0,a) 4+ d(0,b) + d(b,c) > d(0,a) + d(0, c)
d (a,b) +d(b,c) =< d(0,b) + d(0,c) + d(a,b) > d(0,a) + d(0, c)
d(0,a) + d(0,b) 4+ d(0,b) + d(0,¢) > d(0,a) + d(0,c).
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Par conséquent, on a d'(a,c) < d'(a,b) + d'(b,c). Donc d' est bien une distance sur C.

2. Pour tout w € C, on a d'(0,w) = d(0,w), donc pour tout » > 0, on a By (0,7) = By(0,r).
Soit z € C tel que z # 0, on a z = |z[e? avec |z| = d(0,z) > 0. Pour tout r > 0, soit
I = {te" ; |z] —r <t < |z[ + 1}, c’est un segment. Alors on a :

I, si 0<r <]z,
By (z,r) =
By(0,r —|z) UL, si r>|z]|.

3. Pour tous z,w € C, on a d(z,w) < d'(z,w), donc l'application identique idc est lipschitzienne
de (C, d') dans (C, d), donc elle est continue.

4. Pour tout n > 1, soit 2z, = 1 + % Alors on a d(1, z,) = %, donc la suite (zy),>1 converge
vers 1 pour la distance d. Mais on a d'(1,2,) = d(0,1) + d(0,2,) = 1 + /1 + -5, donc la suite
(2n)n>1 ne converge pas vers 1 pour la distance d’. On en déduit que Papplication identique idc
n’est pas continue de (C, d) dans (C, d').

5. Soit (2 )n>0 une suite de Cauchy dans (C, d’). Pour tous n,m € N, on a d(2p,, 2m) < d'(zn, 2m),
donc (zp)n>0 est de Cauchy dans (C, d). D’apres la proposition 2.6.6, (C, d) est complet, donc
il existe z € C tel que nEIJIrloo d(z,zp) = 0. On distingue deux cas :

Premier cas : z = 0. Comme pour tout n > 0, on a d'(0, z,) = d(0, zy,), alors (z,)n>0 converge
vers 0 = 2z pour la distance d’.

Deuziéme cas : z # 0. Soit € = |—§|, comme (zy)n,>0 converge vers z pour la distance d, alors il
existe N1 € N tel que pour tout n > Ny, on ait | |z| — |zp|| < |2 — 2n] = d(2,2n) < % D’ou

pour tout n > Ni, on a % < |zn]. Comme (zp,)n>0 est de Cauchy pour d, il existe Ny € N

tel que pour tous m,m > N, on ait d'(z,, z;,) < |—§| Donc, pour tout n > N = max(Ny, Na),

on a % < |zn| et pour tous n,m > N, on a d(zn, 2m) < % Soient m,m > N. Si 0, z, et zm,

ne sont pas alignés, alors on a |z,| + |2m| = d'(2n, 2m), do0 |2,] < |—§|, ce qui est impossible.

Donc, pour tous n,m > N, 0, z, et z,, sont alignés. Comme la droite passant par 0 et zy est

fermée pour la distance d, on en déduit que pour tout n > N, 0, z, et z sont alignés, donc on

ad(z,zn) = d(z,2,), dou lir}rl d'(z,2,) = 0. Autrement dit, (2,),>0 converge vers z pour la
n——+0oo -

distance d’. Par conséquent, (C, d’) est complet.

Exercice 2.39. Soit o € R\ 7Z.

1. Montrer que lim sin(na) existe <= lim cos(na) existe.
n—-+4oo n——+00

2. En déduire que lim sin(na) n’existe pas.
n——+00

3. Soit a € R. En déduire que

(i) lirJrrl sin(na) existe <= « € 7Z, et que dans ce cas, on a sin(na) = 0.
n—-+00
(ii) lim cos(na) existe <= «a € 27Z, et que dans ce cas, on a cos(na) = 1.
n——+00
Solution. 1. On a :
sin((n 4+ 1)a) = sin(na + «) = sin(na) cos(a) + sin(a) cos(na)
cos((n + 1)a) = cos(na + a) = cos(na) cos(a) — sin(a) sin(na) .
Puisque 'on a sin(a) # 0 car a € R\ 7Z, on en déduit les formules suivantes :

sin((n + 1)a) — sin(na) cos(w)

cos(na) = sn(a)
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cos(na) cos(a) — cos((n + 1)«)

sin(na) = 2.4
(na) sin(a) (24)
Par conséquent, lim sin(na) existe <= lim cos(na) existe.
n—-+oo n——+00
2. Supposons que lim sin(na) existe, et soient ¢/, = lim sin(na) et fo = lim cos(na). Il
n—-+oo n——+00 n—-+oo
b —1 14 -0
résulte des équations (2.3) et (2.4) que l'on a fy = b= cos(a) et {1 = M, d’ott

(1 — cos(a)? sin(«) sin(a)
(sin(e))?

tout n, d’ott £2 + (3 = 1, ce qui est impossible. Par conséquent, lir}rl sin(na) n’existe pas.
n—-+0oo

lo =0, donc on a ¢; = 5 = 0. Or on a (cos(na))? + (sin(na))? = 1, pour

3. Si a € 7wZ, alors pour tout n, on a sin(na) = 0. Si a = (2k + 1), avec k € Z, alors pour tout
n >0, on a cos(2na) =1 et cos((2n + 1)a) = —1, donc la suite (cos(na))n>0 ne converge pas.
Si o = 2km, avec k € Z, alors on a cos(na) = 1 pour tout n > 0, donc la suite (cos(na))n>o0
converge vers 1.

Exercice 2.40. Soit P(N) ’ensemble des sous-ensembles de N. Pour A, B € P(N), on pose
AAB = (AUB)\ (ANB),d(A,B)=0si A= Betd(A,B) = n%rl si A # B, ou n est le plus
petit élément de AAB.

1. Montrer que d est une distance ultramétrique sur P(N).

2. Soit (Ay)n>0 une suite de Cauchy dans (P(N), d). Montrer que la suite (Ay,)n>0 converge

vers A = ngo( kLZJn Ak). En particulier, ’espace (P(N), d) est complet.

3. Soit A une partie de N. Montrer que l'ensemble { B € P(N) ; A C B} est fermé dans P(N).

4. Soit A une partie finie de N. Montrer que ’ensemble {B eP(N); AcC B} est ouvert dans
P(N).

5. Soit Pf(N) I'ensemble des sous-ensembles finis de N. Montrer que P¢(N) est dense dans
P(N).

6. Montrer que I'application A — N\ A est une isométrie de P(N).

7. Pour tout A € P(N), on pose A} = {nEN; 2n + 1 GA} et Ay = {nGN; ZnEA}.
Montrer que "application

f: PN) — PN)xPNN)
A — (Al,AQ)

est un homéomorphisme.

8. Montrer que les applications

P(N) x P(N) — P(N)
(A, B) — AUB (A, B) — ANB

sont continues.

9. Soit A une partie de N. Montrer que les applications

P(N) — P(N) ) —
B +— AnB ° B

sont continues.
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Solution. 1. Il est clair que pour tous A, B € P(N), on a d(A,B) >0, d(A, B) = d(B, A), et que
d(A,B) =0 <= A = B. Il reste a montrer 'inégalité ultramétrique. Soient A, B,C € P(N).
Montrons d’abord que l'on a l'inclusion suivante :

AAC C AAB U BAC (%)

Soit © € AAC, alors x € AUC et x € AN C. On distingue deux cas :

Premier cas : x ¢ B. Alors on a x € AABsix € A, et onax € BAC si x € C. Donc
x € AAB U BAC.

Deuziéme cas : x € B. Alorsonaz € BN(AUC) =(ANB)U(BNC). Comme z ¢ ANBNC,
alors ou bien z ¢ AN B ou bien x ¢ BNC'. Donc, ou bien on a x € AAB ou bien on a x € BAC,
d’on x € AAB U BAC'. Par conséquent, on a bien l'inclusion (x).

Supposons maintenant A # B # C. Soient n = min(AAC), p = min(AAB) et ¢ = min(BAC).
D’apres I'inclusion (x), on a min(p, ¢) < n, d’od min(p+1,¢+1) = min(p, ¢)+1 < n+1. Par consé-
quent, on a HLH < e~ +11’q = = max (ﬁ, quLl), d’ou d(A,C) < max (d(A, B),d(B,C)).
Donc d est bien une distance ultramétrique sur P(N).

2. Soit (Ay,)n>0 une suite de Cauchy dans (P(N), d). Soit € > 0. Alors il existe N € N tel que
pour tous p > N et ¢ > N, on ait d(4,,A,;) < . Montrons d’abord que pour tous p > N et
q > N, on a d(Ap,kL;qu) < &. On peut supposer A4, # kquk. Soit n € APA( kgq Ak) =

[Ap U (kL>J Ak)] \kL;J (Ap N Ak). Sin € Ap, alors pour tout k& > ¢, on a n EiApAAk,
>q >q
d’ou % — 1 < min (APAAk) <n. Sin € kL>J Ay, alors il existe & > ¢ tel que n € A,AAy,
>q
d’ou % — 1 < min (ApAAk) < n. Par conséquent, on a % — 1 < min (ApA( kL>J Ak)), d’ou
>q
A A :
d( s, B) <€

Nn(u
a>N k>

Ak).

Soit A = Qo( kL>J Ak). Montrons que la suite (A;),>0 converge vers A. On a A =
n >n

Soit p > N et supposons que A, # A. Soit n € A,AA. On distingue deux cas :
Premier cas : n € Ay,. Alors il existe ¢ > N tel que n ¢ kg A, doun e APA(kg Ak). Donc on
>q >q

a % — 1 < min (APA(kg Ak)) <n.
>q
Deuzxieme cas : n € A. Alors pour tout ¢ > N, on an € APA( kg Ak), d’ou on a % -1<
>q
min (APA( kgq Ak)) <n.

Par conséquent, on a % —1<n,doun % —1 < min (4,AA). Donc on a d(4,, A) < e. Ainsi on
a montré que pour tout € > 0, il existe N € N tel que pour tout p > N, on ait d(4,,A) < .
Autrement dit, la suite (A;),>0 converge vers A.

A titre d’exemple, on a : si A, = {n}, alors on a liIJJra A,=0.S1 A4, ={0,1,...,n}, alors on a
n—-+0oo
lim A, =N.
n—-+00

3. Soit A une partie de N. On note F' = {B € P(N) ; A C B}. Soit (B,)n>0 une suite dans F

tell lim B, =B N). D’apreés 2 B = By). tout n >
elle que n_l}}_loo n € P(N) apres 2, on a ngo(kgn k) Comme pour tout n > 0, on

a AC By, dou A C B. Par conséquent, on a B € F'. Donc F' est un fermé de P(N).
4. Soit A une partie finie de N; A = {nq,...,n,}. Soit U ={B € P(N); AC B} = 1<O< {Be
<i<p

P(N); n; € B } Puisque une intersection finie d’ouverts est un ouvert, alors on peut supposer
que A est réduit a un seul élément, i.e. A = {p}. Pour montrer que U est un ouvert, on montre
que son complémentaire P(N) \ U = {B € P(N) ; p ¢ B} est fermé dans P(N). Soit (By)n>0

une suite dans P(N) \ U telle que nEI—Eoo B, = B € P(N). D’aprés 2, on a B = ngo( kgn By). Or
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pour tout n >0, p & By, d’otu p € B, donc on a B € P(N)\ U. Par conséquent, P(N) \ U est un
fermé de P(N).

5. Soient A € P(N) et e > 0, alors il existe n € N tel que n+r1 < e. Soit A, ={0,...,n}NA,
alors A, est fini et on a d(A4,, A) < n+r1 < €. On en déduit que P¢(N) est dense dans P(N).

6. Notons d’abord que 'application A — N\ A est bijective de P(N) dans P(N). Pour tous
A,B e P(N),ona (N\A)A(N\ B) = AAB. Par conséquent, I’application A — N\ A est une
isométrie de P(N).

7. Soient A, B € P(N) tels que A; = By et Ay = By. Alors on a :

A:{2n+1;neAl}U{Zn;n6A2}2{2n+1;neBl}U{Zn;neBQ}:B.

Donc I'application f est injective. Soient C, D € P(N) et posons A = {Qn—l—l i nE C’}U{Zn NS
D}, alors on a Ay = C' et A3 = D. Donc l'application f est surjective. Montrons maintenant la
continuité de f. On munit 'espace P(N) x P(N) de la distance D,. Soient A, B € P(N). Alors
ona AiAB, = {n i 2n+1€ AAB} et AsABy = {n ; 2n € AAB}. On en déduit facilement
que lon a d(A, B) < Do ((A1, A2), (B1, B2)) < 2d(A, B). Par conséquent, I'application f est un
homéomorphisme de P(N) sur P(N) x P(N).

8. Soient A, B, C, D € P(N). Montrons que l'on a d(AUB,CUD) < Dy ((A, B), (C, D)). Notons
d’abord que 'on peut supposer AU B # C U D. Autrement dit, (AU B)A(C U D) # . On
vérifie facilement que ’on a toujours :

(AUB)A(CUD) C (AAC) U (BAD).

On distingue trois cas :
Premier cas : AANC # () et BAD # (). Alors on a :

min ( min(AAC), min(BAD)) = min ((AAC) U (BAD)) < min ((AU B)A(CUD)),

d’ou :
min (min(AAC) + 1, min(BAD) + 1) < min ((AU B)A(CUD)) +1.

Par conséquent, on a d(A U B,C U D) < max (d(A,C),d(B, D)) = D ((4, B), (C, D)).
Deugiéme cas : AAC = (). Autrement dit, on a A = C. Alors on a min(BAD) < min ((4 U
B)A(C U D)), d'ott min(BAD) +1 < min ((AU B)A(C U D)) + 1. Par conséquent, on a
d(AUB,CUD) < d(B,D) =max (d(A,C),d(B,D)) = Ds((A, B), (C,D)).

Troisiéme cas : BAD = (). Autrement dit, on a B = D. Alors on a min(AAC) < min ((A U
B)A(C U D)), doit min(AAC) + 1 < min ((A U B)A(C U D)) + 1. Par conséquent, on a
d(AUB,CUD) <d(A,C) =max (d(4,C),d(B,D)) = Dx((A, B), (C, D)).

Donc 'application (A, B) — A U B est lipschitzienne, donc continue. L’application (A, B) —
AN B est la composée des applications continues suivantes : (4, B) — (N\ A,N\ B), (A4, B) —
AUB et C+—— N\ C, donc lapplication (A4, B) — AN B est continue de P(N) x P(N) dans
P(N).

9. Soit A une partie de N. Comme l'application B —— (A, B) est continue de P(N) dans
P(N) x P(N), on déduit de 8 que les applications B — AN B et B — A U B sont conti-
nues de P(N) dans P(N).

Exercice 2.41. Limite inférieure, limite supérieure d’une suite réelle bornée. A toute
suite réelle bornée (z,,)n>0, on associe les deux suites réelles (ap)n>0 et (by)n>0 définies pour
tout n € N par :

a, =inf{z, ; p>n} et b, =sup{z,; p>n}.
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La suite (an)n>0 est croissante et majorée, donc elle converge vers un réel appelé limite infé-
rieure de (x,)p>0 et noté lim Jirnf Zp ou plus simplement lim inf 2, ou lim x,,.
- n—-+0oo

La suite (by)n>0 est décroissante et minorée, donc elle converge vers un réel appelé limite su-

périeure de (z,,),>0 et noté limsup x,, ou plus simplement limsup x,, ou lim x,,.
B n—-+00

1. Montrer que 'on a liminf z,, < limsup z,.
n—+00 n—r+oc

2. Montrer que (zy,),>0 est convergente si et seulement si on a liminf x,, = limsup x,, et que
- n—+400 n——+oo

dans ce cas, on a liminf z, = lim xz, = limsup z, .

n—+o0o n—+o0o n—s+00

3. Montrer que liminf z, et limsup x,, sont des valeurs d’adhérence de la suite (zy),>0.
n—+400 n——40co -

4. Montrer que pour toute valeur d’adhérence = de la suite (,)n>0, On a :

liminf z, <z < limsup z, .
n—+400 n——4o00

Autrement dit, liminf =, est la plus petite valeur d’adhérence de (x,)n>0 et limsup z,
n—+00 N n—+00

est la plus grande valeur d’adhérence de (z,)n>0-

5. Montrer sur des exemples que la limite inférieure liminf z, peut coincider ou non avec la
n—-+0o

borne inférieure iI;% Zpn, ou avec le plus petit élément In>11(r)1 x, (lorsqu’il existe).
n> nz

6. Montrer sur des exemples que la limite supérieure limsup z, peut coincider ou non avec
n—+oo

la borne supérieure sup x, ou avec le plus grand élément max T (lorsqu’il existe).
n>0 nz

Solution. 1. Puisque (a,)n>0 est croissante, (b, ),>0 est décroissante et que pour tout n > 0, on

a ap < by, alors pour tout n,m € N, on a a, < b,,. Par conséquent, on a lim a, < lim b,.
n—-4o00 n——4o00

Autrement dit, on a liminf z,, < limsup x,.
n—r+00 n—+o00

2. Supposons d’abord que (z,)n>0 converge vers un élément ¢ € R. Soit ¢ > 0. Alors il existe

N € N tel que pour tout n > N, on ait { — e < z, < £+ . Donc, pour tout n > N,

onal—c<a, <b, <l+¢g doul—¢e < liminf z, < limsup x, < £+ . Ceci étant
n—+00 n—+o00

vrai pour tout € > 0, donc on a ¢ < liminf z, < limsup z, < {¢. Par conséquent, on a
n—+00 n—-+00

liminf z, = £ = limsup z,.

n—+00 n——+00

Réciproquement, supposons qu’il existe £ € R tel que liminf z,, = ¢ = limsup z,. Autrement
n—+00 n——+oo

dit,ona lim a,=¢= lim b,. Soit € > 0. Alors il existe N € N tel que pour tout n > N, on
n—-+o0o n—-+o00

ait £ —e < ap < b, < €+e. On en déduit que pour tout n > N,on af —¢e < x, < £+ . Donc
la suite (x,,)n>0 converge vers £.

3. Soient a = liminf z, et b = limsup z,. Soit € > 0. Alors il existe NV € N tel que pour tout
n—r+00 n—+00

n>N,onata—c<a, <at+ecetb—ec <b, <b+e. Soient kK € N et p = max(N,k),
alorsonaa—¢ <ap <a+eetb—cec <b, <b+e Commeonaa, =inf{z, ; n > p}
et by = sup{x, ; n > p}, alors il existe n > p et m > p tels que a —¢ < z, < a + € et
b—e < xy, < b+e. Ainsi, pour tout € > 0 et pour tout k£ € N, il existe n > k tel que |a —x,| < ¢
et il existe m > k tel que |b — x,,| < €. Donc a et b sont des valeurs d’adhérence de la suite
(Zn)n>0-

4. Soit x une valeur d’adhérence de la suite (x,),>0. Soit € > 0. Alors pour tout £ € N, il
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existen > ktelquer —e <z, <z+e dotonax—e<bget ap < x4+ e. Par conséquent,
onaxz—e¢e < limsup z, et limJirnf Typ < x + ¢e. Ceci étant vrai pour tout € > 0, donc on a

n—-+00 n—100
liminf z, <z < limsup z,.
n—r+o00 n—+o00
5. Soient xyp = 0 et pour tout n > 1, soit x,, = =, alors on a liminf z, = mf T, = min x, = 0.
n—+00 n>0

Soient yg = 0 et pour tout n > 1, soit y, = 1, alors on a hm}rnf Yn = 1 et 1nf Ty = m>11(r)1 Ty = 0.
n—

6. Soient g = 1 et pour tout n > 1, soit =, = 1 — Ev alors on a hmsup T, = Sup r, =
n—-+00 n>0
max x, = 1. Soient yp = 1 et pour tout n > 1, soit y, = 0, alors on a limsup y, = 0 et
n20 n—-+oo

sup r, = max x, = 1.
n>0 n20

Exercice 2.42. Propriétés algébriques des limites inférieures et limites supérieures.
Soient (xn)n>0 et (Yn)n>0 deux suites réelles bornées. Montrer que

1. Pour tout A > 0, on a :

liminf Az, = Aliminf z,, et limsup Az, = Alimsup z, .
n—+00 n—+00 n—+o00 n—+o00

2. Pour tout A <0, on a :

liminf Az, = Alimsup z,, et limsup Az, = Aliminf z, .

n—+0o0 n——+o00 n—+00 n—+00
3. On a
liminf = lim inf < liminf (z
lim inf 2, + liminf y,, < lim inf (2, +yy)
et

lim sup (2, + y,,) < limsup x,, + limsup y,, .
n—-+o0o n—-+o00 n—-+o0o

4. Donner un exemple de deux suites réelles bornées (x,)n>0 et (Yn)n>0 telles que l'on ait :

hm}rnf T + hm}rnf Yn < hminf (Tn +yn) < hm}rnf Zn + limsup y, < limsup (z, + yn)

n—+400 n——+o00 n——+o00

et

lim sup (x,, + yn) < limsup x,, + limsup y,, .
n——4o00 n—-+400 n—-+400

5. S’ existe ng € N tel que x,, < y, pour tout n > ng, on a alors :

liminf x, < hm inf ¥, et limsup z, <limsup y, .
n—r+0o0 —+oo n—+o00 n——+o0o

Solution. 1. Soit A > 0. Alors pour tout p > 0, on a :
inf{\z, ; p>n} = Ainf{z, ; p>n} et sup{rz,; p>n}=Asup{z,; p>n}.

Par conséquent, on a liminf Az,, = Aliminf z,, et limsup Az, = Alimsup z,,.
n—+00 n—+00 n—+o00 n—+o00

2. Soit A < 0. Alors pour tout p > 0, on a :

inf{\zp, ; p > n} = Asup{z, ; p>n} et sup{iz,; p>n}=XNinf{z,; p>n}.
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Par conséquent, on a liminf Az,, = Alimsup =, et limsup Az, = Ahm inf x,,.
n—+00 n——+o00 n—+o00 —+oo
3. Pour tout n > 0, on a :

inf{z,; ¢ > n} +inf{y,; ¢ > n} <z, +y,, pour tout p >n,
d’ou :
inf{z,; ¢ > n} +inf{y,; ¢ >n} <inf{z, +y,; p>n}.
Par conséquent, on a liminf x, + hm mf UYn < hm 1nf (T + Yn)-

n——+o0o n—
De méme, pour tout n > 0, on a :

Tp +yp < sup{zq ; ¢ > n} +sup{y, ; ¢ > n}, pour tout p > n,
d’ou :
sup{zp +yp ; p = n} <sup{zg; ¢ = n} +sup{y,; ¢ =n}.
Par conséquent, on a limsup (x,, + y,) < limsup x,, + limsup y,,.

n—-+o00 n——+o0o n—-+00

4. Il suffit de prendre z,,, y, € R tels que :

Tan =0 Yan = -2
Ton+1 = 1 et Yan+1 = -3
Tan+2 = 2 Yang2 = 1
Tanyz = 3 Yantz = 0.
Alors on a :
liminf z, =0 , liminfy, =-3 , liminf(z,+y,) = -2,
n—+o00 n—-+o00 n—+00
limsup x, =3 , limsupy,=1 , limsup(z,+y,) =3.
n—+00 n—~+00 n—+00

5. Supposons qu’il existe ng € N tel que z, < y, pour tout n > ng. Pour tout n > 0, soient
a, = inf{z, ; p > n}, b, = sup{z, ; p > n}, ¢, = inf{y, ; p > n} et d, = sup{y, ; p > n}.
Soit n > mng. Pour tout p > n, on a a, < z, < yp, dot a, < ¢,. Par conséquent, on a

liminf 2, < liminf y,. De méme, pour tout p > n, on a z, < y, < d,, d'ou b, < d,. Par
n——+o0o n—-+o0o

conséquent, on a limsup z, < limsup y,.
n——+0o n—-+00

Exercice 2.43. Calculer les limite inférieure et limite supérieure des suites suivantes :

((_1)n)n20’ ((—1)”(14—%))”21, ((14‘#) COS(%))nzr

Solution. Soit x,, = (—1)", pour tout n > 0. Alors on a 9,41 = —1, 29, =l et =1 <z, <1,
pour tout n > 0. Par conséquent, on a liminf z, = —1 et limsup z,, = 1.
n—+00 n——+o00
Pour tout n > 1, soit y, = (—1)" (1 + E)' Alors on a lim yop11 = —1l et lim yo, =1, et
n——+00 n——+00
pour tout n > 0, on a —1 < y,, < 1. Par conséquent, on a liminf gy, = —1 et limsup y, = 1.
n—+00 n—-+o0
Pour tout n > 1, soient z,, = (1+ﬂ) cos( 3 ) ett, = cos( 3 ) Commeona lim 1+( )n =
n——+00
1, alors on a liminf z, = liminf ¢, et limsup z, = limsup ¢,. Comme pour tout n > 0, on a
n—+00 n—r+00 n—+400 n—-+oo
t32n+1) = —1, ten = 1 et =1 < ¢, <1, alors on a lim inf ¢, = —1 et limsup ¢,, = 1.
n—+00 n——+oo

Exercice 2.44. On fixe un entier naturel p > 2 et on pose N, = {0,1,...,p — 1}.
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. . , a
L. Soit (ap)p>1 une suite dans IN,. Montrer que la série Z — converge dans [0, 1]. Montrer
n>1

a
que Z —Z = 1 si et seulement si pour tout n > 1, on a a, =p — 1.

2. Soit (ay)n>1 une suite dans N,,. On suppose qu’il existe j > 1 tel que a; # p—1eta, =p—1
pour tout n>j+ 1 Montrer qu’il existe une suite (b,)n>1 dans N, distincte de (an)n>1

telle que Z n Z —

n= 1
3. Soit € [0, 1[.

(i) Montrer qu’il existe une unique suite (l“n)nzl dans N, telle que :

n

x
() Z ]<m<Z—J+ , pour tout n > 1.
=P
(ii) Montrer que (a) est equlvalent aux propriétés suivantes.
(8) Pour tout j > 1, il existe k > j tel que xx # p — 1.
+00 oy
(6) = = Z =2 (Une telle écriture, vérifiant (3), de x est appelée le
j=1
développement p-adique propre de z). Ainsi, par («), le développement
p-adique propre de x est unique.

4. En déduire que Q est dense dans R.

5. Montrer que l'intervalle [0, 1] n’est pas dénombrable. En déduire que R n’est pas dénom-

brable.
s _
Solution. 1. Soit (ay),>1 une suite dans N,. Pour tout j > 1, on a 0 < —j < b — d’ont
a; 1L 1 " a . !
n-+ ;
0<L Z - < Z b (p— 1)p7p = 1-—— <1, donc la suite Z 2 est positive,
pJ 1—2 p" Pl
Jj= 1 Jj=1 P j=1 n>1
a =Xa
croissante et majorée par 1, donc la série Z —Z est convergente et on a 0 < Z —Z < 1. Comme
n>1 n=1
+00 p—1 +oo
onazp—nzl,alorsZ——1<:>Z " = 0. Puisque (p — 1) — a,, > 0, pour
n=1 n=1

a
tout n > 1, on en déduit queZ—z =1<«=a, =p—1 pour tout n > 1.
n=1

2. Soit (an)n>1 une suite dans N, et on suppose qu’il existe 7 > 1 tel que a] #p—leta,=p—1

pour tout n > 5 + 1. Onaz Z Zp_ et Zp_lzl%,d’ou

nlp nl n=j+1 n=j+1
+oo Jj—1
a a a; +1 .
_Z: —Z—|- ! avec aj + 1 € N,. Soit :
n:lp n:lp p]
an si n<jg,
b, = aj+1 si n=y,
0 si n>j+1.
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+00 +00
a b
Alors (by)n>1 est une suite dans N, distincte de (ay,),>1 et on a Z —Z = Z p—z
n=1 n=1
3(i). Soit « € [0, 1[. Montrons d’abord 'unicité. Supposons donc qu'il existe une suite (2, )n>1
dans N, telle que pour tout n > 1, on ait :

n

m] 1
j= 1
Alors pour tout n > 1, on a :

n n
D ap" T <ple <y wp L
j=1 Jj=1

n
Or on a ijp”_j e N, d’ou ijp”_j = E(p”ac), la partie entiére de p™z, voir proposition

j=1 j=1
C.1.2.0n a:
n—1 ' n—1 '
E(p”x) = ijp”_] +x, = prjp(”_l)_] +x, = pE(p"_lm) + x, .
j=1 j=1

D’ou x, = E(p”x) - pE(p"_lx). Donc si une telle suite (z,,)n>1 existe, alors elle est forcément
unique.

Montrons I’existence. Pour tout n > 1, on pose x,, = E(p”a:) —pE (p”_lx). On a x, € Z. Vérifions
que z, € N, et que l'on a la propriété («). On a p"z —1 < E(p”x) <plwet ptlr—1 <
E(p”_la:) < p"lz, dou phr —p < pE(p”_lac) < p"z. Donc on a —p"zx < —pE(p”_lx) <
—p"x + p. On en déduit que 'on a p"ax — 1 —p"x < E(p”a:) —pE(p”_lm) < p"x —p"x + p, donc
-l<z, < p, d’ou z, € N On montre la propriété (o) par récurrence sur n. Appelons (I,)

I'inégalité Z < T < Z Li —I—— Onax = E(px) —pE(a:) = E(pa:), d'ou x1 < pr <x1+1,

T 1

donc — <z < 2L 4 = Autrement dit, I'inégalité (I;) est vraie. Supposons que l'inégalité (I,,)
p p p

est vraie pour n = ng — 1, avec ng > 2, et montrons que l'inégalité (I,,) est vraie pour n = ng.

Par hypothése, on a donc :

no—1 no—1
L
SRR s
= P
On multiplie par p™~! on obtient :
no—1 ng—1 2
”Olz S plp <prot 3 4
p Pl
no—1 ( no—lx) no—lx'
Donc on a E(p”o_1 = pno—1 Z ] , d’ou T = Z p_j On en déduit que 'on a :
j=1
1 _ _
535 s 2o, gm0 e Hon
iz pro~! pro pro pro
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E(p”oa:) e E(p"oa}) 1

On a aussi E(p”oa:) <phx < E(p”ox) +1, d’ou o S o + Z% Par conséquent,
ona:
" A
Y heaoyn
= J
=t =17

Autrement dit, U'inégalité (I,,) est vraie pour n = ng. Par conséquent, l'inégalité (I,,) est vraie
pour tout n > 1. Donc on a bien la propriété («).

+o0o
1 T
3(ii). Supposons que l'on a (). Comme on a lim — = 0, alors z = E ~J . Pour montrer
n—-+oo p ot

que l'on a aussi la propriété (8), on raisonne par I'absurde. On suppose donc que l'on n’a pas
la propriété (5). Alors il existe jo > 1 tel que pour tout k > jg, on ait xx = p — 1. Donc
no = inf{j > 1; pour tout k > j on ait zx, = p — 1} existe et on a 1 < ng < jo. Si ng = 1, alors

—+00
x;
pour tout k> 1, onaxpy=p—1,dou z = Z —j = 1, ce qui est impossible. Si ng > 1, alors
1P
on a :
no—1 2 +00 p— 1 no—1 T 1
_ J _ Ty
T= p] p] B Z p] - pno—l ’
Jj=1 Jj=no Jj=1
no—1
Ce qui est impossible car on a par hypothése x < Z =+ . Par conséquent, on a bien
— p] pno—l
(8)-
+00 T
Réciproquement, montrons que (3) et (§) impliquent (o). Comme on a x = Z =2 " alors pour
j=1
J J ) .
tout n > 1, onaZ—. < Zp—y = x. D’autre part, on a :
j=1
00 T
- el
=) DI
j=1
LAy RAS
_ Li J
- 2_:1 w _Z P
J= j=n+1
T X p-1
< > =4 b
— =Y
7 j=n+1
n
T 1
- Y5l
J n
i=1 p
= 1 ~ -
S’il existe n > 1 tel que = = — + — ,alorson a =~ 2 ) —0,avec (p—1)—x; >0,
Zw PR !
pour tout j > n+1, d’ott ; = p— 1, pour tout j > n+ 1, ce qui contredit (f). Donc, pour tout
n
T 1
> /A
n_l,onax<z_:pj + o
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4. Soit € R. Alors il existe m € Z\ {0} tel que -~ € [0, 1]. D’aprés ce qui précede, il existe

une suite (r,)p>0 dans Q tel que -> = lim r,, d'ot z = lim mr,, avec mr, € Q, pour tout
n—-+400 n—+400

n > 1. Par conséquent, Q est dense dans R.

5. Supposons que [0, 1] est dénombrable, et soit ¢ : N* — [0, 1[ une bijection. On considére
+00

p > 3. Pour tout n € N, ¢(n) admet un unique développement p-adique propre p(n) = Z %
Pour tout 5 > 1, soit : =
0 si z;; #0,
aj; =
1 si z;;=0.
+o0
Soit x = Z ]%, alors = € [0, 1] et pour tout n € N* on a = # ¢(n). Donc ¢ n’est pas surjective,
j=1

ce qui est impossible. Par conséquent, [0, 1[ n’est pas dénombrable. Comme on a [0, 1[C R et
[0, 1] est infini non dénombrable, alors R n’est pas dénombrable.
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Chapitre 3

ESPACES COMPACTS

Proposition. Soient X un espace topologique séparé, F' une partie fermée de X et K une partie
compacte de X telles que K N F = (.

1. Si X est régulier, alors il existe deux ouverts U et V dans X tels que K C U, F C V et
unv =40.

2. Si X est complétement régulier, alors il existe une fonction continue f : X — [0, 1] telle
que pour tout x € K, on ait f(x) =1 et pour tout y € F, on ait f(y) = 0.

Démonstration. 1. Comme X est régulier, pour tout z € K, il existe deux ouverts disjoints
U, et V,, dans X tels que x € U, et F' C V.. Comme K est compact, il existe un sous-ensemble

fini {x1, - ,2,} de K tel que K C Glei- Soient U = GlUri et V = ﬁlei, alors U et V sont
1= = 1=
des ouverts de X telsque K CU, FC Vet UNV =0.

2. Comme X est complétement régulier, pour tout z € K, il existe une fonction continue f, de
X dans [0, 1] telle que f,(x) = 0 et pour tout y € F, on ait f,(y) = 1. Comme K est compact, il

existe un sous-ensemble fini {x1,- - ,x,} de K tel que K C Glfx_il([O, %[) Soit g = fuy -+ [,
1=

2

alors g est continue de X dans [0, 1] telle que pour tout z € K, on ait 0 < g(z) < 1, et pour
tout y € F, on ait g(y) = 1. Soit :

>

—

~

~—

Il

S

~

| (@)
\)

w0 w0
X —
D= o
IA IN
~ ~+
IA IN
NI N

—_
n
—

o

IN
~
IN
—_

Alors h est continue de [0, 1] dans [0, 1]. Soit f =1 — hog, alors f est une fonction continue de
X dans [0, 1] telle que pour tout x € K, on ait f(x) =1 et pour tout y € F, on ait f(y) =0. N

Théoréme. Soit (X, d) un espace métrique. Les propriétés suivantes sont équivalentes.
(i) L’espace topologique X est compact.

(ii) L’espace métrique (X, d) est précompact et complet.

)
)
(iii) Toute partie infinie de X posséde au moins un point d’accumulation.
(iv) Toute suite de X posséde une sous-suite convergente.

)

(v) Pour toute suite décroissante (F},)n>0 de parties fermées non vides de X, on a QOF” # 0.
n=z

35
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Démonstration. La preuve de ce théoréme est tirée de ([31], p. 117). Montrons 'implication (i)
= (ii). Par hypothése, X est compact. D’apreés la remarque 3.1.6, (X, d) est précompact. Le fait
que (X, d) est complet résulte du théoréme 2.6.1 et de la proposition 3.1.5 ou des propositions
2.6.2 et 3.1.5.

Preuve de (ii) = (iii). Soit A une partie infinie de X. On va construire par récurrence une suite
décroissante de parties infinies A,, de X telle que Ay = A et pour tout n > 1, §(4,) < %, ou
0(Ay) désigne le diameétre de A,,. Soient Ag = A et n € N et supposons A,, construit. Comme
X est précompact, il existe une partie finie I de X telle que X = U B( Comme A, est

’ n+1) N A
Puisque (X, d) est complet

L, n+1)
infini, il existe = € I tel que B( ) n+1) N A,, soit infini. On pose alors Apy1 = B(
Comme A1 C B( ,n+1), alors on a §( A,11) = 6(Ans1) < n+1
et comme on a hm §( A1) =0, alors il résulte du théoréme 2.6.1 qu'il existe z € X tel que

N A, = {z}. Smt V un voisinage de z dans X, alors il existe n > 0 tel que B’( c V.

n>0 2y n—i—l)

Donc pour tout y € A,y1, on a d(z,y) < 6( A1) < n+1, d’ott 'on déduit que A,+1 C V. Par
conséquent, on a A,1 1 C VN A. Ainsi, V N A contient une infinité d’éléments. Cela prouve que
z est un point d’accumulation de A.

Preuve de (iii) = (iv). Soit (x5, )n>0 une suite dans X. On distingue deux cas :

Premier cas : 'ensemble {x,, ; n > 0} est fini. Alors il existe z € X et une partie infinie D de N
telle que pour tout n € D, on ait x,, = x. Soit ¢(0) le plus petit élément de D, et par récurrence,
¢(n + 1) le plus petit élément de D strictement plus grand que ¢(n). Alors (Zy(,))n>0 est une
sous-suite de (x,,)n>0 qui converge vers .

Deuzieme cas : Uensemble {z,, ; n > 0} est infini. Par hypothése, cet ensemble posséde un point
d’accumulation noté y. Vérifions que y est une valeur d’adhérence de la suite (z,)n>0. Soient
e>0et N € N. Soient C = {d(y,z,); 0<n < Netx, #y}tU{e} et & =inf(C), alors &’ > 0.
Comme y est un point d’accumulation de l'ensemble {x,, ; n > 0}, il existe z,, € B(y,’) \ {y},
d’ott m > N. Ainsi, pour tous € > 0 et N € N, il existe n > N tel que z,, € B(y,¢). Donc y est
une valeur d’adhérence de la suite (z,)n>0. Il résulte alors de la proposition 2.2.3 que y est la
limite d’une sous-suite de (zp)n>0.

Preuve de (iv) = (i). Notons déja que X est un espace séparé car c’est un espace métrique.
Soit (U;)ier un recouvrement ouvert de X. Par le lemme 3.1.1, il existe » > 0 tel que pour tout
x € X, il existe i € I pour lequel B(z,r) C U;. Supposons qu’il n’existe pas de sous-ensemble
fini J de I tel que X = igJUi' Alors pour toute partie finie B de X, comme rLGJBB(a:,r) est

inclus dans un nombre fini d’ouverts U;, il existe y € X tel que d(x,y) > r pour tout x € B. On
choisit un point z¢p € X, puis un point ;1 € X tel que d(zg, 1) > r, puis un point x5 € X tel
que d(xg,x2) > 1 et d(x1,z2) > r et, par récurrence, une suite (x,),>0 dans X telle que pour
tous p,q € N avec p # ¢, on ait d(zp,x4) > 7. Par conséquent, la suite (x,)n>0 n’admet aucune
sous-suite convergente, c’est une contradiction. Donc il existe bien un sous-ensemble fini J de [
tel que X = g]Ui' Par conséquent, X est compact.

(2

L’implication (i) = (v) résulte de la proposition 3.1.5.

Preuve de (v) = (iv). Soit (25, )n>0 une suite dans X. Pour tout n > 0, soit F;, = {z, ; p > n}.
Alors (F,)p>0 est une suite décroissante de parties fermées non vides de X. Par hypotheése,
on a ngan # (). D’autre part, d’aprés la proposition 1.7.1, 'intersection nr;OFn est 'ensemble

des valeurs d’adhérence de la suite (x,,),>0. Donc la suite (zy,)n>0 posséde au moins une valeur
d’adhérence. Il résulte de la proposition 2.2.3 que (z,)n>0 posséde une sous-suite convergente. W

Théoréme. Soit X un espace topologique. Les propriétés suivantes sont équivalentes.
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(i) X est un espace complétement régulier.

(ii) X est homéomorphe & un sous-espace de [0, 1]7, pour certain ensemble .J.

Démonstration. Montrons implication (i) = (ii). Soit F = C(X, [0, 1]) 'ensemble des ap-
plications continues de X dans I = [0, 1]. On munit / E de la topologie produit et on définit
I’application suivante :
p: X — IF
z — (f(@))rer

Montrons que p est une application continue injective. Soient z,y € X tels que z # y. Puisque
X est complétement régulier, il existe f € E telle que f(x) # f(y), d’ou p(x) # p(y). Donc p est
injective. D’autre part, pour tout f € E, 'application

mpop: X — 1
z — f(z)

est continue. Il en résulte que p est continue.

Montrons que p est un homéomorphisme de X sur p(X). Il reste & montrer que p est une
application ouverte de X sur p(X), i.e. pour tout ouvert U de X, p(U) est un ouvert de p(X).
SiU =X, p(U) = p(X) est un ouvert de p(X). On suppose U # X, et donc F' = X \ U est
un fermé non vide de X. Soit x € U. Puisque X est complétement régulier, il existe h € E
telle que h(z) = 1 et pour tout y € F, on ait h(y) = 0. Soit W l'ouvert dans I” défini par
W = wh_l(]O, 1]), ou 7, est la projection canonique

Ty e — I
(f)fep > mp

alors on a W N p(X) C p(U). Donc p(U) est un voisinage de chacun de ses points, d’ou p(U) est
un ouvert de p(X). Par conséquent, p est un homéomorphisme de X sur p(X). Ainsi, on identifie
X ap(X).

Preuve de (ii) = (i). Supposons qu’il existe un ensemble J tel que X soit homéomorphe &
un sous-espace de [0, 1]7. Puisque [0, 1]7 est compact, alors [0, 1]7 est un espace normal, voir
corollaire 3.1.3, donc [0, 1]‘] est un espace complétement régulier. D’autre part, il est clair que
tout sous-espace d’un espace complétement régulier est complétement régulier. Par conséquent,
X est complétement régulier. |

Théoréme (d’Alembert). Toute fonction polynémiale de C dans C de degré n > 1 posséde au
moins une racine dans C.

Démonstration. Soit P une fonction polynomiale de C dans C de degré n > 1, i.e. il existe
ag,...,an € C tels que P(z) = ap + a1z + -+ + ap2™, avec n > 1 et a, # 0, pour tout z € C.
Pour tout z # 0, on a :

n—1
P(%):a0+%+...+z_”zz_”[1+za_l’zn—p].

. a _ . a . ,
Comme on a lim 22" =0 et lim ‘—n‘ = +00, alors on a lim |P(l)| = 4-00. Par conséquent,
z—0 ay, z—0 1 2" z—0 z

il existe R > 0 tel que pour tout z € C vérifiant |z| > R, on ait |P(z)| > |P(0)|. Comme

Papplication z — |P(z)] est continue de C dans R et comme B'(0,R) = {z € C; |z] < R} est

compact, alors il existe zg € B'(0, R) tel que |P(z)| = |i|rifR|P(Z)|7 voir théoréme 3.2.2. Or on
z|<
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a0€ B'(0,R), dou |P(2)| <|P(0)]. Par conséquent, on a |P(z)| = in(fC|P(z)|. On va montrer
zZE

que P(zp) = 0. Pour tout z € C, soit Q(z) = P(z+ zp), alors on a Q(0) = P(z), donc P(zp) =0
si et seulement si Q(0) = 0. Puisque l'application z — z + zy est bijective de C dans C, alors
ona:

Q)] = P(z0)| = inf [P(2)] = inf [P(= + 20)| = inf [Q(2)]
Comme @ est aussi une fonction polynomiale de C dans C de degré n > 1, alors on a Q(z) =
bo+b1z+---+b,2", avecn > 1 et b, # 0, pour tout z € C, et on a |by| = in(g ‘bo—i-blz—i—- . -—i—bnz”‘.
zZe

Si by = 0, le théoréeme est démontré. Supposons que by # 0. Alors pour tout z € C, on a
n

1< ‘1 + Zcpzp
p=1

n
1< '1 + Cp2™ + Z cp2f
p=no+1

b
. Soit ng = inf{p € N* ; ¢, # 0}. Ainsi, pour tout z € C, on a

\ p
ou ¢, = —

; P

bo

. Soit w € C tel que w"® = —cy,, alors w # 0 et pour tout z € C,

n
1< 1+cﬂzno+ E c_pzp'
- wno wP
p=no+1

Autrement dit, pour tout z € C, on a :

n
1< ‘1—2’”04- Z d,z?
p=no+1

c
Ou d, = —Z;. Donc, pour tout z € C, on a :
w

n
L<1=2" 4| > dpe?|.
p=no+1
n n
En particulier, pour tout z €]0, 1[, on a 0 < —z"° + Z dyaP|, dou 1 < Z dpaxP™ "0
p:n0+1 p:no—i-l

n
Ce qui est impossible car lim Z dpzP~" = 0. Donc on a bien P(z) = 0. Autrement dit, la
z—>

p=no+1
fonction polyndémiale P posséde au moins une racine dans C. |

Théoréme (Baire). Soit X un espace localement compact. Alors X est un espace de Baire.
Autrement dit, si (Uy)n>0 est une suite d’ouverts denses dans X, alors I'intersection QOU" est
n>

dense dans X.

Démonstration. Soit V un ouvert non vide de X, il s’agit de montrer que V() QOU" # (), voir
n

proposition 1.2.4. Comme Uy est dense dans X, alors V N Uy # 0, et soit xg € V N Uy. Comme
V N Uy est un ouvert de X, d’aprés le théoréme 3.4.1, il existe un ouvert By dans X tel que By
soit compact et 29 € By C By C V N Uj.

Par récurrence sur n, on construit une suite (By,),>0 d’ouverts non vides dans X tels que pour
tout n > 1, B, soit compact et B,, C U, N B,,_1. En effet, on a déja construit By et supposons
By, construit ; comme Uy, 11 est dense dans X, il existe x,4+1 € Upy1 N B;,. Comme U,11N B, est
ouvert, il existe un ouvert B, dans X tel que m soit compact et 41 € Bpy1 C Bpy1 C
Upt1 N By. Les B,, forment une suite décroissante de compacts non vides dans X. D’aprés la
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proposition 3.1.5, on a QOB_" £ (. Or By C V et, pour tout n > 0, on a B, C U,, donc
n>

NB,cVnNU,doutonaVn nNU, # (). Par conséquent, N U, est dense dans X. [ |
n>0 n>0 n>0 n>0

Théoréme (M. Stone, E. Cech). Soit X un espace complétement régulier. Alors il existe une
compactification (5(X), p) de X telle que

1. Pour tout espace compact Y et toute application continue h : X — Y il existe une

(unique) application continue SB(h) : B(X) — Y telle que le diagramme suivant soit

commutatif. \

X Y

NS
p(X)

2. Pour toute application continue et bornée h : X — R, il existe une (unique) application
continue S(h) : S(X) — R prolongeant h, i.e. le diagramme suivant est commutatif.

3. Si ()A( , h) est une compactification de X vérifiant la propriété 1 ou la propriété 2, alors X est
homéomorphe & 5(X). De fagon plus précise, il existe un homéomorphisme g : f(X) — X
tel que le diagramme suivant soit commutatif.

BX) L %

4. La compactification (8(X), p) est une compactification « maximale » de X. Autrement
dit, si (X, h) est une compactification de X, il existe une (unique) application continue
surjective g : 5(X) — X tel que le diagramme suivant soit commutatif.

g
BX) — X
5. Pour tout espace complétement régulier Z et toute application continue h : X — 7, il
existe une (unique) application continue S(h) : B(X) — B(Z) telle que le diagramme
suivant soit commutatif.

X —" .z
p p
sx) 2 p(z)
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Démonstration. 1. Soient Y un espace compact et h : X — Y une application continue. Soit
Cx = C(X, [0, 1]) (resp. Cy = C(Y, [0, 1])) I’ensemble des applications continues de X (resp.
Y') dans [0, 1]. Puisque Y est compact, alors ’application

py: Y — [0, 1]%
y — (9(y))gecy

réalise un homéomorphisme de Y sur py (Y) = 5(Y). Soit i : B(Y) — Y I'application réciproque
de cet homéomorphisme. L’application h : X — Y induit ’application naturelle suivante :

T Cy — CX
g +—— goh

D’autre part, si on voit [0, 1]9% (resp. [0, 1]°Y) comme 'ensemble des applications de C'x (resp.
Cy) dans [0, 1], alors 7" induit 4 son tour une application naturelle ® de [0, 1]°% dans [0, 1]Y.
En fait, application ® est définie par :

d: [0,1]° — 0, 1]
(tr)recx + (tgon)gecy

Puisque, pour tout g € Cy, I’application

[07 1]CX — [07 1]
(tr)recx +—— tgon

est continue, alors ® est continue. Pour tout x € X, on a

(@0 px)(z) = 2((f(2))reck) = (g0 h)(2))gecy = (9(h(x)))gecy = py (h(z)) = py o h(z).
Autrement dit, on a le diagramme commutatif suivant :

h

0, 1]% —2— [0, 1]

Donc on a ®(px (X)) C py(Y) = B(Y), don @(8(X)) C S(Y). Soit 5(h) = po®, ., alors 5(h)
est une application continue de 5(X) dans Y telle que h = B(h) o p. L’unicité de S(h) résulte du
fait que p(X) est dense dans 5(X).
2. Ceci résulte immeédiatement de 1. Mais donnons une preuve directe sans utiliser 1. Soit h :
X — R une application continue et bornée. Soit [a, b] un intervalle fermé borné de R tel que
h(X) C [a, b], et soit ¢ : [a, ] — [0, 1] un homéomorphisme. Alors on a poh € Cx. Considérons
la projection canonique

Toon t [0, JO%  — [0, 1]

(tf)fECX — tapoh

et soit 7 la restriction de muop & B(X). Alors B(h) = ¢! o7 est une application continue de
B(X) dans R telle que B(h) o p = h. L’unicité de S(h) résulte du fait que p(X) est dense dans
B(X).

Les propriétés 3, 4 et 5 résultent facilement de 1 et 2. |
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Théoréme (Tietze). Soient X un espace localement compact, K un compact de X et U un

ouvert de X contenant K. Alors pour tout f € C(K), il existe g € Cc(X) telle que g, = f,

Supp(g) C U et sup |g(x)| = sup |f(x)|.- Autrement dit, pour toute fonction continue f : K —
zeX zeK

K, il existe une fonction continue g : X — K prolongeant f telle que Supp(g) soit compact,
Supp(g) C U et sup [g(z)| = sup |f(z)].
zeX rzeK

Démonstration. Soit f € C(K). Montrons d’abord que 'il existe g € Cc(X) telle que g, = f
| =

et Supp(g) C U, alors il existe h € C.(X) telle que h,, = f, Supp(h) C U et sup |h(z)
zeX

sup |f(x)|. En effet, soit R = sup |f(z)|. Pour tout A\ € K, on pose :
reK zeK

A st A <R,
o(A) = R

— si [Al > R.

B Al

Alors ¢ est une application continue de K dans {\ € K ; || < R}. Soit h = pog, alors h € C.(X)

telle que hy,. = f, Supp(h) C U et sup |h(z)| = sup |f(z)].
reX zeK
I est clair que 'on peut supposer f a valeurs dans R, et méme que 'on a —1 < f(z) < 1,

pour tout z € K. D’autre part, d’aprés le théoréme 3.4.1, il existe un ouvert W de X tel que
KcW cCcW CU et W soit compact.
Montrons d’abord que si M > 0 et si h: K — R est une fonction continue telle que |h(z)| < M,
pour tout = € K, alors il existe g € C.(X, R) telle que :

(a) |g(z)] < %M, pour tout x € X.

(b) |h(z) — g(z)| < 2M, pour tout z € K.

(c) Supp(g) C W.
En effet, soient A = f_l([ - M, %M]) et B = f_l([%M, M]) Alors A et B sont deux
parties compactes disjointes dans K. D’aprés le théoréeme d’Urysohn, théoréme 3.6.1, il existe
g € C.(X, R) telle que Supp(g) C W, g(x) = % sur A, g(z) = % sur B et % <g(x) < %,
pour tout € X. Par conséquent, pour tout 2 € X, ona |g(z)| < +M et on a |h(z)—g(z)| < M,
pour tout z € K.
Maintenant, on va construire par récurrence sur n une suite (gn)n21 dans C.(X, R) telle que :

(@) |gn(x)] < %(%)n_l, pour tout n > 1 et pour tout =z € X.
n

(B) ‘f(a:) - Zgl(m)‘ < (%)n, pour tout n > 1 et pour tout x € K.
i=1

(v) Supp(gn) C W, pour tout n > 1.

En effet, comme on a | f(z)| < 1, pour tout = € K, alors on obtient g; par ce qui précéde. Ensuite,
supposons que 1’on a construit g, ..., g, dans C.(X, R) telles que :

lgi(x)] < %(%)2_1 , pour tout i € {1,...,n} et pour tout z € X ,

i
‘f(a:) - Zgj(a:)‘ < (2)", pour tout i € {1,...,n} et pour tout = € K,
j=1

Supp(gn,) C W, pour tout i € {1,...,n}.
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n n
Alors f — Zgi‘K est une fonction continue de K dans R telle que ‘f(a:) - ZgHK(az)‘ < (%)n,
i=1

i=1
n
pour tout z € K. On applique de nouveau le raisonnement précédent & f — Z gil,., on obtient

i=1

x>

une fonction g, 41 € C.(X, R) telle que :
|gnt1(x)| < %(%)n, pour tout x € X ,

n+1

‘f(m) - Zgz(az)‘ < %(%)n = (%)nﬂ, pour tout z € K ,
i=1

Supp(gn+1) C W.

Ainsi de suite, on construit la suite (9”)n>1' Puisque la série Z %(%)n_l est convergente, on
h n>1
déduit de la propriété () que pour tout z € X, la série Z gn(x) est convergente. On pose
n>1

+oo
g(z) = Zgn(az), pour tout x € X. Alors g est une fonction continue de X dans R telle que
n=1

+00 “+oo
lg(z)] < Z:l\gn(xﬂ < 2%(%)”4 = 1, pour tout x € X. Comme on a nll)r}rloo (3)" =0, on
n= n—=
déduit de la propriété () que pour tout x € K, on a g(x) = f(x). On déduit de la propriété ()
que I'on a Supp(g) C W C U, et donc Supp(g) est compact, i.e. g € C.(X, R). [ |

Théoréme. Soient X, Y des espaces topologiques, avec X séparé et f : X — Y une application
propre. On a :

1. Lespace f(X) est séparé.

2. Si X est régulier, alors f(X) est aussi régulier.
3. Si X est normal, alors f(X) est aussi normal.
4

. Si X posseéde une base dénombrable d’ouverts, alors f(X) posséde aussi une base dénom-
brable d’ouverts.

5. Si X est métrisable, alors f(X) est aussi métrisable.

Démonstration. Puisque la restriction fyx) : X — f(X) est propre, on peut supposer que
f est surjective, i.e. f(X)=Y.

1. Soient y1,y2 € Y tels que y; # yo. Alors f~1({y1}) et f~1({y2}) sont des parties compactes
disjointes de X. D’apreés la proposition 3.1.2; il existe deux ouverts disjoints U et V dans X
tels que f~'({y1}) € U et f~'({y2}) C V. Puisque f est une application fermée, d’aprés la
proposition 1.3.6, il existe deux ouverts V; et V5 de Y contenant respectivement y et ys tels que
f~Y(Vvi) c U et f~1(V5) C V. Par conséquent, on a V; NV, = (), donc Y est séparé.

2. Soient F un fermé de Y et y € Y \ F. Alors f~1(F) est fermé dans X et on a f~1(F) N
f*({y}) = 0. Comme f~'({y}) est une partie compacte de X, d’aprés la proposition 3.1.3, il
existe deux ouverts disjoints U et V dans X tels que f~'({y}) C U et f~}(F) C V. Puisque
f est une application fermée, il existe des ouverts U’ et V' dans Y tels que y € U', F C V/,
YUY cUet f~Y(V') c V. Donc U et V' sont disjoints. Par conséquent, Y est régulier.
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3. On a déja montré cette propriété dans la proposition 1.9.3.

4. Soit (Un)n>0 une base dénombrable d’ouverts de X. Soit :

B= { UI U, ; I est un sous-ensemble fini de N} .
ne

Alors B est une famille dénombrable d’ouverts de X. Soit B/ = {Y \ f(X \V) ; V € B},
alors B’ est une famille dénombrable d’ouverts de Y. Vérifions que B’ est une base d’ouverts de
Y. Soient y € Y et W un ouvert de Y contenant y, d’ott on a f~1({y}) C f~Y{(W). Comme
f~t({y}) est une partie compacte de X, alors il existe un sous-ensemble fini I de N tel que
FHwh) c | Un c 71 (W), Soit V= | J U, alors V e Betonaye Y\ f(X\V)CW.Par

nel nel
conséquent, B’ est une base dénombrable d’ouverts de Y.

5. Pour une preuve de cette propriété, voir ([13], p. 284). |

Lemme. Soit Y un espace topologique séparé.

1. Si Y est localement compact ou vérifie le premier axiome de dénombrabilité, alors Y est
engendré par les compacts.

2. Supposons que Y est engendré par les compacts. Soient Z un espace topologique et f :
Y — Z une application. Alors f est continue si et seulement si pour tout compact K de
Y, fx est continue.

Démonstration. 1. Soit F' une partie de Y. Supposons d’abord que F' est fermée dans Y. Il
résulte du théoréme 3.1.1 que si K est une partie compacte de Y, alors F'N K est fermé dans Y.
Réciproquement, supposons que pour toute partie compacte K de Y, FN K est fermé dans Y.
Premier cas : supposons que Y est localement compact. Soient € F et K un voisinage compact
de x dans Y. Par hypothese, on a FFN K = FN K. Soit V un voisinage de z dans Y, alors VN K
est un voisinage de x dans Y, d’ot VN K NF # (). Par conséquent,onax € FNK,douz € F.
Donc on a F = F, i.e. F est fermée dans Y.

Deuziéme cas : supposons que Y est un espace topologique séparé vérifiant le premier axiome de
dénombrabilité. Soit « € F, d’aprés le corollaire 1.7.1, il existe une suite (n)n>0 dans F telle que

hI—Ii-l xp = x. Comme l'ensemble K = {z} U {z,, ; n > 0} est une partie compacte de Y, voir
n——+0o0

exemple 3.1.1, alors F'N K est fermé dans Y. Oron a {z, ; n >0} C FNK, donc z € FNK,
d’otl z € F. Par conséquent, on a F' = F, donc F est fermée dans Y.

2. Supposons que Y est engendré par les compacts. Soient Z un espace topologiqueet f : Y — Z
une application. Si f est continue, il résulte de la proposition 1.4.3 que pour toute partie compacte
K de Y, f|, est continue.

Réciproquement, supposons que pour toute partie compacte K de Y, f),. est continue. Soit G
un fermé de Z. Soit K une partie compacte de Y. Comme on a f~1(G)N K = f‘;(l(G), alors
f~YG) N K est fermé dans K. Donc f~1(G) N K est fermé dans Y. Par conséquent, f~1(G) est
fermé dans Y, donc f est continue. |

Théoréme. Soient X, Y des espaces topologiques, avec X séparé et f : X — Y une application
continue. Les propriétés suivantes sont équivalentes.

(i) L’application f est propre.

(ii) Pour tout espace topologique Z, 'application f xidz : (z,2) — (f(z),2) de X x Z dans
Y x Z est fermeée.
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(iii) Pour tout espace topologique séparé Z, Vapplication fxidy : (z,z) — (f(x),2) de X x Z
dans Y x Z est propre.

Démonstration. Montrons I'implication (i) = (ii). Soit Z un espace topologique, et posons
h = f xidz. Pour montrer que 'application h est fermée, d’aprés la proposition 1.3.6, il suffit de
montrer que pour tout (y,2) € Y x Z et pour tout ouvert U de X x Z tel que h~* ({(y, z)}) cU,
il existe un voisinage V de (y,2) dans Y x Z tel que h=1(V) C U. Soient (y,2z) €Y x Z et U un
ouvert de X x Z tel que h™!({(y,2)}) C U. Puisque h(X xZ) = f(X)x Z est une partie fermée de
Y x Z, il suffit de prendre y € f(X). Alorsona h™ ' ({(y,2)}) = f*({y}) x{z} C U, et f1({y})
est une partie compacte non vide de X. D’aprés la proposition 3.1.4, il existe un ouvert V; de X
contenant f~'({y}) et un ouvert V5 de Z contenant {z} tels que A ({(y,2)}) C Vi x Vo C U.
Comme f est fermée, il existe un voisinage W de y dans Y tel que f~1(W) C V1. Alors V = W x Vs
est un voisinage de (y,z) dans Y x Z tel que h™1(V) = f~Y(W) x Vo C Vi x Vo C U. Par
conséquent, h est une application fermée.

Preuve de (ii) = (i). En prenant Z l’espace topologique réduit a un seul point, ’espace X x Z est
homéomorphe & X, 'espace Y x Z est homéomorphe & Y et f x idy est identifiée & 'application
f. Alors on en déduit que f est une application fermée.

Maintenant, soient Z un espace topologique quelconque, h = f xidz et yo € Y, on a h= ! ({yo} x
Z) = [~ "{yo}) x Z. Soit hg = hyynrxz = f {yo}) X Z — {yo} x Z, la restriction de h, alors
ho est une application fermée. Soit py : {yo} x Z — Z la projection, alors pg est une application
fermée. Par conséquent, ppo hg : f~1({yo}) X Z — Z est une application fermée. Or pg o hg
n’est autre que la projection canonique sur Z, il résulte alors du théoréme 3.2.4 que f~'({yo})
est une partie compacte de X. Par conséquent, f est une application propre.

Preuwve de (i) = (iii). Soit Z un espace topologique séparé. Il résulte de l'implication (i) =
(ii) que lapplication h = f x idz est fermée. Comme h est continue, il reste & montrer que pour
tout (y,2) € Y x Z, h=*({(y,2)}) est une partie compacte de X x Z. Or on a h™* ({(y,2)}) =
F({y}) x {2z}, et f~*({y}) est une partie compacte de X, donc h='({(y,2)}) est une partie
compacte de X x Z. Par conséquent, h = f x idz est une application propre.

Enfin, pour montrer 'implication (iii) = (i), il suffit de faire le méme raisonnement que dans
la preuve de l'implication (ii) = (i). [

Théoréme. Soient X un espace localement compact, R une relation d’équivalence dans X,
G(R) son graphe dans X x X et ¢ : X — X/R l'application quotient. Soient X = X U {oco}
le compactifié d’Alexandroff de X et R la relation d’équivalence dans X dont le graphe est
G(R) U {(00,00)}. Les propriétés suivantes sont équivalentes.

(

i) L’application quotient ¢ est propre.
(ii) Le saturé pour R de toute partie compacte de X est un ensemble compact.
(iii) La relation R est fermée.

\%

)
)
(iv) La restriction & G(R) de 'application (z,y) — y de X x X dans X est propre.
) La relation R est fermée et les classes suivant R sont compactes.

0

En outre, lorsque ces propriétés sont vérifiées, alors ’espace X/R est localement compact.

Démonstration. Montrons Uimplication (i) = (ii). Rappelons d’abord que le saturé pour
R d’un ensemble A de X est ’ensemble ¢~ '(g(A)). Si ¢ est propre, d’aprés le théoréme 3.7.1,
lespace quotient X/R est séparé. Soit K une partie compacte de X. Comme ¢ est continue,
alors ¢(K) est une partie compacte de X/R. D’aprés le théoréme 3.7.2, ¢! (q(K)) est une partie
compacte de X.
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Prewve de (ii) = (iii). Soit F une partie fermée de X, donc F est une partie compacte de X.
Si co & F, alors F' est une partie compacte de X et le saturé de F' pour Ro est q Y (q(F)).
Donc g~ 1(g(F)) est une partie compacte de X, d’ott ¢~ 1(q(F)) est fermée dans X. Supposons
que 0o € F et soit A = F\ {oo}. Le saturé de F' pour Rog est ¢ '(g(A)) U {oo}. Pour montrer
que ¢ 1(g(F)) U {oo} est fermé dans X, il suffit de montrer que ¢~ '(g(A)) est fermé dans X,
voir remarque 3.5.1. D’aprés le lemme 3.7.2, ¢~ 1(q(A)) est fermé dans X si et seulement si pour
toute partie compacte K de X, ¢ (q(A)) N K est fermé dans X. Soit K une partie compacte

de X.On a : @A) NEKE = ¢ Y(q(A)Ng (g(K)NK
= ¢ (g(A K)NK
= ¢ (q(4) Nala M (@(K)))) NK
= o (a(Ang N a(K)) N K

)

= ¢ Yq(Fng(g(K))
—1

)) N K est compact dans X,
) est fermé dans X. Donc la

Comme F N g 1 (g(K)) est une partie compacte de X, alors ¢~ (g
donc ¢ 1(q(A)) N K est fermé dans X. Par conséquent, ¢~ (q(A
relation R, est fermeée. B

Preuve de (iii) = (iv). Comme X est compact, d’aprés la proposition 3.7.4, la projection cano-
nique ps : (7,y) — y de X x X dans X est propre. Comme R est fermée, D’aprés le théoréme
3.8.1, G(R) = G(R) U{(c0,00)} est fermé dans X x X. D’aprés le lemme 3.7.1, la restriction
de ps & G(R) U {(00,00)} est propre. Comme on a py ' (X) = G(R), appliquons une fois de plus
le lemme 3.7.1, on déduit que l'application (x,y) — y de G(R) dans X est propre.

Preuve de (iv) = (v). Par hypothése, application p : (z,y) — y de G(R) dans X est propre.
pour tout y € X, ona p~ ({y}) = ¢~ ({g(y)}) x {y}, donc ¢~ ({g(y)}) x {y} est une partie com-
pacte de G(R), d’oit ¢~'({q(y)}) est une partie compacte de X. Donc les classes d’équivalence
suivant R sont compactes. Soit F' un fermé de X, alors (F' x X) N G(R) est fermé dans G(R).
Or on a ¢ 1(q(F)) = p((F x X)NG(R)), donc ¢~ 1(g(F)) est fermé dans X. Par conséquent, g
est une application fermeée.

L’implication (v) == (i) est triviale. N

Lorsque ces propriétés sont vérifices, on déduit du théoréme 3.8.1 que I'espace X / Roo est com-
pact. Si ¢ : X — X /R est I'application quotient, alors ¢(X) est un ouvert de X /Ro, car
X = ¢ 1q(X)) est ouvert dans X, donc ¢(X) est localement compact. Comme X est saturé
pour R et ouvert dans X, d’apres le corollaire 1.4.3, 'espace quotient X/R est homéomorphe
a ¢(X), donc X/R est localement compact. [

)
)N
(A
)

Supplément d’exercices

Exercice 3.38. Soit (Xn) une suite d’ensembles non vides. On pose E = [] X,,. Pour deux

n>1
éléments quelconques distincts = (2y,)n>1 €t y = (Yn)n>1 de E, soit k(z,y) le plus petit entier

n > 1 tel que x,, # Y. Soit :

n>1

d(z,y) = si x££y et d(xz,z) =0.

1
k(z,y)

1. Montrer que d est une distance ultramétrique sur E et que l'espace métrique (E, d) est
complet.
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2. Montrer que (E, d) est compact si et seulement si X, est fini pour tout n > 1.

3. Montrer que (F, d) est localement compact si et seulement si X, est fini pour tout n > 1,
sauf peut-étre pour un nombre fini de valeurs de n.

Solution. 1. On fait exactement le méme raisonnement comme dans 1’exercice 2.19.
2. Supposons d’abord que (E, d) est compact. Soit N > 1. Alors il existe n,...,m, € E tels

P
que E = UlB(m,%). On a n; = (zin)n>0, avec z;, € X,. Soit a € Xy. Supposons a ¢
1=

{zi,N, ... zp N}, et soit 1 = (Yn)n>o € E, avec ynv = a et y, = X1y, si n # N. Alors on a
d(ni,m) > %, pour tout i € {1,...,p}, ce qui est impossible. Donc on a Xy = {z1 n,...,2p N}
Par conséquent, pour tout n > 1, X,, est fini.

Réciproquement, supposons que pour tout n > 1, X, est fini. Comme (F, d) est complet, pour
montrer que (E, d) est compact, il reste & montrer que (E, d) est précompact. Soit € > 0.
Alors il existe N > 1 tel que % < &. Pour tout n > N, on fixe a,, € X,,. Soit F' = {z =
(Zn)n>1 € E ; xp = ay, pour tout n > N}. Alors F' est un sous-ensemble fini de (E, d) et on a

E = UFB (x,¢), donc (E, d) est précompact. Par conséquent, (E, d) est compact.

fAS]
3. Supposons d’abord que X, est fini pour tout n > 1, sauf peut-étre pour un nombre fini de
valeurs de n. Autrement dit, il existe N > 1 tel que pour tout n > N, X, soit fini. Soient

N

X =[[XnetY = ][] X, Pour deux éléments quelconques distincts x = (zp,)1<n<n et
n=1 n>N+1

Y = (Yn)1<n<n de X, soit k(x,y) le plus petit entier n € {1,..., N} tel que z,, # yn. Soit :

dy(z,y) =

1
si x#y et di(x,x) =0.
k(z,y)
Alors dj est une distance ultramétrique sur X. Soient x € X et € > 0 tel que € < % Alors on a
B(z,e) = {z}, donc (X, dy) est localement compact.
De méme, pour deux éléments quelconques distincts z = (zp)n>N+1 €6 ¥ = (Yn)n>nN+1 de Y, soit
k(z,y) le plus petit entier n > N + 1 tel que x,, # y,,. Soit :

do(z,y) = si x £y et do(x,z) =0.

k(z,y)
Alors dy est une distance ultramétrique sur Y. On déduit de 2 que (Y, d2) est compact. On munit
Pespace produit X x Y de la distance do ; doo((m,y), (m’,y’)) =

max (dl(:r,:r’),dg(y,y’)). Alors 'application naturelle de (F, d) sur (X X Y, dy,) est une isomé-
trie, donc c¢’est un homéomorphisme. On en déduit que (E, d) est localement compact.
Réciproquement, supposons que (E, d) est localement compact. Soit x = (z,,)n>0 € E, alors il
existe € > 0 tel que B’(z,¢) soit compact. Soit N > 1 tel que % < e.Soit F={y = (zn)n>0 €

E; y, = zp, avec 1 < n < N}. Alors F est fermé dans (E, d) et on a F C B'(z,¢), donc F
N

est compact. D’autre part, F' est homéomorphe & [[{z,} x ][] Xp.On déduit de 2 que pour
n=1 n>N+1

tout n > N + 1, X,, est fini.

Exercice 3.39. Soit (X, d) un espace métrique. Montrer que les propriétés suivantes sont équi-
valentes.

(i) L’espace métrique (X, d) est précompact.
(ii) De toute suite de points de X, on peut extraire une suite de Cauchy.

(iii) Pour tout € > 0, si F' est une partie de X telle que pour tout z,y € F, avec = # y, on ait
d(xz,y) > ¢, alors F' est finie.
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Solution. Montrons 'implication (i) = (ii). Soit (2 )n>0 une suite dans X. Soit € > 0. Comme
p

(X, d) est précompact, alors il existe a1, ...,a, € X tels que X = 4U1B (ai, %) On en déduit qu’il
=

existe i € {1,...,p} et qu’il existe un sous-ensemble infini A, de N tel que pour tout n € A,
on ait x, € B(ai, %) Donc, pour tout n,m € A., on a d(xy,, ;) < €. Ainsi, on a montré que
pour tout € > 0, il existe un sous-ensemble infini A, de N tel que pour tout n,m € A., on ait
d(xy,xm) < €. On va montrer par récurrence qu’il existe une sous-suite (z,, )r>0 telle que pour
tout k& > 0, on ait d(wp,,p,,,) < 2% En effet, soit g =1 = 2%, alors il existe un sous-ensemble
infini Ag de N tel que pour tout n,m € Ay, on ait d(xy,, x,,) < 9. On pose ng = min(Ap). Soit
€1 = % Comme By = Ag\ {ng} est un sous-ensemble infini de N, alors il existe un sous-ensemble
infini A; C By tel que pour tout n,m € Aj, on ait d(z,,zy) < £1. On pose n; = min(A4;). Soit
k > 1 et supposons construits ng,...,ng_1 dans N et supposons construits des sous-ensembles
infinis Ay, ..., A1 de N tels que Ag C ... C Ag_1, n; = min(4;), avec 0 < i < k—1, et tels que
pour tout tout n,m € A;, on ait d(z,, Tm) < % On pose By, = A1 \ {nk_1} et e = 2% Alors
il existe un sous-ensemble infini Ay C By tel que pour tout n,m € A, on ait d(xy,, ) < 2% On
pose alors ny = min(Ay). Ainsi, on construit une sous-suite (x,, )r>0 telle que pour tout k& > 0,
on ait d(zy,, Tn, ) < 2% On en déduit que (zp, k>0 est une suite de Cauchy, voir exercice 2.20.
Montrons 'implication (ii) = (iii). Soient £ > 0 et F' une partie de X telle que pour tout
x,y € F, avec © # y, on ait d(z,y) > €. Si F est infinie, alors il existe une application injective
¢ : N — F. Pour tout n > 0, soit z, = ¢(n), alors (z,),>0 est une suite dans X telle que
pour tout n,m € N, avec n # m, on ait d(xy, x,,) > €. Par conséquent, la suite (,)n>0 n’admet
aucune sous-suite de Cauchy, ce qui contredit I’hypothése. Donc F' est bien une partie finie.

Montrons 'implication (iii) = (i). Si (X, d) n’est pas précompact, alors il existe £ > 0 tel que
pour toute partie finie G de X, on ait X # LGJGB(m,E). Autrement dit, il existe € > 0 tel que

x

pour toute partie finie G de X, il existe x € X tel que d(z,a) > ¢, pour tout a € G. Soit zy € X,
alors il existe x1 € X tel que d(zg,x1) > €. Ensuite, il existe zo € X tel que d(xg,x2) > € et
d(x1,x2) > . Ainsi de suite, on construit par récurrence une suite (x,),>0 de X telle que pour
tout n,m € N, avec n # m, on ait d(x,,x,,) > . Donc ensemble F' = {z,, ; n > 0} est infini
et pour tout z,y € I', avec x # y, on ait d(z,y) > §, ce qui contredit I'hypothese. Donc (X, d)
est bien précompact.

Exercice 3.40. Soit (X, d) un espace métrique non complet. Il s’agit de montrer qu'’il existe
une fonction continue non bornée de X dans R. Soit (z)n>0 une suite de Cauchy dans X, non
convergente.

1. Montrer que pour tout z € X, la suite (d(x, xy,))n>0 est convergente vers un réel g(z) > 0.

2. Montrer que l'application h : z +—— Wlx) est continue de X dans R et qu’elle n’est pas
bornée.

Solution. 1. Soit x € X. D’apres l'inégalité triangulaire, voir proposition 2.1.1, pour tout n,m &

N, on a |d(:1:,:13n) - d(a:,ajm)‘ < d(zy, ). Par conséquent, la suite (d(aj,a:n))n>0 est de Cauchy

dans R, donc convergente car R est complet. Pour tout = € X, on pose g(z) = lir}rl d(x,zy),
n—-+0o

alors on a g(z) > 0. Soit x € X. Si g(x) = 0, alors la suite (z,,)n>0 converge vers z dans (X, d),
ce qui est impossible. Donc on a g(x) > 0, pour tout z € X.
2. Montrons que g est continue. Soit (@, )m>0 une suite dans (X, d) convergeant vers un élément

a € X. Autrement dit, on a lim d(a,a,,) = 0. Il s’agit de montrer que 'on a lim g(a,,) —
m—r+00 m—r+00

g(a) =0.0nag(am)—g(a) = ngr}rloo [d(am, zn)—d(a, z,)], dott |g(am)—g(a)| = ngr}rloo |d(am, zn)—
<

d(a,mn)|. D’autre part, pour tout n,m € N, on a !d(am,xn) - d(a,mn)| d(a,an,). Soit € > 0.
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Alors il existe my € N tel que pour tout m > myg, on ait d(a,a,,) < €. D’oit pour tout n > 0 et
pour tout m > mg, on a ‘d(am,xn) — d(a,mn)| < €. Par conséquent, pour tout m > mg, on a
lg(am) —g(a)| < e. Donc la suite (g(am))m>0 converge vers g(a). On en déduit que g est continue.
Ensuite, 'application h : x —— ﬁ est continue de X dans R, voir proposition 1.3.2. Il reste &
vérifier que h n’est pas bornée. Soit A > 0. Comme (x,,),>0 est de Cauchy, alors il existe N € N
tel que pour tout n > N, on ait d(zn,2,) < %, dott g(zy) < %. Donc on a h(zy) > A. Par
conséquent, ’application h n’est pas bornée.

Exercice 3.41. Soit (X, d) un espace métrique non précompact. Il s’agit de montrer qu’il existe
une fonction continue non bornée de X dans R. D’apreés ’exercice 3.39, il existe un réel » > 0 et
une suite (zp)n>0 dans X telle que, pour tout n,m € N, avec n # m, on ait d(zy, xy,) > r.
1. Montrer qu'il existe une fonction f : X — R telle que f(z) = n(§ —d(z,z,)) sid(z,z,) <
z et f(x) =0, si pour tout n € N, on ait d(x,z,) > .
2. Montrer que f est continue de X dans R et qu’elle n’est pas bornée.

Solution. 1. Pour tout n > 0, soit B,, = B(.’L‘n, %) Puisque, pour tout n,m € N, avec n # m, on
a d(zy,2y) >, alorson a B,N B, =0,sin #m. Soit U = L>JOBn, alors U est un ouvert de X.
n

Soit z € U, alors il existe un unique n > 0 tel que x € B,. On pose alors f(z) = n(% —d(x, .’L‘n))
Size F=X\U,onpose f(x) =0. Alors f est une fonction bien définie de X dans R telle que
f(x) =n(f —d(x,z,)) sid(z,z,) < % et f(z) =0, si pour tout n € N, on ait d(z,z,) > %. En
plus, une telle fonction est unique.

2. Puisque l'on a f(x,) = ng, pour tout n > 0, alors f n’est pas bornée. Comme pour tout
n >0, f|, est continue et que By, est un ouvert de X, alors f est continue en tout point de U,
voir proposition 1.4.3. Il reste & montrer la continuité de f en tout point de F. Soient € F' et
B= B(x, g) . Alors seulement deux cas peuvent se présenter :

Premier cas : pour tout n > 0, on a BN B, = 0. Alors on a B C F et Jlz = 0, donc [ est
continue en x car B est un ouvert de X.

Deuzieme cas : il existe un unique N € N tel que BN By # 0 et donc, pour tout n # N, on a
BN B, =0.Sid(x,zN) > %, alors il existe s € R tel que 0 < s < £ et B(z,s)N By =0, d’ott on
a f'B(z,s) =0, donc f est continue en x car B(z,s) est un ouvert de X. Donc, on peut supposer
d(z,rN) = 5. Soit (ap)p>0 une suite dans X convergeant vers x. Alors il existe po € N tel que

pour tout p > pg, on ait a, € B. Soit ¢ > 0. Comme la suite (d(ap,ajN))p>0 converge aussi
vers d(r,zy) = 3, alors il existe p1 € N tel que pour tout p > p1, on ait ‘d(ap,a;N) — %‘ < %
Soit p > max(pg,p1). Si ap & By, alors on a f(ay) = 0 = f(x). Si a, € By, alors on a

flap) = N(g - d(ap,a:N)), d’ou |f(ap) — f(z)| = |f(ap)| < €. Par conséquent, la suite (f(ap))p>0
converge vers f(x). Donc f est continue en x. D’ou la continuité de f.

Exercice 3.42. Soit (X, d) un espace métrique. Montrer que les propriétés suivantes sont équi-
valentes.

(i) L’espace (X, d) est compact.
(ii) Pour tout espace métrique (Y, d') et toute application continue f : X — Y, f(X) est
fermé dans Y.
(iii) Toute fonction continue f: X — R est bornée.
Solution. L’implication (i) = (ii) résulte du théoréme 3.2.1.
Montrons I'implication (ii) == (iii). Soit f : X — R une fonction continue. Soit ¢ : R — S

2 -1
définie par p(z) = ( R

PR 2—_1_1), pour tout & € R. Alors ¢ réalise un homéomorphisme de
x x
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R sur S\ {(0,1)}, voir exemple 3.5.2. Par hypothése, ¢(f(X)) = (¢ o f)(X) est fermé dans S.
Donc ¢(f(X)) est un compact, d’ou f(X) est une partie compacte de R. Donc f(X) est bornée.
Montrons I'implication (iii) = (i). Par hypothése, toute fonction continue de X dans R est bor-
née. On déduit alors des exercices 3.40 et 3.41 que (X, d) est complet et précompact. Il résulte
alors du théoréme 3.1.3 que (X, d) est compact.

Exercice 3.43. Soit (X, d) un espace métrique. Montrer que X est compact si et seulement si
tout sous-espace discret et infini de X est non fermé dans X.

Solution. Supposons d’abord que (X, d) est compact. Soit Y un sous-espace discret et infini de
X. SiY était fermé dans X, alors Y serait compact, ce qui est impossible, voir exemple 3.1.1.
Donc Y n’est pas fermé dans X.

Réciproquement, supposons que tout sous-espace discret et infini de X est non fermé dans X. Si
(X, d) n’est pas précompact, d’aprés 'exercice 3.39, il existe € > 0 et un sous-ensemble infini F’
de X tel que pour tout z,y € F, avec x # y, on ait d(x,y) > . Alors F est fermé dans (X, d),
voir exercice 2.25, et F' muni de la topologie induite par X est discret, ce qui contredit I’hypo-
thése. Donc (X, d) est précompact. Si (X, d) n’est pas complet, il existe une suite de Cauchy
(@ )n>0 non convergente dans (X, d). Il résulte de l'exercice 2.24 que A = {x,, ; n > 0} est infini
et fermé dans (X, d) et que A muni de la topologie induite par X est discret, ce qui contredit
I’hypothése. Donc (X, d) est complet. Par conséquent, (X, d) est compact.

Exercice 3.44. Soient X un espace localement compact et X, son compactifié d’Alexandroff.
Montrer que les propriétés suivantes sont équivalentes.

(i) X est dénombrable & l'infini.
(ii) {oo} posséde un systéme fondamental dénombrable de voisinages dans Xo,
Solution. Montrons 'implication (1) = (ii). Soit (K}, )nen une suite de compacts de X telle

que pour tout n € N, on ait K, CKnH et X = U Kn, voir théoréme 3.4.2. Pour tout n € N,

soit V,, = X \ Ky, alors V,, est un ouvert de X et (V)nen est un systéme fondamental
dénombrable de voisinages de {oco} dans Xoo. En effet, smt V un ouvert de X, contenant {oo},

[0) (o]
alors K = X, \ V est un compact de X. On a X = oLjO K, et ( K, )nGN est une suite croissante,
n—=

done il existe un n > 0 tel que K C Ky, d'ott Vi, © Xoo\ Kn C Xoo \ K = V.

Montrons I'implication (ii) = (i). Soit (V},)nen un systéme fondamental dénombrable de voisina-
ges ouverts de {oo} dans Xo. Pour tout n € N, soit K,, = X \ Vi, alors K, est une partie
compacte de X. Puisque X, est séparé, alors on a ngoVn = {0}, d’ou :

X = Xoo \ {00} = Xoo \ngovn = nSOXm \ V= ngoKn.
Donc X est dénombrable a l'infini.

Exercice 3.45. Soient X un espace localement compact et non compact, ¥ un espace topolo-
gique, yo € Y et f : X — Y une application continue. On note X = X U {oo} le compactifié
d’Alexandroff de X. Montrer que les conditions suivantes sont équivalentes.

(i) L’application f admet en {co} la limite yq.

(ii) L’application f: X — Y telle que, pour tout z € X, on ait f(m) = f(z) et f(o0) = yo
est continue.
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(iii) Pour toute partie fermée F de Y ne contenant pas %o, 'ensemble f~1(F) est un compact
dans X.

Solution. L’équivalence (i) <= (ii) résulte du corollaire 1.6.1.

Montrons I'implication (ii) = (iii). Soit F' une partie fermée de Y ne contenant pas yo. Alors
V= Y\ F est un ouvert de Y contenant yo. Comme f est continue, alors f L(V) est un ouvert de
X contenant {oo}, done X \ f~1(V) est un compact dans X. Orona X\ f~1(V) = f~1(Y\V) =
f~YF) = f~YF), donc f~(F) est un compact dans X.

Montrons I'implication (iii) == (i). Soit V' un voisinage ouvert de yo dans Y, alors F' = Y\ V est
un fermé de Y ne contenant pas yo. Donc f~!(F) est un compact dans X. Soit W = X \ f~1(F),
alors W est un ouvert de X contenant {oo} et on a f(W N X) C V, donc yo est une limite de f
en {oco}.

Exercice 3.46. Soient X un espace topologique séparé et D une partie dense dans X telle que
D # X. Soient Y un espace topologique et f : D — Y une application propre. Montrer qu’il
n’existe aucune application continue de X dans Y prolongeant f.
Solution. Supposons le contraire, et soit g : X — Y une application continue prolongeant f.
Soient # € X \ D et Z = D U {z}. Comme I'adhérence de D dans Z est DNZ =XNZ = Z,
voir exercice 1.26, alors D est dense dans Z. Notons aussi que la restriction de g & Z est continue
et prolonge f. Par conséquent, sans perdre de généralité, on peut supposer X = D U {x}, ou
x ¢ D. Par hypothése, f~1({g(x)}) est une partie compacte de X et = & f~1({g(x)}), donc il
existe deux ouverts disjoints U et V de X tels que x € U et f~*({g(x)}) € V. Comme D\ V
est fermé dans D, alors f(D \ V) est fermé dans Y, donc g !(f(D \ V)) est fermé dans X.
Dottona D\V C g~ (f(D\V)). Comme z & g~ (f(D\ V)), car g(z) € f(D\ V), alors on a
“Y(f(D\V))c D,donc D\V Cc D.OnaD = (D\V)UV,doa D=D\VUV. Comme
x ¢V, alors D C D. Par conséquent, on a X = D, ce qui est impossible. Donc il n’existe aucune
application continue de X dans Y prolongeant f.

Exercice 3.47. Soit X un espace localement compact. Montrer que les propriétés suivantes sont
équivalentes.

(i) X est dénombrable & l'infini.
(ii) Il existe une application propre f : X — [0, +o0].

Solution. Montrons U'implication (ii) = (i). Soit f : X — [0, +oo] une application propre.
Pour tout n > 0, soit K, = f_l([O, n]), alors K, est une partie compacte de X, voir théoreme

3.72, et ona X = :L:j)OKn. Donc X est dénombrable a I'infini.

Montrons 'implication (i) = (ii). D’apres le théoréme 3.4.2, il existe une suite (Kp)nen de
compacts de X telle que pour tout n € N, on ait K,, C Kn+1 et X = U K,,. D’aprés le théoréme
3.6.1 pour tout n > 0, il existe une application continue f,, : X — [O 1] telle que f,,(xz) = 1 pour
tout x € K,, et Supp(fn) CK:H. Pour tout n > 0 et pour tout = € X, on pose g, (z) = 1— fn( ).

Alors gy, est une fonction continue de X dans [0, 1] telle que g5, = 0. On pose f = Zgn,

n=0
alors f est une application propre de X dans [0, +00[. En effet, soit 2z € X, alors il existe N € N

tel que z € Ky, d’ou on a g,(z) = 0 pour tout n > N, donc f est bien définie et & valeurs

[}
dans [0, +o00[. Comme on a X = OLjO K11, pour montrer que f est continue, il suffit de montrer
n=

[¢]
que la restriction de f a chaque K41 est continue. Soit n > 0, pour tout p > n, la fonction g,

© Dunod, 2011 - Topologie et espaces normés - Nawfal El Hage Hassan



51

est nulle sur K,:H, donc la restriction de f & K;H est la somme d’une suite finie de fonctions
continues, donc elle est continue. Par conséquent, f est continue sur X. Soit K un compact de
[0, +0o[. Alors il existe N € N tel que K C [0, N]. Soit € f~1(K), alors on a f(z) < N. Si
x € X \ Kn41, alors pour tout n € {0,...,N}, on a g,(x) =1, don f(z) > N + 1, ce qui est
impossible. Donc on a x € Ky 1. Autrement dit, on a f~'(K) C Ky41. Comme f est continue,
alors f~1(K) est fermé dans X, d’ott f~!(K) est compact. Il résulte du théoréme 3.7.4 que f est
une application propre.

Exercice 3.48. On munit R de la topologie usuelle et soit f : R — R une application continue.
Montrer que les propriétés suivantes sont équivalentes.

(i) f est une application propre.

(ii) | |lim |f(z)] = oo, i.e. pour tout A > 0, il existe B > 0 tel que pour tout z €
x| —+00
R\ [-B, B], on ait |f(z)| > A.

Solution. Montrons l'implication (i) = (ii). Soit A > 0, alors f~*([—A, A]) est une partie com-
pacte de R, donc il existe B > 0 tel que f_l([—A, A]) C [-B, BJ, d’ou pour tout x € R\[-B, B],
ona |f(x)]>A. Doncona lim |f(z) = +o0.

|z|—+o0

Montrons I'implication (ii) == (i). Soit K une partie compacte de R, alors K est fermée dans R,
d’ott f~1(K) est fermé dans R. Soit A > 0 tel que K C [—A, A]. Alors il existe B > 0 tel que pour
tout € R\[-B, B], on ait | f(z)| > A, dou f~1(K) C [-B, B], donc f~1(K) est fermé et borné
dans R. Par conséquent, f~!(K) est une partie compacte de R, donc f est une application propre.

Exercice 3.49. Soient (Y, d) un espace métrique et f : R — Y une application continue et

admettant des limites en —oo et +00. Montrer que f est uniformément continue sur R.

Solution. On donne deux méthode pour faire cet exercice.

Premiére méthode : puisque f est continue et admet des limites en —oo et 400, d’aprés le corol-

laire 1.6.1, f se prolonge par continuité en une application continue f de la droite réelle achevée R

dans Y. Comme R est un espace métrique compact, voir exemple 2.4.2, alors f est uniformément

continue. Par conséquent, f est uniformément continue.

Deuziéme méthode : soient £; = lim f(x) et /o = lim f(z). Soit ¢ > 0, alors il existe
r—r—00 r—r+00

A, B € R tels que A < B et pour tout x < A, on ait d(f(x),1) < § et pour tout x > B, on ait
d(f(z),f2) < 5. Comme [ est uniformément continue de [A — 2, B + 2] dans Y, alors il existe
0 < n < 1 tel que pour tous z,y € [A — 1, B + 1] vérifiant |z — y| <, on ait d(f(z), f(y)) <

Soient x,y € R tels que [z —y| < n. Siz < A—1,alors y < Aet on ad(f(zx)l1) < 5 et
d(f(y), 1) < §, dou d(f(z), f(y)) <e. Sizc[A—-1,B+1],alorsy € [A—2, B+2]etona
d(f(z), f(y)) <e Six>B+1,alors y > B et onad(f(z)l2) <5 etd(f(y),l2) <5, don
d(f(z), f(y)) < e. Par conséquent, pour tout ¢ > 0, il existe n > 0 tel que pour tous z,y € R
vérifiant |z — y| < n, on ait d(f(x), f(y)) < e. Autrement dit, f est uniformément continue.

Exercice 3.50. Soit f : R — R une fonction continue et tendant vers 0 & I'infini.
1. Montrer que f est bornée et uniformément continue.
2. Montrer que si f prend des valeurs positives et négatives, alors f atteint ses bornes.

Solution. 1. Le fait que f est uniformément continue résulte de ’exercice précédent. Le fait que f
est bornée résulte de la remarque 3.6.1, mais donnons une preuve directe ici. Puisque f tend vers
0 al'infini, il existe A > 0 tel que pour tout € R\[—A, A], on ait |f(z)| < 1. Comme f est conti-
nue sur le compact [—A, A], d’aprés le théoreme 3.2.2, il existe a, € R tels que a < f(z) < S,
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pour tout x € [—A, A]. Par conséquent, pour tout z € R, on a |f(z)| < max{1,|al,|5|}. Donc f
est bornée.

2. Soient a,b € R tels que f(a) < 0 et f(b) > 0. Soit M = inf(—f(a), f(b)) > 0, alors il existe
A > 0 tel que pour tout z € R\ [—-A, A], on ait |f(z)] < M. D’ou pour tout z € R\ [—-A, 4],

on a f(a) < f(x) < f(b). Par conséquent, a,b € [—A, A] et on a inlf&f(m) = [inj A]f(m) et
e rE[—A,

sup f(z) = sup f(x). Comme [—A, A] est compact, on déduit du théoréme 3.2.2 qu’il existe

z€eR z€[—A, A]

xo,x1 € [—A, A] tels que f(xo) = inf f(x) et f(z1) = sup f(z).
zeR z€R

Exercice 3.51. Montrer que la fonction racine carrée f : t — /t de [0, +o0o[ dans R est uni-
formément continue sur [0, +o0o[. Montrer qu’elle n’est pas lipschitzienne sur ]0, +o0o].
Solution. Comme f est continue sur le compact [0, 2], alors f est uniformément continue sur
[0, 2], voir théoréme 3.2.3. Comme f est dérivable sur |0, +00[ et sa dérivée est bornée sur
[1, +00[, alors f est uniformément continue sur [1, +o0o], voir proposition 2.3.3. Par conséquent,
f est uniformément continue sur [0, +oo[. Si f était lipschitzienne sur |0, 400, il existerait une
constante k£ > 0 telle que pour tous z,y €0, +-oc[, on ait |/ — \/y| < k|z — y[. On en déduit

quel’ona‘,/n%rl—\/g Sk‘n%rl—%! pour tout n > 1. Donc onalgk[\/%ﬂ—i-\/%],pour

tout n > 1, ce qui est impossible car lim [1 / n%rl + \/I} = 0. Donc f n’est pas lipschitzienne

n——+00 n
sur |0, +o0/.

Exercice 3.52. Soit f : [0, 1] — R une fonction définie par :

0 si t=0,

f(t) =
tsin (%) si t#0.

Montrer que f est uniformément continue sur [0, 1], mais n’est pas lipschitzienne.

Solution. Comme [0, 1] est compact et f est continue, alors f est uniformément continue sur
[0, 1]. Si f était lipschitzienne, il existerait une constante k > 0 telle que pour tous ¢, s €]0, 1],
f&) = 1(s)

t—s

Par conséquent, pour tout s €10, 1], on a |f'(s)| < k. Or, pour tout s €]0, 1], on a f'(s) =
sin (1) — 2cos (1), donc si s, = on a |f'(sp)| = 2mn, d’ou la contradiction. Donc f n’est
pas lipschitzienne.

on ait |f(t) — f(s)] < k|t — s|. Donc pour tous t,s €]0, 1], avec ¢t # s, on a < k.

1
2mn?

Exercice 3.53. Distance de Hausdorff. Soient (X, d) un espace métrique non vide et ‘H
I’ensemble des sous-ensembles fermés bornés non vides de X. Pour tous A, B € H, on pose :

p(A,B) = sggd(x,B) et D(A,B) =max(p(A,B),p(B,A))

1. Montrer que D est une distance sur H; D est appelée la distance de Hausdorff.
2. Montrer que = — {x} est une application isométrique de (X, d) dans (H, D).

3. Montrer que (X, d) est précompact si et seulement si, pour tout € > 0, il existe une partie
finie non vide A de X telle que D(X,A) <e.

4. Supposons (X, d) précompact. Soient € > 0 et A une partie finie non vide de X telle que
X = UAB’(a,E).
ac
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(i) Soit B € H et posons C = {:13 € A; d(x,B) < 5}. Montrer que C est une partie
fermée bornée non vide de X et que D(B,C) <e.

(i) En déduire que (H, D) est précompact.
5. On suppose (X, d) complet. Soit (A, )n>0 une suite dans (#, D) telle que pour tout n > 0,
on ait D(A,, Apt1) < 27™. Pour tout n > 0, soit F,, = kg Ap et F = QOF"' Montrer que
n n

F est une partie fermée bornée non vide de (X, d) et que la suite (Anjnzo converge Vers
F. En déduire que (H, D) est complet.

6. Supposons que (X, d) est compact. En déduire que (H, D) est compact.

Solution. 1. D’aprés la proposition 2.2.4, pour toute partie non vide E de X, 'application
x +— d(z, F) est lipschitzienne de rapport 1, donc pour tous A, B € H, p(A, B) existe dans R ;.
Par conséquent, D est bien définie. Il est clair que 'on a D(A, B) = D(B,A), D(A,B) > 0 et
que D(A, A) = 0. Supposons que 'on a D(A,B) = 0, alors p(A,B) = 0 et p(B,A) = 0, d’on
pour tout x € A, on a d(x,B) = 0 et pour tout y € B, on a d(y,A) = 0. Comme A et B sont
fermés dans X, alors on a A = B. Il reste & montrer 'inégalité triangulaire. Soient A, B,C € H.
Pour tout = € A et pour tout y € B, on a d(z,C) < d(x,y)+d(y,C) < d(z,y)+ p(B,C), d’ou :

d(@,C) < inf {d(z,y) +p(B,C)} = Inf d(x,y) + p(B,C) = d(z, B) + p(B, C).

Donc on a p(A,C) < p(A, B) + p(B,C). Par conséquent, on a p(4,C) < D(A,B) + D(B,C).
De méme, on a p(C,A) < D(C,B) + D(B,A) = D(A,B) + D(B,C). Donc on a D(A,C) <
D(A,B)+ D(B,C). Donc D est bien une distance sur H.

2. Pour tout z,y € X, on a p({z},{y}) = d(z,y), d'ou D({z},{y}) = d(z,y). Donc x — {z}
est bien une application isométrique de (X, d) dans (H, D).

3. Supposons (X, d) précompact, alors pour tout € > 0, il existe une partie finie non vide A de X
telle que X = aLGJAB’(a,E). Soit x € X, alors il existe a € A tel que d(x,a) < e, d’on d(z, A) < e.

Donc on a p(X, A) <e. Comme on a p(A4,X) =0, alors D(X,A) <e.

Réciproquement, supposons que pour tout € > 0, il existe une partie finie non vide A de X telle
que D(X, A) < e. Soient € > 0 et A une partie finie non vide de X telle que D(X, A) < e. Alors,
pour tout x € X, on a d(z, A) <e. Comme A est finie, il existe a € A tel que d(z, A) = d(z,a),
d’ot d(x,a) <e. Donc on a X = aLGJAB’(a,E). Par conséquent, (X, d) est précompact.

4(i). Soient B € H et C = {x € A; d(x,B) < €}. Comme C est une partie finie, alors C
est bornée et fermée dans X. Soit b € B, alors il existe a € A tel que b € B'(a,e). D’ou on a
d(a,B) < d(a,b) <e, donc a € C. Par conséquent, C est non vide et on a d(b,C) < d(b,a) <,
d’ou p(B,C) < e. Pour tout x € C, on a d(z,B) < ¢, dou p(C, B) < e. Par conséquent, on a
D(B,C) <e.

4(ii). Soit C I'ensemble des parties finies non vides de A, alors C est un sous-ensemble fini de H
etona H = CEC'(C, e). Donc (H, D) est précompact.

5. Pour tout n > 0, on a D(A4,,Anr1) < 27", dou p(An, Apt1) < 27" Donc, pour tout
x € Ay, on a d(z, Apt1) < 27™. Par conséquent, pour tout = € A,, il existe y € A, 41 tel que
d(z,y) < 27". Ainsi, on trouve, par récurrence, une suite (a,),>0 telle que pour tout n > 0,
ap, € Ay et d(ap,any1) < 27" Comme (X, d) est complet, il résulte de 'exercice 2.20 que la

suite (an)n>0 est convergente. Soit a = lilgrl ap. Comme (F},),>0 est une suite décroissante de
- n—-—+oo -

parties fermées de X et pour tout n > 0, on a a,, € F,,, alors pour tout n > 0, on a a € F,,, donc
a € F. Par conséquent, F' est une partie fermée non vide de X. Soit € > 0, alors il existe N € N

tel que ZQ‘” < 5. Soit n > N. Soit x € F,on ax € F, :kg Aj.. Pour tout £ > n, on a
>n
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k—1 k—1
D(Aj, An) < ZD(ApaAerl) < 22_7’ < 5. D’ott pour tout k£ > n et pour tout z € A, on a
p=n p=n

d(z,An) < 5. Donc on a d(x, A,) < 5. On en déduit que F' est bornée et que p(F, A,) < §, pour
tout n > N. Soit y € A,. On pose a,, = y et on construit, comme ci-dessus, une suite (ax)g>n

telle que pour tout k > n, ar € Ag et d(ak,ary1) < 2=k Soit a = klim ag, alors a € F et il
—+00

k—1
existe k > n tel que d(a,a;) < §. On a d(y,a) < Zd(ai,ai+1) < 5, d’ou d(y,a) < e. Donc on
i=n

a d(y, F) < e. Par conséquent, on a p(Ay, F) < e. Finalement, on a D(A,,F) < ¢ pour tout
n > N. Autrement dit, la suite (A;,),>0 converge vers F'. Donc (H, D) est complet, voir exercice
2.20.

6. Si (X, d) est compact, alors (X, d) est précompact et complet. Il résulte de ce qui précéde que
(H, D) est précompact et complet, donc (#H, D) est compact.

Exercice 3.54. Soient (X, d) un espace meétrique compact, (Y, d’) un espace métrique. On

munit C'(X, Y), 'espace des applications continues de X dans Y, de la distance de la convergence

uniforme d, ; pour f,g € C(X, Y), on adu(f,g) = sup d'(f(z), g(z)). On munit 'espace produit
zeX

X x Y de la distance d ; di((z,y), (a,b)) = d(z,a) + d'(y,b), pour tous (z,y),(a,b) € X x Y.
Soit ‘H l’ensemble des sous-ensembles fermés bornés non vides de (X X Y, dj). On munit H de
la distance de Hausdorff associée a di. Soit G : C(X,Y) — H définie par : G(f) = Gy =
{(z, f(x)); v € X} le graphe de f.

1. Montrer que G est injective et lipschitzienne.
2. Soit Hg l'image de G. Montrer que G est un homéomorphisme de C(X, Y) sur H,.
Solution. 1. Soient f,g € C(X, Y). Pour tout z € X, on a :

di((z, f(2)), Gg) < di((z, f(2)), (z,9(x))) = d'(f(2),9(2)) < do(f, 9)

d’ou p(Gf,Gy) < doo(f,9). De méme, on a p(Gy,Gf) < doo(g, f) = doo(f,g). Par conséquent,
ona D(Gy,Gg) < doo(f,9). Donc G est lipschitzienne. Si on a Gy = Gy, alors pour tout x € X,
on a f(x) = g(z), dou f =g. Donc G est injective.

2. Soient f € C'(X,Y) et (fn)n>0 une suite dans C(X, Y) telle que (G, )n>0 converge vers Gy
dans (H, D). Soit € > 0. Comme f est uniformément continue, alors il existe 0 < 7 < 5 tel que
pour tous x,z € X vérifiant d(x,z) < 7, on ait d'(f(x), f(z)) < §. Comme (G, )n>0 converge
vers Gy, alors il existe N € N tel que pour tout n > N, on ait D(Gy,,Gy) <n < §. D’oit pour
tout n > N,ona p(Gy,,Gy) <n<5.0nap(Gy,,Gy) = supd; ((aj,fn(:r)),Gf), donc pour tout

zeX

n > N et pour tout x € X, on a dy ((a;,fn(a:)),Gf) < n. Donc, pour tout n > N et pour tout
z € X, il existe z, € X tel que d(z, z,) + d'(fn(x), f(2,)) < n. En particulier, on a d(x, z,) <,
d’ou d'(f(x), f(2n)) < 5. On en déduit que I'on a :

d(fn(2), f(2)) < d'(fu(x), f(2n)) + d'(f(2), f(zn)) <n+ 5 <e.

Donc, pour tout n > N, on a doo(fn, f) = supd(fu(z), f(z)) < e. Autrement dit, la suite
zeX

(fr)n>0 converge vers f dans (C(X,Y), dw). Par conséquent, G est un homéomorphisme de
C(X,Y) sur Hp.
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Exercice 3.55. Soit (X, d) un espace métrique localement compact séparable. Le but de cet
exercice est de montrer que le compactifié d’Alexandroff X = X U {oo}Nest métrisable . Autre-
ment dit, on veut définir sur X une distance qui induit la topologie de X. Soit (V},)n>0 une base
dénombrable d’ouverts de X, voir théoreme 2.2.1, et soit :

A={(p.q) € N*; V, C Vg et V, compact } .

L’ensemble A est dénombrable ; posons A = {(pn, qn) ; n > 0}. Pour tout n > 0, soit ¢, € C(X)
tel que 0 < ¢, <1, ¢, = 1 sur V},, et Supp(f) C V,,, voir théoréme 3.6.1. On pose ¢,(c0) =0,
voir remarque 3.6.1. Pour tout x,y € X, on pose :

n=0

1. Montrer que D est une distance sur X.

2. Soit (@, )m>0 une suite dans X. Montrer que ml_l)r}rloo D(zp,00) = 0 si et seulement si pour
tout compact K de X, il existe mg € N tel que pour tout m > mg, on ait z,,, ¢ K.

3. Soient (zm)m>0 une suite dans X et z € X. Montrer que ml_i}r}rlooD(xm,x) =0 si et

seulement si lim d(x,,z) =0
m——+00

4. Montrer que la topologie induite par D sur X est égale a la topologie de X.

Solution. 1. Ceci est trivial. N
2. Soit (zm)m>0 une suite dans X. Supposons d’abord que lim D(z,,00) = 0. Pour tout
- o0

m—+
o
Pn(Tm)
m >0, on a D(zy,,00) = Z nQnm
n=0
3.4.1, pour tout x € X, il existe n > 0 tel que x € V},, C m C V4,- On en déduit que si K

N
est un compact de X, alors il existe N € N tel que K C UOV”' Soit € > 0 tel que € < QLN
n=

. Comme X est localement compact, d’aprées le théoréme

o
x
Alors il existe mg € N tel que pour tout m > mg, on ait Z % =D

n=0
m > myg. Si x,, € K, alors il existe n € {0,..., N} tel que z,,, € V), d’ott ¢p(2,) = 1, donc
on a D(zy,,00) > 2% > QLN > g, ce qui est impossible. Par conséquent, pour tout m > mg, on a
xm & K.
Réciproquement, supposons que pour tout compact K de X, il existe mg € N tel que pour tout

(Tm,00) < €. Soit

(o]
N ___
m > my, on ait x,,, € K. Soit € > 0. Alors il existe N € N tel que Z 2% < e. Soit K = UOVPn.
n=
n=N
Alors K est un compact de X. Par hypotheése, il existe mg € N tel que pour tout m > my,
on ait z,, ¢ K. Alors pour tout n € {0,...,N} et pour tout m > myg, on a ¢,(x,,) = 0.

(o @] o0
T
Donc, pour tout m > myg, on a D(z,,00) = E w < E 2% < e. Par conséquent, on a
n=N

n=N
lim D(z,,00) =0.
m—+00

3. Soient (Z;,)m>0 une suite dans X et x € X. Supposons d’abord que 1_1>rJrr1 d(xm,z) = 0.
- m o0

1. Notons que si X est un espace localement compact et si X=X U{oo} est métrisable, alors X est métrisable
et séparable.
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Autrement dit, (2, )m>0 converge vers z dans (X, d). Soit € > 0. Alors il existe N > 1 tel que

o
E 2%<%.Ona:
n=N

on
n=N

IA
M1
s
N
2
>
&
+
NE
|1\:>

Comme pour tout n € {0,...,N — 1}, ¢,, est continue, alors il existe mg € N tel que pour tout

n

n € {0,...,N — 1} et pour tout m > my, on ait < 5. Par conséquent, pour

tout m > mp, on a D(xy,,x) < €. Autrement dit, on a lim D(xy,,x) = 0.
m——+0o0

Réciproquement, supposons que lim D(z,,z) = 0. On a D(x,,x
m—-+0oo

Si (Zm)m>0 ne converge pas vers z dans (X, d), alors il existe un voisinage compact W de x dans
(X, d) tel que pour tout mg € N, il existe m > my tel que z,,, € W. On en déduit qu'il existe
N € N tel que x € V), et tel que pour tout mg € N, il existe m > myg tel que x,,, € V,, . Par

lon(zm) —on(@)| _ 1

conséquent, pour tout mgy € N, il existe m > mg tel que D(xy,,x) > 9N = 5§,

ce qui est impossible. Donc (z,)m>0 converge bien vers x dans (X, d).

4. Puisque (X,d) est localement compact et séparable, il résulte de la proposition 3.4.4 que
X est dénombrable a l'infini. Par conséquent, tout point de X posséde une base dénombrable
de voisinages, voir théoréme 2.2.1 et exercice 3.44. On déduit alors du théoréme 1.7.3 et des
propriétés 2 et 3 ci-dessus que ’application identité

X — (X,D)
X — X

est un homéomorphisme. Par conséquent,la topologie induite par D sur X est égale & la topologie
de X.

Exercice 3.56. Soit (X, d) un espace métrique avec d bornée. Pour tout € X, on désigne par

fz la fonction réelle obtenue en prolongeant par continuité la fonction y — d(z,y) a 5(X).

1. Montrer que pour tous z € X,y € X et z € B(X), on a fu(2) + fy(z) > d(z,y) et
|fz(z) — fy(2)| < d(x,y). En déduire que pour tout z € X et pour tout z € S(X), on a

fﬂc(z) >0
2. Montrer que pour tous x € X et z € B(X) tels que z # x, on ait f,(z) > 0.
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Solution. 1. Soient z,y € X. Pour tout z € B(X), soit g(z) = fz(2) + fy(2), alors g est
une fonction continue de B(X) dans R et pour tout @ € X, on a g(a) = fu(a) + fyla) =
d(z,a)+d(y,a) > d(z,y). Donc g~ ([d(x,y), +o0[) est un fermé de B(X) contenant X. Comme
X est dense dans B(X), on en déduit que on a B(X) C g~ '([d(z,y), +oo[). Autrement dit,
pour tout z € B(X), on a fi(2) + fy(2) > d(z,y). De méme, pour tout z € B(X), soit
h(z) = | fz(2) — fy(2)|, alors h est une fonction continue de 5(X) dans R et pour tout a € X, on a
h(a) = |fz(a)— fy(a)| = |d(z,a)—d(y,a)| < d(z,y). Donc h=*([0, d(z,y)]) est un fermeé de B(X)
contenant X. Comme X est dense dans 3(X), on en déduit que 'on a S(X) C h_l([O, d(:c,y)])
Autrement dit, pour tout z € B(X), on a |fz(z) — fy(2)| < d(z,y). Pour tout « € X et pour
tout z € B(X), on a fi(2) + fz(2) > d(z,r) =0, d’ou fi(z) > 0.

2. Soient x € X et z € S(X) tels que z # z. Alors il existe un voisinage ouvert W, de x dans
B(X) et un voisinage ouvert W, de z dans 5(X) tels que W, N W, = 0. Si f.(z) = 0, comme
fx est continue, alors pour tout n > 1, il existe un voisinage ouvert V,, de z dans 5(X) tel que
V., C W, et pour tout y € V,,, on ait 0 < f,(y) < % Puisque X est dense dans B(X), alors
V, N X # (. Donc, pour tout n > 1, il existe z,, € X tel que x,, € W, N X et d(x,x,) < % Par
conséquent, la suite (z,)p>1 converge vers x dans X et pour tout n > 1, z,, € W, N X, d’ou la
contradiction. Donc on a bien f,(z) > 0.

Exercice 3.57. Soient X un espace discret dénombrable et X = X U {oo} son compactifié¢
d’Alexandroff. Soient Y un espace discret infini non dénombrable et Y = Y'U{oo} son compactifié
d’Alexandroff. Soit Z = (X X Y) \ {(00,0)}. Comme Z est un ouvert d’un espace compact,
alors Z est localement compact, voir corollaire 3.4.3.

1. Soient A = X x {00} et B = {00} xY. Montrer que A et B sont des sous-ensembles fermeés
disjoints de Z.

2. Montrer que Z n’est pas un espace normal.

Solution. 1. Comme on a A = ()? x {oo}) NZ et B = ({oo} x 17) N Z, alors A et B sont des
sous-ensembles fermés de Z. Il est clair que A et B sont disjoints.

2. Soient U et V' des ouverts de Z tels que A C U et B C V. Montrons que 'on a UNV # §.
Notons d’abord que U et V sont aussi des ouverts de ’espace X xY . Pour tout z € X, (z,00) € U,

donc il existe un ensemble fini F}, de Y tel que {z} X (17 \ F;) C U. Soit D = UXFI , alors
Tre

D est un sous-ensemble au plus dénombrable de Y. Soit y € Y\ D. Alors on a X x {y} C U
et (00,y) € X x {y}. Comme on a aussi (co,y) € B C V, on en déduit que U NV # 0. Par
conséquent, Z n’est pas un espace normal.
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Chapitre 3. ESPACES COMPACTS
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Chapitre 4

ESPACES CONNEXES

Théoréme. Soit (X;);c; une famille d’espaces topologiques non vides. Alors ’espace topologique
produit X = [[X; est connexe si et seulement si pour tout ¢ € I, X; est connexe.

i€l
Démonstration. Supposons que X est connexe. Comme les projections canoniques p; : X —
X, sont continues et surjectives, alors pour tout ¢ € I, X; est connexe.
Réciproquement, supposons que pour tout ¢ € I, X; est connexe. Montrons d’abord que le
produit de deux espaces topologiques connexes est connexe. Soient Y, Z des espaces topologiques
connexes et f :Y x Z —» {0,1} une application continue. Soit (y, z), (v/,2’) € Y x Z. Puisque
les ensembles {y} x Z et Y x {z} sont connexes et d’intersection non vide, alors leur réunion
A= ({y} x Z) U (Y x {2}) est connexe. De méme, B = ({y'} x Z) U (Y x {2'}) est connexe.
Comme on a AN B # (), alors AU B est connexe. Donc la restriction de f & AU B est constante,
d’ou f(y,2) = f(y',2'). Par conséquent, f est constante. Il résulte de la proposition 4.1.1 que
Y X Z est connexe.
On déduit, par récurrence, qu'un produit fini d’espaces topologiques connexes est connexe. En
effet, supposons que cette propriété est vraie pour n > 2 espaces topologiques connexes, et
soient F1y,..., E,11 des espaces topologiques connexes. Comme le produit F1 X ... X E,11 est
homéomorphe au produit de deux espaces topologiques connexes (E1 X ... X En) X En41, alors
il est connexe.
Soit f : X — {0,1} une application continue. Fixons a = (a;);c; € X. Comme f est continue
en a et {f(a)} est ouvert dans {0, 1}, alors il existe un voisinage V' de a dans X tel que pour
tout x € V, on ait f(z) = f(a). D’aprés la définition de la topologie produit, il existe un sous-

ensemble fini J de I et des voisinages V; de a; dans X; tel que [[V; C V et pour tout ¢ € I\ J,
el
on ait V; = X;. Ainsi, pour tout z = (z;);e; € X tel que x; = a; pour tout j € J, on ait
f(z) = f(a). Fixons y = (yi)icr € X, et considérons 'application ¢ : [[ X; — X définie par
jeJ
o((z)jer) = (xi)icronz; =y;sii € I\ J, et z; = z; si i € J. Alors ¢ est continue. Comme
[1X; est connexe, alors f o ¢ est constante sur [[ X;. D’ott on a :

jeJ jeJ
fla) = f(e((aj)jer)) = (Fov)((aj)jer) = (Fow)((Wi)ies) = f(e((W))ier)) = fy).
Par conséquent, f est constante sur X, donc X est connexe. |

Proposition. Soit I un intervalle ouvert de R et f : I — R une application continue. Les
propriétés suivantes sont équivalentes.

(i) L’application f est ouverte.

29
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(ii) L’application f est injective.

(iii) L’application f est strictement monotone.

Démonstration. Montrons I'implication (i) = (ii). Soient =,y € I tels que < y. Comme f est
continue et ouverte, il résulte du corollaire précédent que I'on a f([z, y]) = [a, b] et que f(]z, y[)
est un intervalle ouvert non vide de R, d’ott @ # b. Or on a f([:r, y]) = f(]:r, y[) U{f(x), f(y)},
d’ou {f(x), f(y)} = {a,b}. Par conséquent, on a f(z) # f(y). Donc f est injective.

Preuve de (ii) = (iii). Soient A = {(x,y) € I? ; * < y} et g : A — R définie par g(z,y) =
f(y) — f(z). Vérifions d’abord que A est connexe. Soient (z,y), (z/,y") € A, et soit t €]0, 1[, on
atr+ (1 -1t <ty+ (1—1t)y, donc pour tout t € [0, 1], on a t(z,y) + (1 — ¢)(a',y/) € A.
Or lapplication ¢t — t(z,y) + (1 — t)(2/,y’) est continue de [0, 1] dans A, donc pour tous
(z,y),(2',y") € A, il existe une partie connexe B de A contenant (z,y) et (a/,y). Il résulte du
théoreme 4.1.1 que A est connexe. Comme ¢ est continue, alors g(A) est un intervalle de R. Or f
est injective, donc 0 & g(A). Par conséquent, soit on a g(A) C]0, +o0[, soit on a g(A) C|—o0, 0].
Donc f est strictement monotone.

Preuve de (iii) = (i). Notons d’abord que f est strictement croissante si et seulement si —f
est strictement décroissante. De méme, f est ouverte si et seulement si —f est ouverte. Donc,
on peut supposer f strictement croissante. Soient xz,y € I tels que x < y. Alors pour tout
t €lx, y[, on a f(z) < f(t) < f(y). Comme f est continue, alors on a f([aj, y]) = [f(z), f(y)],
d'ou f(]z, y[) =]f(z), f(y)[. Comme tout ouvert de I est réunion d’intervalles ouverts, alors f
est une application ouverte. |

Notons que dans la preuve de 'implication (ii) = (iii), l'intervalle I n’a pas besoin d’étre ouvert.
Corollary. Soient [ un intervalle de R et f : I — R une application. Soit J = f(I). Alors f
est un homéomorphisme de I sur J si et seulement si f est continue et strictement monotone.

Démonstration. Si f est un homéomorphisme de I sur J, alors f est continue et injective.
Alors il résulte de la proposition précédente que f est strictement monotone.

Réciproquement, supposons que f est continue et strictement monotone. Il suffit de traiter le
cas ou f est strictement croissante. Alors J = f(I) est un intervalle de méme nature que I et on

o o) o o
a f(I ) = J. D’aprés la proposition précédente, f est un homéomorphisme de [ sur J. Il reste

4 montrer que f~! : J — I est continue en tout point de J\ f]> . Supposons, par exemple, que
I =]—o00, al, et soit z < a. Comme f est continue et injective et comme [z, a] est compact, alors
f réalise un homéomorphisme de [z, a] sur [f(2), f(a)], donc la restriction de f~1 a [f(2), f(a)]
est continue. Or [f(z), f(a)] est un voisinage de f(a) dans J, donc f~! est continue en f(a). Par
conséquent, f est un homéomorphisme de I sur J. On fait le méme raisonnement pour les autres
cas, ou I =|a, a], I = |o, a] et I = [a, +o0]. [ |

Proposition. Soit X un espace compact. Pour tout x € X, la composante connexe de = est
I'intersection des voisinages de x a la fois ouverts et fermés dans X.

Démonstration. Soient x € X et C, sa composante connexe. Soit (4;);cr la famille des ouverts
et fermés dans X contenant x. Notons que l’ensemble I est non vide car X est a la fois ouvert
et fermé dans X et on a x € X. Soit K = ﬁ A;. D’aprés le théoréme 4.2.1, pour tout 7 € I, on a

C, C A;, dou C, C K. Pour montrer I’ autre inclusion, il suffit de montrer que K est connexe.
Notons d’abord que K est une partie compacte de X. Supposons que K n’est pas connexe.
Puisque K est fermé dans X et non connexe, alors il existe deux fermés non vides et disjoints F
et I dans X tels que K = F'U F. Donc F et F sont compacts. D’apres la proposition 3.1.2, il
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existe deux ouverts disjoints U et V dans X telsque E CU et F CU.Doncona K CUUYV,
KNU # 0 et KNV # (. Dapres l'exercice 3.2, il existe un sous-ensemble fini J de I tel que

A= ﬂJAj C U UV. Notons que A est a la fois ouvert et fermé dans X et on a z € A. Alors
j€

ANU est un ouvert de X. Comme on a ANU = AN (X \V), alors ANU est aussi fermé
dans X. On vérifie de méme que ANV est la fois ouvert et fermé dans X. Si z € U, alors on a
K Cc ANU C U, ce qui est impossible car KNV # 0. Siz € V,alorsona K C ANV CV, ce
qui est impossible car K N U # (). Donc K est bien connexe. Par conséquent, on a C, = K. W

Proposition. Soit (X, d) un espace métrique compact. Les propriétés suivantes sont équiva-
lentes.

(i) X est localement connexe.

(ii) Pour tout € > 0, X est réunion finie de connexes de diamétre < ¢,

Démonstration. Montrons I'implication (i) = (ii). Soit € > 0. Pour tout z € X, soit V, un
voisinage connexe de x dans X tel que V, C B(x, %) Donc le diameétre de V, est < . Comme

o n
( Vi )x cx st un recouvrement ouvert de X, alors il existe x1,...,x, € X tels que X = ,UIVIZ..
1=

Ainsi, X est réunion finie de connexes de diamétre < e.

Preuve de (ii) = (i). Soit € X. Soient ¢ > 0 et Aj,..., A, un recouvrement de X par des
connexes de diamétre < e. Quitte & remplacer A; par A;, connexe de méme diamétre, on peut
supposer que les A; sont fermés dans X. Soit I = {i; = € A;}. On distingue deux cas :
Premier cas : I ={1,...,n}. Alors X = igIAZ- est connexe et on a X C B'(z,¢).

Deuzieme cas : I # {1,...,n}. Soit J = {1,...,n} \ I, alors A = 'UIAi est connexe dans X,
1€

V= ﬂJ (X \ Aj) est un ouvert de X contenant = et on a V. C A C B'(z,¢). Donc A est un
j€
voisinage connexe de x dans X. Par conséquent, X est localement connexe. |

Supplément d’exercices

Exercice 4.33. Soit X = ({0} x [-1, 1]) U ([~1, 1] x {0}) muni de la topologie induite par R?.
1. Montrer que X est compact et connexe.
2. Montrer que X \ {(0,0)} a quatre composantes connexes.
3. Soit A ={(0,-1),(1,0),(0,1),(—1,0)}.
(i) Soit (z,y) € X\ (AU{(0,0)}). Montrer que X \{(z,y)} a deux composantes connexes.
(ii) Soit (x,y) € X. Montrer que X \ {(x,y)} est connexe si et seulement si (z,y) € A.

4. Montrer que X n’est pas homéomorphe & aucune partie de R. En déduire qu’il n’existe pas
d’application continue injective de X dans R.

Solution. 1. Comme X est fermé et borné dans R?, alors X est compact. Comme {0} x [—1, 1]
et [—1, 1] x {0} sont connexes d’intersection non vide, alors X est connexe.

2. Soient U~ = X N (] — oo, 0[xR), UT = X N (]0, +00[xR), V= = X N (Rx] — oo, 0[) et
VT =XnN(Rx]0, +oo]). Alors U, U*, V™ et VT sont des ouverts dans X \ {(0,0)} non vides,
deux & deux disjoints et connexes tels que X \ {(0,0)} = U~ U Ut UV~ U V™. 1l résulte du
théoreme 4.2.1 que U~, UT, V"~ et V' sont les composantes connexes de X \ {(0,0)}.

3(i). Soit (z,y) € X \ (AU{(0,0)}). Il y a quatre cas :

Premier cas : x €] — 1, 0. Soient U = X N (] — o0, z[xR) et V.= X N {(a,b) € R?; a > z}.
Alors U et V sont des ouverts dans X \ {(z,y)} non vides, disjoints et connexes tels que
X\ {(z,y)} = UUV. Daprés le théoréme 4.2.1, U et V sont les composantes connexes de
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X\ {(z,9)}-

Deugiéme cas : y €0, 1[. Soient U = X N (Rx]y, +oo[) et V. = X N {(a,b) € R? ; b < y}.
Alors U et V sont des ouverts dans X \ {(z,y)} non vides, disjoints et connexes tels que
X\ {(z,y)} = UUV. D’apres le théoréme 4.2.1, U et V sont les composantes connexes de
X\ {(z,y)}. On fait le méme raisonnement pour les cas x €10, 1[ et y €] — 1, 0.

3(ii). Soit (z,y) € A. Si, par exemple, (z,y) = (1,0), alors on a X \ {(z,y)} = ([-1, 1[x{0}) U
({0} x [=1,1]), donc X \ {(z,y)} est connexe. De méme pour les autres cas.

Réciproquement, si (z,y) & A, il résulte de 2 et de 3(i) que X \ {(x,y)} n’est pas connexe. Donc,
si X \ {(z,y)} est connexe, alors (z,y) € A.

4. Comme X est compact et connexe, si X est homéomorphe & une partie de R, alors cette
partie serait un intervalle fermé borné non vide et non réduit & un point, donc de la forme
[a, b]. Or, pour tout ¢t € [a, b], [a, b] \ {t} est ou bien connexe ou bien a deux composantes
connexes. Comme X \ {(0,0)} a quatre composantes connexes, alors X n’est pas homéomorphe
a aucune partie de R. Comme X est compact, s’il existe une application continue injective de
X dans R, alors X serait homéomorphe a son image qui est une partie de R, ce qui est impossible.

Exercice 4.34. Soient X un espace topologique et R une relation d’équivalence dans X telle
que les classes d’équivalence suivant R soient connexes. On note ¢ : X — X /R 'application
quotient.

1. Montrer que les composantes connexes de X sont saturées par R.
2. Montrer que toute partie ouverte et fermée de X est saturée par R.

3. Montrer que les composantes connexes de X sont les images réciproques par g des composa-
ntes connexes de X/R.

Solution. 1. Soit C' une composante connexe de X. Soit z € C'. Comme q_l({q(az)}), la classe
de z suivant R, est connexe et on a C N q_l({q(:r)}) # (), il résulte du théoréeme 4.2.1 que
¢ *({q(z)}) € C. Donc C est saturée par R.

2. Soit A une partie & la fois ouverte et fermée de X. Soit € A. Comme ¢~ ' ({g(z)}) est connexe
et ona ANg*({g(z)}) # 0, il résulte de la proposition 4.1.2 que ¢~ ({¢(z)}) C A. Donc A est
saturée par R.

3. Soit C une composante connexe de X. Alors ¢(C') est une partie connexe de X/R. D’apreés le
théoreme 4.2.1, il existe une composante connexe D de X/R telle que ¢(C') C D. De plus D est
fermée dans X/R. D’aprés le théoréme 4.1.3, ¢~ (D) est une partie connexe de X. Comme on a
C c q ' (q(C)) c q YD), alors C = ¢~ 1(D).

Exercice 4.35. Pour tout n € N*, soit C),, = {(m,y) cR?; 2z = %et -1 <y< 1}. Soit
X=UCU ({0}x]o, 1]) U ({0} x [—1, 0).
nz

1. Déterminer les composantes connexes de X.

2. Vérifier que X est localement compact.

3. Montrer que dans X il y a des points z dont la composante connexe dans X est distincte
de l'intersection des ensembles & la fois ouverts et fermés dans X qui contiennent z.

Solution. 1. Il est clair que pour tout n > 1, C, est connexe et fermé dans X. Soit U = {(a:, y) €
R?; z > %}, alors U est un ouvert de R? et on a U N X = C, donc C; est aussi ouvert dans X.
SoientnEZeta,ﬁE]Rtelsquen%rl<a<%<B<ﬁ.SoitU:{(m,y)€R2; a<x< B}
alors U est un ouvert de R2 et ona UNX = C,,, donc C), est aussi ouvert dans X. Il résulte du
théoréme 4.2.1 que pour tout n > 1, C,, est une composante connexe de X.

Soient A = {0}x]0, 1] et B = {0} x [—1, 0. I est clair que A et B sont connexes. Comme
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{0} x [0, 1] et {0} x [~1, 0] sont fermés dans R? et on a ({0} x [0,1]) N X = A et ({0} x
[—1,0]) N X = B, alors A et B sont fermés dans X. Soient a = (0,y) € A et C, la composante
connexe de a dans X. Alors, pour tout n > 1, C,NC,, = . Comme A est connexe, on a A C C,.
Si CyNB #(, alors on a Cy = AU (C,NB), avec A et C, N B sont des fermés non vides disjoints
de X, donc C, n’est pas connexe, ce qui est impossible. Donc on a C, = A. On fait le méme
raisonnement, et on obtient que B est aussi une composante connexe de X.

2. C’est clair.

3. Soit @ = (0,y) € A. Soit U une partie a la fois ouverte et fermée dans X contenant a. Comme
A est connexe, Il résulte de la proposition 4.1.2 que 'on a A C U. Soit U’ un ouvert de R? tel que
U'NX =U. Soient € > 0 tel que | —¢, +e[x{y} C U’ et N € N* tel que % < €. Alors pour tout
n > N,onaUNC, # 0, d’ou pour tout n > N, on a C,, C U. Comme pour tout ¢ € [—1, 0], on a
(0,t) = nli)]grloo(%,t) et U est fermée dans X, on en déduit que B C U. Comme pour tout n > 1,

C, est & la fois ouvert et fermé dans X, on en déduit qu’une partie U de X contenant a est a
la fois ouverte et fermée dans X si et seulement s’il existe N > 1 tel que U = X \ U C Donc

I'intersection des ensembles & la fois ouverts et fermés dans X qui contiennent a est l’ensemble
AU B. Par contre, d’aprés 2, la composante connexe de a est A.

Exercice 4.36. Considérons dans R? espace X = UQDq, ot Dy = {(¢,y) ; y € R}. Montrer
qc

que les D, sont les composantes connexes de X et que pour tout ¢ € Q, Dy n’est pas ouvert dans
X.

Solution. Il est clair que pour tout ¢ € Q, D, est connexe. Soient a = (¢,%0) € Dy et C, la
composante connexe de a dans X. Alors on a Dy C C,. Supposons que C, N Dy # (), avec ¢’ # ¢,
par exemple, ¢’ < ¢. Soient @« € R\ Q tel que ¢ < a < qget U = {(z,y) € R? ; = < a} et
V ={(z,y) €R?; z > a}. Alorson a C, = (C,NU)U(C,NV) et C,NU, C,NV sont des ouverts
disjoints non vides de X. Donc C, n’est pas connexe, ce qui est impossible. Donc on a C,NDy = ()
pour tout ¢’ # ¢, d’ou C, = D,,. Par conséquent, les D, sont les composantes connexes de X. Si
D, est un ouvert de X, alors il existe un ouvert U’ de R? tel que D, = X NU’. Soit € > 0 tel que
lg —e, g+ ¢e[x{0} C U". Soit ¢’ €]qg — ¢, ¢ +e[NQ tel que ¢ # g, alors Dy NU" # (), d’ott on a
DyNDy # 0, ce qui est impossible. Par conséquent, pour tout ¢ € Q, D, n’est pas ouvert dans X.

Exercice 4.37. Soient X un espace connexe et A une partie connexe de X.

1. Montrer que si U est une partie a la fois ouverte et fermée dans X \ A, alors AU U est
connexe.

2. Montrer que si C' est une composante connexe de X \ A, alors X \ C est connexe.

Solution. 1. Soit f : AUU — {0, 1} une application continue. Comme A est connexe,
alors fj, est constante. Soit y € {0, 1} tel que pour tout a € A, on ait f(a) = y. Soit
V=X\(AUU) = (X\A)\U. Alors V est a la fois ouverte et fermée dans X \ A. Pour
tout z € V, on pose g(z) = y et pour tout z € AU U, on pose g(z) = f(x). Ainsi, on obtient
une application de X dans {0, 1}. Comme U est fermé dans X \ A, alorson a U =U N X \ A4,
doa U =UU(UNA) C UUA. Donc 9|, = [}, est continue. De méme, comme V' est aussi
fermé dans X \ 4, alorson a V' C V U A. Or pour tout z € V U 4, on a g(z) =y, donc 9|, est

aussi continue. L’adhérence de A dans U U A est AN (U U A), voir exercice 1.24. Comme f est
continue, alors pour tout x € AN (U U A), on a f(x) = y. Par conséquent, pour tout x € A,
on a g(z) = y. Ainsi, 9+ est continue. Comme on a X = AU U UV, alors g est continue, voir
proposition 1.4.4. Or X est connexe, donc g est constante, d’ou f est constante. Par conséquent,
AUU est connexe.
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2. Soit f : X\ C — {0, 1} une application continue. Comme A est connexe, alors f|, est
constante. Donc il existe y € {0, 1} tel que pour tout a € A, on ait f(a) = y. Si f n’est pas
constante, alors U = f_l({l —y}) est un ouvert et fermeé non vide dans X \C' et ona U C X\ A.
D’apres 1, C U U est connexe, ce qui est impossible car C' est une composante connexe. Par
conséquent, f est constante, donc X \ C' est connexe.

Exercice 4.38. Soit X un espace topologique non vide. Montrer que les propriétés suivantes
sont équivalentes.

(i) L’espace X connexe.
(ii) Pour tout recouvrement ouvert fini (U;);e; de X, il existe un nombre entier n > 1 et des
éléments 41,...,%, de I tels que X = kalUik et tels que pour tout k € {1,...,n — 1}, on

ait i # ipa1 et Uzk N Uik+1 #* 0.

Solution. Montrons 'implication (ii) = (i). Soient U et V des ouverts non vides de X tels que
X = U UYV. On déduit de I'hypothese que 'on a U NV # (). Donc X est connexe.

Montrons 'implication (i) == (ii). Soit (U;)ier un recouvrement ouvert fini de X. On peut sup-
poser que pour tout ¢ € I, on ait U # (). On va raisonner par récurrence sur le nombre d’éléments
de I. Si I est réduit & un seul élément, 'implication est triviale. Supposons que 'implication est
vraie si card(I) = p et montrons qu’alors I'implication est vraie si card(I) = p 4+ 1. Supposons
donc que 'on a card(l) = p + 1. Soit a € I. Comme X est connexe, alors il existe 8 € I tel
que B # a et Uy NUg # 0. Soit W, = U,y U Ug et pour tout i € I\ {«,f}, soit W; = U;.
Soit J = I\ {B}, alors (W;)jecs est un recouvrement ouvert fini de X et J est de cardinal p.
D’apres ’hypothéese de récurrence, il existe un entier ¢ > 1 et des éléments ji,...,Jj, de J tels

q
que X = kngjk et pour tout k € {1,...,q — 1}, on ait jp # jry1 et Wi, N W, # (. Soit

ke {1,...,q}. Si k est tel que jp # a, alors on pose i = ji et on a W, = U;, = Uj,. Si
k est tel que jp = «, alors on a Wy, = Uj,_,, Wy, = Uj,.,, Uj_, N (Ua UUg) # et
(Ua UWUg) NUj, ., # 0. Supposons, par exemple, Uj, _, N Uy # 0, les ouverts U, et Ug jouent un
role symétrique. Alors on pose U;, = U,. Ensuite, on distingue deux cas :

Premier cas : si Uj, ., NUg # (), alors on pose Us,, = Ug.

Deuzieme cas : si Uy, ,NUg = (), alors on a UjinNUs # (). On pose alors Ui, =Upet U, =Us.
Ainsi, dans les deux cas, on trouve donc un nombre entier n > 1 et des éléments iy, ...,4, de [
tels que X = kQIUik et tels que pour tout k € {1,...,n—1}, on ait i # i1 et Uy, NU;,, # 0.

Par conséquent_, I'implication (i) = (ii) est vraie si card(I) = p + 1. D’ou le résultat.

Exercice 4.39. Soient I un intervalle ouvert de R et f : I — R une application dérivable.
Soient A ={(z,y) € I xI; x <y}etg:A— R définie par g(z,y) = M
y—x
1. Montrer que g(A4) C f'(I) C g(A).
2. Montrer que A est connexe. En déduire que f’(I) est un intervalle. Autrement dit, f" a la
propriété de la valeur intermédiaire.

Solution. 1. Soit = € I, alors il existe NV € N* tel que pour tout n > N, on ait « + % el

flz+1) - fla)

D’ot, pour tout n > N, on a (z,z+ 1) € Aet =g(z,z+ 1) € g(A). Comme

’ , dou f’(z) € g(A). Donc on a

f est dérivable en x, alors on a f'(z) = lim
n—+oo

f/(I) C g(A). D’autre part, soit (z,y) € A, d’apres le théoréme des accroissements finis, il existe
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fly) — f(=)

P f'(t) € f'(I). Donc

t €lz, y[ tel que f(y) — f(z) = f'(t)(y — x), dou g(z,y) =
on a g(A) C f'(I).

2. Soient (z,y),(2',y’) € Aet t €]0, 1], on a tz + (1 — t)z’ < ty + (1 — t)y/, donc pour tout
t €10, 1],on at(x,y)+(1—t)(«',y’) € A. Or 'application t — t(x,y)+(1—1t)(2,y’) est continue
de [0, 1] dans A, donc A est connexe par arcs, d’ou A est connexe. Comme ¢ est continue, alors
g(A) est une partie connexe de R. Il résulte de la proposition 4.1.3 que f’(I) est un connexe de
R, donc f/(I) est un intervalle.

Exercice 4.40. Soient X un espace éparpillé, Y C X et A une partie compacte et ouverte dans
Y. Montrer qu’il existe une partie B a la fois ouverte et fermée dans X telle que A =Y N B.

Solution. Comme A est ouvert dans Y, il existe un ouvert U dans X tel que A=Y NU. Or X
est éparpillé, donc il existe une famille (U;);e; de parties ouvertes et fermées dans X telle que
U= iLeJIUi’ dotona A= Z.LGJIYO U;. Comme A est compact dans Y et pour tout i € I, Y NU; est

un ouvert de Y, alors il existe un sous-ensemble fini J de I tel que A = 'UJYﬂ Ui=YnN ( 'UJ Uj).
JE JjE

Soit B = 'UJU]-, alors B est une partie & la fois ouverte et fermée dans X telle que A=Y N B.
je

Exercice 4.41.

1. Soit X un sous-ensemble de R. Montrer que X est totalement discontinu si et seulement si
pour tous z,y € X tels que z < y, il existe z € R\ X tel que x < z < y.

2. Montrer que tout sous-espace totalement discontinu de R est éparpillé.
3. En déduire que Q est éparpillé.
4. Montrer que Q n’est pas extrémement discontinu.

Solution. 1. Supposons d’abord que X est totalement discontinu, et soient x,y € X tels que
x < y. Sipour tout z € R tel que z < z <y, on a z € X, alors le segment [z, y] est connexe non
trivial et on a [z, y] C X, ce qui est impossible car X est totalement discontinu. Par conséquent,
il existe z € R\ X tel que x < z < y.

Réciproquement, supposons que pour tous z,y € X tels que x < y, il existe z € R\ X tel que
x < z < y. Soient x € X et C, la composante connexe de z dans X. Soit y € X tel que y # =,
par exemple z < y. Soit z € R\ X tel que z < z < y. Soit A =]—o00, z]NX =]—00, 2[N X, alors
A est une partie a la fois ouverte et fermée dans X telle que z € A. Il résulte de la proposition
412 que 'ona C, C A. Or y ¢ A, donc y ¢ C,. Par conséquent, on a C, = {z}. Autrement
dit, X est totalement discontinu.

2. Soit X un sous-espace totalement discontinu de R. Montrons que X est éparpillé. Soient x € X
et U un ouvert de X contenant z. Alors il existe a,b € R tels que a < z < b et Ja, b[NX C U.
D’apres 1, il existe o/, € R\ X telsque a < o’ <z <b <b. Alors A= [d/, V|NX =]d, ¥'[NX
est une partie a la fois ouverte et fermée dans X telle que x € A C U. Par conséquent, X est

éparpillé.
3. On a vu, remarque 4.2.1, que Q est totalement discontinu de R, donc Q est éparpillé.
4. Soient U =] — 00, 0[NQ et V =10, +00[NQ, alors U et V sont des ouverts disjoints dans Q.

Soient U’ (resp. V') 'adhérence de U (resp. V) dans Q, alorson a U' =UNQet V' =V NQ,
voir exercice 1.24, d’ou 0 € U’ N V', Par conséquent, Q n’est pas extrémement discontinu.

Exercice 4.42. Soit X un espace extrémement discontinu.

1. Soit (2 )n>0 une suite dans X convergente vers un point x € X. Montrer qu’il existe N € N
tel que pour tout n > N, on ait z,, = .
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2. En déduire que si X est un espace métrique compact et extrémement discontinu, alors X
est fini.

Solution. 1. Il suffit de montrer que l’ensemble {z,, ; n > 0} est fini. Supposons le contraire,
i.e. Pensemble {z, ; n > 0} est infini. Quitte & prendre une sous-suite de (zy)n>0, on peut
supposer que pour tous n,m € N tels que n # m, on ait z, # x,, et x, # x. On va construire,
par récurrence, une suite (Up)p>0 d’ouverts de X tels que pour tout n > 0, z,, € U, et pour
tout n > 1, on ait U, N (:LL_J; U;) = 0. Pour tout n > 0, soit K, = {zp ; p > n} U{z}. Comme
(n)n>0 converge vers x, alors K, est une partie compacte de X. Comme xg ¢ K, d’aprés la
proposition 3.1.2, il existe deux ouverts disjoints Uy et Wy tels que zg € Uy et K1 C Wy. Comme
X est extrémement discontinu, alors on a UgNWy = 0, d’ott on a UyN K, = (. De méme, comme
z1 € Ko, il existe un ouvert U] de X tel que z1 € U] et F{ﬂ Koy = 0. Soit Uy = (X \ Up) N U7,
alors U; est un ouvert de X contenant x; et on a U N Ky = 0 et UyNU; = 0. Supposons que ’on
a construit des Uy, ...,U,_1 de X tels que pour tout i € {0,...,n— 1}, z; € U;, U; N K;11 = 0)

J— —1 —
et U; N (;L:JO Uj) = (. Comme z,, & K41, il existe un ouvert U], de X tel que z, € U], et
I —1—
Ul'N K1 = 0. Soit Uy, = (X \ T.LUOUZ‘) N U/, alors U, est un ouvert de X contenant x, et on
1=

N n—1_—
a U, N Ky = 0. Comme X est extrémement discontinu, alors 4UO U; est ouvert dans X, donc
1=

n—1— n—1— J— n—1——
X\ -90Ui est fermé dans X. Or on a U, C (X\ -90Ui ), dou U, C (X\ ‘L_JOUZ- ). Autrement dit,
- n—1_—
on a U, N ( 490 UZ-) = (. On pose U = gOUgn et V = gOUgnH, alors U et V sont des ouverts

disjoints de X et on a {z9, ; n >0} C U, {z2,41; n >0} C V. Par conséquent, on ax € UNV,
ce qui est impossible. Donc il existe NV € N tel que pour tout n > N, on ait x, = z.

2. Si X est infini, alors il existe une application injective de N dans X. Autrement dit, il existe
une suite (z,)p>0 dans X telle que pour tous n,m € N vérifiant n # m, on ait x, # Tp.
Comme X est extrémement discontinu, il résulte de 1 que cette suite n’admet aucune sous-suite
convergente, ce qui est impossible car X est métrique compact. Donc X est bien fini.

Exercice 4.43. Donner un exemple d’un espace métrique compact éparpillé qui n’est pas extré-
mement discontinu.

Solution. L’espace de Cantor C est métrique compact infini et éparpillé, voir proposition 4.5.1
et théoréme 4.2.2. D’aprés ’exercice précédent, tout espace métrique compact infini n’est pas
extrémement discontinu. Donc C est un espace métrique compact éparpillé non extrémement
discontinu.

Exercice 4.44. Soient X un espace extrémement discontinu et Y C X.
1. Montrer que si Y est un ouvert de X, alors Y est extrémement discontinu.
2. Montrer que si Y est dense dans X, alors Y est extrémement discontinu.

Solution. 1. Supposons que Y est un ouvert de X. Soient U et V deux ouverts disjoints dans
Y, alors U et V sont aussi des ouverts disjoints dans X. Comme X est extrémement discontinu,
alorson a UNV =0, ot (UNY)N(VNY)=0.0r UNY et VNY sont respectivement les
adhérences de U et V dans Y, voir exercice 1.24, donc Y est un espace extrémement discontinu.
2. On suppose que Y est une partie dense dans X. Soient U et V' deux ouverts disjoints dans Y,
alors il existe des ouverts U’ et V' dans X telsque U =Y NU et V=Y NV . OnaUNV =0,
dou Y N(U'NV’') = 0. Comme U' NV’ est un ouvert de X et Y est dense dans X, on déduit
de la proposition 1.2.4 que l'on a U' NV’ = (). Comme X est extrémement discontinu, alors
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omalU NV =0, doa UNV =0. Doncona (UNY)N(VNY)=0.0rUNY et VNY
sont respectivement les adhérences de U et V dans Y, voir exercice 1.24, donc Y est un espace
extrémement discontinu.

Exercice 4.45. Soit X un espace complétement régulier.

1. Montrer que la compactification de Stone-Cech B(X) de X est extrémement discontinu si
et seulement si X est extrémement discontinu.

2. Montrer que si X est un espace discret infini, alors 5(X) est extrémement discontinu et
n’est pas métrisable.

3. En déduire que S(N) est un espace compact, séparable, extrémement discontinu et n’est
pas métrisable.

Solution. 1. Supposons que B(X) est extrémement discontinu. Comme X est dense dans 5(X),
il résulte de l'exercice précédent que X est extrémement discontinu.

Réciproquement, supposons que X est extrémement discontinu. Soit U un ouvert de [(X).
Comme X est dense dans 3(X), d’aprés 'exercice 1.26, on a U = U N X. L’adhérence de U N X
dans X est XNU N X, voir exercice 1.24. Comme X est extrémement discontinu, alors XNU N X
est a la fois ouvert et fermé dans X. D’apreés la proposition 3.5.1, X N U N X est & la fois ouvert
et fermé dans S(X). On a :

U=UNXcUnNX=0UnNXNXcUnX=0UNnX=U

dottonalU = X NU N X. Par conséquent, U est ouvert dans (X ). Donc 3(X) est extrémement
discontinu.

2. 51 X est discret, alors X est complétement régulier et extrémement discontinu. Il résulte de 1
que B(X) est extrémement discontinu. Si de plus X est infini, on déduit de l'exercice 4.42 que
B(X) n’est pas métrisable.

3. Il résulte de 2 que S(N) est extrémement discontinu non meétrisable. Puisque N est dénom-
brable et dense dans B(N), alors 5(N) est séparable.

Exercice 4.46. Soit X un espace topologique séparé. Montrer que les propriétés suivantes sont
équivalentes.

(i) X est extrémement discontinu.

(ii) Pour tout sous-ensemble dense Y dans X et pour toute fonction continue f:Y — [0, 1],
il existe une fonction continue g : X — [0, 1] prolongeant f.

(iii) Pour tout ouvert U de X et pour toute fonction continue f : U — [0, 1], il existe une
fonction continue g : X — [0, 1] prolongeant f.

Solution. Montrons l'implication (i) == (ii). Soient ¥ un sous-ensemble dense dans X et f :
X — [0, 1] une fonction continue. Pour montrer qu’il existe une fonction continue g : X —
[0, 1] prolongeant f, d’apres le théoreme 1.9.3, il suffit de montrer que deux sous-ensembles
de Y complétement séparés dans Y sont aussi complétement séparés dans X. Soient A et B
deux sous-ensembles de Y complétement séparés dans Y. Donc il existe une fonction continue
h:Y — [0, 1] telle que hj, = 0 et hj,, = 1. Soient U; = h_l([O, %D et Uy = h_l(]g, 1]) Alors
Uy et Uy sont deux sous-ensembles ouverts disjoints dans Y tels que A C Uy et B C Us. Soient
V7 et V5 deux ouverts dans X telsque Uy = Y NVi et Uy =Y NVs, dou Y NViNVse = (. Comme
Y est dense dans X, on déduit de la proposition 1.2.4 que l'on a V4 NV, = (). Comme X est
extrémement discontinu, d’aprés la proposition 4.2.3, V; et V5 sont disjoints et a la fois ouverts
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et fermés dans X. Soit g : X — [0, 1] définie par g(x) = 0 pour tout z € V; et g(z) = 1 pour
tout € X \ V1. Alors g est une fonction continue et pour tout x € A, on ait g(z) = 0 et pour
tout € B, on ait g(x) = 1. Donc A et B sont complétement séparés dans X.

Montrons 'implication (ii) = (iii). Soient U un ouvert de X et f : U — [0, 1] une fonction
continue. Soit Y = UU(X\U ). Alors Y est un sous-ensemble dense dans X. Soit f:Y —0,1]
définie par f(m) = f(z), pour tout z € U, et f(m) = 0, pour tout z € X \U. Alors fest continue,
voir proposition 1.4.4. Par hypothese, il existe une fonction continue g : X — [0, 1] prolongeant
f. En particulier, g prolonge f.

Montrons l'implication (iii) = (i). Soient U et V deux ouverts disjoints dans X. Soit f :
UUV — [0, 1] définie par f(x) =0 pour tout x € U et g(x) = 1 pour tout = € V. Alors f est
une fonction continue. Par hypotheése, il existe une fonction continue g : X — [0, 1] prolongeant
f. Soient F} = g_l([O, %]) et Fy = g_l([g, 1]) Alors F; et F5 sont deux sous-ensembles fermés
disjoints dans X tels que U C Fy et V C Fy, dot on a UNV = (). Donc X est extrémement
discontinu.
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ESPACES FONCTIONNELS

Lemme. Soient X un ensemble, (Y, d) un espace métrique, f € Y et (f,)n>0 une suite dans
YX. Soit d’ une distance sur Y uniformément équivalente & d. Alors la suite (f,,)n>0 converge
uniformément vers f pour la distance d si et seulement si elle converge uniformément vers f pour

d.

Démonstration. Puisque d et d’ sont uniformément équivalentes, alors on a :

(x) Pour tout € > 0, il existe n > 0 tel que pour tous y,z € Y vérifiant d(y,z) < 7, on ait
d(y,z) <e.

(xx) Pour tout € > 0, il existe a > 0 tel que pour tous y,z € Y vérifiant d'(y, z) < a, on ait
d(y,z) < e.

Supposons d’abord que (fy,)n>0 converge uniformément vers f pour la distance d. Soit € > 0,
alors il existe V € N tel que pour tout n > N et pour tout x € X, on ait d(f,(z), f(z)) <n. En
combinant ceci avec la propriété (x), on obtient que pour tout n > N et pour tout x € X, on a
d'(fu(z), f(x)) < e. Donc (fn)n>0 converge uniformément vers f pour d'.

Réciproquement, supposons que (f,)n>0 converge uniformément vers f pour d’. Soit € > 0, alors
il existe N € N tel que pour tout n > N et pour tout z € X, on ait d'(f,(z), f(x)) < «. En
combinant ceci avec la propriété (xx), on obtient que pour tout n > N et pour tout z € X, on a
d(fn(z), f(z)) < e. Donc (fn)n>0 converge uniformément vers f pour d. [

Proposition. Soient [a, b] un intervalle fermé borné de R et (fy,)n>0 une suite d’applications
continues de [a, b] dans R. On suppose que :

1. Pour tout n > 0, 'application f,, est croissante, i.e. pour tous z,y € [a, b] tels que x < y,
on ait fr(z) < fun(y).

2. La suite (fy)n>0 converge simplement vers une application continue f de [a, b] dans R.

Alors la suite (fy)n>0 converge uniformément vers f.

Démonstration. Comme pour tous n > 0 et z,y € [a, b] tels que z < y , on ait f,(x) < f,(y)
et comme la suite (fy,),>0 converge simplement vers f, alors on a f(z) < f(y). Donc f est
croissante. Soit ¢ > 0. Comme f est continue et [a, b] est compact, alors f est uniformément
continue, donc il existe k& € N* tel que pour tous z,y € [a, b] vérifiant |z — y| < b_Ta, on ait
|f(z) = f(y)| < e, dou f(z) < fly) < f(x) +e. Soit z, = a+ (b—a)k, avec p € {0,...,k}.
Comme on a f(zp) = nll}I-lr-loo fn(xp), alors il existe N € N tel que pour tout n > N et pour tout

p€A{0,...,k}, onait |fr(xp) — f(xp)] <e.Douona f(x,)—e < fn(zp) < f(zp)+e. Soit n > N.

69
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Soit € [a, b], alors il existe p € {1,...,k} tel que z,—1 < o < x,. Comme f, est croissante,
alors on a fp(xp—1) < fu(z) < fo(zp). Dot on a:

flap—1) —€ < falzp-1) < fo(@) < fulap) < flap) +e.

Comme on a |z — zp_1| < 222 et |2 — x| < 222, alors on a f(zp—1) < f(z) < flap_1) + ¢ et
f(z) < f(zp) < f(z) +e. Dotton a:

J(@) =22 < f(ap1) — € < fule) < flay) + < f(2) + 2.

Donc on a |f(z) — fa(z)| < 2e. Par conséquent, pour tout € > 0, il existe N € N tel que pour
tout n > N et pour tout z € [a, b], on ait |f(x) — fu(z)|] < 2e. Autrement dit, la suite (fy)n>0
converge uniformément vers f. |

Proposition. Soient I un intervalle de R et (f,,)n>0 une suite de fonctions dérivables de I dans
R. On suppose que

1. La suite (f)n>0 converge simplement vers une fonction f : I — R.
2. La suite (f},)n>0 est uniformément convergente vers une fonction g : I — R.

Alors la fonction f est dérivable sur I et sa dérivée est g.

Démonstration. Soit a € I et pour tout z € J = I\ {a}, soient :

fo(@) — fula)

r—a r—a

hn(x) =

La suite (hy)n>0 converge simplement sur J vers la fonction h. La fonction h, admet en a la
limite f}(a) et la suite (f} (a))n>0 converge vers g(a). Pour avoir le résultat, d’apres le théoréme
5.2.4, il suffit de montrer que la suite (hy,),>0 converge uniformément sur J vers la fonction h.
Soient x € J et p,n € N. D’aprés le théoréme des accroissements finis, il existe ¢ € I tel que :

(@) = fp(x) = (fnla) = fp(a)) = (z — a) (fL(t) = f,(2)) -

D’otion a :
ho(x) = hp(z) = fL(t) = [(t) = fo(t) — g(t) + g(t) = f,(t) -

Comme la suite (f},)n>0 converge uniformément sur I vers g, alors pour tout € > 0, il existe N € N
tel que pour tout n,p > N et pour tout t € I, on ait |f}(t) — g(t)| < § et |g(t) — f(t)] < §5.
Donc, pour tout n,p > N et pour tout « € J, on a |hy(x) — hy(z)| < €. En faisant tendre p vers
'infini, on obtient que pour tout n > N et pour tout x € J, on a |hy(z) — h(z)| < e. Autrement
dit, la suite (hy,)n>0 converge uniformément sur J vers la fonction h. |

Proposition. Soient X un espace topologique, (Y, d) un espace métrique et H une partie de
YX. Alors H est équicontinue si et seulement si pour tout € > 0, il existe un ouvert U de X x X
contenant la diagonale A = {(z,z) ; x € X} et telle que, pour tout (z,2’) € U et pour tout
f €M, onait d(f(x), f(z)) <e.

Démonstration. Soient € > 0 et U un ouvert de X x X contenant la diagonale A et telle que,
pour tout (z,z") € U et pour tout f € H, on ait d(f(z), f(z')) < e. Soit zy € X. Comme on a
(xo,20) € A C U et U est un ouvert, alors il existe un voisinage ouvert V,, de xo dans X tel que
{zo} x V3, C U. D’ou, pour tout x € V,, et pour tout f € H, on a d(f(zo), f(z)) < e. Donc H
est équicontinue en xy. Par conséquent, H est équicontinue.
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Réciproquement, supposons que H est équicontinue. Soit € > 0. Posons ) = {(ac,a:’) € X x

X ; d(f(z), f(2')) < e pour tout f e H} et U = Q). Pour avoir le résultat, il suffit de montrer
que U contient la diagonale A. Soit z € X. Comme H est équicontinue en z, alors il existe
un voisinage ouvert V, de x dans X tel que pour tout z € V, et pour tout f € H, on ait
d(f(x), f(2)) < §. Alors pour tout (z,2") € V; x V. et pour tout f € H, on a d(f(2), f(2)) <
d(f(2), f(z)) +d(f(z), f(2') <5+ 5 =¢e. Ainsion a V, x V; C Q. Or V,, x V, est un ouvert de

X x X, donc V, x V, CSO):U, d’ott on a (z,z) C U. Par conséquent, on a A C U. [ |

Lemme. Il existe une suite (P,),>0 de fonctions polynomiales a une variable, & coefficients réels
convergeant uniformément sur [0, 1] vers la fonction racine carrée ¢ — V't. De plus, pour tout
n >0, on a P,(0) = 0.

Démonstration. On considére la suite de fonctions polynomiales & coefficients réels (P,)n>0
définie par récurrence par :

PO - 07
Pui(@) = Pa(@) + 3 (2 = (Pa(@))?)
Montrons, par récurrence, que pour tout n € N et pour tout = € [0, 1], on a :

2VT
240z
L’inégalité (x) est vraie a 'ordre n = 0 car Py = 0. Supposons que I'inégalité () est vraie a l’ordre
n, et montrons qu’elle est vraie a I'ordre n + 1. On a 0 < P,(z) < v/, d'ou 2 — (P, (x))? > 0.
Donc on a P,y1(z) > P,(x) > 0. D’autre part, on a :

VE = Paa(2) = VE = Pa(@) = 3 (2 = (Pa(@))?) = [VE = Pa(@)][1 = § (V& + Pa(@)) ] -

(1) 0< Py(x) <Vo et (xx) 0<vE—Py(a) <

Orona Py(z) <z <1,dot [1— 3 (/z+ P,(z))] > 0. Par conséquent, on a P,11(z) < \/z.
On a:

VE-Re) S o s Vi< 2V i n)

— Vz(2+nyr)<2yr+ (2+nz)P,(2)

— nx < (24+nyz)P,(x).
Appelons (% * %) l'inégalitée nz < (2 4+ n+/z)P,(z). L’inégalité (x %) est vraie a 'ordre n = 0.
Supposons que 'inégalité (x*x*) est vraie & 'ordre n, et montrons qu’elle est vraie a ’ordre n+ 1.

On a:

2+ (n+1)vT ] Posr(z) = [24nvE+ V7] [Pn(x) + %(m - (Pn(x)f)}
= (24 ny2)Py(x) + VTP (2) + 2 — (Pa(2))? + o () .

Avec an(x) = (nyx + \/_)%( ( n(az))2> > 0. Comme on a (2 + ny/z)P,(x) > nx et
VZ > Py(z) >0, alors on a [2+ (n+ 1)v/Z | Pay1(z) > nx + (P (x))* + 2 — (Py(2))? = (n+1)z.
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Donc l'inégalité (x * *) est vraie a 'ordre n + 1.

Comme on a 0 < ny/x < 24 n+/z, il résulte de I'inégalité (xx) que pour tout n > 1 et pour tout
z €0, 1], on a |z — Py(z)| < 2. Par conséquent, la suite (P,),>0 converge uniformément sur
[0, 1] vers la fonction racine carrée. [ |

Lemme. Soient X un espace compact et A une sous-algeébre de (C'(X, R), D). Alors on a :
1. A est une sous-algebre de C(X, R).
2. Pour tout f,g € A, on a sup(f, g),inf(f,g) € A.

Démonstration. 1. Soient f,g € Aet A € R. Alors il existe des suites (fn)n>0 €t (gn)n>0 dans
A convergeant respectivement vers f et g. Comme A est une sous-algébre de C'(X, R), alors pour
tout n >0, on a f, + Agn, fngn € A. D’autre part, pour tout n > 0 et pour tout z € X, on a :

[fn(@) + Agn(2) = (f(2) + Ag(@))] < [fu(2) = F(@)] + [Mlgn(z) = g()]

< Deo(fns f) + [AMDoo(gns 9) -

D'oton a Deo(fatAgn, f+Ag) < Doo(fn, [)+|A[Doo(gn, 9)- Par conséquent, la suite (fn+Agn)n>0

converge vers f + Ag, donc on a f + A\g € A.
Pour tout n > 0 et pour tout x € X, on a :

fa(@)gn(@) = f(2)g(2) = fa(2)gn(2) = [(2)gn(2) + f(2)gn(z) = f(2)g()
= (ful®) = f(2)gn(2) + f(2)(gn(2) = 9(2)).

D’ou on a:
Doo(frgn, f9) < Doo(fn; f)Doo(gn;0) + Doo(f,0) Do (gn, g)

Donc la suite (f,gn)n>0 converge vers fg, d'ott fg € A. Par conséquent, A est une sous-algébre
de C(X, R).
_frg+If—yl _ftg-1f—yl

2. Puisque l'on a sup(f,g) = — et inf(f,g) = — il suffit de montrer

que pour tout f € A, on a |f| € A, ot |f| est la fonction z — |f(x)|. Notons que pour tout
x € X,on al|f(zx) = /(f(x))?2 Soit f € A Comme X est compact et f est continue, alors

sup | f(z)] est fini, donc il existe a > 0 tel que a sup |f(z)| < 1. Pour tout ¢ € [0, 1], soit g(t) = v/t
reX zeX

et pour tout x € X, soit h(z) = a?(f(z))?, alors h € A et h est une fonction continue de X dans
[0, 1]. D’apreés le lemme précédent, la suite (P, o h),>¢ converge vers goh dans (C'(X, R), D).
Comme on a h € A et A est stable par le produit, alors pour tout n > 0, on a h" € A. Comme A
est aussi un sous-espace vectoriel de C'(X, R), alors pour toute fonction polynoémiale P : R — R
telle que P(0) = 0, on a Poh € A, donc, pour tout n > 0, on a P, o h € A. Comme A est
fermée, alors on a goh € A. Or on a go h = a|f|, dou |f] € A. [ |

Théoréme. Soient X un espace localement compact et A une sous-algébre de Cy(X) telle que :
1. Pour tout z € X, il existe f € A telle que f(x) # 0.

2. A sépare les points de X, i.e. pour tous x,y € X tels que x # y, il existe f € A telle que
f(@) # f(y).
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3. Pour tout f € A, le conjugué f de f appartient a A.
Alors A est dense dans (Cp(X), D).

Démonstration. Soient X, le compactifié d’Alexandroff de X. Pour tout f € Cy(X), soit :

foo(x):{f(x) si zeX,

0 Sl x=o00.

Alors foo € C(Xo). Réciproquement, si g € C(X) telle que g(oo) = 0, alors g, € Co(X),
voir remarque 3.6.1. Soit Ay = { foo+ A5 fe AN E€ K} alors A, est sous-algébre de
C(Xoo) vérifiant les hypothéses du theoreme de Stone-Weierstrass. Donc A, est dense dans
(C(Xoo), Doo). Soient f € Cy(X) et € > 0. Alors il existe g € Aet A € K tels que sup |foo(z)—

wGXoo
(goo () + A)| = Doo(foos goo + A) < 5. En particulier, lorsque z = oo, on a |A| = |fe(00) —
(goo(00) + A)| < §. Par conséquent, pour tout z € X, on a |f(z) — g(z)| < |foo(T) — (goo(x) +
M+ A <5+ 5 =c DouonaDy(f,g) <e. Donc A est dense dans (Co(X), D). [ |

Supplément d’exercices

Exercice 5.16. Soit f : [0, 1] — R une fonction continue. Montrer que f = 0 si et seulement

si, pour tout n € N, on a / f)t"dt = 0.
0
1
Solution. Il est clair que si f = 0, alors pour tout n € N, on a / f)t"dt = 0.
0

Réciproquement, supposons que pour tout n € N, on a / f@)t"dt = 0. Considérons I'application
0

suivante :

v: (C([0,1], R), Do)

— R
1
g — /0 F(Dg(t)dt

Alors ¢ est une application continue telle que pour toute fonction polynémiale P, on ait p(P) = 0.
D’aprés le théoréme de Stone—Weierstrass, I’ensemble des fonctions polynomiales est dense dans

1
(C([0, 1], R), Ds), donc on a ¢ = 0, d’on / (f(t)%dt = @(f) = 0. Puisque 'application
0

t — (f(t))? est continue et positive, on en déduit que pour tout ¢ € [0, 1], on a (f(¢))? = 0,
d’ou f=0.

Exercice 5.17. Soient (X, d) un espace métrique compact et H ’ensemble des sous-ensembles

fermés non vides de X. On munit H de la distance de Hausdorff D, ou pour tous A, B € H,

ona D(A, B) =max(p(4, B),p(B,A)) et p(A, B) = supd(x, B). D’apres l'exercice 3.53, (H, D)
€A

est un espace métrique compact. Pour tout A € H, et pour tout = € X, soit fa(x) = d(z, A).
Alors on a f4 € C(X, R). On munit C(X, R) de la distance de la convergence uniforme Dy
Montrer que Papplication A — f4 est isométrique de (H, D) dans (C(X, R), D). En déduire
que {fa; A € M} est une partie compacte de (C(X, R), D).

Solution. Soient A, B € H. On a vu, exercice 3.53, que pour tout = € X, on ad(z, B) < d(z, A)+
p(A,B),dotona fp(x) < fa(x)+D(A, B). De méme, on a fa(x) < fB( )+D(B,A) = fB( )+
D(A,B), donc on a |fa(x) — fp(x)| < D(A, B). Par conséquent, on a Dy (fA,fB) D(A, B).
Soit a € A, alorson a |fa(a)— fp(a)| = |d(a, A)—d(a, B)| = d(a, B), d’ou d(a, B) Do (fa, fB )
Donc on a p(A, B) < Dso(fa, fB). De méme, on a p(B,A) < Doo(fB, fa) = Doo(fa, fB). On e
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déduit D(A, B) < Do (fa, fB). Par conséquent, 'application A — f4 est isométrique. Comme
(H, D) est compact, alors {fa; A € H} est une partie compacte de (C(X, R), Dso).

Exercice 5.18. Sur lintervalle [0, 1], on considére la suite de polynomes a coefficients réels
(Pp)n>0 définis par récurrence par :

FPy=0,
Poi(z) = Pa(@) +§ (2 = (Pa(@))?) .
1. Montrer par récurrence que pour tout n > 0 et que pour tout z € [0, 1], on a :
(x) 0< Py(z) < Poyr(z) < 23.

2. En déduire, en utilisant le théoréme de Dini, que la suite (P,),>0 converge uniformément
sur [0, 1] vers la fonction racine cubique.

3. Montrer, par récurrence, que pour tout n € N et pour tout x € [0, 1], on a :

1
3x3

3+na:§ '

0<a3 —P,(z) <

4. En déduire, sans utiliser le théoréme de Dini, que (P,),>0 converge uniformément sur [0, 1]
vers la fonction racine cubique.

Solution. 1. Vérifions que l'inégalité (x) est vraie a 'ordre n = 0. On a Py(z) = 0, Py(x) =
5> Py(x), et Pi(r) < T3 = “’5—3 <z < a:(l — g—;) > 0. Donc on a bien Pj(z) < T3 pour
tout z € [0, 1]. Supposons que l'inégalité (x) est vraie a l'ordre n, et montrons qu’elle est vraie
alordre n+ 1. On a Pyyo(z) = Poyi(z) + 3(z — (Poi1(2)?) et 0 < Py(z) < Pyyi(z) < 23,
d’'ott (P,p1(2))® < @, donc on a 2 — (Pyy1(2))® > 0. Par conséquent, on a Ppyo(z) > Poyq(z) >
P,(x) >0.0na:

1 1

w5 — Popa(x) = 3 — Po(2) — 3 [m B (P”“(m))g}
= [:L'E - Pn+1(:L‘)] [1 - %($§ + a:%Pn_H(:L‘) + (Pn+1($))2)] :

On a 0 < max (a:%,a:%PnH(a:),(Pn+1(a;))2> <1, dou } (m% +m%Pn+1(a:) + (Pn+1(m))2) < 1.

Or on a aussi (a:% — Pyy1(z)) > 0, d’ou 25 — P,io(x) > 0. Par conséquent, l'inégalité () est

vraie a l'ordre n + 1.

2. Pour tout = € [0, 1], la suite de réels (P,(x))n>0 est croissante et majorée, par x%, donc
lim P,(z) existe dans [0, 1]. Soit f(z) = ngr—ir-loo P,(z). De I'équation P,yi(z) = P,(z)+

n——+0o
3 (a: - (Pn(:r))?’), on déduit que l'on a f(z) = f(z) + 3 (a: - f(a:)g), donc on a f(z)® =z, dou
flx) = 5. Donc la suite (Ppn)n>0 converge simplement vers la fonction continue f. Or (P,)n>0
est croissante, d’aprés le théoréme de Dini, (P,),>0 converge uniformément vers f.
3. Pour tout n > 0 et que pour tout x € [0, 1], on a :
3t
1 x3 2
23 — Pp(z) < —— <= nz < (3+nx3)Py(z).
3+nz3
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Appelons I, la derniére inégalité. L'inégalité est vraie si n = 0. Supposons que I,, est vraie pour
certain n et montrons qu’elle est vraie & ’ordre n 4+ 1. On a :

B+ (n+1)23]Pyi(z) = (3+nas +23)[Pu(z) + (2 — (Pu(2))?)]

= 3+ nx%)Pn(x) + x%Pn(x) + 2 — (Po(x)® + an(x) .

wlo

Avec ap(z) = (nas + a:%) [3(z— (Pn(x))?’)] > 0, donc on a :

3+ (n+1)ai|Pyi(z) > ne+z3P,(x) + 2 — (Py(x))?
> nz+ (Po(2)® + 2 — (Pu(x))?
= (n+1x.

Donc l'inégalité I, est vraie.
4. La suite (P,),>0 converge uniformément sur [0, 1] vers la fonction racine cubique si pour tout
e > 0, il existe N € N tel que pour tout n > N et pour tout x € [0, 1], on ait |ac§ — P, <e.
27

Soit € > 0. Alors la suite de réels [ ———=
27 + ne?

> converge vers 0, donc il existe N € N tel
n>0

1
que pour tout m > N, on ait < e. Pour tout = € [0, 2—1753], on a 3z3 < g, donc pour

27 4+ ne? ) )
tout n > 0 et pour tout = &€ [O, 2%53], on a !mﬁ —Pn‘ < 3z3 < ¢e. Pour z € [2%53, ], on a
2 2 2 1
2 € 2 ne 2 27 + ne 1 27x3
z3 > — dounxs > —et3+nx3s > ——— Doncon a |z3 — P,(2)| < ———
— 9’ -9 - 9 | n( )‘_27+n52_

pour tout n > N. Par conséquent, pour tout n > N et pour tout z € [0, 1], on a ‘m% —Pn(m)| <e.

Exercice 5.19. Polynémes de Bernstein. Pour tous entiers n > j > 0 et pour tout x € [0, 1],
on pose :
n

Pnj(z) = <> I (1 — )"

J

1. Etablir les identités suivantes :

n

an,j(a:)zl, Zj(j—l)pmj(aj):n(n—l)xz,
=0

7=0

sl

S ipai@) =nz, | 3G —na)pala) = na (1 —a).
§=0

7=0

2. Soit f une fonction continue sur [0, 1]. Montrer que les polyndémes de Bernstein
n .
(@) =Y F(L) puj()
§j=0

fournissent des approximations uniformes de f sur [0, 1],ce qui donne une nouvelle dé-
monstration explicite du théoréme de Weierstrass.
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Solution. 1. On a Z Pn,j(z) = <n> Tl=—z)" 7 =@+1-2)"=1.
§=0 =0 M
On a:
D ipng(r) = ) ipn(@)
j=0 Jj=1
- jn! j _
= —x) (1 —z)"/
]Zl jl(n —j)!
- na (n—1)! j—1 —1-(j—1
= 1— )" 1=0-1
G- g (7
n—1
- (n—1)! k n—1—k
= nz ) Hin—1—m® =2
= 12> pa14(e)
k=0
= nx
On a
JG = Vpng(x) = D> (G —1)pnj(x)
7=0 j=2
IS T
= s =)
. n(n —1) (n —2)! 2 j—2 —2—(j—2
= ToT 1—2)" i=2)
Dy R
2 in—2
= n(n— 1)x2z < i >mk(1 D
k=0
n—2
= n(n—1)2? Pn—2,k(2)
k=0
= n(n-—1)22.
On a Z (j — nm)2pn,j(x) = (j2 — 2jnw + n2x2) Pn,j(z) et j2 = 2jnx +n?x? = j(j — 1) +
§=0 §=0

(1 —2nz)j 4+ n’z? dou :
n
Z (G —nz)pnj(x) =nn—1)2? + (1 - 2n2)nz +n’2? = nz(l — ).
=0
2. Soient M = mgx] |f(x)] et € > 0. Comme f est uniformément continue sur [0, 1], voir
1
théoréme 3.2.3, alors il existe n > 0 tel que pour tous z,y € [0, 1] vérifiant |z — y| < 7, on
2M
ait [f(z) — f(y)] < §. Soit N € N* tel que — < £ Soient n > N et x € [0, 1]. Soient

| Nnp? = 2 |
I={jef{0,....n}; |z —L|<n}et J={je{0,....n}; [t — 2| >n}. Ona f(z) — fu(z) =
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[f(:z:) - f(%)]pn,j(l'), d’ou :

J=0

‘f( Z |f |pn,3 Z ‘f ‘pn,] +Z |f |pn,]

J€eI jeJ

Sijel, ona‘f(a;)—f(%)! <5etsijeJ, ona‘f(a;)—f(%)! <2M. OronaOSpr-(a:

jel
an,j(:r)zl, donc |f(z) — fa(x)| < £ +2MZ Pn,j(z). On a:
i=0 jed

n

nz(l —z) = (j —nx)? pn,j(@ —”QZ ——m pn,y( z)
=0

n
d’ou Z (% - m)zpmj(a;) =1z(1—2). Doncon a:

n

S (= 2)pas(@) <D0 (2 = 2) paye) = Le( - ) <

jeJ 7=0

S

) <

Pour j € J,ona |x—%‘ > n, d’ou (%—x)z > n?. Donc on anzz Pn,j(x) < %, d’on Z Pn,j(x) <

jEJ jedJ
1 , oM 2M
—. Par conséquent, on a ZMZ Dn,j ()

< S N
m jeJ 77

< —, d'ou |f(z) — fu(x)| < e. Alnsi,

pour tout € > 0, il existe N € N* tel que pour tout n > N et pour tout x € [0, 1], on ait

|f(z) — fo(z)] < e. Autrement dit, la suite (f)n>0 converge uniformément vers f sur [0, 1].

© Dunod, 2011 - Topologie et espaces normés - Nawfal El Hage Hassan



78

Chapitre 5. ESPACES FONCTIONNELS

© Dunod, 2011 - Topologie et espaces normés - Nawfal El Hage Hassan



Chapitre 6

ESPACES NORMES

Proposition. Soit F un K-espace vectoriel.

1. Si A est un sous-ensemble convexe de F, alors pour tout n € N*, pour toute suite finie
n

T1,...,T, d’éléments de A et pour toute suite finie t1 > 0,...,t, > 0 tels que Zti =1,
. i=1
on a Z tix; € A.
i=1
2. Si A est un sous-ensemble convexe de F, alors pour tout n > 1, onandA=A+---+ A.
—
n fois
3. Si A est un sous-ensemble convexe de F tel que 0 € A, alors on a tA C A pour tout
0<t<1.

4. Si A et B sont des sous-ensembles convexes de E et A € K, alors AA et A + B sont des
ensembles convexes.

5. Une intersection de sous-ensembles convexes de E est convexe.

6. Soient F' est un K-espace vectoriel et f : E — F une application affine . Autrement dit,
il existe b € F' et g : E — F une application linéaire tels que f = g+b. Alors 'image par f
(resp. I'image réciproque) d’un sous-ensemble convexe de E (resp. F') est un sous-ensemble
convexe de F' (resp. F).

Démonstration. 1. Montrons cette propriété par récurrence sur n. Il est clair que cette propriété
est vraie pour n = 1. Supposons que cette propriété est vraie pour certain n > 1, et soient

n+1 n+1
Tlyeney Ty Tpyl € Aetty >0,... 1y, thr1 > 0 tels que Zti = 1. Montrons que 'on a Ztixi €
i=1 i=1

n
A. On peut supposer t,11 # 1, donc t = Zti =1—tp+1 # 0. Pour tout ¢ € {1,...,n}, soit

t- n =1 n
S; = ?Z, alors on a s; > 0 et Z s; = 1. Par hypothése de récurrence, on a Z s;x; € A. Comme
i=1 i=1
n+1 n+1
C est convexe et on a thxz = t(Z SZZL‘Z) (1 — t)xpy1, alors on a Ztixi € A.

i=1
2. Pour tout sous- ensemble A de E on anA C A+---+ A. Supposons maintenant que A est
%,_/

n fois

79
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n n
convexe. Soient z1,...,T, € A. D’aprés 1, on a x = Z%xz € A, d’ou Zajz = nx € nA. Donc
i=1 i=1
onaaussi A+---+ACnA.
S —

n fois

3. Soit A un sous-ensemble convexe de A tel que 0 € A. Pour tout x € A et pour tout ¢ € [0, 1],
onatr=tr+ (1—-1t)0¢€ A, donctA C A.

4. Soient A et B des sous-ensembles convexes de F et A € K. Soient aj,a0 € A, b1,by € B
et t € [0, 1], on a tha; + (1 — t)Aag = A(ta; + (1 — t)az) € AA, donc AA est convexe. On a
tlar +b1)+ (1 —t)(az+b2) =tar + (1 —t)ag +tby + (1 —t)by € A+ B, donc A+ B est convexe.
5. Soit (A;)ier une famille d’ensembles convexes de E. Soient x,y € iQIAi et t € [0, 1]. Pour
tout i € I, on a z,y € A;, dou tx + (1 — t)y € A;, car A; est convexe. Par conséquent, on a
tr+(1—-t)y € iQIAZ-. Donc ZQIAZ- est un sous-ensemble convexe de E.

6. Soient A un sous-ensemble convexe de E et B un sous-ensemble convexe de F'. Soient y1,y2 €
f(A) = g(A) +bet t € |0, 1]. Il existe aj,as € A tels que y1 = f(a1) = gla1) + b et y2 =
flaz) = g(az) +b. On a ty1 + (1 — t)y2 = tg(ar) +tb + (1 — t)glaz) + (1 — )b = g(ta +
(1 —t)ag) + b = f(tar + (1 — t)az). Comme A est convexe, alors on a ta; + (1 — t)as € A,
donc ty; + (1 — t)ya € f(A). Par conséquent, f(A) est un sous-ensemble convexe de F. Soient
r1,22 € f71(B) et t € [0, 1]. Alors g(z1) +b = f(x1) € B et g(x2) + b = f(x3) € B. Comme
B est convexe, alors tg(x1) +tb+ (1 —t)g(z2) + (1 —t)b € B. Or on a f(tx; + (1 —t)xa) =
gt + (1 —t)za) + b =tg(z1) + (1 —t)g(x2) + b = tg(z1) + tb+ (1 — t)g(x2) + (1 — t)b, donc
f(txy + (1 — t)z2) € B. Autrement dit, on a tx; + (1 — t)ze € f~1(B), donc f~1(B) est un
sous-ensemble convexe de E. |

Proposition. Soient (E, || ||), (F, || |I') des espaces normés et f : E — F une application
linéaire. Les propriétés suivantes sont équivalentes.
(i) f est un homéomorphisme.

(ii) f est surjective et il existe & > 0 et 8 > 0 tels que pour tout x € F, on ait :
alzll < |f@))" < Bzl

Si (E, || ]|) est un espace de Banach, alors (i) et (ii) sont équivalentes a :

(iii) f(E) est dense dans F et il existe @ > 0 et 5 > 0 tels que pour tout x € E, on ait :
allzll < If @) < Bllzll.

Démonstration. L’équivalence (i) <= (ii) résulte du théoréme 6.3.1. L’implication (ii) =
(iii) est triviale. Supposons & présent que 'on a la propriété (iii) et que (E, || ||) est de Banach.
Pour avoir la propriété (ii), il reste & montrer que f est surjective. Soit y € F'. Comme f(FE) est
dense dans F', il existe une suite (z,),>0 dans E telle que y = ngrfwf(xn) Pour tout n,m € N,

on a a|z, — x| < [|f(zn) — f(xm)], donc la suite (x5,)n>0 est de Cauchy dans E qui est de

Banach. Par conséquent, la suite (2,,),>0 converge vers un x € E. De l'inégalité || f(z)|" < 8]z,

pour tout x € E, on déduit que f est continue. Donc on a f(x) = hl}rl flxy) =y, dou f est
n—-+0o

surjective. ]

Lemme. Soit F un K-espace vectoriel.

1. Soit H un hyperplan de E. Alors il existe une forme linéaire non nulle f sur E telle que
H = ker(f).
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2. Inversement, soit f une forme linéaire non nulle sur E. Alors H = ker(f) est un hyperplan
de E.

3. Soient f et g des formes linéaires sur E. Alors ker(f) = ker(g) si et seulement si il existe
AeKtel que \#0et g=Af.

Démonstration. 1. Soit H un hyperplan de F, donc il existe a € E non nul tel que F = H+Ka
et HNKa = {0}. Alors pour tout z € E, il existe un unique (h,\) € H x K tel que z = h+ A a.
On pose f(x) = A, alors f est une forme linéaire non nulle sur FE telle que H = ker(f).

2. Soit f une forme linéaire non nulle sur F, alors H = ker(f) est un sous-espace vectoriel de F

et il existe xg € E tel que f(zp) # 0. Soit a = 0
[ (o)

ax=xz— f(x)a+ f(x)a et f(x — f(x)a) = f(z) — f(x)f(a) =0, donc z — f(x)a € H = ker(f).
Par conséquent, on a E = H + Ka et HNKa = {0}. Autrement dit, H est un hyperplan de E.
3. Soient f et g des formes linéaires sur £. On peut supposer que f et g sont non nulles. Il est
clair que s'il existe A € K tel que A # 0 et g = A\ f, alors on a ker(f) = ker(g).

Réciproquement, supposons que ker(f) = ker(g). Soit a € F tel que f(a) = 1. Alors A = g(a) # 0.
D’aprés 2, ona E = ker(f)+Ka. Soit z € E, alors il existe y € ker(f) et p € K tels que x = y+pua,
d’ou f(x) = p et g(x) = pugla) = A = Af(z). Par conséquent, on a g = \f. [

, alors on a f(a) = 1. Pour tout € E, on

Proposition. Soient (E, || ||) et (F, || ||") deux R-espaces normés et f : E — F' une application
bornée sur B(0,1) = {z € E; ||z|| < 1}, et elle vérifie f(z+y) = f(z)+ f(y) pour tout x,y € E.
Alors f est linéaire et continue.

Démonstration. On a f(0) = f(0+0) = f(0) + f(0), d’ou f(0) = 0. Soit z € E. Montrons
par récurrence que pour tout n € N, on a f(nz) = nf(z). On a f(0x) = f(0) = 0 = 0f(x).
Supposons que pour un certain n > 1, on a f((n — 1)z) = (n — 1)f(z). Alors on a f(nz) =
f(n=1z+2z)=f((n—1)z)+ f(x) = (n—1)f(x) + f(z) = nf(x). Par conséquent, pour tout
neN,ona f(nr) =nf(x).Ona 0= f(0) = fx —z) = f(z)+ f(—x), don f(—z) = —f(x).
Donc, pour tout n € Z, on a f(nx) = nf(x). Pour tout ¢ € N* on a f(z) = f(q(%x)) = qf(%m),
d’ou f(%a:) = %f(x). Par conséquent, pour tout p € Z et tout ¢ € N*, on a f(ga:) = gf(x).
Par hypothese, il existe A > 0 tel que pour tout x € F vérifiant ||z|| < 1, on ait ||f(x)] < A.
Soient z € E et A € R. Comme Q est dense dans R, alors il existe une suite (\,)p>0 dans Q
telle que lim A, = A, on en déduit que lim (A, — A\)z = 0. Soit k € N*, alors il existe N € N

li
n——+o0o n—-+o0o

tel que pour tout n > N, on ait ||k(A, — N)z|| < 1, donc on a ||f(k(\, — N)z)|" < A. D’autre
part, on a f(k(A, — Nzx) = kX, f(x) — kf(Az), don [[A,f(x) — fQx)| < % Puisque l'on a

ll)rJrrl Anf(x) = Af(x), on en déduit que pour tout & € N* on a |Af(x) — f(Az)|| < % On fait

tendre k vers +o00, on obtient que f(Ax) = Af(z). Par conséquent, f est linéaire. La continuité

de f résulte du théoréme 6.3.1. |
Lemme. Soient Fq, ..., E,, F' des K-espaces vectoriels et f : F = Ey X --- X E, — F une
application multilinéaire. Pour tous = = (z1,...,2y),a = (a1,...,a,) € E,on a :

n
F@i, o mn) = flar,..an) =Y flar,. o a1, @ — a5, Tign, . Tn) (%)
=1

Démonstration. On va montrer ’équation (x) par récurrence sur k € {2,...,n}. L’équation
(%) est vraie pour k =2, car on a :

flxi—ar,z2)+ f(a1,m2—az2) = f(z1,22)— f(ar, x2)+ fa1, x2) — f(a1,a2) = f(z1,22)— f(a1,a2).
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Supposons que I’équation () est vraie & 'ordre £ — 1. On a :

flxy, ... x) — flat,...,a) = f(z1 — a1, 29, ..., xk) + f(a1,x2,...,2k) — f(a1,...,ax).

Comme Dapplication (zg,...,zx) — f(a1,22,...,2;) est multilinéaire de Fy X - -+ X E} dans F,
on applique ’hypothése de récurrence, on obtient :

k
f(al,a:Q, e ,a:k) — f(al, e ,ak) = Zf(al,ag ey Qi1 L5 — Ay Lj41y--- ,:L‘k) .
=2
D’otion a :
k
f(:rl,...,a:k)—f(al,...,ak) :Zf(al,ag...,ai_l,a:i—ai,aji+1,...,:pk).
=1
Donc I'équation (x) est vraie pour k = n. n

Lemme. Soit (A,,)n>0 une suite de parties finies non vides de N, deux & deux disjointes. Alors il
existe une permutation o de N telle que si R,, = 0(A,,), la suite des parties R,, vérifie max(R,,) <
min(R, 1) pour tout n > 0, et les éléments de R,, sont consécutifs dans N.

Démonstration. Soit A = N\ L>J0An. Pour tout n > 0, soit a, = Card(A4,,). On distingue deux
cas : "=

Premier cas : on suppose A finie, et soit a = Card(A). Pour tout p € A, on pose o(p) = pa(p)—1
et pour tout p € Ay, on pose o(p) =1, +va,(p),o0rg=a—1letr,=ro+ag+a+---ap_1,
sin > 1. Alors o est une permutation de N vérifiant les propriétés citées dans I’énoncé.
Deuziéme cas : on suppose A infinie. Soit v; une bijection de A sur N. Soit ~2 une bijection de
nL>J0An sur N définie comme précédemment, i.e. Pour tout p € Ay, on pose y2(p) = @a,(p) — 1 et

p(_)ur tout n > 1 et pour tout p € A,, on pose ¥2(p) = rn+¢a, (p), ot r, = —l4+ap+ar+---ap_1.
Notons que 1’on a :

72(140) = {0,...,(10 _1}7
v2(A4n) ={ap+a1+---ap-1,...,—1+ap+a +...an—1+ ay}, pour tout n > 1.
Pour tout p € A, on pose y(p) = 2y1(p) et pour tout p € L>J0An, on pose Y(p) = 2v2(p)+1, alors y
n>

est une permutation de N telle que si on note R], = v(A,,), alors pour tout n > 0, on a max(R],) <
min(R;, ), mais les éléments de R;, ne sont pas consécutifs dans N si Card(R;,) > 2. Pour tout
n > 0, soit I, I'intervalle de N d’extrémités min(R)) et max(R)). Il existe une permutation 4,
de I, telle que les éléments de 6, (R],) deviennent consécutifs et on a min(d,(R})) = min(R])
et max(d,(R,,)) < max(R]). On pose R, = 0,(R],) et soit ¢ la permutation de N définie par
o(p)=psipe N\ngoln, et pour tout n > 0 et pour tout p € I,, 6(p) = d,(p). On pose o = Jo~,

alors o vérifie les propriétés citées dans I’énoncé. |

Théoréme. Dans un espace normé de dimension finie, une famille est sommable si et seulement
si elle est normalement sommable.

Démonstration. Soit (E, || ||) un espace normé de dimension finie. Comme toutes les normes
sur F sont équivalentes et la nature d’une famille, le fait d’étre, ou non, sommable, est inchangée
si on remplace la norme || || par une norme équivalente, on peut supposer que £ = R" muni de la
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n
norme || ||; définie par ||(x1,...,2,)[1 = Z |zp|. Puisque (R", || |[1) est un espace de Banach, il
p=1
résulte du théoréme 6.7.1 que toute famille normalement sommable est sommable dans (R™, || ||1).

Réciproquement, soit (a;);c; une famille sommable dans R™. Notons d’abord que si (tx)kex est

une famille finie dans R, on a Z tr] <2 sup ‘Z ={ke K ; t; <0}
keK
etK+—{k€K, tkzO},alorsona.

Z|tk| = Ztk_ Ztk

keK keK keK_
= [ Zoafr[ 2w
keK

A
0
g

iM
S

Pour tout i € I, on a a; = (a1,,...,an;). Puisque les projections canoniques de R" sur R sont
linéaires et continues, pour tout p € {1,...,n}, la famille (ap;)ics est sommable dans R. Donc

I’ensemble {‘ Z ap.;

icJ

; J partie finie de [ } est majoré. Par conséquent, il existe M > 0 tel que

< M . Soit J une

pour toute partie finie J de I et pour tout p € {1,...,n}, on ait ‘Zam
ieJ
partie finie de I, on a :

n
D llailli =D lapal = ZZ‘“M < ZZM —oMn.
icJ icJ p=1 p=1icJ

Il résulte de la proposition 6.7.1 que la famille (||a;||1)ies est sommable dans R . Autrement dit,
la famille (a;);cr est normalement sommable. [ |

Proposition.

1. Soient (a;)icr et (bj)jes deux familles sommables d’éléments du corps K. Alors la famille
(aibj) i jyerx. est sommable dans K et on a :

St = (Ya) (Do)

(i,5)eIxJ el jeJ
2. Si Z ap et Z b, sont deux séries dans K absolument convergentes. Alors la série

n
Z (Zakbn_k) est absolument convergente et on a :

> (S whis) = (Som) ().
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Démonstration. 1. Puisque K est un espace normé de dimension finie, les familles (a;);er et
(bj)jes sont aussi absolument sommables. Soit K une partie finie de I x J, alors il existe une
partie finie A de I et une partie finie B de J telles que K C A x B. On a :

D labl < Y ekl = (Zlail) <Z|bj|) < (Zlail) (Z|bj|) < 400.

(i,5)eK (i,j)€AXB i€cA Jje iel s

Par la proposition 6.7.1, la famille (a;b;)(; jyerxs est alors absolument sommable, donc elle est
sommable car K est un espace de Banach. D’aprés le théoréme 6.7.4, on a :

Z a;b; :Z<Zaibj> :Z <aij§e;bj) = (Zai) <]6sz]>

(i,j)EIXT el jeJ iel iel

2. Puisque les séries Z an et Z b, sont absolument convergentes, d’apreés le corollaire 6.7.3, les

“+o00
familles (a,,)nen et (bn)nen sont absolument sommables, donc sommables et on a Z an = Z an
neN n=0

—+o00
et Z b, = Z by,. D’aprés 1, la famille (anbm)(n,m)eW est sommable et on a :
neN n=0

B () (50 - (5 ()

Pour tout n > 0, soit I, = {(k,n — k) € N?>; 0 < k < n}, alors (I,)nen est une partition de N2.
D’aprés les théorémes 6.7.3 et 6.7.4, la famille (anbm) (s m)enz est absolument sommable et on a :

Z (z": |akbn—k|) = Z |anbm| < +00.

neN k=0 (n,m)eN?

n

Donc la série Z (Z akbn_k) est absolument convergente et on a :

k=0
+o0o n +o0o +o0
S (Sab) = Y o (Yo (Sn).
n=0 k=0 (n,m)eN? n=0 n=0
Proposition. Soient (E, || ||) un espace normé et F' un sous-espace vectoriel fermé de E. Les

propriétés suivantes sont équivalentes.
(i) L’espace E est séparable.
(ii) Les espaces F' et E/F sont séparables.

Démonstration. Montrons implication (i) = (ii). Comme tout sous-espace d’un espace
métrique séparable est séparable, alors F' est séparable. Soit m : E — E/F D'application
quotient. Soit D = {x, ; n > 0} une partie au plus dénombrable et dense dans F, alors
(D) = {m(xy) ; n > 0} est une partie au plus dénombrable et dense dans E/F, donc E/F est
séparable.

Preuve de (ii)) = (i). Soient A = {a,, ; n > 0} une partie au plus dénombrable et dense
dans F et B = {n(b,) ; n > 0} une partie au plus dénombrable et dense dans E/F. Soit
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D = {ay + by, ; n,m > 0}, alors est au plus dénombrable. Montrons que D est dense dans E.
Soient € > 0 et x € E, alors il existe by, tel que ||7(x —by,)|| = [|7(x) —7(by)|| < 5, d’ot il existe
z € F tel que ||z — by, — 2]] < 5. Comme A est dense dans F, il existe a, tel que ||z —a,| < 5.
Dot on a ||z — (an + bp)|| < ||z — b — 2]| + ||z — an|| < § 4+ § = €. Donc D est dense dans E.
Par conséquent, E est séparable. |

Supplément d’exercices

Exercice 6.47. Soient (E, || ||) un espace normé et A une partie non vide de E telle que pour tout
x € F il existe un unique f(z) € A tel que d(x, A) = ||x — f(z)]|. Soient = € E et f(z) =a € A.
Montrer que pour tout z € [z, al, on a d(z,A) = ||z — a]|.

Solution. On a z = tx + (1 —t)a, avec t € [0, 1], dou z — 2z = (1 —t)(x —a) et z—a = t(x —a).

On a:
|z —al < flz—f()
< lz ==zl + 1z = fG)

< =2l + 1z —al

= (A=tlz—-al+tlz—-a] = [z—al.
Donc on a ||z —al| = ||z — f(2)]|. Autrement dit, il existe a, f(z) € A tels que d(x, A) = ||z —a| =
lx — f(2)||. Par conséquent, on a f(z) = a, d’on d(z, A) = ||z — a]|.
Exercice 6.48. Soit (F, || ||) un espace vectoriel normé. Montrer que pour tout z € B(0, 1), on

ad(z, B\ B(0,1)) =1 — ||z||.

Solution. Soit y € E\ B(0,1), on a 1 < ||y|| < |lz|| + ||z — ||, dou 1 — ||z|| < ||l — y||. Par

conséquent, on a 1 — ||z|| < d(z,E\ B(0,1)). Si x =0 et ||y|| = 1, alors on a ||z —y|| = 1, d’ou

d(z,E\ B(0,1)) =1 = 1—||z||. On suppose maintenant = # 0. Soit y = ”m—H, alorson a |ly|| =1,
T

d'ouy € E\B(0,1). On a aussi ||[x—y| = 1—||z||. Par conséquent, on a d(x, E\B(0,1)) = 1—||z||.

Exercice 6.49. Soit (X, d) un espace métrique. Montrer que les propriétés suivantes sont équi-
valentes.

(i) L’espace (X, d) est compact.
(ii) L'espace de Banach (Cy(X), || |[o) est séparable.

Solution. L'implication (i) = (ii) résulte de la proposition 3.6.1 et du fait que Cy(X) = C(X)
si X est compact.

Montrons l'implication (ii) = (i). Supposons que X n’est pas compact. Montrons d’abord qu’il
existe une suite (x,),>0 dans X n’admettant aucune sous-suite convergente et une suite (7 )n>0
de réels strictement positifs tendant vers 0 telles que les boules ouvertes B(zp, ) sont deux a
deux disjoints. On distingue deux cas :

Premier cas : (X, d) n’est pas précompact. Alors d’aprés l'exercice 3.39 du supplément, il existe
un réel » > 0 et une suite (z,)p>0 dans X telle que, pour tout n,m € N, avec n # m, on ait
d(xp, xm) > r. 11 suffit alors de poser r,, = m, pour tout n > 0.

Deuziéme cas : (X, d) n’est pas complet. Soit (yy,)n>0 une suite de Cauchy non convergente dans
(X, d). D’apres l'exercice 3.40 du supplément, pour tout = € X la suite (d(w,yn))n>0 converge
vers un réel strictement positif, donc il existe ¢, > 0 et il existe N, € N tels que pour tout n > N,

on ait d(x,y,) > t,. On construit alors par récurrence une sous-suite (yn, )k>0 de (Yn)n>0 et une
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suite (t;)k>0 strictement décroissante dans |0, +o0o[ tendant vers 0 telles que pour tous p,q € N,
avec ¢ > p, on ait d(Yn,,Yn,) > tp. 1l suflit maintenant de poser r, = %" et 2, = Yy, pour tout
p=>0.

Pour tout n > 0, soit B, = B(xzy,r,) et on pose :

1— d(z,xn)

Tn

si x€B,,
Pn(T) =
0 si ze€X\B,.

Alors ¢, € Cy(X) et on a ¢,(X) C [0, 1], voir exemple 3.6.2. Puisque les B,, sont deux a deux
+oo

disjoints, pour tout a = (ay)n>0 € {0, 1} et pour tout x € X, on pose fu(z) = Zan¢n(m).
n=0

Alors on a :
1. Pour tout a € {0,1}Y, f, € Cyp(X).
2. Pour tous «, 8 € {0, 1} tels que v # 3, on a || fo — falloo = 1.

Montrons d’abord que pour tout a € {0, 1}, on a f, € Cy(X). Il est clair que f, est bornée. Soit
x € X. Montrons que f, est continue en x. Pour tout s > 0, soit A; = {n e N; B(z,s)NB, # @}.
Montrons qu'il existe s > 0 tel que I’ensemble A, soit fini. Si pour tout s > 0, ’ensemble A est in-
fini, alors il existe une suite (aj)r>0 dans X et une sous-suite (xy, )r>0 de (zn)n>0 telles que pour

. 1 . T . 1
tout k > 0, on ait d(z,ax) < 45 et d(zn,, ar) < rp,. Comme on a kEToo Tn, = kgrfm w1 = 0,

alors on en déduit que (z, k>0 converge vers x, ce qui est impossible, car la suite (x,,),>0 n’ad-
met aucune sous-suite convergente. Par conséquent, il existe bien un s > 0 tel que ’ensemble A

P
soit fini. Donc il existe p € N tel que pour tout n > p, on ait B(z, s)NB,, = (. Soit g, = Z QnGn.
n=0

Alors g, est continue sur X et on a fa‘B( = 90l e’ Comme B(z,s) est un ouvert de X, on

z,s)
en déduit que f, est continue en x. D’ou la continuité de f,. Ainsi, on a f, € Cp(X).
Montrons que pour tous a, B € {0,1}N tels que a # 3, on a || fo — f3llec = 1. Il est clair que
pour tout z € X, on a [fo(x) — fa(x)] < 1, dou |fa — f3llc < 1. Comme a # §3, alors il
existe n > 0 tel que oy, # Bp, dou |fo(zn) — f3(2n)| = |an — Bn] = 1. Par conséquent, on a
| fa — f5llco = 1. Comme ’ensemble {0, 1} n’est pas dénombrable, voir exercice 6.35, on déduit
de la proposition 1.2.5 que (Cb(X), I Hoo) n’est pas séparable, ce qui contredit ’hypothése. Donc
X est bien compact.

Exercice 6.50. Soit (E, || ||) un espace normé. Montrer que les propriétés suivantes sont équi-
valentes.

(i) 1l existe une partie compacte K de E telle que E = Vect(K).
(ii) L’espace E est séparable.
Solution. Montrons l'implication (i) = (ii). Soit K une partie compacte de E telle que

E = Vect(K). D’aprés la proposition 3.1.7, K est séparable, donc il existe une partie A de
K au plus dénombrable et dense dans K. On en déduit que A est une partie totale de E. Par
conséquent, E est séparable.

Montrons 'implication (ii) = (i). Supposons que E est séparable. On peut supposer E # {0}.

Alors il existe une suite (x,,),>1 d’éléments non nuls de E telle que £ = {x, ; n > 1}. Soit
K= {w— in > 1} U {0} Alors K est une partie compacte de E telle que E = Vect(K).

n
A
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Exercice 6.51. Montrer que 'espace de Banach (Cy(]0, 1[, R), || |lc) n’est pas séparable.

Solution. Ceci résulte de ’exercice 6.49, mais donnons une preuve directe. Il suffit de montrer
que Cy(]0, 1[, R) contient une copie de ¢>°, voir exercice 6.35. Pour tout n > 1, Soit f, €
Cy(]0, 1], R) telle que ||fnlloo = 1 et fir(t) =0sit & ]n+r17 LT (une telle fonction existe). Pour
tout @ = (an)n>0 € > et pour tout ¢t € [n+r1’ 17, on pose T,(t) = anfa(t). Autrement dit,

[l o a T(a)(t) = D anfult). Alors T(a) € Cy(]0, 1], R) et
n=1

C8

pour tout t €10, 1[=

I’application
T: > — Cp(]0, 1], R)
a +— T(a)

est linéaire et isométrique. Donc on peut considérer £ C Cy(]0, 1], R). Comme ¢>° n’est pas
séparable, on en déduit que (Cp(]0, 1[, R), || ||oc) n’est pas séparable.

Exercice 6.52. Soit (X, d) un espace métrique localement compact. Montrer que X est sépa-
rable si et seulement si Cp(X) contient une fonction a valeurs strictement positives.

Solution. D’apres la proposition 3.4.4, X est séparable si et seulement si X est dénombrable &
I'infini. Supposons d’abord qu’il existe f € Cy(X) telle que pour tout = € X, on ait f(x) > 0.
Alors, pour tout n > 1, il existe un compact K, de X tel que pour tout x € X \ K, on ait
0 < f(z) <i.On en déduit que 'on a X = nL>J0Kn. Donc X est dénombrable a U'infini.

Réciproquement, supposons que X est dénombrable & I'infini. Soit (K”)n>o une suite exhaustive

de compacts de X, voir théoréeme 3.4.2. D’apreés le théoréme 3.6.1, pour tout n > 0, il existe

¢n € Ce(X) telle que ¢, (X) C [0, 1], ¢p(x) = 1, pour tout = € K,, et Supp(d,) C Kpi1.

Puisque la série Z o+ &n est normalement convergente dans l'espace de Banach (Co(X), | [l«),
n>0

+o0
alors f = Z 3¢ € Co(X). 1L est clair que pour tout z € X, on a f(z) > 0.

n=0
Exercice 6.53. Soient (E, || ||) un espace normé de dimension infinie. Montrer qu’il existe une
suite (2, )n>0 dans E telle que pour tout n > 0, on ait ||z,|| =1 et ||xy, — 2| > 1 si n # m.
Solution. On construit la suite (z,,)n>0 par récurrence sur n. Soit xg € E tel que ||zo|| = 1. Soit
F = Vect(z) le sous-espace vectoriel engendré par zp. D’aprés I'exercice 6.42, il existe 21 € F
tel que ||z1|| = 1 et d(z1, F) = 1, d’ou ||xg — x1]|| > d(z1, F)) = 1. Supposons que 1’on a construit
xo,x1, - , &y € E tels que ||z;]] = 1 et ||a; — x;]| > 1, si i # j, pour tout 7,5 € {1,...,n}.
Soit F' = Vect ({330,331, S ,a:n}) le sous-espace vectoriel engendré par xg,x1,--- ,x,. D’apres
I'exercice précédent, il existe x,41 € F tel que ||zp41] = 1 et d(zp41, F) = 1, dout ||xp41 —xi]| >
d(zp41,F) = 1 pour tout i € {1,...,n}. Ainsi, on trouve une suite (z,)n>0 dans E telle que
pour tout n > 0, on ait ||z,|| =1 et ||z, — x| > 1 si n # m.

Exercice 6.54. (E, || ||) un espace normé. Soient f et g deux formes linéaires continues non
nulles sur F. Soient Ny = ker(f) et Ny = ker(g). Montrer qu’il existe un homéomorphisme
linéaire T : Ny — N,.

Solution. Notons d’abord que pour tout « € £\ Ny, on a E = Ny ® Kz, et que si Ny C Ny,
alors on a Ny = Ny. On suppose N, # Ny, car sinon c’est trivial. Soit h = f‘Ng : Ny — K,
alors h est une forme linéaire continue non nulle. Soit N = Ny N Ny, alors on a N = ker(h).
Donc il existe z, € Ny tel que Ny = N @ Kzg et x4 € Ny. Soit xp € Ny tel que zp & Ny,
alors on a £ = N ® Kzy @ Kay. On peut supposer f(zy) =1 = g(xy). Pour tout x € E, soit
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T(z) =z + (f(x) — g(x))xs + (9(x) — f(x))zy, alors T est linéaire et est un homéomorphisme
de E dans E, car T est continue et 7! = T. En fait, pour tout y € N et tout o, 3 € K, on a
T(y + axy+ Prg) =y + Pry+ axy. On a de plus T(Ny) = Ny.

Exercice 6.55. Soient (E, || ||), (F, || ||') deux espaces normeés et T': E — F' une application
linéaire continue. Soient a € E et p > 0. Montrer que 'on a :

R

1T () = T(a) |V
p

a |T|| = 8. Rappelons que l'on a ||T|| = sup {|T(2)[]' ; z € E avec ||z]| = 1}. Soit « € E tel

reEet|r— a||:p}.

Solution. Soit 3 = sup{ ;€ Fetl|x—al = p}, il s’agit de vérifier que I'on

— T(x)—-T !
que ||z — a|]| = p, alors on a HuH =1, d’ou IT@) = T(a)[" < ||T||. Donc on a B < ||T.
p p

x J—
Réciproquement, soit z € E tel que ||z]| = 1. Soit = pz+a, alorson a ||z —al| = p et

|7 (z) = T(a)|l
p

Exercice 6.56. Soient (F, || ||) un espace normé et f : E — R une forme linéaire continue

non nulle. Soient @ € R et H, = {x € E ; f(z) = a}. Solent b € E tel que o < f(b) et

0 =d(b,Hy) > 0. Montrer que pour tout « € B’(b,0), on a a < f(x).

Solution. Soit a € E tel que f(a) = «, on a H, = ker(f) 4+ a. D’aprés I'exercice 6.43, on a :

|£(b) — f@)| _ f(b) ~ fla)

:Z7

dou | T(2)|| = < B. Donc on a ||T|| < . Par conséquent, on a ||T|| =

§ = d(b, Hy) = d(b,ker(f) + a) = d(b — a,ker(f)) =

A
Soit & € B'(b,4). Si f(x) < a, alors f(z) < f(a) < f(b), dou f(b) — f(a) < f(b) — f(x). Par
conséquent, on a d|| f]| = f(b) — f(a) < f(b) — f(z) < ||fIII[6— x| < ||f||J, ce qui est impossible.

Donc, pour tout = € B'(b,d), on a bien a < f(x).

Exercice 6.57. Soient (E, || ||) un espace de Banach, (F, || ||') un espace normé et Bp = {y €
F; |lyl/ < 1}. Soit T : E — F une application linéaire telle que T~!(Bp) soit fermé dans E.
Montrer que T est continue.

Solution. On a F = nL>J1nBF, dot E = T7Y(F) = nL>J1nT_1(BF). Comme pour tout n > 1,

nT~1(BF) est fermé dans E, il résulte du théoréme de Baire, théoréme 2.8.1, qu’il existe n > 1
tel que nT~Y(Bf) soit d’intérieur non vide dans E. Comme la multiplication dans E par
un scalaire non nul est un homéomorphisme de E, alors T !(Bf) est d’intérieur non vide
dans E. En particulier, il existe * € E et r > 0 tels que B(z,r) C T '(Br). On a aussi
B(—xz,r) = —B(z,r) € =T YBr) = T-Y(~Br) = T7Y(BF). Pour tout z € B(0,r), on a
z=3(z+2)+5(2—x), avec z+x € B(z,r) et z—z € B(—z,r). Comme T~1(Bp) est convexe,
on en déduit que 'on a z € T~}(Bg). Donc on a B(0,7) C T~(Bp). En particulier, T-(BF)
est un voisinage de 0 dans E. Par conséquent, T' est continue.

t
Exercice 6.58. Pour tout (z,y) € R?, on pose N(z,y) = sup 2+ ‘g‘
teR 1 + t
1. Montrer que N est une norme sur R2.
[z, y)ll2 + ||

2. Montrer que pour tout (z,y) € R?, ona N(z,y) = ,ou || || désigne la norme

euclidienne sur R?. En déduire que l'on a £{|(z,y)|l2 < N(z,y) < [|(z,y)]2.
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Solution. 1. Ona N(z,y) =0 <= pour tout t € R, |[z+ty| =0 < (x,y) = (0,0). Pour tout

A tA A t t
A€ R, ona NAzvy) = Nz, \y) = supM = Al + ty] = |\| sup [+t =

u

ter 1+t ter 1412 ter 1 +12
o 2 .

|IA| N(z,y). Pour tout (x,y), («',y') € R*, on a :

N((z,y) + (@', ¢) = N+ y+y)

~ |x + 2 + ty + ty/|
te]g 1+ ¢2

! 4ty
< su <|96+ y|+|96+ yl)
ter \ 1412 1412

t t
< Sup\er yIJrsu |z + ty|

ter 1+12  ep 1412

= N(z,y) + (@ y).

Donc N est bien une norme sur R2.
2. Puisque l'on a N((—x,—y)) = N(x,y) et N((z,—y)) = N(z,y), il suffit de montrer 1'éga-
lité pour x > 0 et y > 0. Soient z,y € R tels que x > 0 et y > 0. Alors on a N(z,y) =

t t 0
[z + 32’/| = su Tt 32/ On a N(z,0) = =z = w, donc on peut aussi suppo-
ter 1+1 t>0 1 +1

2
ser y > 0. Pour tout ¢t > 0, soit f(t) =

T+ 1ty

Tr e Alors f est dérivable sur [0, +oo[, et on a

—yt? — 2xt _ 2,2
') = ?J(th);_y Donc f’ s’annule seulement en ¢y = TEVITHY sur l'intervalle

[0, +00]. Par conséquent, on a N(x,y) =

(2, y)ll2 + ||
2

z+toy |yl + o]
1+ t3 2

< l@ y)ll2, dott 5ll(z,m)ll2 < N(@,y) < [I(z,9)]2.

. D’autre part, pour tout
(a:,y) € R27 on a %H(‘%y)”? <

Exercice 6.59. Soit F ’ensemble des applications lipschitziennes de [0, 1] dans R. Pour tout f
de E, on pose :

[flleo = sup [f(D)] » N(f)=Ifllc + K(f) et K(f)=sup
0<t<1 ey

1. Veérifier que E est un sous-espace vectoriel de C([0, 1], R).
2. Justifier 'existence de K(f) et montrer que pour tout f,g € E, on a :

K(f+9) <K(f)+K(g) et |K(f)—K(9)|<K(f—g).

3. Montrer que N est une norme sur F.
4. Counsidérons la suite (f,)n>1 dans C([0, 1], R) définie par :

xr si Oga:S%,
fn(x):

<z <

—_

si

S|=
S

Veérifier que f, € E et montrer que N et || || sont deux normes non équivalentes sur E.
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5. Montrer que F est de dimension infinie.
6. Montrer que l’espace (E, N) est de Banach.
Solution. 1. C’est trivial.
2. Soit f € E, alors il existe k > 0 tel que pour tout z,y € [0, 1], on ait |f(z) — f(y)| < klz —y|,

M‘ < k, donc K(f) existe dans R.

d’ou pour tous z,y € [0, 1] tels que z # y, on ait
Ty

Pour tout f,g € E,on a:

K(f + g) = sup| L@ +9) - fly) —9w) ‘ '
TF#Y =y
On a aussi :
1@) +9@) = f@) =9 @) = FW] | 19@ =@ _ 14 ()
|z — y| - |z — | [z -yl ’

d'ou K(f+9) < K(f)+ K(g). On en déduit que 'on a K(f) = K(f—g+g9) < K(f—g)+K(9)

et K(9) = K(g—f+f) < K(9g—f)+ K(f) = K(f —g) + K(f). Par conséquent, on a
(K (f) = K(g)| < K(f —9).
3. Ona N(f) =0 <= |fle+K(f) =0 <= |flw <= [ =0.0naNQMf)=

1A loo + K OVF) = I 1o+ A K(F)- Ona N(f+6) = |1 +glloo+ K(F+6) < [1floo+ 9]l +
K(f)4+ K(g9) = N(f)+ N(g). Donc N est une norme sur E.

4.Six,y € [0, E]v ona fp(z)— fuly) =z —y. Siz,y € [%, 1], ona fp(z)— fn(y) =0.Siz < %
ety > 2 onal|fu(®) = fu(y) =2 —2 <y—a=|z—y| Donc f, est lipschitzienne de [0, 1]
dans R, d’ott f € E. On a || fulloo = % et K(f,) =1, dott N(fn) =1+ 1. Donc les deux normes
Il [0 €t N ne sont pas équivalentes, voir remarque 6.1.1.

5. Soit B’(0,2) la boule fermée de centre 0 et de rayon 2 dans (E, N). Alors il existe ng € N
tel que pour tout n > ng, on ait f, € B’(0,2). Si E est de dimension finie, alors B’(0,2) serait
compacte, et donc la suite (fy,)n>1 admettrait une sous-suite convergente. Soit (fy, )x>1 une telle
sous-suite et soit ¢ la limite de (fy, )x>1 dans (£, N ). Alors la suite (fy, )x>1 converge aussi vers

g pour la norme || ||oc. Comme on a ||fy, |lec = alors g =0, dot on a lim N(f,,) =0,
k=00

ce qui est impossible car pour tout k, on a N(f,,) =1+ n_k > 1. Par conséquent, E est de
dimension infinie.

6. Soit (gn)n>0 une suite de Cauchy dans (£, N). Comme pour tout f € E, on a || f|lcc < N(g),
alors (gn)n>0 est de Cauchy dans (E, || ||s) € (C([0, 1], R), || |oc). Comme (C([0, 1], R), || |loc)
est de Banach, voir proposition 2.6.8, alors il existe g € C([0, 1], R) telle que HETOO lgn—9|lcc = 0.

nk’

Pour tout n,m € N, on a :

‘K(gn) - K(gm)‘ < K(gn - gm) < N(gn - gm)a
donc la suite (K(gn))nzo est de Cauchy dans R, d’ou il existe a € R tel que HEIEOOK(gn) =aq.

Pour tout n > 0 et pour tout =,y € [0, 1], on a |gn(z) — gn(y)| < K(gn)|z — y|. On fait tendre
n vers 'infini, on obtient |g(x) — g(y)| < alx — y|, donc g € E. Soit € > 0. Alors il existe
k € N tel que pour tout n,m > k, on ait K(g, — gm) < €. Donc, pour tout z,y € [0, 1] et
pour tout n,m > k, on a |g,(x) — gm(x) — gn(y) — gm(y)| < elx — y|. On fait tendre m vers
l'infini, on obtient |gn(z) — g(x) — gn(y) — 9(y)| < €|z — y|. Dot on a K(g, — g) < € pour
tout n > k. Comme on a N(g, — g9) = ||9n — 9llcc + K(gn — g), alors nll)]grloo N(gn —g) =0. Au-

trement dit, la suite (gy,)n>0 converge vers g dans (E, N). Donc (E, N) est un espace de Banach.

Exercice 6.60. Soit (E, || ||) un espace normé de dimension infinie.
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1. Construire une application linéaire bijective non continue 7" : (E, || ||) — (E, || ||).

2. Pour tout x € E, on pose ||z|r = |[|T(z)|. Montrer que || |7 est une norme sur E, que T’
est une application bijective isométrique de (E, || ||7) dans (E, || ||) et que (E, || ||7) est
de Banach si et seulement si (E, || ||) est de Banach.

3. Montrer que les normes || || et || || ne sont pas équivalentes.

Solution. 1. Soient (ey,),>1 une suite infinie de vecteurs de E linéairement indépendants et V' le
sous-espace vectoriel de E engendré par (ey),>1. Soit W un supplémentaire algébrique de V' dans
E. On définit une application linéaire 7' de E dans E par : pour tout x € W, on pose T'(z) = z,

n n
et pour tout n > 1, on pose T'(e,) = nlle,||, autrement dit, on a T(Z)\iei) = Z)\MHeZH
i=1 i=1
Alors T est une application linéaire bijective non continue de E dans FE.
2. C’est une simple vérification.
3. Les normes || || et || || ne sont pas équivalentes car I'application identité z — x n’est pas
continue de (E, || ||) dans (E, || ||7)-

Exercice 6.61. Soient (E, || ||), (F, || ||') deux espaces normés et f : E — F une application
linéaire. Montrer qu’il existe toujours une norme sur E qui rend cette application continue.
Solution. Pour tout x € E, on pose ||z||” = ||z|| + || f(x)]/’, alors || | est une norme sur E qui
rend 'application linéaire f continue.

Exercice 6.62. Soient E = {f € C([0, 1], R); f(0) = 0} et F = C([0, 1], R). Considérons
I’application dérivée
D: F — F
fo—f

1. On munit E et F de la norme || f ||, = sup |f(z)|. Montrer que D est linéaire bijective
0<z<1

non continue.

2. On munit £ de lanorme || f || = || f|loo + || f' |l et F de la norme || f||,,. Montrer que D
est continue et calculer sa norme d’opérateur ||D|| .

Solution. 1. Il est clair que D est linéaire et bijective. L’application D~! associe a toute

application f € F sa primitive nulle en 0. Autrement dit, on a D~1(f)(x) = / ft)dt, d’ou :
0

IDL()( >|s/0 \f(t)ldtéfo 1flloo dt < 2] Flloo < 1 Flloc

donc on a [[D7Y(f)]lec < ||f]lee- Par conséquent, D~! est continue. Pour tout n > 1, soit
fn(t) =1t", alorson a || f,, ||, = 1, mais || D(fy) ||, = n, donc D n’est pas continue.
20na DNl =1l llee <N fllo+ 11 f oo =l f1, donc dans ce cas, D est continue et on a

| D[l < 1. Pour tout n > 1, soit g,(t) = £, alors on a || gn || = 2 + 1 et |[D(gs)|,, = 1. Comme
D
on a ||D| = sup %, on en déduit que ||D|| > 1, doncon a ||D||=1.
f#0

Exercice 6.63. Trouver un espace de Banach F et une application linéaire T' : £ — F non
continue telle que ker(T) soit fermé.

Solution. Soit E = ¢y muni de la norme || ||o. Soit f une forme linéaire non continue sur E,
une telle f existe car E est de dimension infinie. Pour tout z = (x,)n>0 € F, soit T'(z) =

© Dunod, 2011 - Topologie et espaces normés - Nawfal El Hage Hassan



92 Chapitre 6. ESPACES NORMES

(f(z),x0,x1,- ), alors T est linéaire non continue et ker(7T') = {0}, donc fermé dans E.

Exercice 6.64. Soient (E, || ||), (F, || ||') deux espaces normés et T € Z(FE; F). On suppose
de plus dim(E) < 4+o0o. Montrer qu'il existe a € E tel que |a| = 1 et |T|| = max ||T(x)|" =

, llzl|=1
1T (a)|I"
Solution. On a ||T|| = sup || T(x)| et 'application z — ||T'(z)||" est continue de E dans R.
[lell=1
Comme dim(E) < 400, alors la sphére S = {z € E ; ||z|| = 1} est compacte, on en déduit que
qu’il existe a € E tel que |lal]| =1 et ||T|| = ”m”ax T ()| = ||T(a)| .
z||=1

Exercice 6.65. Soient a > 0,b > 0et T : (R?, || |l2) — (R?, || ||;) une application linéaire dont
a
b
Solution. Pour tout (z,y) € R?, on a T(z,y) = (ax + by, bz + ay).
Premier cas : v =1. On a :

17 = max {IT@p)l 5 )l = 1}

: : b .
la matrice dans la base canonique de R? est al’ Calculer sa norme quand ¢ = 1,2 et oo.

= max {|az + by| + |bx + ay| ; 2? +y* =1}

= max {|acos(f) + bsin(f)| + |bcos(9) + asin(f)] ; 0 < < 27} .
Comme a et b sont de méme signe, on a :

IT] = max{acos(d)+ bsin(h) + bcos(d) + asin(f) ; 0 <6 <

}.

}

vl

= (a+b) max {cos(d) +sin(f) ; 0 <6 <

vl

Soit h(f) = cos(f) + sin(f), alors h est dérivable et on a h'(6)

S cos(f) — sin(f), donc on a
max_h(6) = h(Z) = V2. Par conséquent, on a ||T|| = v/2 (a + b).

0<0<7T
Deuzxiéme cas : i = 2. On a :
17| = max{||T(z,y)ll25 [[(z.9)]2 =1}
=  max Va2 + b2 + 2absin(26)
= a+b.
Troisiéme cas : © = 00. On a :
17| = max{|T(z,y)l; [I(z,y)ll2 =1}

= max { max(|acos(#) + bsin()|, [bcos(d) + asin()|) ; 0 < < 2x}.
Comme a et b sont de méme signe, alors on a :

IT] = max{max (acos(f)+ bsin(h),bcos() + asin(h)) ; 0 < 0 <

}

= max (0%2;)(%{& cos(0) + bsin(0)}, ogbagxg{b cos () + a51n(0)}> .

vl
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Soit 8’ = 5 — 0, alors on a beos(#) + asin(f) = bsin(0’) + acos(#), dou :
|T|| = max {acos(g) + bsin(d) ; 0< 0 < Z}.

Soit h(f) = acos(f) + bsin(f), alors h est dérivable et on a h'(0) = —asin(f) + bcos(6), d’ou

1 a

a max_ h(f) = h(fy) = cos(fp)a + btan(bp)] = Va2 + b? et max (h(0),h(3)) = max(a,b) <

0<o<}

Va2 + b2. Par conséquent, on a [|T|| = va? + b2.

Exercice 6.66. On rappelle que ’espace vectoriel des matrices a n lignes et p colonnes M, ,(K)
s’identifie canoniquement a .Z(KP; K™) grace aux bases canoniques de KP et K". Ainsi, le choix
de normes sur K? et K™ définit une norme sur £ (K?; K"), il fournit ainsi une norme sur M,, ,(K).
Soit A = [aij] € Mn,p(K) .

1. Montrer que si on munit K? et K" de la norme || ||1, alors on a ||A| = joax Z |ai;| .
2. Montrer que si on munit K? et K" de la norme || ||o0, alors on a ||A|| = Dax. Z |laij| .

3. Montrer que si on munit K? et K" de la norme || ||2, alors on a :
n’p %
2
(X ) SRS
2,7=1 1,7=1

Solution. On note (e;)1<;<q la base canonique de K¢.
n n

1.On a Ae; = Zaijei, d’on Z|a¢j| = ||[Aejli < ||A]lllejlli = ||A|l. Par conséquent, on a

1=1 7, 1
P
llgjaé(p Z la;j| < ||A]l. Soit z = E:Im]ej € KP alorsona Az = E:liAe] = zjla:j<zn;aijei> =
J j j= i=
n p n
Z(ijaij)ei, EAVETIED S SETH =D 9 SIS S (Llol) <

i=1 j=1 i=1 j=1 i=1 j=1

<1121a<x Z\aﬂ)”m\h Doncona || Al < Jnax Z\a”| Par conséquent, on a || Al| = pax Z\aw\.

p n p
2. Soit x = E zje; € KP, comme ci-dessus, on a Az = E < E :Ejaij)ei, d'ot [|[Az|e =

j=1 i=1 N j=1
P P p
| Lo < ggfg;Z ol < i, 3l = (maxe S les ) el Done on
P
a [|A] < Jnax Z la;j|. Soit £, = 1 si aj; > 0 et g5 = —1 si a;; < 0, alors on a g5a;5 = |asjl.
N
7=1

P
Soient k € {1,...,n} et zp = Zz—:kjej, alors on a |[xgllec = 1 et Axp = Zsijej =
j=1 j=1
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n

iem(iaijei> Z <zp:fkjaij>€i = (Zekjak]>ek + Z <Z€’fﬂ%>el =

=1 ]:1 Z;ék
p p
<Z lag;] )ek Z <Z kjaij>ei. D’ou on a Z lag;| < [J[A(zk)]|oo < ||A|. Par conséquent,
i#k N j=1 j=1
p p
| < — .
on a max Z la;j| < ||A]l. Donc on a ||A|| [nax Z |laij| .
7j=1 7j=1
n % n,p
3. On a Jay| < (Zmzjﬁ) = lldeslla < 141l leslls = 14]1, o 3 Jagsl? < np]| ]2 Donc on
i=1 ij=1

p
< Z || > < |A||. Soit z € K? tel que ||z|]2 =1. On a Az =y, avec y; = Zaijxj :
2,7=1 -

1 1
P 2 P 2 n
D’apreés 'inégalité de Cauchy—Schwarz, on a |y;| < <Z \aij|2> <Z |xj|2> , donc Z lyil* <
j=1 j=1 i=1
1

n,p n,p 2 n,p 2
Z \aij\2. Par conséquent, on a [|Az|l; < < Z |aij|2> , d’ou ||A]l < < Z \aij\2> :
ij=1 ij=1 ij=1

Exercice 6.67. Soit n € N*. On munit M,(K) de la norme ||[a;;]|c = max|a; ;|.
7

7

1. Déterminer la norme de la forme linéaire trace

tr: M,(K) — K
n

[CLU] — Z Qi
i=1

2. Soit A € M, (K). Calculer la norme de ’application linéaire suivante :

Ra: My(K) — M,(K)
M — MA

n
Solution. 1. Il est clair que tr est une forme linéaire sur M, (K). On a |tr([a;;])| < Z lai;| <

i=1
n|[aij]||oc, donc tr est continue et on a ||tr|| < n. Soit I,, la matrice identité dans M, (K), alors
on a ||[Iy|lec =1 et tr(I,) = n, donc ||tr|| = n.

n
2. Soient A = [a;j] et M = [myj], alors on a MA = [¢;;], avec ¢;j = Zmikakj, d’ou |e5] <
k=1

Z Imaglari| < [|M]oo Z |ag;|. Soit a = jmax Z\a”\ alors on a |[MA|ls < o M||es, donc

k=1
||RA|| < «a. Pour tout ¢,k € {1,...,n}, il existe Azk € K tel que || = 1 et \igaix = |aikl-

Pour tout j € {1,...,n}, on pose M € M, (K) définie par M; = [myg], avec my, = 0si i # 1
n

n
et migx = Apj, alors on a [[Mjlle = 1 et [[RA(M;)]oo = > lail, dott [Rall = ) ai;|. Par
i=1 i=1

conséquent, on a |[Ral|| = pax Z |aij].
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Exercice 6.68. Soit £ = R[X] lespace vectoriel des polynomes a coefficients réels muni de la

norme ||P|| = sup |ak| si P = ZakX ¥ ¢ E. On considére les applications linéaires de E
0<
k=0

suivantes :
n

=Y ka X et p(P) =Y xR
2kt 1

1. Montrer que D n’est pas continue, mais ¢ est continue et calculer sa norme.

2. Déterminer ¢ o D et D o .
Solution. 1. Pour tout n > 1, On a || X"|| = 1, D(X") = n X" ! et ||D(X")|| = n. Donc il
n’existe aucune constante A > 0 telle que pour tout P € E, on ait ||[D(P)|| < A||P||. Donc D

n’est pas continue. On a ||¢(P) sup lak| = ||P||, donc ¢ est continue et on

I= e [l o
allell <1.0naep(l) =X et |p(1 )|| = ||X|| =1, donc ||g0|| > 1. Par conséquent, on a ||¢| = 1.
n

22.0naDoyp=idget po D =idg — 9, ou w<Zaka) =ag.
k=0
Exercice 6.69. On considére 'espace normé E = (£°°, || |loo)-
1. Soit S 'application « décalage » ou « shift » définie sur E par S(z) =y, ot y, = x,_1 si
n > 1 et yo = 0. Autrement dit, on a S((xg,x1,x2,...)) = (0,29, 21, z2,...). Montrer que
S € Z(F). L’application S est-elle injective 7 surjective ?
2. Déterminer T' € Z(F) telle que T'oS = idg. L’application T est-elle injective 7 surjective ?
Quelle est I'application SoT'?
Solution. 1. Il est clair que S est linéaire et isométrique, donc S € Z(FE) et est injective. Si
y=1(1,0,0,...), alors y € £> et y & S(¢*>°), donc S n’est pas surjective.
2. Pour tout (zg,x1,x2,...) € £>°, on pose T((xg,x1,x2,...)) = (x1,22,...), alors T € Z(F) et

onaToS =idg, donc T est surjective. On a 7'((1,0,0,...)) = 0, donc T n’est pas injective. On
a SoT((xo,x1,22,...)) = (0,21, 22,...).

Exercice 6.70. On considére espace ¢>° muni de la norme || |loo, et soit T : £*° — K une
application linéaire telle que pour tout z = (z,,)n>0 € £°°, il existe n € N tel que T'(z) = z,,. On
veut montrer qu’il existe p € N tel que pour tout & = (z,,)p>0 € £°°, on ait T'(x) = xp.

1. Prouver que T est continue.

2. Montrer que la restriction de T" a c. est non nulle.

3. Montrer qu'il existe p € N tel que T'(e,) = 1.

4. Soit G = {a: = (Tp)n>0 € £ ; z, € {0,1}, pour tout n > 0}. Montrer que pour tout
z = (zp)n>0 € G, on a T(x) = ).

5. Montrer que F' = Vect{G} est égal a ’ensemble des x € £>° d’image finie.

6. Montrer que F' est dense dans £ et conclure.

Solution. Soit x = (xy,)n>0 € £°°, alors il existe n € N tel que T'(z) = zy, d’ou |T'(x)| = |z,| <
|z]|co- Donc T' est continue et on a ||7]| < 1. On a méme ||T]| =1 car T'(1) = 1.

2. Si Ti.. = 0, alors ﬂco = 0 car ¢, est dense dans ¢g. Mais si zg = 1 et x,, = % sin > 1, alors
T = (n)n>0 € co et T'(z) # 0. Donc la restriction de T" & c. est non nulle.

3. Puisque T}, # 0, alors il existe p € N tel que T(e,) # 0. Or T(e,) € {0,1}, donc on a
T(ep) = 1.

4. Soit z = (zp)n>0 € G.

© Dunod, 2011 - Topologie et espaces normés - Nawfal El Hage Hassan



96 Chapitre 6. ESPACES NORMES

Premier cas. Sixp, =0, alorson a [z +epllec =1, d’o0 |T(2)+ 1] = [T(z+ep)| < |z +e€pllec = 1.
Oron a T(z) € {0,1}, dou T'(z) = 0 = xp.
Deuzieme cas. Si x, # 0, alors x, = 1, d’ou v — xpe, € G et on applique le premier cas, on
obtient T'(z — xpe,) = 0. Donc on a T'(x) = ).
5. Soit F' = Vect{G}, le sous-espace vectoriel de £>° engendré par G. Il est clair que si x € F,
alors x est d’image finie. Réciproquement, si z = (z,,)n>0 € £ est d’image finie, alors {z,, ; n >
0} = {ao,...,an}, avec a; # a; si i # j. Soit A; = {n >0; x,, = a;}. Soit o’ = (an;)n>0 défini
N
par ap; = 1sin € A; et ;s =0sin ¢ A;. Alors o' € G et on aszaiai, donc x € F.
i=0
6. Solent x = (2, )n>0 € £ et € > 0. Pour montrer que F' est dense dans ¢*°, il suffit de trouver
a = (ap)n>0 € F tel que ||a — x| < €. Comme F est un sous-espace vectoriel, on peut supposer
que pour tout n > 0, on ait z,, > 0. Soit r = ||z||«, alors il existe N € N* tel que § < €. Soit

Ap={n>0; x, =0} et pour tout k € {1,..., N—l} soitAk:{n>O' ﬁ<a;n§W},

alors les A sont deux a deux disjoints et on a U Ak = N. Pour tout n € A, soit a,, = alors

N )
a=(an)p>0 € Fetona lla -zl < § <e. Donc F est dense dans ¢*°.

Puisque T et l'application = (25, )n>0 — x; sont continues de /> dans K et coincident sur F,
on déduit de la proposition 1.5.5 que pour tout & € £>°, on a T'(z) = x).

Exercice 6.71. On considére espace normé (£, || ||s). Soient F = {z = (25)n>0 € £*°; 0 <

Tn < 1, pour tout n > 0} et a = (n+r1)n>o € (™.

1. Vérifier que F' n’est pas fermé dans £°.
2. Déterminer d(a, F).

Solution. 1. Pour k& > 2, soit X, = ( i, %, %,...), alors on a Xj € F et la suite (Xj)r>2
converge vers [’élément ( ) ¢ F, donc F n’est pas fermé dans ¢°°.

1

R

9
2. Pour k > 2, soit ai = (1 ), alors on a ay, € F et la suite (ay)r>2 converge vers a,
donc on a d(a, F) = 0.

2’2
_11
k>

wl

Exercice 6.72. On considére l'espace normé E = C([0, 1]) muni de la norme || ||;. Montrer que
les applications linéaires T' suivantes sont continues. Calculer leur norme d’opérateur ||T'|| et voir
si elle est atteinte sur la sphére unité {f € E; || f||; = 1}

1.
T: F — FE
fo— T(f)
ou T(f)(a:):/w f(t)dt, pour tout x € [0, 1].
0
2.
T: F — K
1
fo— f(t)dt
3.
T: FE — K
1 1
fo= fly)dy— [ fly)dy
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Solution. 1. OnaHT(f)lefol |T(f)(a;)|da;:/01‘/0xf(t)dt‘dx§/01</0x\f(t)|dt) dz <

1 1 1
/ (/ |f(t)|dt) dx = / || fll; dx = ||f]l;, donc T est continue et on a ||T|| < 1. Pour tout
o “Jo 0

n > 1, soit f,(t) = (n+ 1)(1 — )" alors on a || full, = 1 et T(fu)(x) =1— (1 —2)""" >0, donc
on a ||T(fn)||1 =1- . Or pour tout n > 1, on a || T|| > ||T(fn)l|;, d’ou || T|| = 1.
S’il existe f € E telle que Ilflli=1et ||T| = HT( )|, alors de l'inégalité :

< [ ([soa)a< [ o) a=imn,

1 T
on déduit que pour tout x € [0, 1], on a / |f(t)]dt = |f(t)| dt. Donc, pour tout t € [0, 1],
0 0

on a f(t) =0, ce qui est impossible. Par conséquent, il n’existe aucune f € E telle que ||f]1 =1
et | T =T(f )Hl

2. On a |T(f) / f(t dt‘ / |f(t)|dt = | f]|;, donc T est continue et on a ||T| < 1.

Soit f(t) = 2t, pour tout ¢ € [0,1], alors on a || f||; =1 et on a T'(f) = 1. Par conséquent, on a
171 =1=7(f)

3. On a |T(f (/f dt—/f )] < ‘/f dt(+(/f )it < / Bl dt +

/ |f(t)]dt = / |f(t)|dt = ||f]l;, donc T est continue et on a || T|| < 1. Pour tout ¢ € [0,1],

soit g(t) =2(1—2t),alorsge EetonaT(g) =|gl; =1,doncona |[|T|| =1=1|T(g)|

Exercice 6.73. Considérons 'espace normé E = (C([0, 1], R), || ||1). Soient h € E et pp(f) =
1

f@)h(t)dt, pour tout f € E. Montrer que @y, est forme linéaire continue sur E et calculer sa
horme.
Solution. Il est clair que ¢ est une forme linéaire sur £. On a :

1 1
|soh<f>|=\ / f(t)h(t)dt‘ﬁ [ i1l < 171 1hl.

Donc ¢p, est continue et on a ||@x|| < [|hlleo- Si ||@nll < |||l alors il existe e > 0 tel que
llonll + € < ||h]loo. Comme [0, 1] est compact et h est continue, alors il existe a € [0, 1] tel que
Ih]lcoc = |h(a)|. Par conséquent, il existe a > 0 tel que I = [ty — 2a, to + 2a C [0, 1], et pour
tout ¢t € I, on ait ||¢n|| +& < |h(t)|. Notons que h est de signe constant sur /. Pour tout n € N*
tel que % < a, soit f, une fonction affine telle que f,, = 0 sur [0, 1]\ [to —(a+ %), to+ (a+ %)]
ot f, = sign(h)
2a

sur [tg — a, to+ . Alors on a || fp][1 =1+ 57— et

20m

to+a 1
lenll +& < /t fa(t)h(t)dt < /0 Fa@h(@)dt = on(fa) < lenll [l falli = lenll (1 + zz) -

0— &

On fait tendre n vers l'infini, on obtient ||¢p| + ¢ < |lonll, ce qui est impossible. Donc on a
2]l < llpnll, ot [l || = [[]|oo-

Exercice 6.74. Soit T : £* — (? définie par T(z) = ((1 — n—H)mn)n>0, oil & = (Tn)n>0 € (2.
Montrer que T est linéaire continue qui n’atteint pas sa norme. a
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Solution. Il est clair que T est linéaire continue et que 'on a [|T'|| = 1. Pour tout & = (zp,)n>0 €
+o0 +o00

¢% non nul, on a | T(z)|]3 = Z (1— n+r1)2|$"|2 < Z |z, |? = ||z||3. On en déduit que T n’atteint
n=0 n=0

pas sa norme.

Exercice 6.75. Donner un exemple d’un espace normé (E, || ||) et d’une forme linéaire continue

[ sur E telle que ||f|| =1 et |f(z)| < ||z]| pour tout z € E\ {0}.
+o0o

Solution. Pour tout @ = (z,,)n>0 € £%, on pose f(z) = Z (1- n+r1)xn Alors f est une forme
n=0

linéaire continue sur ¢! telle que || f|| = 1 et | f(x)| < ||z||1 pour tout = € ¢!\ {0}.

“+oo

Exercice 6.76. Soit E = {f e C(R, R); / |f(t)]dt < oo}.
oo .
1. Montrer que E est un espace vectoriel et que f — ||f]1 = / |f(t)| dt est une norme
—00
sur E.
2. Etudier la convergence de la série de terme général f,, défini par f,(t) = e™" . En
déduire que E n’est pas de Banach.
a
3. Pour a > 0, on pose T, (f) = % f(t) dt. Montrer que T, est une forme linéaire continue
aJ_a

sur I et calculer sa norme.
4. Calculer T'(f) = lin% To(f). Montrer que T' définit une forme linéaire sur E. Est-ce que T’
a—
est continue ?

Solution. 1. Il résulte des propriétés de 'intégrale généralisée que E est un espace vectoriel et
que f || f]|1 est une norme sur E.
2. Pour tout n > 1, on a :

“+oo “+oo
Il = [ enVia—a [ eniar
0

—00

1
n oo ot
= 2/ e_"\/th+2/ eVt gt
0 1

n

1
no 1 412 [T ]
< 2 ——dt + — —dt

_ 4 412
= avm Twd
Donc la série de terme général f,, est normalement convergente dans (E, || ||1). Pour montrer
que (E, || ||1) n’est pas de Banach, d’aprés le théoreme 6.7.1, il suffit de montrer que la série de
terme général f,, n’est pas convergente dans (F, || ||1). Si la série Z fn est convergente dans
+00
(E, || |l1), alors il existe g € C'(R, R) telle que / lg(t)] dt < oo et pour tout € > 0, il existe NV
—o0

tel que pour tout n > N, on ait :

/_:)O‘l;fk(t) —g(t)‘dt: sz:fk _QHI e
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+oo | M
Soit o > 0. Alors pour tout n > N, on a / ‘ka(t) - g(t)‘ dt <e.Sité€ [a, o0, on a

« k=1
n

zn:f(t)_z<i>k_ b1 ! On a:
1 ¥ 1 eVt eVt —1  enVievt 1 '

+m( L (0)at = +m( L -t |t + [ R
a eVt —1 g B a eVt —1 g e”\fe\f—l o entevt_

—+00o
< + L 1 dt
c o eVt eVt — 1
412

£t ——.
nta?

+OO‘ 1
eVt — 1
—g(t)‘ dt =0, donc g(t) =

Soit n > N tel que nﬁgz < g. Alors on a / — g(t)‘ dt < 2e. Ceci étant vrai pour

«

teo 1 1
‘e\/z—l 1 pour tout ¢ € [a, +00].

Ceci étant vrai pour tout a > 0, donc, pour tout t > 0, on a g(t) =

tout € > 0, d’ot1 on a /

e

i1 On en déduit que

g n’est pas continue en 0, ce qui est impossible. Donc la série E fn n’est pas convergente dans

(E, || |l1)- Par conséquent, (E, || ||1) n’est pas de Banach.
3. Il est clair que T, est linéaire. On a :

a +0o0
Ta(f)] < Qa/ [f(6)]dt < 55 [f®)dt = 511 fllr-

—a — 0o
Donc T, est continue et on a ||T,| < 5-. Pour tout n > 1, soit f,, une fonction affine telle que
fa=0sur] —o0, =1 —a]U[L +aq, +oo[et fon=1sur [ a, a), alors on a || fol1 = 2a + L et
T
To(fn) = 1. Comme on a ||T,] > H‘}( L n) pour tout n > 1, alors ||T,|| > 5. Par conséquent, on
n
a | Toll = 5
1 a
4. D’apres le théoréme de la moyenne, on a % f(t)dt = f(cq), avec ¢, € [—a, a], d’ott on a

—a
T(f) = lir% To(f) = f(0). Il est clair que T est linéaire. Pour tout n > 1, soit f, une fonction
a—
affine telle que f,, = Osur | —oo, —2]U[L, +oo[ et f,(0) = n,alorsona || f,]|1 = L et T(fn) = n.
Donc T n’est pas continue.

Exercice 6.77. Soient (E, || ||) un espace normé et a € E. Soit A un sous-ensemble borné de E

tel que a € A et A est symétrique par rapport & a; autrement dit, si x € A et y € E tels que
Tty

=a, alorson a y € A.

1. Soit A} = {a; eEA; |lz—vyl < (A , pour tout y € A}. Montrer que a € Ay et que A;j est
symétrique par rapport a a.

—1)

2. Pour tout n > 1, on pose A, = {z € A1 ; |z —y| <
Montrer que §(A;) < % et que ﬂlAn = {a}.
n=

, pour tout y € A,_ 1}

3. En déduire que a est unique.
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Solution. 1. Soit z € A, alors il existe y € A tel que ITJFy =aqa,doutonax—a=a—yet

r—y=z—a+a—y=2(x—a) Doncona |z—al=3|z—yl <35(A). Par conséquent, on
aa € Ay. Solent © € Ay et y € E tels que ﬂ = a. Puisque A1 C A et A est symétrique par

rapport & a, alors y € A. Soit z € A, alors il ex1ste 2 € A tels que Z+Z =a= ITW, d’otl on a
y—z=x—2 et |ly—z|| = ||z —2|| < 36(A) car z € A;. Donc on ay 6 A;. Par conséquent, A;
est symétrique par rapport a a.

2. 11 résulte de 1 que pour tout n > 1, a € A, et A, est symétrique par rapport & a. Donc on

8An1) on en déduit que §(A,) < Xdn=t)

aa€c N A,,. Pour tout z,y € A,, on a ||z —y|| <

n=1

donc on a §(4,) < 8A) dott lim 0(A,) = 0. Soit = € OriAn, alors pour tout n > 1, on a

2n 0 n——+0o
[e0]
|z —a|| <0(A,). On fait tendre n vers +o0o, on obtient = a, donc on a ﬂlAn = {a}.
n—=

3. Ceci résulte de ce qui précede.

Exercice 6.78. Soient (E, || ||) un espace normé et a,b € E. On note By ’ensemble des points
lla -]

2
QTH’ € Bj, B est symétrique par rapport a QTH’ et que 6(By) < |la —b].

x de E tels que ||z —al| = ||z — b]| =

1. Montrer que
2. Donner un exemple ot By n’est pas réduit a “TH’ et que 0(B1) = |la — b]|.

3. Pour n > 1, soit B, 'ensembles des points x des B,,_1 tels que pour tout y € B,,_1, on

5(-Bn—l) 5(Bﬂ—1)

ait ||z —yl| < . Montrer que pour tout n > 1, on a §(B,) < — puis que

I'intersection de tous les B,, est réduite a “;b

4. Déduire que toute application isométrique surjective f d’un espace normé réel E sur un
espace normé réel F' s’écrit f(z) = g(x) + ¢, ou g est une application linéaire, isométrique
et surjective de E dans F', et ¢ est un point de F.

-b
Solution. 1. OnaaTer—a:b_Ta et “TH’—b:“T_b,d’oﬂ HQTH’—CLH = HaTer—bH = Ha2 ”,
donc on a QTH’ € By. Ll est clair que 6(Bi) < [la—b|. Soient z € By et y € E tels que &Y = aTer,
alorsonay—a=b—zety—b=a—z dou Hy—aH:”y—bH:@,donconayeBl.

Par conséquent, By est symétrique par rapport a “+b

2. 11 suffit de prendre E = R?, avec la norme ||(z, y)|| = max{|z|, |y}, a = (0,0) et b = (2,0).
Alorson a By ={(1,y); -1 <y <1} et §(By) =|a—1|.

3. Ceci résulte de ’exercice précédent.

4. On suppose E un espace normé réel, et soient (F, || ||') un espace normé réel et f : E — F
une application isométrique surjective. Soient g(x) = f(x) — f(0). Alors g est une application
isométrique surjective de F dans F et on a g(0) = 0. Montrons que g est linéaire. D’aprés la
proposition 6.3.7, il suffit de montrer que pour tout a,b € E, on a g(a +b) = g(a) + g(b).

Soient a,b € F et By, comme ci-dessus, alors on a Or%an = {—a;rb}. Puisque g est injective, on
n—=
A a—b
ag( 0 Ba) = 8 9(Ba). Onag(Br) = {g<x> e —all = o - = ! > ”
. " gla) —g(b
sometsique, alors on g(B1) = { o) 5 g(2) - g(a)]| = (e - (0)] = 122220

—g(b
g est surjective, alors on a g(B;) = {z eF; |lz—gla)| =z—-90) = M} Soit

. Or g est

. Puisque

[\

Fy = g(By). Pour tout n > 1, on pose F), = {z EF1; |lz—y| < Ll) , pour tout y € Fn_l}.
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Montrons par récurrence que pour tout n > 1, on a g(B,) = F,. On a g(B1) = F} et supposons

6(Bn—1)
2

que l'on a g(B,—1) = F,—1. On a B,, = {x €Bp1; |lz—y| < , pour tout y € Bn_l}

Puisque g est une application isométrique, alors on a g(B,) = {g(az) € Bh1; |lg(z) —g(y)|| <

5(9(Bn-1))
2

o0

ﬁan = {M} Par conséquent, pour tout a,b € E, on a g(

n—=

, pour tout g(y) € g(Bpn— )} donc on a g(B,) = F,. D’aprés 3, on a Fig(B”) =
n=

+b) = M. En remplacant

5) = . On en déduit que
pour tout a,b € E, on a w = g(“T*b) = %, donc on a g(a + b) = g(a) + g(b). Par
conséquent, g est linéaire.

Exercice 6.79. Soient (E, || ||) et (F, || ||) deux espaces normés et f € Z(E; F) injective.
Montrer que les propriétés suivantes sont équivalentes.

(i) f est une application isométrique surjective;
(i) f(B'(0,1)) = B'(0,1);
(i) £(S(0,1)) = S(0,1);
(iv) f(B(0,1)) = B(0,1).
Solution. L’implication (i) = (ii) est claire. Montrons I'implication (ii) = (iii). Par hypo-
these, on a f(B’(0,1)) = B'(0, ) Soit y € F tel que |ly||" = 1, alors il existe x € E tel que
Y,

0 < |lz| <1et f(z) =y, do W ﬁ) € B'(0,1) car ﬁ € B/'(0,1). Donc on a
/
|||y|||| H Tzl H <1,doul=|y| <|z| <1.Par conséquent, il existe x € E tel que ||z|| =1 et
|| x

f(z) =y, douona S(0,1) C f(5(0,1)). Il reste & montrer l'inclusion réciproque. Soit x € E tel
que ||z|| = 1. Alors f(x) # 0 et on a Hf(”f

et f(z) = Comme [ est injective, alors onaz= ,
(llf( )||) ||f( )
d’ou f(5(0,1)) C S(0,1). Par conséquent, on a f(S(0,1)) = S(0,1).
Montrons l'implication (iii) = (iv). On a f(5(0,1)) = S(0,1), d’ou ||f|| = 1, donc on a
f(B(0, 1)) C B(0,1). Reéciproquement, soit y € F tel que |ly||' < 1 et y # 0. Alors on a

HHyH'
Or on a [yl =l = llyll'llzll = llyl" < 1, donc B(0,1) C f(B(0,1)). Par conséquent, on a

f(B(0,1)) = B(0,1).

Montrons l'implication (iv) = (i). Soit y un élément non nul de F, alors H

)H = 1. Donc il existe z € F tel que ||z|| = 1

donc on a ||f(z)|" = 1,

= 1. Donc il existe x € E tel que |z|]| = 1 et f(z) = H?ZJJWJ d’ou on a f(|lyl| z) = v.

y
2|yl

Donc il existe x € B(0,1) tel que f(z) = d’ou f(2|ly]z) = y. Donc f est surjective.

2|| 2]ly|"”
Il reste & montrer que f est isométrique. Smt z un élément non nul de E. Pour tout n > 1,

x x !
ona (1-1)— € B(0,1), donc (1 -2 IIf(x ||’—Hf — H < 1, d’ott on a
0= =D (= D)
( —l)||f( )||” < ||z]]. On fait tendre n vers + Uinfini, on obtient || f(x)||" < ||z|. Si ||f(z)|]" < ||zl
alors on a Hf(HxH)
x

f est injective, on en déduit que z =

/
< 1. Donc il existe z € E tel que ||z]| < 1 et f(z) = f(Hx—H> Comme
x

ce qui est impossible car ‘ = 1. Donc on a

o
BN

IIf(2)]|" = ||z||. Par conséquent, f est aussi une application isométrique.

51l
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Exercice 6.80. Soit (E, || ||) un K-espace normé. Montrer que I’application

T: YK,E) — FE
f — f(1)

est linéaire, bijective et isométrique.
Solution. Il est clair que T est linéaire. Soit f € Z(K; E), alors pour tout A\ € K, on a

FO) = FA1) = Af(1), dou [[f]| = sup [|f(V)] = sup IAFI =W = [IT(f)]l- Par conse-

|A[=1 A=
quent, T est isométrique. Il reste a vérifier que T' est surjective. Soit x € F, et pour tout A € K|
soit f(A\) = Az, alors f € Z(K; E) et on a T(f) = f(1) = x, donc T est surjective.

Exercice 6.81. [Transformation d’Abel| Soient (E, || ||) un espace normé, (ax)1<x<y, une suite

k
finie dans E et (A;)1<k<n une suite finie dans K. Pour tout & € {1,...,n}, on pose b, = Zai.
i=1

n—1

n
Montrer que ’'on a Z AL @ = A\p by + Z()\k — Agt1) b
k=1 k=1
Solution. On a by =aj et by —bp_1 =ar si2 < k <n, dou :

Z)\k ap = )\1 b1 + Z)\k (bk — bk—l)
k=1 k=2
= Mbi+ > Mebp— > Aebp
k=2 k=2

n n—1
= AMb +Z>\kbk —ZAkku
k=2 k=1

n n—1
= Z)\kbk - Z)\k—i-l b
k=1 k=1

n—1
= by + Z()\k — A1) by -
k=1
Exercice 6.82. [Théoréme d’Abel| Soient (E, || ||) un espace de Banach, (z,),>0 une suite

dans E et (A\,)n>0 une suite décroissante de nombres positifs telles que :
1. Il existe M > 0 tel que pour tout n,p € N, on ait ||z, + -+ + Tpypl| < M.
2. lim A, =0.

n—-+00

+0o0
Z >\k T

k=n

Solution. Puisque E est un espace de Banach, il suffit de montrer que la série Z An Ty, Vérifie
k

le critére de Cauchy. Soient n,p € N et on pose y = Zmz sin <k <n+p. On applique la

i=n

Montrer que la série Z An T, est convergente et que pour tout n > 0, on a <\, M.

© Dunod, 2011 - Topologie et espaces normés - Nawfal El Hage Hassan



103

transformation d’Abel aux suites finies (2 )n<k<n+p €t (An)n<k<nip, ON obtient :

n+p n+p—1
Do wk = AurpYnrp + D Ak = A1) Ui
k=n k=n
d’olion a:
n+p n+p—1 n+p—1
D oNewkl| S Aap M+ D) M= Nt M =Xy M+ > (A — A1) M =X\, M.
k=n k=n k=n

Comme on a lim A, =0, on en déduit que la série Z An &, vérifie le critére de Cauchy, donc

n—-+oo
n+p +oo
convergente. Comme pour tout p > 0, on a Z A xg|| < A M, alors Z Al < A M.
k=n k=n
Exercice 6.83. Soient (E, || ||) un espace de Banach, an une série convergente dans E et

(fn)n>0 une suite décroissante de nombres positifs. Montrer que l'on a :

n—+p
1. Il existe une constante M > 0 telle que pour tout n,p € N, on ait H Z mkH <M.

k=n

2. La série Z ln Tn, €St convergente.
“+00

3. Pour tout n > 0, on a H Zukka < un M.
k=n

Solution. Puisque la série an est convergente, elle est de Cauchy, donc, pour tout € > 0, il

n—+p
existe N € N tel que pour tout n > N et tout p € N, on ait H Zka < €. On en déduit les

k=n
propriétés suivantes :

n+p
(i) il existe une constante M > 0 telle que pour tout n,p € N, on ait H Z a:kH <M ;
k=n

n—+p
(ii) si on pose a, = sup{H ka‘

=N
majorée par M et ona lim a, =0.

i pE N}, alors la suite de nombres positifs (ay)n>0 est

n—-+0o
n—+p
Comme dans ’exercice 6.82, on montre que pour tout n,p € N, on a H Z,uk a:kH < pp oy <
k=n

oM. On a0 < p,a, <pgay et lim a, =0, on en déduit que la série série Z Ln Tp, est de
n—-+o0o

+00
Cauchy, donc elle est convergente dans E, et que pour tout n > 0, on a H Z L mkH < pn M.
k=n

Exercice 6.84. Soient (E, || ||) un espace de Banach, (z;);e;r une famille sommable d’éléments
de E et (\;)ier € £°°(I). Montrer que la famille (\;z;);er est sommable.

Solution. D’aprés la remarque 6.7.3, on peut supposer que pour tout ¢ € I, A; > 0. Comme
(X\i)ier est bornée, il existe r > 0 tel que pour tout ¢ € I, on ait |\;| < r. Pour montrer que
(\izi)ier est sommable, il suffit de vérifier que (A\;x;);es vérifie le critére de Cauchy. Soit € > 0,
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comme (x;);ey vérifie le critére de Cauchy, il existe une partie finie J; de I telle que pour toute
€
partie finie K de I vérifiant K N.J. = (), on ait H E ;|| < o Soit J une partie finie de I telle
r
€K

1€
que J N J. = (. Soient n = Card(J) et ¢ : {1,...,n} — J une application bijective telle que
soit croissante. D’aprés la transformation d’Abel, exercice 6.81, on a :

Vapplication p — Ay
n—1
Z Aixi = Z Ao()To(p) = Ap(n)Tp(n) T Z (Mo) = Appr1)) () -
ieJ p=1
D’otion a :
H Z Aizil| < 1o I + Z e(p+1) so(p)) [z
ieJ
re £ e
< 2 + o 27“ ()‘<p(p+l) - )‘<p(p)) :
=1
Or on a Z o(p+1) — (p)) = A¢(n) - )\30(1) < A¢(n) < r. Donc on a H Z)\Zl‘z < e. Par
e

consequent la famille (\;z;);er vérifie le critére de Cauchy, donc (\;z;)ier est sommable.

Exercice 6.85. Soit a € R. Montrer que la famille ((1+4 n?® + 77@2)‘1)(%7”)61\12 est sommable si et
seulement si a < —1.

Solution. Pour tout (n,m) € N, on a 0 <1+ n?+m? < (14 n+m)? D’apres l'inégalité de
Holder, théoréme 6.2.1, on a (14+n+m)? < 3(1+n?4+m?), donc la famille ((14—112—1—7722)a)(n’m)eN2
est sommable si et seulement si la famille ((1 +n+ m)2“) (n,m)EN? est sommable. Pour k € N*|

soit Ik:{(n,m)€N2; 1+n+m§k},alors ona:
k k
Iy = Ul{(mm)EN2; 1+n+m:p}: Ul{(n,p—l—n)ENz; Ogngp—l}.
p= p=

Comme on a . L{\T I = N2 alors la famille ((1 +n+ m)za) , est sommable si et seulement
e *

(n,m)eN

si 'ensemble des sommes Z (14 n+m)?® est borné, voir proposition 6.7.1. Or on a :

(n,m)€el},
k
Z (1_|_n_|_m Z(mez):z:p&z—i-l'
(n,m)€ely, p=1 p=1

Donc la famille ((1 +n+ m)2a) (nm)EN? est sommable si et seulement si la série de terme général
2a+1
p

seulement si a < —1.

est convergente. Par conséquent, la famille ((1 + n? + m?)) cne 6st sommable si et

(n,m)

Exercice 6.86. Normes de Holder sur C([0, 1]). Soit E = C([0, 1]) l'espace vectoriel des
applications continues de [0, 1] dans K. Soient p € [1, +oo[ et f € E, on pose :

S =

1
— — p
e = o O et 5l = ( [ 170 )
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1. Montrer que pour tout p € [1, +o0], application f — || f||, est une norme sur E, appelée
norme de Holder.

2. Montrer que lim_||flly = [/

3. Montrer que pour tout p € [1, +00[, 'espace E muni de la norme || ||, n’est pas de Banach.

Solution. 1. On a déja vu que f — ||f]lco est une norme sur E. On suppose p € [1, +ool.
Il est clair que pour tout f € E, on a ||f|, =0 <= f =0, et que pour tout A € K, on a
I fllp = |A]| f]p- Il reste & montrer 'inégalité de convexité. Pour tout f € F, on a :

1 n P
e = S5l

Soient f,g € E. D’apres l'inégalité de Minkowski, pour tout n > 1, on a :

(2 ki(f(%) va®)) < (& ki(f(%) NV ki(g@) ")

On fait tendre n vers +o00, on obtient ||f + g|l, < ||f|lp + ||g]|p- Donc Papplication f +— || f]|,
est bien une norme sur E.

2. Soit f € E. Pour tout p € [1, +o0], ona0</ |f(¢ |pdt</ I FIE, dt = ||f]I%,, d’on
1 fllp < I flloo- Soit to € [0, 1] tel que || flloo = |f(to)|. Soit € > 0. Comme f est continue en t, il
existe > 0 tel que pour tout t € [tg —n, to + 1] N[0, 1] = [a, b], on ait :

[F@OF =17 o) = 5 = I flloo = 5-

3=

Pour tout p € [1, +o0, on a :
1 b
llfll£=/0 |f<t>|”dt2/a FOFdt > (6= a)(lfl —5)" = n(lflle —5)"

D’ou ||f]l, > 77% (IIfllc — §). Puisque Pon a lim 77; = 1, alors il existe pg € [1, +oo| tel que

p——+o00
pour tout p > py, on ait [|f s == < |flly < [|f - Par conséquent, on a_lim_[£]l, = £l

1
3. Soient p € [1, +o00[ et (fn)n>1 la suite dans E définie par fy(x) = nP si 0 < z < —5p €t
= n
1 1
fu(z) = —=si —55 ST < 1. Comme dans 'exercice 2.32, on montre que (fy),>1 est de Cauchy
x n =

dans (E, || ||p), mais (fn)n>1 n’est pas convergente. Donc (E, || ||,) n’est pas de Banach.
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Chapitre 7

THEOREMES FONDAMENTAUX

Proposition. Soient (E, || ||), (F, || ||') deux espaces de Banach et T' € .Z(E; F). Les propriétés
suivantes sont équivalentes.

(i) T est injective et T'(E) est fermé dans F'.
(ii) T est un homéomorphisme de E sur T'(E).
Il existe 6 > 0 tel que pour tout € E, on ait 0 ||| < ||T(x)]|.

On a inf {||T(a:)||’ L reEet |z = 1} > 0.

)
(iii)
(iv)
(v) Il n’existe pas de suite (z,)p>0 dans E telle que ||z,|| = 1, pour tout n > 0, et telle que
lim ||T(x,)| = 0.
n— 400

Démonstration. Montrons 'implication (i) = (ii). Comme T'(E) est fermé dans F', alors
T(FE) est un espace de Banach. Puisque T est injective, alors T' est bijective de E sur T'(F). Il
résulte du théoréme de I'application ouverte que 7' est un homéomorphisme de E sur T'(F).
Montrons Pimplication (ii) == (iii). Si 7" est un homéomorphisme de E sur T(E), alors T~ :
T(FE) — E est linéaire continue. Donc il existe 6 > 0 tel que pour tout x € FE, on ait
IT- LT @Il < 3 IT @), don on a 6lje] < |T(@)]).

Montrons I'implication (iii) = (i). Soit x € FE tel que [|T'(z)||' = 0, alors on a 0 < § ||z|| < 0,
donc x = 0. Par conséquent, T est injective. L’ensemble T'(E) est fermé dans F' si et seulement
si T(E) = T(E). On a toujours T(E) C T(E), il reste & montrer I'inclusion réciproque. Soit
y € T(E), alors il existe une suite (x,),>0 dans E telle que y = limOO T(zy), donc la suite

(T(xy))n>0 est de Cauchy dans F. Or pour tout n,m € N, on a d||z, — x| < [|[T(xn — zp)|| =

T (2) — T(zm)|, on en déduit que (2, )n>0 est une suite de Cauchy dans E, donc elle converge

vers un élément z € E. Comme T est continue, on en déduit que lilgrl T(x,) = T(x), donc on

n——+0o0

ay=T(x) € T(E). Par conséquent, on a T(E) C T'(E), dou T(E) = T(E).

Il est évident que 'on a les implications (iii) = (iv) = (v).

Montrons 'implication (v) = (iii). Soit ¢ = inf {||T(ac)||' sz € Eet|z|| = 1}. Alors pour tout

x € E,on ad|z|| <||T(x)|. Sid =0, alors pour tout n > 0, il existe x,, € E tel que ||z,| =1

et | T(zn)]) < n+r1 Par conséquent, il existe une suite (x,),>0 dans E telle que ||z, || = 1, pour

tout n > 0 et telle que 'on ait lir}rl |T(z)]|" = 0. Ce qui est contraire & 'hypothése. Donc on
n—-+0o

a bien § > 0, et alors (iii) est satisfaite. [
Proposition. Tout espace de Banach séparable est un quotient de ¢!,

107

© Dunod, 2011 - Topologie et espaces normés - Nawfal El Hage Hassan



108 Chapitre 7. THEOREMES FONDAMENTAUX

Démonstration. Soit (E, || ||) un espace de Banach séparable. Soit (ay)n>0 une suite dense
dans Bg(0,1) et considérons l'application suivante

T: ot — E
“+oo

(xn)nZO — Zmnan
n=0

alors T' est bien définie, linéaire et continue et on a By (0,1) C T(B,(0,1)). Soit N = ker(T'),
alors N est un sous-espace vectoriel fermé de 0! et d’aprés la proposition 6.4.4, il existe une
application linéaire injective et continue T : /N — E telle que le diagramme suivant soit

commutatif.
T

N4

(YN

o E

Pour que T soit une application isométrique surjective il faut et il suffit que T(Bp N(0,1)) =
Bg(0,1), voir exercice 6.79. Soit & € By y(0,1), d’aprés la proposition 6.4.3, il existe z €
By (0,1) tel que m(z) = Z. Dot on a T'(%) = T(z) et [|T(Z)|| = |[T(x)| < [zl < 1. Par
conséquent, on a T'(Bpu n(0,1)) C Bg(0,1). On a By(0,1) C T(B;(0,1)) d’ou, par la propo-
sition 7.1.2, on a Bg(0,1) C T(Bu(0,1)). Comme on a T(Bn(0,1)) C T(Bp/n(0,1)), alors
Bg(0,1) CT(Bpn(0,1)). Par conséquent, on a Bg(0,1) = T(Bp /5(0,1)). Donc T est une ap-
plication linéaire bijective et isométrique. Ainsi, on peut identifier '’espace de Banach séparable
Eal'N. n
Proposition (dual topologique de c¢y). On a les propriétés suivantes :

1. Soit x = (x,,) € £*. L’application
T o (0 o) — K

“+oo
Yy — T:c(y)zzxnyn
n=0

est une forme linéaire continue sur ¢*°, de norme égale a ||z||;.

2. On note aussi T}, la restriction de T, a ¢y et considérons ’application suivante :

T: (1) — (oD
xT — T:c

alors T est un isomorphisme isométrique de ¢! sur le dual topologique de (cg, || |lo) .
Autrement dit, le dual topologique de (co, || ||so) est (€%, || []1).

Démonstration. 1. On vérifie, comme dans la proposition 7.4.2, que T, est une forme linéaire
continue sur £ et que l'on a |T,(y)| < ||z|1 |yllco, d’o0t [|T:]| < |||z . Pour tout n > 0, il
k

existe 0, € [0, 27| tel que x, = |x,|e®". Pour tout k > 0, soit ap = Ze_w” e,. Alors on

n=0
k k
aar € cg C L, |laglloo = 1 et Ty(ag) = Z|ajn|, donc on a ||T.| > Z|xn| On en déduit
n=0 n=0
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|T%|| > |lz||1 . Par conséquent, on a ||T,|| = ||z||1 . Notons aussi que ce raisonnement implique
que la restriction de T, & ¢g est de norme égale a ||z]|; .

2. Il est clair que T est linéaire. On a montré ci-dessus que T est aussi isométrique, donc il
reste & montrer que T est surjective. Soit f forme linéaire continue sur cg . Pour tout n > 0, on
pose T, = f(e,). Il s’agit de montrer x = (z,)p>0 € ' et f = T, . On définit les ax comme

k
précédemment, on a Y _ |zn| = f(ar) < |fllllarlloo = [f[l; donc z = (z,)n>0 € £'. Pour tout

n=0
n >0,on a T,(e,) =z, = f(e,), donc T, = f sur ¢.. On a montré, exercice 6.34, que c. est
dense dans (co, || ||oo), donc on a T, = f. Par conséquent, T est surjective. [
Proposition. Soient (E, p) un K-espace vectoriel semi-normé, (E/F, || ||) l'espace vectoriel

normé séparé de E et m : E — E/F Uapplication quotient. Soient (G, || ||') un espace normé et
f+ E —> G une application linéaire.

1. Pour qu’il existe une application linéaire continue f: E/F — G satisfaisant fo ™= f,
il faut et il suffit qu’il existe une constante M > 0 telle que, pour tout x € F, on ait

If (@)]I" < Mp(a). ;
G
~N G
E/F

2. Si un tel fexiste, il est unique et sa norme est la plus petite constante M > 0 satisfaisant
la propriété 1.

E

Démonstration. 1. S'il existe f € Z(E/F; G) tel que fo m = f, alors pour tout x € E, on
a [[f@) = [If@@)]" < [fIl|x@)]| = [If]p(z). Réciproquement, supposons qu’il existe une
constante M > 0 telle que, pour tout x € E, on ait || f(z)|| < Mp(z). On en déduit que pour
tout € I, on a f(x) = 0, donc F' C ker(f). Par conséquent, il existe une application linéaire
[+ E/F — G telle que form = f. Soit a € E/F, il existe x € E tel que n(z) = a. On a
fla) = f(r(z)) = f(z), dou [[f(a)" = [f(@)" < Mp(x) = M|n(z)| = M|all. Donc f est
continue et on a ||f|| < M.

2. Ceci est trivial. [}

Proposition. Soient (E, || ||) un espace normé, B une boule ouverte non vide de E et A un

[} JE—
ensemble convexe borné d’intérieur non vide dans E. Alors A est homéomorphe a B, A est
homéomorphe & B et Fr(A) est homéomorphe a Fr(B).

Démonstration. Sans perdre de généralité, on peut supposer 0 € /01 et on peut aussi supposer
B ={z € E; ||z|]| < 1}. Soit pa la jauge de A. D’apres le théoréme 7.6.2 et la proposition
7.6.2, 14 est positivement homogene et sous-additive, on a {z € F; ua(x) <1} C A C {z €
E; pa(x) < 1} et il existe une constante M > 0 telle que pour tout = € E, on ait pa(x) < M||x||.
Pour tout 2, € E, on a 1a(z) < (@ — y) +a(y), ot pa(@) — a(y) < e —y). De meéme,
on a pa(y) — pa(@) < paly — ) = pa(z —y). Donc on a [pa(x) — pa(y)| < palz —y). Par
conséquent, pour tout z,y € F, on a |ua(z) — pa(y)| < M|z — y||. En particulier, u4 est une
fonction continue. On en déduit quel'ona{x € E ; pa(z) < 1} C Aetd C {r e E; pa(z) <1}.

o
Réciproquement, soit = € A, alors il existe ¢t > 0 tel que (1+t)x € A, d’ont pa(x) < %th < 1. Donc

onaAd= {r € E; pa(x) <1}.Soity € E tel que pa(y) < 1. D’apres la remarque 7.6.2, pour tout
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n>1l,onaye(l+ %)A, d’ou €A Oronay= lim -y, doncy € A. Par conséquent,

2y li

ntl n—-+00

onaA={r€E; pa(x) <1}. On en déduit aussi que I'on a Fr(A) = {z € E; pa(z) = 1}.
Comme A est borné, alors § = sup{||z| ; x € A} €]0, 4o0[. Soient x € E et t > 0 tels que
dx € tA, alors il existe a € A tel que dz = ta, d’ou d|jz|| = ||dz| = ||tal| = t|ja]| < tJ, donc on a

lz|| < t. Par conséquent, on a dua(x) = pa(dx) > ||z||, d’ott pour tout = € E, on a % < pa(x).

On pose f(0) =0, g(0) =0 et pour tout x € E\ {0}, on pose f(z) = uﬁx(i)x et g(x) = Hm(H )m
x wa(z

Il est clair que 'on a fog = go f =idg et que f et g sont continues sur E'\ {0}. Pour tout z € E,

on a ||f(x)]] = pa(z) et [|g(x)]| < d||z||, donc f et g sont aussi continues en 0. Par conséquent,

f est un homéomorphisme. Il est clair que 'on a f( ;1 ) = B, f(Z) = Bet f(Fr(A)) = Fr(B).

D’ou le résultat. u

Proposition. Soient (E, || ||) un espace vectoriel normé, A une partie de E, (¢z)zca une famille
dans K, indexée par A et M > 0. Alors les propriétés suivantes sont équivalentes.

(i) Il existe f € E* telle que ||f|| < M et f(x) = ¢, pour tout x € A.

(ii) Pour tout » > 1, pour tout z1,...,z, € A et pour tout Aj,..., A\, € K, on a:

=1 =1

Démonstration. Montrons 'implication (i) = (ii). Soit f € E* telle que ||f| < M et f(x) =
¢g, pour tout z € A. Alors pour tout n > 1, pour tout z1,...,x, € A et pour tout Aq,..., A, € K,
on a :

En: AiCg; | = ‘z": Nif(x)| = ‘f(i:)\zxz> < |Ifl Hzn: izl < MHETL: N
=1 i=1 i=1 i—1 =

Preuve de (ii) = (i). Soit H = Vect(A) le sous-espace vectoriel engendré par A. Soit = € H,

n
alors il existe x1,...,z, € A et A1,..., A\, € K tels que on a x = Z)\Z‘IZ On pose g(x) =

g(z Aﬁi) = Z)‘icm- Alors g est bien définie. En effet, si Z Aix; = Zujyj, avec z;,y; € A
i=1 i=1 i=1 j=1

n n n n
et A\j,pu; € K, alors on a ‘Z AiCy; — Zujcyj < MHZ Ay — ZujyjH = 0, donc on a
i=1 j=1 i=1 j=1

n n
Z NiCy;, = Z pjcy, . Par conséquent, g est bien définie. Il est clair que g est linéaire sur H et
i=1 j=1

que pour tout z € H, on a |g(x)| < M||z||, donc g est continue et on a ||g|| < M. Par le théoréme
de Hahn-Banach, théoréme 7.7.3, il existe f € E* prolongeant g et telle que ||f||=|jg]| < M. H

Lemme 7.0.1. Soient f, f1,..., fn des formes linéaires sur un K-espace vectoriel E. Alors les
propriétés suivantes sont équivalentes.

(i) Il existe \; € K tels que f =M f1+ -+ A fn-
(ii) Il existe o« > 0,8 > 0 tels que 61{33 eE; |filz)|<a}Cc{zxeFE;|f(x) < B}

(111) 1l existe b > 0 tel que pour tout v € E, on ait |f(z)| < blrél'a<x | fi(z)].
<i<n
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(iv) Zﬁl ker(f;) C ker(f).

Démonstration. L’implication (i) = (ii) est triviale.

Preuwve de (ii) = (iii). Soit x € E. Si |f(z)| > £ max |fi(x)|, on pose y = %, alors on a

|f(y)] =B et pour tout 1 <i<m,onalfi(y)| < a,ce qu1 est impossible. Donc, pour tout z € F,

ona|f(z)| < & max |fi(z)].

X 1<i<n
L’implication (iii) == (iv) est triviale.
Preuve de (iv) = (i). Considérons ’application linéaire suivante :

T: FE — K™

alors T'(E) est un sous-espace vectoriel de K”. Pour tout z = (fi(z),..., fu(x)) € T(E), on
pose g(z) = f(x). Alors g est bien définie car si (fi(z),..., fu(z)) = (f1(y),..., fu(y)), alors

xT—y € ﬁl ker(f;) C ker(f), d’ot on a f(z) = f(y). De plus g est linéaire. On prolonge g en une
1=
forme linéaire h sur K” Alors il existe (A1,...,A\,) € K" tel que pour tout (zl, ooy 2zp) €K™ on
ait h(z1,...,2 Z Aiz;- On en déduit que pour tout x € E, on a f(x Z i fi(x |
=1
Théoréme (Helly). Soient (E, || ||) un espace normé et f1, ..., f, des formes linéaires continues
sur B, M >0, et ¢q,...,c, € K. Alors les propriétés suivantes sont équivalentes.

(i) Pour tout € > 0, il existe z € E tel que ||z]| < M + € et pour tout 7, f;(z) = ¢;.
n

< MHZ Ai fil|-
i=1

Démonstration. Le résultat est trivialement vrai si tous les ¢; sont nuls, donc on peut supposer
que les ¢; ne sont pas tous nuls. Montrons 'implication (i) == (ii). Soient Ay,..., A, € K. Par
hypotheése, pour tout € > 0, il existe x € F tel que ||z|| < M +¢ et pour tout i, on ait f;(z) = ¢;.
Alors on a :

n
(ii) Pour tout Aj,..., A\, € K, on a ‘Z AiC
i=1

‘zn:&cz- = ‘z": >\zf2($)‘ < |lz]] Hzn:)\zfz < (M +e) Hzn:)\zfz
= =t i=1 i=1

n
Ceci étant vrai pour tout € > 0, on en déduit que 'on a ‘Z AiG;
Z'_

n
<M HZ Aifi|-
i=1
Preuwve de (ii) = (i). Dans un premier temps, on suppose que les formes linéaires fi,..., f
sont linéairement indépendantes. Considérons ’application linéaire suivante :

T: E — K™

alors T'(E) est un sous-espace vectoriel de K™. Si T'(E) # K", alors il existe une forme linéaire non
nulle A : K® — K telle que pour tout x € E, on ait h(T'(x)) = 0. Il existe aussi (a1, ...,a,) €
n

K™\ {0} tel que pour tout (z1,...,2,) € K", on ait h(z1,...,2,) = Zaizi. On en déduit que
=1

pour tout x € E,ona 0 = Z a; fi(z), dou 0 = Z a; fi, ce qui est impossible, car les fi,..., fn
i=1 i=1
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sont linéairement indépendantes. Donc on a T'(E) = K™. Par conséquent, il existe z € E tel que
(fi(z),..., fa(2)) = (c1,...,¢n). Autrement dit, F = {z € E'; f;(z) = ¢;, pour tout 1 <i < n}
est non vide. Puisque 0 € F et F est fermé dans F, alors il existe r > 0 tel que B(0,7) N F = (.
Comme F' est convexe, d’aprés le corollaire 7.8.1, il existe f : E — K, une forme linéaire
continue telle que pour tout = € B(0,7) et pour tout y € F, on ait Re(f(z)) < Re(f(v)).
Comme B(0,r) est symétrique par rapport a 0, alors pour tout « € B(0,r) et pour tout y € F,

on a [Re(f(z))| < Re(f(y)). Doncona sup |Re(f(z))| < inf Re(f(y)). On a:
z€B(0,r) yer

sup |Re(f(z))| =r sup !Re(f(%))! =r sup |Re(f(z))]=r]|Reof].
z€B(0,r) z€B(0,r) 2€B(0,1)

D’aprés la proposition 7.4.5, on a ||f|| = |[Re o f||. Par conséquent, on a r||f|| < inﬁRe(f(y)).
ye

Montrons que 'on a ﬁ ker(f;) C ker(f). Soit z € ﬁ ker(f;). Alors pour tout 4, on a f;(x) = 0.

Soit yo € F, alors pour tout @ € K, on a yg + ax E F. Donc, pour tout « E K, on a r||f| <

Re(f(yo) + af (z)). Ceci implique que f(z) =0, d’ou z € ker(f). Donc on a ﬂl ker(f;) C ker(f).
1=

n
Il résulte du lemme 7.8.2 qu’il existe A\1,..., A\, € K tels que f = Z Aifi.

i=1
Soit e > 0. Si, pour tout x € F, on a ||z|]| > M + ¢, alors on a B(0, M + ¢) N F = (). 1l résulte
de ce qui précede qu'il existe f € E*, non nulle, telle que (M +¢)||f|| < inlfJ Re(f(y)) et il existe
ye

n
ALy A € K tels quef:Z)\ifi. Pour tout y € F,on a:
i=1

Re(/(1) < £ = [ Ahit)| =[S0 v < M |30
1=1 i=1 i=1

D’ou on a (M + ¢)||f]| < M ||f]|, ce qui est impossible. Par conséquent, il existe = € F' tel que
l|z]| < M +e. Douon a (i).

a présent, on ne suppose plus que les formes linéaires f1, ..., f, sont linéairement indépendantes.
L’inégalité dans (ii) nous dit que les f; ne sont pas toutes nulles. Quitte & permuter les f;, on peut
supposer qu’il existe m < n tel que {f1,..., fin} soit une famille libre maximale de {f,..., fn}.
Comme la famille {f,..., fi,,} vérifie aussi la propriété (ii), d’aprés ce qui précede, pour tout
e >0, il existe © € E tel que ||z|| < M + ¢ et pour tout ¢ € {1,...,m}, on ait f;(x) = ¢;. Pour

m

=M1l

tout ke {m+1,...,n},ona f = Zakﬂ-fi, avec ay; € K. Comme on a :

i=1
| fi(@) — ci| = Zalmcz — = Jk
Alors on a aussi f(x) = ¢, pour tout k € {m +1,...,n}. Donc on a bien la propriété (i). MW

Proposition. Soient E un espace de Banach et F' un sous-espace vectoriel fermé de E.
1. Si F est réflexif, alors F' est réflexif.
2. F est réflexif si et seulement si £* est réflexif.

Pour une preuve de la proposition précédente, voir chapitre 7 du supplément.
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Démonstration. 1. Soit
T~™: B — F*
I — fir

I’application de restriction. Par le théoréme 7.7.3, elle est surjective. Soit h € F**, autrement dit
h est une forme linéaire continue sur F*. Alors h o 7 est une forme linéaire continue sur £E*. Or
E est réflexif, donc il existe x € F telle que pour tout f € E*, on ait h(w(f)) = hon(f) = f(x).
Puisque 7 est surjective, pour avoir le résultat, il suffit de montrer que x € F. Si x ¢ F, d’apreés
le corollaire 7.7.2, il existe f € E* tel que f(x) # 0 et f(y) = 0 pour tout y € F. D’ou on a
m(f) = 0. Par conséquent, on a 0 = h(w(f)) = f(z), ce qui est impossible. Donc x € F' et par
conséquent, I’ est réflexif.

2. Supposons d’abord E réflexif. Soit X = E* et notons Jgp : E — E*™ et Jy : X — X**
les applications canoniques. Soit h € X** autrement dit h est une forme linéaire continue sur
X* = E**. Alors h o Jg est une forme linéaire continue sur E, donc ho Jg € E* = X. Montrons
que l'on a Jx(h o Jg) = h. Soit g € X* = E** comme E est réflexif, il existe a € E tel que
g=Jg(a). On a h(g) = h(Jg(a)) = (ho Jg)(a). D’autre part, on a Jx (ho Jg)(g9) = g(ho Jg) =
Je(a)(hoJg) = (hoJg)(a). Par conséquent, on a h(g) = Jx(hoJg)(g), pour tout g € X* d’ou
h=Jx(hoJg). Donc X = E* est réflexif.

Réciproquement, supposons que E* est réflexif, d’apres ce qui précéde, E** est alors réflexif.
Comme FE est un sous-espace vectoriel fermé de E**, Il résulte de 1 que E est réflexif. |

Proposition. Soient (E, || ||), (F, || ||') deux espaces de Banach et T' € Z(E; F'). Les propriétés
suivantes sont équivalentes.

(i) T* est surjective.

(ii) T est injective et T'(F) est fermé dans F.

Démonstration. Montrons d’abord l'implication (i) = (ii). Par hypothese, T% est surjec-
tive. D’aprés le théoréme de l'application ouverte, T est ouverte, donc il existe r > 0 tel
que rBg-(0,1) C T*(Bp+(0,1)). D’apreés le corollaire 7.9.1, pour tout = € E, on a ||T(z)|" =

sup  |f(T'(z))], d’ou :
fEBp(0,1)

IT(x)'=sup [T*(f)(x)| > sup |rg(z)|=r sup |g(z)|=rlz].
fe€Brx(0,1) gEBE+(0,1) gEBE+(0,1)

Il résulte de la proposition 7.1.4 que T est injective et T(E) est fermé dans F'.

Montrons l'implication (ii) == (i). Supposons que T est injective et que T'(E) est fermé dans F.
D’apres la proposition 7.1.4, 'application T' : E — T'(F) est un homéomorphisme. Soit g € E*,
alors go T~ : T(E) — K est une forme linéaire continue sur 7'(E). Par le théoréme 7.7.3,
il existe f € F* tel que f|T(E) = go T~ Donc, pour tout z € E, on a f(T(z)) = g(z), d’ou
T*(f) = g, donc T™ est surjective. |

Proposition. Soient (E, || ||), (F, || ||') deux espaces de Banach et T' € Z(E; F'). Les propriétés
suivantes sont équivalentes.

(i) T est surjective.

(ii) T est injective et T™(F™) est fermé dans E*.

Démonstration. Montrons d’abord l'implication (i) = (ii). Par hypotheése, T' est surjec-
tive. D’aprés le théoréme de ’application ouverte, T' est ouverte, donc il existe » > 0 tel que
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rBr(0,1) C T(Bg(0,1)). Pour tout f € F*, on a :

TN = IfeTl| = sup |foT(x)
z€BE(0,1)

s [7(ATW)
z€BE(0,1)

> r sup |f(y)| = rllf].
y€BF(0,1)

11 résulte de la proposition 7.1.4 que T* est injective et que T%*(F™) est fermé dans E*.
Montrons 'implication (ii) = (i). Pour montrer que 7" est surjective, il suffit de montrer que T’
est ouverte. D’apres les propositions 7.1.1 et 7.1.2, il suffit de montrer qu’il existe r > 0 tel que
rBr(0,1) C T(Bg(0,1)). Supposons le contraire, alors il existe une suite (y,)n>1 dans F telle que
lim y, = 0 et pour tout n > 1, on ait y, & T(Bg(0,1)). Donc on a d,, = d(yn, T'(Bg(0,1)) ) >

n—-4o00

0. Pour tout n > 1, soit V,, = T'(Bg(0,1))+Br(0,d, ), alors V,, est un ouvert convexe et équilibreé,
et on a y, & V,. D’apres le corollaire 7.8.2, il existe f € F* telle que f(y,) = 1 et pour tout
z € Vp,onait [f(z)] < 1. OnaT(Bg(0,1)) C V,, dou:

IT*(NOII=IfeoT||= sup [foT(x)]<sup|f(z)<1.
2€Bg(0,1) 2EV,

Comme T™ est injective et T*(F™) est fermé dans E*, d’apreés la proposition 7.1.4, il existe o > 0

tel que pour tout g € F*, on ait ||g] < «|T*(g)|l. On en déduit que l'on a ||f|| < «. Par

conséquent, on a 1 = f(y,) < a||yn||, donc Erjra llynl| # 0, d’out la contradiction. Donc T est
n o0

bien surjective. |

Supplément d’exercices

Exercice 7.46. Soit £ = {(a;n)n>0 €% ; lim ux, existe dans K}
- n——+0o00

1. Montrer que (E, || ||oo) est un espace de Banach.
2. Montrer que cy admet un supplémentaire topologique dans E.

Solution. 1. Il est clair que E est sous-espace vectoriel de £°°. Pour montrer que (F, || |oo)
est un espace de Banach, il suffit de montrer que E est fermé dans ¢°°. Il résulte du théoréme
d’interversion des limites, théoréme 5.2.4, que E est fermé dans ¢°°, mais montrons directe-
ment que E est fermé dans ¢*°. Soit (§,)p>0 une suite dans F, qui converge vers z € £*°. On
ax = (Tn)n>o et & = (Tpn)n>0, avec Tn,Tp, € K, et pour tout p > 0, il existe A, € K

tel que lirJrrl Zpn = Ap. Montrons d’abord que (A,),>0 est une suite de Cauchy dans K. Soit
n——+0oo -

e > 0, comme (&p)p>0 est convergente dans £°°, alors (£p)p>0 est de Cauchy, donc il existe pg > 0
tel que pour tout p,q > po, on ait [|§, — &lle < €. D’olt pour tout p,q > po et pour tout
n >0, on a |ry, — Tgn| < . On fait tendre n vers l'infini, on obtient |\, — A\;| < €, pour
tout p,q > po. Donc la suite (A,),>0 est de Cauchy dans K. Par conséquent, il existe A € K

tel que lim X, = X. Montrons que 'on a lim z, = A. Soit € > 0. Comme (§,),>0 converge
n——+o0o n——+o0o -

vers & dans (> et (\p)p>0 converge vers A dans K, alors il existe p € N tel que [\, — A[ < £
et ||z — &l < 5, d'ott pour tout n > 0, on a |x, — x,,| < 5. Donc, pour tout n > 0, on a

|z — A < |zp — Tpn| +|Tpn — Ap| + A — Al < %5 + |zpn — Ap|. Comme on a nll)]g:oo Tpn = Ap,

alors il existe N € N tel que pour tout n > N, on ait |z,, — Ay| < §. On en déduit que pour
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tout n > N, on a |z, — A| < €. Donc on a lir}ra xn, = A. Par conséquent, on a x € E, donc F
n—-—+0oo

est fermé dans £°°.

2. Soit e la suite constante égale & 1, i.e. € = (z,)n>0, avec x, = 1, pour tout n > 0. Alors Ke
est un supplémentaire topologique de ¢y dans F, car Ke est un supplémentaire algébrique de cq
dans F, et ¢y et Ke sont fermés dans ’espace de Banach FE.

Exercice 7.47. Soient (E, || ||) un espace de Banach et F', G deux sous-espaces vectoriels fermeés
de E.

1. On suppose que F + G est fermé dans E. Montrer qu’il existe une constante ¢ > 0 telle
que pour tout z € F+ G, il existe x € F et y € G tels que z =z +y et ||z|| + |y < c]lz]].

2. On suppose que l'on a FNG = {0}. Montrer que les propriétés suivantes sont équivalentes.
(i) F'+ G est fermé dans (E, || ||).

(ii) Il existe une constante ¢ > 0 telle que ||z|| + |ly|| < ¢|lx + y||, pour tous x € F et
y € G.

(iii) Il existe une constante o > 0 telle que ||z|| < ||z + y||, pour tous z € F et y € G.

Solution. 1. On munit espace F' x G de la norme || ||1. Autrement dit, pour tout (z,y) € F' x G,
on a ||(z,y)|li = |lz|| + ||ly||. Alors les espaces (F' x G, || ||1) et (F + G, || ||) sont de Banach.
Considérons ’application suivante :

p: FxG — F+d
(r,y) — x+y.

Alors ¢ est linéaire continue et surjective, donc ¢ est une application ouverte. Par conséquent,
il existe ¢ > 0 tel que B(0,2) C ¢(B(0,1)). Donc pour tout z € F + G tel que ||z|| < 2

c?

il existe (a,b) € F' x G tel que |ja]| + ||b]] < 1 et z = a+b. Soit z un élément non nul de

F + G, alors on a H HZ H H =1 < 2 donc il existe (a,b) € F x G tel que |a]| + [|b]] < 1 et
cllz

el =a+0b. On pose z = ¢|z|la et y = ¢||z||b, alors z = =+ y, (z,y) € F X G et on a
cllz

!l + llyll = ellz]l (llall + [1B]]) < ell=]]-

2. L’implication (i) = (ii) résulte de 1 et du fait que F NG = {0}. L'implication (ii) = (iii)
est triviale.

Preuve de (iii)) == (i). Soit (2 )n>0 une suite dans (F'+ G, || ||) qui converge vers un élément z
dans (E, || ||). Alors pour tout n,m € N, il existe z,, € F et y,, € G tels que z, = z,, + y, et on
allzn — zml < allzy — Tm + Yn — yml| = allzn + Yy — (Tm + Ym)||, donc (zy,)n>0 est une suite
de Cauchy dans (F, || ||) qui est de Banach. Par conséquent, la suite (z,),>0 converge vers un
élément x € F'. Comme pour tout n > 0, on a y, = z, — Tp, alors la suite (y,),>0 converge vers
un élément y € E. Puisque G est fermé dans F, alorsonay € G. Donconaz=x+y € FF+G.
Par conséquent, F' 4+ G est fermé dans (E, || ||).

Exercice 7.48. Soient F et G deux sous-espaces vectoriels fermés d’un espace de Banach (E, || ||)
tels que F'N G = {0}. Montrer que F' + G est fermé dans E si et seulement si d(Sp, Sg) > 0.
Solution. Supposons d’abord que F + G est fermé dans E. D’aprés 'exercice précédent, il existe
une constante a > 0 telle que pour tous z € F et y € G, on ait ||z| < afjz —y||. Par conséquent,
pour tous z € Sp et y € Sg, ona = < ||z —y|. D'otton a 0 < 2 < d(Sp, Si).

Réciproquement, supposons que l'on a 0 < d(Sg, Sg). Soit 8 = inf(d(SF, Si),4), alors 0 < 5 < 4
et pour tous x € Sp et y € Sg, on a f < ||z — y||. Soient x € F et y € G tels que x # 0 et
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y # 0. D’aprés Vexercice 6.13, on a 1 ([|z|| + [ly]|) ‘

=y _ 6
o~ T H < ||z — y||. Par conséquent, on a

§||:13|| <|lz—y|. Douona |z| < %||33—y|| Donc pour tous x € Fety € G, on a ||z| < %Hﬂi—yn
Il résulte de I'exercice précédent que F' + G est fermé dans F.

Exercice 7.49. Soient F, F' deux espaces de Banach et T : E — F une application linéaire
continue.

1. On suppose que T'(E) a un supplémentaire algébrique fermé G dans F. Montrer que T'(E)
est fermé dans F.[On pourra se ramener a ce que T soit injective, puis considérer 1’appli-
cation de E' x G dans F définie par (z, z) — T'(z) + z|.

2. En déduire que si T'(E) est de codimension finie, alors T'(E) est fermé.

Solution. 1. D’aprés la proposition 6.4.4, il existe une application linéaire continue T de E/ker(T)
dans F' telle que le diagramme suivant soit commutatif.

E/%ker(T)

Comme T est injective et on a T(E/ker(T)) = T(E), alors on peut supposer que T est injec-
tive. Comme G est un sous-espace vectoriel fermé dans F', alors G est un espace de Banach.
Considérons ’application suivante :

S: ExGE — F
(x,z) +— T(x)+z

alors S est linéaire bijective continue. Alors, par le théoréme de 'application ouverte, S est un
homéomorphisme. Or E x {0} est fermé dans E X G, on en déduit que T(E) = S(E x {0}) est
fermé dans F'.

2. Tout supplémentaire algébrique de T'(E) est de dimension finie, donc fermé et on applique 1.

Exercice 7.50. Soient F' un sous-espace vectoriel d'un espace normé (E, || ||) et T : F — £
une application linéaire continue. Montrer qu’il existe une application linéaire continue S : £ —»
£ prolongeant T telle que ||S]| = ||T|.

Solution. Pour tout n > 0, soit f, : £*° — K la forme linéaire continue définie par f,(e,) =1
et fn(ep) = 0 si p # n. Pour tout € F, on a T(x) = (fo(T(x)))n>0. Pour tout n > 0, on
a fpoT € F*. Par le théoréme de Hahn-Banach, théoréme 7.7.3, il existe une forme linéaire
continue g, € E* prolongeant f, o T telle que ||g,|| = || fn o T||. Pour tout = € E, on pose
S(x) = (gn(x))n>0- Alors S est une application linéaire continue de E dans ¢*° prolongeant 1" et
telle que ||S|| = ||T|-

Remarque 7.0.3. On montrera, voir exercice 10.34 du supplément, que si I’ est un sous-espace
vectoriel d’un espace normé séparable (E, || ||) et si T' : F — ¢ est une application linéaire
continue, alors il existe une application linéaire continue S : E — ¢y prolongeant T telle que
IS] < 2|7

Exercice 7.51. Supposons que £> est un sous-espace vectoriel fermé d’un espace de Banach
(E, || ||)- Montrer qu'’il existe un sous-espace vectoriel fermé N de E tel que E soit la somme
directe topologique de > et N.

Solution. Soit I : £°° — ¢*° P’application identité. Par 'exercice précédent, on prolonge I en
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une application linéaire continue p : E — £*° de norme 1. Alors p est une projection continue
et il suffit de prendre N = ker(p), voir corollaire 7.3.2.

Exercice 7.52. On munit C([0, 1], R) de la norme || ||~ et soit F' un sous-espace vectoriel fermé
de C([0, 1], R) tel que tout élément f € F est de classe C' sur [0, 1]. Montrer que F est de
dimension finie.

Solution. Considérons 'application dérivée

D: F — ([0, 1], R)
fo— f

alors D est linéaire et le graphe de D est fermé. On en déduit, par le théoréme du graphe fermé,
que D est continue. Donc il existe N € N* tel que pour tout f € F, on ait ||f/[cc < N ||f|lco-
Considérons ’application suivante :

T: F — RN+L

for—= (FO),F(%), F(%), - F(ER). £(1)

alors T' est linéaire et continue. Montrons que 7' est injective. Supposons le contraire, alors il
existerait f € F tel que ||f]lcc =1 et f(5) =0, pour tout i € {0,...,N}. Soit ¢ € [0, 1] tel que
[flloo = [f(¥)] = 1. Soit i € {0,..., N} tel que [t — 5| < o5 Par le théoréme des accroissements
finis, on a f(t) — f(&) = (t — &) f' (). Dot on a |f(t)| < 5%|f/(a)| < 3, ce qui est impossible.
Donc T est injective et on a dim(F) < N + 1.

Exercice 7.53. Soient (E, || ||) un espace normé et (zy)n>0, (Yn)n>0 deux suites dans E telles
que pour tout n > 0, on ait ||x,| = |lyn|| =1 et lirjra | + ynl|| = 2. Pour tout n > 0, soit
n—-+0oo
Zn, € [Tn, Yn]. Montrer que liT llzn|| = 1. En particulier, si z,y € E tels que ||z|]| = ||y|| =1 et
n——+0o0
|l + y|| = 2, alors pour tout z € [z, y], on a ||z|| = 1.

Solution. On peut supposer que F est un R-espace normé. Par le théoréme de Hahn-Banach,
pour tout n > 0, il existe f, € E* telle que ||f.]] = 1 et fu(zn + yn) = ||Tn + Y|, o1t on a
lim f,(x, + yn) = 2. Montrons d’abord que les suites (f(zn))n>0 €t (f(yn))n>0 convergent

n—-+00
vers 1 dans R. Si (f(zy))n>0 ne converge pas vers 1, alors il existe € > 0 tel que pour tout N > 0,

il existe n > N tel que fp(z,) < 1 —e. Comme la suite (f(z,) + f(yn))n>0 converge vers 2, il
existe No > 0 tel que pour tout n > Np, on ait 2 — § < fu(2y) + fu(yn). Soit n > Ny tel que
Jn(zn) <1 —cet 2—5 < fu(zn) + fu(yn), alors on a 1 + 5 < fr(yn), doit 1 < || fy]], ce qui est
impossible. Donc on a bien lim f,(x,) =1et lm f,(y,) =1.

n—-+4oo n——+00
Soit z, € [Tn, yn], alors il existe ¢, € [0, 1] tel que z, = (1 — tn)Tpn + thyn = Tn + tn(yn — Tn).
Donc on a fn(2zn) = fu(zn) + th[fn(yn) — fu(zn)]. On en déduit que l'on a ngr}rloo fn(zn) =1. Or

on a fn(zn) <llzn] <1, dou ngl}rloo |zl = 1.

Exercice 7.54. Soient (E, || ||) un espace de Banach et F' un sous-espace vectoriel fermé dans
E*. Pour tout z € E, on pose ||z||r = sup{|f(z)| ; f € Br}. Il est clair que || ||r est une
semi-norme sur F et que 'on a ||z||p < ||z||, pour tout x € E.

1. Montrer que pour tout € F, on a |z||r = d(J(x), F+) (distance dans E**), ot J : E —
E** est Iapplication canonique.

2. Montrer que les propriétés suivantes sont équivalentes.

(i) F est séparante pour E, i.e. pour tout x € E, avec  # 0, il existe f € F tel que

f(@) #0.
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(ii) || || est une norme sur E.

(iii) J(E) N F+ = {0}.
Solution. 1. Soit ¢+ : F — FE* l'injection canonique. D’aprés le théoréme 7.10.1, il existe une
isométrie isomorphisme o de E**/FL sur F* tel que le diagramme suivant soit commutatif.

*

E** v F*
w\\ %

E**/FJ_

On a 2*(A) = A, pour tout A € E**. Par définition de la norme quotient sur E**/F+ on a
|7 (J ()| = d(J(z), F), dou :

d(J(2), F+) = |n(J(2))]
= floon(J())ll

= [ (J (@)

= sup |f(z)| = [z|F.
fe€BF

2. L’équivalence (i) <= (ii) est triviale. L’équivalence (ii) <= (iii) résulte du fait que pour tout
r € E, onal|z|r=d(J(z), F) et du fait que F* est fermé dans E**.

Exercice 7.55. Montrer que si f € (£>°)* vérifie ||f|| =1 et f(1) =1, alors on a :
1. Pour tout x = (xy,)n>0 € £°°, avec z, € R, pour tout n > 0, on a f(z) € R.
2. Pour tout z = (zp)n>0 € £*°, avec x,, > 0, pour tout n > 0, on a f(z) > 0.
3. Pour tout z = (zy)n>0 € >, avec x,, € R, pour tout n >0, on a :

inf z, < f((xn)nEO) < supz, .
n>0 n>0

Solution. 1. Soit = (xy,)n>0 € €, avec z,, € R, pour tout n > 0. On peut supposer ||z]s < 1.
On a f(z) = s +it, avec t,s € R. Supposons que t # 0. Quitte a prendre —z, on peut supposer
t > 0. Pour tout n > 0, on a :

[fn—iz)? < |If | lIn —izll® < 0 —izlloo® = n® + |3 < n® + 1.
On a aussi f(n —iz) =n+t —is, dou |f(n —iz)|?> = n? + 2nt + s> + t2. Par conséquent, pour

tout n > 0, on a 2nt + s2 +t2 < 1, ce qui est impossible. Donc on a t = 0, d’ou f(z) = s € R.
2. Soit & = (xp)n>0 € €°°, avec x, > 0, pour tout n > 0. Alors on a 0 < [|z|lecc — Zn < [|Z] 00,

dot || [lz]lec = #|| < |#[los- Donc on a |[z]loc — f(@)] = | f(l|Zlloc — 2)| < || [12]lo0 — #|| < [l2]|co-
Or f(z) € R, d’ou f(z) > 0.
3. Soit z = (xn)n>0 € €°°, avec z, € R, pour tout n > 0. Alors pour tout n > 0, on a
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inf z, <z, <supz,, dou inf z, < f((zn)n>0) < sup x,.
n20 n>0 n20 - n>0

Exercice 7.56. Soit X un espace localement compact.

1. Montrer que si le dual topologique de (Cy(X), || |lco) est séparable, alors X est au plus
dénombrable T

2. En déduire que si X est un métrique connexe localement compact qui contient deux points
distincts, alors le dual topologique de (Cy(X), || ||oo) n’est pas séparable

3. En déduire que le dual topologique de (C([0, 1]), || [lo) n’est pas séparable.
4. En déduire que (C([0, 1]), || ||oc) n’est pas réflexif.

Solution. 1. Pour tout z € X et tout f € Cy(X), soit 6,(f) = f(x), alors 0, € Cy(X)* et on a
|0z]] < 1. Soient x,y € X tels que = # y, alors on a ||0; — d,|| < 2. D’apres le théoréme 3.6.1, il
existe f € Co(X) C Cy(X) telle que f(z) =1, f(y) = —1 et —1 < f(z) < 1 pour tout z € X.
Alors on a || fllooc = 1 et (05 — 0y)(f) = 2, d’ou ||6; — || > 2. Par conséquent, on a ||0; — &, || = 2.
Pour tout = € X, soit U, = Bgy(x)+(0z, 1), alors (Uy)zex est une famille d’ouverts non vides
deux a deux disjoints dans Cp(X)*. Si Cy(X)* est séparable, on déduit de la proposition 1.2.5
que X est au plus dénombrable.

2. Ceci résulte de 1 et de D'exercice 4.3.

3. Ceci résulte de 2.

4. Puisque (C([0, 1]), || ||co) est séparable, voir proposition 6.8.5, et C([0, 1])* n’est pas sépa-
rable, il résulte du corollaire 7.9.2 que (C([0, 1]), || [oo) n’est pas réflexif.

Exercice 7.57. Soit (E, || ||) un R-espace vectoriel normé tel que dim(E) > 1 et soit C un
ouvert convexe non vide de E tel que 0 ¢ C. Montrer qu’il existe un élément non nul x € F tel
que CNRz = (.

Solution. D’aprés le lemme 7.8.1, il existe f € E* telle que pour tout z € C, on ait f(z) <
f(0) = 0. Comme dim(E) > 1, alors ker(f) # {0}. Soit = € ker(f) tel que = # 0, alors on a
CNRz=0.

On donne une autre solution de cet exercice sans utiliser le lemme 7.8.1. On cherche x € F,
x #0, tel que CNRxz =0. Ona CNRz = 0 si et seulement si pour tout ¢t > 0, x & tC et
x & —tC. Soit U = tL>JOtC, alors U est un ouvert de E. Si UN—U # (), alors il existe t; > 0, to > 0

t1x1 + tox
et x1,x19 € C tels que t1z1 = —toxo, d’ol on a % = 0. Comme C est convexe, alors on
1+ t2

tix tox
Az tats € C, c’est une contradiction. Donc on a U N —U = (). Puisque 'on a dim(FE) > 1,

t1 + 1o
alors E'\ {0} est connexe, voir exercice 6.20. Par conséquent, U U —U est inclus strictement dans
E\ {0}. Soit x € E\ {0} tel que z ¢ UU —U. Alors on a CNRz = 0.

Exercice 7.58. Soit (E, || ||) un espace normé de dimension infinie. Montrer qu'il existe deux
sous-ensembles convexes Cp et Cy dans E tels que E = C; UCy, C1NCy =0, et Cq et Cy sont
denses dans FE.

Solution. Soit f une forme R-linéaire non continue sur E. Soient C; = {z € E ; f(z) < 0}
et Co = {x € E; f(x) > 0}. Alors C; et C sont des ensembles convexes disjoints et on a
E = C1 UCy. Comme f n’est pas continue, d’aprés la proposition 6.3.6, H = ker(f) est dense
dans E. Comme on a H C Coy, alors Cs est dense dans F. Soient a € E tel que f(a) = 1 et

1. En fait, la réciproque est aussi vraie : si le dual topologique de (Co(X), || ||s) est séparable, alors X est au
plus dénombrable.
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h e H, alorsf(h—%a):—%<0, d’oﬁonah—%aecl. Oronah = lim h—%a, donc

n——+o0o

H c C,. Par conséquent, C; est dense dans E.

Exercice 7.59. Trouver un espace de Banach (E, || ||) et Fy, F» deux sous-espaces vectoriels de
E tels que Fy N Fy = {0} et Fy, F» sont denses dans E.
Solution. Soient £ = C([0, 27}, C) muni de la norme || ||, F1 le sous-espace vectoriel des

polynomes & coefficients dans C et F3 le sous-espace vectoriel des polynomes trigonométriques.
Alors on a Fy N Fy = {0}. D’apres les corollaires 5.5.1 et 5.5.2, F, F5 sont denses dans E.

Exercice 7.60. Soit (F, || ||) un espace normé. Une application linéaire continue U : E — F
est dite une involution si U o U = idg.

1. Montrer que si U : E — FE est une involution, alors P = %(U + idg) est une projection
continue, ¢.e. P est linéaire continue telle que Po P = P.

2. Réciproquement, soit P : F — E une projection continue, montrer que U = 2P —idg est
une involution.

Solution. 1. Il est clair que si U est linéaire continue, alors P est linéaire continue. On a :
PoP = 3(U+idg)o3(U +idg)

(UoU+U+U +idg)

|
AN

= LU +2idp) = P,

Donc P est une projection continue.
2. 11 est clair que si P est linéaire continue, alors U = 2P — idg est linéaire continue. On a :

UoU = (2P —idg)o (2P —idg)
= 4PoP —2P —2P +idg
= idg.

Donc U est une involution.

Exercice 7.61. Soient (E, || ||) un espace normé et y € E tel que y # 0. Soit f € E* telle que
f(y) = 1. Pour tout z € E, on pose P(x) = f(z)y. Montrer que P : E — F est une projection
continue telle que Im(P) = Vect({y}).

Solution. Il est clair que P est linéaire, Po P = P et que 'on a Im(P) = Vect({y}). On a
I1P(z)| < |lylllIfIlllz]], donc P est continue. Par conséquent, P est une projection continue.

Exercice 7.62. Soit F = ¢y ou /P, avec 1 < p < co. Montrer que l'espace normé produit £ x K
est linéairement homéomorphe & E. En déduire que E X F' est linéairement homéomorphe a F,
pour tout espace normé de dimension finie F'.

Solution. Pour tous z = (z,,)p>0 € E et A € K, on pose T'(x,\) = (A, zg,x1,...) € E. Alors T
est une application linéaire bijective de F x K dans E, et on a ||[T(z,\)| < || + ||z]|, donc T
est continue. Comme F X K et E sont de Banach, il résulte du théoréme de ’application ouverte
que T est un homéomorphisme. Par récurrence, on en déduit que pour tout n > 1, E x K" est
linéairement homéomorphe a E. Par conséquent, pour tout espace normé de dimension finie F,
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E X F est linéairement homéomorphe & E.

Exercice 7.63. Soit E = C(|0, 1] R) l’espace vectoriel des applications continues de [0, 1] dans

R, muni de la norme || f|l; = / |f(t)|dt. Soient F' I’ensemble des fonctions constantes sur [0, 1]

et G l'ensemble des g € FE telles que g(0) = 0. Montrer que E est la somme directe algébrique
des F' et G, mais F n’est pas la somme directe topologique des F' et G.

Solution. Il est clair que F' et G sont des sous-espaces vectoriels de F tels que FNG = {0}.
Pour tout f € E, ona f = f — f(0) + f(0), avec f(0) € F et f — f(0) € G, donc E est la
somme directe algébrique des F' et G. Pour tout n > 1, soit f,, € G définie par : f,(0) =0, f, est
affine sur [0, 1] et fn(t) = 1 pour tout ¢ € [+, 1]. Alors la suite (f,)n>1 converge dans E vers
la fonction constante 1. Donc G n’est pas fermé dans E. Par conséquent, F n’est pas la somme

directe topologique des F' et G, voir proposition 7.3.1.

Exercice 7.64. Soient F' et G deux sous-espaces vectoriels fermés d’'un espace de Banach
(E, || ||)- Montrer que E est la somme directe topologique de F et G si et seulement si E*
est la somme directe topologique de F'- et G+

Solution. Supposons d’abord que FE est la somme directe topologique de F' et G. Soitp : F — E
la projection continue telle que Im(p) = F' et ker(p) = G. Alors p* : E* — E* est une projec-
tion continue telle que Im(p*) = G+ et ker(p*) = F*+. Donc E* est la somme directe topologique
de F+ et G+, voir corollaire 7.3.1.

Réciproquement, supposons que E* est la somme directe topologique de F- et G*. Il résulte de
ce qui précéde que E** est la somme directe topologique de (F+)+ et (G+)*. Soit Jg : E — E**
I'application canonique. Comme on a J(F) C (FY)* et J(G) C (GH)*, alors on a FNG = {0}.
Soit f € E* telle que f,.., = 0. Comme on a F+NG+ = {0}, alors f = 0. Il résulte du corollaire
7.7.3 que F + G est dense dans E. Soit a € F, alors il existe A; € (F1) et Ay € (GH)* tels
que J(a) = A; + Ag. Soient (z,),>0 une suite dans F' et (y,)n,>0 une suite dans G telles que

a= lim z,+y, Douonald(a)= lim J(z,)+J(y,). Comme les projections naturelles sur
n—+oo n—+oo

(FH)* et (GH)* sont continues, on en déduit que la suite (J(x,))n>0 converge vers A et la suite
(J(yn))n>0 converge vers Ag. Or J est une application isométrique, donc (zy,)n,>0 est de Cauchy
dans F et (yn)n>0 est de Cauchy dans G. Puisque F' et G sont des Banach, alors il existe z € F
ety € Gtelsquex = lim z,ety= lim vy, Doncona J(a)=J(z)+ J(y),dota=x+y.

n—-+oo n——+o0o
Par conséquent, E est la somme directe algébrique de F' et G. Il résulte de la proposition 7.3.2

que E est la somme directe topologique de F' et G.

Exercice 7.65. Soit (E, || ||) un espace normé. Soient Jg : E — E** et Jg= : E* — E*** les
applications canoniques. Montrer que Jg= o J, : E*** — E*** est une projection continue. En
déduire que E*** est la somme directe topologique de Jg«(E*) et de Jg(FE)*.

Solution. Notons d’abord que P = Jg+ o J; est une application linéaire continue. Pour mieux
visualiser les applications intervenant dans cet exercice, considérons les deux diagrammes com-
mutatifs suivants :

J*

Jgx Jgx
o (f)ck g (f) B 5
K E***
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On a Po P = Jg+ o J o Jg« o Ji,. Pour montrer que P o P = P, il suffit de montrer que pour
tout f € E*, on a Jj o Jg«(f) = f. Pour tout f € E* et pour tout z € £, on a

Jp o Jp-(f)(@) = Jp(Jp- () (@) = (Jp=(f) 0 Jp) () = Jp- (f)(Jp(2)) = Je(z)(f) = f(2).

D’ou on a JjoJg=(f) = f. Par conséquent, on a PoP = P. Donc P est une projection continue.
D’apreés la remarque 7.10.1, J}, est surjective, donc on a P(E**) = Jg-(E*). Comme Jg- est
une application isométrique, alors on a ker(P) = ker(J5) = Jp(E)*. Par conséquent, E*** est
la somme directe topologique de Jg«(E*) et de Jp(E)* .

Exercice 7.66. Soient E, F' deux espaces de Banach et T' : E — F une application linéaire
continue et surjective. Montrer que les propriétés suivantes sont équivalentes.

(i) T admet un inverse a droite, i.e. il existe une application S : F — E linéaire continue
telle que T'o S = idp.

(ii) ker(T") admet un supplémentaire topologique dans E.

Solution. Montrons I'implication (i) = (ii). Par hypotheése, il existe S : F' — FE linéaire conti-

nue telle que T'o S = idp. Soit G = S(F), alors G est un sous-espace vectoriel de E. Montrons

que G est fermé dans E. Soient z € E et (y,)n>0 une suite dans F' telle que lir}rl S(yn) = x.
- n——+0oo

D'ouon a S(T(z)) = Er}rl S(T(S(yn)) = Er}rl S(yn) = x, donc x € G. Par conséquent, G est

fermé dans E. Soit x € G Nker(7T), alors on a T'(x) = 0 et il existe y € F tel que z = S(y), d’on
onay=(ToS)(y) =T(S(y)) =T(x) =0, donc y =0. D’'oit on a x = 0. Par conséquent, on
a G Nker(T) = {0}. Pour tout z € E, on a x = — S(T(x)) + S(T(z)), avec S(T(x)) € G et
x— S(T(x)) € ker(T'), donc E est la somme directe algébrique des ker(7T') et G. Or ker(T') et G
sont fermés dans I'espace de Banach E, donc E est la somme directe topologique des ker(T') et
G, voir proposition 7.3.2.

Montrons 'implication (ii) = (i). Par hypothése, il existe un sous-espace vectoriel fermé G de
E tel que GNker(T) = {0} et E = G+ker(T). Alors G est un espace de Banach et T}, : G — F
est une application linéaire continue et bijective. D’apres le théoréme de ’application ouverte, il
existe S : ' — G C E linéaire continue telle que pour tout y € F', on ait T'(S(y)) = y.

Exercice 7.67. Soient E, F' deux espaces de Banach et T' : E — F une application linéaire
continue et injective. Montrer que les propriétés suivantes sont équivalentes.

(i) T admet un inverse a gauche, i.e. il existe une application S : F — F linéaire continue
telle que S o T =idg.

(ii) T(FE) admet un supplémentaire topologique dans F.

Solution. Montrons I'implication (ii) = (i). Comme T'(E) admet un supplémentaire topo-
logique dans F, alors T(F) est fermé dans F', donc de Banach, et la projection naturelle
m : F' — T(E) est linéaire continue. Puisque 7' : £ — T(E) est linéaire continue et bi-
jective, d’apres le théoréme de 'application ouverte, il existe S : T (E) — E linéaire continue
telle que pour tout x € E, on ait S(T'(z)) = x. Soit S = Som, alors S est une application linéaire
continue de F' dans F telle que SoT =idg.

Montrons I'implication (i) = (ii). Par hypothése, il existe S : ' — FE linéaire continue telle
que S oT =idg. Montrons que T'(E) est fermé dans F'. Soient y € F' et (x,),>0 une suite dans

E telle que nll)r}rloo T(x,) =y. D'ouonaT(S(x)) = ngr}rloo T(S(T(xy)) = ngl—ll-loo T(x,) =y, donc

y € T(FE). Par conséquent, T'(E) est fermé dans E. Puisque ker(S) est un sous-espace vectoriel
fermé de F', pour montrer que F' est la somme directe topologique des T'(E) et ker(5), il reste
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a montrer que F' est la somme directe algébrique des T'(F) et ker(S). Soit y € T(E) N ker(S),
alors il existe z € E tel que y = T'(z) et 0 = S(y) = S(T(x)) = z, d’ou y = 0. Donc on a
T(E)Nker(S) = {0}. Pour tout y € F,onay =y —T(S(y)) + T(S(y)), avec T(S(y)) € T(F)
et y —T(S(y)) € ker(S), donc on a F' = T(F) + ker(S). Par conséquent, F' est la somme directe
algébrique des T'(E) et ker(5).

Exercice 7.68. Soit R : {' — ¢y définie par : pour tout = = (z,,)n>0 € 1, R(z) = (rn)n>0, Ot
+00
Ty = Z xg. Montrer que R € £ (¢*; o) et donner une formule explicite de R* dans £ (¢; ¢°).

k=n
Solution. Il est clair que R est bien définie et que R est linéaire. Pour tout n > 0, on a

Tl < x| < ||z||1, donc R est continue et on a ||R|| < 1. Si a = (an)n>0 € ¢, on note
ral <D lakl < 2, > :

Ty, € ¢, définie par T tn n>0 Z antn. On a R*(T,) = T, o R. Pour tout x = (x,,),>0 € ¢,

+00 +00
on a R*(T,)(z) = Zan<2mk> D’aprés le corollaire 6.7.4 et la proposition 6.7.5, la famille
n=0 k=n

(anxk)(n pyene €st sommable. Soit I = {(n,k) € N*; k > n} = U { n,k) € N*; 0 <n <k}

D’aprés le corollaire 6.7.2 et le théoréme 6.7.4, la famille (anxk)(n kel est sommable et on a :

+00 +00 +oo k
Yan(Ym) = 3 awm=Y (D an)an.
n=0 k=n (n,k)el k=0 n=0
“+o00 n n
Par conséquent, on a R*(Ta)((mn)nzo) = Z (Zak)mn. Pour tout n > 0, soit b, = Zak,
n=0 k=0 k=0

alors b = (bp)n>0 € £ et on a R*(Tg,) =Ty, ou T}, € ¢'*, définie par Tb Tn n>0 Z b,Tn. En

identifiant ¢ a ¢! et £1" & £°°, on obtient R* € Z(¢'; £>°), définie par R*((a n)nZO) = (bn)n>0,

n

ol pour tout n > 0, on a b, = Zak.

k=0
Exercice 7.69. Soient FE et F' deux espaces de Banach. On suppose qu’il existe une application
linéaire isométrique 1" de E dans F* telle que T*oJp : FF — E* soit une application isométrique
de F' dans E*. Montrer que si E est réflexif, alors on a F' = E* et £ = F*.
Solution. Soient Jg : B — E* et Jp : FF — F™** les applications canoniques. Par hypothése,
T*o Jp : F — E* est linéaire et isométrique. Pour tout y € F, on a T*(Jr(y)) = Jp(y) o T
Si T* o Jp n’était pas surjective, d’aprés le corollaire 7.7.2, il existerait h € E** tel que h # 0
et h(Jp(y) oT) = 0, pour tout y € F. Comme E est réflexif, il existe x € F tel que = # 0
et h = Jg(x), dou Jg(x)(Jr(y) o T) = 0, pour tout y € F. Or on a Jg(z)(Jr(y) o T) =
(Jrp(y)oT)(x) = Jrp(y)(T(x)) = T(x)(y), donc T'(z)(y) = 0 pour tout y € F, d’oa T'(xz) = 0. On
en déduit que x = 0, car T est isométrique, ce qui est impossible. Par conséquent, 7™ o Jr est
surjective, donc on a F' = E* et F* = E** = FE.

Exercice 7.70. Soient (E || ||), (F']| ||) deux espaces de Banach et T' € Z(FE; F). Montrer que

1. T est bijective de E sur F' si et seulement si T est bijective de F™* sur E*.
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2. T est isométrique et surjective de E sur F’ si et seulement si T™ est isométrique et surjective
de F™* sur E*.

Solution. 1. Si T est bijective de F sur F', d’apreés le théoréme de ’application ouverte, il existe
Se Z(F;E)telque ToS =idp et SoT =idg, d’ott on a T* 0 S* = idg+ et S* o T* = idp~.
Donc T* est bijective de F™* sur E*.

Réciproquement, supposons que 7™ est bijective de F'* sur E*. D’aprés les propositions 7.10.4
7.10.5, T est injective, T'(E) est fermé dans F' et T(FE) est dense dans F', donc T est bijective.
2. Supposons d’abord que T est isométrique et surjective de E sur F. Alors on a T'(Bg(0,1)) =
Bp(0,1). D’apres 1, T* est aussi bijective de F* sur E*. Il reste a vérifier que T* est isométrique.
Pour tout f € F*, on a :

[T*(HI = IIf o T|| = sup{[f(T'(x))| ; * € B(0,1)} =sup{|f(y)|; y € Br(0,1)} = || f]].

Donc T™ est isométrique.

Réciproquement, supposons que T* est isométrique et surjective de F* sur E*. Alors on a
T*(Bp+(0,1)) = Bg+(0,1). D’aprés 1, T' est aussi bijective de E sur F'. Il reste & vérifier que T’
est isométrique. D’apres le corollaire 7.9.1, on a :

IT(x) = sup{|f(T(z))|; f € Br-(0,1)}
= sup{|T"(f)(@)|; f € Br-(0,1)}

= sup{lg(z)| ; g € Be-(0,1)} = |l

Donc T est isométrique.

Exercice 7.71. Montrer que ¢y n’est pas linéairement homéomorphe a C([0, 1]).

Solution. Si ¢y est linéairement homéomorphe & C([0, 1]), d’aprés I'exercice précédent, (1 = ¢
serait linéairement homéomorphe a C([0, 1])*. Or ¢! est séparable, mais C([0, 1])* ne I'est pas,
voir exercice 7.56, donc ¢y n’est pas linéairement homéomorphe a C([0, 1]).

Exercice 7.72. Soient (E, || ||), (F, || ||) deux espaces de Banach et A : E — F une application
linéaire continue surjective. Soit 7' : /! — F une application linéaire continue. Montrer qu’il
existe une application linéaire continue S : ¢! — E telle que Ao S = T. Autrement dit, le
diagramme suivant est commutatif.

Solution. Notons d’abord que 1'on peut supposer T' # 0. Pour tout n > 0, on a ||T'(e,)|| < ||
Comme A est une application linéaire continue surjective, d’aprés le théoréme de lapplication
ouverte, A est une application ouverte. Donc il existe n > 0 tel que Br(0,7) C A(Bg(0,1)).

Comme pour tout n > 0, on a 2||7;||T(en) € Br(0,7n), alors il existe z, € Bg(0,1) tel que

2\|T
ﬁT(en) = A(zy), d'ouon a T(e,) = A(Mzn> Autrement dit, il existe une suite bornée
n
(zy)n>0 dans E telle que A(xy,) = T(e,), pour tout n > 0. Soit A = (A\,)n>0 € £1. Comme la sé-
oo

o

rie Z Ay, est absolument convergente et comme (E, || ||) est de Banach, alors Z An &y, existe
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[ee]
dans E. On pose ensuite S((An)n>0) = Z AnZn. Alors S est une application linéaire continue
n=0

de ¢' dans E telle que Ao S =T.
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Chapitre 8

ESPACES DE HILBERT

Proposition. Le complété d’un espace préhilbertien est un espace de Hilbert.

Démonstration. Soient (E, (, )) un K-espace préhilbertien et (H, || ||) un espace de Banach
tels que E soit un sous-espace vectoriel dense dans H et pour tout x € E, on ait ||z|| = /(x, ) .
Il s’agit de définir un produit scalaire sur H qui induit la norme || ||. Soient =,y € H. Soient
(Zn)n>0 €t (Yn)n>0 des suites dans FE telles que z,, — zety, —> ydans H.

- - n—-+00 n—-+00

Vérifions d’abord que ((ajn, yn>) est une suite de Cauchy dans K. On a :

n>0
(TrsYn) = (Tmy Ym) = (TnsYn) — (Tny Ym) + (T, Ym) — (Tm, Yim)

= (TnYn — Ym) + (Tn — T, Ym) -

Par l'inégalité de Cauchy-Schwarz, on obtient :

(T, Yn) — @ms Ym) | < N2all 1Yn — Ymll + 120 — 2l Y]] -

Comme les suites (||:1:n||)n>0 et (||yn||)n>0 sont bornées, alors la suite ({2, yn>)n>0 est de Cauchy
dans K, donc elle converge dans K. -

Soient (z],)n>0 €t (y),)n>0 des autres suites dans E telles que z, — x et y, — y dans H.
- - n——+00 n——+00

9 . _ . / ! .
Montrons que l'on a nEIJIrloo<m"’ Yn) = nll}g—loo<mn7 Yy On a :

/

(@ yn) = (Tnsyn) = (@0 Yn) = (Tns Y) + (Tns Yn) = (Tn, Yn)

= (2 — Tns Yn) T (Tn, Yy, — Yn)

do (@, yn) = (2, )| < Ml2f —zall [yl +l|zall [y —ynl- Par conséquent, ona lim (wn, yn) =

nEToo<$/”’y;"”> On pose :
<a:,y>1 = lim <$n,yn>

n—-+o0o

Alors (z,y)1 est bien défini et on a (x,y); € K. On vérifie facilement que (, ); est un produit
scalaire sur H tel que pour tout z,y € F, on ait (z,y); = (z,y) et que pour tout z € H, on a
Izl = v/(z,2)1 . Donc (H, || ||) est un espace de Hilbert. [

Proposition. Soient F, F' et H des espaces de Hilbert.
1. Pour tout T € .Z(E; F), on a (T*)* =T, ||[T*|| = | T|| et ||[T* o T|| = |T o T*| = || T||*.

127
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2. L’application suivante est semi-linéaire, bijective et isométrique.

A: ZE;F) — XZ(F;E)
T — T*
3. On a idg™ =idg, ou idg désigne 'application identité de F.
4. Pour tout T'e€ Z(E; F) et tout S € Z(F; H),ona (SoT)*=T%0S5".
5. 851 T € Z(F; F) est un homéomorphisme, alors 7™ est un homéomorphisme et on a
() =T

Démonstration. 1. Pour tout x € F et tout y € F, on a :

(y, T(x)) = (T'(x),y) = (x, T*(y)) = (T"(y), ) = {y, (T7)"(z)) .

Par conséquent, pour tout z € E, on a T(x) = (T™*)"(z), dou T = (T*)*. On a vu dans la
proposition précédente que on a ||T*|| < ||T||, on en déduit ||T|| = |[(T*)*|| < ||IT*||, donc on a
|T*|| = [|T]l. On a ||[T* o T|| < ||[T*|| |T]| = ||T||*. Par ailleurs, pour tout = € E, on a :

IT@)|? = (T(@), T(2)) = (@, T" o T(@)) < ]| |T" o T()] < [l|* |T* o T].

D’ou on a ||T|? = sup{||T(91:)||2 i llzll <1} < IT*oT|. On a donc ||[T* o T|| = |T]/?. En
appliquant ce résultat & T*, on obtient ||T o T*|| = ||(T*)* o T*|| = ||T*||* = ||T||*.
2.0na||A(T)|| = |IT*|| = ||IT||, donc A est isométrique. Soit R € £ (F; E), alors R* € Z(E; F)
etona A(R*) = (R*)* = R, donc A est surjective. Par conséquent, A est isométrique et bijective.
Soient T, S € Z(F; F) et A € K. Pour tout € E et pour tout y € F', on a :

(T+AS)(z),y) = (T(x)+AS(x),y)
= (T(x),y) + AMS(x),y)
= (z,T"(y)) + Mz, 5 (y))
= (2, T*(y) + AS*(y))
= (z,(T* + XS")(y))-

Par conséquent, on a (T + AS)* = T* 4+ \S*, donc A est semi-linéaire.
3. Pour tout z,y € E, on a (idg(x),y) = (x,y) = (x,idg(y)), donc on a idg™ =idg.
4. Soient T' € Z(E; F) et S € Z(F; H). Pour tout = € E et pour tout z € H, on a :

((SoT)(x),2) = (S(T(2)), 2) = (T(x),57(2)) = {2, T*(57(2))) = (&, (T" 0 57)(2)) .

Par conséquent, on a (S oT)* =T* o S*.

5. Soit T € Z(F; F) et supposons que T est un homéomorphisme, alors T-! € Z(F; E) et
onaToT ' =idp et T-'oT = idg. Il résulte de 3 et 4 que l'on a (T‘l)* oT™* = idp et
T* o (T1)* = idg. Donc T* est un homéomorphisme et on a (T%) ' = (T~1)". [

Proposition. Soient (H,( , )) un espace de Hilbert et P € Z(H) tel que Po P = P. Les
propriétés suivantes sont équivalentes.

(i) P est un projecteur orthogonal. Autrement dit, il existe un sous-espace vectoriel fermé F
de H tel que P = Pr soit le projecteur orthogonal sur F'.
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Ona P*=P.

Ona PoP*=P*oP.

(iv) On a Im(P) = ker(P)*.

(v) Pour tout x € H, on a (P(z),z) = ||P(x)|?.
(vi) On a ||P|| < 1.

Pour une preuve de la proposition précédente, voir chapitre 8 du supplément.

(ii

(iii

~— ~—r O

Démonstration. Montrons 'implication (i) = (ii). Par hypothése, il existe un sous-espace
vectoriel fermé F' de H tel que P soit le projecteur orthogonal sur F'. D’aprés la proposition 8.3.7,
pour tout z,y € H,on a (P(z),y—P(y)) = 0et (z—P(x), P(y)) =0, car y— P(y),z—P(x) € F*,

fone o (P@),y) = (P(e)y— Ply) +P)
— (P(),y — P) + (P(2), P(y))
— (P@),P(y)
— (- P@), Py) + (P(), Py)

= (z,P(y))-
Par conséquent, on a P* = P.
L’implication (ii) = (iii) est triviale.
Preuve de (iii) = (iv). D’aprés la proposition 8.4.4 et le corollaire 8.3.2, on a Im(P) = ker(P*)*.
Comme on a Po P = P, alors Im(P) = ker(idyg — P), donc Im(P) est fermé dans H, d’ot on a
Im(P) = Im(P). Par conséquent, on a Im(P) = ker(P*)*. D’autre part, Pour tout = € H, on a :

1P(2)]|* = (P(x), P(z)) = (z, (P" 0 P)(x)) = (z,(P o P*)(x)) = (P*(x), P*(x)) = | P*(2)[*.

Donc on a ker(P*) = ker(P), d’ott Im(P) = ker(P)" .

Prewve de (iv) => (v). Par hypothése, on a Im(P) = ker(P)*. Comme on a P o P = P, alors
ker(P) = Im(idg — P). Par conséquent, on a Im(idg — P) = Im(P)*. En particulier, pour tout
x € H,on a (P(x),xr — P(x)) =0. D’ott on a :

(P(z),2) = (P(2),z — P(z) + P(x)) = (P(z),z — P(x)) + (P(x), P(z)) = || P(x)|.

Preuve de (v) = (vi). Par hypothése, pour tout * € H, on a (P(z),z) = |P(z)||>. D’aprés
I'inégalité de Cauchy-Schwarz, on a |[(P(x),z)| < ||P(x)||||z||- Par conséquent, pour tout x € H,
on a ||P(@)] < |la]l, dou ||P] < 1.

Montrons 'implication (vi) = (i). Soit F' = P(H). Alors F' est un sous-espace vectoriel de
H, car P est linéaire. Montrons que F' est fermé dans H. Soient (x,),>0 une suite dans H et
y € H tels que y = lim P(x,). Comme P est continue, alors on a P(y) = nEI—Eoo P(P(xy,)) =

n—-+00

lim P(z,) =y, douy = P(y) € F. Donc F est fermé dans H et pour tout y € F, on a

n——+o0o

P(y) = y. Soit z € F*, alors P(z) = y € F. Donc, pour tout n > 1, on a P(y + %z) =
) s 2 2 2

P(y)+ 3 P(2) = y+ 5y Dovona (1+ ) yll* = [|P(y+z2) |7 < ly+ 52" = lyl* + = =1

Par conséquent, pour tout n > 1, on a (2n+1)|y||> < ||2||?, d'ott y = 0. Comme on a H = F+F*,

on en déduit que P = Pr le projecteur orthogonal sur F'. |

Proposition. Soient (E, (, )), (F, (,)) des espaces de Hilbert et T € Z(E; F).
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1. Les propriétés suivantes sont équivalentes.
(i) T* o T =idp.
(ii) Pour tout z, y € E, on a (T'(z),T(y)) = (z,y).
(iii) Pour tout x € E, on a ||T(x)|| = ||=||. Autrement dit, T" est isométrique.
2. On suppose que T est isométrique. Alors on a :
(a) L’image d’un sous-espace vectoriel fermé de E par T, est un sous-espace fermé de F'.
(b) Si G un sous-espace vectoriel de E, alors on a T(G) ¢ T(G)™*.
(¢) Soit P =T oT*, alors P est le projecteur orthogonal sur T'(F).

Démonstration. 1. Montrons I'implication (i) == (ii). Par hypothése, on a T*oT = idg. Alors,
pour tout z, y € F, on a (T(z), T(y)) = (&, T*(T(y))) = (@, (T* o T)()) = (z,1).
Montrons 'implication (ii) = (iii). Pour tout € E, on a :

IT(@)|? = (T(2), T(2)) = (z,2) = |l

d’ou [T (z)[| = [|l]-
L’implication (iii) == (ii) résulte de la proposition 8.2.1, propriétés 4 et 5.
Montrons 'implication (ii) = (i). Pour tout z, y € E, on a :

(z,y) = (T'(x),T(y)) = (z,(T" o T)(y)) -

Donc, pour tout y € E, on ay = (T* o T)(y). Autrement dit, on a T* o T = idp.
2. On suppose que T est isométrique.
2(a). Soit H un sous-espace vectoriel fermé de E. Soient y € F et (x5, ),>0 une suite dans H telle

que y = nll)r}rloo T(x,). Comme T™ est continue, alors on a 7" (y) = nEI—POOT (T'(zp)) = ngr}rloo T,

donc T*(y) € H. Comme on a T oT*oT =T, alors (T o T*)(y) = Er}rl (T o T*) (T (zy)) =
lim T(x,) =y. Par conséquent, on a y = T(T™(y)) € T(H). Donc T(H) est fermé dans F.

n—-4o00

2(b). Soient z € G+ et y € T(G). Alors il existe z € G tel que y = T(2). On a (T(z),y) =
(T(2),T(2)) = (T*(T(x)),2) = (z,2) =0, dou T(x) € T(G)*. Par conséquent, on a T(G+) C
T(G)*.

2(c). Soit P =ToT* Alorsona P =P et PoP =ToT*oToT* =ToidgoT* =
T oT* = P. D’aprés la proposition précédente, P est le projecteur orthogonal sur P(F). On a
P(E)=T(T*(E)) CT(FE).OnaaussiT =ToT*oT =PoT,douT(E)C P(E). Donc on a
P(E) =T(FE). Par conséquent, P est le projecteur orthogonal sur T'(E). [

Théoréme. Soit (H, (, )) un espace de Hilbert. Alors toute famille orthonormale dans H est
contenue dans une base hilbertienne de H. En particulier, Tout espace de Hilbert non nul admet
une base hilbertienne.

Démonstration. Soit (e;);c; une famille orthonormale dans H. Soit B I'ensemble des familles

orthonormales dans H, contenant les e;, i € I. Montrons que B muni de l'inclusion est inductif.

Soit {Bj ; j € J} une partie totalement ordonnée de B. Soient x,y € 'UJB]-, alors il existe j € J
j€

tel que z,y € Bj. Donc on a (z,z) = 1, (y,y) = 1 et (z,y) = 0. Il s’ensuit que .UJB]- est un
j€

élément de B, majorant tous les B;. Donc B est inductif. Par le lemme de Zorn, B posséde un

¢élément maximal B. Soit € BT, Si « # 0, alors B U {Hx—H} est élément de B et majore B,
x

ce qui contredit la maximalité de B. Donc on a B+ = 0. Il résulte du corollaire 8.3.3 que B est

total. Donc B est une base hilbertienne de H. |
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Théoréme. Soit (H, ( , )) un espace de Hilbert. Deux bases hilbertiennes de H ont méme
cardinal.

Démonstration. Si H est de dimension finie n, alors toute base hilbertienne de H est aussi
une base algébrique, donc son cardinal est n. On suppose maintenant que H est de dimension
infinie. Soient (x;)icr et (e;)jes deux bases hilbertiennes de H. Alors I et J sont des ensembles
infinis. Soit D = {(i,j) € I x J ; (x;,ej) # 0}. D’aprés le théoréme 8.6.1, pour tout i € I, on
a0 # ||z]? = Z|<mi,ej>\2, donc, pour tout i € I, il existe j € J tel que (x;,e;) # 0. Par
jeJ
conséquent, 'application (i,7) — ¢ de D dans I est surjective, d’ott on a Card(I) < Card(D).
D’autre part, pour tout j € J, on a aussi ||e;||? = Z |(:1:Z-,ej>|2. D’aprés la proposition 6.7.3,
el
I'ensemble I; = {i € I ; (x;,e;) # 0} est au plus dénombrable. Soit f; : I; — N une application
injective. On a D = 'UJIJ- x {j}, et soit f : D — J x N définie par f(i,75) = (J, f;(¢)) si ¢ € I;.
je
Alors f est une application injective. Par conséquent, on a Card(D) < Card(J x N). Or on a
Card(J x N) = Card(J), car J est infini, donc on a Card(/) < Card(J). On échange le role de I
et J, on obtient aussi Card(J) < Card([). Finalement, on a Card(/) = Card(J). |

Supplément d’exercices

Exercice 8.38. [Noyaux reproduisants| Soient X un ensemble et CX l'espace vectoriel des
applications de X dans C. Soit H un sous-espace vectoriel de C¥ muni d’une structure d’espace
de Hilbert. On note ( , ) le produit scalaire sur H et || || la norme associée.

1. Montrer que les propriétés suivantes sont équivalentes.
(i) Pour tout x € X, la forme linéaire définie sur H par f — f(x) est continue.
(ii) II existe une application K de X x X dans C vérifiant
— pour tout y € X, application K(.,y) : x — K(z,y) appartient & H ;
— pour tout f € H et tout y € X, (f, K(.,y)) = f(y).

Dans ce cas, une telle application K est unique et appelée le noyau reproduisant
de H.

2. Supposons que H posseéde le noyau reproduisant K.

(a) Montrer que pour tout n € N* et pour tout & = (z1,...,x,) € X", 'application

Tn,f : CrxCn — C

(M)i<i<ns (i)1<i<n) +— > K(zi,25)\ili;

1,j=1

est une forme hermitienne positive.
Une application de X x X dans C vérifiant la propriété (a) ci-dessus est appelée
application de type positif de X x X dans C

(b) Soit E un sous-espace vectoriel fermé de H. Montrons que E posséde un noyau repro-
duisant K7 et que pour tout f € H, 'application y — (f, K1(.,y)) est la projection
orthogonale de f sur E. Soient K» le noyau reproduisant de E-+. Montrer que K; 4 Ko
est le noyau reproduisant de H.
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(c) Soient (x;)i1<i<pn une suite finie de points de X et (a;)1<i<, une suite de n nombres
complexes. On suppose que le déterminant det ([K (a:l,m])]) soit non nul, de sorte
n

que le systéeme d’équations linéaires E ¢;K(zi,z;) = a;, 1 < i < n, a une solution
Jj=1

unique (¢i)i<i<n. Soit A = {f e H; flx;) =a;, 1 <i< n} Montrer que fy =

Zc] ., xj) € Aet que mf 71l = Il foll- En déduire que si x € X tel que K (z,x) # 0

et si B = {f € H ; f(z) = 1}, alors 'application gy = : € B et que
inf = .
inf llgll = llgol

(d) Montrer que la famille (K(., y))yeX est totale dans H.

(e) Supposons de plus que X est un espace topologique séparable et que H C C(X, C) C
CX. Montrer que H est séparable.

Solution. 1. L’implication (ii) = (i) est triviale. Montrons l'implication (i) = (ii). Soit y € X.
Comme f — f(y) est une forme linéaire continue sur H, d’aprés le théoréme de représentation
de Riesz, il existe un unique K(.,y) € H tel que pour tout f € H, on ait (f, K(.,y)) = f(y).
D’autre part, K(.,y) est une application de X dans C, donc on pose K(z,y) = K(.,y)(z) € C.
Ainsi, on définit une application K : X x X — C vérifiant les propriétés (i) et (ii). L’unicité
d’une telle application K est triviale.

2(a). Soient n € N* et & = (x1,...,2,) € X™. Notons d’abord que pour tout xz,y € X, on a :

K(z,y) = K(,y)(z) = (K(,y), K(,2)) .

Par conséquent, on a K(z,y) = K(y,z). Il est clair que T}, ¢ est une forme sesquilinéaire sur C".
D’autre part, on a :

XH:K(:EZ-,Q:J )\_:<Z)\K ) ZAK i)} > 0

i,j=1

Par conséquent, T;, ¢ est une forme hermitienne positive sur C".

2(b). Soit E un sous-espace vectoriel fermé de H. Puisque, pour tout x € X, la forme linéaire
f +—— f(z) est continue sur H, alors f —— f(z) est aussi continue sur E. On déduit de 1 que
FE posséde un noyau reproduisant Ki. Soit P la projection orthogonale de H sur E. Pour tout
fe€H,onaf=P(f)+f—P(f), avec f — P(f) € EL+, d’'on (f — P(f), K1(.,y)) = 0, pour tout
y € X. Donc on a (f, Ki(.,y)) = (P(f), K1(.,y)) = P(f)(y), pour tout y € X. Par conséquent,
y — (f, K1(.,y)) est la projection orthogonale de f sur E.

Comme E1 est un sous-espace vectoriel fermé de H, il résulte de ce qui précéde que E+ posséde
un noyau reproduisant Ks. Soit f € H, on a :

(L K1(y)+ K2 y)) = (P(F), Ka (5 w) +(F = P(f), Kz, y)) = P(N) () +(f = P())y) = fy).

On deéduit de 1(ii) que K7 + K3 est le noyau reproduisant de H.
n
2(c). Par définition de (¢;)1<i<n, fo = Z ¢;K(.,z;) € A. Puisque A est convexe non vide et fermé

=1
dans H, d’aprés le théoréme de la projection, il existe un unique h € A tel que }ng 1 = k|-
€
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De plus, h est caractérisé par Re((—h, f— h)) < 0, pour tout f € A, voir proposition 8.3.5. Pour
tout f € A, on a :

(=fo, f—fo) = —(fo, f)+ (fo, fo)

= = Zci<K('7mi)7 )+ Z ZCZ§<K(7‘$Z)7 K(.,x]’»
=1

i=1 j=1

— —Zczfxz —|—ZZCZC] (zj, ;)

=1 j=1

= —Z:czfasZ +ZCZ<ZC] acz,a:])
j=

= —ZciM—i—Zcia_i =0.
=1 =1

Donc on a Re((—fo,f — f0>) < 0, pour tout f € A. Par conséquent, on a fo = h. Donc on a
inf £ = I foll-

Pour avoir la deuxiéme partie, il suffit de prendre n = 1.

2(d). Soit f € H tel que (f, K(.,y)) =0, pour tout y € X. On déduit de 1(ii) que f(y) = 0, pour
tout y € X, donc on a f = 0. Il résulte du corollaire 8.3.3 que la famille (K(.,y))yex est totale
dans H.

2(e). Comme X est un espace topologique séparable, alors il existe une suite (yy,),>0 dense dans
H. Montrons que la suite (K(.,yn))n>0 est totale dans H. Soit f € H tel que (f, K(.,y,)) =0,
pour tout n > 0. On déduit de 1(ii) que f(y,) = 0, pour tout n > 0. Comme f est continue
de X dans C, alors on a f(y) = 0, pour tout y € X. Autrement dit, on a f = 0. On déduit du
corollaire 8.3.3 que la suite (K(, yn))n>0 est totale dans H. Il résulte de la proposition 6.8.2 que
H est séparable.

Remarque 8.0.4. Etant donné un ensemble X et une application de type positif K : X x X —
C, on peut montrer qu'il existe un espace de Hilbert H c CX dont le noyau reproduisant est K.

Exercice 8.39. Soit C'([0, 1]) 'espace vectoriel des applications continues de [0, 1] dans K muni
1

du produit scalaire défini par (f,g) — (f,g) = / f(t)g(t) dt, pour tout f,g € C([0, 1]). On
note || ||2 la norme associée au produit scalaire et OI(l) note L2([0, 1]) I'espace de Hilbert complété
de (C([0, 1]), {, )), voir proposition 8.2.3. Soit 2 : C([0, 1]) — L?([0, 1]) V'injection canonique.
Soit E un sous-espace vectoriel de C([0, 1]) tel que 2(E) soit fermé dans L%([0, 1]).

1. Montrer que E est fermé dans C([0, 1]) muni de la norme || ||co-

2. Montrer qu’il existe M > 0 tel que pour tout f € E, on ait || f|lcc < M || f]|2-

3. Montrer que, pour tout ¢ € [0, 1], il existe un unique élément g; € (E) tel que pour tout
f € E,on ait (1(f),g:) = f(t). Montrer que |[g¢|l2 < M.

4. Soit (f1,..., fn) une suite finie d’éléments de E telle que (2(f1),...,2(fn)) soit une famille
n

orthonormale de +(E). Montrer que, pour tout ¢ € [0, 1], on a Z ‘fk(tﬂ2 < llge13.
k=1
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5. En déduire que E est de dimension finie.
Solution. 1. Soient (f;)n,>0 une suite dans E et f € C([0, 1]) tels que lir}rl | fr — flloo = 0.
- n—-+0o0

Comme on a || fr, — fmll2 < | fn— fmlleo, pour tout n,m € N, alors (¢(f,))n>0 est de Cauchy dans
1(E) qui est de Banach. Par conséquent, il existe g € FE tel que nll}I-lr-loo le(frn) —2(9)||]2 = 0. Comme
on a aussi nEI—Poo llo(fr) —2(f)]l2 = 0, ot o(f) = 2(g), donc on a f = g € E. Par conséquent, F
est fermé dans C([0, 1]) muni de la norme || ||co-

2. D’apres 1, l'espace (E, || ||oo) est de Banach. Puisque la restriction de 2 est linéaire continue
et bijective de (F, || ||ls) dans (¢(E), || ||2), on déduit du théoréme de I’application ouverte qu'il
existe M > 0 tel que pour tout f € E, on ait || flleo < M || f]|2

3. Soit t € [0, 1]. Alors on a |f(t)] < [[fllee < M |[fll2 = M ||2(f)]]2, pour tout f € E. Donc
evy 1 o(f) — f(t) est une forme linéaire continue sur 'espace de Hilbert (:(E), || ||2). D’aprés
le théoreme de représentation de Riesz, il existe un unique élément g, € +(EF) tel que pour tout
f € E,onait (1(f),g:) = f(t). En plus, on a ||g¢]|2 :L\eth < M.

4. Soit ¢t € [0, 1]. D’aprés l'inégalité de Bessel, on a Z ‘(z(fk),gt>|2 < |lg¢/|3. Comme pour tout
k=1

ke {17 s ,’I’L}, on a <Z(fk))gt> = fk’(t)7 d’ou Z ‘fk’(t)‘Q < ||gt||§
k=1

5. Supposons que E est de dimension infinie, alors il existe une suite (fy,),>1 dans E telle que la
famille (2(fy))n>1 soit orthonormale de ¢(E). On déduit de 3 et 4 que pour tout n > 1 et pour
n

tout t € [0, 1], on a Z |fk(t)|2 < M?, d’on :
k=1

":zn:kaH%:i/l‘fk(t)|2dt</lM2dt = M?.
k=1 =10 —Jo

Ce qui est impossible. Par conséquent, F est de dimension finie.

Exercice 8.40. | Théoréme de Motzkin|. Soit A un ensemble fermé dans R™ tel que pour tout
x € R") il existe un unique point f(x) € A tel que d(x, A) = ||z — f(x)||, ou || || est la norme
euclidienne dans R"™. Il s’agit de montrer qu’alors A est convexe.

1. Montrer que 'application f : R™ — A est continue.
Par la suite, on suppose que A n’est convexe et on cherche & aboutir & une contradiction. Soit
U=R"\A.

2. Montrer qu'il existe z1, x2 € A tels que z1 # x5 et |x1, zo[C U.

3. Soit ¢ = 1t

boule ouverte de rayon maximal B(b, p) parmi les boules ouvertes B(x,r) qui contiennent
B(c,rg) et qui sont incluses dans U.

. Vérifier qu’il existe ro > 0 tel que B’(¢,79) C U et montrer qu’il existe une

4. Verifier qu'il existe a € A tel que B’'(b, p) N A = {a}. Soit v € R" tel que le produit scalaire
(v,b—a) > 0. Montrer qu'il existe n > 0 tel que pour tout ¢ € ]0, 5], on ait d(b+tv, A) > p.
En déduire que l'on a [[b — c|| + 79 = p et qu'il existe y € R™ tel que ||b — y|| = p et
llc — y|| = ro et que les trois points b, ¢ et y soient alignés.

5. Soit v = y — a. Montrer qu’il existe p’ > p et t > 0 tel que B(c,79) C B(b+ tv,p’) et
B(b+tv,p') C U. En conclure que l'on a une contradiction.
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Solution. 1. Soit (xy,),>0 une suite dans R"™ convergeant vers un point € R™. On a || f(z,)|| <
|zn — f(zn)]l + |znl] = d(zn, A) + ||lzn|. Comme les suites (d(zn, A))n>0 et (||zn]])nz0 sont
convergentes, alors la suite (f(zy))n>0 est bornée. Donc il existe un compact K de R™ tel que
K C Aet f(z,) € K, pour tout n > 0. Par conséquent, pour montrer que la suite (f(zn))n>0
converge vers f(x), il suffit de montrer que f(x) est l'unique valeur d’adhérence de la suite
(f(xpn))n>0- Soient (xy, )r>0 une sous-suite de (,)n>0 et y € K C A tels que kgrfoof(:rnk) =y.

On a:

[z = f)]| = d(z, A) = lim d(z,,,A) = lim |zn, — f(zw)] = [z =yl

k—+o0 k—+o0

Par unicité de la projection sur A, on a f(z) = y. Donc f(z) est I'unique valeur d’adhérence de
la suite (f(xn))n>0. Par conséquent, la suite (f(xy))n>0 converge vers f(x). Autrement dit, f
est continue.

2. On a supposé que A n’est pas convexe, donc il existe ag, a; € A tels que ag # a; et [ag, a1] ¢ A.
Donc il existe s €]0, 1] tel que (1—s)ag+sa; € U. Pour tout ¢ € [0, 1], on pose a; = (1—t)ag+ta.
Soient t; = inf {¢ €]0, s] ; [as, as) C U} et to = sup{t € [s, 1[ ; [as, a;] C U}. Comme U
est un ouvert, car A est fermé, et l'application ¢t — a; est continue de [0, 1] dans R", alors
Tl = ay, Ty =ay, € A, 11 # x9 et Jxy, zo[C U.

3. Soit ¢ = Tt T
U, d’ou B'(¢,m9) C U. Soient x € R™ et r > 0 tels que B(c,r9) C B(z,7) CU.On a B(x,r) C U
si et seulement si r < d(z, A). D’autre part, d’aprés Pexercice 6.3, on a B(c,r9) C B(x,r) si
et seulement si ||z — ¢|| + 79 < r. Ainsi, si X est I'ensemble des (z,7) € R™"x]0, +o0o tels que
B(c,r9) C B(z,r) C U, alors on a X = {(z,7r) € R" xR ; [z —c|| + 7y < r < d(z,A)}.
Donc X est fermé dans R™ x R. Montrons que X est aussi borné. Soit (x,r) € X. Comme on a
{z1,22} N B(z,7r) =0, alors :

€ U. Comme U est un ouvert de R", alors il existe ro > 0 tel que B(c,2rg) C

22

IN

lz — z1|]* + [ — zo?
= 2(/2z — (1 4+ z2)||* + |lz1 — 22?)

= 2z —c|* + gllz1 — z2|*.
D’autre part, on a ||z — ¢||* + 1§ + 2ro||z — c|| = (lz — ¢/ + 7“0)2 <72 Dotiona:
15+ 2rollz — el <77 — |z —c|® < fllar —a2)?.

Donc ||z — ¢|| est borné et on en déduit que 7 est aussi borné. Donc X est bien borné. Par
conséquent, X est un compact. Comme lapplication (x,r) — r est continue, alors il existe
(b,p) € X tel que p=max {r; (z,r) € X}.

4. Comme on a B(b,p) C U, alors on a p < d(b,A). Si p < d(b,A), alors il existe £ > 0
tel que p+¢e < d(b,A), dou B(b,p+¢) C U, ce qui est impossible. Donc on a p = d(b, A).
Soit a = f(b) € A, alors on a p = d(b,A) = ||b — al|, donc a € B'(b,p) N A. D’autre part, si
z € B'(b,p) N A, alors on a p = d(b, A) < ||[b—z|| < p, d’ou ||b — z|| = d(b, A). Par unicité de la
projection sur A, on a z = f(b) = a. Par conséquent, on a bien B’(b,p) N A = {a}. Soit v € R"
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tel que (v,b —a) > 0. Pour tout t > 0, soit a; = f(b+tv) € A. On a:

(d(b+tv, A))° = [Ib+tv — a2

16— acll + £ [[v]* + 2t(v, b — ar)

16 = ael* + 2 [Jol* + 2t ({v,0 — a) + (v,a — ay))

v

2+ 2ol + 26((0,b— a) + (v,0 — ).
Comme f est continue, alors on a a = %in% as, d’oul %in%(v,a — a;) = 0. Par conséquent, il existe
— —

n > 0 tel que pour tout ¢ €]0, 1], on ait (v,b — a) + (v,a — a;) > 0. Donc, pour tout t €10, ),
on a (d(b+ tv,A))2 > p?, d’ou d(b+ tv, A) > p. Pour tout t €]0, 1], soit p; tel que p < p; <
d(b+ tv, A). Comme on a B(b+tv,p;) C U et p > p, alors B(c,rg) ¢ B(b+ tv, p), donc on a
p < pt < ||b+tv—c| +rp. On fait tendre ¢ vers 0, on obtient p < ||b —¢|| + 79 < p, donc on a
b — ¢|| + 7o = p. Notons aussi que d’apres le choix de rg, on a p > rg. Soit y = p_lTO (pc —rob),
alors on a ¢ = 20b+ 2=y donc b, c et y sont alignés. On a b—y = p_'OTO (b—c), dou [[b—yl|| = p.
Onac—y= pﬁ—oro(b—c), d’ott || =yl = ro.

5. Soit v =y —a. Ona lly—0l° =lly—a+a—0* = |y —al* - 2{y — a,b — a) + b - a|%,
d’'ou (v,b—a) = (y—a,b—a) = 3lly—al* >0, cary € U.Onab—c= ER(b—y), dou

(v,b—c) = 2% (y—a,b—y). Ona [b—al]® = |y—a+b—y[]* = ly—a|*+2(y—a,b—y) +[b—y|

d’out (y —a,b—y) = —5lly — al*>. Donc on a (v,b—c) = —”g—,’;‘)lly —all?<0.0na:
lo+tv—cl®> = |b—c|*+t3|v||> +2t{v,b—c)

= b= cll? +¢(tlly — all* — 222y — al}?)

= [b—cl? +tlly —all*(t - &5°).

Par conséquent, pour tout ¢ € |0, p_pm], ona [|b+tv—c|| < ||b—c|| = p—ro. Soit B = inf (n, p_pm).
D’aprés 4, pour tout ¢ €]0, 8], on a aussi p < d(b+tv, A), donc si p; vérifie p < p; < d(b+tv, A),
avec t €10, B8], on a B(c,rg) C B(b+tv,p) C U et pr > p. Ce qui est impossible. Donc A est
bien convexe.

Exercice 8.41. Soient H un espace de Hilbert, E un sous-espace vectoriel de H, F' un espace
normé et T' : F — F une application linéaire continue.
1. Montrer que si F est fermé dans H, alors T se prolonge en une application linéaire continue
de H dans F'.
2. Montrer que si F' est de Banach, alors T" se prolonge en une application linéaire continue
de H dans F.
Solution. 1. On suppose E fermé dans H. Soit P : H — E la projection orthogonale. Alors
P est linéaire continue et pour tout € E, on a P(x) = x. Soit S =T o P, alors S est linéaire
continue de H dans F telle que pour tout z € E, on ait S(z) = T'(x).
2. D’aprés la proposition 6.3.5, il existe T :E — F une application linéaire continue prolon-
geant T'. Ensuite, on applique 1 & E et T.

Exercice 8.42. On munit K" de la structure hermitienne canonique. L’espace . (K") s’identifie
a lespace M,,(K) des matrices a n lignes et n colonnes et a coefficients dans K.
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1. Calculer la norme d’opérateur d’une matrice diagonale

A 0 ... 0
0O X ... O
A= P
0O 0 ... M\,

2. Calculer la norme d’opérateur d’une matrice carrée réelle symétrique, respectivement com-
plexe hermitienne.

11 01

Solution. 1. Soit (e;)i1<i<n la base hilbertienne canonique de K". On a (Ae;,e;) = A, d’ou

3. Calculer la norme d’opérateur des matrices [0 1] et [1 2] .

n
max IAil < || A|l. Soit x € K™, on a Az = ;Aiajiei, donc :
1=

n n
2
2 _ 2 ,2<< 42) 42:( ) 2
Il = 30l < (mae %) 3 kel” = (o ) el
1= 1=

Dot on a ||[Azx|s < ( max |)\Z|>Hx|]2 Par conséquent, on a ||A|| < max |\;|. Finalement, on a
1<i<n 1<i<n
[All = max [Aq].
1<i<n
2. Si A est une matrice carrée réelle symétrique ou complexe hermitienne, alors il existe P €
M, (K) tel que P*P = PP* = I, et

A0 .00
Ay ... 0
P*AP = . _
0 0 ... X\
ou les \; sont les valeurs propres de A. D’aprés 1, on a ||[P*AP| = max |Ail. On a | P*||* =

1P| = ||P*P|| = 1, dot | P*| = |[P| = L et |[P*AP| < |[P*]| | Al | P|| = ||A]l - On a aussi A =
P(P*AP)P*, on en déduit ||A]| < ||P*AP|. Par conséquent, on a ||A]| = ||P*AP|| = max |Ail,

ou les \; sont les valeurs propres de A.

3.51 A= [O 1} , alors A est réelle symétrique et admet A; = HT‘/B et Ag = 15

11 5~ comme valeurs

2 5
symétrique et admet A\; = 3 + 2v/2 et A\ = 3 — 2¢/2 comme valeurs propres. Il résulte de 2 que

Pon a [|A||> = |A*A| = 3+ 2v/2, donc [|A]| = V3 +2V2.

propres. Il résulte de 2 que 'on a ||A]| = 1+T\/5 Si A= B ﬂ, alors A*A = [1 2] est réelle

Exercice 8.43. Soient (H, (, )) un espace de Hilbert et T' € Z(H).

1. Soit y € T(H). Montrer que ’ensemble {x € H ; T'(z) = y} est une partie non vide fermée
convexe de H. En déduire qu’il existe un unique R(y) € H tel que T'(R(y)) = y et tel
que pour tout x € H vérifiant T'(x) = y, on ait ||R(y)|| < ||z||. Montrer en plus que l'on a
R(x) € ker(T)*.

2. Montrer que 'application y — R(y) est linéaire de T'(H) dans H.
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Solution. 1. On a {r € H ; T(z) = y} = T-'({y}). Puisque y € T(H), on a T ({y}) # 0.
Comme T est continue, alors T-1({y}) est une partie fermée de H. Comme T est linéaire,
alors T71({y}) est convexe. D’aprés le théoréme de la projection, théoréme 8.3.1, il existe un
unique R(y) € T-1({y}) tel que ||R(y)|| < ||z, pour tout = € T-'({y}). On a R(y) = a + b,
avec a € ker(T) et b € ker(T)* et on a |[R(y)||?> = ||lal|*> + [|b]|?>. On a aussi y = T(R(y)) =
T(a)+T() =0+T(b) =T(b), donc be T ({y}) et on a ||b]| < ||R(y)|. Par I'unicité de R(y),
on obtient R(y) = b € ker(T)* .

2. Soient y,z € T(H) et A € K. On a T(R(y) + AR(z)) = T(R(y)) + \T'(R(z)) = y + Az, donc
R(y)+AR(2) € T Y({y+Az}). Soit z € T ({y +Az}), on a T(z) = y+ Az = T(R(y) + AR(2)),
d’'ott z — (R(y) + AR(2)) = ¢ € ker(T). Comme on a R(y) + AR(z) € ker(T)*, d’apres le théo-
reme de Pythagore, on a [|z|? = ||c||? + || R(y) + AR(2)||>. Donc on a ||R(y) + AR(2)|| < ||z||. Par
conséquent, on a R(y) + AR(z) = R(y + Az). Donc y — R(y) est bien une application linéaire
de T(H) dans H.

Exercice 8.44. Soient (H, (, )) un espace de Hilbert et S, T € £ (H ). Montrer que les propriétés
suivantes sont équivalentes.

(i) S(H) CT(H).

(ii) Il existe A € Z(H) tel que S =T o0 A.
Solution. Il est clair que (ii) = (i). Montrons 'implication (i) = (ii). Par hypotheése, on a
S(H) C T(H). Autrement dit, pour tout x € H, on a S(z) € T(H). D’aprés ’exercice précédent,
il existe une application linéaire R : T(H) — H telle que R(T(H)) C ker(T)* et pour tout
y€T(H),on ait T(R(y)) =y. Soit A = Ro S, alors A est une application linéaire de H dans H
telle que A(H) C ker(T)* et pour tout « € H, on ait (ToA)(z) = T(A(z)) = T(R(S(x))) = S(x).
D’oton a S =ToA.Il reste & montrer que A est continue. D’aprés le théoréme du graphe fermé,
il suffit de montrer que le graphe de A est fermé. Soit (x,,)n>0 une suite dans H telle que (zp)n>0
converge vers un élément z € H et (A(zy))n>0 converge vers un élément y € H. Comme T et S
sont continues, alors on a :

T(A) = S(@) = lm_S(r)= lm T(A(e) = T).

Donc on a y — A(z) € ker(T). Comme on a A(H) C ker(T)* et ker(T)* est fermé, alors
y — A(z) € ker(T)*. Donc on a y — A(z) € ker(T) Nker(T)*, d’oit y = A(z). Par conséquent, le
graphe de A est fermé.

Exercice 8.45. Soient (H, ( , )) un espace de Hilbert, T': H — H et S : H — H des
applications telles que pour tout x,y € H, on ait (T'(z),y) = (x,S(y)). Montrer que T et S sont
linéaires continues et que l'on a T* = S.

Solution. Vérifions d’abord que T est linéaire. Soient x,z € H et A € K. Pour tout y € H, on
a:

(T(a-+)2),y) = (1472, S(y)) = (2, S()+A(z, S(1)) = (@), y)+MT(2), y) = (T(2)+AT(2), y)

On en déduit que 'on a T(x + Az) = T'(z) + A\T'(2), donc T est linéaire. Pour vérifier la conti-

nuité de 7, il suffit de montrer que le graphe de T est fermé dans H x H. Soit (z,y) € G(T),

alors il existe une suite (x,)p,>0 dans H telle que lim z, = x et lim T(x,) = y. Pour
- n—-+o0o n——+o0o

tout n > 0 et pour tout z € H, on a (T'(x,),2) = (x,,S(2)). En passant & la limite, on obtient
(y,2) = (x,5(z)). Mais on a (z, S(z)) = (I'(x), ). Ainsi, pour tout z € H,ona (y—T1(z),z) =0,
d’ott y = T'(z). Donc G(T') est fermé. Par conséquent T est continue. Ainsi, on a T € Z(H).

© Dunod, 2011 - Topologie et espaces normés - Nawfal El Hage Hassan



139

D’apres la proposition 8.4.2, pour tout x,y € H, on a (T'(z),y) = (x,T*(y)). Donc, pour tout
ye H,ona S(y)=T"(y),dou S =T

Exercice 8.46. Soient (H,(, )) un espace de Hilbert et P : H — H une application telle que
Po P = P et pour tout z,y € H, on ait (P(z),y) = (z, P(y)). Montrer que P est linéaire et
continue, puis que P est la projection orthogonale sur un sous-espace vectoriel fermé de H.
Solution. Ceci résulte de ’exercice précédent et de la proposition 8.4.6.

Exercice 8.47. Soient E, F' des espaces de Hilbert et T' € Z(E; F).

1. Montrer que 'on a ker(T') = ker(T* o T').

2. Montrer que 'on a T'(E) = (T o T*)(F).

Solution. 1. Il est clair que 'on a l'inclusion ker(7) C ker(7T™ o T'). Réciproquement, soit
x € ker(T* o T), alors on a T*(T'(x)) = 0. D’ott on a (T'(z),T(z)) = (x,T*(T(x))) = (z,0) = 0.
Donc on a T'(x) = 0. Autrement dit, on a = € ker(T'). Par conséquent, on a ker(7") = ker(T*oT).
22.0na (ToT*)(F) =T(T*(F)) C T(E), dou (T'oT*)(F) C T(FE). D’apreés la proposition
8.4.4, on a T(E)t = ker(T*) et (T o T*)(F))* = ker(T o T*). D’aprés 1, on a ker(T*) =
ker((T*)*oT*) = ker(T' o T*). Donc on a T(E)* = (T oT*)(F))*. D’aprés le corollaire 8.3.2, on
aF=T(E)T(E)r et F=(ToT*)(F)® (T oT*)(F))*. Comme on a (T o T*)(F) C T(E),
on en déduit que 'on a T'(E) = (T o T*)(F).

Exercice 8.48. Soient (H, (, )) un espace de Hilbert, F' et G des sous-espaces vectoriels fermeés
de H. Soient P et @ les projections orthogonales sur F' et G respectivement. Montrer que les
propriétés suivantes sont équivalentes.

(i) F CG.
(ii) Qo P =P.
(iii) PoQ = P.

(iv) @ — P est un projecteur orthogonal.

(v) Pour tout x € H, on a ||P(z)|| < ||Q(z)].

Solution. En prenant I’adjoint, on obtient I’équivalence (ii) <= (iii)

Montrons I'implication (i) = (iii). Pour tout z,y € H, on a ((P o Q)(z),y) = (P(Q(x)),y) =
(Q(z), P(y)) = (x,Q(P(y))). Comme on a P(y) € F C G, alors on a Q(P(y)) = P(y), donc on
a (PoQ)(x),y) = (z,P(y)) = (P(x),y). Par conséquent, on a (P o Q)(x) = P(z), pour tout
x € H. Autrement dit, on a PoQ = P.

Montrons l'implication (iii) = (iv). Ona (@ —P)*=Q*—P*=Q—Pet (Q—P)o(Q—P) =
RQoQQ—-—QoP—-—PoQ+PoP=Q—-—P—-—P+P=@Q—P.Donc @ — P est un projecteur
orthogonal, voir proposition 8.4.6.
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Montrons Iimplication (iv) = (v). Pour tout z € H, on a :
1Q@)|I* = [P@)I” = (Q(z),Q(x)) — (P(x), P(x))
= (@ 0Q)(x),x) = ((P" o P)(x), )
= (Qz),z) — (P(z),z)
= (@ —P)(z),z)
= (@ —P)(=),(Q - P)(x))

= (@ -P)@)|*>0.

Donc on a [[P(z)| < [|Q(z)[].

Montrons l'implication (v) = (i). Supposons que pour tout z € H, on a ||P(z)|| < [|Q(x)]|. Soit
z € F, alors on a P(z) = o, d'o [|z]| < [|Q(x)]. Comme on a [z]* = [|Q(z)]? + ||z — Q(x)]1%,
on en déduit ||z — Q(z)|| =0, d'ot on a z = Q(z) € G. Par conséquent, on a F' C G.

Exercice 8.49. Soient (H, (, )) un espace de Hilbert, F' et G des sous-espaces vectoriels fermeés
de H. Soient P et @ les projections orthogonales sur F' et G respectivement. Montrer que les
propriétés suivantes sont équivalentes.

(i) F et G sont orthogonaux.

(i) Qo P =0.

(i) PoQ = 0.

(iv) P+ @ est un projecteur orthogonal.
Solution. En passant & ’adjoint, on obtient I’équivalence (ii) <= (iii).
Montrons I'implication (i) = (iii). Pour tout z,y € H, on a ((P o Q)(z),y) = (P(Q(x)),y) =
(Q(x), P(y)) = 0, donc PoQ =0.
Montrons I'implication (iii) = (iv). Soit R = P+ Q. Alorson a R* = Ret R? = P24+ PoQ +
Qo P+ Q%= P+ Q= R. Il résulte de la proposition 8.4.6 que R est un projecteur orthogonal.
Montrons l'implication (iv) = (i). Comme P + @ est un projecteur orthogonal, alors on
a PoQ+ QoP = 0. Dou, pour tout z € F, on a P(Q(x)) + Q(z) = 0. Donc on a
0 = Q) - P(Q()),Q)) = 2Q(x).Q(x)) = 2]Q()|%, d'on Q(x) — 0. Par conséquent,
pour tout y,z € H, on a (P(y),Q(z)) = (Q(P(y)),z) = (0,z) = 0. Donc F et G sont orthogo-
naux.

Exercice 8.50. Soient E, F' des espaces de Hilbert et 7' € Z(FE; F). On dit que T' est une
isométrie partielle si pour tout = € ker(T)*, on a | T(z)| = ||z||. Soit S € Z(FE; F). Montrer
que les propriétés suivantes sont équivalentes.

(i) S=8S085%08S.

(ii) S* o S est un projecteur orthogonal.
(iii) S 0 .S* est un projecteur orthogonal.
(iv) S est une isométrie partielle.

Solution. Montrons l'implication (i) = (ii). Soit p = S* o S, alors on a p = p* et pop =
S*0S085%085=_5%08=p. Donc p est un projecteur orthogonal.
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Preuve de (ii) = (iii). Soit g = So S*, alorsona ¢=¢" et gog=S0S5*0SoS*=Sopo §*.
D’aprés 'exercice 8.47, on a S*(F) = (5* o S)(E) = p(E) = p(E). D’ou, pour tout = € F, on
a p(S*(z)) = S*(x). Donc on a po S* = S*. Par conséquent, on a ¢ o ¢ = ¢. Donc ¢ est un
projecteur orthogonal.

Preuve de (iii) = (iv). Par hypothése, ¢ = S o0S* est un projecteur orthogonal. On a ker(S)+ =
S*(H). Soit y € S*(H), alors il existe x € H tel que y = S*(x). On a :

IS@1? = [1(S © 8*)()* = ((S © §*)(x), (S © §)(x)) = (a(x),q())

et

(a(x), q(x)) = (g(x),2) = (S 0 §*)(w), x) = {5*(x), 5™ (x)) = |ly[|*.
Donc on a |[S(y)|| = |ly|| - On en déduit que pour tout z € S*(H) = ker(S)*, on a ||S(2)|| = ||z||-
Donc S est une isométrie partielle.
Preuve de (iv) = (i). Soit = € ker(S), alors on a S(x) = 0 = (SoS*0S)(x). Soient H = ker(S)*
et T" la restriction de S & H. Alors H est un espace hilbertien, T' € .Z(H; F') et pour tout x € H,
on a |T(x)|| = ||S(x)|| = [|z]|. Il résulte de la proposition prop 8.4.7 que 'on a T* o T = idy.
Comme pour tout y € F, on a T*(y) = S*(y), voir exemple 8.4.1, on en déduit que pour tout
r € ker(S)t, onax = (S*0S)(x), dott S(x) = (S0S*0S)(x). Comme on a E = ker(S)+ker(S)",
alors S=S0S5%0S.

Remarque 8.0.5. Soient F, F' des espaces de Hilbert et S € Z(F; F).

1. On déduit de I'exercice précédent que S est une isométrie partielle si et seulement si son
adjoint S* € Z(F; E) est une isométrie partielle.

2. On suppose S une isométrie partielle. Alors on a :
(i) Il résulte de la définition d’une isométrie partielle que S(E) et S*(F') sont respective-
ment des sous-espaces vectoriels fermés de F' et F.
(ii) Soient p = S*oS et ¢ = SoS*. D’apres I'exercice précédent, p et g sont des projecteurs
orthogonaux et on a S = Sop = qoS. De plus, p est la projection orthogonale sur
S*(F) = ker(S)* et ¢ est la projection orthogonale sur S(E).

Exercice 8.51. Soient (H, (, )) un espace de Hilbert et S,T" € Z(H) deux isométries partielles.
Montrer que les propriétés suivantes sont équivalentes.

(i) T=So0T*oT.

(ii) S*oT =T*oT.

(iii) SoT*=ToT*.
Solution. Montrons l'implication (i) = (ii). Par hypothése, on a T' = S o T* o T, d’ou
S*oT = 5§%0SoT*oT. Daprés la remarque précédente, S* o S est la projection ortho-
gonale sur ker(S)% et T* o T est la projection orthogonale sur ker(7T)*. Pour montrer que
S*oSoT*oT = T*oT, il suffit de montrer I'inclusion ker(T)* C ker(S)*, voir exercice
8.48. Soit x € ker(T)*. Alors on a T'(xz) = S((T* o T)(z)) = S(x), Aot ||z|| = || T(z)|| = ||S(z)]|.
Comme S est une isométrie partielle, on en déduit que I'on a = € ker(S)*. Donc on a bien
ker(T)* C ker(S)*.
Preuve de (i) = (iii). Par hypotheése, on a S*oT =T*oT, d’ou S*oT oT* =T*oToT* =T*.
Soient U =T* et V = 5*. Alors U et V sont des isométries partielles et on a U =V oU* o U. Il
résulte de ce qui précéde que 'on a V*oU = U* o U. Autrement dit, on a SoT* =T o T*
Preuve de (iii) = (i). Par hypothése, ona SoT* =T oT* dou SoT*oT =T oT*oT =T.

Exercice 8.52. Soient (H, (, )) un espace de Hilbert et R € Z(H). Montrer que les propriétés
suivantes sont équivalentes.
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(i) Tl existe un sous-espace vectoriel fermé E de H tel que pour tout « € H, on ait x+R(z) € E
et x — R(x) € B+
(ii) Il existe un sous-espace vectoriel fermé E de H tel que pour tous y € E et z € E+, on ait
Rly+z)=y—-=z
(iii) On a R? =idy et R = R*.
(iv) On a R? =idy et R est normal.
(v) L'opérateur P = (R +idp) est un projecteur orthogonal.
Solution. Montrons I'implication (i) = (ii). Pour tout = € H, on = + R(z), R(z) + R*(z) € E
et z— R(z), R(x)— R*(x) € E+. Dot on az— R%*(x) € FE et v — R?(z) € E+. Par conséquent, on
x4+ R(z) =z — R(x)
+ 5 )
R(z)+ R*(z)  R(z)— R%*(z)

€ B+, dotton a R(z) = 5 + 5 =

a z — R%(z) = 0. Autrement dit, on a R? = idy. D’autre part, on a x =

4+ R(x) = — R(z)
2 2 ’

Preuve de (i) = (iii). Soit # € H, alors il existe y € E et z € E+ tels que x = y + z. D’oil on

a R?(r) = R(R(z)) =R(y —2) = R(y+ (=2)) =y — (—2) = y + 2z = x, donc R? = idy. Soient

a,be H Alorsonaa=y+zetb=19y +2, avecy,y € Eet 2,2/ € E+. Donc on a :

(R(a),b) = (y — 24" +2/) = (/) — (2,2) =y + 2,9 = &) = (a, R(D)) .

Par conséquent, on a R = R*.
L’implication (iii) = (iv) est triviale.
Preuwve de (iv) = (v). Soit P = 1(R +idp), alors on a :

1 1 1
P2:PoP:Z(R—i—idH)o(R—i—idH):Z(R2—|—2R+idH):Z(2R+2idH):P.

Comme R est normal, il est clair que P ’est aussi. Il résulte alors de la proposition 8.4.6 que P
est un projecteur orthogonal.

Prewve de (v) = (i). Par hypothése, P = %(R + idy) est un projecteur orthogonal. Soit
E = P(H). Alors E est un sous-espace vectoriel fermé de H. On a R = 2P — idy, donc, pour
tout z € H, on a R(z) = 2P(x) —z, dotu x + R(x) = 2P(z) € E et x — R(x) = 2z — 2P(x) =
2(x — P(x)) € E+.

Exercice 8.53. Soient (H, (, )) un espace de Hilbert et S,T € £ (H) deux opérateurs auto-
adjoints. Montrer que S oT = 0 si et seulement si S(H) LT(H).

Solution. Pour tout z,y € H,on a (T'(z), S(y)) = ((SoT)(z), S(y)). On en déduit que SoT =0
si et seulement si S(H) LT (H).

Exercice 8.54. Soient (H, (, )) un espace de Hilbert et T' € .Z(H) un opérateur auto-adjoint.
Soit A une partie de H tel que T((A) C A. Montrer que I'on a T(A+) C AL,

Solution. Pour tous # € At et y € A, on a (T'(x),y) = (z,T(y)) = 0, d'ott T(z) € A*. Donc
onaT(ALt) c A+

Exercice 8.55. Soient (H, (, )) un espace de Hilbert et P € Z(H) un projecteur orthogonal
tel que P # 0 et P # idy. Montrer que 0 et 1 sont les seules valeurs propres de P.

Solution. Comme P est un projecteur orthogonal tel que P # 0 et P # idy, alors il existe
xz,y € H telsque z # 0,y # 0 et P(x) =0et P(y) =y. Donc 0 et 1 sont des valeurs propres de
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P. Soit A € K une valeur propre de P, alors il existe z € H tel que z # 0 et P(z) = Az. D’ou
on a Az = P(z) = P(P(z)) = P(\z) = AP(2) = A?z. Donc on a A = \2. Par conséquent, on a
A€ {0,1}.

Exercice 8.56. Soient (H, (, )) un espace de Hilbert et T' € £ (H ). Supposons que H admet une
base hilbertienne formée de vecteurs propres de T'. Montrer que 7' est normal, i.e. ToT™ = T*oT.
Solution. Soit (e;);e; une base hilbertienne de H formée de vecteurs propres de T'. Pour tout
i € 1,1l existe \; € K tel que T'(e;) = Aje;. Pour tout 4,5 € I, on a (T*(ej),e;) = (e, T(e;)) =
<€j, >\zez> = >\i<ej, €i>7 d’ou :

0 si 1#7.

Par conséquent, on a T*(e;) = )\_jej, pour tout j € I. D’autre part, Pour tout x € H, il existe
une famille (o;);er dans K telle que x = Z oze; et Z |0z2-|2 < 4o00. D'ontonaT(x) = Z i €;
il iel iel
et T*(z) = Z)\_iaiei. Doncon a (T'oT*)(x) = (T*oT)(x) = Z |\i|?a;e;. Par conséquent, on
il icl
aTlol*=T*oT.

Exercice 8.57. Soient (H, (, )) un espace de Hilbert, T' € Z(H) un opérateur auto-adjoint,
ie. T =T* et x € H tel que ||z|| =1et |T| = ||T(x)].

1. Montrer que l'on a T?(x) = ||T'||?z. Autrement dit, 2 est un vecteur propre de T2 associé
a la valeur propre || T2 = ||T?].

2. Soit y = ||T||z — T'(x). Montrer que 'on a T(y) = —||T|ly. En déduire que ||T|| ou —||T||
est une valeur propre de T

Solution. 1. On a ||T|| = || T(x)]|, d’ou :
ITI* = T (@)I]* = (T(x), T(2)) = (T*(z),z) = {x,T*()).
On a:

(T%(2) = |T|?2, T%(z) — |T|*z) = (T*(2),T%(z)) - |TIHT*(2), 2) = |ITI]* (@, T*(2)) + | T]*
= (T%(x), T%(x) = IT* = ITI* + IT)*

= (T%(x), T*(x)) — |ITI*.
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D’autre part, on a :

I = IT@I* = (T(@), 7))’

= (T%(x),2)(T?(x),7)

< T2@)| 2] 172 @) 2]

= |IT*(@)|?

= (T%(2),T%(x))

= (T*(z),2)

< |7 =]

= |IT|*.
gﬁeﬁest ”ﬂ‘f; ;1;2((?), J;Qﬁal;)ﬁéjar conséquent, on a (T%(z) — || T2z, T2(z) — | T||%x) = 0.
2. Soit y = ||T|lz — T'(x). Alors on a T(y) + | T|ly = ||T|]?x — T%(z) = 0, Aot T(y) = —||T||y.

Si y =0, alors on a T'(xz) = ||T||z, donc z est un vecteur propre de T associé a la valeur propre
IT||. Siy # 0, alors y est un vecteur propre de T associé a la valeur propre —||T|.

Exercice 8.58. Soient (H, (, )) un espace de Hilbert et T' € Z(H) tel que ||T|| < 1.

1. Soit € H. Montrer que T(z) = x si et seulement si (T'(z),z) = ||z||>. En déduire que 1’on
aker(I —T)=ker(I —T%).

2. Montrer que 'on a Im(I — T)* = ker(I — T) et en déduire que 'on a H = ker(I — T) @
Im(l — 7).

I+T+---+T"

n+1
lim S,(x) = P(x), ou P est la projection orthogonale sur ker(I —T).

n—-+00

3. Pour tout n > 1, on pose S, = . Montrer que pour tout x € H, on a

Solution. 1. Soit z € H. Si T(z) = z, alors on a (T'(z),z) = (z,z) = ||z|?
Réciproquement, supposons que l'on a (T(z),z) = ||z/|>. On peut aussi supposer x # 0. Alors
on a :

] = (T'(2),2) < | T@)] Il < | T |2]* < [l

D’ouon a (T(x),z) = |[|T(x)| ||z]. D’apres exercice 8.4, il existe alors a > 0 tel que T'(x) = ax,
d’ott on a al|z||? = a(z,z) = {ax,z) = (T(x),r) = ||z||>. Par conséquent, on a a = 1, et donc
T(z) = .
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Soit x € H, on a :

veker(I-T) < T(x)=un
= (T(z),2) = ||z
= (2,T*(2)) = |||
= (T*(z),2) = |||
= T*z)=2x (car ||T*]| <1)
= zecker(I-T%).

Donc on a ker(I —T') = ker(I —T™).

2. D’aprés la proposition 8.4.4, on a Im(I — T)* = ker((I — T)*) = ker(I — T*) = ker(I — T).
D’aprés le corollaire 8.3.1, on a H = ker(I — T) @ ker(I — T)*. Or on a ker(I — T)+ =
(Im(I — 7)Yt =Im(I —T), dott H =ker(I —T) @ Im(I —T).

3. Soit = € ker(I —T), alors on a T(z) = z, d’ou pour tout & > 1, on a T%(z) = 2. Donc on
a Sp(z) =z, dou ngr}rloo Sp(x) = x = P(z). Soit y € Im(I — T), alors il existe z € H tel que

[4T+ T (I-T)) _ (I-T")(2)

I-T = . O S — — £ Tn+l <

(I =T)(2) = 3. On a Su(y) — =
AL 2

HT”n—i—l < 1, dou ||Su(y)| < IEdl ‘|‘n||+ : ()|l < nH—iHl Donc on a nEIEOOHS”(y)” = 0. Soit

x € Im(I —T). Soit € > 0, alors il existe y € Im(I —T') tel que ||z —y|| < e. On a ||S,]| < 1, d’on
15n(2) = Sn()ll = [1Sn(z — )| < [[Sulllz — yl| <. Donc on a [|Su(2)]| <&+ [1Sa(y)l]. Comme
on a Er}rl |Sn(y)|| = 0, alors il existe N € N tel que pour tout n > N, on ait ||S,(y)| < e.

Donc, pour tout n > N, on a [|Sy(z)| < 2¢. Autrement dit, on a lirJrrl ||Sn(x)|| = 0, d’ou
n—-+00
lim S,(x) =0 = P(x). Par conséquent, pour tout z € H,on a lim S,(x) = P(x), ou P est
n—+oo n—+o0o

la projection orthogonale sur ker(I — T).

Exercice 8.59. Soient (H, (, )) un espace de Hilbert et 7' € Z(H) un opérateur positif.
1. Montrer que pour tout S € .Z(H), 'opérateur S*oT oS est positif, et que pour tout n > 0,
T™ est positif.
2. Montrer que pour tout x,y € H, on a |[(T(z),y)|? < (T(z),z) (T(y),y).
3. Montrer que si de plus, 'opérateur idy — T est positif, alors pour tout x € H, on a
(T'(z), T(z)) < (T(x),z).
4. Montrer que les propriétés suivantes sont équivalentes.
(i) L’opérateur idy — T est positif.
(ii) L’opérateur T — T? est positif.
(iii) On a ||T| < 1.
Désormais, on suppose de plus que idyg — T est positif.
5. Montrer que pour tout n > 0, T™ — T™*! est positif.

6. Montrer que pour tout = € H, la suite ((T"(z),z)) est convergente dans K.

n>0

7. Montrer que pour tout x € H, la suite (T”(aj)) est convergente dans H.

n>0
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8. Soit P : H — H V’application définie par P(x) = 1121 T™(x), pour tout x € H. Montrer
n—-+00
que P est un projecteur orthogonal tel que T'o P = P.
9. Montrer que P est le projecteur orthogonal sur ker(7 — idg).

Solution. 1. Il est clair que S* o T o S est auto-adjoint. D’autre part, pour tout z € H, on a
((S*oToS)(x),x) = (T(S(x)),S(x)) >0, donc S* o T o S est positif.

On montre par récurrence que pour tout n > 0, T est positif. Notons d’abord que pour tout
n >0, T" est auto-adjoint. Par convention, on a 79 = idy, donc ¢’est un opérateur positif. Par
hypotheése, T est positif. Soit n > 2 et supposons que pour tout 0 < k < n, T* est positif. On a
T =T oT" 1 oT, et T" ! est positif par hypothése, il résulte de ce qui précéde que Tt}
est positif.

2. Pour tout x,y € H, on pose p(x,y) = (T(x),y). Alors ¢ est une forme hermitienne positive
sur H. D’aprés l'inégalité de Cauchy-Schwarz, on a [(T'(z),y)|* < (T(x),z) (T (y),y).

3. Soient x € H et y = T(x). D’aprés 2, on a :

0 < (T(x),T())* = (T(2),y)]* < (T(2),2) (T(y),y) = (T(x),2) (T(T(x)),T(x)).

Comme idy —T est positif, alors on a (T'(z), T (z)) —(T'(T(z)), T (z)) = (idg —T)(T(x)), T (x)) >
0, dou 0 < (T(T(x)),T(x)) < (T(x),T(z)). Par conséquent, on a 0 < (T'(x),T(x)) < (T(x),x).
4. Montrons I'implication (i) = (ii). Notons d’abord que T — T? est auto-adjoint. Par hypo-
theése, idy — T est positif, alors il résulte de 3 que pour tout € H, on a 0 < (T?(x),z) =
(T(x),T(x)) <(T(z),z), dott 0 < ((T —T?)(z),z). Par conséquent, T — T? est positif.

Preuve de (ii) == (iii). Pour tout = € H, on a |T(2)|? = (T'(z),T(z)) = (T?*(z),z) <
(T(x),z) < ||T(z)] ||=]|, dou | T(z)] < ||z|. Par conséquent, on a ||T|| < 1.

Preuve de (iii) = (i). Notons d’abord que idyg — T est auto-adjoint. Pour tout x € H, on a
(ldg—T)(z),z) = (x,x)—(T'(z), z). D’apres I'inégalité de Cauchy-Schwarz, ona 0 < (T'(z),z) <
T (@) ||z]| < |lz||? = (z,2), dot (z,z) — (T(x),z) > 0. Par conséquent, idg — T est positif.

5. Soit n > 0. Si n = 2p est pair, alors on a T™ — T"T! = T?% — T2+ = TPo (idg — T) o TP. Si
n = 2p+ 1 est impair, on a T — 7" = T2P+L _ T2+2 = TP o (T —T?) o TP. Il résulte de 1 et
4 que T™ — Tt est positif.

6. Pour tout € H, on a 0 < ((T" — T")(2),2) = (T"(x),x) — (T"(x),z). Donc la suite
(T (=), .’L‘>)n>0 est positive et décroissante, donc convergente dans K.

7. Soit x € H. Pour tout n,m € N, on a :

1T (2) = T™(@)|> = (T"(z) = T™(x),T"(z) — T"(x))
= (T"(2), T"(x)) = (T"(x), T™(2)) + (T (2), T"(x)) — (T (x), T"(x))
= (I%(2), ) = (T""™(2), 2) + (T*"(2),z) — (T"F"(x), z)
< [T(x),x) = (T (@), )] + (T2 (), 2) — (T (@), ).

Puisque la suite ((I™(z), x))n>0 est convergente vers un ¢, € K, alors pour tout € > 0, il existe
N € N tel que pour tout n > N, on ait |[(T"(z), z) —t,| < . Par conséquent, pour tout n,m > N,
on a:

(T2 (2),2) = (T (@), )] < (T (2),2) — tal + [ta — (T (2),2)| < § + §

et
(T2 (), ) — (T (), )] < [T (x), @) — ta] + [te — (T (@), 2)] < §+ 5
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Par conséquent, pour tout n,m > N, on a |[|[T"(z) — T™(z)||* < e. Donc la suite (T"(z)) t
de Cauchy, donc convergente dans H.

8. Il est clair que P est une application linéaire. D’autre part, pour tout n > 0 et pour tout
€ H, ona [T"(@)| < [Tzl < |T|" |zl < [lz]l, dou on a [[P(z)] < [lz]. Donc P est
continue. Pour tout z,y € H, on a :

n—-+o0o

n>0 ©8

— lim (2, 7"(y))

n—-+o00

— lim (T7(y).2)

n—-+o0o

— THm (T7(y).2)

n—-+0o00

= (Py),x) = (z, P(y)).
Donc on a P = P*. Autrement dit, P est auto-adjoint. Pour tout z,y € H, on a :

(PoT)(x),y) = (P(T(x)),y) = lim (T"(T(x)),y) = lim (T"}(z),y) = (P(),y).

n——+o0o n—-+o0o

D'oitona PoT = P.Donc ona P = P*=ToP. On en déduit que pour tout n > 0, on a
PoT™=T"o P =P. On a aussi :

(P2(x),y) = (P(P(x)),y) = lim (T"(P(z)),y) = lim ((T" o P)(x),y) = (P(x),y).

n——+oo n—-+o0o

Donc on a P? = P. Par conséquent, P est un projecteur orthogonal.

9. Soit « € ker(T — idy). Alors on a T(x) = z. On en déduit que pour tout n > 0, on a

T™(x) = x. Donc on a (P(z),y) = lim (T"(x),y) = (z,y), pour tout y € H. Par conséquent,
n

—+00
ona P(x)=x,douxz e P(H).
Réciproquement, soit « € P(H), alors on a P(x) = x, d’'ot z = P(x) = (T o P)(x) = T(P(x)) =
T'(x). Donc on a z € ker(T' — idy). Par conséquent, on a P(H) = ker(T — idy). Donc P est le
projecteur orthogonal sur ker(7 — idy).

Exercice 8.60. Soit (H, (, )) un C-espace de Hilbert non nul. Pour T' € Z(H), on pose :
N(T) = sup {|{T(z), )| ; [l=] =1} .

Notons que d’apreés la proposition 8.7.5, si T' € Z(H) est un opérateur auto-adjoint, alors on a
N(T) = |||

1. Montrer que 'application T — N(T') est une norme sur .Z(H), et que pour tout 7' €
Z(H),on a N(T)= N(T*).
2. Montrer que pour tout T € Z(H), on a I'inégalité :

N(T) < ||IT|| < 2N(T). (8.1)

En particulier, les normes N et || ||, sur Z(H), sont équivalentes.

3. Montrer que l’équation (8.1) serait faux si H était un R-espace de Hilbert.
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4. Montrer que si dim(H) > 2, la constante 2 ne peut étre remplacée dans I’équation (8.1)
par aucune constante strictement plus petite.

Solution. 1. Soit 7' € Z(H). 1l est clair que si T" = 0, alors N(T') = 0. Reéciproquement,
supposons que N (T') = 0. Il résulte de la proposition 8.7.6 que 'on a T' = 0. Pour tous T' € .Z(H)
et A € C, on a [(NT'(z),z)| = |A[(T(z),z)|, pour tout x € H. D’otr on a N(A\T) = |A|N(T).
Pour tous T, S € Z(H) et pour tout x € H, on a :

(T + ) (@), )| = (T(x),2) + (S(x),2)| < [(T(2),2)| + [(S(x), )] < N(T)||z|* + N(T) [

On en déduit que 'on a N(T'+S) < N(T)+ N(S). Donc application T'—— N (T') est bien une
norme sur .Z(H). Pour tout 7' € .Z(H) et pour tout z € H, on a :

(T(2), 2)| = [{&, T"(2))| = [(T*(z), 2)| = (T"(2), )| -

Par conséquent, on a N(T') = N(T™).

2. Soit T' € £ (H). D’apres le corollaire 8.4.1, on a ||T|| = sup {|(T'(z),y)| ; ||lz[| = [ly]| =1}. On
T+T*
2
et Th = — sont des opérateurs auto-adjoints et on a T' = T} +iT5. Donc on a |[|T|| < |11 +
T2 et || Ty |Z] = N(Th) et || Tz|| = N(T»). Par conséquent, on a ||T|| < N(T1) + N(T3) < 2N(T).
3. Soient H = R?, muni de sa structure euclidienne canonique, et pour tout (z,y) € R?, on pose
T(xz,y) = (y,—xz). Alors T est linéaire continue de H dans H et on a ||T'|| = 1. En plus, pour
tout pour tout (x,y) € R? on a (T(z,y),(x,y)) = 0. Donc on a N(T) = 0. Par conséquent,
lapplication T — N(T') n’est plus une norme sur .Z(H) et ’équation (8.1) n’est plus valable.
4. Soient H = C2, muni de sa structure hermitienne canonique, et pour tout (21, z2) € C2, on pose
T(z1,22) = (0, 2z1). Alors H est un C-espace hilbertien de dimension 2 et T est linéaire continue
de H dans H et on a ||T'|| = 1. Pour tout pour tout (21, 29) € C2, on a (T(z1, 22), (21, 22)) = 21%5.
Dotton a |(T (21, 22), (21, 22))| = |21| [Z2] < & (|21]*+|22/?). Par conséquent, on a N(T') = 3. Donc
la constante 2 ne peut étre remplacée dans I’équation (8.1) par aucune constante strictement plus

petite. Notons enfin que tout C-espace de Hilbert de dimension > 2 contient une copie de C2.

en déduit que 'on a N(T') < ||T||. Montrons 'autre inégalité. Soit T € £ (H). Alors T} =

*
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Chapitre 9

ESPACES VECTORIELS
TOPOLOGIQUES

Proposition. Soient (E, T') un espace vectoriel topologique et B une partie de E. Les propriétés
suivantes sont équivalents.

(i) B est bornée.
(ii) Pour toute suite (z,,),>0 dans B et pour toute suite (\,),>0 dans K telle que ll)I_iI_l An =0,
- - n o0

on ait lim M\,x, =0.
n—-+00
Démonstration. Montrons l'implication (i) = (ii). Soient (zy),>0 une suite dans B et

(An)n>0 une suite dans K telle que lilgrl An = 0. Soit V' un voisinage équilibré de 0 dans
- n——+oo

E. Comme B est bornée, alors il existe s > 0 tel que B C sV. Comme on a lirJIrl Ans = 0,
n——+0oo

alors il existe N € N tel que pour tout n > N, on ait |[\,s| < 1. D’ou pour tout n > N, on a
AnsV C V, car V est équilibré. Donc pour tout n > N, on a \,z, € \,B C A\,sV C V. Par

conséquent, on a lim Apx, = 0.
n——+o0o

Preuwve de (ii) = (i). Supposons que B n’est pas bornée, alors il existe un voisinage V de 0
dans F tel que pour tout n > 0, on ait B ¢ (n 4+ 1)V. Pour tout n > 0, soit z,, € B tel que
xn & (n+ 1)V. Ainsi, on trouve une suite (z,),>0 dans B telle que la suite (n%rlxn) ne
converge pas vers 0, ce qui contredit I’hypothése. Par conséquent, B est bornée.

n>0

Proposition. Soient E, F' deux espaces vectoriels topologiques et T' : . — F' une application
linéaire. Les propriétés suivantes sont équivalentes.

(i) T est uniformément continue, i.e. pour tout voisinage V' de 0 dans F, il existe un voisinage
U de 0 dans E tel que pour tout x,y € F vérifiant x —y € U, on ait T'(x) —T'(y) € V.

(ii) T est continue.

(iii) T est continue en 0.

Démonstration. Montrons I'implication (i) = (ii). Soient xg € E et W un voisinage de T'(zg)
dans F'. Alors V = —T'(z¢) + W est un voisinage de 0 dans F'. Donc il existe un voisinage U de 0
dans FE tel que pour tout z,y € E vérifiant  —y € U, on ait T'(x) — T(y) € V. Alors zg + U est
un voisinage de z¢ dans E et pour tout x € xg+U, on a T'(z) —T(xg) € =T (x¢) + W, d’ou pour
tout * € z9 + U, on a T'(x) € W. Donc T est continue en xy. Par conséquent, T" est continue.
L’implication (ii) == (iii) est triviale.

Preuve de (iii) == (i). Soit V un voisinage de 0 dans F'. Comme T est continue en 0, alors il

149
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existe un voisinage U de 0 dans E tel que pour tout z € U, on ait T(z) € V. Soient x, y € FE
tels quex —y € U, alors on a T'(z) — T'(y) = T(x —y) € V. Par conséquent, 7" est uniformément
continue. ]

Proposition. Soient E, F' deux espaces vectoriels topologiques et T : . — F' une application
linéaire. Considérons les propriétés suivantes :

(i) T est continue.

(ii) T est bornée.

(iii) Si (zpn)n>0 est une suite dans E telle que z,, — 0, alors (T'(z,)) est une suite bornée

n—-+oo
dans F.
(iv) Si (zp)n>0 est une suite dans E telle que x,, — 0, alors T'(x,,) — 0.
- n—-+oo n—-+4oo

1. On a les implications suivantes : (i) = (ii) = (i7i) et (i) = (iv).
2. Si E est métrisable, alors on a les équivalences (i) <= (i1) <= (iii) <= (iv).

Démonstration. 1. Montrons 'implication (i) = (ii). Soit B une partie bornée dans E. Soit
W un voisinage de 0 dans F'. Comme T est continue, il existe un voisinage V' de 0 dans E tel que
T(V) Cc W. Comme B est bornée, il existe s > 0 tel que B C sV, d’oa T(B) C sT(V) C sW.
Par conséquent, T'(B) est bornée. Autrement dit, T est une application bornée.

Comme toute suite convergente est bornée, voir proposition 9.1.7, on a l'implication (ii) = (iii).
Enfin, 'implication (i) = (iv) résulte du théoréme 1.7.3.

2. On suppose maintenant que E est métrisable. Alors (iv) = (i) résulte du théoréme 1.7.3 et
de la proposition précédente. Pour avoir le résultat, il reste & montrer 'implication (iii) = (iv).
Soit (2 )n>0 une suite convergente vers 0 dans E. D’apres le lemme 9.1.2, il existe une suite
(tn)n>0 dans ]0, +o0[ telle que nggrlw tn, = 400 et telle que la suite (t,xy,)n>0 converge vers 0.
Donc la suite (T'(tp2n))n>0 est bornée. Comme on a nll)]grlooi = 0, d’apreés la proposition 9.1.6,

la suite (%T(tnajn)) ., converge vers 0. Donc la suite (T(x,))n>0 converge vers 0. [
n n> =

Théoréme. Soit (F, T) un espace vectoriel topologique de dimension finie n. Alors il existe un
homéomorphisme linéaire T' de K" sur E, ou K" est muni de n’importe quelle norme || ||.

Démonstration. Soit (eq,...,e,) une base de E et considérons I'application
T: K™ — E
n
(:Elv s 7$n) — Zl’iEi
i=1

Alors T est linéaire bijective. Soit (§,)p>0 une suite dans K", qui converge vers un élément
x = (x1,...,2,) € K" Pour tout p > 0, 0on a &, = (1p,...,%np) et pour tout i € {1,--- ,n}, on

a liril x;p = x;. Comme les applications (\,y) — Ay et (y, z) — y + z sont respectivement
p——+00

n n
continues de K x F dans F et de ' x E dans F, on déduit que l'on a pEI—EOOz; Tip€; = z;xiei.
1= 1=

Donc on a liT T(¢,) = T(x). Par conséquent, T est continue. Il reste & montrer que 7!
p——+00

est continue. D’aprés la proposition 9.1.10, il suffit de montrer que 7! est continue en 0. Soit
B = {a; c K" fzf] < 1}. D’apres le théoréme 6.6.2, B est compact, donc 1" réalise un
homéomorphisme de B sur T(B), car E est séparé. Autrement dit, la restriction de 7-! & T(B)
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est continue. Pour montrer que 7! est continue en 0, il suffit de montrer que T'(B) contient un
voisinage de 0 dans E. Soit S = {z € K" ; ||z| = 1}, alors S est compact. Comme T est aussi
bijective, alors T'(S) est une partie compacte de E telle que 0 ¢ T'(S). D’aprés la proposition
9.1.5, il existe un voisinage équilibré V' de 0 dans E tel que V NT(S) = (). Vérifions que l'on a
V C T(B). Soit y € V. Siy & T(B), alors il existe € K" tel que ||z|| > 1 et T(x) = y. Comme

1
V est équilibré, alors T’ (ﬁ) = Wy €V, ce qui est impossible, car ”m—H € S. Donc on a bien
x x x

V C T(B). ]

Proposition. Soient (E, 7) un espace vectoriel topologique et A une partie & la fois convexe et
voisinage de 0 dans E. Alors A est absorbante et la jauge pu4 de A vérifie les propriétés suivantes :

1. La fonction pa est sous-additive et positivement homogéne et on a :
{zeE; palx) <1} cAcC{z e E; pa(z) <1}.
2. Si A est équilibrée, alors 4 est une semi-norme continue sur F et on a :
zczl:{a:EE; pa(z) <1} et A={x € E; ua(z) <1}.

3. Si A est ouverte, ona A ={x € E; pa(x) < 1} et p4 est semi-continue supérieurement.

4. Si A est fermée, on a A= {x € E; pa(z) <1} et pa est semi-continue inférieurement.

Démonstration. 1. Puisque A est un voisinage de 0, il résulte de la proposition 9.1.2 que A
est absorbante. Donc p4 est bien définie et d’aprés le théoréme 7.6.2, p4 est sous-additive et
positivement homogeéne et on a {x € E; pa(z) <1} CAC{zx € E; pa(x) < 1}.

2. Supposons de plus que A est équilibrée. D’aprés le théoréme 7.6.2, 14 est une semi-norme sur
E. Comme on a A C {x € E; pa(z) < 1}, alors {x € F; pa(z) < 1} est un voisinage de 0
dans E. Il résulte alors du lemme précédent que pg est continue. Donc {z € E ; pa(z) < 1}
est ouvert dans E et {x € E ; pa(x) < 1} est fermé dans E. On déduit de 1 que l'on a

{r € E; palz) <1} CAetAC {rx € E; pua(zr) < 1}. Soit = 6;1, alors il existe € > 0 tel que
(I14+e)x e A don pa(zr) < 1—_1% < 1. Par conséquent, on a A= {r € E; pa(x) <1}. Soit z € E

tel que pa(z) < 1, alors pour tout n > 1, il existe a,, € A tel que = a,. Donc la suite

)
n
(an)n>1 converge vers z, d’ot 2 € A. Par conséquent, on a A= {x € E ; pa(x) < 1}.
3. Supposons A ouverte, et soit € A. Alors il existe e > 0 tel que (14 ¢)x € A, dou py(x) <
l%re < 1. Par conséquent, on a A = {z € E ; pa(x) < 1}. Pour tout o« < 0, on a {z €
E; pa(x) < a} =0, et donc c’est un ouvert de E. Si > 0, on a {x € F; pa(x) < a} = aA,
et donc c’est un ouvert de E. Par conséquent, 4 est semi-continue supérieurement.

4. Supposons A fermée. Soit x € F tel que pa(z) < 1. Alors pour tout n > 1, il existe a, € A

m . ~ P
tel que I an. Donc la suite (ap)n>1 converge vers z, d’ot © € A. Par conséquent, on a

1

A={x € E; pa(x) <1} Pour tout &« >0, on a {z € E; pa(z) < a} = aA et donc c’est un

fermé de E. On a aussi {z € E ; ps(x) =0} = r;l%A, voir remarque 7.6.2, et donc c’est un
n

fermé de E. Par conséquent, pa est semi-continue inférieurement. |

Lemme. Soient E un espace vectoriel, (F;);c; une famille d’espaces vectoriels topologiques et
pour tout ¢ € I, soit f; : E — F; une application linéaire. On suppose de plus que la famille
(fi)ier est séparante, i.e. pour tout x € E tel que x # 0, il existe i € I tel que f;(z) # 0. Alors
E muni de la topologie initiale associée a la famille (f;);er est un espace vectoriel topologique.
De plus, si pour tout ¢ € I, F; est localement convexe, alors E est localement convexe.
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Démonstration. D’apres la proposition 1.4.1, Papplication (z,y) — = + y est continue de
E x FE dans F si et seulement si pour tout ¢ € I, 'application (z,y) — fi(z) + fi(y) est
continue de E x E dans F;. Or l'application (z,y) — (fi(x), fi(y)) est continue de E x F
dans F; x Fj, et 'application (a,b) — a + b est continue de F; x F; dans F;, donc I'application
(xz,y) — fi(z)+fi(y) est continue de Ex E dans F;. Par conséquent, ’application (z,y) — x+y
est continue de E x FE dans F.

De méme, lapplication (A,z) — Az est continue de K x E dans E si et seulement si pour
tout ¢ € I, 'application (A\,x) —— \f;j(z) est continue de K x E dans F;. Or I'application
(A x) — (A, fi(x)) est continue de K x F dans K x F;, et 'application (\,a) — Aa est
continue de K x F; dans F;, donc l'application (A, z) — Af;(x) est continue de K x E dans
F;. Par conséquent, 'application (A, x) — Az est continue de K x E dans E. Enfin, comme la
famille (f;);cr est séparante, il résulte du lemme 1.5.1 que E est séparé. Par conséquent, £ muni
de la topologie initiale associée a la famille (f;);cr est un espace vectoriel topologique. Comme
I’image réciproque d’un ensemble convexe par une application linéaire est un ensemble convexe,
on en déduit, voir lemme 1.4.1, que si pour tout ¢ € I, F; est localement convexe, alors F est
localement convexe. |

Théoréme. Soient F et F' deux espaces vectoriels topologiques et I' une famille d’applications
linéaires continues de E dans F'. Soit K un compact convexe de E tel que pour tout x € K,
r,= { flx); fe F} soit un sous-ensemble borné de F'. Alors il existe une partie bornée D de
F telle que f(K) C D pour tout f €T

Démonstration. Soit D = UKFI. Il s’agit de montrer que D est une partie bornée de F'. Soit
S
W un voisinage de 0 dans F'. Soit U un voisinage équilibré fermé de 0 dans F' tel que U+U C W.
Soit A = fﬁrf_l(U), alors A est fermé dans E. Si z € K, alors I';, est borné dans F' et donc il
€
existe n > 1 tel que I'y, C nU, d’ou x € nA. Par conséquent, on a K = g (K NnA). Puisque

n>1
K NnA est fermé, dans K, d’aprés le théoréme de Baire, théoréme 3.4.4, il existe n > 1 tel que

K NnA soit d’intérieur non vide relativement & K. Soit xg un point dans un tel intérieur. Alors
il existe un voisinage équilibré V' de 0 dans E tel que K N (zg+ V) C (K NnA) C nA. Puisque
K — xg est compact, donc borné, il existe un entier p > 1 tel que K C zg+pV. Soit x € K et soit
z = (1 - %)ajo + %:13, alors z € K, car K est convexe. De plus, on a z — zg = l(31: —x9) € V, donc
z € nA. Puisque pour tout f € I', on a f(nA) = nf(A) C nU et puisque z = pz — (p — 1)z,
alors on a f(x) =pf(z) — (p—1)f(xo) € pnU — (p — 1)nU = pnU + (p — 1)nU C pnU + pnU =
pn(U +U) C pnW. Ainsi, on a D C pnW, ce qui prouve que D est bornée. |

Lemme. Soient (E, 7) un R-espace vectoriel topologique, C' un convexe ouvert non vide de E
et b€ E avec b € C. Alors il existe f € E* tel que f(x) < f(b) pour tout = € C.

Démonstration. Quitte & faire une translation, on peut supposer 0 € C. Soit pc la jauge
de C. D’apreés la proposition 9.2.2, uc est positivement homogeéne, sous-additive et C' = {x €
E; puc(z) < 1}. On a aussi pc(b) > 1 car b ¢ C. Posons

fr Rb — R
th — ¢t

alors f est une forme linéaire sur Rb et pour tout ¢t € R, on a f(tb) < uc(th). En effet, si ¢t <0,
ona f(th) =t <0 < uc(th). Sit > 0, on a puc(th) = tuc(b) >t = f(tb) car uc(b) > 1. D’apreés le
théoréme 7.7.1, on peut prolonger f en une forme linéaire sur E encore notée f telle que pour tout
x € E,onait f(x) < pc(x). Pour tout x € C,ona f(zr) <let —1 < —f(xz) = f(—z). Donc pour
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tout x € CN—=C, on a|f(x)] < 1. Or CN—C est un voisinage de 0, on déduit de la proposition
9.1.12 que f est continue. De plus, pour tout x € C, on a f(x) < pc(z) <1 = f(b). |

Lemme. Soient F un K-espace vectoriel et Aq,..., A, des sous-ensembles non vides convexes
n

dans E. Alors conv(A; U--- U A,) est ’ensemble des sommes Ztimi, ou x; € A; pour tout

" =1
ie{l,...,n}tett; >0,...,t, >0 tels que Zti: 1.
i=1
n
Démonstration. Soit C' ’ensemble des sommes Ztimi, ouz; € A; pour tout i € {1, ...,n} et

=1

n
t1 >0,...,t, > 0tels que Zti = 1. Il est clair que 'on a A;U---UA,, C C C conv(A1U---UA,).

i=1
Pour montrer que C' = conv(4; U---U A ), il suffit de montrer que C' est un sous-ensemble
convexe Soient a:z, y; € A;pour tout i € {1, ...,n}ett; >0,...,t, >0, >0,...,8, >0 tels

que th—letZSZ—l Soit t €]0, 1], alors on a :
=1 i=1

n

tt;x; 1 —t)s;y;
tztixi 1_t Zszyz—z ttz’+(1—t)81') 2332“‘( )Szyz X
=1 i=1

tti 4 (1 —t)s

ttiz; + (1 —1)siy;

€ A; car A; est convexe.
tt; + (1 —1t)s; ‘ ‘

n
Oron a tt; + (1 —1t)s; > 0, Y thi+ (1 —t)s; = 1 et
i=1
n n
D’ou on a tz tixi+ (1 —1t) Z s;y; € C, donc C est convexe. [ |
i=1 i=1
Proposition. Soit A un sous-ensemble non vide de R".
n+1

1. Si z € conv(A), alors il existe aj,...,an41 € Aet t; >0,...,t,41 > 0 tels que Zti =1

i=1
n+1

et Z t,a; = x.
i=1

2. On munit R™ de la topologie usuelle. Si A est compact, alors conv(A) est compacte.

Démonstration. 1. D’aprés la proposition 9.5.1, il existe k € N, a1,...,ap41 € A et t; >
k+1 k+1
0,...,tkr1 > 0 tels que Zti =1cet Ztiai = x. Pour avoir le résultat, il suffit de montrer
i=1 i=1
k+1 k+1
que si k > n, alors il existe ¢; > 0,...,cxr1 > 0 tels que Zci =1et Zciai = x et il existe
i=1 i=1

je{l,...,k+ 1} tel que ¢;j = 0. On peut supposer que t; > 0 pour tout i € {1,...,k+ 1}.
Considérons 'application linéaire

T : RF+L — R” x R

k41 k41
(815++ 5 8k41) + E Siaug Si
i=1 i=1
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k+1
Comme k > n, alors ker(T') # {0}, et donc il existe (s1,. .., s,y1) € RETI\{0} tel que Z sia; =0
i=1
k+1
et Zsi = 0. Soit A :inf{z—ii DS 750}, alors il existe j € {1,...,k + 1} tel que A = E—J] et on a
i=1

k+1
As; < t; pour tout i € {1,...,k+1}. On pose ¢; = t; — \s;, alors ¢; > 0, cj=0etona Zci =1.
i=1
n+1 n+1 k+1 k41
De plus, on a z = Zt a; = Zt a; —)\Zs a; = Zciai.
i=1 i=1
n+1
2. Soit S l’ensemble des t = (t1,...,t,11) € R™ L tels que t1 > 0,...,t,01 > 0 et Zt = 1.
D’aprés 1, conv(A) est I'image de S x A"l par Iapplication continue (t,al,...,anH) —
n+1
Z tia;. Or S x A™! est compact, donc conv(A) est compacte. |
i=1

Supplément d’exercices

Exercice 9.45. Soit K l'ensemble des vecteurs 0 et e,, n > 0 dans l'’espace de Banach

(0, [[ loo)-

1. Montrer que K est compact.

n+1

2. Montrer que conv(K) est compact mais que conv(K) n’est pas l'enveloppe convexe de ses
points extrémaux.

Solution. 1. Comme on a H%ﬂenum = 1, alors la suite (%He”)n>0 converge vers 0 dans
(co, || lloo), donc K est compact. -
2. Puisque (cg, || ||co) est un espace de Banach, il résulte du théoréme 9.5.1 que conv(K) est

compact. D’apres le théoreme 9.5.4, tous les points extrémaux de conv(K) appartiennent a K.
Comme dans 'exercice 9.42, on vérifie que ’on a :

n n
t
conv(K) = {z_:pjlep; n>0,t>0,...,t, >0et thg 1}.
p=0 p=0
1
el pour
tout n > 0. Soient n > 0 et © = (Tn)n>0, ¥ = (Yn)n>0 € conv(K) tels que n}rlen = %x + %y

On en déduit que si z € conv(K) = conv(K), alors = (zy)n>0 € co, avec 0 < x,, <

Alorsonan—H = %xn—l—%yn Oronal0<z, < 11 et 0 <y, < Jr17doun—Jrl = Xy = Yn. Pour
tout p #n, on a 0= xp + yp, avec 0 < xp et 0 < yp, donc on a 0 = x, = y,. Par conséquent,
onazr=y= n_lﬂen, donc —37€n est un point extrémal de conv(K). De méme, si z,y € conv(K)

tels que 0 = 233 + zy. Alors on a 0 = z = y. Donc 0 est aussi un point extrémal de conv(K). Par
conséquent, l'ensemble des points extrémaux de conv(K) est K. Soit x = (m)pm, alors
x € conv(K), mais = ¢ conv(K). Par conséquent, conv(K ) n’est pas I’enveloppe convexe de ses

points extrémaux.

Exercice 9.46. Soient (F, 7) un espace vectoriel topologique et F' un sous-espace vectoriel
fermé E. Soient 7T, la topologie quotient sur I’espace vectoriel quotient E/F et w : (E, T) —
(E/F, T;) lapplication quotient. Rappelons qu’un ensemble U de E/F est ouvert dans (E/F, T)
si et seulement si 77 1(U) est ouvert dans (E, 7). De méme, pour les ensembles fermés dans
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(E/F, T:). Rappelons aussi que 7 est une application linéaire continue. Voir la proposition 1.4.10
et la discussion précédant la proposition 6.4.3.

1. Montrer que 7 est une application ouverte et que E/F muni de la topologie 7, est un
espace vectoriel topologique.

2. Montrer que si B est une base locale de E, alors les ensembles 7(V'), ou V' € B, forment
une base locale de (E/F, Ty).

3. Montrer que si (F, T) est localement convexe (resp. localement borné, resp. métrisable,
resp. normable), alors il en est de méme pour (E/F, T).

4. Montrer que si (E, T) est un F-espace, ou un espace de Fréchet, ou un espace de Banach,
il en est de méme pour (E/F, T;).

Solution. 1. Soit U un ouvert dans E, alors on a 7 '(7(U)) = U + F, donc 7} (n(U)) est
ouvert dans E, voir corollaire 9.1.1, d’ot 7(U) est ouvert dans E/F. Donc 7 est une application
ouverte.
Notons d’abord que {0} est fermé dans E/F car 7=1({0}) = F est fermé dans E. Pour tout
(x,y) € E x E, soit f(z,y) = x + y et pour tout (a,b) € E/F x E/F, soit fr(a,b) = a + b.
Montrons que l'application fr est continue de E/F x E/F dans E/F. Notons d’abord que le
diagramme suivant est commutatif.

Ex FE

WXW\
fx

E/F x EJF -+ E/F

E

Soit V' un ouvert de E/F. Puisque 7 X 7 est surjective, alors on a :

fH V) = (o xm)((m < m) T (V).

Comme on a o f = fro (7 x ), alors on a :

(mx )~ (f (V) = (fro(mxm) T (V) = (wo /)~ (V) = fH(n~ (V).

Par conséquent, on a fr1(V) = (7 x ) (f~1(xz=%(V))). Comme f et 7 sont continues et 7 x 7 est
une application ouverte, alors f—1(V) est un ouvert de E/F x E/F. Donc f, est une application
continue.

Pour tout (A, z) € K x E, soit g(\,x) = Az et pour tout (A, a) € K x E/F, soit g-(\,a) = Aa.
Montrons que I'application g, est continue de K x E/F dans E/F. On fait le méme raisonnement
qu’auparavant. Notons d’abord que le diagramme suivant est commutatif.

g

Kx FE E

idew{ \W

Kx E/F —+ E/F

Comme idg X 7 est une application surjective et ouverte, et comme g et 7w sont continues, alors
gr est continue. Donc E/F muni de la topologie T est un espace vectoriel topologique.

2. Soit B une base locale de F. Comme 7 est une application continue et ouverte, on en déduit
que les ensembles 7(V'), o V' € B, forment une base locale de (E/F, Tr).
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3. Comme l'image d’un ensemble convexe par une application linéaire est un ensemble convexe,
on déduit de 2 que si (E, T) est localement convexe, il en est de méme pour (E/F, T;). Comme 7
est une application continue, il résulte de la proposition 9.1.11 que 7 est une application bornée.
Puisque 7 est aussi une application ouverte, on en déduit que (E/F, T;) est localement borné.
Supposons maintenant (E, 7) métrisable et soit d une distance invariante par translation sur £
dont la topologie associée est 7. Pour tout x,y € E, on pose :

dr(m(z),7(y)) = inf {d(z —y,2); z€ F}.

On vérifie facilement que d, est bien définie et qu’elle est une distance invariante par translation
sur E/F. On vérifie également que pour tout 7 > 0, on a 7({z € E ; d(z,0) < r}) = {z €
E/F ; d:(z,0) < r}. On déduit de 2 que la topologie induite par d, sur E/F est la topologie
quotient 7. Donc ’espace quotient (E/F, T;) est bien métrisable. Finalement, on a montré,
proposition 6.4.3, que si (E, 7) est normable alors (E/F, T,) est normable.

4. Supposons que (E, T) est un F-espace, et soit d une distance invariante par translation sur F
dont la topologie associée est 7. D’apres 3, 'espace quotient (E/F, T,) est métrisable et d, est
une distance invariante par translation sur E/F dont la topologie est la topologie quotient 7.
Montrons que E/F muni de la distance d, est complet. Soit (zy)n>0 une suite de Cauchy dans
(E/F, dr). On vérifie exactement comme dans la démonstration de la proposition 6.4.5 qu'il existe
une sous-suite (2y(n))n>0 de (2n)n>0 telle que pour tout n > 0, on ait dr(2um11)s Zpmn)) < 277
et qu'il existe une suite (zy),>0 dans E telle pour tout n > 0, on ait d(xpy1,z,) < 27" et
T(Tp) = 2,(n)- Alors la suite (2,)n>0 est de Cauchy dans (E, d), donc elle converge vers un élé-
ment x € E. Or 7 est continue, on en déduit que (2,(,))n>0 converge vers 7(x). Par conséquent,
la suite (zp)n>0 converge vers m(z), voir proposition 2.6.2. Donc (E/F, dr) est un F-espace. Il
résulte de ce que 'on vient de montrer et de 3 que si (E, T) est un espace de Fréchet, alors il
en est de méme pour (E/F, T;). Finalement, on a montré, proposition 6.4.3 et proposition 6.4.5,
que si (E, T) est un espace de Banach, alors (F/F, T;) est un espace de Banach.

Exercice 9.47. Soient G et F' deux sous-espaces vectoriels d’un espace vectoriel topologique
(E, T) tels que F soit fermé et G soit de dimension finie. Montrer que G 4+ F' est fermé dans
(E, T).

Solution. Considérons ’espace vectoriel topologique quotient (E/F, T;) et soit 7 : (E, T) —
(E/F, T;) Uapplication quotient. Alors 7(G) est sous—espace vectoriel de dimension finie de E/F,
donc 7(G) est fermé dans E/F, voir corollaire 9.1.4. Or on a F + G = 7~ 1(7(G)) et 7 est conti-
nue, donc F' + G est fermé dans E.

Exercice 9.48. Soient F, F' deux espaces vectoriels topologiques et f : E — F une application
linéaire. Soient H un sous-espace vectoriel fermé de E tel que H C ker(f) et 7 : E — E/H
I’application quotient. Alors il existe une application linéaire f : E/H — F telle que form = f,
voir proposition 6.4.4. Autrement dit, le diagramme suivant est commutatif.

!

RE /H/J;

1. Montrer que f est continue si et seulement si fest continue.

E F

2. Montrer que f est ouverte si et seulement si fest ouverte.
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Solution. 1. Puisque 'on a f = fow, d’aprés la proposition 1.4.10, f est continue si et seulement
si f est continue.

2. Supposons que f est un application ouverte. D’aprés 'exercice 9.46, I'application quotient 7
est ouverte, on en déduit que f est une application ouverte car la composée de deux applications
ouvertes est une application ouverte.

Réciproquement, supposons que f est une application ouverte. Soit U un ouvert de E~/ H. Alors
7 1(U) est un ouvert de E et on a f(x1(U)) = (fom)(x 1 (U)) = f(x(x1(U))) = f(U), donc
f(U) est ouvert dans F'. Par conséquent, f est une application ouverte.

Exercice 9.49. Soient E, F' deux espaces vectoriels topologiques, avec dim(F) < oo et f :
FE — F une application linéaire.

1. Montrer que si f est surjective, alors f est ouverte.
2. On suppose que ker(f) est fermé. Montrer que f est continue.

Solution. 1. Soit G un sous-espace vectoriel de E tel que dim(G) = dim(F') et tel que E soit la
somme directe algébrique des ker(f) et G. Puisque l'application

ker(f) x G —> E
(r1,22) +—— x4+ 29

est continue et bijective, alors ’application inverse

E — ker(f)xG
. — (m(z), m(z))

est ouverte. D’aprés la proposition 1.4.7, la projection canonique

ker(f) x G — G
(x1,22) — T

est ouverte. On en déduit que la projection naturelle mo : E — G est une application linéaire
surjective et ouverte. Pour tout z € E, on a f(z) = f(m2(z)) et on pose S(m2(z)) = f(x). Alors S
est une application linéaire bijective de G sur F. De plus, le diagramme suivant est commutatif.

!

AG/S

E

F

Comme on a dim(G) = dim(F') < +oo , alors S est un homéomorphisme, voir corollaire 9.1.3.
Or on a f = S omy, donc f est une application ouverte.

2. Comme ker(f) est un sous-espace vectoriel fermé de E, alors E/ker(f) est un espace vectoriel
topologique et il existe une application linéaire injective f: E/ker(f) — F telle que fow =f,
voir proposition 6.4.4. Autrement dit, le diagramme suivant est commutatif.

!

E/ ker(f)

Comme f est injective et dim(F) < +oo, alors dim(E/ker(f)) < 4oo. Il sensuit que f est
continue, voir corollaire 9.1.3. Par conséquent, f est continue.
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Définition 9.0.2. Soient E un R-espace vectoriel et A une partie non vide de E. On appelle
hyperplan d’appui de A, un hyperplan affine H contenant au moins un point de A et tel que
A soit inclus dans I'un des demi-espaces fermés déterminés par H. Autrement dit, il existe une
forme linéaire non nulle f sur E, « € Ret a € A tels que f(a) =aet AC{z € E; f(z) < a}
ou AC {x € FE; f(x) > a}. Dans ce cas, on dit aussi que H est un hyperplan d’appui de A en
a ou que H est un hyperplan d’appui de A passant par le point a.

Notons que si f est une forme linéaire non nulle sur E, pour qu’il existe un hyperplan d’appui
de A parallele a 'hyperplan ker(f), il faut et il suffit que 'une des bornes de ’ensemble f(A)
soit finie et appartienne a f(A).

Exercice 9.50. Soient E un R-espace vectoriel topologique et A une partie non vide de FE.

1. Montrer que si H est un hyperplan d’appui de A, alors on a HN ;1: (). En déduire que
HnNA CFr(A).

o
2. Montrer que si A # 0, les hyperplans d’appui de A sont fermés.

3. Montrer que si A est compact, pour tout hyperplan fermé Hy de E, il existe un hyperplan
d’appui fermé de A parallele & Hy.

[}
4. Montrer que si A est convexe et fermée et si A # (), alors par tout point de Fr(A) passe un
hyperplan d’appui fermé de A en ce point.

o
5. Montrer que si A est fermée tel que A# 0 et si par tout point de Fr(A), il passe un
hyperplan d’appui de A, alors A est convexe.

6. On suppose que E = R? et que A est une partie convexe non vide de RP telle que A # RP.
Montrer que pour tout x € A NFr(A) passe un hyperplan d’appui fermé de A en x.

Solution. 1. Soit H un hyperplan d’appui de A. Alors il existe une forme linéaire non nulle f
surEetaE]RtelsqueH—{mEE fz)=a}et AC{zx e E; f(z) <a}. Si HN A# 0,

alors on a H# 0, d’ou ker(f);é (. Tl résulte de la proposition 9.1.4 que 'on a ker(f) = E,
ce qui est impossible car f est non nulle. Donc on a bien HN /01: (). Par conséquent, on a
HNA C A\ AC Fr(A).

2. Soient H un hyperplan d’appui de A et f une forme linéaire non nulle sur F et a € R tels
que H = {.’L‘EE flx )—a}etAC{a:EE f( ) < a}. D’aprésl,onale{:rEE; flx) <

a} = D,. Si A;ﬁ (), alors on a D # (0, d’on DO;& (. Donc ker(f) n’est pas dense dans E. On
déduit de la proposition 9.1.12 que f est continue, donc H est fermé.
3. On suppose A compact et soit f une forme linéaire continue non nulle sur E telle que Hy =

ker(f). Comme A est compact et f est continue, alors il existe a € A tel que sup f@)=f(a) =«
€A
existe dans R. Alors ’hyperplan affine fermé H = {x € E'; f(x) = a} est un hyperplan d’appui

de A paralléle a Hy.
[} o
4. On suppose que A est convexe fermée et que A # (). Soit z € Fr(A). Comme A est un ouvert
o
convexe non vide tel que z ¢ A, d’apres le théoreme 9.4.1, il existe f € E* et a € R tels que
] J— ]

pour tout a € A, on ait f(a) < a < f(z). D’aprés la proposition 9.1.3, on a A = A. Comme f
est continue, on en déduit que pour tout @ € A, on a f(a) < a < f(z). Or A est fermée, donc
z € A. Par conséquent, H = {x € E; f(x) = a} est un hyperplan d’appui fermé de A passant
par le point z.

5. Supposons que A n’est pas convexe, alors il existe z,y € A et z € ]z, y[ tel que z ¢ A. Comme
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;17& (), alors il existe a € A tel que a & {tx + (1 —t)y ; t € R}. Comme |a, z[ est connexe et
on a |a, z[N ;175 0 et Ja, z[N(E\ A) # 0, alors on a Ja, z[NFr(A) # 0. Soit u €]a, z[NFr(A).
Par hypotheése, il existe une forme linéaire non nulle f sur E et o € R tels que f(u) = «a et
f(b) < a, pour tout b € A. Comme on a u € conv({z,y,a}) et u & [a, y] U [z, y] U [z, a],
alors il existe t,s,r €]0, 1[ tels que t +s+r =1et u = ta+ sr+ry. Dot on a a = f(u) =

tf(a)+sf(z) +rf(y) <tf(a)+ sa+ ra. Comme a 621, d’aprés 1, on a f(a) < a, donc on a
a < ta+ sa+ra=q, ce qui est impossible. Donc A est bien un ensemble convexe.

6. On suppose ' = RP et A une partie convexe non vide de RP telle que A # RP. Soient
x € ANFr(A) et (zy)n>0 une suite dans RP \ A convergente vers x. D’aprés I'exercice 7.39, pour
tout n > 0, il existe une forme linéaire continue f,, sur RP telle que || f,|| = 1 et pour tout a € A,
on ait fn(a) < fn(x,). Comme RP* est de dimension finie, alors la sphére unité dans (RP*, || ||)
est compacte. Donc, il existe une sous-suite (fy, )r>1 de (fn)n>1, qui converge vers f € RP*, d’ou
on a || f|| = 1. Comme pour tout & > 0 et pour tout a € A, on a fp, (a) < fn, (2y,) et comme on
a f(a) = lim fy,, (a)et f(x) = lim f, (n,), alors pour tout a € A, on a f(a) < f(x). Soient

k—+o00 k—+o00

a=f(x)et H={z € RP; f(z) = a}, alors H est un hyperplan d’appui fermé de A passant
par .

Exercice 9.51. Soient (E, (, )) un espace de Hilbert réel et B la boule unité fermée de H.
Déterminer les hyperplans d’appui de B.

Solution. Soit b € B tel que [|b|| = 1. Comme B est convexe fermée et on a é;ﬁ (0, d’apres
I’exercice précédent, il existe un hyperplan d’appui fermé H de B passant par le point b. Soient
fe€E* nonnulle, et « e Rtelsquebe H={zx € E; f(z)=a} et BC{zx € E; f(z) <a}.
D’apres le théoreme de Riesz, théoréeme 8.4.1, il existe z € E tel que pour tout x € E, on ait
f(z) = (z,2). De plus, on a ||z]| = ||f||. Pour tout « € B, on a f(z) < a et on a —B = B,
d’ott > 0 et on a |f(z)| < «, pour tout € B. On en déduit que 'on a [|f]| < . On a aussi
Ifll > 1f(b)| =, dou ||z]| = ||f|| =a. Onaz=Xo+vy, avec A € Ret y € E tel que (b,y) =0
et ||z]|? = A2+ ||y||%. Donc on a a = f(b) = (b,z) = A, d’ott y = 0 et on a z = ab. Autrement dit,
on a f(x) = (z,ab), pour tout x € E. Par conséquent, on a ker(f) = {b}*+, dou H = {b}* +1b.
Par conséquent, pour tout b € B tel que ||b]] = 1, il existe un unique hyperplan d’appui de B
passant par b, a savoir ’hyperplan tangent & B en b.

Exercice 9.52. Soit B la boule unité fermée de ’espace de Banach ¢y, considéré comme un

—+00
Re(z
R-espace de Banach et soit f la forme R-linéaire continue sur ¢y définie par f(z) = Z 2(nn),
n=0

ol & = (Tn)n>0 € co. Montrer qu’il n’existe aucun hyperplan d’appui de B paralléle a ’hyperplan
fermé H = ker(f).
Solution. Supposons qu’il existe un hyperplan d’appui de B paralléle & ’hyperplan fermé

+o0
Re(x,) <a

H = ker(f). Alors il existe a € R tel que pour tout = (z,),>0 € B, on ait

AL -
n=0
= Re(ay,) P
et il existe a = (an)n>0 € B tel que Z an = «. Pour tout p > 0, soit §, = Zek,
n=0 k=0

P
1
alors §, € B, d’ou E ok < a. On fait tendre p vers linfini, on obtient 2 < «. Comme on a
k=0
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+o00o Re(a ) +o00o +o00o Re(a )
a = Z 2n" < on = 2, alors on a Z T" = 2. Par conséquent, pour tout n > 0, on
n=0 n=0 n=0

a Re(a,) =1, ce qui_est impossible car a c co. Donc il n’existe aucun hyperplan d’appui de B
paralléle & 'hyperplan fermé H = ker(f).

Exercice 9.53. Soient A un ensemble compact non vide d'un R-espace normé (E, || ||) et
0 = d(A) le diameétre de A.

1. Montrer que la distance de deux hyperplans d’appui de A est au plus égale a 9.

2. Montrer qu'il existe a,b € A tels que |la — b|| = . Montrer qu'il existe deux hyperplans
d’appui paralléles de A, passant respectivement par a et b, et dont la distance est égale &

J.

Solution. 1. Soient H; et Hy deux hyperplans d’appui de A, alorsona HiNA # 0 et HoNA # 0,
dow d(Hy, Hy) < d(Hy N A, Hy N A) < 6.

2.0On a6 =sup{d(z,y) z,y € A}. Comme A est compact non vide et I'application (z,y) —
||z —y|| est continue de Ax A dans R, alors il existe a,b € A tels que |ja—b|| = J. Soit B = B'(a, )

[e]
la boule fermée de centre a et de rayon § dans E. Comme B est convexe fermée et on a B # ()

et b € Fr(B), d’apres Pexercice 9.50, il existe une forme linéaire continue non nulle f sur E telle

que pour tout x € B, on ait f(z) < f(b) et on a f(a) < f(b) car a Eé. Comme pour tout z € B,
on a aussi 2a —x € B, on en déduit que pour tout x € B, on a |f(z) — f(a)] < f(b) — f(a).

Comme on a ||f|| = sup M ; x € E tel que ||z —al = 0 ¢, voir exercice 6.55,
alors ||f]| = 1) ; J(a) = f(‘l‘)l:iﬁa) Soient H, = {x € E; f(x) = f(a)} = ker(f) + a et

Hy={x € E; f(x) = f(b)} = ker(f) + b. Alors Hy, est un hyperplan d’appui de A passant par
b) — b) —
b. D’apreés la remarque 6.4.1 et l’exercice 6.43, on a d(H,, Hp) = F(b) = f(a) = 1) f(a),

I/ il
d’ou d(H,, Hy) = . Il reste & montrer que H, est un hyperplan d’appui de A passant par a. Soit

x € A Si f(z) < f(a), alors on a f(z) < f(a) < f(b), dou f(b) — f(a) < f(b) — f(z). Donc
on a [[a = b[[[[f]| = £(b) — fla) < f(b) = fz) <[] Ib— |, dou [la —b]| < [b— =[], ce qui est
impossible. Par conséquent, pour tout x € A, on f(a) < f(z). Donc H, est bien un hyperplan
d’appui de A passant par a et paralléle & Hj.

Remarque. On déduit de ’exercice 9.15 et de ’exercice 9.50, propriété 1, que si A est un
sous-ensemble convexe non vide de R”, alors les propriétés suivantes sont équivalentes.

i) A=0.
(ii) Il existe un hyperplan affine H de R™ tel que A C H.
(iii) Pour tout x € A, il existe un hyperplan d’appui de A passant par x.

L’exercice qui va suivre est une sorte de généralisation de cette remarque.

Exercice 9.54. Soit A une partie non vide convexe fermée d’un R-espace de Banach séparable
(E, || ||)- Montrer que les propriétés suivantes sont équivalentes.

(i) A est contenue dans un hyperplan affine fermé de E.
(ii) Pour tout x € A, il existe un hyperplan d’appui fermé de A passant par x.

Solution. L’'implication (i) == (ii) est triviale. En effet, si B est une partie non vide de E et si
H est hyperplan affine fermé de E tel que B C H, alors pour tout « € B, H est un hyperplan
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d’appui fermé de B passant par .
Montrons 'implication (ii) = (i). Sans perdre de généralité, on peut supposer 0 € A. Soit

g |z, || > 1. Soit
[[n |

n > 1. Si [|z,] > 1, alors y,, = (1 ”zn”)O + ”a:n € A, donc (yp)n>1 est une suite dans A.
+o00
D’aprés l'exercice 9.22, la série de terme général 2—Z est convergente dans E' et on a a = — c

n=1
A. Par hypotheése, il existe un hyperplan d’appui fermé de A en a. Autrement dit, il existe une

forme linéaire continue non nulle f sur E telle que pour tout x € A, on ait f(x) < f(a). On va
montrer que A est contenue dans ’hyperplan afﬁne fermé H {a: €A; f(x) = f(a)}. Sl existe

n > 1tel que f(yn) < f(a), alorsona f(a Z f Z = fla — = , ce qui est impossible.

Donc pour tout n > 1, on a f(y,) = f(a) > 0 = f(O) Donc pour tout n > 0, on a f(z,) > 0.
Comme la suite (z,),>1 est dense dans A, alors pour tout z € A, on a f(z) > 0. S’il existe
x € A tel que ||z|| > 1, alors il existe n > 1 tel que [|z,] > 1, d'ou ||z,||f(a) = f(x,) < f(a).
Par conséquent, on a f(a) = 0 et on a A C ker(f) = {z € E; f(z) =0 = f(a)}. Si pour
tout * € A, on a ||z| < 1, alors pour tout n > 1, on a ||z,|| < 1 et donc, pour tout n > 1,
on a f(zp,) = f(a). Comme la suite (z,),>1 est dense dans A, alors pour tout z € A, on a
f(z) = f(a). Par conséquent, on a A C ker(f) ={x € E; f(z) = f(a)}.

(n)n>1 une suite dense dans A. On pose y,, = zp, si [|z,] < 1 et y, =

Exercice 9.55[théoréme de Minkowski|. En utilisant la notion d’hyperplan d’appui, montrer
que si K est un compact convexe non vide de R™, alors on a K = conv(e(K)), i.e. K est
I’enveloppe convexe de ses points extrémaux.

Solution. On montre ce résultat par récurrence sur n. Il est clair que le résultat est vrai si
n = 1. Supposons que le résultat est vrai pour tout compact convexe non vide de R*~1. Soit
K un compact convexe non vide de R™. D’aprés l'exercice 9.44, on a K = conv(e(K)) si et
seulement si Fr(K) C conv(e(K)). Soit x € Fr(K). D’aprés 'exercice 9.50, il existe un hyperplan
d’appui fermé H de K en x. Soient h une forme linéaire continue non nulle sur R" et a € R
tels que h(z) = o, H = ker(h) +x = {z € R" ; h(z) = a} et K C {z € R"; h(z) < a}.
Alors K N H est un compact convexe non vide. Montrons que 'on a e(K N H) = e(K) N H.
I est clair que 'on a e(K) N H C e(K N H). Réciproquement, soient z € e(K N H) C H
et a,b € K tels que 2 = 3a + 3b. On a h(z) = 1h(a) + 3h(b), avec h(z) = a et h(a) < «,
h(b) < «, donc h(a) = h(b) = h(z) = a, d'oton a a,b € KN H. Comme z est un point extrémal
de K N H, on déduit que 'on a a = b = z. Par conséquent, on a z € e(K) N H. Donc on a
bien e(K N H) = e(K) N H. Soit f : R"! — ker(h) une application linéaire bijective. Alors
I’application

g: R — H=ker(h)+x
z fz)+x

est une application affine et c’est un homéomorphisme. D’apres ’exercice 9.38, pour toute partie
convexe non vide A de R"™1 on a e(g(A)) = g(e(A)). Soit K’ = g~ (KNH), alors K’ est compact
convexe non vide de R™™1. D’aprés I'hypothése de récurrence, on a K' = conv(e(K’)). Par
conséquent, on a KNH = conv( (KNH)) =conv(e(K)NH) C conv(e(K), d’ou z € conv(e(K).
Ainsi, on a montré que 'on a Fr(K) C conv(e(K)). Donc on a K = conv(e(K)).

Remarque 9.0.6. Soit K un compact non vide de R™. On déduit de la proposition 9.5.2, du
corollaire 9.5.4 et de I’exercice précédent que 'on a conv(K) = conv(e(K)).
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Remarque 9.0.7. Soit K un sous-ensemble non vide, compact et convexe de R™. On déduit de
I’exercice précédent et de la proposition 9.5.2 que tout point de K est une combinaison convexe
d’au plus n + 1 points extrémaux de K.

Exercice 9.56. Soit K un sous-ensemble non vide, compact et convexe d’un espace vectoriel
topologique F. Montrer que si K est métrisable, alors ’ensemble des points extrémaux de K est
une intersection dénombrable d’ensembles ouverts de K.

Solution. Soit d une distance sur K définissant la topologie induite par E sur K. Pour tout
n > 1, soit F,, = {m € K ; ilexiste y,z € K avec © = yTJrZ et d(y,z) > %} Montrons que

F,, est fermé dans K. Soient (zj)r>o une suite dans F,, et © € K tels que klim z = x. Pour
= —+00

tout k > 0, soit yx,zx € K tels que zy et d(yk, zk) > % Comme K est compact et
métrisable, toute suite de K admet une sous- sulte convergente dans K. Quitte & prendre des
sous-suites, on peut supposer que (yi)r>0 et (Zk)kzo convergent respectivement vers y,z € K.
Par conséquent, on a x = w et d(y,z) > -, dou x € F,. Donc F), est bien fermé dans K.
Comme on a e(K) = K \ nL>J1F = nglK \ F,, alors e(K) est une intersection dénombrable

_yk+k

d’ensembles ouverts de K.

Exercice 9.57. Soient F, F' des K-espaces vectoriels et f : E — F une application. Rappelons
que f est dite affine s’il existe une application linéaire ¢ : E — F et §’il existe b € F tels
que f = g+ b. Il est clair que f est affine si et seulement si f — f(0) est linéaire de E dans F'.
On suppose maintenant que E et F' sont des R-espaces vectoriels. Montrer que les propriétés
suivantes sont équivalentes.

(i) L’application f est affine.
(ii) Pour tout z,y € E et pour tout t € [0, 1], on a f(tx+ (1 —t)y) =tf(z) + (1 —t)f(y).

Solution. Montrons I'implication (i) = (ii). Soient ¢ : E — F une application linéaire et
b€ F tels que f =g+ b. Pour tous z,y € Eett €0, 1], on a :

fltz+ (1 —t)y) = gltze+ 1 —-t)y)+0b
= tg(x) + (1 —t)g(y) +b
= tg(x) +b)+ (1 =1)(9(y) +b)
= tf@)+ (1 -0)f(y).

Montrons 'implication (ii) == (i). Par hypothése, pour tout =,y € E et pour tout t € [0, 1], o
a f(te+ (1 —ty) =tf(z)+ (1 —1)f(y). Soit g = f — f(0). Il s’agit de montrer que g est une
application linéaire de E dans F. Notons d’abord que g(0) = 0. Pour tout z,y € E, on a :

F(3) = (32 +30) = 3/(2) +3/(0),

1(5) = 13y +30) = %f( )+ %f(O),
F(5) = F(Gr+39) = 3£ (@) + 3/ () -
Donc on a f(ZE2) + f(0) = f(%) + f(Y), dot f(a:+y +£(0) = f(ZL) + £(0) = f(z)+ f(y)-

Par conséquent, on a :

gx+y) = flz+y)— f(0) = f(z+y)+ f(0) —=2f(0) = f(z) — f(0) + f(y) — £(0) = g(=) + g(y) -
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On en déduit par récurrence que pour tout = € F et pour tout n € N, on a g(nz) = ng(z). On
a aussi 0 = ¢(0) = g(z + (—2)) = g(x) + g(—=x), d'ou g(—z) = —g(z). Pour tout ¢ € [0, 1], on
a f(tz) = f(tz + (1 —1)0) = tf(z) + (1 = ¢)f(0), dou f(tz) — f(0) = t(f(z) — f(0)), donc on
a g(tr) = tg(x). Soit s > 0, alors il existe n > 1 tel que 0 < 2 < 1, d’ou g(sz) = g(3(nx))
s g(nz) = n2g(x) = sg(). Soit 5 < 0, on a g(sz) = g(~s(—1)) = —sg(~2) = —s(~g(z))
sg(x). Par conséquent, g est une application linéaire de E dans F'.

Définition 9.0.3. Soient C' une partie convexe d’'un K-espace vectoriel E et f : C' — R une
application. On dit que f est une application convexe si pour tout z,y € C et tout ¢t € [0, 1],

ona f((1-t)z+ty) < (L-t)f(z) +tf(y)-

Exemple 9.0.2. Si F est un R-espace vectoriel et si f : E — R est une application affine,
alors f est une fonction convexe sur E.

Exemple 9.0.3. Soit (E, || ||) un espace normé. Alors la fonction x — ||z|| est une fonction
convexe sur F.

Exercice 9.58. Soit (F, || ||) un espace normé. Pour tout € E, on pose f(z) = ||=||*. Montrer
que f est une fonction convexe sur F.
Solution. Pour tout z,y € E et t € [0, 1], on a :

fta+ (1 -t)y) = |tz + (1 —t)y[?

IN

2
(tllz) + (1 = &)1y
= 2l + @ =)yl + 21 = t)/llly] -
D’autre part, on a :
2

tf (@) + (=01 () = (Rl + (0= 62lyl? + 260 = Dllellly]) =2 ) (Jl2ll = yl) = 0.
Dounona f(1—t)x+ty) < (1—1t)f(z)+tf(y). Autrement dit, f est une fonction convexe sur E.
Exercice 9.59. Soient (E, || ||) un espace normé et A une partie non vide de E. Pour tout

x € E, on pose f(x) = d(x, A). Montrer que f est une fonction convexe sur E.
Solution. Soient z,y € E et t € [0, 1]. Pour tout a € A, on a :

flz+ (1 —t)y) < |te+(1—t)y—ad
= |t + (1 -ty —ta—(1 -t

< tfz—al+ A=ty —al.
D’otion a: '
Jlw+(1-1)y) < it tlle—all+ (1= 1)y —a

— tinf ||z — 1—¢t)inf ||y —
;gAIIw all + ( );gAlly all

= tf(@)+ (1 -1)f(y).
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Donc f est bien une fonction convexe sur E.

Exercice 9.60. Soient E un K-espace vectoriel, C' une partie convexe de F et f : C' —> R une
application. Montrer que les propriétés suivantes sont équivalentes.
(i) f est convexe.
(ii) L’ensemble epi(f) = {(a:,t) eEC xRy f(x) < t}, appelé épigraphe de f, est une partie
convexe de FF x R.

R |
|
T X i
. epi
f(x) """" !
z C
(iii) Pour tout n € N, pour toute suite finie x1, ..., x, d’éléments de C' et pour toute suite finie

n n n
t1 >0,...,t, >0 tels que Zti =1,ona f(Ztiaji) < thf(xz)
i=1 i=1 i=1

Solution. Montrons 'implication (i) == (ii). Supposons f convexe. Soient (x,%1), (y,t2) € epi(f)
et s €]0, 1[. On a s(x,t1) + (1 —s)(y,t2) = (sz+ (1 —s)y, st1 + (1 — s)t2). Comme f est convexe,
alorson a f(sz+(1—s)y) < sf(z)+(1—s)f(y) < st1+(1—s)ta, donc (sx+(1—s)y, sti+(1—s)t2) €
epi(f). Par conséquent, epi(f) est une partie convexe de E x R.

n
Montrons I'implication (ii) = (iii). Soient z1,...,x, € C et t; > 0,...,t, > 0 tels que Zti =
i=1
1. Pour tout ¢ € {1,...,n}, on a (x;, f(x;)) € epi(f). Par hypothese, epi(f) est un ensemble
n

convexe, alors il résulte de la proposition 6.1.3 que 'on a Ztl(mz,f(xl)) € epi(f). Or on a
i=1

(Ztﬂuztif(mi)) = th’(l’uf(mi)); d’ou f(ztzmz) < Ztif(l’i)-
Fizrl:allemenfc,:i’implicationZ(:ﬁi) = (i) est triviale. - -

Remarque 9.0.8. Lorsque f est une application convexe définie sur un ensemble convexe C' C F,
alors les ensembles {z € C'; f(z) <t} et {x € C; f(z) < t} sont convexes pour tout ¢t € R.
La réciproque n’est pas vraie. En effet, soient £ = R, C' = [0, +o0] et pour tout z € C, soit
f(z) = [z], la partie entiére de x. Alors ’application f n’est pas convexe et pourtant les ensembles
{reC; f(z) <t}et {z € C; f(x) <t} sont convexes pour tout ¢t € R.

Exercice 9.61. Soient E un R-espace vectoriel et C' un ensemble convexe non vide de £ x R.
Soit K = p(C) la projection de C sur E, K est un ensemble convexe non vide de E car p est
une application linéaire. Pour tout z € K, on pose f(z) = inf {s ER; (z,8) € C’}. Montrer que
f est une fonction convexe sur ’ensemble convexe K.
Solution. Pour tout z € K, on pose A, = {s eER; (2,9) € C’}. Soient z,y € K et t € [0, 1].
Soient s, s" € R tels que (z,s),(y,s’) € C. Alors on a :

(tz + (1 —t)y,ts + (1 —t)s') = t(z,s) + (1 —t)(y,8') € C,
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d’ou :
fltr+ (1 —t)y) <ts+ (1 —1t)s

Doncon a :

fltz+(1—1t)y) < 1€nAf ts+ (1 —t)s =tf(z)+ (1 —1t)s.

Par conséquent, on a :

fltz+ (1 —=t)y) < inf tf(z)+ (1 -t)s' =tf(z) + (1 -1)f(y).

s'€Ay

Donc f est bien une fonction convexe.

Exercice 9.62. Soient E un K-espace vectoriel et f : £ — R une application positivement
homogeéne. Alors f est sous-additive si et seulement si f est convexe.

Solution. Supposons d’abord que f est sous-additive. Pour tout z,y € E et pour tout ¢ € [0, 1],
ona fte+ (1—t)y < f(tx)+ f((1 —t)y) =tf(x)+ (1 —¢)f(y), donc f est convexe.
Réciproquement, supposons que f est convexe. Alors on a :

fa+y)=rf2E+Y) =22+ <2(if(@)+3f(y) = fl2) + fy).

Donc f est sous-additive.

Exercice 9.63. Soient £ un K-espace vectoriel et f : E — R une application positivement
homogeéne. Montrer que les propriétés suivantes sont équivalentes.

(i) f est une fonction convexe.

(ii) f est sous-additive.

(iii) L’ensemble Cy = {z € E'; f(x) < 1} est convexe.
Solution. L’équivalence (i) <= (ii) résulte de I’exercice précédent. L’implication (ii) = (iii)
est claire. Montrons I'implication (iii) = (ii). Supposons donc C'; convexe, et déduisons la sous-
additivité de f. Soient z,y € E et s,t € R tels que s > f(x) et t > f(y), alors £,% € Cy.

501
Comme C est convexe, on en déduit que l'on a z = L 4

st a7 €Cr Orz—%,doncona
flx+y) < s+t. Par conséquent, on a f(x +y) < f(x) + f(y).

Exercice 9.64. Soient I un ensemble non vide, (C;);c; une famille d’ensembles convexes non

vides d’'un K-espace vectoriel F et pour tout ¢ € I, soit f; : C; — R une fonction convexe.

Supposons que C' = {a: € 'ﬁICi ; sup fi(x) < +oo} # (). Montrer que C est un ensemble convexe
1€ iel

de FE et que lapplication x — f(x) = sup f;(x) est une fonction convexe sur C.
el

Solution. Soient xz,y € C et t € [0, 1]. Pour tout ¢ € I, tx + (1 —t)y € C; et on a :

filte + (1 = t)y) <tfi(x) + (1 = 1) fily) <tf(@)+ (1 =1)f(y),

d’ou sup fi(tx + (1 — t)y) < tf(x) + (1 —t)f(y) < +oo. Donc tz + (1 —t)y € C et on a
i€l

fx+ (1 —t)y) <tf(z)+ (1 —1t)f(y). Autrement dit, C' est un ensemble convexe et f est une

fonction convexe sur C.

Exercice 9.65. Soient E un K-espace vectoriel, A un ensemble convexe de F et f: A — R
une fonction convexe.
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1. Montrer que si A est absorbant et f non constante, alors f ne peut atteindre sa borne
supérieure dans A au point 0.

2. Montrer que ’ensemble des points de A ou f atteint sa borne inférieure dans A est convexe.

Solution. 1. On suppose A absorbant. Supposons que f atteint sa borne supérieure dans A
au point 0. Autrement dit, pour tout x € A, on a f(z) < f(0). Soit x € A. Alors il existe
s >0 tel que —sz € A. Soit t = 135, alors t €]0, 1[ et on a 0 = (1 — ¢)(—sz) + tx. D’olt on a
fO) <A —=t)f(=sz)+tf(z) < (1—1t)f(0)+tf(x), donc tf(0) < tf(x). Par conséquent, pour
tout z € A, on a f(z) = f(0). Donc f est constante.

2. Soient t € [0, 1] et a,b € A tels que f(a) < f(z) et f(b) < f(x) pour tout x € A. Alors on a
flta+ (1 =t)b) <tf(a)+ (1 —1t)f(b) <tf(x)+ (1 —1t)f(x) = f(x). Par conséquent, I’ensemble
des points de A ou f atteint sa borne inférieure dans A est convexe.

Exercice 9.66. Soient U un ouvert convexe non vide d’un espace vectoriel topologique FE et
f U — R une application convexe. Montrer que les propriétés suivantes sont équivalentes.

(i) f est continue.
(ii) Il existe un point a € U tel que f soit continue en a.
(iii) II existe un ouvert non vide V' de U dans lequel f est majorée.
)

(iv) f est localement majorée. Autrement dit, pour tout z € U, il existe un voisinage V, de x
dans E dans lequel f est majorée.

Solution. Les implications (i) = (ii) = (iii) et (i) = (iv) = (iii) sont triviales. Il reste &
montrer 'implication (iii) = (i). Supposons donc qu'il existe un ouvert non vide V' de U dans
lequel f est majorée. Soit M > 0 tel que pour tout = € V, on ait f(x) < M. Soit y € V. Montrons
d’abord que f est continue en y. Soit W un voisinage équilibré de 0 dans E tel que y + W C V.
Soit € > 0, alors il existe  €]0, 1] tel que n(M — f(y)) < €. Notons aussi que y + nW est un
voisinage de y dans E tel que y+nW C y+W C V. Soit z € y+nW, alors z = y+na, aveca € W.
Onaz=(1-ny+n(y+a), dou f(z) < (1-n)f(y)+nfly+a) < (1-n)f(y)+nM. Donc on a

f(z)—=f(y) <n(M— f(y)). D’autre part, on ay = Flnz—i—(l—ﬁ)(y—a) ety—acy+WcCVv,

do f(y) < 5 (2)+ (1— 5 ) f(y—a) < 5 f(2)+ 12 Donc on a —n(M—f(y)) < f(2)—f(y).
Par conséquent, on a |f(z) — f(y)| < n(M — f(y)) < e. Donc f est continue en y. Pour compléter
la démonstration, il suffit de montrer que pour tout x € U, il existe un voisinage V, de x dans FE
tel que V, C U et dans lequel f est majorée. Soit x € U. Comme U est un ouvert, alors il existe
t > 1 tel que tx + (1 —t)y € U. Soit W' un voisinage équilibré de 0 dans E tel que W/ C W et
z+W’' C U, alors z+ (1—1)W’ est un voisinage de « dans E tel que z+(1—1)W' C 2+ W' C U
et y+ W' Cy+W C V. Montrons que f est majorée dans x + (1 — %)W’ Soit z = x + (1 - %)a,
aveca € W'. Onaz=z—(1-3)y+(1-3)(y+a)=1(tz+1—-t)y) + (1 - 1)(y+a), dot
on a :

FER < o+ -ty +(1-Hfy+a) < fta+ (1 -ty + (1-L)M.

Donc f est bien majorée dans x + (1 — )W'.

Exercice 9.67. Soient U un ouvert convexe non vide d’un espace vectoriel topologique FE et
f : U — R une application convexe. Montrer que les propriétés suivantes sont équivalentes.

(i) f est continue.

[¢]
(ii) Il existe un point a € U et il existe t € R tels que (a,t) € epi(f).
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Solution. Montrons 'implication (i) = (ii). Soit a € U. D’aprés 'exercice précédent, il existe
un voisinage ouvert V, de a dans F tel que V, C U et tel que la restriction de f & V, soit majorée
par un réel s. Soient € > 0 et t = s +¢. Alors on a (a,t) € Vo x |s+ £,5 + 3—25[ C epi(f). Donc

o
on a (a,t) €epi(f).
o
Montrons I'implication (ii) = (i). Soient a € U et t € R tels que (a,t) €epi(f), alors il existe
un voisinage ouvert W de a dans E tel que W x {t} C epi(f). Soit V. =W NU, alors V est un
voisinage ouvert de a dans F tel que V' C U et pour tout x € V', on ait f(x) < t. Il résulte de
I’exercice précédent que f est continue.

Exercice 9.68. Soient U un ouvert convexe non vide de R™ et f : U — R une application
convexe. Montrer que f est continue.

Solution. Sans perdre de généralité, on peut supposer 0 € U. Comme U est un ouvert non
vide de R"™, alors on a Vect(U) = R", voir proposition 9.1.4. Soient ai,...,a, € U tel que

A = {aq,...,a,} soit une base de l’espace vectoriel R™. Soit ag = 0, on a conv(A U {0}) =
{Zt a; ; t; > 0 et Zt = } Soit M = olgzaézf(al) alors pour tout z = Ztiai €

conv(AU{0}), ona f(z) < Zt fla;) < Zt ;M = M. Donc f est majorée dans conv(AU{0}).

1=0 1=0
Comme conv(A U {0}) est d’intérieure non vide, voir remarque 9.6.2, il résulte de 'exercice 9.66

que f est continue.

Exercice 9.69. Soit (F, || ||) un espace normé.

1. Soient » > 0 et g : B(0, r) — R une fonction convexe telle que pour tout x € B(0, r), on
ait [g(z)| < 1. Montrer que pour tout z,y € B(0, 5), on a |g(z) — g(y)| < 2|z — y||.

2. En déduire que si U est un ouvert non vide E et si f : U — R est une fonction convexe
continue, alors f est localement lipschitzienne.

Solution. 1. Soient z,y € B(O, %) Supposons que 'on a g(y) — g(x) > %Hx —y||. Soit z =
r(y —x)

— = (re + 2[|z — y|z). Comme g est
2[|z — yl|

Y+ . Alors z € B(0,r) et on a y =

«
T 2z -yl +r
2||lz — yllg(y) + r(9(y) — g(x)) < 2llx —yllg(z). Par conséquent, on a —2|[z — y[| + 5[z — y|| <
2||lx —y|lg(z), d’on % < g(2z), ce qui est impossible. Donc on a bien g(y) — g(z) < §||IL“ —yl|. On
en déduit que pour tout z,y € B(0, §), on a |g(z) — g(y)| < 2|z — y||.

2. Soit zg € U. Comme f est contlnue en xg, alors il existe r > 0 tel que B(xzg, r) C U et tel que
pour tout x € B(xo, r), on ait |f(x) — f(zo)] < 1. On a B(xg, r) = xo + B(0, r), et pour tout
z € B(0, r), on pose g(z) = f(xo + z) — f(zp). Alors g est une fonction convexe et pour tout
z € B(0, 1), on a |g(2)| < 1. D’apres 1, pour tout a,b € B(0, ), on a |g(a) — g(b)| < 2[la — b]|,
dott |f(xg+a)— f(zo+b)| < 3|la—0b| = ino—Fa—(aco—kb)H Or on a B(zo, 5) = o+ B(0, §).
Par conséquent, pour tout =,y € B(ajo, %), on a |f(z) — f(y)| < §||:L“ — y||- Donc f est bien
localement lipschitzienne.

1
20|z —yll +r

convexe, alors on a ¢(y) (rg(z) + 2|z — yllg(z)). On en déduit que l'on a

Exercice 9.70. Soit (E, || ||) un espace normé.

1. Soit C' un convexe non vide de F et f : U — R une fonction convexe et lipschitzienne de
rapport K. Pour tout € E, on pose F(x) = inf {f )+ Kl|z—=x|; z € C}. Montrer que
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F est une fonction convexe de E dans R et lipschitzienne de rapport K telle que pour tout
x € C,on ait F(x) = f(x).

2. Soit U un ouvert non vide de (F, || ||) et g : U — R une fonction convexe continue.
Montrer que pour tout a € U, il existe r > 0 et il existe h : E — R une fonction convexe

continue tels que B(a,r) C U et h‘B(a o = Y-

Solution. 1. Soient a € C et z € E. Pour tout z € C, on a f(a) — f(2) < Klla — z|| <
Kl|a — z|| + K|z — 2|, dou f(a) — Kl|la — z|| < f(2) + K||z — z||. Donc F est bien définie. Il
est clair que pour tout x € C, on a F(z) = f(x). Pour tout z,y € F, on a f(z) + K|z — z|| <
f(z2)+Kl|z—y||+ Kl|ly—z|, dou F(z) < F(y)+ K|y —||. On en déduit que pour tout z,y € E,
on a |F(z) — F(y)| < K|ly — z||. Donc F est lipschitzienne de rapport K. Il reste & montrer que
F est convexe. Soient z,y € E et ¢t € [0, 1]. Pour tout z € C, on a:

FE+ K|z =(te+ A=yl = tf(2)+ 1 -1)f(2) + K[t(z —2) + (1 - )(z = )|
< tf(2)+ (1 =1)f(2) + K]z -z + (A =) K|z -yl

= H(f(2) + Kllz —zl)) + (1 = )(f(z) + K]z = yll) -

Par conséquent, on a F(tx + (1 —t)y) < tF(z) + (1 — t)F(y). Donc F est bien une fonction
convexe.
2. 1l suffit de combiner 1 et ’exercice précédent.

Exercice 9.71. Soient C' une partie convexe fermée d’un R-espace localement convexe FE et
f: C — R une application convexe et semi-continue inférieurement.

1. Montrer que epi(f) est une partie convexe et fermée de £ x R.

2. Soit ¢ une forme linéaire continue sur E x R. Montrer qu’il existe b € R et v € E* tels que
pour tout (z,t) € E x R, on ait ¢(x,t) = v(z) + bt.

3. Soient x € C' et € > 0. En appliquant le théoréme 9.4.1 & epi(f) et (x, f(x) — €), montrer
qu’il existe u € E* et a € R tels que f(z)—e < u(x)+a et pour tout y € C, u(y)+a < f(y).

4. En déduire qu’il existe une famille (g;);er de fonctions affines continues de E dans R telle
que pour tout x € C, on ait f(z) = sup g;(z).
i€l

Solution. 1. Comme f est une fonction convexe, il résulte de I'exercice 9.60 que epi(f) est une
partie convexe de E X R. Comme f est semi-continue inférieurement, il résulte de ’exercice 1.44
que epi(f) est fermée dans C' x R. Or C' x R est fermé dans E x R, donc epi(f) est fermée dans
E xR.

2. Soit ¢ une forme linéaire continue sur £ x R. Pour tout z € E, on pose v(z) = ¢((z,0)), et
soit b = ¢((0,1)), alors v € E*, b € R et pour tout (z,t) € E xR, on a :

o(2,t) = p((2,0)) + tp((0, 1)) = v(a) + bt

3. Comme epi(f) est une partie convexe et fermée de E x R telle que (z, f(z) — ) & epi(f),
d’aprés le théoréme 9.4.1, il existe une forme linéaire continue ¢ sur E x R telle que pour tout
y € C,on ait o((y, f(y))) < p((z, f(x) —e)). D’aprés 2, il existe alors b € R et v € E* tels que
pour tout y € C, on ait v(y) + bf(y) < v(x) + (f(x) —e)b. Donc on a bf(z) < (f(z) —e)b, d’on
b < 0. Par conséquent, pour tout y € C, on a :

Fo(y) — fy) < G (v() + (f(z) —)b).
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Soient u = Fv et a = 7 (v(z) + (f(z) — e)b), alors u € E*, a € R, f(z) — & = u(z) + a et pour
tout y € C, on a u(y) +a < f(y).

4. Soit A I’ensemble des fonctions affines continues g de E dans R telle que pour tout z € C, on
ait g(x) < f(x). D’apres 3, A # 0 et donc pour tout € C, on a supg(z) < f(x). Soit x € C.

geA
D’aprés 3, pour tout n € N*| il existe g, € A telle que f(x)—% < gn(z) < sup g(x). On fait tendre
geA
n vers I'infini, on obtient f(z) < sup g(x). Par conséquent, pour tout € C, on a f(z) = sup g(x).
geA gEA

Exercice 9.72. Soient I un intervalle de R et f : I — R une fonction. Montrer que les
propriétés suivantes sont équivalentes.

(i) f est une fonction convexe.

(ii) Pour tous x,y,z € I tels que x <y < z, on a :
(z—2)f(y) < (z—y)f(@) + (y —2)f(2),
) = f@) G-Il [ =f) e - f@) ) -f@) f&)-fly)

< ) < et <
z—x z—y Yy—x z—x Yy—x z—y

(iii) Pour tout a € I, 'application

s ) - L0 1
est croissante sur I \ {a}.
(iv) Pour tous z,y,z € I tels que z < y < z, on a 1) = J(w) < 1(z) = f(y)
y—z 2=y

(v) Pour tous x,y,z € I tels que x < y < z, le déterminant

—_
—_

est positif.
Solution. Montrons l'implication (i) = (ii). Soient x,y,z € R tels que x < y < z. Soit
p=1 yalors t €10, 1[, 1 —t =

—_— Z fe—

ona f(y) <(1—t)f(x)+tf(z), dou:
(z=2)f(y) < (z=y)f @)+ —2)f(2).
Ona: fy) = f(z) <A —=1)f(x) +1f(2) = f(2) = (1 = 1)(f(x) = f(2)), dou:

Y et on ay = (1 —t)x+tz. Comme f est convexe, alors
T

f) = f(@) _ f(z) = fy)
2—x T z—y
On a aussi f(y) — f(z) <t(f(2) — f(x)), d’ou :
F) = f@) _ G~ i) f6) = T@) _ fE) - )
Yy— - 2= Yy—x B zZ—Y
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Les implications (ii) = (iii) = (iv) sont triviales.
Montrons ’équivalence (iv) <= (v). Soient z,y,z € I tels que z <y < z. On a :

1 1 1 1 1 0
= T z—y
f@) fly) [f(2) fz) fly) f(z)—fy)
1 0 0
= T Yy—x z—y
f@) fly) = f@) f(z)— f(y)

= (W-2)(f(z) = fW) — (z —y)(f(y) — f(2))
f(z) = fly)  fly) - f($)> .

Z—Y y—x

~ a6

Par conséquent, on a bien I’équivalence (iv) <= (v).

Montrons limplication (iv) = (i). Soient x,z € I tels que = < z. Soient ¢t €]0, 1] et y =

fy) = @) 1) =) o)
y—x =Y

tr+ (1 —t)z. Comme on a x < y < z, alors par hypothése, on a

en déduit que 'on a :

f) < i)+ L=2502).

Z—X Z—x

Orona —2 =tet L= =1 —t,don f(y) <tf(x)+ (1 —1t)f(2). Donc f est une fonction
convexe. ©  * =TT

Exercice 9.73. Soient I un intervalle de R et f: I — R une fonction.
[}
1. Montrer que si f est une fonction convexe, alors pour tout a € [, les dérivées & gauche
f;(a) et a droite f;(a) existent dans R et on a f;(a) < fi(a).
o
2. Montrer que si f est continue sur I et dérivable sur [, alors f est convexe si et seulement

[}
si f’ est croissante sur J.

[e]
3. Montrer que si f est continue sur I et deux fois dérivable sur J, alors f est convexe si et
[¢]

seulement si f” est positive sur J.

Solution. 1. Soit a € J. Pour tout = € I \ {a}, on pose ¢(z) = W Soient s,t € I tels que

s < a < t. D’apres l'exercice précédent, la fonction s — ¢(s) est croissante sur | — oo, a[N I
et majorée par ¢(t), alors f;(a) = li_I)nago(s) existe dans R et on a f;(a) < ¢(t). De méme, la
S
s<a
fonction t — ¢(t) est croissante sur INJa, +o00[ et minorée par ff;(a), donc f(a) = tli_r>na o(t)
t>a

existe dans R et on a f;(a) < fi(a).
[e]
2. On suppose que f est continue sur I et dérivable sur J. Supposons d’abord que f est convexe.

Soient a, b €T tels quea <b.On a f'(a) = ff;(a) < fala) < w < f;(b) < fa(b) = f(b).

o
Donc f’ est croissante sur J.

[¢]
Réciproquement, supposons que f’ est croissante sur J. Soient x,y,z € I tels que v < y < z.
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Comme f est continue sur I et dérivable sur ;, d’aprés le théoréme des accroissements finis il
T =1@) _ gy oo FDZIO) _ gy 0 7 est
y—x z—y
fy) = f@) _ f(z) ~ fy)
y—xr T z-y

existe a €]z, y[ et b €y, z[ tels que

croissante, donc on a . Il résulte de ’exercice précédent que f est une

fonction convexe.
3. Ceci résulte de 2 et du théoréme des accroissements finis.
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Chapitre 10

TOPOLOGIES FAIBLE ET +-FAIBLE

Proposition (Schur). Dans l'espace de Banach (¢!, || ||1) une suite est convergente pour la
norme si et seulement si elle est faiblement convergente.

Démonstration. Soit (&)k>0 une suite dans (¢, || ||1), qui converge faiblement vers un élément
¢ € (1. 1l s’agit de montrer que l'on a klim I€x — £]l1 = 0. Quitte a remplacer & par & — &, on
—+00

peut supposer £ = 0. Notons que pour tout & > 0, on a & = (2 5 )n>0, avec x5, € K. Rappelons,

voir proposition 7.4.2, que (£ )x>0 converge faiblement vers 0 si et seulement si pour tout élément
[e.e]

Y = (Yn)n>0 € £>°, on a klim Zﬂcknyn = 0. Par conséquent, on peut aussi supposer que pour
- —+00
n=0
tout k,n € N, on a z, € R. On déduit aussi que pour tout n > 0, on a klim Tk, = 0. Donc,
——+o00

p
pour tout p > 0, on a lim Z |k, n| = 0. On raisonne par I’absurde en supposant que (§;)k>0
k—++aan_0 -

converge faiblement vers 0, mais (H{kHl) ne converge pas vers 0. Alors il existe € > 0 tel que

k>0
pour tout k > 0, il existe k' > k tel que ||{x/]]1 > . En multipliant par %, puis en extrayant
une sous-suite, on peut supposer que pour tout k > 0, on a |||y > 1. Alors, on va construire
par récurrence une sous-suite (§,(x))k>0 de (§x)r>0 et une sous-suite d’entiers (ng)x>o telles que
ng = 0 et pour tout £ > 0, on ait :

2kt rl o |z | > %H§<P(k)H1 (10.1)

ot &) = (Zkn)n>0- En effet, soit ng = 0. Comme ona lim o = 0, alors il existe un ry € N tel
(k) ’ = k—+oco

(o]
que pour tout k > rg, on ait |z o] < % < %kaul- D’ou, pour tout k > rg, on a Z|xk]\ > %”fk”l-

Jj=1
ny

On pose ¢(0) = r¢ et on choisit n; tel que Z\mrw\ > 3{|&, |1 Supposons que I'on a construit

Jj=1
p

t ©(0),... — 1) vérifiant ¢ ti 10.1). C li | =20
no,...,np et ©(0),...,¢o(p — 1) vérifiant I'équation (10.1). Comme on a k—lffoozukﬂ )

j=0
Tp
alors il existe r, > @(p — 1) tel que pour tout k > 7, on ait Z|xk]| < 1 < 1ll&ll1- Doy,
=0
. j
pour tout k > r,, on a Z |z j| > 2[|&k]l1. On pose ¢(p) = 7, et on choisit n,1 tel que
J>np

173
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Tip+1

Z |a;,np7j\ > %H&pﬂl. Soit ¥y = (Yn)n>0 € £>°, défini par yo = sgn(zo,0) et y, = sgn(zxy) si
Jj>np

ng <n < ngyi. Alorson a :

[e%¢) Nk41 ng o]
sz,nyn > Z |$k,n|_2|xk,n|_ Z |33k,n|
n=0 n=ni+1 n=0 n=ngy1+1
NE41
= 2 > fonal) -~ Il
n=ng+1

3
> 511wl = [1€em I
= 3lémlh
> 1.
Ce qui contredit le fait que la suite (5@(;@)@0 converge faiblement vers 0. Par conséquent,
(|’€k”1)k>0 converge bien vers 0. [

Proposition. Soit (E, 7) un espace vectoriel topologique tel que E* sépare les points de E. Alors
E* muni de la topologie *-faible est métrisable si et seulement si £/ admet une base algébrique
finie ou dénombrable.

Démonstration. Si £ admet une base algébrique finie, il résulte de la proposition 10.1.2 que
E* muni de la topologie #-faible est normable, donc métrisable. Supposons maintenant que E
admet une base algébrique dénombrable (e, )n>0. La famille des parties finies et non vides de N
est dénombrable. Soit (I;,),>0 une telle famille. Pour tout m > 0, soit :

Voom = {fEE*; |f(er)] < #H’ pour tout k Eln}.

Alors (me)(n’m)
la topologie *-faible. Pour montrer que E* est métrisable, d’aprés le théoréme 9.1.1, il suffit
de montrer que (Vnm) Jen? est une base locale de E*. Soient x1,...,z, € E, ¢ > 0, et

cne est une famille dénombrable de voisinages ouverts de 0 dans E* muni de

(n,m
V={fe€E; |f(z)| <e,pour tout 1 < i < p}. Comme (e,)n>0 est base algébrique de E,
alors il existe n > 0 tel que z1,...,x, € Vect({ey ; k € I,}). Pour tout 4, avec 1 <1 < p, il existe

a; € K tels que z; = Z a; kei. Soit m > 0 tel que Z

kel kel,
Alors on a V,,,, C V. Par conséquent, (Vn,m)(n m)EN? est une base locale de E*. Donc E* muni

— 1|ai7k\ < g, pour tout 1 <7 <p.

de la topologie *-faible est métrisable.

Réciproquement, supposons que E* muni de la topologie x-faible est métrisable. Soit (Wn)n>0
une base locale dénombrable de E*. Pour tout n > 0, il existe un sous-ensemble fini A,, de E et
en > 0 tels que V,, = {f € E*; |f(x)| < ey, pour tout z € An} C W,. Soit A = nL>JOAn. Alors A

est un sous-ensemble au plus dénombrable de E. Montrons que 1'on a Vect(A) = E. Soit y € E,
alors V.= {f € E*; |f(y)| < 1} est un voisinage de 0 dans E* muni de la topologie -faible.
Donc il existe n > 0 tel que V;, C V. Pour tout = € E, soit J(z) : E* — K la forme linéaire
définie par J(x)(f) = f(x), pour tout f € E*. Ainsi, on a :

V, = {fEE*; |J(2)(f)| < &n, pour tout x EAn} cV= {f eE"; |Jy)(f)] < 1}.
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D’apres le lemme 7.8.2, il existe a,, € K tels que J(y) = Z azJ(x). Autrement dit, pour tout

wGAn
feE* ona f(y) = f( Z axa:>. Comme E* sépare les points de E, alors on a y = Z Qe
IeAn CCEATL
donc y € Vect(A), d’ou on a Vect(A) = E. [

Proposition Soient X un espace compact et £ = C(X) muni de la norme || ||o. Alors on a
e(Bp+) = {\0y ; x € X et A € K, avec |A| = 1}.

Démonstration. Rappelons d’abord que 6, est la forme linéaire continue sur F définie par
6:(f) = f(z), pour tout f € E. Soit A= {0, ; v € X et A € K, avec |A\| = 1}. Comme on a
A C Bpg~ et Bp« est convexe et #-faiblement compact, alors on a tonv(A) C Bpg«, 'adhérence
est pour la topologie x-faible. Montrons d’abord que l'on a tonv(A) = Bpg+. Supposons que
conv(A) # Bp+ et soit u € Bp+ tel que u & conv(A). D’apreés les théoremes 9.4.1 et 10.1.1, il
existe f € E et o, € R tels que pour tout x € X et pour tout A € K avec |\| = 1, on ait
Re(Af(x)) < a < B < Re(u(f))- On en déduit que pour tout x € X, on a |f(z)] < a < <
Re(u(f)) < ||flloo- Par conséquent, on a || f|lec < @ < B < ||f|lco, d’ott la contradiction. Donc on
a bien conv(A) = Bpg~. Puisque application (A, z) — A, est continue de K x X dans E*, muni
de la topologie *-faible, on en déduit que A est *-faiblement compact. On déduit du théoréme
9.5.4 que 'on a e(Bg+) C A. Pour avoir le résultat, il reste & montrer que pour tout x € X et
pour tout A € K avec |A\| = 1, Ad, est un point extrémal de Bg«. Soient z € X, t €]0, 1] et
{1, o € B+ tels que §, = tuy + (1 — t)pg. Soit 1 la fonction constante égale & 1 sur X, alors
onal=209,;(1)=tur(1)+ (1 —t)uz(1). Or on a |u1(1)] < 1 et |uz(1)] < 1, dou pi(1) =1
et p2(1) = 1, voir exercice 9.32. Soit f € Bg telle que f > 0 sur X et f(z) = 0. Alors on a
11— flloo =1 et 1 =0,(1 = f) = tpa(1 = f) + (1 = )ua(1 — f), doton a py (1 — f) = 1 et
w2(1 — f) = 1. Donc on a ui(f) = 0 et pa(f) = 0. Soit f € Bg telle que f(z) = 0, alors on a
f=9g—h+i(p—q), avec g,h,p,q € Bg,g>0,h>0,p>0et g >0sur X et g(x) = h(z) =
p(z) = q(x) = 0. Il résulte de ce qui précede que on a pi(g9) = pi(h) = pi(p) = mi(g) =0
et pa(g) = pe(h) = pa(p) = pe(q) = 0. Donc on a uy(f) = pe(f) = 0. Autrement dit, on a
ker(d,) C ker(up) et ker(d;) C ker(uz). Par conséquent, il existe a,b € K tels que p; = ad, et
po = bd,. D’otton a d, = tad, +(1—1t)bd,. Donc on a 1 = ta+(1—1¢)b. Comme on a 1, o € Bp-,
alors |a] < 1 et |b| < 1, on en déduit a = b = 1. Par conséquent, on a pu; = puy = ;. Ainsi,
0z est un point extrémal de Bg«. Soit A € K avec |A\| = 1. Vérifions que AJ, est aussi un point
extrémal de Bpg«. Soient t €]0, 1] et pi, po € Bp- tels que Aoy = tug + (1 — t)pe. Alors on a

Oy = t% +(1- t)@ avec 11 12 € Bpg«. Il résulte du raisonnement ci-dessus que l'on a alors

A7 AT
O0p = % = %, d’ott Ad; = p1 = pe. Donc AJ; est bien un point extrémal de Bp«. |
Lemme. Soient (E, || ||) un R-espace normé et © € E \ {0}. Les propriétés suivantes sont
équivalentes.
1 a norme est Gateaux différentiable en x.
i) L Ga diffe iabl
x +th|| — ||z
(ii) Pour tout h € E, }in(lJ M existe dans R.
_>
&+ thil + |z — thl] — 2[l«]| _

0.

(ii) Pour tout h € E, lim
t—0 t

Démonstration. L’application (i) = (ii) résulte immeédiatement de la définition.
L’application (ii) = (iii) résulte de I’égalité suivante :
[+ thll = llzll [l = thll = llzll _ lz+th] + [z — th]] — 2|]]
t —t t ’

(10.2)
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Preuve de (iii) = (i). Soit h € E. Puisque ’application suivante

R — R
t — Hm’—i—th”

est convexe, alors :

Go(h) = tim LN =N o gy = gy Szt = Nl

v t—0— t t—0+ t
existent dans R et on a G (h) < G (h), voir exercice 9.73. Par hypothese, on a :

i 12 20+ llz — th|] = 2] _
1m =
t—0 t

0.

thl| —
Il résulte de I’égalité (10.2) que 'on a G, (h) = G (h). Autrement dit, }in% Il + th]l = izl existe
—
thl| —
_ i bt 141l

t—0

dans R. Pour tout h € E, soit G5 (h)

forme linéaire continue sur £. On a :

. I s’agit de montrer que G, est une

Go(—h) = tim 2= =2l M= thll =2l gy
t—=0 t t—0 —t

On a G4(0) = 0, et pour tout A € R\ {0}, on a:

tAh|| — tAh|| —
o) i B E R =Ll o 6B = el
t—0 t t—0 A
Pour tout hi, he € E et pour tout s € [0, 1], on a :
[z +t(shy + (1 = s)ho)|| — [zl = [s(z+th) + (1 = s)(z + tho)|| — sllz| — (1 — s)]|=||

< sl thall + (1 = s)llz + the| — sllzl] — (1 = s)|l]]

= sz +thall = llzll) + @ = s)(lz + the| — |l -

Par conséquent, on a G (shy+ (1—s)h2) < sG.(h1)+ (1 —5)Gz(he). On déduit de ce qui précede
que l'on a Gi(h1 + hg) = ZGI(%hl + %hg) < Gz(h1) + Gi(h2). On a aussi Gx(h1) + Gy(h2) =
—Gx(—hl)—Gx(—hg) < —Gr(—hl—hQ) = G;E(hl—“hQ). Doncon a Gr(hl—l—hg) = Gx(h1)+Gr(h2)
Par conséquent, G, est une forme R-linéaire sur F. On a :

o + thi| = llll | _ [llz + thl = llll] _ lo+th -2l 12l

t I B i ’
d’ott |Gz (h)| < ||h]|, donc G est continue. De plus, on a G (z) = ||z||, d’ou |G| = 1. [ |
Théoréme. Soient (E, || ||) un espace normé et x € E \ {0}. Les propriétés suivantes sont

équivalentes.
(i) La norme || || est Gateaux différentiable en x, quand on considére (E, || ||) comme un
R-espace normeé.
(ii) Pour toutes suites (fy,)n>0 et (gn)n>0 dans Sp+ vérifiant lim  f,(z) = lim g,(z) = ||z,
- - n——+00 n——+o0o

la suite (f, — gn)n>0 converge *-faiblement vers 0 dans E*.
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(iii) Il existe une unique f € E* telle ||f|| =1 et f(x) = |||

Démonstration. Rappelons d’abord que si (fy,)n>0 est une suite dans E*, alors (f,,)n>0 converge
«-faiblement vers 0 dans E* si et seulement si pour tout h € E, la suite (fy,(h)),>0 converge vers
0 dans K. D’autre part, d’aprés la proposition 7.4.5, on peut considérer dans ce théoréme que

(E, || ]|) est un R-espace normé.

Montrons U'implication (i) == (ii). Soient (fn)n>0 €t (gn)n>0 deux suites dans Sg- vérifiant
lim f,(z) = lim g,(x) = |z|. Soit h € E. Comme la norme || || est Gateaux différentiable

n——+00 n——+00

en x, d’apreés le lemme précédent, on a :

Ll th] [~ th] — 2]
t—0 t

=0.

Soit € > 0, alors il existe n > 0 tel que pour tout ¢ € R vérifiant |t| < 7, on ait :

[l + thl| + [lz — th]] — 2|z
t

Comme on a lim f,(z) = EI_E gn(x) = ||z||, alors il existe N € N tel que pour tout n > N,
n o0

n—-+o0o

on ait max (| |z]| — fu(2)]| 2] — gn(2)]) <ne. On a:

fn(nh) — On (77h)
n

fu(@ +nh) + gn(z — nh) — fu(z) — gn(2)
n

fo(x +nh) 4+ gn(x —nh) = 2||z]| + [lz]] = fo(z) + [lz] — gn(z)
7

fn(h) - gn(h) =

lz + bl + [l = nhll = 2]zl | Jlzll = fol@) + 2]l = gn(2)
U U

IN

< 3e, pourtout n>N.

De méme, on a —(fn(h) — gn(h)) = fu(—h) — gn(—h) < 3¢, pour tout n > N. Par conséquent,
pour tout n > N, on a |f,(h) — gn(h)| < 3e. Autrement dit, la suite (f,(h) — gn(h))n>0 converge
vers 0 dans R.

Preuve de (ii) = (i). Supposons que l'on n’a pas (i), i.e. la norme || || n’est pas Gateaux différen-
tiable en x. Alors il existe h € F et il existe € > 0 tels que pour tout n > 0, il existe ¢ € R vérifiant
[l + th| + [lz — th] — 2=

t

dans R\ {0} telle que hm t, = 0 et pour tout n > 0, on ait

0 < |t|] < m et on ait > e. Par conséquent, il existe une suite (t,)n>0
|2+ tnhll + 2 = tah]] = 2flz]]

tn

D’aprés le théoreme de Hahn Banach, corollaire 7.7.1, pour tout n > 0, il ex1ste frn,gn € Sg~

telles que fy,(z 4+t h) = ||z + tph|| et gn(z —t,h) = Hx—tnhH. On a |fr(tah)| < ||tnh] = [ta] 2]

et |gn(thh)| < |[tnh| = |t ||R]|, donc lim f,(t,h) = lim g,(t,h) = 0. On a f,(x) =
n——+o0o n——+o0o

fa(@+tph) = fu(tnh) = |z +tah| = fu(tnh) et gn(z) = gn(z—tnh)+gn(tnh) = [lz—tah|+gn(tnh),
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donc ngr—ir-loo fa(z) = EI—Poogn(x) = [|z[|. On a:

fn (tnh) — 0n (tnh)
tn

fn(h) - gn(h) =

fo(z +tah) + gn(x — tah) = fo(z) — gn(x)
tn

|z + toh|| + |l — thh| = fu(z) — gn(x)
tn

et tahll e tah] =20l
n

Donc la suite (f;, — gn)n>0 ne converge pas x-faiblement vers 0 dans E*. Donc on n’a pas (ii).
Preuve de (ii) = (iil). D’aprés le théoréme de Hahn-Banach, corollaire 7.7.1, il existe f € E*
telle || f]| = 1 et f(x) = ||=||. Supposons qu’il existe g € E* telle ||g]| = 1 et g(x) = ||z||. D’aprés
(ii), la suite constante (f — g) converge *-faiblement vers 0 dans E*. Autrement dit, pour tout
he E,ona f(h)—g(h)=0. Doiona f=g.

Preuve de (iii) == (ii). Soient (fy)n>0 €t (gn)n>0 deux suites dans Sg« vérifiant ngr—lr-loo fulx) =

1121 gn(x) = ||z||. Si (fn — gn)n>0 ne converge pas *-faiblement vers 0 dans E*, il existe y € F
—+00 =

et il existe £ > 0 tel que pour tout N € N, il existe n > N tel que |f(y) — gn(y)| > €. Quitte
a prendre une sous-suite, on peut supposer que pour tout n > 0, on a |f,(y) — gn(y)| > €.
D’aprés le théoréeme d’Alaoglu, Bg~ munie de la topologie *-faible est compacte, donc il existe
f,g € Bg~ tels que (f, g) soit une valeur d’adhérence de la suite ((fn,gn))n>0 dans B+ x Bg~,
voir proposition 3.1.5. Or, pour tout z € E, I'application (h,p) — (h(z),p(z)) est continue de
E* x E* dans K x K, E* étant muni de la topologie *-faible, donc pour tout z € E, (f(2),9(2))

est une valeur d’adhérence de la suite ((fn(z), gn(z)))n>0. On en déduit que l'on a f(x) = ||z|| et

g(z) = ||z|| et que f(y) — g(y) est une valeur d’adhérence de la suite ((f,(y) — gn(y)))n>0, d’ou
on a |f(y) —g(y)| = e. Donc on a |[f| = [lgl =1, f # g et f(z) = g(x) = [lz||, ce qui contredit
(iii). Par conséquent, (fn — gn)n>0 converge *-faiblement vers 0 dans E*. [
Proposition (Clarkson). Pour tout 1 < p < 400, 'espace de Banach (¢7, || ||,,) est uniformeé-

ment convexe.

Démonstration. Puisque la fonction ¢ — P est strictement convexe sur ]0, +oo[, alors pour
s+t\p sP+¢P
touss>0,t>0telsques;ét,ona(T) <

déduit que pour tous z,y € K tels que x # y, on a ‘

. Aprés quelques vérifications, on en

T p x|P p
—;y‘ < 21" + ly| . Notez aussi que pour

2
. Soient € > 0 et :

viyp P b

tousm,yEK,ona‘ 5

p p _
C’:{(aj,y)eK2; 7|$| ;'m zlet‘—x2y‘p26}.

p p p
Alors C est un compact. Soit p = inf{m ;‘m - ‘x—;y‘ i (x,y) € C’}, alors p > 0. Par
—up p P
homogénéité, on en déduit que pour tous z, y € K vérifiant ‘%‘ > € w, on a alors
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p p p p P
= + y| < [ + " ‘x—ky‘ . Pour montrer que (¢, || ||,) est uniformément convexe,

- 2

il suffit de montrer que pour tout € > 0, il existe § > 0 tel que pour tout z, y € ¢P vérifiant
r+y

Izl < 1.l < 1 et | =52 >

—y|P

> 1—9, on ait H%H < 2¢e. Soient € > 0 et p > 0 défini
p

comme ci-dessus, alors il ex1ste 5 > 0 tel que 0 < pe. Soient z, y € P tels que ||z][, < 1 et

_ p p p
||y||p§1etsoitA:{nZO; Tn = Yn >EM}'O”:

[ =
2 llp ~ 2

. Tn — Yn|P ‘xn_ynp
= X T T
neN\A neA
0P + lyn|” [Znl” + lyn|”
e T T
neN\A neA
1 |$n|p + |yn|p Ty + Yn |P
< etp2 [ 2 2 ]
ncA
< 1 ~ |$n|p + |yn|p Ty + Yn |P
< e+i) | e }
n=0
+oo
1 Tn + Yn|P
< coip- Sl
n=0
x+
= =43 =
< e+
)
< 2.
Par conséquent, (¢7, || ||,) est bien uniformément convexe. [
Proposition. Soit (E, || ||) un espace normé. Les propriétés suivantes sont équivalentes.
(i) L’espace (E, || ||) est uniformément convexe.
. . Tn +
(ii) Pour toutes suites (n)n>0 et (yn)n>0 dans Sp vérifiant ll)I}_l HM =1, on a
- - n oo
iz, — gl = 0.
(iii) Pour toutes suites (z5)n>0 et (yn)n>0 dans (E, || ||) telles que (z5)n>0 soit bornée et
lim [2fanl® + 2llynl® = lzn + yul*] = 0, 0na lim |z, — yall = 0.
n——+ n—-+00

Démonstration. Montrons I'implication (i) == (ii). Soient (z,,)n>0 €t (yn)n>0 deux suites dans
Tn + Yn

Sg telles que lim H

Jm = 1. Si la suite (||lz, — yn||)n20 ne converge pas vers 0, dans R,
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alors il existe € > 0 tel que pour tout N > 0, il existe n > N tel que ||z, — yn| > €. Par
hypotheése, (E, || ||) est uniformément convexe, donc il existe § > 0 tel que pour tout N > 0, il
2 2
pas vers 1, d’ou la contradiction. Donc on a bien lim |lx, — y,| = 0.
n—-+00

existe n > N tel que H < 1—. Par conséquent, la suite (‘ ) - ne converge
n>

Preuve de (ii) = (iii). Soient (zn)n>0 €t (Yn)n>0 deux suites dans (E, || ||) telles que (5 )n>0
soit bornée et 1121 [2||91:n||2 +2||ynll? = ||zn + yn||2] = 0. Puisque l'on a :
n——+0o0

2 2
2llznll? + 2llynll* = Nzn + yal®] 2 2llzall® + 2llyal® = (lzall + lyal)” = (lzall = lyall)” = 0.

On en déduit que 'on a nE)I—Poo [llznll = llynll] = 0. Ainsi, la suite (y,)n>0 est bornée. Puisque la

suite ([|zy, —yn||)n>0 est bornée, pour montrer que (||, —yn||)n>0 converge vers 0, d’aprés la pro-

position 3.1.5, il suffit de montrer que 0 est 'unique valeur d’adhérence de la suite (||zn—ynll), > -

Soient t > 0 et k — ny une application strictement croissante de N tels que klim |Zn, —Yn, |l =
—+00

t. Comme on a klim (s, || = llyn,ll] = 0, quitte & prendre des sous-suites, on peut considérer
—+o00
que 'on a kEI-iI-loo lzn, |l = kglfm |Yn,ll =a>0.Sia=0, alors on a kEI—iI-loo |Zn, — Yn,ll =0, d’ont
t=0.Sia>0,alors on a kEIEOO |Zn, + yn, |l = 2a, car on a kEI-ll-loo [QHxnk”2 + 2HynkH2 — |lzn, +
yn,l?] = 0. On a e ) i ¢ Sg et lim H i Yy H = 2, d’apres (ii), on a alors
. [ |7 (1Y | koo H|zn, | [|yn,

lim H¢ — Y ‘ =0.D'ouona lim |z, —yn,.l =0, donct=0.Par conséquent, on
koo H|zn, | [y | ko0
a lim ||z, —yn| = 0.

n—+oo
Preuve de (iii) = (i). Supposons que (E, || ||) n’est pas uniformément convexe. Alors il existe

n+ Yn

x
e > 0 tel que pour tout n > 0, il existe zy,, y, € Sg vérifiant ||z, —y,| > cet 0 < 1—H 5 <

1 )
n—_H.Orona.

2
0 < (Ilnll = llyal)”™ < [2llzal® + 2lynll? = lzn + yall?] = 4 = llzn + ynll?,

d’ou lim [2||:13n||2 + 2llynll? = l|zn + yn||2] = 0, mais pour tout n > 0, on a ||z, — y,| > &. Ce
n—-+oo

qui contredit (iii). [
Théoréme (Milman-Pettis). Tout espace de Banach uniformément convexe est réflexif.

Démonstration. Soit (E, || ||) un espace de Banach uniformément convexe et soit n € E** tel
que ||n|| = 1. Soit J : E — E** I’application canonique. Il s’agit de montrer qu’il existe z € FE tel
que J(z) = n. D’aprés le théoréme de Goldstine, il existe une famille filtrante croissante (z))xea
dans Bp telle que (J(x)))xea converge vers i pour la topologie *-faible. On vérifie facilement,

comme dans la proposition 10.2.1, propriété 4, que (“J(afk)|’))\e/\ converge vers 1 = ||n||. D’ou

T

([lzall) ¢ converge vers 1. Par conséquent, (J <‘ )))\ | converge vers 7 pour la topologie
€

|zl
x-faible. Donc on peut supposer que (z))xea dans Sg. Soit I = A x A, et on décréte que pour

. )+
(A, 1), (Ao, o) € I, ona (A, 1) < (Ao, p2) si A1 < Az et py < po. Alors (J( A u))
2 (A\perl

est une famille filtrante croissante qui converge vers 7 pour la topologie *-faible. Comme on

a ||[n|| = 1 et pour tout (\,u) € I, on a HJ(%)H < 1, on vérifie facilement, comme

dans la proposition 10.2.1, propriété 4, que la famille filtrante croissante (HJ(@) H) el
IS
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=)

converge vers 1 = ||n||. D’ou la famille filtrante croissante ( converge vers 1.

(A p)el
Soit ¢ > 0. Comme (FE, || ||) est uniformément convexe, il existe § > 0 tel que pour tout x,y € Sp

, on ait ||z — y|| < e. Alors il existe A\g € A tel que pour tout A, p € A
Hx,\ +xy,

vérifiant 1 — § < ‘ x

vérifiant Ag < A et A\g < p, on ait 1 — 9 <

Ao < Aet A\g < p,ona |lzy —x,l < e. Par conséquent, la famille filtrante croissante (x)xea
est de Cauchy dans (E, || ||), donc elle converge, pour la norme, vers un élément x € E. D’ou
la famille filtrante croissante (J(z)))aea converge vers J(z) pour la norme dans E**. Donc la
famille filtrante croissante (J(zy))xea converge vers J(z) pour la topologie *-faible. Comme la
limite est unique, on en déduit que n = J(z). Par conséquent, (E, || ||) est réflexif. [

H Donc, pour tout A, u € A vérifiant

Supplément d’exercices

Exercice 10.20. Soit £ = C([0, 1]) 'espace de Banach des fonctions continues sur [0, 1] et a
valeurs dans K, muni de la norme || ||OO Pour tout ¢ € [0, 1], soit 6; € E* définie par 0,(f) = f(¢),

et soit A € E* définie par A(f / f(t)dt, pour tout f € E. Dans tout cet exercice, on munit
E* de la topologie *-faible.

1. Montrer que l'application ¢ — d; est continue de [0, 1] dans E*. En déduire que K =
{6¢; 0 <t <1} est compact.

2. Montrer que A € conv(K).

3. Montrer que si T' € conv(K), alors pour tout f € E vérifiant f(¢) > 0, pour tout ¢ € [0, 1],
onaT(f)>0.

4. Soit M = Vect(A, K), i.e. le sous-espace vectoriel de E* formé de toutes les combinaisons
linéaires finies coA + 10y, + -+ + ¢cndy,, o ¢; € K. Notez que conv(K) C M et que
M Nnconv(K) est lenveloppe convexe fermé de K dans M. Montrer que A est un point
extrémal de M Nconv(K), et pourtant A n’appartient pas & K, voir théoréme 9.5.4.

Solution. 1. D’aprés I’exercice 10.17, 'application ¢t — d; est continue de [0, 1] dans E*. Comme
[0, 1] est compact, alors K = {d; ; 0 < ¢ < 1} est compact.
2. Pour tout f € E, on a :

1
= [ = i 1575 = i (33 00)0)

n
Or on a %Zéﬁ € conv(K), d’ou A € conv(K).
k=1
3. Soit P = {T EE*; T(f)>0sifeFet f> 0}. Il est clair que que P est convexe et fermé
dans E* pour la topologie *-faible. Comme on a K C P, on en déduit que 'on a conv(K) C P.
4. Soient T,S € M nconv(K) tels que A = %(T—I—S). Soient cg,...,cn, do,...,d, € K et
t1y . sty S15-.., 8, € [0, 1] tels que T = coA+c¢16y, ++ - -+ ¢n0y, et S = dogA+dids, +- - - +dpds,, -
On peut bien str supposer que les t; sont deux & deux distingues et que les s; sont aussi deux
a deux distingues. Comme T, S € W(K) C P alors pour tout i € {0,...,n}, onac¢; >0 et

d;>0.0na (1- —co — —do A= Z G —0y, +Z 552 On peut construire facilement une fonction
=1 =1
affine positive non nulle f sur [0, 1] telle que A(f) # 0 et telle que f(¢;) = f(s;) = 0, pour tout
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n n
i € {1,...,n}. Par conséquent, on a 1 — %co - %do =0, d’ou Z; %cﬁi + z; %5&. = 0. Comme
i= i=
pour tout 7 € {1,...,n}, on a ¢; > 0 et d; > 0, alors pour tout 7, on a ¢; = d; = 0. On a aussi
1= %co + %do, avec ¢g > 0 et dy > 0, d’ou ¢g = dy = 1. Par conséquent, on a T'=S = A. Donc
A est bien un point extrémal de M Nconv(K).

Exercice 10.21. Soient X un espace topologique et f : X — R une application.

1. Montrer que si f est semi-continue inférieurement, alors pour tout x € X et pour toute
suite (x,,)p>0 dans X convergeant vers z, on a f(z) < limJirnff(a:n).
- n—-+0o

2. Montrer que si tout point de X posséde une base dénombrable de voisinages et si pour tout
x € X et pour toute suite (x,),>0 dans X convergeant vers z, on a f(z) < limJirnff(mn),
- n—-+0oo

alors f est semi-continue inférieurement.

Solution. 1. Soit € > 0. Alors il existe un voisinage V de x dans X tel que pour tout y € V, on ait

f(z)—e < f(y). Comme (z,)n>0 converge vers z, alors il existe N € N tel que pour tout n > IV,

on ait z, € V. Donc, pour tout n > N, on a f(z) —e < f(z,), dou f(z) —e < lir_)gJirnff(a:n).
n o

Comme ceci étant vrai pour tout € > 0, on en déduit que l'on a f(z) < liginff(xn).
n o0

2. Supposons que f n’est pas semi-continue inférieurement. Alors il existe z € X et il existe e > 0
tels que pour tout voisinage V' de = dans X, il existe y € V tel que f(y) < f(z) —e. Soit (Vy,)n>0
une base dénombrable de voisinages de x dans X telle que V,,41 C V,, pour tout n > 0. Alors
pour tout n > 0, il existe =, € V}, tel que f(z,) < f(x) —e. Alors la suite (z,,)n>0 converge vers
z dans X et on a %Ef&f flxn) < f(x) —e < f(x), ce qui contredit 'hypothése. Donc f est bien

semi-continue inférieurement.

Exercice 10.22. Soit (E, || ||) un espace normé.

1. Montrer que 'application 2z — ||z|| est semi-continue inférieurement pour la topologie
faible sur E.

2. En déduire que si (z5)p>0 est une suite dans E convergeant faiblement vers un z € F,
alors on a ||z|| < liminf ||z, ||.
n—-+00

3. Donner un exemple d’un espace normé, ou 'application z — ||z|| n’est pas faiblement
continue.

Solution. 1. Pour tout ¢ € R, l'ensemble {x € E ; ||z|| < t} est convexe et fermé pour la
norme, donc il est faiblement fermé. Par conséquent, l’application x — ||z|| est semi-continue
inférieurement pour la topologie faible sur E.

2. Ceci résulte de 1 et de Iexercice précédent. Notons que 1’on a montré cette propriété dans la
proposition 10.2.1.

3. Il suffit de prendre E = (P, avec p €]1, +o0], voir remarque 10.2.1.

Exercice 10.23. Soit (E, || ||) un espace de Banach séparable. Soit (z,)n>0 une suite dense dans
Sg. Pour tout f € E*, on pose T'(f) = ( 7 ) s0

1. Montrer que T est une application linéaire continue de E* dans £2.

2. Montrer que T est aussi continue de E*, muni de la topologie *-faible, dans ¢? muni de la
topologie faible.
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Solution. 1. I est clair que T est une application linéaire de E* dans ¢2. Pour tout f € E*, on

- (Zuxn ) (ZW) i

Donc T est continue de E*, muni de la norme, dans ¢2.
2. Soit y = (tn)n>0 € ¢2. Montrons que I'application

NI

T,: E* — K
a:

. . . . . L. tnTy

est continue de E*, muni de la topologie *-faible dans K. Comme la série Z est absolument
n>0

2% Xty

convergente, alors Z " est convergente dans F et on a T,(f)=f (Z Zn") Par consé-
n>0 n=0

quent, T}, est continue de E*, muni de la topologie *-faible dans K. On déduit de la proposition
7.4.4 que T est continue de E*, muni de la topologie *-faible, dans #2 muni de la topologie faible.

Exercice 10.24. Soit (F, || ||) un espace normé. Montrer que les propriétés suivantes sont
équivalentes.

(i) Bpg est séparable pour la topologie faible.
(ii) Sk est séparable pour la topologie faible.
(iii) E est séparable pour la topologie faible.
(iv) E est séparable pour la norme.

Solution. Montrons I'implication (i) = (ii). Soit A un ensemble au plus dénombrable et dense
dans Bg. Soit « € Sg. Alors il existe une famille filtrante croissante (x))xcp dans A convergente
vers = pour la topologie faible. D’aprés I'exercice 10.22, application y — ||y|| est semi-continue
inférieurement pour la topologie faible sur E. Donc, pour tout € > 0, il existe un voisinage V' de
x dans E pour la topologie faible tel que pour tout y € V, on ait [[z]| — e < |ly||. Soit A\g € A
tel que pour tout A > Ag, on ait z) € V. Alors pour tout A > XA, on a 1 —e < [jz)]| < 1,

d’ou hm |lza]l = 1. Par conséquent, on a lim = x, pour la topologie faible. On en déduit

AEA TTaal

que ’ensemble { Yy €A\ {0}} est au plus dénombrable et dense dans Sg, donc Sg est

Iyl

séparable pour la topologie faible.

L’implication (ii) = (i) résulte de I’exercice 10.11.

Montrons implication (i) = (iii). Soit z € E tel que ||z|| > 1. Alors il existe n € N* tel
que - € Bg. Comme A est dense dans Bp pour la topologie faible, alors il existe une famille
filtrante croissante (zx)xea dans A convergente vers £ pour la topologie faible, d’ott (nz))xea
converge vers x pour la topologie faible. Par conséquent, ’ensemble {ny ; n > 1 et y € A} est
dénombrable et dense dans E pour la topologie faible, donc E est séparable pour la topologie
faible.

L’implication (iii) = (iv) résulte de la proposition 10.2.6.

Montrons 'implication (iv) = (i). Comme E est séparable pour la norme, alors Bg, est séparable
pour la norme car tout sous-espace d’un espace métrique séparable est séparable, voir remarque
2.4.1. Par conséquent, Bg est séparable pour la topologie faible car la topologie faible est moins
fine que la topologie associée & la norme.
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Remarque 10.0.9. Soit (E, || ||) un espace normé. On fait le méme raisonnement comme dans
I’exercice précédent et on montre que Bp- est séparable pour la topologie x-faible si et seulement
si Sp« est séparable pour la topologie x-faible.

Exercice 10.25. Montrer que (£°°)* est séparable pour la topologie *-faible.

Solution. Comme ’espace normé (¢1, || ||1) est séparable, on déduit de la proposition 10.2.6 que
¢! muni de la topologie faible est séparable. On déduit alors de la remarque 10.1.5 et du théoréme
de Goldstine, corollaire 10.2.1, que (£!)** est séparable pour la topologie *-faible. Comme (/!)*
est isométriquement isomorphe & ¢°°, voir proposition 7.4.2, alors (¢°°)* est séparable pour la
topologie x-faible.

Exercice 10.26. Montrer que tout sous-ensemble faiblement compact de £°° est séparable pour
la norme.

Solution. Soit C' un sous-ensemble faiblement compact de £°°. D’aprés 'exercice précédent et
la proposition 10.2.7, C est métrisable pour la topologie faible. Donc C' est séparable pour la
topologie faible. Soit A un ensemble au plus dénombrable et faiblement dense dans C. D’apreés

le théoréme 10.1.2, on a conv(A)" = conv(A)” I or conv(A)” oo et séparable pour la norme
— . w
et on a C' C conv(A) , donc C' est séparable pour la norme.

o
Exercice 10.27. Soit f : ¢! = ¢ — K définie par f(z) = Zmn, pour tout z = (z,)n>0 € £*.
n=0
Il est clair que f est une forme linéaire continue quand on munit ¢! de la norme. Montrer que f
n’est pas continue quand on munit /! = ¢} de la topologie *-faible.
Solution. Pour tout n > 0, soit T}, € ¢y défini par T,,(y) = yn, pour tout y = (yn)n>0 € Co.
Alors la suite (T},)n>0 converge vers 0 pour la topologie -faible, mais on a f(7;,) = 1, pour tout
n > 0. Donc f n’est pas continue quand on munit ¢! = ¢y de la topologie *-faible.

Exercice 10.28. Soit (E, || ||) un espace de Banach reflexif.
1. Montrer que pour tout f € Bpg=, il existe un point extrémal x de Bg tel que || f|| = f(x).
2. Montrer que si E est de dimension infinie, alors e(Bg) n’est pas dénombrable.

Solution. 1. D’apreés les propositions 6.3.1 et 7.4.5, on a || f|| = sup |[Re(f(z))| = sup Re(f(z)).
z€BE z€EBE
Comme (E, || ||) est de Banach réflexif, alors Bg est compact pour la topologie faible. D’apreés le

corollaire 9.5.3, il existe alors un point extrémal = de Bg tel que || f|| = Re(f(x)). D’autre part,
on a |f(z)] < [[f]l, d'on Im(f(z)) = 0 et Re(f(z)) = £(x). Donc on a bien [[f] = £(z).

2. Notons d’abord que d’apres la proposition 10.2.8, e(Bg) est un ensemble infini. Raisonnons
par 'absurde et supposons que e(Bg) est dénombrable, i.e. e(Bg) = {x, ; n > 0}. Pour tout
n > 0, soit F, = {f € B~ ; ||f|| = f(zn)}. D’aprés 1, on a Bg+ = ngoF"' Comme Bp-+ est
compact pour la topologie *-faible et comme pour tout n > 0, F), est fermé pour la topologie
x-faible, on déduit du théoréme de Baire, théoréme 3.4.4, qu’il existe n > 0 tel que 'intérieur de
F,, dans Bp« n’est pas vide. On en déduit qu’il existe g € F), tel que ||g]] < 1 et qu’il existe £ > 0
et z1,...,2p € E tels que pour tout f € Bg~ vérifiant |f(z;)—g(z;)| < €, pour tout 7 € {1,...,p},

on ait f € F,. Soit N = ,r_%l ker(J(z;))Nker(J(zy)) = {f € E* f(zn) = f(z21) =+ = f(z) =0},
N est un sous-espace vectoriel de E*. Comme E est de dimension infinie et donc E* est de di-

mension infinie, il résulte du lemme 7.8.2 que N est non nul. Par conséquent, il existe f € g+ N
tel que ||f]| =1, donona l=|f] = f(zn) = g(xn) = |lg|| <1, ce qui est impossible. Donc
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I'ensemble e(Bg) n’est pas dénombrable.

Exercice 10.29. Soient A un sous-ensemble non vide convexe, borné et fermé dans un espace
de Banach (E, || ||) et J : E — E** 'application canonique. Montrer que A est compact pour

la topologie faible si et seulement si J(A) et J(A)" ont les mémes points extrémaux dans E**.
Solution. Si A est compact pour la topologie faible, alors J(A) est compact pour la topologie

x-faible sur E**, d’ott on a J(A) = (A)w*, donc J(A) et J(A)" ont évidemment les mémes
points extrémaux dans E**.

Pour montrer la réciproque, on suppose que A n’est pas compact pour la topologie faible. D’aprés
le théoreme 10.2.8, il existe f € E* tel que pour tout a € A, on ait Re(f(a)) # sup Re(f(x)).
€A

Comme A est borné, alors (A)w est compact pour la topologie *-faible. On applique le corollaire

9.5.3 au compact (A)w et a la forme linéaire continue A — A(f) sur E**, on trouve un point
extrémal Ag de J(A)" tel que :

Re(Ao(f)) = sup Re(A(f)) = supRe(J(2)(f)) = sup Re(f(z)).
Aemw* €A €A

*

Par conséquent, Ag € J(A). Donc J(A) et J(A)" n’ont pas les mémes points extrémaux dans
B,

Exercice 10.30. Soient (F, || ||) un espace normé, (F, || ||') un espace normé strictement convexe
et T : E — F une application linéaire continue et injective. Pour tout x € F, on pose ||z, =
llz|| + [|T(x)]|". Montrer que || ||, est une norme équivalente a la norme || || et que (E, || ||) est
strictement convexe.

Solution. II est clair que || ||, est une norme sur E. D’autre part, pour tout z € FE, on a
Izl < llz|l» < (1 +||T]]) ||=]|. Donc les deux normes || || et || || sont équivalentes. Soient x,y € E

tels que (z,y) soit libre. Comme T est injective, alors (T'(z),T(y)) est libre dans F. Puisque
(F, || |I') est strictement convexe, il résulte de la proposition 10.3.1 que l'on a | T'(z) + T'(y)|| <
IT(x)||" + |IT(y)|'. Par conséquent, on a :

lz+ylle = llz+yl+T@) +THI
< 2l + Myl + 1T (@) + T )’
<zl + llyll + 1T @+ 1T @)

= |lzllr + llyll--

On déduit de la proposition 10.3.1 que (E, || ||,) est strictement convexe.

Exercice 10.31. Soit E = C([0, 1]) I'espace vectoriel des fonctions continues sur [0, 1] et a

valeurs dans K. Pour tout f € E, on pose |f|| = VIIflIZ + If]|3, ot [[flleo = sup |f(z)] et
0<z<1

1 2
1fll2 = /0 |f(z)|? dm) . Montrer que || || est une norme sur E telle (£, || ||) soit strictement

convexe, mais (E, || ||) ne soit pas uniformément convexe.
Solution. On vérifie facilement que || || est une norme sur E. Montrons que (E, || ||) est stric-
tement convexe. Soient f,g € E tels que (f,g) soit une famille libre. Comme (E, || ||2) est
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un espace préhilbertien, alors (F, || ||2) est strictement convexe, voir exercice 8.4, d’ou on a
If +gll2 < fll2 + [lgll2- Donc on a :

If+al = VIf+gll%+1f+9l3
2 2
< Ul + gllo)® + (17112 + gllz)
< VIS + I + VgllE + Tgll3
= NI +ligll-
On déduit de la proposition 10.3.1 que (E, || ||) est strictement convexe.
Montrons que (E, || ||) n’est pas uniformément convexe. Pour tout n > 1, soit f,, = 1 la fonction

constante égale a 1 sur [0, 1], et soit :

nr si Ong%,
gn(z) =
1 si <2<l

Alorson a ||ful? =2, lim [lgu]> =2et lLim | fn+ gnl> =8, dou :
n— 400 n—-+00

lim (2] fal® + 2gnl? = 1fn + gal?| = 0,
n—-+0o

mais on a || f, — gull®> > || fn — 9nll> > 1. Donc la propriété (iii) de la proposition 10.4.3 n’est
pas vérifiée. Par conséquent, (E, || ||) n’est pas uniformément convexe.

Exercice 10.32. Soient (E, || ||) un espace normé uniformément convexe.
1. Soient zg € E et r > 0. Montrer que 'ensemble des points extrémaux de la boule fermée
B'(zg,7) ={z € E; ||z — zo| < r} est la sphere S(zo,r) = {z € E; ||z — zo|| =r}.
2. Soient A un sous-ensemble de F et a € A. On suppose qu’il existe zg € F et r > 0 tels que
la — zo|| = r et A C B'(xp,r). Montrer que a est un point extrémal de A.

Solution. 1. Puisque 'application x — xg + rz est linéaire et homéomorphisme de FE, il suffit
de montrer que 'on a e(Bg) = Sg. On déduit de la remarque 9.5.2 que l'on a e(Bg) C Sg. Ré-
ciproquement, soit x € Sg. Montrons que x est un point extrémal de Bg. D’aprés la proposition

9.5.3, il suffit de montrer que pour tout y,z € Bp vérifiant * = % on a y = z = x. Soient
y,z € Bp tels que z = 3%, Alors on a 1 = [|lzf| < L[jy|| + 4|z < 1, d’ou |jy|| = ||z|| = 1. Si
y # z,alors on a ||y — z|]| =& > 0. Comme (FE, || ||) est uniformément convexe, alors il existe

6 > 0 tel que HyTJFZH <1—-4 <1, ce qui est impossible. Donc on a y = z, d’ou x = y = 2. Par
conséquent, x est un point extrémal de Bp.

2. D’aprés 1, a est un point extrémal de B'(zg,r). Comme on a A C B'(xo,r), alors a est un
point extrémal de A.

Exercice 10.33. Soit (F, || ||) un espace normé tel que le dual topologique (E*, || ||) soit uni-
formément convexe. Soient f, f, € Sg=. Montrer que la suite (f,),>0 converge vers f pour la
norme si et seulement si (fy,)n>0 converge *-faiblement vers f.

Solution. Il est clair que si (fy)n>0 converge vers f pour la norme, alors (fy)n>0 converge x-
faiblement vers f.
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Réciproquement, supposons que (fy,)n>0 converge *-faiblement vers f. Soient € > 0 et z € S tels

que |f(z) > 1-c. Ona2 > [fut Il > |fale) + f@)] et lim |fule)+ f(@)] = 2f()] > 222,

donc on a lim | f,+ f|| = 2. Il résulte de la proposition 10.4.3 que 'on a lim ||f, — f|| = 0.
n—+o0o n—+-00

Exercice 10.34. Soient F' un sous-espace vectoriel d'un espace normé séparable (E, || ||) et
T : F — cg une application linéaire continue. Le but de cet exercice est de montrer qu’il existe
une application linéaire continue S : E — ¢o prolongeant T telle que ||S]| < 2||T||.

Sans perdre de généralité, on peut supposer ||T'|| = 1.

Pour tout n > 0, soit f,, : co — K la forme linéaire continue définie par f,(e,) = 1 et fu(e,) =0
sip # n. Alors on a T'(z) = (fn o T(x)))n>0, pour tout x € F. Comme f, oT € F* d’apres
le théoréme de Hahn-Banach, théoréme 7.7.3, il existe une forme linéaire continue g, € E*
prolongeant f,, o T telle que ||gn|| = [|fn o T|| < ||f2]| IT]] = 1. Puisque (E, || ||) est séparable,
d’aprés le théoréme d’Alaoglu et le théoréme 10.2.4, Bp« est compact et métrisable pour la
topologie *-faible. Soit d une distance induisant la topologie *-faible sur Bg~. Rappelons, voir

la démonstration du théoréme 10.2.4, que si (z,)p>0 est une suite dense dans Sg, alors pour
+oo

tout f,g € Bg~, on a d(f,g) = Z%p\f( ) — g(xp)|. Soient F+ = {f € E* ; F C ker(f)} et
p=0

K:BE*HFJ‘.

1. Montrer que si g est une valeur d’adhérence de la suite (g, )n>0 pour la topologie *-faible,
alorsonage K.

2. Montrer que 'on a lim d(gn, K) =0.
n—-+00

3. Vérifier qu’il existe une suite (hy),>0 dans K telle que hI_E d(gn,hn) = 0. Pour tout
- n——+oo

x € E, on pose S(z) = (gn(z) — hp(x))n>0. Montrer que S est une application linéaire
continue de E dans ¢y prolongeant T telle que [|S]| < 2.

Solution. 1. Soit g une valeur d’adhérence de la suite (g )n>0. Comme Bpg+ est compact et

métrisable pour la topologie *-faible, alors g € B~ et il existe une sous-suite (¢, )i>0 de (gn)n>0

convergeant vers g pour la topologie x-faible. Alors pour tout € F, on a g(z) = ,1121 Gn,; ().
1—>+00

Pour tout z € F, on a gp,(x) = fp, 0T (z), dou .liin gn;(x) =0 car T'(x) € ¢p. Donc, pour tout
1—>+00

x € F,onag(xr)=0,doi g€ F+. Donc on a bien g € K.
2. Comme (d(gn, K)) est une suite bornée dans R, pour montrer que lilgrl d(gn,K) =0, il
n—-—+0oo

suffit de montrer que 0 est 'unique valeur d’adhérence de la suite (d(gn, K ))n>0. Soit @ € R une

n>0

valeur d’adhérence de la suite (d(gn, K ))n>0. Alors il existe une application strictement croissante

¢ : N — N telle que a = nEIJIrloo d(gp(n), K). Comme (gy(n))n>0 est une suite dans le compact

Bp, alors (gy(n))n>0 posséde une valeur d’adhérence g € Bp~, d’'ott g est une valeur d’adhérence
de la suite (gn)n>0. D’aprés 1, on a alors g € K. Par conséquent, on a o = d(g, K) = 0, d’ou
nll)r}rloo d(gn, K) = 0.
3. Comme on a d(g,,K) = gn}'{d(gn,h), alors pour tout m > 0, il existe h, € K tel que
€
d(gn, hn) < d(gn, K) + n+r1> d’ott on a lim d(gn,h,) = 0. Pour tout x € E, on pose S(z) =
n—-+o0o
(gn(z) — hp(z))n>0. Montrons d’abord que pour tout = € E, on a lir}ra gn(z) — hyp(z) = 0.
- n—-—+0oo
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+00
1
Puisque l'on a d(gn, hy) = Z 2—p|gn(a;p) — hy(xp)|, alors pour tout p > 0, on a :
p=0
nl{r}rloo gn(@p) — hn(ap) = 0.

Comme la suite (g, — hyp)n>0 est bornée dans E* pour la norme, on en déduit que pour tout
x € E,on a lirJIrl gn(x) — hyp(z) = 0. Donc S est bien une application linéaire de E dans co.
n—-+0oo

Pour tout = € F, on a h,(z) = 0, donc S prolonge 7. D’autre part, pour tout z € E, on a
|9n () = hn(2)] < [gn ()| + |ha(2)] < [[gnll [|2]] 4 |hn ]l [[#]] < 2|[z[|. Par conséquent, on a |[S]| < 2.
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Chapitre 11

GROUPES TOPOLOGIQUES

Proposition. Soient G un groupe topologique et A, B deux parties de G.
1.Ona A= VOVAV, ou V est 'ensemble des voisinages de e dans G.
S

2. Si U est un ouvert de G, alors U™, AU et UA sont des ouverts de G.

3. Si A est une partie fermée de G et B est une partie compacte de G, alors AB et BA sont
des parties fermées de G.

4. Si G est séparé et si A et B sont des parties compactes de G, alors AB et BA sont des
parties compactes de G.

Démonstration. 1. Soit x € F, on a x € A si et seulement si pour tout voisinage V de e dans
G,ona (V)N A #0. Ceci est équivalent & € AV L. Or V est un voisinage de e dans G si et

seulement si V! est un voisinage de e dans G, donc on a A = VOVAV.
€

2. Comme l'application x — x~! est un homéomorphisme de G, alors U ! est un ouvert de G.
Ona AU = NalU = N L,(U) et UA= NUa = N R,(U). Or pour tout a € G, L, et R,
acA acA acA acA
sont des homéomorphismes de G, voir remarque 11.1.1, donc AU et U A sont des ouverts de G.
3. Montrons que G \ AB est ouvert dans G. Soit z € G\ AB, alors on a zB~! N A = (). Puisque
I'application f : (z,y) — 2y~ ' de G x G dans G est continue, alors f~!(G \ A) est un ouvert
de G x G contenant le compact {z} x B. D’aprés la proposition 3.1.4, il existe un ouvert U
de G contenant z tel que U x B C f~1(G\ A), doa UB~! = f(U x B) C G\ A. Donc on a
UB'NA=0,douUnNAB = (). Par conséquent, G \ AB est ouvert dans G. Autrement dit,
AB est fermé dans G. De méme, BA est fermée dans G.
4. Puisque A x B est compact, AB est séparée et l’application (a,b) — ab est continue et
surjective de A x B sur AB, alors AB est compacte. De méme, BA est compacte. |

Proposition. Soit G un groupe topologique séparé. Alors on a :
1. G est un espace régulier.

2. Soient A un compact de G et B un fermé de G tels que AN B = (). Alors il existe un
voisinage ouvert W de e dans G tel que AW N BW = ().

Démonstration. 1. Soient z € G et F une partie fermée de G tels que v ¢ F, dotte € z7 L F.
Soit U = G'\ 27! F, alors U est un ouvert de G contenant e. Soit f : G x G — G définie par
f(x,y) = zy~!. Comme f est continue en (e, e), il existe un ouvert V de G contenant e tel que
VV~—tc U. Alors 2V et FV sont des ouverts de G tels que = € 2V et ' C FV. Vérifions que 2V
et F'V sont disjoints. Si (V)N FV # (), alors il existe a,b € V et y € F tels que xa = yb, d’on
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ab~' =a7ly € (z7'F)NU, ce qui est impossible. Donc on a (zV) N FV = (). Par conséquent, G
est un espace régulier.

2. Soit a € A. Comme on a AN B = (), alors e € a~'B. D’aprés 1, il existe un voisinage ouvert
V, de e dans G tel que aV, N BV, = 0. Soit W, un voisinage ouvert de e dans G tel que

W W, C V,. Comme A est compact et on a A C UAaWa et aW, est un ouvert de G, pour tout
ac

n n
a € A, alors il existe a,...,a, € A tels que A C UlaZ-Wai. Soit W = ﬂlWai, alors W est un
1= 1=
n n n
voisinage ouvert de e dans G tel que AW C .UlaiWaiW - .UlaiWaiWai - ,UlaiVai. On a aussi
1= 1= 1=
n n
BW C .ﬁlBWai - ,ﬁlBVai- Comme pour tout i € {1,...,n}, on a a;V,, N BV,, =0, alors on a
1= 1=

(0 a;Va,)n (N BV,,) =0, don AW N BW = 0. ]
i=1 =1

Proposition. Soient G un groupe topologique et Gy la composante connexe de e dans G. Alors
on a :

1. Gg est sous-groupe distingué et fermé dans G.

2. Pour tout z € GG, la composante connexe de x dans G est xGy = Goz.

3. Le groupe topologique quotient G/G est séparé et totalement discontinu.
4

. Si G est localement connexe, alors G/Gy est un groupe discret.
Démonstration. 1. Puisque ’application

f: GxG — @G
(z,y) — ay!
est continue et Gy x Gg est connexe, alors f(Go x Gp) est une partie connexe de G contenant e,
donc on a f(Gp x Gy) C Gp. Autrement dit, Gy est un sous-groupe de G. Soit z € G. Puisque
I’application
g: G — G

y — zyr !

est continue, alors zGoz ! = g(Gy) est une partie connexe de G contenant e, donc on a xGoz ™! C
Go. Par conséquent, Gy est distingué. Notons enfin que toute composante connexe d’un point
dans un espace topologique est fermée, voir théoréme 4.2.1.

2. Comme G est un sous-groupe distingué de G, alors pour tout « € G, on a xGy = Ggzx. Soient
x € G et C, la composante connexe de x dans G. Comme 'application y — zy est continue
de G dans G, alors xGj est une partie connexe de G contenant x, d’ou on a Gy C C,. Puisque
I'application y — 2~ 'y est continue de G dans G, alors 7 'C, est une partie connexe de G
contenant e, donc on a ~'C, C Gy, d’ou C, C Gy. Par conséquent, on a Cp = 2Gy.

3. Comme Gg est un sous-groupe fermé de G, il résulte de la proposition 11.2.1 que le groupe
topologique quotient G/Gy est séparé. Pour montrer que G/Gy est totalement discontinu, d’aprés
2, il suffit de montrer que la composante connexe de 1’élément neutre dans le groupe topologique
quotient G/Gy est réduit a I’élément neutre. Soit Gfy la composante connexe de ’élément neutre
dans le groupe topologique quotient G/Gy. D’aprés 1, G, est un sous-groupe distingué dans
G/Gy. Soit q : G — G /Gy Papplication quotient. Comme ¢ est un morphisme de groupes, alors
G' = ¢ Y(G}) est un sous-groupe distingué de G et on a Gy C G’. Soit ¢ : G' — G}, défini
par p(z) = q(x). Alors ¢ est un morphisme de groupes continue, surjective et ouverte. D’aprés
la proposition 11.2.3, G'/Gy est homéomorphe a Gf), donc G'/Gy est connexe. Il résulte de la
proposition 11.2.4 que G’ est connexe. D’ou on a G’ C Gy. Par conséquent, on a G’ = Gy. Donc
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la composante connexe de 1’élément neutre dans le groupe topologique quotient G/Gy est réduit
a ’élément neutre. .

4. Puisque G est localement connexe, alors Gy # (). Il résulte du théoreme 11.2.1 que Gy est
ouvert dans G. On déduit de la proposition 11.2.1 que le groupe topologique quotient G /Gy est
discret. |

Théoréme. Soit G un groupe topologique séparé opérant continiment sur un espace localement
compact X. Alors les propriétés suivantes sont équivalentes.

(i) G opére proprement sur X.

(ii) Pour tout compact K de X, ’ensemble G = {g €G; KNgK # (Z)} est relativement
compact dans G.

(iii) Pour tous z,y € X, il existe des voisinages ouverts U et V' dans X de x et y respectivement
tels que ’ensemble { geG; UnNgV # @} soit relativement compact dans G.

(iv) (a) Pour tout z € X, il existe un voisinage ouvert U de = dans X tel que '’ensemble
{g eG; UnNgU # @} soit relativement compact dans G.

(b) L’espace des orbites X/G est séparé.

Démonstration. Puisque X est localement compact, il résulte du théoréme 3.7.4 que 'appli-
cation

f: GxX — XxX
(9,%) — (gz,2)

est propre si et seulement si pour tout compact K’ de X x X, f~1(K’) est un compact de G x X.
Montrons I'implication (i) = (ii). Soit K un compact de X. Comme 'application f est propre,
alors fHKxK) = {(g,x) eEGxX; x,gx € K} est un compact de G x X . Puisque la projection
canonique p; : G x X — G est continue, alors p;(f~'(K x K)) est une partie compacte de G.
OronaGg={g€G; KNgK # 0} C p1(f (K x K)), donc G est relativement compact
dans G.

Preuve de (ii) = (i). Soit K’ un compact de X x X. Alors il existe un compact de X tel que
K' € K x K. Pour montrer que f~!(K’) est un compact de G x X, il suffit de montrer que
fYK x K) est un compact de G x X car f~1(K’) est fermé dans Gx X. Orona f~}(K xK) C
G x K C Gk x K et G est compact de G, donc f~}(K x K) est compact de G x X, car
UK x K) est déja fermé dans G x X.

Montrons I'implication (ii) == (iii). Soient =,y € X. Comme X est localement compact, il existe
deux voisinages ouverts U et V dans X de x et y respectivement tels que U et V soient compacts.
Alors K = UUYV est un compact de X. Par hypothése, 'ensemble G = {g eG; KNgK # @}
est relativement compact dans GG. Or on a {g eG; UngV # @} C Gk, donc {g eG; UnNgV #
@} est relativement compact dans G.

Preuve de (iii) = (ii). Soit K un compact de X. Soit x € K. Pour tout y € K, il existe
deux voisinages ouverts U, et V., dans X de z et y respectivement tels que A, , = {g €
G UpyNgVyy # @} soit relativement compact dans G. Comme K est compact, alors il existe

Y1,---,Yn € K tels que K C ler,yi- Soient U, = 4(7%1Uw,yi et V, = .lew,y“ alors U, est
i= i= i=

un voisinage ouvert de z dans X et V, est un ouvert de X tels que K C V, et A, = {g €
G; U nNgV, # @} soit relativement compact dans G. Comme K est compact, alors il existe

p p p
T1,...,7p € K tels que K C 'UlUr].. Soient U = 'Ulij et V = ,ﬁle]., alors U et V sont des
Jj= Jj= j=

ouverts de X tels que K C U, K C V et tels que {g eG; UngV # @} soit relativement
compact dans G. OronaGK:{geG; KﬂgK#@} C{gEG; UﬂgV;ﬁ@},donc G est
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relativement compact dans G.

Preuve de (i) = (iv). Comme on a (i) <= (iii), il est clair que pour tout x € X, il existe un
voisinage ouvert U de x dans X tel que ’ensemble {g e G; UngU # @} soit relativement
compact dans G. Comme G opére proprement sur X, on déduit de la proposition 11.3.3 que
I’espace des orbites X /G est séparé.

Preuwve de (iv) = (iii). Soit ¢ : X — X/G V’application quotient. Soient =,y € X. Si q(x) #
q(y), comme X/G est séparé, alors il existe des voisinages ouverts U et V dans X de x et y
respectivement tels que GU N GV = (), d’ou {g eG; UngV # @} est vide. Supposons que
q(x) = q(y), alors il existe h € G tel que y = hx. Par hypotheése, il existe un voisinage ouvert U
de = dans X tel que ’ensemble {g eG; UngU # (Z)} soit relativement compact dans G. Soit
V = hU, alors V est un voisinage ouvert de y dans X et on a :

{geG;UNgV#0}={geG; UnNghU #0} ={geG; UngU #0}h".

Donc {g eG; UngV # @} est relativement compact dans G car Iapplication g — gh™! est
un homéomorphisme de G. |

Lemme (racine carrée d’une matrice positive). Soient A et B deux matrices positives de
1. Pour tout a > 0, A + o, est inversible.
2. Si A2 = B? alorsona A= B.
3. Il existe une unique matrice positive C' de M,,(K) telle que C? = A. La matrice C est dite

racine carrée de A.

Démonstration. 1. Comme A est une matrice positive, d’aprés la proposition 11.4.1, il existe
A1 >0,..., A, >0 et il existe P € M,,(K) tels que :

A1 O 0
0 X ... 0
PP*"=P'P=1, et A=P| . . | P
0 O An
D’otion a :
AL+« 0 0
0 Aot+a ... 0
A4+al,=P . . ) . pP*.
0 0 ... At
Comme pour tout j € {1,...,n}, on a A; + « > 0, alors la matrice :
A+« 0 0
0 A +a ... 0
0 0 o At

est inversible dans M, (K). Par conséquent, A est inversible.

2. Puisque A et B sont auto-adjoints, alors on a ker(A) = ker(A?) = ker(B?) = ker(B). Soit
A une valeur propre de A2 = B? telle que A # 0, alors on a A > 0. Il est clair que l'on a
ker(A — v/AI,) C ker(A% — \I,,). D’autre part, on a A% — X\, = (A +V/AI,)(A —VAL,). D’aprés
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1, A+ VI, est inversible, donc on a ker(A? — AI,,) C ker(A — v/AI,). Par conséquent, on a
ker(A%2 — \I,,) = ker(A — VAI,). Or on a A2 = B% d’ou :

ker(A — V/I,,) = ker(A% — \I,,) = ker(B? — AI,,) = ker(B — VAL,).

Ainsi, les restrictions de A et B aux sous-espaces propres de A2 = B? sont égales, K" étant la
somme directe de ces sous-espaces propres, voir propositions 8.7.9 et 8.7.10, on en déduit que
I'ona A= B.

3. Comme A est une matrice positive de M, (K), d’aprés la proposition 11.4.1, il existe A\; >
0,..., A, >0 et il existe P € M,,(K) tels que :

A0 ... 0

0 X ... O
PP*=P'P=1, e¢ A=P| . . | P*.

0 0 An

Soit :
Vi o0 ... 0
0 VA ... 0
c=pr| SR

0 0 ... VA

Alors C est une matrice positive de M,,(K) telle que C? = A. L’unicité résulte de 2.

Proposition. On a les propriétés suivantes :
1. GL(n,K) est un ouvert dense dans M,,(K).

2. L’ensemble des matrices diagonalisables est dense dans M, (C).

Démonstration. 1. Comme 'application déterminant est continue de M, (K) dans K, voir

exemple 6.6.1, alors GL(n,K) = {A € M,(K) ; det(A) # 0} est un ouvert de M,(K). Soient

A € M,(K) et p1,. .., pp les valeurs propres non nulles de A. Soient r = 1i<n£ |pi| et N € N* tel
<i<p

que % < r. Alors pour tout k > N, la matrice A — %In est inversible et la suite (A — %In)]pN
converge vers A dans M,,(K), donc GL(n,K) est dense dans M,,(K). -
2. Soit A € M,,(C), alors il existe une matrice inversible P dans M,,(C) et une matrice triangulaire
supérieure B telles que A = PBP~! ou :

->\1 0 0- _0 T12 T1n i

0 )\2 0 0 0 0 xr23 ... Ton
B=|: 0 . . 4] .o :

S ST VU 0 0 ... 0 Z(pim

_0 0 0 )\n_ _O 0 0 i

Les \; sont les valeurs propres de A. Si tous les \; sont distincts, alors A est diagonalisable.
Supposons que card({A1,...,A\,}) =m,avec 1 <m < n.Doncona{\,...,\n} = {p1,-..,ttm},

avec p; # fuj si i # j. Soit r > 0 tel que B(p, ) N B(pj,r) = 0 sii # j. Comme la suite (%) .
p>
tend vers 0, alors il existe pg > 1 tel que pour tout p > pg, on ait % < r. Alors pour tout p > pg,
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les nombres complexes A\q + %, pour g € {1,...,n}, sont deux a deux distincts. Pour tout p > py,
posons A, = PB,P~!, avec :

_ 1 7 - ]
)\1_|_§ 02 0 0 12 ... ... Tlin
0 )\24—; 0o ... 0 0 0 x93 ... Ton

: : S 0 0 0 ... 0 Zp_iy,

9 0 0 )\n_’_%_ [0 0 0 |

Alors A, est diagonalisable et la suite (Ap> __converge vers A dans M, (C). Donc I'ensemble
P>po
des matrices diagonalisables est dense dans M, (C). [

Proposition. On a les propriétés suivantes :
1. Le groupe compact SO(n) est connexe par arcs.

2. Le groupe compact O(n) a deux composantes connexes dont celle contenant I, est SO(n).

3. Le groupe topologique GL(n,R) a deux composantes connexes dont celle contenant I,, est
GL*(n,R) = {A € Mp(R) ; det(A) > 0} qui est de plus connexe par arcs.

Démonstration. Si n = 1, on a M;(R) = R, SO(1) = {1}, O(1) = {-1,1} et GL(1,R) =
R\ {0}, donc les trois propriétés sont triviales. Donc on peut supposer n > 2.

1. Soit A € SO(n). D’apres la proposition 11.4.2, il existe P € O(n) et il existe une matrice
diagonale par blocs de la forme D = Diag(I,,—Is, R(61),...,R(0),)) tels que A = PDP*,

. _ |cos(br) —sin(0y)
ou R(0) = sin(0y) cos(0y) |’ avec 0 €10, w[, pour tout k € {1,...,p}. Comme on a
det(A) = 1, alors le nombre s est pair. On peut donc écrire —Ig sous la forme d’une ma-

cos(m) —sin(m)
sin(m)  cos(m)
A(t) = PDiag(I,, R(tm), ..., R(tm), R(tb1),...,R(t0)))P*, alors A(t) € SO(n), t — A(t) est
continue et A(0) = I, et A(1) = A. Par conséquent, SO(n) est connexe par arcs.

2. Soit O~ (n) = {A € O(n) ; det(A) = —1} et soit B € O~ (n) définie par :

trice diagonale de § blocs de la forme R(7) = [ . Pour tout ¢ € [0, 1], on pose

-1 0 0

0 1 0
B = i

0 0 1

Alors D’application A — BA est un homéomorphisme de SO(n) sur O~ (n), donc O~ (n) est
connexe. Or on a O(n) = SO(n) U O~ (n), avec SO(n) N O~ (n) = 0 et SO(n), O~ (n) sont
des fermés non vides dans O(n), on déduit du théoreme 4.2.1 que SO(n) et O~ (n) sont les
composantes connexes de O(n).

3. Soit G la composante connexe de I, dans GL(n,R). Comme 'application ¢ : A — det(A)
est continue de GL(n,R) dans R\ {0}, alors ¢(Gp) est une partie connexe de R\ {0} contenant
1, d’oit pour tout A € G, on a det(A) > 0. Autrement dit, on a Gy C GL™(n,R). Pour montrer
que l'on a Gy = GLT(n,R), il reste & montrer que GL*(n,R) est connexe. On va montrer par
récurrence que GLT (n, R) est connexe. On a GL™(1,R) =]0, +o00[, donc GL™(1,R) est connexe.
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Soit m > 2 et supposons que GLT(n — 1,IR) est connexe. Soit H le sous-groupe de GL™(n,R)
formé des matrices de GL*(n,R), dont la premiére colonne est :

1

0

0

Comme "application
R x GL*(n — 1,R) — H
1 29 ... x,
0
((x2y...,zpn), A) — f A

0

est continue et surjective et comme R"1 x GL*(n — 1,R) est connexe, alors H est connexe.
Considérons 'application suivante :

f: GLT(n,R) — R™\ {0}

[ai;] — (a11,a21,...,an1)

Il est clair que f est continue et surjective. L’application f est la restriction de ’application
h: Mp(R) — R™

laij] = (a11,a21,...,an1)
Comme h est continue, linéaire et surjective, alors h est une application ouverte, voir théoréme
7.1.1. Puisque GLT (n,R) est un ouvert de M, (R) et R™\ {0} est un ouvert de R, on en déduit
que f est aussi une application ouverte. Notons aussi que si A, B € GL™(n,R), alors A~!B € H si

et seulement si f(A) = f(B). On déduit alors du corollaire 1.4.1 qu'il existe un homéomorphisme
f:GLT(n,R)/H — R™\ {0} tel que le diagramme suivant soit commutatif.

GL*(n,R) ! R™\ {0}

T A

GL*(n,R)/H

Or R™\ {0} est connexe car n > 2, d’ott GL™(n,R)/H est connexe. Il résulte de la proposition
11.2.4 que GLT(n,R) est connexe. Montrons maintenant que GL(n,R) a deux composantes
connexes. Soit GL™(n,R) = {A € M,(R) ; det(A) < 0} et soit B € GL™ (n,R) définie par :

-1 0 ... 0

0 1 ... 0
B =

0 0 ... 1

Alors I'application A —— BA est un homéomorphisme de GL*(n,R) sur GL™(n,R), donc
GL™ (n,R) est connexe. On a GL(n,R) = GLT(n,R)UGL™ (n,R) et GLT(n,R), GL™(n,R) sont
des ouverts non vides disjoints dans GL(n,R), alors on déduit du théoréme 4.2.1 que GL™ (n,R)
et GL™(n,R) sont les composantes connexes de GL(n,R). Comme GLT(n,R) est aussi ouvert
dans 'espace normé M, (R), alors GL™ (n,R) est connexe par arcs, voir proposition 6.1.5. |
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Supplément d’exercices
Exercice 11.20. Rappelons que l’on a :

S? = {(z0,21) € C?; |20)? + | ? = 1} et S? = {(z,t) e Cx R; |z + 1% = 1}.
Considérons 'application de Hopf suivante :

n: S3 — S?
(20,21) +— (22071, 20> — |21]?)

Montrer que S? est homéomorphe a S3/S'. En déduire que CP! est homéomorphe & S2.
Solution. Il est clair que n est une application continue. Vérifions que 7 est surjective. Soit
(2,t) € S%. Soient 2y = \/geiarg(z) et 21 = \/g, alors on a (29, 21) € S et 17(20,21)) = (2,1).
Donc 7 est surjective. Soient (20,21), (2h,2]) € S?, alors on a 1((20,21)) = 1((2h,2})) si et
seulement si il existe A € St tel que (2, 2]) = A(20,21). Comme 7 est aussi une application
fermée car S? est compact, on déduit du corollaire 1.4.1 qu’il un homéomorphisme 7j de S3/S!
dans S? tel que le diagramme suivant soit commutatif.

§ ————
PN /
s3/st

Donc l'espace S3/S! est homéomorphe a S?. D’aprés I'exercice 11.19, S3/S! est homéomorphe a
CP'. Par conséquent, CP! est homéomorphe a S

Exercice 11.21. Considérons l'application suivante :

g: St — St
z — 22

Montrer que S' est homéomorphe 4 S'/SY. En déduire que RP! est homéomorphe & S*.
Solution. Il est clair que [ est une application continue et surjective. En plus, £ est une appli-
cation fermée car S est compact. Soient z,z’ € St, alors on a 3(z) = B(2') si et seulement si
z' = 4z. Autrement dit, on a 3(z) = 8(2) si et seulement si il existe A € S® = {—1,1} tel que
2/ = Az. On déduit alors du corollaire 1.4.1 qu’il un homéomorphisme 3 de S'/SY dans S! tel
que le diagramme suivant soit commutatif.

R R—
~ /
st/sv

Donc 'espace S'/S? est homéomorphe a S'. D’aprés Iexercice 11.19, S'/SY est homéomorphe a
RP!. Par conséquent, RP! est homéomorphe a S'.

© Dunod, 2011 - Topologie et espaces normés - Nawfal El Hage Hassan



197

Définition 11.0.4. 1. Soit H un hyperplan de R3. On appelle réflexion d’hyperplan H
lopérateur T € Z(R3) défini par T(z) = =, pour tout * € H et T(y) = —y, pour
tout y € H+. Autrement dit, un opérateur 7 € Z(R3) est une réflexion s’il existe une
base orthonormale B’ = (Vi, V5, V3) de R? telle que la matrice de T' dans la base B’ est

-1 0 0
0 1 0f.
0 01

2. Soit F un sous-espace vectoriel de dimension 1 de R3. On appelle retournement ou
renversement d’axe F Popérateur T € £ (R3) défini par T(x) = x, pour tout z € F

et T(y) = —vy, pour tout y € FL. Autrement dit, un opérateur T € Z(R?) est une
retournement s’il existe une base orthonormale B” = (Wi, Wa, W3) de R? telle que la
1 0 0
matrice de T' dans la base B” est [0 —1 0
0 0 -1

Notez que si T' € .Z(R3), alors T est une réflexion si et seulement si —7T est un retournement.

Exercice 11.22. Soit || ||2 la norme euclidienne sur R3.
1. Soient z,y € R? tels que ||z]|2 = ||y|l2 = 1 et 2 # y. Montrer que la réflexion d’hyperplan
H = {x — y}* échange z et y.
2. Montrer que tout 7' € SO(3) est produit de deux réflexions.
3. Montrer que tout 7' € SO(3) est produit de deux retournement.

Solution. 1. Soit S la réflexion d’hyperplan H = {z — y}*. Posons z = & — y. On peut écrire
v =2+ Z avecx+y € H car (x+y,2) = (x+y,z—y) = ||lz|3 — [[yl3 = 0. Donc
S@) =5 =5 =y.

-1 0 0f|—-1 0 O
2. Soit T € SOB3). SiT =I3,onaT = |0 1 0 0 1 O0}. Supposons maintenant
0 01 0 0 1

T # I3. D’aprés le corollaire 11.4.1, on a dim(ker(7T — idgs)) = 1. Soit v € R? tel que ||[v]js = 1
et T(v) = v. Soit € R3 tel que (x,v) = 0 et ||z||2 = 1. Soit y = T(x), alors (y,v) = 0 car
{v}+ est stable par T, et on a ||y||a = 1 et & # 4. Soit S la réflexion d’hyperplan H = {x — y}+.
Ona SoT(w) = S(T(v)) = Swv) =vetSoT(x) = ST(z)) = S(y) = x. Comme on a
SoT € 0(3)\SO(3), on en déduit que S o T est une réflexion. On a aussi T = So (SoT), d’ou
le résultat.

3. Soit T' € SO(3). D’apres 2, il existe deux réflexions S1, .55 telles que T = Sy o So, d’ont on a
T = (=S1) o (—952) et —S1,—S2 sont deux retournements.

Exercice 11.23. Le but de cet exercice est de démontrer que RP? est homéomorphe a SO(3). Soit
E={A€M(C); A= A*et tr(A) = 0}. Toute matrice de E est de la forme [ b+ zc}

b—ic —a
avec a,b,c € R. Donc E est un R-espace vectoriel de dimension 3. On pose :

0 1 0 i 1 0
Sl (I RE R R R P

Alors (A1, Az, A3) est une base de E. Pour tout A, B € E, on pose <A,B> = %tr(AB), alors
< , > est un produit scalaire sur F et (A1, A2, A3) est une base orthonormale de E. Donc on peut
identifier £ muni de < , > a D'espace euclidien R3.
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1. Montrer que pour tout A € E, on a A? = ||A|]*I; et que pour tout U € SU(2), on a
UAUTl € E.

2. Montrer que pour tout U € SU(2), I'application ¢y : A — UAU ! est un opérateur
unitaire de F.

3. En identifiant .Z(E) a M3(R), montrer que l'application suivante

60 SU@R) — O@3)
U +— v

est un morphisme de groupes continue.
4. Montrer que pour tout U € SU(2), on a ¢y € SO(3).

5. Montrer que ker(¢) = {Iz, —I>}. Autrement dit, pour tout Uy, Uz € SU(2), on a ¢y, = ¢u,
si et seulement si Uy = £U;.

6. Montrer que 'application ¢ : SU(2) — SO(3) est surjective.

7. En déduire que SU(2)/ker(¢) est homéomorphe & SO(3) et qu’alors RP? est homéomorphe
a SO(3).
a b+ic

Solution. 1. Soit A = [ :
b—ic —a

} € E, avec a,b,c € R. Alors on a :

g2 [+ 0
- 0 a? +b% + c?

] =(a® + 0>+ ),

D’autre part, on a [|A|> = (A4, 4) = 1tr(A?) = a® + b> + 2, d'ou A% = ||A|]’L>. Pour tout
UeSU2),ona (UAU Y = (U HY*A*U* =UAU et tr(UAU 1) = tr(U U A) = tr(A) = 0,
donc UAU-!' € E.

2. 11 est clair que ¢ est linéaire continue de E dans E. D’autre part, pour tout A, B € E, on a :

(pu(A),¢u(B)) = (UAU-",UBU')
= lw(UAU-'UBU™)
= Llw(UABU™)
= $tr(U"'UAB)

= 3tr(AB) = (A,B).

Donc ¢y est un opérateur unitaire de F.

3. Comme pour tout A € E, I'application U — UAU ! = ¢y;(A) est continue de SU(2) dans
E, alors 'application ¢ est continue de SU(2) dans O(3). D’autre part, pour tout Uy, Uy € SU(2)
et pour tout A € F, on a ér,1,(A) = WU AU, 'UT = ¢, (¢0,(A)) = (dv;, © ¢u,)(A), donc
ouU, = GU, © du,. Autrement dit, ¢ est un morphisme de groupes.

4. Comme ¢ est continue et ¢r, = I3 et comme SU(2) est connexe, alors ¢(SU(2)) est une partie
connexe de O(3) contenant I3, d’out ¢(SU(2)) C SO(3), voir proposition 11.4.7.

5. Soit U € SU(2) tel que pour tout A € E, on ait ¢y(A) = A, alors pour tout A € E, on

aUA=AU.On aU = [g _aﬂ avec a, B € C et |a? + |32 = 1. On déduit des équations

AU =UAj et AU =UAy quel’ona B=0,acReta?=1,don U = +I,. Autrement dit,
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on a ker(¢) = {I2, —I2}.

6. Soit A € E tel que ||A|| = 1. Posons U = iA, alors on a U* = —iA* = —iA = —U. On
a aussi U2 = —A% D’aprés 1, on a A2 = ||A||?I; = I, dou U? = —I5. On en déduit que
Ul=-U=U*donc U € SU(2). On a ¢y(A) = UAU ' = —UAU = —(iA)A(iA) = A3 = A.
D’autre part, de ’équation U? = —I5, on déduit ¢y o ¢y = ¢p2 = ¢_1, = ¢, = idg. Comme on
a ¢y # idg, on en déduit que pour tout B € E tel que (A, B) =0, on a ¢y(B) = —B. Autrement
dit, ¢y est le renversement d’axe la droite passant par A. D’aprés ’exercice précédent, le groupe
SO(3) est engendré par les renversements. Comme ¢(SU(2)) est un sous-groupe de SO(3), on
en déduit que 'on a ¢(SU(2)) = SO(3). Autrement dit, 'application ¢ : SU(2) — SO(3) est
surjective.

7. On déduit du corollaire 11.3.1 que SU(2)/{—1I2, I2} est homéomorphe a SO(3). On déduit alors
des exercices 11.17 et 11.19 que RP? est homéomorphe a SO(3).

Exercice 11.24. Pour tout n > 1, on munit R™ de la norme euclidienne || ||2. Soit :
S" = {a: e R, lz|l2 = 1}.

1. Montrer que O(n + 1) (resp. SO(n + 1)) opére transitivement sur S™.
2. Montrer que le stabilisateur de e; = (1,0,...,0) € S™ est O(n) (resp. SO(n)).
3. En déduire que O(n +1)/0(n) et SO(n + 1)/SO(n) sont homéomorphes a S™.

Solution. 1. Rappelons d’abord, voir proposition 8.7.1, que pour tout « € R™*! et pour tout
A€ O(n+1),ona|Azx|2 = ||z||2. Par conséquent, I’application

On+1)xS" — §”
(A, z) — Az

est bien une action continue de O(n + 1) sur S".

Soit 2 € S™. Alors x est le premier vecteur d’une base orthonormée de R™*!. Quitte & changer le
dernier vecteur de cette base en son opposé, on peut supposer que le déterminant de cette base
est strictement positif. On déduit de la proposition 8.7.1 qu'il existe A € SO(n + 1) telle que
Aey = x. Par conséquent, action de SO(n 4+ 1) sur S™ est transitive.

2. Soit Se, le stabilisateur de e; par I'action de SO(n+1) sur S™. Il est clair que si A € SO(n+1),

10 ... 0
0
alors on a Ae; = e si et seulement si A = : B , avec B € SO(n). Par conséquent,
0
I’application
SO(n) —» Se,
10 0
B — .
: B
0

est un morphisme de groupes et aussi un homéomorphisme. Donc on identifie S, & SO(n).
3. On déduit du théoreme 11.3.1 que SO(n + 1)/SO(n) est homéomorphe a S™.
On fait le méme raisonnement pour montrer que O(n 4+ 1)/0O(n) est homéomorphe a S™.

Remarque 11.0.10. Pour tout n > 1, on munit C™ de la norme euclidienne || ||2. Soit :

S2n+1 — {x c R2n+2 — (Cn-l-l : ”:L,HQ — 1} .

© Dunod, 2011 - Topologie et espaces normés - Nawfal El Hage Hassan



200 Chapitre 11. GROUPES TOPOLOGIQUES

On montre exactement comme dans ’exercice précédent que 'on a les résultats suivants :

1. U(n+1) (resp. SU(n + 1)) opére transitivement sur S?*+1.

2. Le stabilisateur de e; = (1,0,...,0) € S?"*! est U(n) (resp. SU(n)).
3. U(n+1)/U(n) et SU(n + 1)/SU(n) sont homéomorphes & S?"+1.

Exercice 11.25. Soit f : R — R une fonction. On dit que f est périodique s’il existe T' € R
tel que T'# 0 et f(z +T) = f(x) pour tout x € R. Un tel T est appelée une période de f.
Désormais, on suppose que f est continue et périodique.

1. Soit G la réunion de {0} et de I’ensemble des périodes de f. Montrer que G est un sous-
groupe additif fermé de R, et que si f est non constante, alors G est discret.

2. Montrer que f est bornée et uniformément continue.

Solution. 1. On a 0 € G, et puisque f est périodique, alors G # {0}. Pour tous 7, S € G et pour
tout z € R,ona f(x+T-S5)=f(e—S+T)= f(z—S5)= f(x—S+S5) = f(z),donc T—S € G.
Par conséquent, G est un sous-groupe additif de R. Soit (7},),>0 une suite de G convergeant vers
un élément 7' € R. Pour tout n > 0 et pour tout x € R, on a f(x +T1,) = f(x). Comme f est
continue, alors on a f(z +7T) = nEI—Eoof(x +T,) = f(z), donc T € G. Par conséquent, G est

fermé dans R. Si f n’est pas constante, alors il existe T' € R tel que T" ¢ G, donc G n’est pas
dense dans R. D’aprés I'exercice 11.1, il existe alors a > 0 tel que G = oZ, donc G est discret.
Notons que « est la plus petite période strictement positive de f.

220na f(x—T)=f(a—T+T) = f(z), donc il existe T" > 0 tel que f(x +T) = f(x) pour
tout z € R. On a f(R) = f([0, T]) et f est continue, donc f est bornée. Puisque f est continue
et [T, T est compact, alors f est uniformément continue sur [T, T, donc, pour tout € > 0, il
existe 0 < n < T tel que pour tous z,y € [T, T] vérifiant |x —y| < n, on ait |f(x) — f(y)| < e.
Il s’agit maintenant de montrer que f est uniformément continue sur R. Soient z,y € R tels que
|z — y| < n. On fait la division euclidienne de = et y par T, on obtient p,q € Z et r,s € [0, T
telsquez =pT+rety=qT+s.Onalzr—y|l<n<T,dougqge{p—1,p,p+1}. On distingue
trois cas :

Premier cas : ¢ =p. Alors on a |z —y| = |r —s|, dout [r — s| < n. Donc on a |f(r) — f(s)| < e.
Orona f(z) = f(pT +7) = f(r) et f(y) = f(¢T +s) = f(s), dou [f(z) — f(y)| <e.
Deuziéme cas : ¢ = p—1. Alorsonay = ¢T+s = (p—1)T+s = pT+s—T,donz—y =r—(s=T)
etr,s—T e€[-T,Tlet|r—(s—T) <n.Donconal|f(r)— f(s—T)| <e. Orona f(x) = f(r)
et f(y) = f(s — T), do | f(x) - f(y)] < e

Troisieme cas - q=p+ 1. Alorsonax =pT +r=(p+1)T+r—Tety=(p+ 1)T + s, don
r—y=r—-T)—setr—T,se[-T,Tlet |(r—T)—s| <n.Donconal|f(r—T)— f(s)| <e.
Or on a f(z) = f(r —T) et f(y) = f(s), don |f(x) — f(y)| < =.

Ainsi, pour tout € > 0, il existe n > 0 tel que pour tous x,y € R vérifiant |x — y| < 7, on ait
|f(z) — f(y)| < e. Donc f est uniformément continue sur R.

Exercice 11.26. Soient G un groupe topologique et H un sous-groupe fermé de G. Montrer que
le normalisateur N(H) = {:13 €G; zHa 1 = H} de H est un sous-groupe fermé de G.
Solution. Il est clair que N(H) est un sous-groupe de G. Soit h € H. Les applications

fn: G — H o On G — H
xr +— zhz ! r — zx lhx

sont continues. Comme H est fermé dans G, alors Ay = f, ' (H) et By, = g; ' (H) sont fermés
dans G. Oron a N(H) = hﬂH Ap N By, donc N(H) est fermé dans G.
€
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Exercice 11.27. Soit G un groupe topologique séparé opérant continiment sur un espace to-
pologique séparé X. Soient K une partie compacte de G et F' une partie fermée de X. Montrer
que KF = {g:r; ge Ketxe F} est fermé dans X.

Solution. Considérons ’application suivante :

fi KxX — X
(g,) +— gz

D’apreés la proposition 11.3.7, f est une application propre. Comme K X F' est fermé dans K x X,
alors KF' = f(K x F) est fermé dans X.

Exercice 11.28. Soit G un groupe topologique séparé opérant continiment et proprement sur
un espace topologique séparé X. Soient F’ une partie fermée de G et K une partie compacte de
X. Montrer que F'K est une partie fermée de X.

Solution. D’apres la proposition 11.3.5, "application

fk: GxK — X
(g,) +— gz

est propre. Comme F' x K est fermé dans G x K, alors FK = fx(F x K) est fermé dans X.

Exercice 11.29. Soient G un groupe topologique séparé, K une partie compacte de G et F' une
partie fermée de G. Montrer que UK gF g~ est fermé dans G.
ge

Solution. Le groupe G opérant continiment & gauche sur lui-méme par 'action

GxG — G

(9,2) +—— gzg™?

D’apres la proposition 11.3.7, I’application

f: KxG — G

(9,) — gag!

est propre. Or K x F' est fermé dans K x G, d’ou UK gFg~! = f(K x F) est fermé dans G.
g€

Exercice 11.30. Soient GG un groupe topologique localement compact et H un sous-groupe dis-
cret de G tel que I'espace homogéne G/ H soit compact. Montrer que pour tout h € H, ’ensemble
{ghg_1 ;g€ G} est fermé dans G.

Solution. Soit ¢ : G — G/H l'application quotient. Comme G/H est compact, d’apres la
proposition 11.3.1, il existe un compact K de G tel que ¢(K) = G/H, dou G = KH. Soit
h € H. Soit g € G, alors il existe k € K et hy € H tels que g = khy, d’ott ghg™! = khlhhl_lk:_l.
Comme H est un sous-groupe discret de G, il résulte du théoréme 11.2.1 que H est fermé dans
G. Comme 'ensemble Fy = {hlhhl_l ; hy € H} est fermé dans H car H est discret, alors Fj est
fermé dans G. Comme on a {ghg‘1 ;g € G} = kéJK kF;k~!, on déduit de Iexercice précédent

que ’ensemble {ghg‘1 ;g € G} est fermé dans G.
Exercice 11.31. Soit G un groupe topologique séparé opérant contintiment et librement sur un
espace topologique séparé X. Soit Gr le graphe de la relation d’équivalence R sur X dont les

classes sont les orbites des points de X. Autrement dit, soit (z,y) € X x X, alorson a (z,y) € Gr
si et seulement si il existe g € G tel que gy = x. Soient y € Y et g, h € G tels que gy = hy, alors
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h~lgy = y. Comme G opére librement sur X, alors on a h~lg = e, d’oit ¢ = h. Donc pour tout
(z,y) € Ggr, il existe un unique g € G tel que gy = x. Pour tout (z,y) € Gg, on pose ¢(x,y)
l'unique élément de G tel que p(x,y)y = x. Ainsi, on définit une application ¢ : G — G,
appelée application canonique de Gr dans G.

En utilisant les propositions 1.5.6 et 3.7.1, montrer que les propriétés suivantes sont équivalentes.

(i) G opére proprement sur X.
(ii) L’espace des orbites X/G est séparé et I’application canonique ¢ : Gg — G est continue.

Solution. Puisque I'application quotient ¢ : X — X/G est ouverte, on déduit de la proposition
1.5.6 que 'espace des orbites X/G est séparé si et seulement si Gg est fermé dans X x X. Par
définition, G opére proprement sur X si 'application

T: GxX — XxX
(9:y) — (99,9)

est propre. Comme T est une application continue injective, d’apreés la proposition 3.7.1, T" est
propre si et seulement si T(G x X) = G est fermé dans X x X et si on désigne par S l'ap-
plication 7' considérée comme application de G x X dans T(G x X) = Gg, alors S est un
homéomorphisme. Or S est une application continue bijective dont I"application réciproque est
lapplication (x,y) — (¢(z,y),y). Donc S est un homéomorphisme si et seulement si ¢ est une
application continue de Gg dans G. Ainsi, on obtient I’équivalence (i) <= (ii).

Exercice 11.32. Considérons ’action naturelle de O(n) sur R™ définie par :

O(n) xR" —s R"
(A, x) — Az

Montrer que I’action de O(n) sur R™ est propre, mais n’est pas libre et que R™/O(n) est homéo-
morphe a [0, +o00].
Solution. Puisque O(n) est compact, il résulte du théoréme 11.3.2 que l'action de O(n) sur R"
est propre. L’action de O(n) sur R™ n’est pas libre car pour tout A € O(n), on a A0 =0, ou 0
est le vecteur nul de R".
L’application

N: R* — 0,409

ozl

est continue et surjective. D’aprés la proposition 3.7.3, N est aussi une application fermée. De
plus, N est constante sur les orbites car si z,y € R™ et si A € O(n) tels que Ax = y, alors on
a |lyllz2 = ||[Az||2 = ||z||2. Notons aussi que d’apreés la proposition 8.7.1, si z,y € R™ tels que
llyll2 = ||z||2, alors il existe A € O(n) telle que Ax = y. D’aprés le corollaire 1.4.1, il existe un
homéomorphisme N : R”/O(n) — [0, +00[ tel que le diagramme suivant soit commutatif.

R"™ [0, +00]
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ALGEBRES DE BANACH

Proposition. Soient A une algébre unitaire sur C et x € A tel que Spy(x) # 0.
1. Soit P € C[X], un polynéme, on a Sp,(P(z)) = P(Spa(z)) = {P(\); X € Spa(z)}.
2. Siz € GL(A), ona Spy(a7) = {A~1; X e Spy(a)}.

Démonstration. 1. Ce résultat est trivial si P est constant, donc on peut supposer P non
constant. Soit A € Spy(x), alors on a z — A € GL(A) et P(X) — P(\) € C[X] admettant
A comme racine, donc P(X) — P(\) = (X — M)Q(X,\) = Q(X,\)(X — \). Supposons que
P(z) — P(\) € GL(A), alors il existe y € A tel que y(P(z) — P(\)) = (P(x) — P(\)y =1, d’ou
yQ(x,\)(x—A) = (z—N)Q(x, \)y = 1, ceci implique z — X € GL(A), d’ot la contradiction. Donc
on a bien P(X\) € Spy(P(x)).

Réciproquement, soit 1 € Sp4(P(x)), alors P(z)—p € GL(A). Commeona P(X)—pu=a][(X—

=

=1

Ai), avec a € C*, et les \; sont les racines du polynome P(X) — u, alors P(z) —p = o[ (z —\).
i=1

Si pour tout i € {1,...,n}, on a x — \; € GL(A), alors P(z) — u € GL(A), d’ou la contradiction.

Donc il existe i € {1,...,n} tel que x — \; & GL(A), d’out A\; € Spy(x) et on a P(\;) = p.

2. Soit & € GL(A). Alors pour tout A € Sp,(z) USps(z™"), on a A # 0. Soit A € C tel que

A#0.Onaz ™! — 1 =—1z7!(z—\). Comme —}2~! € GL(A), on en déduit que A € Sp4(x)

si et seulement si A7! € SpA(aj_l). Par conséquent, on a SpA(ZL‘_l) = {)\_1 ;A E SpA(aj)}. [ |

Théoréme. Soit B une sous-algebre fermée unitaire d’une algébre de Banach unitaire (A, || ||).
On suppose de plus que 'on a 15 = 14. Alors on a :

1. GL(B) est ouvert et fermé dans B N GL(A).

2. Pour tout © € B, on a Spy(z) C Spg(z) et C\ Spg(x) est ouvert et fermé dans C\ Sp4(z).
3. Pour tout = € B, on a Fr(Spg(x)) C Fr(Spy(x)).
4

. Soit x € B. Si Spy(x) # Spg(z), alors Spp(x) est la réunion de Sp,4(x) et de quelques
composantes connexes bornées de C\ Sp 4(z).

o

Soit © € B. Si C\ Sp4(z) est connexe, alors on a Sp 4(x) = Spg(z).

6. Soit x € B. Si Spg(x) est d’intérieur vide, alors on a Sp,(z) = Spg(z).
Démonstration. 1. D’apreés le corollaire 12.1.1, GL(B) est ouvert dans B. On a aussi GL(B) C
GL(A), voir Appendice E. Donc GL(B) est ouvert dans B N GL(A). Montrons maintenant que

GL(B) est fermé dans BN GL(A). Soient z € BN GL(A) et (xy,),>0 une suite dans GL(B), qui

converge vers x. Alors la suite (a:,_b 1)n>0 converge vers ' dans A. Comme B est fermée dans A,
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alors on a =1 € B. Par conséquent, on a z € GL(B). Donc GL(B) est fermé dans B N GL(A).
2. Soit x € B. D’apreés le corollaire 12.3.2, on a Spy(x) C Spg(z). Comme C \ Spg(z) est
ouvert dans C et on a C\ Spg(x) C C\ Spy(x), alors C\ Spg(x) est ouvert dans C \ Spy(x).
Montrons que C\ Spg(z) est fermé dans C\ Spy(z). Soient (A,),>0 une suite dans C\ Spg(z)
et A € C\ Spy(x) tels que ngg-loo An. = A. Alors pour tout n > 0, on a x — A, € GL(B) et on a

lim z—\, =x—X €& BNGL(A). Il résulte de 1 que 'on a x— A € GL(B), d’'ou A € C\Spg(x).

n—-4o00

Donc C \ Spg(x) est aussi fermé dans C \ Sp 4(z).

3. Soit z € B. Soit A € Fr(Spgz(x)). Comme on a Fr(Spgz(x)) = Spp(x) NC \ Spg(x), car Spg(z)
est fermé dans C, alors A € Spp(z) et il existe une suite (A,)n>0 dans C\ Spg(z) convergeant
vers A\. Donc on a © — A € GL(B), et pour tout n > 0, on a x — A, € GL(B). Comme la suite
(x — Ap)n>0 converge vers x — A, il résulte de 1 que z — XA ¢ GL(A), donc on a A € Spy(z).
Comme on a aussi A, € C\ Spg(z) C C\ Spy(z), alors A € Fr(Spy(z)). Par conséquent, on a
Fr(Spp(x)) C Fr(Spa(z)).

4. Soit = € B tel que Spy(z) # Spp(z). D’apreés 2, C \ Spg(z) est ouvert et fermé dans C\
Sp(z). Donc Spp(x) \ Spy(x) est non vide et & la fois ouvert et fermé dans C\ Sp4(x), donc
Spg(x) \ Spa(x) est une réunion de quelques composantes connexes bornées de C'\ Sp4(z).

5. Soit © € B. D’aprés 2, C \ Spg(x) est ouvert et fermé dans C\ Sp4(z). Donc, si C\ Sp4(z)
est connexe, alors on a C\ Spg(xz) = C\ Sp(z), d’out Spy(x) = Spy(x).

6. Soit « € B. Si Spp(z) est d’intérieur vide, alors on a Spg(x) = Fr(Spg(x)), d’ou Spg(x) C
Fr(Sp4(z)) C Sp(x). Par conséquent, on a Spy(x) = Spp(x). [

Théoréme (Beurling). Soient (A, || ||) une algébre de Banach unitaire et z € A. La suite
ok = b e E = inf [
([Jz"™ | )n21 est convergente dans R et on a r(x) = HEIEOO llx" ] égfl [l

Démonstration. On peut supposer x # 0. Soit A € Sp4(x). D’apreés la proposition 12.3.2; on a
A" € Spy(z™), d’our |A"] < ||2™]|. Donc on a |A| < Hm”H% Par conséquent, on a |A| < 1I;f1 Hx"H%
n>

On en déduit que l'on a r(z) < inf ||33”||% < liminf||a:”||% < limsup||:1:”||%. Pour avoir le
n>1 n—r+0o0 n—-+00

résultat, il reste & montrer que l'on a limsup||:13”||% < r(x). Soit U = {A € C; [) < @},
n——+00

si 7(z) # 0. Si r(x) = 0, on prend U = C. Alors pour tout A € U, 1 — Az € GL(A). Soit f

une forme linéaire continue sur A. D’aprés le corollaire 12.1.1, la fonction A — f((l — )\a:)_l)

est holomorphe sur U. Donc il existe une suite (o, )n>0 dans C tel que pour tout A € U, on

+00

1
ait f((1—Az)™t) = Zan)\”. Par ailleurs, pour tout A € C tel que || < Tzl onaleU
x
=0
+oon
et (1 —Xz)™! = Z)\”m”, voir théoréme 12.1.1. Par conséquent, pour tout A € C tel que
n=0

1
|)\| < T
[l
f(@™) = ay, voir un cours sur les fonctions holomorphes. Finalement, pour tout A € U, on

+o0
a f((l — )\a:)_l) = Zf()\”m”). En particulier, pour tout A € U, on a lim f(A\"z") = 0.
=0 n—-+00
Donc la suite (f(A"z"))n>0 est bornée dans C. On déduit du théoréme de Banach-Steinhaus,
voir exercice 7.8, que la suite (A\"2™),>¢ est bornée dans (A, || ||). Autrement dit, il existe une

+0o0
on a f((l - )\33)_1) = Zf(a:”)k”. On en déduit que pour tout n > 0, on a
n=0
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1
MZ
constante 0 < M) < +oo telle que pour tout n > 1, on ait ||[\"z"| < M), d’ou ||:1:”||% < |)\>i ,
1
si A # 0. Par conséquent, on a limsup Hm”H% < —. Autrement dit, pour tout p € C tel que
n—-+00 |)\|
1 1
r(z) < |p|, on alimsup ||z"||» < |u|. Donc on a limsup |[z"||= < r(z). [ |
n—-+00 n—+oo

Théoréme. Soient X un espace compact et A = C(X) muni de la norme || ||oo. C’est une algebre
de Banach commutative unitaire.

1. Pour tout fermé F de X, on pose Ir = {f € A; f(z) =0, pour tout « € F}. Alors I
est un idéal bilatére fermé de A.

2. L’application T : F' —— I est bijective de ’ensemble des fermés de X sur I’ensemble des
idéaux bilatéres fermés de A.

3. Tout idéal bilatére fermé de A est 'intersection des idéaux bilatéres maximaux de A le
contenant.

4. Pour tout x € X, I’application suivante est un caractére de A.

0 : A — C

fo— f)

5. L’application suivante est un homéomorphisme.
§: X — A
T — Oy

Démonstration. 1. Il est clair que pour tout fermé F' de X, Ir est un idéal bilatére fermé de
A.

2. Soient F' et G deux fermés de X tels que F' # G. Alors, on peut supposer qu’il existe x € X
tel que x € F et x € G. D’aprés le théoréme d’Urysohn, théoréme 3.6.1, il existe f € A telle que
f(x) =1et f(y) =0, pour tout y € G. Alors on a f € Iz, mais f & I, d'ou Ir # Ig. Donc
Papplication T est injective. Montrons que T est surjective. Soit I un idéal bilatére fermé de A.
Soit F' = f@[f_l({o})’ alors F est fermé dans X et on a I C Ir. Montrons que 'on a Ir C I.

Soit f € Ip. Soit € €]0, 1[, et posons K = {z € X ; |f(x)| > €}, alors K est une partie compacte

de X et on a KNF = (). Pour tout z € K, il existe f, € I tel que |f.(z)] > 2, car x € F. Comme

fz est continue, il existe un voisinage ouvert V, de x dans X tel que pour tout y € V,, on ait

|fz(y)| > 1. Comme (V;)zek est un recouvrement ouvert de K, alors il existe z1,...,2, € K
n

tels que K C ZQlei. Soit g = Zf_wifrﬂ alors g € I. Soit h = sup(g, ), alors h est continue et
i=1

h(y) > ¢, pour tout y € X, donc on a h € GL(A). Montrons que I'on a || f — gh™! f|lcc < €. Soit
x € K, alors il existe i tel que x € V,,, donc |f, ()| > 1, d’ou g(z) > 1 > €. Par conséquent, on
a h(z) = g(x), donc |f(z) — g(x)h =1 (z)f(x)| = 0. Soit z € X \ K, alors on a |f(z)| < e. Puisque
0 < gla)h~}(z) < 1, alors on a | £(z) — (2} (2) f(@)] = | ()| |1 - gla)h (@) < |£(2)] < .
Par conséquent, on a ||f — gh™ ! f|lcoc < e. Comme on gh™!f € I et ¢ est assez petit, alors on a
f€I=1. Doncon abien I =Ip. On en déduit que Iapplication T est surjective.

3. D’aprés 2, les idéaux bilatéres maximaux de A sont de la forme I, = {f € A; f(x) =0}, avec
x € X. Soit I un idéal bilatére fermé de A. Il existe un fermé F de X tel que I = Ir. Comme
onalp= wQF I, alors I est 'intersection des idéaux bilatéres maximaux de A le contenant.
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4. 11 est clair que pour tout z € X, §, est un caractére de A.

5. Il est clair que § est une application continue. Comme X est un espace compact, pour avoir
le résultat, il reste & vérifier que § est bijective. Montrons d’abord que § est injective. Soient
x,y € X tels que x # y. D’aprés le théoréme d’Urysohn, 3.6.1, il existe f € A = C(X) telle que
f(z) # f(y). Dot on a 0,(f) # 6,(f). Donc 6 est injective. Montrons que 0 est surjective. Soit
X un caractére de A. D’apreés la proposition 12.4.3, ker(x) est un idéal bilatére fermé maximal
de A. D’apres 2, il existe z € X tel que ker(x) = I, = {f € 4 ; f(z) = 0} = ker(d;). Une fois
de plus, d’aprés la proposition 12.4.3, on a alors xy = d,. Donc J est bien surjective. |

Supplément d’exercices

Exercice 12.22. Soient (A4, || ||) une algebre de Banach unitaire et x € A. Pour tout A €
C\Sp4(z), on pose R(\) = (x—\)~1. L’ensemble C\Sp 4(z) est appelé 'ensemble résolvant de
x et Papplication A — R(\) est appelée la résolvante de x. Rappelons, théoréme 12. 1 1 que si

+00 "
A € Ctel que [A| > ||z||, alors A € C\Sp4(z) et ona R(A) = (z—A)~! = 5L — = Z UISE

nO
1

Douon a [|[R\)|| < —.
Al =[]l

1. Montrer que pour tout A, u € C\ Spy(x), on a R(A) — R(1) = (A — ) RN R(1).
2. Montrer que A\ — R()) est C-différentiable et que 'on a R'(\) = (R()))2.

Solution. 1. Pour tous A\, u € C\ Spy(x), on a :

A=wWRNR() = A—p)(z—N)"He—p)

= (w—p)—@-A)z-N""z-p"

S PR T V1 P S B P\ P VS P

= - N = - = RO - R().
2. Rappelons d’abord que C \ Sp4(z) est un ouvert de C. Pour tous A\,u € C\ Sp4(z), avec
L F# A ona M = R(A)R(u). D’apres le corollaire 12.1.1, 'application A —— R(\) est
continue sur C\ Sp 4(z), donc on a lini w

=

W= A
HFEX
C-différentiable et 'on a R'(\) = (R()))?, pour tout A € C\ Sp(z).

= (R(\))%. Par conséquent, A — R(\) est

Exercice 12.23. Soient (H, (, )) un espace de Hilbert complexe séparable de dimension infinie
et (ep)p>1 une base hilbertienne de H. Soit T € A = Z(H) tel que T(ep) = 5€p41, pour tout
p > 1. Montrer que 'on a r(7T") = 0, mais que 7" n’est pas nilpotent.

Solution. On montre par récurrence que pour tout p,n > 1,onaT"(e,) = zlp 2p1+1 e %%eﬁn.
+00

Par conséquent, T n’est pas nilpotent. Soient x € H et € > 0. On a z = Z)\pep, avec ||z||? =
p=1
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“+oo
Z IAp|%, et il existe ¢ > 1 tel que q;gql <eet Z A2 <1.Ona:
p=1 p=q+1

“+00
_ n 1
= E :)‘pT (ep) = E :)‘pzp 97T """ 3pta—TCp+n
d’ou :

“+00

2

1T @) = > ol [g5 g - grt]
p=1

q
2 2
S )V (S S R U U W1 S I £
= p=q+1

1_1 1 1\n—1 1 1
Pour tout p > q -+ ]., on a o1 " a1 < (2—p) =1 < 2a(n=1) * Pour tout 1 < P < q

11 1 1_1 1 1\n—q 1
etpOUTtOthZQ:onaz—pw“‘Wgﬁw"'ﬁg(—) = a0 -
q
ona |[|[T"(x)|? < m Z IApl® + 22(1(%1), pour tout 7 > ¢g. Comme pour tout s, > 0, on a

p=1

Par conséquent,

2
2 2

q
(s +t)% < sw + tn, on déduit que l'on a |77 ()] » Z p|n 22q = «y,. Puisque l'on

1
a lir}rl an = % < g, il existe N > 1 tel que pour tout n > N, on ait HT”(az)H% < e. Par
n——+0oo

conséquent, on a hm IT"(x )||% = 0. On déduit de I'exercice 12.10 que l'on a r(T") = 0.
n—

Exercice 12.24. Soient A une algébre de Banach unitaire et M > 0 une constante.
1. Montrer que si pour tout z,y € A, on a |lzy| < M||yz||, alors A est commutative.
2. Montrer que si pour tout z € A, on a ||z|| < Mr(z), alors A est commutative.
3. Montrer que si pour tout x € A, on a ||z||> < M||z?||, alors A est commutative.

Solution. 1. Puisque pour tout x,y € A, on a ||zy|| < M||yx||, alors pour tout u € GL(A), on a
lu=tyul| < M|y|. En particulier, pour tout A € C, on a |le *®ye?*|| < M||y||. Soit f une forme
linéaire continue sur A. Alors 'application A\ — f(e~**ye®) est holomorphe sur C et bornée.
Par le théoréme de Liouville, cette application est constante, donc on a f(e *ye?®) = f(y), pour
tout A € C. Ceci étant vrai, pour toute forme linéaire continue sur A, alors on a e ye?® =y,
pour tout A € C. Par conséquent, pour tout A € C, on a ye*® = e’y. On en déduit que l'on a
yx = xy. Autrement dit, A est commutative.

2. Pour tout tout z,y € A, on a |jzy|| < Mr(zy) = Mr(yzx) < M|lyz||. On déduit de 1 qu’alors
A est commutative.

3. Par hypothése, pour tout x € A, on a ||z||* < M||2?||

. On en déduit, par récurrence, que
pour tout n > 0, on a ||z||*" < M L||22"||, dou ||z| < MI_TTLHmTLH%”. Par conséquent, on a
lz|| < Mr(x). Il résulte de 2 que A est commutative.

Exercice 12.25. Soient (A4, || ||) une algébre de Banach unitaire et x € A. On dit que z est un

diviseur de zéro topologique s’il existe une suite (z,),>0 dans A telle que pour tout n > 0,
on ait ||z,| =1 et telle que lim ||z,z| = lim |zx,| =0.
n—-+o0o n—-+o0o
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1. Montrer que si x est diviseur de zéro topologique, alors x ¢ GL(A).

2. Montrer que tout élément de Fr(GL(A)) est un diviseur de zéro topologique.

3. En déduire quesiz € Aetsi A € Fr(Spy(z)), alors z—\ est un diviseur de zéro topologique.
4. En déduire que si x € A tel que r(z) = 0, alors x est un diviseur de zéro topologique.

5. En déduire que si A # C, alors A contient un diviseur de zéro topologique non nul.

Solution. 1. Soient  un diviseur de zéro topologique et (xy,)n>0 une suite dans A telle que pour

tout n > 0, on ait ||z,]| = 1 et telle que lim ||z z| = lim |zx,| =0.Siz € GL(A), alors
n——+00 n——+0oo

onal=|z, = |zezz™t| < ||zpz| ||z7Y|, ot 1 < 0, ce qui est impossible. Donc on a bien

x & GL(A).

2. Soit y € Fr(GL(A)). Comme GL(A) est un ouvert dans A, alors y ¢ GL(A) et il existe une
suite (yn)n>0 dans GL(A) convergeant vers y. D’aprés ’exercice 12.13, quitte & prendre une sous-

. Alors on a

suite, on peut supposer que lim ||y, || = +o0. Pour tout n > 0, soit x, =
n—-+0o

14 1
— 7> donc [lany| < lly — yall + —
(7 [lyn |l
Par conséquent, on a lim ||z,y|| = 0. De méme, on a lim |[jyz,| = 0. Donc y est un diviseur

n—+00 n—r+o00

Han =1et xpy = TpY — TpyYn + Tuyn = xn(y - yn) +

de zéro topologique.

3. Soient x € A et A € Fr(Spy(x)) = Spa(z) NC\ Spy(x). Alors on a z — X\ € GL(A) et il existe

une suite (A )n>0 dans C\Spy4(z) telle que hI—E An, = A. Alors pour tout n > 0, z— A\, € GL(A)
- n——+0o0

etona lim x— A, =2 — A Donconax—\e&Fr(GL(A)). Il résulte de 2 que x — X est un

n——+0o
diviseur de zéro topologique.

4. Soit © € A. Si r(x) = 0, alors on a Sp4(z) = {0}, d’ou Fr(Sp4(x)) = {0}. 1l résulte de 3 que
x = x — 0 est un diviseur de zéro topologique.

5. Supposons que A # C. D’apreés le théoréme de Mazur, théoréme 12.3.2, il existe © € A tel que
x # 0 etz & GL(A). Alors pour tout A € C, on a x — A # 0. Soit A € Fr(Spy(z)). D’apres 3,
x — A est un diviseur de zéro topologique.

Exercice 12.26. Soient X un espace compact et A = C'(X) munie de la norme || ||. Soit f € A.
Montrer que f est un diviseur de zéro topologique si et seulement si f n’est pas inversible.
Solution. D’aprés ’exercice précédent, si f est un diviseur de zéro topologique, alors f n’est pas
inversible.

Réciproquement, supposons que f n’est pas inversible. Alors il existe z € X tel que f(z) = 0.
Si f = 0, il est clair que f est un diviseur de zéro topologique. Supposons donc f # 0,
d'ott [|f|lsoc # 0. Comme on a 0 € Spy(ff) = {|f()] ; € X} C [0, +oc[, alors on a
0 € Fr(Sp A(ff)). Il résulte de l'exercice précédent que ff est un diviseur de zéro topolo-
gique. Soit (gn)n>0 une suite dans A telle que pour tout n > 0, on ait ||gnllcc = 1 et telle que

lim |[gnfflloo = lim ||ffgnlloc = 0. On pose h, = gni, alors pour tout n > 0, on a
n—-+o0o n—+o00 f”OO
lgnlloo =1 et ona lim |hpflleo = lUm | fhnllcc = 0. Donc f est un diviseur de zéro topolo-
. n—-+0o n——+0o
gique.

Exercice 12.27. Soient X un espace compact, (B, || ||) une algébre de Banach unitaire et ¢ :
C(X) — B un morphisme d’algébres unitaires isométrique. Montrer que pour tout f € C(X),

on a Spg(¢(f)) = Spex) (f)-
Solution. D’aprés la proposition 12.3.3, on a Spp(¢(f)) C Spe(x)(f). Réciproquement, soit
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A € Spex)(f). Alors f — A n’est pas inversible dans C'(X). D’aprés 'exercice précédent, f — A
est un diviseur de zéro topologique. Soit (gn)n>0 une suite dans C'(X) telle que pour tout n > 0,

on ait ||gn|loo = 1 et telle que lim ||gn(f — A)|leo = lim ||(f — AN)gnlloc = 0. Comme ¢ est
n——+00 n—-+oo
un morphisme d’algebres unitaires isométrique, alors pour tout n > 0, on a ||¢(gn)|| =1 et on a

tim leo(gn)(p(f) =N = Tim [[(o(f) = Ae(gn)]| = 0. Donc o(f) — A est un diviseur de zéro
topologique dans B. D’apres Pexercice 12.25, ¢(f) — A n’est pas inversible dans B. Donc on a
A € Spp(p(f)). Par conséquent, on a Spp(¢(f)) = Spe(x)(f)-

Exercice 12.28. Soient (H, (, )) un espace de Hilbert complexe et T'€¢ A = Z(H).

1. Montrer que si 7' n’est pas injectif ou si T'(H) n’est pas fermé dans H, alors il existe une suite
(z1)n>0 dans H telle que ||z,|| = 1, pour tout n > 0 et telle que I'on ait Erjra T (zy)] = 0.
- n o0

2. Montrer que si T'(H) n’est pas fermé dans H, alors T et T™ sont des diviseurs de zéro
topologiques.
3. Montrer que si T" et T* ne sont pas injectifs, alors T et T* sont des diviseurs de zéro
topologiques.
Solution. 1. Ceci résulte de la proposition 7.1.4.
2. Comme T'(H) n’est pas fermé dans H, d’apres la proposition 7.10.7, T*(H) n’est pas fermé dans
H. D’apres 1, il existe deux suites (2, )n>0 €t (yn)n>0 dans H telles que ||z,|| = |Jyn|| = 1, pour
tout n > 0 et telles que 'on ait lim ||T(z,)|| =0et lim [|[T*(y,)|| = 0. Pour tout x,y € H,
n—-+oo n——+o0o

soit Oy, € L (H) défini par O, 4(2) = (z,y)x, pour tout z € H. Alors on a [|0, | = ||| ||y|

et ©F , = O, .. Pour tout n > 0, soit T}, = Oy, 4, € ZL(H). Alors on a ||T,|| = 1. Montrons que

lona lim [|[ToT,||= lim |T,oT| =0.Soitz € H tel que ||z]| < 1. On a z = \yypn + 2n,
n—-+00 n—-+4oo

avec A\, € C et z, € H tels que (2,,y,) = 0 et ||z]?> = |\u|? + [|2a]/?, 0t |Ay] < [J2]] < 1. On
a Tp(x) = Ay, dou T o T, (x) = \,T(xy,). Donc on a ||T o T, (x)|| < |An] [T (zn)]| < [|T(xn)]-

On en déduit que l'on a ||T o T,,|| < || T(zy)||. Par conséquent, on a lir}rl T oT,| =0.0Ona
n——+0oo
T oT|| = ||T* o T)}|| et comme précédemment, on vérifie que Uon a ||[T* o T¥|| < || T*(yn)||. Par

conséquent, on a lir}ra |T,, o T'|| = 0. Donc T est un diviseur de zéro topologique. Comme on a
n—-+0o

(T*)* =T, on déduit de ce qui préceéde que T™ est aussi un diviseur de zéro topologique.
3. Si T et T™ ne sont pas injectifs, on déduit de 1, qu’il existe deux suites (zp)n>0 €t (Yn)n>0

dans H telles que ||z,| = |Jyn|| = 1, pour tout n > 0 et telles que 'on ait lir}rl |T(zy)|| =0
n—-+00
et lirJrrl IT* (yn)|| = 0. On fait le méme raisonnement comme dans 2 pour montrer que 7" et T*
n——+0oo

sont des diviseurs de zéro topologiques.

Exercice 12.29. Soit (A4, || ||) une algébre normée unitaire.

1. Soient x,y € A tels que zy — yx = 14. Montrer que pour tout n > 0, on a
:L,yn—l—l _ yn+1x — (TL + 1)yn .

2. En déduire qu’il n’existe aucun x,y € A tels que xy — yxr = 14.

3. Soit (E, || ||) un espace normé non réduit & 0. En déduire que pour tout A, B € Z(FE), on
aAoB—BoA#idg.

Solution. 1. On va montrer par récurrence 1’égalité :

zy" Tt — gy = (0 + 1)y". (12.1)
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On a xy —yx = 14, d’ou (xy —yx)y =y et y(xry — yx) = y. On additionne les deux égalités, on
obtient xy?—y2x = 2y. Donc I'égalité (12.1) est vraie pour n = 0 et n = 1. Supposons que I'égalité
(12.1) est vraie a l’ordre n—1 et & 'ordre n et montrons qu’alors ’égalité (12.1) est vraie a l’ordre
n + 1. On a, par hypothése de récurrence, xy™ — y"z = ny" ! et zy"t! — "o = (n + 1)y™.
D'oti on a (zy" ™! — y" o)y = (n + 1)y et y(xy™ T — y"Tlz) = (n + 1)y™ L. On additionne
les deux égalités, on obtient :

a;.yn+2 + yajyn—i-l _ yn-i-lwy _ yn+2$ — (QTL + Z)yn-i-l .
On regroupe les termes, on obtient :
ay" T y(ay” =y a)y —y" e = (2n + 2)y

Par conséquent, on a xy" 2 — " 2z = (n + 2)y"T!. Autrement dit, I'égalité (12.1) est vraie a
lordre n + 1.

2. Supposons qu'il existe x,y € A tels que xy — yr = 14. D’aprés 1, pour tout n > 0, on a
xy" Tt — y" Tl = (n + 1)y™. Montrons d’abord que pour tout n > 1, on a y" # 0. S’il existe
n > 1 tel que y™ = 0, on déduit de I'égalité zy™ — y"x = ny" ! que y" ! = 0, et ainsi de suite,
on obtient y = 0, ce qui est impossible. Donc, pour tout n > 0, on a y"™ # 0, d’ou ||y"|| # 0. De
légalite xy" ! —y" o = (n+1)y", on déduit que l'on a (n+1)||y"|| < 2||lz|| |y|| |l¥™|. Donc, pour
tout n >0, on a (n+ 1) < 2||z|||y||- En faisant tendre n vers +o00, on obtient +oo < 2||z|| ||ly]|,
ce qui est impossible. Donc, pour tout z,y € A, on a xy — yz # 14.

3. Comme Z(F) est une algébre normée unitaire, on déduit de 2 que si E # 0, pour tout
A,Be Y(E),ona AoB— BoA#idg.

Exercice 12.30. Soit E = C*°([0, 1], C) muni de la norme || |o. Pour tout f € E, on pose
D(f) = f"et M(f)(t) =tf(t) pour tout ¢t € [0, 1].

1. Montrer que M € Z(E) et quel'ona Do M — Mo D =idg.
2. En déduire que D n’est pas continue.

Solution. 1. Il est clair que D et M sont linéaires de E dans E. Pour tout f € E et pour
tout ¢ € [0, 1, on a [M(F)(®)] = HFB] < [FO] < [|floes done on a Moo < [|fllc- Par
conséquent, M est continue. On a aussi (Do M — M o D)(f)(t) = f(t) +tf'(t) —tf'(t) = f(t),
pour tout t € [0, 1], Aot Do M — M o D =idg.

2. On déduit de ’exercice précédent que D n’est pas continue.

Exercice 12.31. Soit A = C!([0, 1], C) = {f : [0, 1] — C de classe C'} munie de la norme
111 = 11flloe + 1f lloo-

1. Montrer que A est une algébre de Banach unitaire.

2. Pour tout ¢ € [0, 1], soit fo(¢t) = t. Montrer que la sous-algebre engendrée par fy et 14 est
dense dans A.

3. Pour tout t € [0, 1], soit &; € A, défini par 0t(f) = f(t), pour tout f € A. Montrer que 'on
a A= {5t ; t e |0, 1]} et que l'application ¢ — ¢&; est un homéomorphisme de [0, 1] sur
A

4. En déduire que pour tout f € A, on a r(f) = ||f]lco et que la transformation de Gelfand
est l'injection canonique de (A, || ||) dans (C([0, 1]), || |leo)-

5. En déduire que la transformation de Gelfand n’est ni isométrique ni surjective.
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6. Montrer que tout idéal bilatére fermé de A n’est pas lintersection des idéaux bilatéres
maximaux de A le contenant.

Solution. 1. Il est clair que || || est une norme sur I’algébre unitaire A. Pour tout f,g € A, on a
(f9)' = f'g+fg, dou:
19l = 1fglle +11f'9+ 9l
< [ lloe ligllso + 11 Moo lglloe 4 [1.f lloc llg"lloo
< | fllso lglloe + 11 Tloo l1glloo + 1 flloc g oo + [1.fllos 119" lloo

(Iflloo + 1 Nls) (gllos +llg'lloc) = 11£1 gl

Donc (A4, || ||) est une algébre normée unitaire. Il reste a montrer que (A, || ||) est de Banach. Soit
(fn)n>0 une suite de Cauchy dans (A, || ||). Alors (fn)n>0 et (f})n>0 sont des suites de Cauchy
dans l’espace de Banach (C(]0, 1]), || |leo). Par conséquent, il existe f,g € C([0, 1]) tels que

lim |[fn— flloo =0et lim |, —gllec =0, voir proposition 2.6.8. Comme pour tout n > 0 et
n——+00 n——+00

pour tout t € [0, 1], on a f,(t) — f,(0) = /t fl(s)ds, alors on a f(t) — f(0) = /tg(s) ds. Donc

0 0
f est dérivable sur U'intervalle [0, 1] et on a f' = g, d’ou f € A. De plus, on a liT lfn—fll =
n——+0oo

lim ||fn — fllo + lim [|f} — f'llo = 0, donc (f,)n>0 converge vers f dans (4, | ||). Par
n—-+oo n——+o00 =
conséquent, (A, || ||) est une algébre de Banach unitaire.

2. Soit B la sous-algeébre de A engendrée par fy et 14. Soit f € A. On a f — f(0)1l4 € A et
(f = f(0)14)(0) =0, et comme f(0)14 € B, on peut supposer que f(0) = 0. Soit € > 0. D’apres
le théoréme de Stone-Weierstrass, théoréeme 5.4.2, 11 existe g € B tel que Hf/ —g|loo < e. Comme

g € B, alors il existe ag,...,a, € C tels que g = Zakfo Soit h = Z A + 1 (])“H, alors h € B,
k=0 k=0

h(0) =0 et on a ||f" — h'|lw < €. Pour tout t € [0, 1], on a f(t) — h(t) = /Ot(f’(s) — N(s))ds,

t
dou |f(t) — h(t)| < / If'(s) — B (s)|ds < t]|f — W|w < |[f' = K|l < & Donc on a

If = hlle < |If = h’||0c?. Par conséquent, on a || f — h|| < 2e. On en déduit que B est dense

dans (4, | |). A

3. Notons d’abord que pour tout f € A, on a Sp4(f) = {f(t) ; t €0, 1]} Soit x € A. Alors

on a x(fo) € Spa(fo) = [0, 1], donc il existe ¢ € [0, 1] tel que x(fo) =t = 0:(fo). On a aussi
x(14) = 6:(14), donc pour tout b € B, on a x(b) = d;(b). Comme B est dense dans A, alors on

a x = 0;. Par conséquent, on a A= {5t ; te 0, 1] } Comme l'application t — §; est bijective

et continue de [0, 1] dans A et comme [0, 1] est compact, alors t —s 6 est un homéomorphisme

de [0, 1] sur A.

4. Pour tout f € A, on ar(f) =sup{|A|; A € Spa(f)}. Comme on a Sp,(f) = {f(t); t €

[0, 1]}, alors r(f) = ||f|lsc. Pour tout f € A, on a f(6) = 8,(f) = f(t). Donc, aprés avoir

identifi¢ [0, 1] & A, la transformation de Gelfand n’est autre que Iinjection canonique de (4, || [|)

dans (C((0, 1)), | ).

5. On déduit de 4 que la transformation de Gelfand n’est ni isométrique ni surjective.

6. Soit I = {f e A; f(0) = f(0) = 0}, alors I est un idéal bilatére fermé de A. D’aprés 3,

les idéaux bilatéres maximaux de A sont les ker(d;). Par conséquent, il existe un unique idéal

bilatére maximal de A contenant I, a savoir ker(dp). Comme on a fy € ker(dy) et fo & I, alors I
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n’est pas l'intersection des idéaux bilatéres maximaux de A le contenant.

Exercice 12.32. Soit (A, || ||) une algébre de Banach unitaire. Soient z € A et f: R — A une
application différentiable telle que f(0) =1 et f'(¢t) = xf(¢), pour tout ¢t € R. Montrer que pour
tout t € R, on a f(t) = e'®.
Solution. Pour tout ¢t € R, soit g(t) = . Alors on a ¢g(0) = 1. Soit ¢y € R. Pour tout ¢ € R tel
que t # tg, on a :

g(t) _ g(to) et — ptox e(t—to)x — 14 fox

t—tg t—tg t—ty ze +5(t)

= (t — tg)" 2"
Avec S(t) = (t — t0)< g —‘>et°r. Pour ¢ € R tel que |t —ty| < 1, on a alors
n!

n=2
t) —g(t
1S@)|| < [t — tole!l®l]|e?o*||. Donc on a lim 9(t) = 9(to) = gelo®
t—to t— tO
g est différentiable sur R et pour tout ¢t € R, on a ¢/(t) = ze!® = xg(t) = g(t)z. Pour tout
t € R, soit h(t) = e ¥ f(t). Alors h est différentiable sur R et on a h'(t) = 0 pour tout t € R, et

h(0) = 1. Par conséquent, pour tout ¢ € R, on a h(t) = 1. Autrement dit, pour tout ¢t € R, on a
ft) = e’

. Par conséquent, ’application
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APPENDICE A

ELEMENTS DE LA THEORIE DES
ENSEMBLES

E principal concept de la théorie des ensembles est celui d’appartenance; si X est un ensemble,
L la relation « € X signifie que x est un élément de 'ensemble X, ou encore qu’il appartient
a X ; la négation de cette relation s’écrit x ¢ X.

Si X et Y sont deux ensembles, la relation ¥ C X signifie que chaque élément de Y est un
élément de X. Dans ce cas, on dit que Y est inclus dans X, ou que Y est un sous-ensemble
ou une partie de X ; la négation de Y C X s’écrit Y ¢ X.

Deux ensembles X et Y sont dits égaux, noté X =Y, si et seulement si X C Y et Y C X. En
d’autres termes, deux ensembles sont égaux si et seulement s’ils possédent les mémes éléments.
Ainsi, la notion d’ensemble ne comporte pas autre chose que ce qui est spécifié par la donnée
des éléments. Dans la pratique, lorsque 1’on veut démontrer 1’égalité de deux ensembles, il faut
prouver les deux inclusions.

L’ensemble dont les éléments sont exactement les objets x1, o, ..., x, se note {x1,22,..., Ty}
En particulier, si x est un objet, ’ensemble {z} est appelé le singleton d’élément z.

A.1 Opérations sur les ensembles

Partie d’un ensemble définie par une relation. Etant donné un ensemble X et une pro-
priété P, il existe un sous-ensemble unique de X dont les éléments sont tous les éléments x € X
pour lesquels P(z) est vraie; ce sous-ensemble s'écrit {x € X ; P(z)}. Par exemple on a
X = {a: eX;,zxz= :13} L’ensemble 0 x = {a: eX; x# :13} est appelé le sous-ensemble vide
de X ; il ne posseéde aucun élément. Si X et Y sont deux ensembles, on a fx = @y, en d’autres
termes tous les ensembles vides sont donc égaux et, pour cette raison, ils seront tous représentés
par (). Donc pour tout ensemble X, on a ) C X.

Notez que ’on doit distinguer entre un élément et un sous-ensemble d’un ensemble donné. Par
exemple, 'ensemble {(} est non vide, car ) € {0}, et donc on a @ # {0}.

Ensemble des parties d’un ensemble. Si X est un ensemble, il existe un unique ensemble
dont les éléments sont tous les sous-ensembles de X ; on le note Z(X). On a donc ) € Z(X),
X e Z(X) et

ACX <= Ac Z(X).

En particulier, on a :
aeX < {a} C X < {a} € Z(X).

213
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Différence de deux ensembles; complémentaire d’une partie. Si X et A sont deux en-
sembles, 'ensemble {z € X ; x ¢ A} s’appelle la différence de 'ensemble X et de ’ensemble
A, on le note X \ A. Si, de plus, A C X, alors X \ A s’appelle le complémentaire de A dans
X, et peut aussi se noter CxA.

Intersection et réunion de deux ensembles. L’intersection de deux ensembles X et Y,
notée X NY, est 'ensemble formé de tous les éléments qui appartiennent a la fois & X et Y. En
d’autres termes, on a :

reXNY < zrzecXetaxeV.

Deux ensembles dont l'intersection est () sont dits disjoints.
La réunion de deux ensembles X et Y, notée X UY, est 'ensemble formé de tous les éléments
qui appartiennent & I’'un au moins des deux ensembles X, Y. En d’autres termes, on a :

e XUY «<—= rzeXouxeV.

Produit cartésien. Le produit cartésien est un de plus importante construction en théorie des
ensembles. Il nous permet d’exprimer plusieurs concepts en termes d’ensembles. A deux objets a,
b, est associé un nouvel objet que 'on note (a,b) et que l'on appelle le couple (a,b). L’opération
consistant & former des couples est soumise & une seule régle d’emploi, que voici : pour que ’on
ait (a,b) = (c¢,d) il faut et il suffit que 'on ait a = ¢ et b = d. En particulier, on a (a,b) = (b, a)
si et seulement si a = b. Ne pas confondre le couple (a,b) avec I’ensemble a deux éléments {a, b}.
Soient X et Y deux ensembles, le produit cartésien (ou simplement produit) de X et Y, noté
X x Y, est ensemble des couples (x,y), ou = décrit X et y décrit Y. Autrement dit, on a :

XxY={(z,y);zeXetyecY}

On définit de fagon analogue le produit de n ensembles :
Soient X1, Xo,..., X, n ensembles, on a :

XixXogx - xX,= {({L’l,{L‘g,...,IL’n) ; pour tout 4, on ait x; € Xi}.

Un élément 2z = (21,29, ..., 2,) de X3 x X9 x -+ x X, est appelé un n-uples et z; s’appelle la i®™¢
coordonnée de z. Soient (z1,xa,...,x,) et (y1,y2,.-.,yn) deux éléments de X7 x Xg X -+ X X,
alors on a (z1,22,...,2,) = (Y1,%2,-..,Yn) si et seulement si pour tout ¢ € {1,...,n}, on a

x; = y;. Si X est un ensemble, on notera X" le produit cartésien de X par lui-méme n fois.

Proposition A.1.1. Soient X, Y et Z des ensembles.
1. Ona XNY CXC(XUY), XNnl=0, XUl=X, X\ X=0e X\0=X.
22.0naXNYUZ)=(XNY)U(XNZ),Xul¥YnZ)=(XUY)Nn(XUZ),

(XUY)xZ=(Xx2)U(Y xZ), (XNY)xZ=(Xx2Z)N(Y x Z).
3. Soient A et B deus parties de X, alors on a :
X\ (X\A) =4, A\B=An(X\B),
X\(ANB)=(X\A)U(X\B), X\(AUB)=(X\A)N(X\B).

4. Soient A et B deur parties de X, alors A C B si et seulement si l'une des propriétés
sutvantes est vérifiée :

ANB=A, AUB=B, X\BCX\4, An(X\B)=0, (X\AUB=X.
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A.2 Applications

Soient X et Y deux ensembles. Se donner une application f de X dans Y, que l'on note
f: X — Y cest faire correspondre, & chaque élément x de X, un unique élément de Y, que
l'on note f(x). Siz € X et y € Y tels que y = f(x), on dit que y est la valeur de f en z, ou
que y est 'image de x par f et x est un antécédent de y. L’ensemble X s’appelle ’ensemble
de départ et 'ensemble Y s’appelle 'ensemble d’arrivée de f. Le graphe de ’application f,
noté I'y, est le sous-ensemble de X x Y, défini par :

Ff:{(a:,y)EXxY;y:f(x)}:{(x,f(x))eXxY;xGX}.

Notons qu’un sous-ensemble G de X X Y est le graphe d’une application de X dans Y si et
seulement si pour tout x € X, il existe un unique y € Y tel que (z,y) € G. D’ailleurs, c’est ainsi
que la plupart des auteurs définit une application de X dans Y.

Le mot fonction est synonyme du mot application. En général, on emploie le mot fonction
lorsque ’ensemble d’arrivée est un sous-ensemble de R ou C.

Soient X, Y deux ensembles et f une application de X dans Y. Lorsque pour tout z € X, f(z)
est donné explicitement, pour désigner f, on utilise la notation x — f(z) ou

f: X — Y X — Y
x — f(x) oy —  f(x)

Egalité de deux applications. Si X, Y, X/, Y’ sont des ensembles et si f : X — Y,
g : X’ — Y’ sont des applications, on a f = g si et seulement siona X = X' Y =Y’ et
f(z) = g(z) pour tout x € X.

Composition des applications. Soient X, Y, Z des ensembleset f: X — Y, g:Y — Z
des applications. La composée de f et g, notée g o f, est 'application de X dans Z définie par
go f(xz) =g(f(x)) pour tout z € X.

Soient T un ensemble et h : Z — T une application. Alors on a ho(go f) = (hog)o f et cette
application est notée hogo f.

Restriction et prolongement. Soient X, Y des ensembles et A un sous-ensemble de X. Soit
J + X — Y une application. On appelle restriction de f a A I'application f|, : A — Y telle
que pour tout z € A, on ait f|, (z) = f(x).

Soient h: A — Y et g : X — Y des applications. On dit que g est un prolongement de h si
pour tout z € A, on a g(x) = h(x). Autrement dit, g est un prolongement de A si la restriction
de g & A est égale a h.

Notation. Soient X et Y deux ensembles. Les applications de X dans Y constituent un ensemble
que Ion note .Z(X,Y), et parfois Y, notation particuliérement commode quand X est un
ensemble fini. L’ensemble .7 (X, Y') s’identifie & un sous-ensemble de Z(X x Y).

Exemple A.2.1. 1. Pour tout ensemble X, I’application idx : X — X qui a tout élément
x associe x s’appelle 'application identique, ou identité, de X.

2. Si A est une partie d’'un ensemble X, on appelle injection canonique de A dans X,
Papplication 7 de A dans X, notée parfois y : A — X, définie par j(z) = x pour tout
x € A
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3. Si A est une partie d’un ensemble X, on appelle fonction indicatrice, ou caractéristique
de A, la fonction de A dans l’ensemble & deux éléments {0, 1}, notée x4 ou 1,4, donnée
par :

1 si z€A,

xa(x) =
0 si xgA.
4. Soient X, Y deux ensembles et f: X — Y une application. On dit que f est constante
sl existe yo € Y tel que pour tout = € X, on ait f(x) = yo.

5. Soient X et Y deux ensembles. Les applications

XxY — X XxY — Y

)

(l',y) _— (:Evy) — Yy

sont appelées respectivement les projections canoniques sur X et Y.

A.3 Images directes et réciproques

Soient X, Y des ensembles et f une application de X dans Y. Pour tout AC X et BCY, on
pose :
f(A) = {y €Y :ilexistex € A, avecy = f(:z:)} = {f(:z:) ;T € A},

fi(B)={x € X; f(z) € B}.

L’ensemble f(A) est appelé 'image dlrecte de A par f; f(X) est appelé simplement I'image
de f et noté Im(f). L’ensemble f~!(B) est appelé 'image réciproque de B par f. On a
f(A) CIm(f) CY et f~1(B) C X. Ainsi, on obtient les deux applications suivantes :

f: PX) — P(Y) f: PY) — PX)
A s fA) B — (B
Proposition A.3.1. Soient X, Y des ensembles et f : X — Y une application. On a les
propriétés suivantes :
1 Onaf(O) =0, f710) =0 et [1(Y) = X
Pour tout A C X, on a A C f~1(f(A)).
Pour tout BCY, ona f(f~1(B)) C
Pour ACX et BCY, ona f(A) C
Pour tous By CY et Bo CY, ona:

FTHBIUBy) = fTH B U TH(By) et fTHBiNBy) = f71(B1) N f(Ba).
6. Pour tous A1 C X et A C X, on a :
f(ATUAg) = f(A1) U f(A2) et f(A1NA2) C f(A1)N f(A2).

7. Pour tous By CY et By CY tels que By C Ba, on a f~1(By) C f~1(Ba).
8. Pour tous A1 C X et Ay C X tels que A1 C Ag, on a f(A1) C f(A2).

9. Pour tout BCY, ona f1(Y\B)=X\ f1B).
10. En général, si AC X, ona f(X\A) #Y \ f(A).

11. Soient Z un ensemble et g : Y — Z une application. Pour tous A C X et D C Z, on a
(g0 F)(A) =g(f(A) et (go /)T(D) = fFHg (D).

C B.
B < AcC f4(B).

v S e
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A.4 Applications injectives, surjectives et bijectives

Définition A.4.1. Soient X, Y des ensembles et f: X — Y une application de X dans Y.

1. On dit que f est injective ou que c’est une injection, si toutes les fois deux éléments
distincts de X ont pour images par f deux éléments distincts de Y. Autrement dit, f est
injective si pour tout z,2’ € X, on a :

z#a = f(z) # f().

Ou ce qui revient au méme :
Pour tout z,2’ € X, on a :
fl)=f@@) =az=4"

2. On dit que f est surjective ou que c¢’est une surjection, si tout élément de Y est 'image
par f d’au moins un élément de X. Autrement dit, f est surjective si pour tout y € Y, il
existe z € X tel que y = f(x). Donc f est surjective si 'on a f(X) =Y.

3. On dit que f est bijective ou que c’est une bijection, si tout élément de Y est 'image
par f d’'un élément et d’un seul de X. Autrement dit, f est bijective si pour tout y € Y, il
existe un unique =z € X tel que y = f(x).

Notons qu’une application f est bijective si et seulement si f est injective et surjective.
Proposition A.4.1. Soient X, Y, Z des ensembleset f : X — Y, g: Y — Z des applications.
On a les propriétés suivantes :
1. Si go f estinjective, alors f est injective.
2. Sigo f est surjective, alors g est surjective.
3. Sl existe une application h : Y — X telle que ho f = idx, alors f est injective et h est
surjective.
Proposition A.4.2. Soient X, Y des ensembles et f: X — Y une application. Les propriétés
sutvantes sont équivalentes.
(i) [ est bijective.
(ii) Il existe une application g:Y — X telle que go f = idx et fog=idy.
Dans ce cas, Uapplication g est unique et elle est bijective. On ’appelle application réciproque

de f et on la note f=1.

Proposition A.4.3. Soient X, Y des ensembles et f: X — Y une application. Les propriétés
sutvantes sont équivalentes.

(i) f est injective.
(ii) Pour tout A C X, on a A= f~1(f(A)).
(i11) Pour tout AC X, ona f(X\A) CY\ f(A).
(iv) Pour tous A1 C X et A2 C X, on a f(A1NAy) = f(A1) N f(A2).
Proposition A.4.4. Soient X, Y des ensembles et f: X — Y une application. Les propriétés
sutvantes sont équivalentes.
(i) f est surjective.
(i) Pour tout BCY, ona A= f(f~1(B)) = B.
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(113) Pour tout AC X, ona Y \ f(4) C f(X\A).

Corollaire A.4.1. Soient X, Y des ensembles et f : X — Y wune application. Les propriétés
sutvantes sont équivalentes.

(i) f est bijective.
(ii) Pour tout AC X, ona f(X\A) =Y\ f(A).

A.5 Familles

Soit I un ensemble non vide. Une famille d’ensembles indexée par I, est la donnée pour chaque
i € I un ensemble A;. On note une telle famille par (A;);er. S'il existe un ensemble X tel que
pour tout i € I, on ait A; C X, on dit alors que l'on a une famille de parties de X, indexée
par I. Donc se donner une famille de parties d’'un ensemble X, indexée par I, revient a se donner
une application f: I — Z(X); on prend A; = f(i).

Soient X un ensemble et T une partie de (X)), alors on peut considérer 7 comme une famille
de parties de X, a l'aide de I'injection canonique j: A +—— A de T dans &?(X). Chaque élément
de T est alors indexée par lui-méme.

Soient [ et E deux ensembles non vides. Une famille d’éléments de E, indexée par I, est une
application de I dans E. Si f est une famille d’éléments de F, indexée par I, I’élément f(i) se
note usuellement x; et la famille f elle-méme se note (z;);cr. Il faut prendre soin de distinguer
la famille (z;);er du sous-ensemble de E de ses valeurs {xl el }

Notons que si A est une partie non vide de F, on peut considérer A comme une famille d’éléments
de FE, a l’aide de l'injection canonique j: a — a de A dans E. Chaque élément de A est alors
indexée par lui-méme. Dans la suite, on identifiera souvent une partie A d’un ensemble E a la
famille qu’elle définit.

Soit X un ensemble, alors se donner une famille de parties de X, indexée par I, revient & se
donner une famille d’éléments de (X)), indexée par I.

Intersection et réunion d’une famille d’ensembles. Soient I un ensemble non vide et (A;);cs

une famille d’ensembles, il existe un unique ensemble dont les éléments sont exactement ceux qui

appartiennent a chacun des ensembles A;. Cet ensemble, noté .ﬁIAia est appelé intersection de
1€

la famille (4;);e;. En d’autres termes, on a :
T € .mIAi <— Viel, xeA,.
1€

Il existe aussi un unique ensemble dont les éléments sont exactement ceux qui appartiennent &
I’'un au moins des ensembles A;. Cet ensemble, noté 'UIAZ" est appelé réunion (ou union) de la
1€

famille (A;);c;. En d’autres termes, on a :
T € 'UIAi <= Jieltel quex € A;.
1€
Soient X un ensemble et 7 une partie de P(X). On définit Uintersection et la réunion des
ensembles de 7, comme étant 'intersection et la réunion de la famille que T définit. Cette in-
tersection et cette réunion se notent respectivement AOTA et U A.
€

AeT

Notons que si (A;)icr est une famille de parties de X, alors on a

ﬁAi:{a:EX; pour tout ¢ € I, a:EAZ-} et U Ai:{.’L‘EX; il existe i € I, aveca:EAZ-}.
i€l el
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Exemple A.5.1. Soit X un ensemble non vide et considérons l'application x —— {z} de X
dans Z(X), alors ({2})zex est une famille de parties de X et on a UX{x} =X et ﬂX{x} =0
Te €

si X a au moins deux éléments.

Remarque A.5.1. Soient (A;);c; une famille d’ensembles et A = 'UIAZ" Alors on peut considérer
1€

la famille (A;);e; comme une famille de parties de A car pour tout ¢ € I, on a A; C A.

Il y a plusieurs résultats concernant l'intersection et la réunion d’une famille d’ensembles. On se
contente de donner la proposition suivante :

Proposition A.5.1. Soient I, X deux ensembles non vides et (A;)icr une famille de parties de
X.

LoOna X\ (U A)=0(X\A) et X\ (Z-Qz Ai) = U (X\ 4).
2. Si J est un sous-ensemble non vide de I, on a U A; C UA; et NA; C N A;.
ied el el ied

3. Si (D;)icr est une autre famille de parties de X telle que pour pour tout i € I, on ait
A; C D;, alors on a :

(z‘LGJI Ai) = (ZLGJI Di) ct (ZQI Ai) = (ZQI Di)'

4. St D est une partie de X, on a :
(UA)ND=U(A4ND) e (N A)UD=n(AUD).
icl el el icl

5. Soient J, Y des ensembles non vides, (Bj)jes une famille de parties de Y et f: X — Y
une application. Alors on a

FHY B = U B (0 B) = 0 SB)

A;) = A; A; Ap) .
f(iLEJI i) iglf( i) f(iQI i) C iQIf( i)

En général l'inclusion précédente est stricte et qu’il y a égalité si f est injective.
Remarque. Soit (X,,),>0 une suite de parties d’un ensemble X. Alors il existe une suite (¥3,)n>0
de parties de X telle que

1. Y, C X,, pour tout n > 0.

2. Les Y, sont deux & deux disjoints.

3. U X,= UY,.
neN ' nen "

-1
En effet, il suffit de prendre Yy = X, et pour tout n > 1, on pose Y,, = X, \ <:U0 Xk>.

Axiome du choix. Soit I un ensemble non vide, et pour tout ¢ € I, soit A; un ensemble non
vide. Alors il existe une application f: I — 'UIAi telle que pour tout @ € I, on ait f(i) € A;.
1€

Une autre maniére d’énoncer ’axiome du choix est la suivante :
Pour tout ensemble non vide X, il existe une application f : 2(X) \ {0} — X telle que pour
toute partie A C X, A # 0, on ait f(A) € A.

Produit d’une famille d’ensembles. Etant donné deux ensembles A; et Ay, le produit car-
tésien Ay X Ag peut étre considéré comme 'ensemble des applications f de {1,2} dans A; U A,
telles que f(1) € Ay et f(2) € Ag. Cette observation nous permet d’étendre la notion du produit
cartésien & une famille d’ensembles.
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Définition A.5.1. Soient (A;);c; une famille d’ensembles et A = 'UIAZ" On appelle produit
1€

de la famille (A;)ier, et on note [[A;, ensembles des applications f : I — A telles que pour
el
tout i € I, on ait f(i) € A;. Autrement dit, le produit [ A; est I'ensemble des familles (z;)ier
el
d’éléments de A telles que tout ¢ € I, on ait x; € A;.

Si pour tout i € I, on a A; # 0, alors [[A; # 0. Cette propriété est un axiome équivalent a
i€l
I’axiome du choix.
Si pour tout i € I, on a A; = F, 'ensemble E étant fixe, le produit [ A; se note E' et dans ce
i€l
cas, BT n’est autre que 'ensemble . (I, E) des applications de I dans E.
Revenons au produit général [[ A;. Pour tout j € I, 'application

el
pi: ITA — A4
el
(i)ier Ty
est appelée la ji®™e projection canonique. De maniére générale, si J est une partie non vide

de I, l'application
pJ H Az’ — H Az
el i€J
(xi)ier — (®i)ies
qui, & toute famille (x;);cs fait correspondre sa restriction & J, s’appelle la projection d’indice
J. En vertu de ’axiome du choix, p; est une application surjective si tous les A; sont non vides.

A.6 Relations d’équivalence

Soit X un ensemble. Une relation binaire R sur X est une partie 'g de X x X. Au lieu d’écrire
(z,y) € I'r, on écrit £ R y. L’ensemble I'g s’appelle aussi le graphe de R. On dit qu'une relation
binaire R sur X est :

— réflexive si pour tout € X, on a z R x. Autrement dit, R est réflexive si I'g contient la
diagonale {(z,z) ; x € X} de X x X;

— symétrique si pour tout z,y € X tels que xRy, on a yRx. Autrement dit, R est symé-
trique si I'g est une partie invariante par application (z,y) — (y,z) de X x X dans
lui-méme;

— antisymétrique si pour tout x,y € X, on a 'implication (x Ry et yRz) = = =1y;

— transitive si pour tout x,y,z € X, on a l'implication (z Ry et yRz) = zR 2.

Soit R une relation binaire sur un ensemble fini X, dont le graphe est I'g. Les éléments de
X s’appellent les sommets de I'g. Les couples (z,y) € I'g s’appellent les arcs de I'g ; x est
lorigine de 'arc (z,y), et y son extrémité. Un arc (z,z) € I'g s’appelle une boucle de I'k.
Cette terminologie correspond & la représentation géométrique usuelle des graphes, dont les
figures ci-dessous donne trois exemples.

® C)
AN\

~—~— ~_——
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Le graphe de gauche est non réflexif, non symétrique et non transitif sur un ensemble & trois
éléments. Le graphe du milieu est réflexif, antisymétrique et transitif sur un ensemble & deux
éléments. Le graphe de droite est réflexif, symétrique et transitif sur un ensemble & trois éléments.

Définition A.6.1. On appelle relation d’équivalence sur un ensemble X toute relation binaire
sur X qui est a la fois réflexive, symétrique et transitive.

Définition A.6.2. Soit R une relation d’équivalence sur un ensemble X. Pour tout z € X, on
appelle classe d’équivalence de x suivant R, ou modulo R, I'’ensemble C, = {y €X; mRy}.
On appelle quotient de X par R, et on le note X/R, 'ensemble des classes d’équivalences de
R. Autrement dit, on a X/R = {Cw ;X € X} C Z(X). L’application ¢ : x — C, de X dans
X/R s’appelle 'application quotient, ou la projection canonique de X sur X/R.

Exemple A.6.1. 1. Soit X un ensemble, la relation z = y, dont le graphe est la diagonale
{(a;,a:) ;T E X} de X x X, est une relation d’équivalence. Dans ce cas, pour tout z € X,
on a C, = {z}.
2. Soit X un ensemble d’individus, et R la relation sur X définie par x Ry < x et y ont
méme age. Alors R une relation d’équivalence sur X.

3. Soit n € Z. Si m,m’ € Z, on dit que m est congru a m’ modulo n et on écrit m =m’ [n]
il existe k € Z tel que m — m’ = kn. C’est une relation d’équivalence. Lorsque n > 1,
Pensemble quotient de Z par la relation de congruence modulo n est noté Z/nZ, et
Papplication de {0,1,--- ,n—1} dans Z/nZ qui a m associe C,, est bijective. En particulier,
Pensemble quotient Z/nZ a n éléments.

4. La relation R définie sur I’ensemble R par :
cRy<—= Jke€Z, v —y=2kn

est une relation d’équivalence sur R, appelée relation de congruence modulo 27. L’en-
semble quotient de R par la relation de congruence modulo 27 est noté R/27Z, et 'appli-
cation de [0, 2] dans R/27Z qui & x associe C,, est bijective.

5. Soit F' =7 x (Z\ {0}). Pour tous (a,b), (a’,b') € F, on pose :
(a,b) R (a',b") <= ab' = bad’
Alors R est une relation d’équivalence sur F'.

Exemple A.6.2. Soient X, Y des ensembles et f : X — Y une application. On peut définir
sur X la relation d’équivalence R; donnée par : pour z,y € X, on a :

rRyy <= f(x)= f(y).

Dans ce cas, pour tout # € X, on a Cp = f1({f(2)}).

Notons que si R est une relation d’équivalence sur un ensemble X et ¢ : X — X/R est
I'application quotient. Alors on a ¢(x) = ¢(y) si et seulement si  Ry. Donc on a R = Ry,
c’est-a-dire, 'r = I'g,.

Exemple A.6.3. Soient X un ensemble et Z(X) 'ensemble des parties de X. Soit F' une partie
de X et R la relation définie sur &(X) par :

ARB <<= ANF=BNF.

Alors R est une relation d’équivalence sur Z(X).
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Définition A.6.3. On appelle partition d’un ensemble non vide X toute famille (A;);c; de
parties de X vérifiant les trois conditions suivantes :

1. Pour tout i € I, on a A; # 0.
2. Pour tout 4,5 € I tels que ¢ # j, on ait A; N A; # 0.
3.0na UA; = X.

el

Remarque A.6.1. Soient X, Y des ensembles et (A;);er une famille de parties de X telle que

‘UIAi = X. Supposons que pour tout ¢ € I, il existe une application f; : A; — Y telle que pour

[4S]

tout 4,5 € I, on ait fl-‘ = f; . Alors il existe une unique application f: X — Y telle
A;NA; la;na;

que pour tout ¢ € I, f soit un prolongement de f;.

Cas particulier : supposons (A4;);e; une partition de X et que pour tout ¢ € I, il existe une
application f; : A; — Y. Alors il existe une unique application f : X — Y telle que pour tout
1 € 1, on ait f|Az = f;.

Lemme A.6.1. Soit R une relation d’équivalence sur un ensemble non vide X. Pour tout x,y €
X, les propriétés suivantes sont équivalentes.

(ii) Cy = C,.
(iii) Cy C Cy.
(iv) Cx NCy # 0.

Proposition A.6.1. Soit X un ensemble non vide.

1. Si R est une relation d’équivalence sur X, alors X/R est une partition de X. Autrement
dit, X/R posséde les propriétés suivantes :
(i) Pour tout A€ X/R, on a A# 0.
(i) Pour tout A,B € X/R tels que A# B, on a AN B = (.
(1i)) Ona U A=X.
AeX/R
De plus, onaTr= U Ax A C X xX.
AEX/R

2. Réciproquement, si (A;)ier est une partition de X, on peut définir sur X la relation d’équi-
valence R’ donnée par : pour x,y € X, on a

xRy <= il existei €I tel quex,y € A;.

Dans ce cas, on a :

(i) Pourx € X eti €1, onaC, =A; < x € A;.
(i) X/R' ={4;;iel}.

(11i) Trs :iLGJIAZ- xA; C X xX.

Donc, se donner une relation d’équivalence sur un ensemble X revient & se donner une partition
de X.

Proposition A.6.2 (propriété universelle de I’application quotient). Soient R une re-
lation d’équivalence sur un ensemble X et q : X — X/R Uapplication quotient. Soient Y un
ensemble et f : X — Y wune application. Si f est constante sur les classes d’équivalences sui-
vant R, autrement dit, pour tout x,y € X vérifiant x Ry, on a f(x) = f(y), alors il existe une
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unique application g : X/R — Y telle que f = g o q. Autrement dit le diagramme suivant est
commutatif.

De plus on a :
1. L’application g est surjective si f [’est.
2. L’application g est injective si les relations d’équivalences R et Ry sont égales.

L’application g est construite de la maniére suivante : soit a € X/R, il existe z € X tel que
a = C,; 'élément f(x) ne dépend pas du choix de x dans la classe a; on pose g(a) = f(z).

A.7 Relations d’ordre

Définition A.7.1. On appelle relation d’ordre sur un ensemble X toute relation binaire sur
X qui est a la fois réflexive, antisymétrique et transitive.

Un ensemble muni d’une relation d’ordre est appelé un ensemble ordonné. Le plus souvent,
une relation d’ordre sera notée <. Lorsqu’il en est ainsi, la relation x < y et  # y se note x < y.
Un ensemble X muni d’une relation d’ordre < sera souvent noté (X, <). Deux éléments z et y
d’un ensemble ordonné (X, <) sont dits comparables si 'on a z < y ou y < z. On dit qu'un
ensemble X, muni d’une relation d’ordre <, est totalement ordonné par <, ou que < est une
relation d’ordre total, si pour tout z,y € X, on a soit z < y, soit y < x.

Exemple A.7.1. 1. Les ensembles N, Z, Q et R sont totalement ordonnés pour ’ordre usuel.

2. Sur l'ensemble N des entiers naturels la relation « divise », notée | et définie par :
mlin<= 3keN n=km

est une relation d’ordre non totale.

3. Sur 'ensemble X = {a, b, c,d}, la relation dont le graphe est :

I'r = {(a,a), (b,), (¢, ¢), (d, d), (a,b), (b, ¢), (a, ¢), (d, ) }

est une relation d’ordre.

4. Soit X un ensemble, sur 'ensemble Z(X), la relation d’inclusion A C B est une relation
d’ordre. Si X a au moins deux éléments, Z?(X) n’est pas totalement ordonné par C.

5. Soient X un ensemble quelconque et (Y, <) un ensemble ordonné. Sur ’ensemble .7 (X,Y")
des applications de X dans Y, on peut définir la relation d’ordre suivante : pour f,g €
F(X,Y),ona:

f 2 g < pourtout z € X, on a f(z) < g(x).
6. Soient (E, <) et (F, <) des ensembles ordonnés. On définit sur E x F la relation R par :
(af,y)R(fl«”/,y/) < (33' § .’L‘l et x #.’L‘/) ou (aj‘ ::13/ et Y j y/) X

Alors R est une relation d’ordre sur F x F', appelée ordre lexicographique.
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Définition A.7.2. Soient (X, <) un ensemble ordonné et A une partie de X.

1.

S’il existe M € X tel que pour tout € A, on ait x < M, on dit que A est majorée, et
que M est un majorant de A.

. Sl existe m € X tel que pour tout x € A, on ait m < z, on dit que A est minorée, et

que m est un minorant de A.

. On dit que A est bornée si elle est a la fois majorée et minorée.

S'il existe un élément a € A tel que pour tout x € A, on ait = < a, cet élément est unique, a
cause de 'antisymétrie de <; on 'appelle le plus grand élément de A, il est aussi appelé
I’ élément maximum de A et on le note max A.

. S'il existe un élément a € A tel que pour tout x € A, on ait a < x, cet élément est unique;

on I'appelle le plus petit élément de A, il est aussi appelé I’élément minimum de A et
on le note min A.

. Si ’ensemble des majorants de A admet un plus petit élément, qui est alors unique, cet

élément est appelé la borne supérieure de A et se note sup A . Autrement dit, sup A est
un majorant de A et pour tout majorant M de A, on a sup A < M.

Si 'ensemble des minorants de A admet un plus grand élément, qui est alors unique, cet
élément est appelé la borne inférieure de A et se note inf A. Autrement dit, inf A est un
minorant de A et pour tout minorant m de A, on a m < inf A.

. Un élément = de X est dit maximal s’il n’existe pas d’élément y € X tel que x < y et

x # y. Autrement dit, un élément x de X est maximal si pour tout z € X vérifiant = < z,
onazx=z.

. Un élément = de X est dit minimal s’il n’existe pas d’élément y € X tel que y < x et

x # y. Autrement dit, un élément x de X est minimal si pour tout z € X vérifiant z < x,
onazx=z.

Notons que tout élément maximum est maximal, mais la réciproque est fausse; de méme tout
élément minimum est minimal, mais la réciproque est fausse. Dans un ensemble totalement
ordonné, les notions d’éléments maximum et maximal (resp. minimum et minimal) coincident.

Exemple A.7.2. Soit X un ensemble non vide. On munit #(X) de la relation d’ordre C
(inclusion). Alors I’ensemble () est le plus petit élément et ’ensemble X est le plus grand élément
de Z(X). Si T est une partie non vide de #(X), alors T posséde une borne supérieure et une
borne inférieure et on asup7 = U Aetinf7 = N _A.

AeT AeT

Proposition A.7.1. Soient (X, <) un ensemble totalement ordonné et A une partie de X.

1.

2.

Pour qu’un élément b € X soit la borne supérieure de A, il faut et il suffit que les deux
conditions suivantes soient vérifiées :

(i) Pour tout x € A, on a x <b.
(i) Pour tout élément c € X tel que ¢ < b, il existe un élément a € A tel que ¢ < a.

Pour qu’un élément b € X soit la borne inférieure de A, il faut et il suffit que les deux
conditions suivantes soient vérifiées :

(i) Pour tout x € A, on a b < zx.

(i) Pour tout élément c € X tel que b < c, il existe un élément a € A tel que a < c.
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Applications a valeurs dans un ensemble ordonné. Soient (X, <) un ensemble ordonné, A

un ensemble non vide quelconque et f: A — X une application. Considérons la partie f(A) de

X. Si max f(A) existe, on I'appelle maximum de f et on le note max f(x). Sisup f(A) existe,
S

on lappelle borne supérieure de f et on le note sup f(z). On introduit de méme Inig f(x) et
xre

) T€A
I

Soit (x;)ier une famille d’éléments de X, alors A = {x; ; i € I} est une partie de X. Si max A

existe, on l'appelle maximum de la famille (z;);c; et on le note max ;. On définit de méme
1€

min x;, sup x; et inf ;.

icl el icl

Définition A.7.3. Soit (X, <) un ensemble totalement ordonné.

1. Un sous-ensemble I de X est un intervalle si, pour tous z,z € [ et y € X tels que
r<y<zonaityel.

2. Pour tout a,b € X tels que a < b, on définit les ensembles suivants, appelés :

[a, b] = {a: ceX;a<z< b} (intervalle fermé),

Ja, bl ={z € X; a<axz<b} (intervalle semi-ouvert),

[a, b[= {a: ceX:;a<z< b} (intervalle semi-ouvert),

Ja,b[={r € X ; a<z<b} (intervalle ouvert).

Parfois I’ensemble [a, b] est appelé segment.
On définit de méme, pour a € X,

[a, > [={reX;a<z} et Ja,—[={reX;a<uza},
et de facon analogue
|« al={reX;x<a} et |« a={reX;z<a}.
On parle alors de demi-droites (fermées ou ouvertes).
Définition A.7.4. Soient (X, <), (Y, <) deux ensembles ordonnés et f: X — Y une applica-
tion.

1. On dit que f est croissante si pour tout a,b € X tels que a < b, on ait f(a) < f(b).

2. On dit que f est strictement croissante si pour tout a,b € X tels que a < b, on ait
fla) < f(b).
3. On dit que f est décroissante si pour tout a,b € X tels que a < b, on ait f(b) =< f(a).

4. On dit que f est strictement décroissante si pour tout a,b € X tels que a < b, on ait
f(b) < f(a).
5. On dit que f est monotone si f est croissante ou décroissante.

6. On dit que f est strictement monotone si f est strictement croissante ou strictement
décroissante.
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Exemple A.7.3. Soient X, Y deux ensembles et f: X — Y une application. On munit P(X)
et P(Y) de la relation d’ordre C (inclusion). Alors on a :

1. L’application

— X\ A
est strictement décroissante.
2. Les applications
foPX) — PY) . [ PY) — PX)
A —  f(A) B —  f7YB)

sont croissantes.

Proposition A.7.2. On a les propriétés suivantes.
1. Toute application monotone et injective est strictement monotone.

2. Toute application strictement monotone f d’un ensemble totalement ordonné (X, <) dans
un ensemble ordonné (Y, X) est injective.

Définition A.7.5. Soit (X, <) un ensemble ordonné.

1. On dit qu'une partie A de X est totalement ordonnée si A munie de la restriction de <
est totalement ordonnée, i.e. si pour tout z,y € A, on a soit x <y, soit y < x.

2. On dit que X est inductif si toute partie totalement ordonnée de X est majorée.

Théoréme A.7.1 (lemme de Zorn). Tout ensemble ordonné inductif posséde un élément mazi-
mal.

Corollaire A.7.1. On a les conséquences suivantes du lemme de Zorn.
1. Dans un ensemble ordonné inductif, tout élément est magjoré par un élément mazximal.
2. Tout espace vectoriel admet une base.
3. Tout sous-espace vectoriel d’un espace vectoriel admet un supplémentaire.

Définition A.7.6. Soit (X, <) un ensemble ordonné. On dit que X est bien ordonné ou que
< est un bon ordre si toute partie non vide de X admet un plus petit élément.

Notez que tout ensemble bien ordonné est totalement ordonné, et que toute partie non vide et
majorée d’un ensemble bien ordonné posséde une borne supérieure.

Théoréme A.7.2 (Zermelo). Les propriétés suivantes sont équivalentes.

(i) L’axiome du choiz.
(ii) Le lemme de Zorn.

(iii) Tout ensemble peut étre muni d’une relation de bon ordre.
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A.8 Ensembles dénombrables

On désigne par N 'ensemble des entiers naturels, i.e.
N={0,1,2,3,...}.

On suppose connues toutes les propriétés élémentaires de N, surtout les propriétés de 'addition
et de la multiplication sur N. Rappelons simplement que ’ensemble N est totalement ordonné
par la relation d’ordre naturel suivante : pour n,m € N, on a :

n<m <= il existe p € N tel que m =n + p.

Théoréme A.8.1. L’ensemble N posséde les propriétés fondamentales suivantes :

1. Toute partie non vide de N admet un plus petit élément, et toute partie non vide et majorée
de N admet un plus grand élément.

2. Pour tout m,n €N, onan<m < n+1<m.

Le théoréme ci-dessus entraine le théoréme de la récurrence qui est un des plus importants moyens
du raisonnement mathématique.

Théoréme A.8.2 (principe de récurrence). Soient ng € N et P(n) une propriété (égalité,
inégalité, etc.) dépendant d’un entier naturel n > ng. Si P(ng) est vraie et si pour tout entier
naturel n > ng, Uimplication P(n) = P(ng) est vraie, alors P(n) est vraie pour tout entier
naturel n > ng.

Exemple A.8.1. Pour tout entier naturel n, on a 'inégalité 2" > n. En effet, soit P(n) l'inéga-
lité : 2" >n.Ona2° =1et 1> 0, donc P(0) est vraie. Soit n un entier naturel. Supposons P(n)
est vraie et démontrons que P(n + 1) est vraie. On a 2"F! = 2" x 2 = 2" + 2", Par hypothése
de récurrence, on a l'inégalité 2" > n. On en déduit I'inégalité 2! > n + 2", Puisque l'on a
2" > 1, il vient 2" > n + 1. On a ainsi démontré que pour tout entier naturel n, 'implication
(P(n) = P(n + 1)) est vraie. Le principe de récurrence affirme que l'inégalité 2" > n est alors
vraie pour tout entier naturel n.

Définition A.8.1. Soit X un ensemble. Une suite d’éléments de X est une famille d’éléments
de X indexée par ’ensemble N.

Comme pour les familles, si f : N — X est une suite d’éléments de X, 'image f(n) dunn € N
par f sera notée x, et sera appelée terme d’ordre n de la suite f; la suite elle-méme f sera
représentée par la notation (2, )n>0 ou (zn)nen ou simplement (x,).

Théoréme A.8.3. Soient X un ensemble non vide, a € X et f une application de X dans X.
Alors il existe une unique suite (zy,)p>0 d’éléments de X telle que xo = a et pour tout n > 1, on

ait Tpy1 = f(xy).

On désigne par Z ’ensemble des entiers relatifs, i.e.
Z={..,-3,-2,-1,0,1,2,3,4,...}.

En tant qu’ensemble, Z est le quotient de N x N par la relation d’équivalence suivante :
(n,m)R(p,q) <= n+q=p+m.

La classe dont (n,0) est un représentant est identifié a n et la classe dont (0,n) est un repré-
sentant est identifié & —n. L’ensemble N est une partie de Z auquel on prolonge ’addition et le
multiplication. La relation d’ordre total dont N est muni se prolonge & Z. Pour p,q € Z, on a :

p<q < q—péeN.
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Théoréme A.8.4 (division euclidienne). Soit (a,b) € Z x N*, alors il existe un unique couple
(q,7) € Z x N tel que a =bqg+1 et 0 <r <b.

On note Z* = Z\ {0}. L’ensemble Z x Z* est appelé ’ensemble des fractions. On considére sur
Z x Z* la relation d’équivalence suivante : pour (p,q), (p',q¢) € Z x Z*,

(p, ) R(Y',q') < pd =p'q.

On appelle ensemble des nombres rationnels 'ensemble quotient Z x Z*/R, on le note Q. La
/

classe d'une fraction (p,q) € Z x Z* est noté ]3. On a donc p_ ]i, si et seulement si pg’ = p'q.

On peut considérer ’ensemble Z comme un sous-ensemble de Q en identifiant tout n € Z a
2 € Q. Siles fractions (a,b) et (a’, V') (resp. (c,d) et (¢, d’)) sont équivalentes, alors les fractions
(ad + ¢b,bd) et (a'd + JV,b'd") sont équivalentes. Il en est de méme des fractions (ac,bd) et
(a'd,b'd"). Cela permet de définir la somme et le produit de deux rationnels en posant :

a ¢ ad-+be

ac

+ ¢ 28
b dT  bd Y bvd bl

Notons que la somme et le produit sur Q prolongent ceux sur Z. La relation d’ordre total sur Z

/
se prolonge aussi & Q. Pour ]3, ]i, € Q, on pose :
q g

/
]gé% — pd <qp <= qp' —p¢ €N.

Notons que ’ensemble QQ muni de 'ordre ci-dessus est totalement ordonné, mais il n’est pas bien

ordonné car ’ensemble A = {x ceQ;0<z< 1} n’a pas de plus petit élément. En effet, si

T‘ZZ—)EA,aIOI‘SS:L<T‘etSEA.
q q+1

Définition A.8.2. Deux ensembles X et Y sont dits équipotents s’il existe une bijection de
X surY.

Théoréme A.8.5 (Zermelo-Cantor-Bernstein). Soient X et Y deuz ensembles. On a :
1. Ou bien il existe une injection de X dans Y, ou bien il existe une injection de Y dans X.

2. Sl existe a la fois une injection de X dans 'Y et une injection de' Y dans X, alors X etY
sont équipotents.

Remarque A.8.1. Soit X un ensemble.
1. L’application x — {z} est une injection de X dans Z(X).
2. Les ensembles X et &?(X) ne sont pas équipotents.

3. L’application A — x4 de #(X) dans I’ensemble .% (X, {0, 1}) des applications de X dans
{0,1} est une bijection. Donc Z(X) et .Z#(X,{0,1}) sont équipotents.

4. SiY est un ensemble et f: X — Y est une application surjective, comme conséquence
de l'axiome du choix, il existe une application g : ¥ — X telle que fog = idy. En
particulier, Y est équipotent a une partie de X.

Définition A.8.3. 1. Un ensemble non vide X est dit fini s’il existe n € N* tel que X est
équipotent a ’ensemble {1,2,...,n}. Par convention ’ensemble vide est fini. Un ensemble
non fini est dit infini.

© Dunod, 2011 - Topologie et espaces normés - Nawfal El Hage Hassan



A.8. Ensembles dénombrables 229

2. Un ensemble X est dit dénombrable s’il est équipotent a ’ensemble N.

3. Un ensemble X est dit au plus dénombrable s’il est fini ou §’il est dénombrable.
Proposition A.8.1. Soient X un ensemble fini et f: X — X une application. Les propriétés
sutvantes sont équivalentes.

(i) f est injective.

(ii) f est surjective.

(iii) f est bijective.
On en déduit que l’ensemble N est infini.
Proposition A.8.2. On a les propriétés suivantes :

1. Pour qu’un ensemble X soit infini, il faut et il suffit qu’il existe une injection de N dans

X.

2. Si A est une partie infinie de N, alors la suite (an)n>0 définie par :
ap=minA et a,=minA\ {ag,...,an—1} pourn>1.
est une bijection de N sur A. On en déduit qu’une partie quelconque de N est soit finie, soit
dénombrable.
3. Si B est un ensemble et f: N — B est une surjection, alors B est fini ou dénombrable.
4. L’application suivante est une bijection

NxN — N

donc N X N est dénombrable. On en déduit que tout produit fini d’ensembles dénombrables
est dénombrable.
5. Les ensembles Z et Q sont dénombrables.

6. Toute réunion d’une famille au plus dénombrable d’ensembles dénombrables est démom-
brable.

7. Si X est un ensemble infini et D est un ensemble au plus dénombrable, alors X UD et X
sont équipotents.

8. Soit Z¢(N) l’ensemble des parties finies de N. L’application

Z;/(N) — N
A — 2n
neA

est une bijection. Donc P¢(N) est dénombrable.
9. L’ensemble P (N) est infini et non dénombrable.
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APPENDICE B

QUELQUES STRUCTURES
ALGEBRIQUES

B.1 Groupes, anneaux, corps

Une loi de composition interne sur un ensemble non vide G est une application de G x G
dans G que l’on note généralement (x,y) — x xy. Au lieu du signe x, on utilise aussi +, X, .,
o, etc.

Définition B.1.1. Soit G un ensemble non vide muni d’une loi de composition interne *. On
dit que (G, %), ou G, est un groupe si ’'on a les propriétés suivantes :

1. La loi + est associative : pour tout z,y,z € G,on a (xxy) *z =z x (y % 2).

2. La loi x posséde un élément neutre : il existe un élément e € G, appelé élément neutre,
tel que pour tout x € G, on ait cxe =e*xx = x.

3. Tout élément de G posséde un inverse : pour tout x € G, il existe y € G tel que x xy =
y+xx = e. Dans ce cas, on dit que y est un inverse de x.

Un groupe G est commutatif ou abélien si pour tout x,y € G, on a zxy =y * .

On montre que dans un groupe G, ’élément e qui vérifie, pour tout * € G, zxe = exx = x, est
unique; il est appelé ’élément neutre de G. On montre aussi que pour tout z € G, 'élément y
de G tel que £y = y*x = e est unique; il est noté ! et appelé l'inverse de z.

Dans un groupe abélien, la loi de composition interne est souvent notée additivement, on écrit
x4+ y au lieu x % y; I’élément neutre est alors noté 0, 'inverse d’un élément = est noté —x et
appelé opposé de x, et on écrit © — y pour x + (—y).

Exemple B.1.1. 1. Si G = {e} et x définie par exe = e, alors (G, x) est un groupe abélien,
appelé groupe trivial.
2. Si G = {e,a} et x définie par exe = ¢, exa =axe =a et axa = e, alors (G, *) est un
groupe abélien.
3. L’ensemble Z muni de I’addition est un groupe abélien.

4. Soit X un ensemble non vide et .#x 'ensemble des applications bijectives de X sur X. On
munit .y de la loi de composition des applications (f,g) — f o g. Alors .#x devient un
groupe dont ’élément neutre est 'application identité de X. Lorsque X est un ensemble
fini de cardinal n, par exemple X = {1,2,...,n}, le groupe .x se note S, et s’appelle le
groupe symétrique d’ordre n.

231
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Définition B.1.2. Soient (G, x) un groupe et H un sous-ensemble non vide de G. On dit que
H est un sous-groupe de G si 'on a les propriétés suivantes :

1. Pour tout z,y € H,onaxxy € H.
2. Pour tout z € H,onaz~ ' € H.

Si de plus, pour tout = € G et tout h € H, on a xxhxz~! € H, on dit que H est un sous-groupe
distingué ou normal de G. Dans ce cas, on note H < G.

Notons que les conditions 1 et 2 ci-dessus sont équivalentes & la condition suivante :
Pour tout x,y € H,onaz*y~ ' € H.

Définition B.1.3. Soient (G, %), (G', ¥') deux groupes et f : G — G’ une application. On dit
que f est un morphisme de groupes de G dans G’ si pour tout z,y € G, on a f(zxy) =
f(@)+ f(y). Si € est Pélément neutre de G’, lensemble f~1(e') = {x € G ; f(z) = e} est appelé
noyau de f. On le note ker(f).

Notation. Soit (G, *) un groupe d’élément neutre e. Pour tout n € Z et tout x € G, on définit
par récurrence :

— . — —n
=€ 2" =a2""txz, pourn>1;etsin<0, 2" = (z1) ",

Lorsque la loi sur G est notée additivement, on définit :

nt=0si n=0, ne=z+x+---+x sin>1, et nx=(—n)(—z) si n<O0.
—_—
n fois

dans ce cas, I'application n — 2™ (resp. n — nz) est un morphisme de groupes de (Z, +) dans
(G, *) (resp. (G, +)).

Exemple B.1.2. 1. Si G est un groupe d’élément neutre e, alors {e} est un sous-groupe
distingué de G.
2. Tout sous-groupe d’un groupe abélien est distingué.

3. Si f: G — G est un morphisme de groupes, alors ker(f) est un sous-groupe distingué de
G.

Groupe quotient. Soient (G, x) un groupe et H sous-groupe distingué de G. On définit sur
G la relation d’équivalence suivante : pour tout z,y € G, xRy <= 2 ! %y € H. Notons
que la classe d’équivalence d’un élément = € G est 'ensemble xH = {x *h; he H} On note
G/H l’ensemble quotient de G par R. On va définir une structure de groupe sur G/H. Pour tout
x,y € G, on pose xH -yH = (x*y)H. Puisque H est un sous-groupe distingué de G, 'opération
- est bien définie, et on obtient ainsi une loi de composition interne sur G/H. On vérifie sans
peine que 'ensemble G/H muni de la loi - est un groupe, appelé groupe quotient de G par H.
Notons que I’élément neutre de G/H est 'ensemble H, et I'inverse d'un élément xH est 1’élément
z~1H. Notons enfin que la surjection canonique

G — G/H
r — aH

est un morphisme de groupes.

Définition B.1.4. Soit A un ensemble non vide muni de deux lois de composition interne, une
loi appelée addition ou somme et notée (z,y) — x + y, et une loi appelée multiplication ou
produit et notée (z,y) — z-y. On dit que A ou (A4, +,-) est un anneau si l’on a les propriétés
suivantes :
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1. (A, +) est un groupe abélien, dont 1’élément neutre est noté 0.
2. Le produit est associatif, i.e. pour tout z,y,z € A,ona (x-y)-z=x-(y- 2).

3. Le produit est distributif par rapport a ’addition, i.e. pour tout x,y,z € A, on a :
z-(y+z2)=z-y+x-z et (y+z)-z=y-xz+z-x.

Si le produit est commutatif, autrement dit si pour tout z,y € A, ona x -y =y -z, on dit que
Panneau A est commutatif. S’il existe un élément de A, noté 14 ou 1, tel que pour tout x € A,
onait 1-x =x-1=x, on dit que 'anneau A est unitaire ou unifére. L’élément 1 §’il existe, il
est unique et il est appelé 'unité de A.

Exemple B.1.3. 1. L’ensemble Z muni de ’addition et de la multiplication est un anneau
commutatif et unitaire.

2. L’ensemble A = {0,1} muni des lois :
140=0+1=0, 0+40=141=0, 0:-0=0-1=1-0=0, et 1-1=1
est un anneau commutatif unitaire.

Remarque B.1.1. Soit (A4, +,-) un anneau. Alors on a :
1. Pour tout x € A,ona0-z=x-0=0.
2. Pour tout z,y € A,onazx-(—y)=(—x) y=—(z-y).
3. Pour tout n € Z et tout x,y € A, on a z - (ny) = (nx) -y =n(x-y).
4. Pour tout z,y € A,on a (—z) - (—y) =z -y.

Le symbole de la multiplication dans I’anneau A sera en général omis, et on écrit xy pour z - y.

Notation. Soit (A, +,-) un anneau. Si a € A et n est un entier positif, on définit a™ par

récurrence :

1

a'=a et " =a" !

a st n>2.

Proposition B.1.1 (formule du bindéme). Soit A un anneau. Pour tout a,b € A tels que
ab = ba et pour tout entiern >1, on a :

n—1
(a+0)" =a"+ Z CPa" PP + 5™ .
p=1
Définition B.1.5. Soient A, A’ deux anneaux. On appelle morphisme d’anneaux de A dans
A’ toute application f: A — A’ vérifiant les propriétés suivantes :
1. Pour tout z,y € A,on a f(x+y) = f(x) + f(y).
2. Pour tout z,y € A, on a f(zy) = f(z)f(y).
Si A et A’ sont unitaires, on exige aussi que l'on a f(14) = 14/.
Définition B.1.6. Soient (A, +,-) un anneau et I une partie non vide de A. On dit que I est
un idéal bilatére de A si 'on a les propriétés suivantes :
1. I est un sous-groupe de (A, +).
2. Pour tout r € I et tout a € A, onaazx € I et xa € 1.
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Soient A un anneau et I un idéal bilatére de A. Soit A/I I’ensemble quotient de A par la relation
d’équivalence suivante : pour tout z,y € A, on a :

TRy < z—yel.

Notons que la classe d’équivalence d’un élément = € A est 'ensemble x + I = {x +a; a € I}.
Pour tout x,y € A, on pose :

e+ D+ w4+ =z+y+I et (x+1)-(y+I)=ay+1.
On vérifie que 'on définit ainsi sur A/I deux lois de composition interne.

Théoréme B.1.1. Soient A un anneau et I un idéal bilatére de A. Alors lensemble quotient
A/I muni des lois définies ci-dessus est un d’anneau, appelé anneau quotient de A par I. De
plus, on a :

1. La surjection canonique m: A — A/I est un morphisme d’anneauz.
2. Si A est commutatif, alors A/l est commutatif.
3. Si A est unitaire, pour que A/I soit un corps il faut et il suffit que l’idéal bilatére I soit

mazimal dans 'ensemble des idéauz bilatéres de A autres que A, ordonné par inclusion.

Définition B.1.7. Un corps est un anneau unitaire K non nul dans lequel tout élément = autre
que 0 admet un inverse pour la multiplication, i.e. pour tout x € K tel que z # 0, il existe y € K
tel que zy = yxr = 1.

Notons que si K est un corps, alors K* = K\ {0} est un groupe pour la multiplication.

On dit qu’un corps K est commutatif s’il I'est en tant qu’anneau. Autrement dit si pour tout
z,y €K, on a zy = yx.

On appelle morphisme de corps tout morphisme des anneaux sous-jacents.

Exemple B.1.4. L’ensemble Q est un corps commutatif.
Définition B.1.8. Soient (K, +,-) un corps et K’ un sous-ensemble non vide de K. On dit que
K’ est un sous-corps de K si ’on a les propriétés suivantes :

1. K’ est un sous-groupe de (K, +).

2. Pour tout z,y € K, on a 2y € K'.

3. Pour tout z € K\ {0}, on a 27! € K.

4. OnaleK.

Définition B.1.9. On dit qu’un corps K est de caractéristique nulle si pour tout n > 1, on
anl=1+---4+15#0.
—_——

n fois

Proposition B.1.2. Soit (K, +,-) un corps de caractéristique nulle. Alors lapplication
v: Q — K

p

. (q1) " (p1)

est un morphisme de corps injectif. Donc on peut considérer que Q est un sous-corps de K.
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LE CORPS DES NOMBRES REELS R

C.1 Corps commutatifs totalement ordonnés

Définition C.1.1. On appelle corps commutatif totalement ordonné tout corps commutatif
K muni d’une relation d’ordre total < qui vérifie les conditions de compatibilité suivantes :

1. Pour tout z,y € K tels que x < y et pour tout z € K,ona z+z < z+y.
2. Pour tout z,y € K tels que x < y et pour tout z € K tel que 0 < z, on a zz < zy.
On pose :
K+:{x€K; Ogm} et Ki:{xEK; O<m}.

Un élément de K est dit positif et un élément de K est dit strictement positif.

Remarque C.1.1. Soient K un corps commutatif totalement ordonné et z,y € K.
Onaxz <y <= —y < —x. En particulier,on a 0 <z <— —z <0.
Sio<zet0<y,alorsonal0<z+yet0<zy.

Siz <0ety<0,alors on a0 < xy.

Siz<0et0<y,alorsonazy <0.

On a0 < z2.

Onal<z < 0<ax L.

A

Si P est une partie non vide d'un corps commutatif K, on note :
—P:{—aj; xEP} , P+P:{x+y; x,yEP} et PP:{acy; x,yEP}.

Théoréme C.1.1. 1. Dans un corps commutatif totalement ordonné K, l'ensemble K des
éléments positifs vérifie :

K++K+CK+ 5 K+K+CK+ 5 K+ﬁ(—K+):{O} et K+U(—K+):K
2. Réciproquement, soient K un corps commutatif et P une partie de K vérifiant :
P+pPcpP , PPcP , Pn(-P)={0} e PU(-P)=K.

Alors il existe une unique relation d’ordre total sur K qui en fasse un corps commutatif
totalement ordonné et dont ’ensemble des éléments positifs soit P.

235
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La preuve de la premiére partie du théoréme est triviale. Dans la deuxiéme partie du théoreme,
la relation que 'on considére est la suivante : x <y < y—x € P.

Définition C.1.2. Soit K un corps commutatif totalement ordonné. On pose :

rz si 0LZz,

+

" =max(z,0) , 27 =max(—z,0) et |zr|=max(z,—x)=

—zr si x<0.
L’élément |z| est dit valeur absolue de z.

Théoréme C.1.2. Soit K un corps commutatif totalement ordonné. Alors on a :
1. Pour toutx € K, onax=a" -2, |z|=2" +2~ et|—z| = |z|.
2. Pour tout t € K, on a 0 < |x|, et |x| =0 < 2 =0.
3. Pour tout z,y €K, on a||x| — |y|| <|z+y| < |z| +|y|
4. Pour tout x,y € K, on a |zy| = |z||y|.

Définition C.1.3. Soit K un corps commutatif totalement ordonné.

1. On dit qu'une suite (z,,)nen d’éléments de K est convergente dans K ou qu’elle converge
dans K g’il existe un élément [ € K vérifiant la condition suivante :
Pour tout ¢ € K7, il existe N € N tel que pour tout n € N vérifiant n > N, on ait
linégalité |z, — | < e.
On vérifie alors que si un tel élément [ € K existe, il est unique; on 'appelle la limite de
la suite (x,)nen et on dit que la suite converge vers [ ou a pour limite [ ou encore tend

vers [, et on écrit [ = lim x,.
n—+oo

2. On dit qu'une suite (,)neny d’éléments de K est majorée (resp. minorée) s’il existe
M € K tel que pour tout n € N, on ait z,, < M (resp. M < x,). Une suite a la fois majorée
et minorée est dite bornée.

On vérifie facilement qu’une suite (2, )peny d’éléments de K est bornée 8’il existe M € K7
tel que pour tout n € N, on ait |x,| < M.

3. On dit qu’une suite (zy)nen d’éléments de K est une suite de Cauchy si :
Pour tout € € K%, il existe N € N tel que pour tout p,q € N vérifiant p > N et ¢ > N, on
ait 'inégalité |z, — x| < €.
On vérifie facilement que toute suite convergente est de Cauchy et que toute suite de
Cauchy est bornée.

4. On dit que K est complet si toute suite de Cauchy d’éléments de K est convergente dans
K.

Définition C.1.4. Un corps commutatif totalement ordonné K est dit archimédien si pour
tout x € K% et tout y € K, il existe n € N tel que y < nz.

Proposition C.1.1. Le corps Q est un corps commutatif totalement ordonné, archimédien, mais
il n’est pas complet.

Démonstration. Par construction Q est un corps commutatif totalement ordonné. Vérifions

a b
que Q est archimédien. Soient x € Q% et y € Q, onax = 5 ety = 5 avec b € N, a,p,q € N7
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On ay <nzx < bp < nagq, donc il suffit de prendre n = bp, puisque aqg > 1. Pour montrer que
n’est pas complet, on considére les suites d’éléments de éfinies par :
Q n’est let idere 1 ites d’elé ts de Q défini

n
1 1 .
xn:ZE,ynzxn-l-w sin>1cet yo=uy1.
k=0

Alors pour tout n > 1,on a x, < Tpt1, Yn+1 < Yn et 0 < yp—x, < % Puisque Q est archimédien,
pour tout € € Q% , il existe N € N* tel que 1 < Ne, d’out pour tout n € N tel que n > N, on ait
0< % < % < g. Par conséquent, la suite (%)HGN* converge vers 0 dans Q.

Sin>p>N,onazy <z, <zp < yp < yp < yn, dot |z, —zp| < |yny —an| < % < e.
Par conséquent, la suite (zy)nen est de Cauchy. Il s’agit maintenant de montrer que (zp)nen
n’est pas convergente dans Q. Raisonnons par 'absurde et supposons que (x,)nen converge vers
un élément % € Q. On a vy, = yp, — y + x, et la suite (y, — Tn)neny converge vers 0, on en

déduit que (yn)nen converge aussi vers 2 € Q. On montre facilement que pour tout n > 1, on

q
a x, < % < Zp + =5 = Yp, d00 glzg < q!% < qlzg + % < qlzg + 1, ce qui est impossible car
q!xq,qlg € N. Donc la suite (x,)nen ne converge pas dans Q, et par conséquent Q n’est pas
complet. |

Proposition C.1.2. Soit K un corps commutatif totalement ordonné. Alors on a :
1. K est de caractéristique nulle. Donc K contient Q comme un sous-corps.
2. Si K est archimédien, on a

(i) Pour tout x € K, il existe un unique élément [z] € Z tel que [z] <z < [z] + 1. Un tel
élément [x] est appelé la partie entiére de x.

(1t) Pour tout a € K et tout b € K7, il existe un unique couple (q,r) € Z x K tel que
a=bg+ret0<r<hb.

3. K est archimédien si et seulement si Q est dense dans K, i.e. pour tout z,y € K tels que
x <y, il existe r € Q tel que x <1 < y.

Démonstration. 1. Pour tout 2 € K, on a 0 < 22. Compte tenu de 12 = 1, on en déduit que
I'on a 0 <1, et méme 0 < 1, puisque le corps K est non nul. On en déduit par récurrence que
pour tout entier n > 1, on a nl # 0. Donc K est de caractéristique nulle. Le fait que K contient
@ comme un sous-corps résulte de la proposition B.1.2.

2(i). Soit « € K. Puisque K est archimédien, il existe p € N* tel que < pl = p. Donc, pour tout
n € Z tel que n < x, on an < p. De méme, il existe ¢ € N tel que —x < ¢, d’ott on a —q < x.
Ainsi ’ensemble {n €Z;n< m} est une partie non vide et majorée de Z; elle admet un plus
grand élément que l'on note [z]. Alors on a [z] < x < [z] + 1. L’unicité de [z] est triviale.

2(ii). Soient a € K et b € K*.. Soit ¢ = [§] € Z la partie entiére de ¢, alorsona ¢ < § < g+ 1,
d’oiton abg < a < bg+1. Soit r = a—bq, alors on a a = bg+7r et 0 < r < b. Vérifions 'unicité du
couple (q,r). Soient (q,7),(¢',7") € ZxKtelsquea=bg+r=0b¢ +7,0<r<bet 07" <b.
Sig>¢q,onaq—q¢ €N Or0<r, onen déduit que 'on a r’ =b(qg—¢')+r > b, ce qui est
impossible, donc on a ¢ < ¢’. De méme on a ¢’ < ¢, d’oil on a ¢ = ¢/, et par conséquent, on a
r=r.

3. Supposons d’abord que Q est dense dans K. Soient a € K7 et b € K, alors il existe z,y € Q%
telsque 0 <z <aetb<y<b+1. Q étant archimédien, alors il existe n € N tel que y < nz,
d’ou b < y < nx < na. Par conséquent, K est archimédien.

Réciproquement, supposons K archimédien. Soient z,y € K tels que z < y. Alorson a 0 < y —x.
Donc il existe m € N* tel que 0 < 1 < m(y—z), d’ott on a 1+mz < my. Soient n = [mz| € Z la

© Dunod, 2011 - Topologie et espaces normés - Nawfal El Hage Hassan
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partie entiére demz et p =n+1 € Z. Alorsonap—1 < mz < p,d’ou z < % et p < 14+mx < my.
Par conséquent, on a x < £ <y. Or £ € Q, donc Q est dense dans K. [

Définition C.1.5. Soit K un corps commutatif totalement ordonné.

1. Soient (zp)nen une suite d’éléments de K. On dit qu'un élément [ € K est une valeur
d’adhérence de (z,)nen si pour tout € € K7 et pour tout NV € N, il existe n € N vérifiant
n > N tel que lon ait l'inégalité |z, — | < e.

2. On dit que K posséde la propriété de Bolzano-Weierstrass si toute suite bornée
d’éléments de K admet au moins une valeur d’adhérence.

3. Deux suites (n)nen €t (Yn)neny d’éléments de K sont dites adjacentes si (z,)nen est
croissante, (yYn)nen est décroissante, et si la suite (y, — o )nen tend vers 0.

4. On dit que K possede la propriété des intervalles emboités si pour toute suite ([a,, by))nen
d’intervalles fermés dans K vérifiant

(i) Pour tout n € N, on a [ant1, bpt1] C [an, by
(ii) La suite (b, — an)nen tend vers 0.

Alors Uintersection Qo [an, by] est réduite & un seul élément.
n>

Théoréme C.1.3. Soit K un corps commutatif totalement ordonné. Les propriétés suivantes
sont équivalentes.

(i) Toute partie majorée et non vide de K admet une borne supérieure.
(i) Toute partie minorée et non vide de K admet une borne inférieure.
(11i) Toute suite d’éléments de K croissante et majorée converge.
(iv) Toute suite d’éléments de K décroissante et minorée converge.
(v) Deuz suites adjacentes d’éléments de K convergent vers la méme limite.
) K est archimédien et complet.
p
(vit) K est archimédien et posséde la propriété des intervalles emboités.
(viii) K est archimédien et posséde la propriété de Bolzano- Weierstrass.

Le théoréme suivant montre qu’il existe, a isomorphisme algébrique prés, au plus une structure
de corps commutatif totalement ordonné archimédien complet.

Théoréme C.1.4. Soient K et K' deux corps commutatifs totalement ordonnés archimédiens
complets. Alors il existe un isomorphisme de corps de K sur K’ prolongeant l’identité de Q et cet
1isomorphisme est strictement croissante.

C.2 Une construction de R

Il y a bien des fagons de construire R & partir du corps des nombres rationnels Q, mais une telle
construction n’a qu’un intérét purement théorique, car deux corps commutatifs totalement ordon-
nés archimédiens complets sont isomorphes. Dans ce paragraphe, on va esquisser une construction
de R en utilisant les suites de Cauchy dans Q.

On note C l'ensemble des suites de Cauchy dans Q. Si 2 = (,)nen €t ¥ = (Yn)nen sont des
éléments de C, on pose :

T+y= (mn + yn)nEN et xy= (mnyn)nEN~
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Alors on vérifie facilement que = 4+ y et zy sont aussi des éléments de C et que ’ensemble C
muni de 'addition et de la multiplication définies ci-dessus est un anneau commutatif unitaire
dont I’élément neutre pour ’addition est la suite constante dont tous les termes sont égaux a 0,
et I’élément unité pour la multiplication est la suite constante dont tous les termes sont égaux a 1.

On note Cy 'ensemble des suites dans Q qui convergent vers 0. Alors Cy est un idéal bilatére
maximal dans C. D’aprés le théoréme B.1.1, 'anneau quotient C/Cy est un corps commutatif. Par
définition, ce corps est le corps des nombres réels R. Notons aussi que la surjection canonique
m:C — R =C/Cp est un morphisme d’anneaux.

Avant de définir une relation d’ordre sur R, notons que si (zy,)nen est une suite de Cauchy dans
un corps commutatif totalement ordonné K, qui ne converge pas vers 0, alors il existe un élément
e € K% et un entier N € N tel que ou bien pour tout n € N vérifiant n > N, on ait z,, > ¢, ou
bien pour tout n € N vérifiant n > N, on ait x,, < —e.

Soit Cy = COU{(azn)neN € C; il existe N € N tel que z,, > 0 pour tout n > N}. On appelle réels
positifs les éléments de ’ensemble R . = 7(C,.). Notons que si = (2 )neny € C, on a mw(z) € R4
si et seulement si z € C4. On vérifie que l'on a :

R++R+CR+ 5 R+R+CR+ 5 R+ﬁ(—R+):{O} et R+U(—R+):R

On définit alors une relation d’ordre sur R en décrétant que pour tout t,7 € R,onat <r <=
r —t € Ry. On vérifie alors facilement que R muni de cette relation d’ordre est un corps com-
mutatif totalement ordonné.

Montrons que R est archimédien. Soient ¢ et r des éléments strictement positifs de R. Notons
T = (Tp)neN €t Yy = (Yn)nen des éléments de Ci tels que w(x) = ¢ et w(y) = r. Puisque
Y = (Yn)nen est une suite de Cauchy, elle est bornée. Donc il existe M € Q7 tel que pour tout
n € N, on ait —M < y, < M. D’autre part, comme la suite = (x,)nen ne tend pas vers 0,
alors il existe e € Q7 et N € N tels que pour tout n € N vérifiant n > N, on ait x,, > €. Puisque
Q est archimédien, il existe p € N tel que pe > M, donc pour tout n € N vérifiant n > N, on a
DTy — Yn > pe — M > 0. Cela signifie que l'on a pt > r et donc R est archimédien.

Plongement de Q dans R. Considérons I'application ¢ : Q — C qui a tout rationnel r» € Q asso-
cie la suite constante n —— r. C’est un morphisme d’anneaux, alors 1y = 7o ¢ est un morphisme
de corps de Q dans R, injectif et strictement croissante. De plus le morphisme de corps v est le
méme que celui défini dans la proposition B.1.2. Notons que si a € R%, alors il existe e € Q%
tel que ¥(e) < a. En effet, soit = (zp)nen € C4 tel que m(x) = «, alors il existe € € Q7 et
N € N tels que pour tout n > N, on ait x,, > &, ce qui implique ¥(g) < .

On en déduit les deux résultats suivants :

1. Si (tp)nen est une suite dans R ; alors (¢, )nen converge vers a € R si et seulement si pour tout
e € Q% il existe N € N tel que pour tout n > N, on ait |t,, —a| < ¥(e).

2. Si (25,)nen est une suite dans Q qui converge vers un élément a € Q, alors la suite (¥(xy,))nen
converge vers ¥ (a) dans R.

Désormais, on identifie Q au sous-corps ¥(Q) de R. On a montré ci-dessus que R est archimédien,
alors il résulte de la proposition C.1.2 que Q est aussi dense dans R.

Il reste & montrer que R est complet. Auparavant, on montre le résultat suivant qui dit entre
autre que QQ est dense dans R :
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Soit & = (zp)nen un élément de C, et on pose t = w(x) € R. Alors la suite (¢(x,))nen converge
vers t dans R. En effet, puisque (2, )nen est de Cauchy dans Q, alors pour tout € € Q7 , il existe
N € N tel que pour tous n > N et p > N, on ait |z, — z,| < e. Soit m € N tel que m > N.
On at— Y(xy,) = m(x — ¢(xy)) et pour tout n > N, on a |z, — ;| < . On en déduit que
|t — Y (zm)| < (e). Par conséquent, la suite (¢(z,))nen converge vers ¢ dans R.

On peut maintenant achever la démonstration de la complétude. Soit (¢,,)nen une suite de Cau-
chy dans R. D’aprés ce qui précéde, chaque t, est limite d’une suite de rationnels. Ainsi, pour
tout n € N, il existe r,, € Q tel que [t, — 1| < n+r1 En fait, on devrait noter ¢ (r,) au lieu de r,
et de méme avec n+r17 mais on ne le fait pas pour ne pas alourdir inutilement les choses. Alors
on vérifie que la suite r = (r,)pen est de Cauchy dans Q, donc r € C et on montre alors que la

suite (t,)nen converge vers 7(r) € R. Donc R est complet.

Dorénavant on n’aura plus & utiliser la définition de R comme anneau quotient, et on peut
maintenant énoncer le résultat central de ce paragraphe.

Théoréme C.2.1. [l existe un unique, a isomorphisme prés, corps commutatif totalement or-
donné archimédien complet, appelé corps des nombres réels et noté R. De plus, on o :
1. Le corps Q est un sous-corps dense dans R.

2. Le corps R posséde toutes les propriétés citées dans le théoréme C.1.3.

C.3 Autres propriétés de R

Définition C.3.1. Q étant identifié & un sous-corps de R, les éléments de R\ Q sont dits
nombres irrationnels.

Proposition C.3.1. Pour tout v € R et tout ¢ € R%, il existe u € Q et v € R\ Q tels que
lu—x| <eet|v—zx| <e. Autrement dit, Q et R\ Q sont denses dans R.

n

1
Démonstration. On a vu, preuve de la proposition C.1.1, que la suite (z,)pen, OU T, = Z 7
k=0

est de Cauchy dans R et non convergente dans Q, donc (z,)nen converge vers un élément irra-
tionnel e. Si x € Q, il suffit de prendre u =z et v =12+ =, ot n € N* tel que  <e.
Siz € R\ Q, on prend v = z. Pour tout n € N* on a nxz = ¢, + r,, avec q, € Z et 7, € R tel

r r 1 T

que 0<r, <1l.Dolionazx= q—"—l——n, avec 0 < = < —. Par conséquent, on a lim — =0,
n n n n n—+o00 N

on en déduit qu’il existe N € N* tel que ‘x — qFN‘ < g, on prend alors u = qWN |

Théoréme C.3.1. L’ensemble R des nombres réels n’est pas dénombrable.
Rappelons aussi les deux théorémes fondamentaux suivants :

Théoréme C.3.2. Soient a,b € R tels que a < b et f : [a, ] — R une application continue.
Alors il existe ¢,d € R tels que ¢ < d et f([a, b]) = [, d].

Théoréme C.3.3 (théoréme des accroissements finis). Soient a,b € R tels que a < b et
f i [a, b] — R une application continue. Si f est dérivable sur ]a, b], alors il existe c € |a, b[ tel
que :

fb) = fla) = (b= a)f'(c).
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APPENDICE D

LE CORPS DES NOMBRES
COMPLEXES C

D.1 Construction du corps des nombres complexes

On définit dans R? une addition et une multiplication (ou un produit) de la maniére suivante :
Pour tout (z,y), (z/,y') € R?,

() + (@)= (@+2 y+v),

(z,y)(@,y) = (@2’ —yy', 2y’ +2'y).
On vérifie facilement que R? muni addition et du produit est un corps commutatif dont 1’élément
neutre pour l’addition est (0,0) et I’élément neutre pour le produit est (1,0). De plus l'inverse,
€z —Y
ZL'2 + y2 ’ ZL'2 + y2 :

pour le produit, de tout élément (x,y) # (0,0) est donné par

Définition D.1.1. Le corps R?, muni de l'addition et du produit ci-dessus, est appelé corps
des nombres complexes et il est noté C. Ses éléments z = (x,y) sont appelés des nombres
complexes.

Proposition D.1.1. L’application
p: R — C

x — (x,0)
est un morphisme de corps injectif.

L’injection ¢ permet d’identifier le corps R des nombres réels a son image o(R) = {(z,0) ; = € R}
dans le corps C des nombres complexes. Autrement dit, on peut considérer que R est un sous-
corps de C. Pour cette raison, et par abus de notations, on écrit les nombres complexes qui
sont de la forme (z,0) simplement z. Grace & cette identification, on va donner une nouvelle
représentation, ou écriture, des nombres complexes :

z=(2,9) = (£,0) + (0,y) = (,0) + (0, 1)(y,0) = = + 1y

ot i = (0,1). De plus, on a i2 = (0,1)(0,1) = (=1,0) = —(1,0) = —1. Ainsi, dans ce nouveau
corps C, ’élément —1 posséde une racine carrée.
Le produit s’écrit dans cette représentation :

(z +iy) (2’ + i) = za’ + ziy) + iyx’ + i2yy = za’ — yy' +i(xy +2'y).

241
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. . . 1
De méme, Iinverse d’un nombre complexe z # 0 sera désigné simplement z~' ou =, alors que
z
—1 / P P 4 : Y-S 4 1
z2'7", lorsque 2’ # 0, sera représenté par —. Autrement dit, on a par définition, — = z—.
z z z

Remarque D.1.1. Soient 2,2’ € C tel que 2z’ # 0. Alors pour tout a € C tel que a # 0, on a
z az
— = — . En effet, on a :
Z az

az n—1 1.1 —1_ %
— = (az)(az =aza "z =

2 = (a2)(a?) :
Définition D.1.2. Soit z = x + iy un nombre complexe, avec z,y € R. Alors z, que I'on note
Re(z), est appelé partie réelle de z et y, que 'on note Im(z), est appelé partie imaginaire

de z.

D.2 Conjugué et module d’un nombre complexe

Définition D.2.1. Soit z = x + iy un nombre complexe, avec z,y € R. Le nombre complexe
Z = = — iy est appelé le conjugué de z. Le module de z, noté |z|, est le nombre réel positif

|z| = /&2 + y2

7
V4
R 5
0 !
I N

Notons que le module d’'un nombre complexe généralise la notion de valeur absolue d’un nombre
réel.

Proposition D.2.1. Soient 2,2/ € C, on a :

1. Re(z):Z+Z et[m(z)zz_z'

Démonstration. 1. Ona z =z + iy et Z =1z — iy, avec x,y € R, d'ou z + Z = 2z = 2Re(z2) et
© et Im(z) = zz—'z‘

i
2.0naz =a'4+iy,avec 2/, ¢y € R,d'on z+2' = z+a'+i(y+y) et 22’ = xa’ —yy' +i(xy' +2'y).
Donc on a:

z —Z = 2iy = 2ilm(z). Donc on a Re(z) = G

o

st =zt —iy+y) = —iy+2 iy =7+ 7,
22 =xx —yy —i(xy +2'y) = (x —dy)(a —iy)) =7z .
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1 1 1
3. On suppose 2z’ # 0. Comme on a, (3,) = E(—,>, il suffit de montrer que I'on a (—/) ==. Or
z z z z
o oy dod I 7 - |
AT Ty T g2 O (;) T 22y +Zx/2+y/2 T A2 iy? g

4. Supposons d’abord z € R, alors z = x40, avec z € R, doutz=z—i0 =z = z.
Réciproquement, supposons que z = Zz, alors on a z = z 4+ 1y = x — iy, d’ou 2iy = 0, donc y = 0.
Par conséquent, on a z = x € R. |

Proposition D.2.2. Soient 2,2/ € C, on a :

1. |Re(z)] < |z| et [Im(2)| < |z];
2. |z|=0<=2=0;
3. zz=|z1? et |2z| = |Z|;
4. |22 = |2] |#'];
5. 1= :ﬂ, iz #0;
|2']
6. |24 2| <|z|+|7];
7. |12 = 121] < |2 + 2.

Démonstration. 1. On a z = x +iy, avec z,y € R, d'out |[Re(2)| = |z| = Va2 < /22 + 32 = |7|
et [n(2)] = y| = V37 < v/aT+ P = |2l

20naz=0<=z=0ety=0<= /224y =0« |2/ =0.

3.0nazz=(v+iy)(z —iy) =22 +y2 = |z]% et |z| = V22 + 32 = /22 + (—y)2 = 2.

4.0n a2 =2’ +1iy, avec o',y € R, d’on 22’ = z2’ — yy' + i(xy’ + 2'y). Donc on a :

22| = (z2’ —yy')? + (2y’ +a'y)?
= 222 = 2xa'yy + viy? + 22y? + 202 yy + 2y?

— 2 /2 4 y2y12 + $2y/2 + :1:/2y2
= (@ +y2)@” +y?)

= [z |7

D’ou on a |z2/| = |z]|7/].
1 1
5. On suppose 2z’ # 0. Comme on a ‘—‘ = ‘ 7 = |z| ‘ ‘ il suffit de montrer que ’on a ‘;‘ =
1 1 ! Y 12 a;’2 Yy 1 1
. On a == Z o | — = _|_ — — .
| /| —1|- y T2 + y/2 % (1.12 + y/2)2 (x/2 + y/2)2 T2 + y/2 |Z"2
Donc on a ‘—‘ = —

2|

© Dunod, 2011 - Topologie et espaces normés - Nawfal El Hage Hassan



244 Chapitre D. LE CORPS DES NOMBRES COMPLEXES C

6. On a :
lz+ 22 = (z+2)(z+72)

= (z+2)(z+7)

= 2Z+z + 27+

= P+ + 27+ 27
= |22+ |¢)? + 2Re(27’)
< |22 41212 + 2|Re(22")]
<22 4|2 4 2]z

= 2P+ [2']* + 2[2] ||

= 2P+ [2']* + 2[2] ||

= (]2 +12')%

Dot on a |z + 2| < |z] 4 |#/].

7.0naz=z+2+4+(—2).Daprés 6,on a |z| = |z+ 2+ (=2)| < |2+ 2|+ | =2 | = |2+ 2|+ ||,
d'ou |z| — || < |z + 2/|. De méme, on a —(|z| — |2/]) = || = |2| < [/ + 2| = |z + #/|. Par
conséquent, on a | |z| — /|| < |2+ 2. [ |

D.3 Représentation géométrique des nombres complexes

Rappels de trigonométrie. Pour tout § € R, on a sin(#),cos(f) € [-1, 1] et on a (cos(6))? +
(sin(f))? = 1. Réciproquement, soit (z,y) € R? tel que 22 + y? = 1, alors il existe un unique
0 € [0, 27[ tel que = = cos(#) et y = sin(0).

Pour tout 6, € R, on a (cos(f),sin(f)) = (cos(),sin(«)) si et seulement si il existe k € Z tel
que 0 — o = 2km. On a les formules utiles suivantes :

cos(—60) = cos(f) , sin(—0) = —sin(0),
cos(0 + 6') = cos(6) cos(0') — sin(#) sin(6) ,

sin(f + 0') = sin(#) cos(#') + cos(#) sin(") .

T T T o7
S| I N M o B
V3 V2|1
COS(Q) 1 7 7 5 O —].

1| V2| V3
in(6 - | =] =11
sin(@) || 0 5 5 5 0
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On déduit de ce qui précéde les formules suivantes :

cos(6 + g) = —sin(f) , sin(0+ g) = cos(0),

cos(f+7) = —cos(f) , sin(0+7) = —sin(0),
cos(m — 0) = —cos(f) , sin(m — 0) = sin(6),
c0s(20) = cos(0 + 0) = (cos(0))2 — (sin(0))2 = 2(cos(6))2 — 1 = 1 — 2(sin(0))?,
sin(20) = sin(6 + 0) = 2sin(6) cos(0) .

Soit z =x 4+ iy € C, avec x,y € R, tel que z # 0. Alors on a :

z = \/:132—|—y2<

+ 1 = |z +1
/:L'2+y2 /$2+y2> | |<\/3§'2+y2 \/$2+y2>

Comme on a :

(x/zir y2>2 " <\/a:2y+ y2>2 -

alors il existe un unique 6 € [0, 27[ tel que cos(6) = . sin(f) = Y

dit, il existe un unique @ € [0, 27 tel que z = |z|(cos(6) + isin(h)).

. Autrement

Définition D.3.1. Pour tout nombre complexe non nul z, I'unique réel 6 € [0, 27| tel que
z = |z|(cos(f) +isin(f)) est appelé I’argument principal de z et se note Arg(z).

Notation. Pour tout # € R, on pose :

eiG

= cos(f) + isin(0)

Proposition D.3.1. On a les propriétés suivantes :
1. | =1;
2. e = ¢i(=0) .

9 (0ol — Li(0+0") .

4. €9 = e — il existe k € Z tel que 0 — 0’ = 2k
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Démons_tration. 1. On a |ei9‘ = \/(COS(O))2 + (sin())? =
2. On a e = cos() + isin(f) = cos(h) — isin(h) = cos(—0)

Vi=1.
+isin(—0) = €',

3.0n a:
e¥e?” = (cos(f) +isin(9))(cos(6’) + isin(6))
= (cos(f)cos(0') — sin(0) sin(6')) + i( sin(f) cos(6') + cos(6) sin(6’))
= cos(0 +0') +isin(0+0)
= (il0+0),
4. 0na:

e = e = cos(h) +isin(f) = cos(#') + isin(¢’)
<= cos(f) = cos(0') et sin(f) = sin(¢’)

<= il existe k € Z tel que § — 0" = 2k.

Proposition D.3.2. On a les propriétés suivantes :
1. Pour tout z € C tel que z # 0, on a z = |z|e*A™9(),

2. Soit z = 1€, avecr > 0 et a € R, alors |z| = r et il eviste k € Z tel que Arg(z) —a = 2k.

3. Soient z,2' € C tels que z # 0 et 2/ # 0. Alors z = 2 si et seulement si |z| = |2/| et il
existe k € 7 tel que Arg(z) — Arg(2') = 2km.
10 10’

; ’ z
et 2 = r'e? avec r,7,0,0' € R, alors on a z2' = rr'e!@+0) et - =

z

4. Sotent z = re

Zei((’_("), sir’ #0.

,r/

Démonstration. 1. On a :

z=x+iy = /2?2 —|—y2<\/ 233 2 —I-Z'\/ 2y 2) = |z[(cos(Arg(z))+isin(Arg(z))) = |z|eAra()
T +y ety

2. Soit z = re™, avec r > 0 et o € R, dott 2z = rcos(a) + irsin(a), donc on a |z| =
V(2 cos(0))2 +r2(sin(F))2 = V2 = r. Par conséquent, on a z = |z[e’* = [z]e'A8() ) d'on
el = ¢iA18(2)  On déduit de la proposition précédente qu’il existe k € Z tel que Arg(z)—a = 2km.

3. Soient z,z" € C tels que z # 0 et 2/ # 0. Si z =2/, alors on a |z| = |2/| et Arg(z) = Arg(2’).
Réciproquement, supposons que |z| = |2/| et qu’il existe k € Z tel que Arg(z) — Arg(2') = 2kn.
Alors on a z = |z|e?A8() = |/ |eifr8(z) = /.

. . ./ . ’ .
4. Soient z = re et 2/ = r'e’? . Alors on a 2z’ = rr'e?e? = rr'ei®+?) D’autre part, si 2/ # 0,
alors on a : 4 4

z ret? retei?” re’ee i(=6") T i0—0")

o - r!eit’ - r,eigleigl - l|ez6' |2 - ! '

Définition D.3.2. Soit z un nombre complexe. L’écriture z = x + iy, avec x,y € R, est appelée
la forme algébrique ou aussi la forme cartésienne de z. Si z # 0, écriture z = e, avec

r > 0, est appelée la forme polaire ou aussi la forme trigonométrique de z.
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Notons que ces deux écritures sont reliées par les relations :

roo= S

x = rcos(f) cos(0) — x

et /2 +y2
Yy

Insistons sur le fait que 6 est seulement défini modulo 27, sauf si on précise que 6 = Arg(z).

y = rsin(0)
sin(f) =

Proposition D.3.3 (formules d’Euler). Pour tout € R, on a :

i0 | i(—0) 0 _i(—0)
cos(f) = € re ~ et sin(f) = SR
2 21
Démonstration. 1. Comme on a € = cos(f) + isin(f) et €= = cos(—0) + isin(—0) =
el 1 gil=0) eif0 _ gi(—0)
cos(f) — isin(f), on en déduit que l'on a cos(f) = — et sin(f) = — [

Proposition D.3.4 (formule de Moivre). Pour tout § € R et pour tout n € N, on a :

(eié?)n — ein6 )

Autrement dit, on a (cos() +isin(9))" = cos(nd) + isin(nd).

Démonstration. 1. On démontre cette formule par récurrence sur n. La formule est évidemment
vraie pour n = 0. Supposons la formule vraie a I'ordre n — 1, i.e. que Pon a (¢/)*~1 = ¢in—1)¢
On en déduit que () = e ()1 = ¢i(1+n=1)0 — ¢ind Par conséquent, la formule de Moivre
est vraie pour tout n € N. |

D.4 Racines carrées et équations de second ordre dans C

Définition D.4.1. Soit a € C. On appelle racine carrée de a tout nombre complexe z tel que
2
z° =a.

Ainsi, le nombre complexe a = 0 posséde une unique racine carrée z = 0.

Proposition D.4.1. Soit a € C tel que a # 0. Alors a posséde exactement deux racines carrées
{207 _ZO}'

Démonstration. Supposons que g est une racine carrée de a, i.e. 23 = a. Alors on a (—z)? =

2(2) = a, donc —zg est aussi une racine carrée de a. Soit z une racine carrée de a, i.e. 22 = a, alors
onaz?—22 =0,dot (z—20)(2+2) = 0. Doncon a z = 2z ou 2 = —zy. Pour compléter la preuve,

il reste a déterminer une racine carrée de a. Si on connait a sous forme polaire a = re?, avec

. 0 ) .
r > 0, alors il suffit de prendre zy = y/re’z. Supposons que a est donné sous forme cartésienne

a = Re(a) + ilm(a). Soit z = x + iy, avec z,y € R, alors on a 2% = 22 — y? 4 2izy. Donc on a :
22 —y?> = Re(a)
22 =q =
2zy = Im(a)
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Par ailleurs, on a z2 4+ 3% = |2|? = |2?| = |a|, d’ou :
2 —y? = Re(a)
== 2 4+ y2 = lal
2zy = Im(a)
Donc on a 22 — la] + Re(a) et y2 = W‘ Comme on a |al +2Re(a) >0 et |al —2Re(a) >

0, car on a toujours |Re(a)| < |al, on trouve alors :

D la| + Re(a)
2
M S 0

La condition 2zy = Im(a) permet de déterminer les signes =+.
Ainsi, si Im(a) > 0, alors zy > 0 et par conséquent x et y sont de méme signe. Les racines sont

alors zp et —zq, avec :
\/|a| + Re(a \/|a| Re(a

Par contre, si Im(a) < 0, alors zy < 0 et par conséquent z et y sont de signe opposé. Les racines

sont alors zg et —zq, avec :
\/|a| + Re(a \/|a| Re(a

Exemple D.4.1. Calculons les racines carrées de a = 3 — 4i. Soit z = = + 1y € C, on résout le
systeme suivant :

72 —y?> = Re(a)=3
?+y’ = la =
2xy = Im(a) =—4

On trouve z = +2 et y = +1 avec xy < 0. Donc les racines carrées de a sont zyp = 2 — 1 et
—Z0 = -2 + 1.

Définition D.4.2. Une équation de degré 2 dans C est une équation de la forme az?+bz+c = 0,
avec a,b,c € C et a #0.
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1l s’agit de déterminer tous les z € C tels que az? + bz +c¢=0. On a :
2 2 b
az*+bz+c = alz +—z} +c
L a

r b
= a z2+2—z] +c
L 2a

[ b\2 b2
= CL(Z-F%) —@:|+C

ey o)

b\2 A
Soit A = b? —4ac, alorson a az’> +bz+c=a [(z + 2—) - 4—2} . Soit § une racine carrée de A,
a a

i.e. § € C tel que 62 = A. Alors on a :

a2 +bz+c = a_<z+i)2— <£>2]

Donc les solutions de I’équation az? + bz + ¢ = 0 sont :

Z_—b+(5 ot z_—b—(5
1= "9 27 T

Exemple D.4.2. Résoudre dans C 'équation 22 + z + 1 = 0. Dans cet exemple, on a a = b =
c= 1. Soit A = b? — 4ac = —3 = 342, alors § = i\/3 est une racine carrée de A. Les solutions

sont donc :
—141iV3 —-1—-4V3
AT Ty S ARE T

D.5 Racines n-iémes d’un nombre complexe

Définition D.5.1. Soient n un entier > 1 et a € C. On appelle racine n-iéme de a tout nombre
complexe z tel que 2" = a.
Ainsi, le nombre complexe a = 0 posséde une unique racine n-iéme z = 0.

Proposition D.5.1. Soient n un entier > 1 et a € C tel que a # 0. L’équation z" = a a
exactement n solutions distinctes dans C. Ce sont les nombres complexes :

1 i(Arg(a)-l-%—ﬂ-)
zp = |a|me n n , ke{0,1,--- ,n—1}.

© Dunod, 2011 - Topologie et espaces normés - Nawfal El Hage Hassan



250 Chapitre D. LE CORPS DES NOMBRES COMPLEXES C

Démonstration. Comme a # 0, on a a = |a|e’A™(® et toute solution z de 'équation 2" = a

est forcément non nul, donc z aura une forme trigonomeétrique z = pe?, ot € R et p > 0. On
a 2" = pe™ dou :

o= ol po= ol
=0 <= =
nfd = Arg(a)+2km, ke Z ) = Arg(a) +2k_7r’ keZ
n n
Donc les solutions de ’équation 2™ = a sont :
(Arg(a) 2km
Zk:|a|%ez< n T) , kel.

Pour compléter la preuve, il reste & montrer les deux propriétés suivantes :

1. Les solutions zg, 21, -+ , z,—1 sont deux a deux distinctes.
2. Sik €Z,alors il existe r € {0,1,--- ,n — 1} tel que z = .
(Arg(a) 2p7r> (Arg(a) 2q7r>
i| ——+— i| ——+—
1. Soient p,q € {0,1,--- ,n—1} tels que z, = z,. Alorson ae n n/ =e¢ n n
o Arg(a) = 2pm  Arg(a) 2gmw
d’ou il existe m € Z tel que ———~+ + — = ——— + — + 2mn. Donc on a p — ¢ = mn, on
n n n

en déduit que m =0, d’ou p = q.
2. Soit k € Z. On fait la division euclidienne de k par n, on obtient p € Z et r € {0,1,--- ,n—1}
tels que k =pn +r, d’ot on a :
Arg(a) 2km Arg(a) 2pnm+ 2rm Arg(a) 2rm
Z( +—) 1 Z( + ) 1 2(74-—) 29
n n :|a|ne n n :|a|ne n n e P =z

2 = |a|%e r-

Exemple D.5.1. Cherchons les solutions de I’équation z* = 8(—1 + i1/3).
_1 3 T
Ona z* = 16<7 + z%) = 24" Donc les solutions sont :
'<27T 2k7r) '<7T ]CT(')
W\ -+ W\ —=+—
2p=2e \12 4/ =2e\6 2 , ke{0,1,2,3}.
Définition D.5.2. On appelle racine n-iéme de 1’unité toute solution de ’équation z" = 1.

Ce sont donc les nombres complexes :

zr=e e , ke{0,1,--- ,n—1}.

Disposition des racines 9-iémes de 'unité sur le cercle-unité
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Ce sont les sommets d’un polygone régulier inscrit dans le cercle-unité.

Remarque D.5.1. Soient a € C tel que a # 0 et z, 2" deux racines de ’équation 2" = a. Alors

SI\n z 2kmi
on a 2" = 2" don (—) = 1. Donc il existe k € {0,1,--- ,n—1} tel que — =e » ,doton a
z

z
p 2kmi L . : .\ ) -
7z = ze » . Ainsi, on obtient les racines n-iémes d'un nombre complexe non nul a en multipliant

I’'une d’entre elles par les racines n-iémes de 'unité.
Théoréme D.5.1 (d’Alembert). Soient n un entier > 1 et ag,...,a, € C tel que a, # 0.
Alors Uéquation ag + a1z + - - - + apz™ = 0 admet au moins une racine dans C. Autrement dit, il

n
existe aq,...,an € C tels que ag+ a1z + -+ + ap2" = a, [[ (2 — i), pour tout z € C.
i=1

Ce théoreme a été démontré au chapitre 3 de ce supplément.
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APPENDICE E

ALGEBRES

Dans cet Appendice, K désigne un corps commutatif quelconque.

Définition E.0.3. Une algébre A sur le corps K est un K-espace vectoriel muni d’une appli-
cation bilinéaire, appelée multiplication et notée

AxA — A
(z,y) — Yy

telle que pour tout z, y, z € A, on ait x(yz) = (xy)z (associativité) T

On dit qu’une algébre A est unitaire ou unifére s’il existe un élément non nul noté 14 dans
A tel que pour tout € A, on ait 214 = 142 = z. Un tel élément est alors unique, et appelé
I’unité de A. Dans certains cas, on convient, pour tout A € K, de noter A I’élément A14 de A.
Cette convention est justifiée par le fait que 'application A — A14 de K dans A est injective,
et par la relation Az = (A14)z.

Soit A une algébre unitaire. Un élément a de A est dit inversible s’il existe un élément b de A
tel que ab = ba = 14. Dans ce cas, b est unique, appelé I’inverse de a et noté a~!. On note
GL(A) l'ensemble des éléments inversibles de A. C’est un groupe pour la multiplication, dont
I’élément neutre est I'unité de A.

On dit qu’'une algebre A est commutative si pour tout z,y € A, on a zy = yx.

Définition E.0.4. Soient A une algébre et B, I des sous-espaces vectoriels de A.
1. On dit que B est une sous-algébre de A si pour tous z,y € B, on a zy € B.
2. On dit que I est un idéal bilatére de A si pour tout a € A et pour tout x € I, on aax € 1
et za € 1.

Il est clair que tout idéal bilateére de A est une sous-algébre de A. Notons aussi que {0} et A sont
des idéaux bilatéres de A.

Remarque E.0.2. Soit A une algébre.
1. Si (Bj);eg est une famille de sous-algebres de A, alors .ﬁJBj est une sous-algébre de A. Par
€

conséquent, pour tout sous-ensemble non vide S de A, il existe une plus petite sous-algébre
de A contenant S, & savoir l'intersection des sous-algébres de A contenant S. Une telle
sous-algebre est appelée la sous-algebre de A engendrée par S. Par exemple, si S = {a}
est un singleton, la sous-algébre de A engendrée par S est le sous-espace vectoriel de A
engendré par les a”, ot n € N*.

1. En général associativité ne fait pas partie de la définition d’une algébre, mais dans cet Appendice on ne
considére que des algébres associatives.

253
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2. Si (Ij)jes est une famille d’idéaux bilatéres de A, alors ﬂJI ;j est un idéal bilatere de A. Par
j€
conséquent, pour tout sous-ensemble non vide S de A, il existe un plus petit idéal bilateére

de A contenant S, & savoir 'intersection des idéaux bilatéres de A contenant S. Un tel
idéal bilatére est appelé l'idéal bilatére de A engendré par S.

Définition E.0.5. Soient A et B deux algébres et ¢ : A — B une application K-linéaire de
A dans B. On dit que ¢ est un morphisme ou homomorphisme d’algébres de A dans B si
lon a p(xy) = ¢(x)p(y) pour tous z, y € A. Si de plus A et B sont unitaires et ¢(14) = 1p,
on dit que ¢ est un morphisme d’algébres unitaires. Un isomorphisme d’algébres est un
morphisme d’algébres bijectif.

Proposition E.0.2. Soient A et B deuz algébres unitaires et ¢ : A — B un morphisme
d’algébres.

1. Si ¢ est unitaire, alors on a p(GL(A)) C GL(B).

2. S1 B =K et si ¢ est non nul, alors ¢ est unitaire. En particulier, pour tout x € GL(A),
on a o(x) # 0.

Démonstration. 1. Soit x € GL(A). Alors on a zx~! = 2712 = 14. Comme ¢ est unitaire, on
en déduit que I'on a p(z)p(z!) = (7 1)p(x) = ¢(14) = 15. Donc ¢(z) est inversible et on a
((x)) ™! = pa™h).

2. Supposons que B = K et que ¢ est non nul. Alors il existe a € A tel que ¢(a) # 0. Comme
on a ¢(a) = ¢(aly) = p(a)p(la), alors p(14) = 1. Donc ¢ est unitaire. [

Corollaire E.0.1. Soit B une sous-algébre unitaire d’une algébre unitaire A telle que 1 = 14,
alors linjection canonique i : B — A est un morphisme algébres unitaires. Ceci implique que

lon a GL(B) C GL(A).

Algébre quotient

Soient A une algebre et I un idéal bilatére de A. Soient A/I Despace vectoriel quotient et
m : A — A/I lapplication quotient, c’est une application linéaire. Pour tous a,b € A et pour
tous z,y € I,ona (a+x)(b+y) = ab+ay+xb+zy, avec ay+xb+xy € I. Par conséquent, si on
pose 7(a)w(b) = w(ab), c’est un produit bien défini sur A/I. On vérifie facilement que A/I muni
de ce produit est une algébre, appelée I’algébre quotient de A par I, et m est un morphisme
d’algebres.

Décomposition canonique d’un morphisme

Soient A, B deux algébres et ¢ un morphisme d’algébres de A dans B. Alors ¢(A) est une sous-
algebre de B, ker(y) est un idéal bilatére de A et il existe un unique morphisme d’algebres @ de
A/ ker p dans B tel que ¢ = @ o, i.e. le diagramme suivant est commutatif.

A 4 B

A/ ker ¢

De plus @ est injectif. Cette décomposition est appelée la décomposition canonique de .
De maniére générale, si I est un idéal bilatére de A tel que I C ker(y), alors il existe un unique
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morphisme d’algébres  : A/I — B tel que ¢ = Po, i.e. le diagramme suivant est commutatif.

Produit fini d’algébres

n
Soit (A;i){< ;<, une suite finie d’algebres, alors [[ A; muni du produit (a;);< ;<,(bi)1< j<n =
< i< ] < i< < i<
(aibi){< ;<, est une algeébre, appelée 'algébre produit des algebres (A4;);. ,-,,. Si toutes les A4;
n
sont unitaires, [] A; I'est aussi.
i=1

Adjonction d’une unité a une algébre

Soit A une algebre sur K. Soit AT = AxK, comme espace vectoriel. Pour tous (z, ), (y,3) € AT,
on pose :

(z,a)(y, B) = (zy + ay + Br,ap).

Alors AT muni de ce produit est une algébre unitaire avec (0, 1) comme unité, et ’application
a — i(a) = (a, 0) est un morphisme d’algébres injectif de A dans A', donc on identifie A & son
image dans A", De plus A est un idéal bilatére de A" et 'algeébre quotient A™ /A est isomorphe
a l'algebre K. L’algébre AT est dite I'algeébre obtenue par adjonction d’une unité a A, A avec
ou sans unité. On a aussi la propriété universelle suivante :

Si ¢ : A — B est un morphisme d’algébres et si B est unitaire, alors il existe un unique
morphisme d’algébres unitaires ¢ : AT — B tel que ¢ = T o4, i.e. le diagramme suivant est

commutatif, o .
N S
A-i—

Remarque E.0.3. Si A est une algébre unitaire, alors 'application ¢ : (a,\) — (@ — A 14, A)
est un isomorphisme d’algébres unitaires de A x K sur A™.

A
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(wi)ier, 218 Tsciyr 9

E/F, 154 Tacs, 9

X/R, 221

XNy, 214 adjonction d’une unité a une algébre, 255
XUY, 214 algebre, 253

X\ 4,214 commutative, 253
X xY, 214 produit, 255

Y C X, 213 quotient, 254

C, 241 7 anneau, 232

1“7,3, 220 commutatif, 233

N, 227 application, 215

Q, 228, 234 affine, 79, 162

R, 240 bijective, 217

Z7 227 continue a droite, 11
iI;f f(x), 225 continue a gauche, 11
ici%qinf . 98 convexe, 163

n—+oo " croissante, 225
limsup zy, 28 décroissante, 225
n—-+4oo

max f(z), 225 de Hopf, 196

€A

de type positif, 131

min f(z), 225

sup f(x), 225
T€EA

injective, 217
monotone, 225
périodique, 200

0, 213 .

inf A. 924 quotient, 221

L@(Xj), 213 réciproque, 217

max A 924 strictement croissante, 225
min A ’22 A strictement décroissante, 225
sup A: 994 strictement monotone, 225
GL(A), 253 surjective, 217

M,(K), 93 axiome du choix, 219

ZQIAZ" 218 bon ordre, 226

iLeJIAi’ 218 borne inférieure, 224

1A, 220 borne supérieure, 224

1€l

f(A), 216 classe d’équivalence, 221

ft 217 complémentaire, 214

f~4(B), 216 composée de deux applications, 215
Jlar 215 corps, 234

go f, 215 archimédien, 236

xe X, 213 commutatif, 234
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commutatif totalement ordonné, 235 idéal bilatére, 233, 253

de caractéristique nulle, 234 image directe, 216

des nombres réels, 240 image réciproque, 216

des nombres rationnels, 228, 234 intersection

d’une famille d’ensembles, 218

développement p-adique propre, 31 de deux ensembles, 214
distance intervalle, 225

de Hausdorff, 52 fermé, 225
diviseur de zéro topologique, 207 ouvert, 225
division euclidienne, 228 semi-ouvert, 225

inversible (élément), 253
involution, 120
isomorphisme d’algébres, 254

élément maximal, 224
élément minimal, 224
élément neutre, 231

ensemble lemme de Zorn, 226
au plus dénombrable, 229 limite
bien ordonné, 226 inférieure d’une suite, 28
borné, 224 supérieure d’une suite, 28
dénombrable, 229 loi de composition interne, 231

des entiers naturels, 227

des entiers relatifs, 227 majorant, 224

fini, 228 minorant, 224
inductif, 226 morphisme
infini, 228 d’algébres, 254

d’anneaux, 233
de corps, 234
de groupes, 232

majoreé, 224
minoré, 224
ordonné, 223
totalement ordonné, 223
. ) norme
ensemble des Partles d’un ensemble, 213 de Holder, 105
ensemble quotient, 221

: L. noyau reproduisant, 131
épigraphe (d’une application), 10, 164

équipotents (ensembles), 228 ordre total, 223
famille période (d’une application), 200
d’éléments, 218 partie entiére, 237
d’ensembles, 218 partition d’un ensemble, 222
fonction, 215 plus grand élément ou élément maximum, 224
indicatrice ou caractéristique, 216 plus petit élément ou élément minimum, 224
formule du binéme, 233 polynomes de Bernstein, 75
produit
graphe d’une application, 215 d’une famille d’ensembles, 220
graphe d’une relation d’équivalence, 220 produit cartésien
groupe, 231 de deux ensembles, 214
commutatif ou abélien, 231 projection canonique, 216, 220
quotient, 232 prolongement d’une application, 215
symetrique, 231 propriété universelle de ’application quotient,
222

Hopf (application de), 196
hyperplan d’appui, 158 réflexion, 197
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résolvant (ensemble), 206
résolvante (application), 206
réunion
d’une famille d’ensembles, 218
de deux ensembles, 214
relation d’équivalence, 221
relation d’ordre, 223
restriction d’une application, 215
retournement ou renversement, 197

segment, 225
semi-continue inférieurement (application), 9
semi-continue supérieurement (application), 9
sous-algebre, 253
sous-corps, 234
sous-ensemble ou partie, 213
sous-groupe, 232
distingué ou normal, 232

théoréme
de Beurling, 204
de Cantor, 18
de d’Alembert, 251
de Minkowski, 161
de Motzkin, 134
de récurrence, 227
de Stone-Cech, 39
de Zermelo, 226
de Zermelo-Cantor-Bernstein, 228
des accroissements finis, 240

valeur absolue, 236
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