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i TABLE DES MATIERES

Avertissement

On trouvera dans ce qui suit un choix d’exercices sur les espaces vectoriels normés et la convergence
uniforme. On proposera pour chaque exercice une démonstration, mais il peut, bien stir, y avoir d’autres
moyens de procéder.

En général on n’a vérifié que la propriété de séparation de la norme, les deux autres propriétés étant
laissées aux bons soins du lecteur.

Notations

Les espaces vectoriels considérés sont des espaces sur R ou C.

1) Dans un espace métrique (E,d), on note respectivement B(z,r) et B'(z,r) la boule ouverte et la
boule fermée de centre x et de rayon r.

2) Si f est une application linéaire continue d’un espace vectoriel normé dans un autre, on notera || f||
la norme de cette application.

3) Soit z = (x1,...,2,) un vecteur de R™ ou C™ et p un entier plus grand que 1. On notera

n 1/p
Jloe = max foi] et qup=(;rmp> .
1=

Cela définit des normes sur R™ ou C™.

4) Soit f est une fonction a valeurs réelles ou complexes définie sur un intervalle I non vide et p un
entier plus grand que 1. On notera,

[flloc = sup|[f(z)|,
zel
qui définit une norme sur I'espace des fonctions bornées sur I, et
1/p

11l = / f@)Pdr|
I

qui définit une norme sur l'espaces vectoriel des fonctions continues de puissance p—iéme intégrable
sur 1.

En particulier, lorsque I est compact, cela définit des normes sur l'espace €' (I,R) (resp. € (I,C)) des
fonctions continues sur I a valeurs réelles (resp. complexes).

Cela définit également des normes sur les espaces de polynomes R[X]| et C[X] car la nullité de ||P||;
entraine que P(x) est nul pour tout x de I donc que P a une infinité de racines, c’est-a-dire que P est
le polynéme zéro.



Chapitre 1

Espaces généraux

Exercice 1

1) Soit F' un espace vectoriel normé sur R, E un espace vectoriel sur R et f une application linéaire
de E dans F. Pour tout x de E, on pose

lellz = IIf(@)]F-

A quelle condition définit-on ainsi une norme sur F ?

2) Soit F' et G deux espaces vectoriels normés sur R, E un espace vectoriel sur R et f et g deux
applications linéaires de F dans F' et de E dans G respectivement. Pour tout « de F, on pose

lzllz = l[f(@)]F + llg(@)lla -

A quelle condition définit-on ainsi une norme sur F ?

Solution

1) On a de maniére évidente

1Az +pylle = 1f Az +py)llr = 1IN (@) + wf@)lle < M@+ el @e = M 2l + el yle -
Il reste donc & étudier la propriété de séparation.

Si le nombre ||z||g est nul, cela signifie que ||f(x)||F est nul et donc que f(x) est nul. Si 'on veut avoir
la propriété de séparation, il faut que f(z) = 0 implique z = 0, ¢’est-a-dire que f soit injective et cette

condition est suffisante.

2) La aussi, seule la propriété de séparation n’est pas automatiquement vérifiée. Si le nombre ||z||g
est nul, cela signifie que || f(z)||F et ||g(z)|/c sont nuls et donc que f(x) et g(z) sont nuls. Si l'on veut
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avoir la propriété de séparation, il faut que f(x) = 0 et g(x) = 0 impliquent = = 0, c’est-a-dire que
Ker f NKerg = {0},

et cette condition est suffisante.

Exercice 2

Soit E un espace vectoriel normé sur R, F' un espace vectoriel sur R et f une application linéaire
surjective de E dans F'. Pour tout  de F', on pose

2]l = nf{llallz | f(a) =2}

1) Montrer que 'on obtient de cette maniére une norme sur F' rendant f continue si et seulement
si Ker f est fermé dans E.

2) On suppose dans cette question que F' = R et donc que f est une forme linéaire non nulle sur
FE, de noyau H. Montrer que

— ou bien, pour tout z réel, ||z|lg =0,

— ou bien il existe ag dans E tel que

|z| = inf{||u + zap||p | v € H},
et en déduire qu’alors d(ag, H) = 1.

3) Soit H un sous-espace fermé de E et F' = E/H. Définir une norme sur F.

Solution
1) Remarquons tout d’abord, puisque f(0) = 0, que

10l < [0z = 0,
donc [|0]|F est nul.

En particulier, si A est nul,
[Az]|p = [[0][r = 0 = A ||z F -

Soit maintenant A un nombre réel non nul et x un vecteur de F. Comme f est linéaire
[Az||lp = inf{llal|z | f(a) = Az} = inf{{lal|e | f(a/A) ==z}
En posant a = Ab, on a encore

[Azl|F = mf{[[Ab][ e [ f(b) = 2} = [A[inf{[[bl|z | f(b) =z} = [A[[lz]|F



Enfin, si I'on a f(a) = z et f(b) =y, donc f(a + b) = = + y, on obtient
[z +yllr < lla+blle < lale+[blle-
Fixons b, alors ||z + y||7 — ||b|| & est un minorant de Pensemble {||a||z | f(a) = x}, donc
lz +yllr = bllz < inf{lla]z | fla) =2} = |lz|F,
puis ||z + y||r — ||z||F est un minorant de 'ensemble {||b||g | f(b) =y}, donc
2+ yllr = llzllr < f{|[blle [ £(b) =y} = llyllr,

et finalement
|z +yllr < llzllr + llyllF-

De plus, par construction,

(1) 1f(@)llr < [lalz -

Pour obtenir une norme, il faut encore que ||z||F = 0 implique x = 0.

Si ¢’est une norme, alors 'inégalité (1) montre que 'application linéaire f est continue et donc, puisque
{0} est fermé dans F', I’ensemble

Ker f = f7(0)

est fermé dans F.

Réciproquement, supposons ’ensemble Ker f fermé, et soit « dans F' tel que ||z||F soit nul. Il existe
une suite (ap)n>0 de E telle que, pour tout n,

f(an):xy

et telle que
lim |lan ||z = ||lz|lF = 0.
— 00

Donc la suite (a,,) converge vers 0 dans E. Alors la suite (ap — ay,) est une suite de Ker f qui converge
vers ag dans F. Comme Ker f est fermé, le vecteur ag appartient a Ker f et

0= f(ag) ==.
2) Si by est un élément de E tel que f(by) = 1, tout élément a de E peut s’écrire
a=v+xby,
ou v est dans H et x dans R. Alors les éléments de F tels que
fla) ==,
sont exactement les éléments de la forme précédente. Donc

2]l = inf{[lal[z | f(a) = 2} = nf{|jv + 2bo[|p | v € H}.
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Si H n’est pas fermé, c’est un sous-espace dense de F et il existe une suite (v,) de H de limite —xby.
Alors, pour tout entier n,

2]z < llon + bol 2,

et, par passage a la limite, on en déduit que ||z||g est nul.

Si H est fermé, alors ||.||r est une norme sur R d’aprés 1). Les normes sur R étant des multiples de la
valeur absolue, il existe un nombre k strictement positif tel que

[#]|r = klz|.
On en déduit que
1, .
|z| = Emf{”v +zbo||lg | ve H} = inf{|v/k+ x(bo/k)||g | ve H}.
En posant ag = by/k et uw = v/k, on obtient

|z| = inf{||lu + zagl|lg | v € H}.

En particulier, si x = —1
1 =inf{|ju —ao|lg | v € H} = d(ap, H).

3) L’application f qui & x associe sa classe & vérifie les conditions de 1). On obtient une norme sur F’
en posant

&l = inf{[lal[z | f(a) =2} = nf{|ja]z [ & = &} = nf{||lz + [l [ h € H}.

Exercice 3  Jauge

Soit E/ un espace vectoriel sur R, et B une partie de E convexe, vérifiant les propriétés suivantes

(1) -B=B
(2) {a>0|ze€aB}#0
(3) .aB ={0}

Pour tout x de F on pose
|z||p = inf{a >0 | x € aB}.

1) Montrer que l'on définit ainsi une norme sur E et que
B(0,1) c B C B'(0,1).

2) Soit (E, ||.||) un espace vectoriel normé. On prend B = B(0,1) ou B’(0,1). Montrer que |.||s
n’est autre que la norme ||.|.




Solution

1) Remarquons tout d’abord que B contient 0 d’aprés (3) en prenant o = 1. D’autre part la convexité
se traduit par le fait que, pour tout nombre réel « de [0, 1], on a l'inclusion

aB+(1—«a)B C B,

et implique donc que, l'ensemble aB est inclus dans B. Alors, puisque («/8)B est inclus dans B si
0 < a < 3, on en déduit que 'on a dans ce cas, en multipliant par (3,

aB C BB,
Montrons les propriétés de la norme.

a) Remarquons déja que, puisque 0 appartient & aB pour tout «, on a alors ||0]|p = 0.

Supposons que ||z||p soit nul. Il existe une suite de nombres réels («,,) décroisante et tendant vers 0
telle que, pour tout entier n le vecteur x appartienne a «,, B. Alors x appartient a Ny, B. Mais comme
n

tout nombre «a strictement positif est compris entre deux termes de la suite, le vecteur x appartient

aussi a ﬂoaB donc est nul d’apreés la propriété (3).
a>

b) Tout d’abord, si A est nul,
[Azllp =0l = 0= |A|[[#]|5 -

Remarquons aussi que, pour tout nombre réel «, d’apreés (1),
aB=—-aB=|a|B.
Soit maintenant A un nombre réel non nul. On a
|Az||p = inf{a >0 | Az € aB} =inf{a >0 |z € (a/\)B} =inf{a >0 | z € («/|\|)B}.
En posant 8 = a/|\|, on a encore
[Az]p = nf{B[A[ > 0| z € BB} = [A[ inf{ > 0 [ 2 € 6B} = || [|lz] 5 -
c) Si x et y sont dans F, soit « et [ tels que
reaB et yepB.

Alors, d’aprés la convexité de B,

1 « B
+y) € B+ BcC B,
a—l—ﬁ(a; v) a+ a+p

donc x + y appartient & (o + 5)B et
lz+yllp <a+B.
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Fixons 5. On a
e +yllp—B<a,

donc ||z + y||p —  minore l'ensemble {a > 0 | x € aB}, et il en résulte que
lz+yllp—B< |5

Ensuite
|z +yls = llzlls <8,

et ||z 4+ y||p — ||=||p minore 'ensemble {8 > 0 | y € fB}. Il en résulte que
lz+ylls = llzllz < llylls,

et I'on en déduit 'inégalité triangulaire
lz+ylls <zl +llylls -

Si  appartient a B(0,1), on a donc
lzllz < 1.

Il existe @ < 1 tel que x appartienne & aB. Mais alors aB est inclus dans B. Donc
B(0,1) C B.

Si x appartient & B, par définition ||z||p est plus petit que 1 et
B cC B'(0,1).

2) Soit @ > 0. Dire que = appartient & «B(0, 1) équivaut a dire que = appartient & B(0, «), et de méme,
dire que x appartient a aB’(0,1) équivaut a dire que x appartient & B’(0, «).

Si B = B(0,1), alors le vecteur = appartient a la boule B(0, ||z|| + 1/n) et n’appartient pas a la boule
B(0, ||z||). Il en résulte que
el < el < el + =
n
et par passage a la limite
]l = |5 -

Si B = B’(0,1), alors le vecteur z appartient a la boule B’(0, ||z||) mais pas a la boule B'(0, ||z]|—1/n).
Il en résulte que

1
2l = = < llzllz < ll=],

et par passage a la limite
=] = llzl|5 -



Exercice 4

Soit E' un espace vectoriel sur R et soit F' et G deux sous-espaces de F munis chacun de normes
notées respectivement ||.||r et ||.||q-

1) On suppose que ces deux normes sont équivalentes sur F' N G et que F'N G est fermé dans F
pour ||.||r et dans G pour |.||q. Montrer que 'on définit une norme sur E en posant

[zl = inf{{lullr +[lvllc [z =utv, ueF, veG},

et que, sur F' NG, cette norme est équivalente aux deux autres.

2) Montrer que la propriété du 1) est satisfaite en particulier si F' N G est de dimension finie. Que
se passe-t-il si F' et G sont supplémentaires 7

Solution

1) a) Tout d’abord,
10lz < [l0]l7 + [[0le = 0,

donc [|0|g est nul.

Si ||z||g est nul, alors il existe deux suites (uy)n>0 €t (vp)n>0 dans F' et G respectivement, telles que,
pour tout n

T = Up + Uy,

et telles que
lim (||un||r + |onllg) = 0.
n—oo

En raison de I’égalité

Up +Up =Ug+V9 =T,

on a

Up —U) = Vo — Un,

et ce vecteur appartient & F' N G. D’autre part la suite (u,) converge vers 0 dans F. Donc la suite
(up, — up) converge vers —up dans F' pour la norme ||.|[z. Mais u,, — ug se trouve en fait dans F' NG
qui est fermé dans F', donc —ug appartient & F'NG. De méme (vg — vy,) converge vers vg dans G' pour
||l.llc et en fait dans F'NG. Comme les normes ||.||7 et ||.||¢ sont équivalentes sur F'NG les limites sont
les mémes et l'on trouve

—ug = g -
Alors

r=1ug+vg=0.

b) Tout d’abord, si A est nul,
[Azlle = [0]le = 0= |Al[|z]|e -
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Soit maintenant A un nombre réel non nul. On a

Azl = nf{||lullr+]|v|g| e=ut+v,uvueF, veG}
= inf{flullr +[vle [ 2= (uw/A)+ (v/X), ue F, veG}.

En posant
T v et v = d
D) A
on a encore
IAz]|lg = inf{||]M/[|r+ ||\ |c|z=u+2,d €F, v eqG}
= [N inf{||||p+|V|c|z=u+2,d € F,6 v €qG}

= [Alllzlle -

¢) Si x et y sont dans E, ils s’écrivent

r=u+v et y=u+
avec u et u' dans F et v et v/ dans G. Alors

r+y=(utu)+ (v+)
avec u + v’ dans F et v + v’ dans G, donc

lz+ylle < llu+d|p+llv+ e < llullp + 1W]lF+ vlle + 11Vl -
Si v’ et v’ sont fixés, on obtient
Iz +ylle — (1l|lF + [Vlle) < llullr + vlie-

Alors ||lz+y|lg—(|v/|| p+||v"||¢) est un minorant de Pensemble {||u||p+|v|c |z =u+v, u € F, v € G}
donc

lz +ylle = ('l + [vlle) < inf{llullr + e [z =u+v, ueF, veG}=|z|s.

Ensuite
Iz + ylle — l|lzlle < lv[F+ 1v]c-

Alors ||z 4+ y||g — ||z||g est un minorant de 'ensemble {||v/||p + ||V/||¢ |y =u' +v" , ' € F, v € G},
donc
lz+ylle —llzle < mf{{lr + Ve [y=u +", v € F, v € G} =yle.

Finalement on obtient bien 'inégalité triangulaire
e +ylle < llzlle + llylle-
d) Si x appartient & F'N G, on a en particulier la décomposition x = x + 0 donc

[zl < [l|F-



Si u + v est une autre décomposition de x, alors x — u = v est dans F'N G. Donc
2/l = [lu+vllr < [lullr + (o]
Mais puisque les normes ||.||r et ||.||¢ sont équivalentes sur F'N G, il existe k > 1 tel que,
[ollr < Ellvlla,

et, par suite,
Izllr < [lullr + & lv]le < E(lullr +[lv]lc) -

Alors
|lz||lp <k inf{|lu)lr+|vllg |z=u+v,ueF, veG}t=kl|z|g.

Les normes ||.||F et ||.||z sont équivalentes sur F' N G et par transitivité, les normes ||.||¢ et ||.|z éga-
lement.

2) Si F NG est de dimension finie, les normes |.[[F et ||| sont automatiquement équivalentes sur
FNGet FNG est complet, donc fermé dans F' et dans G pour les normes respectives.

Si F' et GG sont supplémentaires, alors il existe une seule décomposition d’un vecteur = sous la forme
u + v, et donc
lzllz = [lullr + llvlc-

Exercice 5 Semi-norme
Soit E un espace vectoriel sur R muni d’une semi-norme N, c’est-a-dire d’une application a valeurs
réelles vérifiant les propriétés d’une norme sauf la propriété de séparation.

1) Montrer que I'ensemble F' des éléments x de E tels que N (x) soit nul, est un sous-espace vectoriel
de E.

2) Montrer que si z et y sont deux vecteurs de E tels que = — y appartienne a F', alors N(x) est
égal & N(y). En déduire que l'on peur définir une norme sur l'espace E/F en posant

2] = N(z).

Solution
1) L’ensemble F' contient 0. Si N(x) est nul, et si A est un nombre réel, on a
N(A\z) = [A\|N(z) =0.

Si N(z) et N(y) sont nuls
0 < N(z+y) <N(z)+ N(y) =0,
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donc N(xz+y) est nul. Il en résulte que F est table par combinaisons linéaires. C’est bien un sous-espace

de E.

2) Si z — y est dans F, alors
N(z) < N(z —y)+ N(y) = N(y).

Comme y — x est aussi dans F, on a également, en inversant les roles de x et vy,
N(y) < N(z),
d’ou I'égalité.
Alors N(x) ne dépend pas de 'élément choisi dans la classe de x, et 'on définit une application de

E/F dans R en posant
2] = N ().

Cette application conserve les propriétés de la semi-norme N, mais de plus, dire que ||Z|| est nul signi-
fie que N (z) est nul, donc que = appartient a F', et finalement que # est nul. On obtient bien une norme.

Exercice 6

Soit F une algébre sur R ou C de neutre I. On suppose que E est munie d’'une norme N possédant
la propriété suivante : il existe une constante K telle que, quels que soient A et B dans FE,

N(AB) < KN(A)N(B).
1) Montrer que I'on définit une application linéaire continue sur E en posant
va(B) = AB.

2) On pose
[A]l = llpalll -

Montrer que ’on définit ainsi une norme sur E équivalente & V. Quelles sont les propriétés de cette
norme pour le produit et I'élément [ 7

Solution

1) L’application ¢4 est clairement linéaire et 'on a
N(pa(B)) = N(AB) < KN(A)N(B),

ce qui montre que ¢4 est continue de norme plus petite que K N(A).

2) D’apreés ce qui précéde,
[All = lleall < KN(A).
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Par ailleurs, comme I est le neutre de F,

L N(AM)  N(A)
=5 N on = Ny

On a donc,
N(4A)
<] Al < KN(A
et les normes N et ||.|| sont équivalentes. (On remarquera que si K = N(I) = 1, on obtient la méme
norme).

Alors, puisque
PAOPYB = PAB,

on a, en raison des propriétés des normes d’opérateurs,

IAB = llpacwsll < lleall llesll = TAIIBI et 1] = [|1d] = 1.

Exercice 7

Soit f une application d’un espace vectoriel normé (F, ||.||) dans un espace métrique (M, d), et
un point de FE. Montrer que f est continue en xg si et seulement si, pour toute application g de
[0, 1] dans E continue en 0 et valant z en ce point, 'application f o g est continue en 0.

Solution

Par composition des fonctions continues, si f est continue en xg et g continue en 0 et valant xp en ce
point alors f o g est continue en 0.

Pour démontrer I’application réciproque, démontrons sa contraposée.

Soit f une fonction qui n’est pas continue en xg. Il existe € > 0 tel que, pour tout o > 0, il existe y
dans FE tel que

ly —xoll <o et d(f(z), f(zo)) >¢.

On prend o = 27" il existe donc y,, dans E tel que

lyn —zoll <27 et d(f(yn), f(w0)) > €.

On peut alors construire une fonction g sur [0, 1] de la maniére suivante. Elle est affine sur chaque
intervalle [27("+D 27" et pour tout n > 0

927") = Yn,
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Cest-a-dire, sur [2-(FD 2=n ]
g(x) = (2" = Vyn + (2= 2" 2)ynga -
Cela défini une fonction continue sur |0, 1] que I'on compléte par
g(0) = .
Alors, si z appartient a [2~("+1) 27"] on a

lg(@) —g(O) = 12" 'z = D)yn + (2 = 2" 2)yns1 — o

12" 2 = 1) (yn — z0) + (2 = 27 2) (Yn 11 — m0) |
2" 'z = 1) lyn — zoll + (2 = 2"') [lynsa — 2ol
Hyn - xO” + ”yn-i-l - 330”

2742l =3.27

ININ A

Il en résulte que la fonction g est continue en 0, donc sur [0, 1]. Mais

d(fog(27"), f0g(0)) = d(f(yn), f(20)) = ¢,

et f o g n’est pas continue en 0.

Exercice 8 Théoreme du point fize
Soit I une partie fermée non vide d’un espace vectoriel F complet, et f une application contractante
de I dans I.

1) Montrer que f posséde un point fixe et un seul, et que toute suite (xy)n,>0 de I définie par
récurrence par la relation

Tpt1 = f(xn)
a partir d'un point ¢ de I, converge vers le point fixe ¢. Donner une majoration de ||z, — ¢||.

2) Soit F' I’ensemble des fonctions continues sur I, muni de la norme infinie. Montrer que si f — Id
est bornée sur I, la suite (f™) converge vers la fonction constante ¢ dans F'.

Solution

On a donc, quels que soient x et y dans I

1 (@) = Fll < Elle =yl

o 0 <k < 1. Donc f est continue (et méme uniformément continue) sur I.
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Tout d’abord, il existe au plus un point fixe pour f. En effet, si x et y sont deux points fixes, on a
lz =yl = [If(x) = fWI <kl =yl
ce qui implique que ||z — y|| est nul et donc que x = y.

On montre ensuite que la suite (z,,) est une suite de Cauchy. C’est évident si z; = zo car la suite (x,)
est constante (et g est un point fixe). Tout d’abord,

[Zns1 — 2ol = 1 f(2n) = f(@n-1)| < kllon — 20,
et une récurrence immeédiate montre que

[€n1 — @nll < E"[21 — ol -

Alors
p—1 p—1
#ntp = @all <D @nsins = 2npall <D Kl — ol -
=0 =0

En calculant la somme géométrique, on obtient

p! p! R Y i A

. . 1 —
n-i—z: n T __ LN — <
DK =K Y K =K S = T < o
1=0 =0
et donc
M [y — 2all < 2 — ]
n+p n = 1_% 1 off -

Comme la suite (k™) converge vers 0 puisque 0 < k < 1, pour tout € > 0, il existe N, tel que, sin > N,
on ait,
1—k
o S8
21 — ol

et donc, pour tout entier p
[€ntp = 2nl <€,

ce qui montre que la suite (z,) est une suite de Cauchy de I. Comme I est fermé dans E complet, il
est lui-méme complet et la suite (x,) posséde une limite ¢ dans I.

Puisque f est continue, la suite (f(z,,)) converge alors vers f(¢), et par passage a la limite dans 1’égalité

f(xn) = Tn+1,

on obtient
fe)=1¢,

donc £ est un point fixe de f ce qui montre I'existence du point fixe.
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En faisant tendre p vers l'infini dans la relation (1), on trouve alors
n

k
1€ = zp| < 1% (B

2) Soit z quelconque dans I. Alors, d’aprés la relation précédente

kTL

1f7@) = 0l <

I1f () — x|

Si la fonction f — Id est bornée, soit M un majorant. Alors

ME™

n _ <—

THOR Ry

donc o
n_ <

157" = oo < T

Ce qui montre que la suite (f™) converge vers la fonction constante ¢ dans F.



Chapitre 2

Espace R?

Exercice 9
1) Montrer que pour tout couple (a,b) de nombres réels
la| 4+ |b] = max(|a + bl |a — b]) .
2) Dans R? montrer que 'on définit une norme en posant
1@ y)ll = |z +y| + =],

et déterminer la boule unité fermée.

3) Méme probléme avec
Iz " = o+ yl + 22 —y|.

Solution

1) Si a et b sont de méme signe, c’est aussi le signe de a + b. Alors
la = b < la| + [b] = |a + 8],

donc
la| 4+ |b] = max(|a + b|, |a — b]) .

Si a et b sont de signes contraires, alors a et —b sont de méme signe et

la| + | — b| = |a| + |b] = max(|la — b, |a + b]).
2) Si la norme |[|(x,y)]|| est nulle, cela implique z +y =z =0, dout z =y = 0.
Soit A un nombre réel. Alors

Az, ) = 1Az, Al = Az + Ayl + [Aa| = [A[ (]2 + yl + [z]) = Al I (2, 9)]] -
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Enfin
[z, y) + @ ) = e+ y+ 9 =le+ 2" +y+ |+ e+ 2| < |4y + 2"+ o]+ |2] + 2],

et donc
Iz, y) + (@ ¥l < Iz, )]l + 1", )]l -

On a donc bien une norme sur R2.
Si (z,y) appartient a la boule unité fermée, on a d’aprés 1),
|z +y[ + |z] = max(]2z + y|, [y[) < 1,

et donc
—1<2x4+y<1l et —-1<y<1.

La boule est limitée par les droites d’équation
y=1 , y=-1 , y=-22-1 e y=-2z+1.

1

3) Si le norme ||(z,y)||" est nulle, cela implique x +y = 2z —y = 0, d'ot = y = 0. Les autres
propriétés se démontrent comme dans 2).

Si (z,y) appartient a la boule unité fermée, on a d’aprés 1),
|z + y| + |22 — y| = max(|3z|, |z — 2y|) < 1,

et donc
—1<3z<1 et —1<x—-2y<1.

La boule est limitée par les droites d’équation

z+1 z—1
et y= .

x=-1/3 , z=1/3 , y= 5 5
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1/2

1/3

Exercice 10

1) Déterminer les nombres « positifs tels que, quel que soit (x,y) dans R?, le nombre

|z + ty|
N, = sup ——21
o(7,y) SUP e

soit fini, et montrer que dans ce cas N, est une norme sur R?.

2) Montrer que si a = 1, alors
Ny (z,y) = max(|z], [y]) .

3) Déterminer la boule unité fermée de R? pour les valeurs de o qui conviennent. Représenter
graphiquement les cas o = 1 et @ = 2. (N.B. La question nécessite de savoir trouver [’enveloppe
d’une famille de droites).

Solution

1) Pour (z,y) fixé dans R? posons

T +ty
t) = .
#t) =757

Si a < 1, alors pour tout couple (x,y) fixé ou y est non nul, on a, lorsque ¢ tend vers l'infini,

o(t) ~yt' ™,

et cette expression tend vers l'infini & 400, donc Ny (x,y) est infinie.
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Sia>1, alors

Y .
a1 S1Y #0
) ~q ;
o siy=20

et la limite est nulle en l'infini. La fonction ¢ est continue sur R et admet une limite finie & 'infini.
Elle est donc bornée et Ny (x,y) est fini.

Si Ny(z,y) est nul, alors x 4 ty est nul pour tout ¢. En particulier, si ¢ = 0 on en déduit que x est
nul, puis, si t = 1, on en déduit que y est nul. Donc (z,y) est nul. Les autres propriétés de la norme se
vérifient facilement & partir de celles de la borne supérieure.

2) Si a = 1, la fonction ¢ est une fonction homographique. Elle est donc monotone sur R*. Alors

Na(z,y) = max(|e(0)], lim |o(t)]) = max(|z|, [y]).

t——+o0

3) Lorsque aw = 1, la boule unité fermée est le carré {(z,y) | || <1, |y| < 1}

Supposons maintenant « > 1. Si (x,y) appartient a la boule unité B, (0, 1), on a, quel que soit t > 0,

x+ty<

1< ’
Tl

ou encore
—(14+tY) <z +ty<1+1t°.

La boule est limitée par les familles de droites d’équations
r4+ty—(1+t%)=0 et xz+ty+(1+t*)=0.

En particulier, si t = 0, on trouve
—1<z<1.

Comme la boule est symétrique par rapport a lorigine. il suffit de considérer les points d’ordonnée
positive. On est amené a chercher ’enveloppe des familles de droites.



Pour la premiére famille, on dérive par rapport a t, ce qui donne
y—at® 1 =0.
Le systeme
r+ty—(1+t*) = 0
y — ot =0

donne un paramétrage de I’enveloppe

{x = 1—(a—1)t~

y = ata—l

1— 2 1-1/a
y:a<a—1> '

L’autre famille de droites a pour enveloppe, par symétrie par rapport & O, la courbe d’équation

142\ "V
)
a—1

Donc la boule unité fermée est I’ensemble des couples (x,y) tels que

1 1-1/a 1— 1-1/a
g <1 et —a e <y<a ac .
a—1 a—1

d’ou l'on tire

En particulier, si a = 2,

2] <1 et —2vV1I+z<y<2y/l-—=z.

La boule est limitée par deux morceaux de paraboles.
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Exercice 11

1) Soit a et b deux nombres réels tels que a < b. Soit f et g deux fonctions continues sur [a, b] a
valeurs réelles non colinéaires. Si (x,y) appartient 4 R?, on pose

N(z,y) = sup |zf(t) +yg(t)l.
a<t<b

Montrer que I’on définit ainsi une norme sur R2.
2) Que vaut N lorsque a =0,b=1, f(t)=t, g(t)=1—1¢t 7

3) Déterminer et représenter graphiquement la boule unité fermée de R? lorsque a = 0, b = 1,
ft) = t, gt) = t2. (N.B. La question nécessite de savoir trouver I’enveloppe d’une famille de
droites).

Solution

1) Tout d’abord la fonction z f+yg est continue sur [a, b], donc la borne supérieure est finie. Supposons
que N (z,y) soit nul. On a, pour tout ¢t de [a, b],

zf(t) +yg(t) =0.

Comme f et g ne sont pas colinéaires, il existe t; et t5 tels que le déterminant soit non

nul. Alors le systéme
{ zf(t1) +yg(t) = 0
zf(tz) +yg(t2) = 0

a comme unique solution x =y = 0.
Les autres propriétés de la norme résultent de celles de la borne supérieure.

2) Ici

N(z,y) = sup [tz + (1—1t)y|.
0<t<1

Comme la fonction qui & ¢ associe tx + (1 — t)y est affine, la borne supérieure de la valeur absolue est
atteinte soit au point 0 soit au point 1 et alors

N(z,y) = max(|z], [y])

3) Dans ce cas

N(z,y) = sup [tz +t2y|.
0<t<1

La boule unité est ’ensemble des couples (z,y) tels que, pour tout ¢ de [0, 1], on ait

—1<tr+tiy<1.
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En particulier, pour ¢t =1
-1<zx+y<1.

La boule est comprise entre les droites d’équation
y=1—-2 e y=-1—=x.
Les points (x,y) doivent également se trouver en-dessous de ’enveloppe des droites d’équation
te+t2y =1,
lorsque ¢ décrit Uintervalle |0, 1]. En dérivant par rapport a ¢, on trouve
z+ 2ty =0,
et 'enveloppe est ’ensemble des couples (z,y) vérifiant le systéme

tr+t2y = 1
rz+2ty = 0

En résolvant ce systéme, on obtient un paramétrage de I’enveloppe

2 ¢ 1
xr = — e = -,
t Y 12

ou 0 <t<1, et donc

lorsque =z > 2.
Un point (z,y) de la boule se trouve donc sous la courbe définie par

- 1—2z si <2
4 —z%/4 si x>2

Comme la boule est symétrique par rapport a l'origine, elle se trouve aussi au-dessus de la courbe
définie par

1=z si x>-2
Y= 224 sioz< -2
La courbe d’équation y = —z2/4 coupe la droite d’équation y = —z — 1 lorsque

22 —dx —4=0.

Lorsque > 2, on trouve le point de coordonnées (2(1 ++/2), —(3 + 2v/2)).
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Exercice 12

Soit N1 et No deux normes sur un espace vectoriel E.

1) Montrer que l'on a, pour tout u de F,

si et seulement si

BL(0,1) € B}(0,k).

En déduire que l'on a, pour tout u de F,

si et seulement si
B1(0,1/L) c B5(0,1) C B{(0,1/K).

2) Soit @ un nombre réel. A quelle condition, définit-on une norme sur R? en posant
No(z,y) = max(|z + 3y, |z — ayl) ?
3) On prend a =1 et Ny(z,y) = /a2 + y2. Trouver les meilleurs constantes K et L telles que

KNl(Z',y) < NZ(x7y) < LNl(‘Tay) .
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Solution
1) Supposons que, pour tout u de F,
Nl(u) < k‘Ng(u),

et soit u appartenant a B5(0,1). On a alors
Ni(u) < kNy(u) <k,
donc w appartient a B1(0, k), ce qui donne l'inclusion
B,(0,1) € B{(0,k).

Réciproquement, si 'on a cette inclusion, soit w non nul, alors u/Na(u) est dans B5(0,1) donc dans
B1(0, k), c’est-a-dire

On en déduit que
Nl(u) < k‘Ng(u) .

Alors B)(0,1) est inclus dans Bj(0,1/K) si et seulement si

Ni(u) < %qu).

D’autre part, dire que B(0,1/L) est inclus dans B} (0, 1) équivaut a dire par homothétie que Bj(0,1)
est inclus dans B5(0, L) donc a
Ng(u) < LNl(u) .

Finalement, dire que, pour tout u de F,
KNl(u) § Ng(u) § LNl(u),

équivaut aux inclusions
B1(0,1/L) c B5(0,1) C B1(0,1/K).

2) Seule la propriété de séparation pose probléme. Le nombre Na(x,y) est nul, si et seulement si on a
le systéme

)

rz+3y = 0
r—ay = 0

et ceci implique que x et y sont nuls si et seulement si c’est un systéme de Cramer, c’est-a-dire si
et seulement si le déterminant —a — 3 n’est pas nul. Donc Ny est une norme si et seulement si a est
différent de —3.

3) Déterminons la boule B(0,1). Un vecteur (x,y) appartient a cette boule si et seuilement si
max(‘x + 3y‘7 "T - y‘) <1,
c’est-a-dire si et seulement si

—1<z—y<1l et —-1<zx+4+3y<l.
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La boule est le domaine limité par les quatre droites d’équation

1-z) , y=5(-1-2),

W =

y:x_l 9 y:x+1 s y:

c’est donc le domaine limité par le parallélogramme formé par ces droites.

Pour obtenir K et L, il suffit de trouver les cercles de centre O circonscrit et inscrit dans ce parallélo-
gramme. On remarque tout d’abord que les droites d’équation y = x — 1 et y = (1 — )/3 se coupent
au point (1,0). Le cercle circonscrit est de rayon 1 et donc

B5(0,1) c B1(0,1).
On en déduit que 1/K =1, donc K = 1.

Le cercle inscrit est le cecle tangent a la droite d’équation y = (1 — z)/3 ou encore z + 3y — 1 = 0. La
distance de l'origine a la droite vaut 1/+/10. Alors

B} (0,1/v/10) < B(0,1),
On en déduit que L = /10 et donc

Nl(xay) < NQ(xvy) < \/ENl(l’,y)

N
N
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Exercice 13

1) Soit a, b, ¢ , d des nombres réels. A quelle condition, définit-on une norme sur R? en posant
N(z,y) = |ax + by| + |cx + dy| 7
2) Trouver les meilleurs constantes K et L telles que

Solution

1) Seule la propriété de séparation pose probléme. Le nombre N(z,y) est nul, si et seulement si on a
le systéme

ar+by = 0
cx+dy = 0 7

et ceci implique que x et y sont nuls si et seulement si ¢’est un systéme de Cramer, c’est-a-dire si et
seulement si le déterminant ad — bc n’est pas nul.

2) On a
N(z,y) < laf || + [l ly[ + [e] [z + [dl [y| = (lal + [e})]x] + ([b] + |d]) [y -
D’ou
N(z,y) < max(|a| + [c], |b] + |d]) (2| + [y|) = max(|a| + |c], [b] + |d]) || (z, )1 -
Si |a| + |¢| > |b] + |d|, en prenant (x,y) = (1,0), on a

N(z,y) = la[+c| et |[(z,y)llh =1.
Si |a| + |¢| < |b] + |d]|, en prenant (x,y) = (0,1), on a

N(z,y) = o] +[d| et [(z,y)llr=1.
Donc on obtient ’égalité dans les deux cas. Alors

L = max(|a| + |c], |b] + |d]) .

Posons
X=ar+by et Y =cx+dy,
et donc .
x:ad_bc(dX—bY) et y:ad_bc(—cX—i—aY).
Alors
1
N(z,y) = X[+ Y= (X, V)1 et [[(z,y)l1 = ——=(dX = bY|+]|—cX +aY]).

lad — be|
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On a alors, en inversant les réles des deux normes,

max(|a| + |bl, |c] + |d])
lad — be|

H(Z’,y)Hl < N(Z’,y),

et
B lad — be]

- max(la| +[b], [e] + |d]) °

Exercice 14

Soit @ et b deux nombres réels. A quelle condition, définit-on une norme sur R? en posant

N(z,y) = Va2 + 2azy + by? ?

De quelle nature est alors la boule unité ?

Solution

Il faut déja que le nombre 22 +42ax+by? soit toujours positif ce qui signifie que le discriminant 4(a? —4b)
doit étre négatif. Dans ce cas, on peut écrire

N(z,y) =/(z + ay)® + (b—a?)y?.

Si I'on note f I'application linéaire de R? dans lui-méme définie par

f(:Evy):(x—i_ay) b—azy),

on a alors

Dire que N(x,y) est nul, sigifie que f(z,y) est nul. Donc si 'on veut que la nullité de N(z,y) implique
celle de (x,7) il faut et il suffit que f soit injective, c’est-a-dire que b — a? soit non nul. Les autres
propriétés de la norme se vérifient facilement.

Finalement N est une norme si et seulement si
b>a?.
La boule unité est 'ensemble des couples (z,y) tels que

22 + 2axy +by? <1,

c’est donc une ellipse.



Chapitre 3

Espaces de polynomes

On notera de la méme maniére un polyndome P et sa fonction polynomiale associée.

Exercice 15

Dans l'espace E = Ry[X] des polynomes de degré au plus 2 & coefficients réels on consideére les
normes définies, si P(X) = aX? +bX + ¢, par

[Plloc = sup |P(x)| et [|P|| =max(]al,b],|c]).
0<z<1

Montrer que ce sont des normes équivalentes et trouver les normes de l'identité de (F, ||.||«) dans
(B, [[-1) et de (B, |[-) dans (E, [|.]lo)-

Solution
Puisque E est de dimension finie les normes sont équivalentes.

Tout d’abord, si 0 < x <1, on a
laz? 4 bz + c| < |a|z? + bz + || < |a| +|b| +|c| < 3||P].

donc

[Plloc < 3P|

En prenant
PX)=X?4+X+1,

la fonction P est croissante positive sur [0, 1], donc
[Plloc = P(1) =3 =3]P|.

La norme de l'identité de (E, ||.||) dans (E,||.||~) vaut donc 3.
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On a d’autre part le systéme

PO) = c
P(1/2) = a/4+b/2+c
P(1) = a+b+c
En résolvant ce systéme, on trouve
a = —4P(1/2)+2P(1)+2P(0)
b = 4P(1/2) — P(1) —3P(0)
c = P(0)
donc
o] <8[[Pllc 5 [l <8|Plloc » e < [IPlloo,
et finalement
1Pl < 8|1Ploc -

(On peut aussi utiliser les polynomes d’interpolation de Lagrange :
P(X)=2P0)(X —1)(X —1/2) —4P(1/2)X(X — 1)+ 2P(1) X (X — 1/2).

ce qui redonne les valeurs de a, b, ¢ obtenues).

En prenant le polyndéme

on a
1Pl =1.
D’autre part la fonction P décroit sur [0, 1/2] et varie de 1/8 a —1/8, puis croit sur [1/2, 1] et varie

de —1/8 4 1/8. 1l en résulte que
1

1Ploc =5
On a donc

1Pl =1=8]Po-
La norme de I'identité de (E, ||.||~) dans (E, ||.||) vaut donc 8.

Exercice 16

1) Dans l'espace E = R[X] des polyndmes a coefficients réels on considére les normes définies, par

1
[Plloc = sup [P(z)] et [Pl Z/IP(w)Idw-
0<z<1 0

Montrer que ces normes ne sont pas équivalentes.

2) Calculer

Pl
K= sup 1P .
pery[x] 1Pl
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Solution
1) Si l'on a toujours

1Pl < [[Plloo
on obtient par contre pour P(X) = X"

1

Plo=1 et |P|p=—,
[ Ploo et [Pl ==

et il ne peut pas exister de constante K telle que, pour tout polynéme P,
[Pl < KI[[P]]1

Les normes ne sont donc pas équivalentes.

2) Par contre, sur Ry[X], qui est de dimension finie, les normes sont équivalentes. On cherche la
constante

Pl
K= sup | Pl 7
pery(x] 1Pl

qui est la plus petite constante telle que, pour tout P de Ry[X],
1Pl < KIIP1
Pour des raisons de symétrie et d’homogénéité, on peut se contenter de regarder les polynémes
PX)=X—-t
ou t est réel. La fonction P est alors croissante sur [0, 1] et
|Plloe = max(|P(O)],|[P(1)])

On distingue deux cas.

te [0, 1]
On a alors
[Pl|oc = max(|P(0)],[P(1)[) = max(t,1—1t),
ot 1 t 1 .
IP|1 = / |P(x)|dx = /(t —z)dz + /(m —t)dr = 5(152 + (1 —1)?).
0 0 t

On cherche une constante K telle que, pour tout nombre ¢ de [0, 1],

K
t§?(2t2—2t—|—1),
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ou encore

2Kt? —2(K + 1)t + K > 0.
Le discriminant de ce trindme vaut
4K +1)? —8K?=4(K+1-V2K)(K+1+V2K)=4(1- (V2-1)K)(K +1+V2K).

Il admet une racine positive

1
V2-1

Pour cette valeur de K, le trinéme est un carré. Il s’écrit
K22 =201+ 1/K)t+1) = K(2t? —2v2t+ 1) = K(V/2t —1)?,
et s’annule pour t = 1/1/2. Alors
[PO)] =t < (V2+1)[| P
et on a égalité si t = 1/v/2.
Par symétrie du probléme (en changeant t en 1 —¢), on a aussi
[P =1—-t<(V2+ )P,

et donc
IPllse < (V2+1)|P|1 .

t¢ [0, 1]
La fonction P est de signe constant sur [0, 1]. En particulier P(0) et P(1) ont le méme signe, donc
1Plloe = max(|PO)], [P(L)]) < [PO)] + [P(1)] = |[P(0) + P(1)] = |1 — 2],
et aussi

1 1
||P||1=/|P<:c>|d:c= /(z—t)dt -
0 0

Donc

1Pl < 2[[Pll < (V2+ D] P1

Finalement la constante K cherchée vaut 1 + /2.
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Exercice 17

Dans R[X] on considére les quatre normes suivantes :

et, si le coeflicient de X™ dans P vaut a,,

Pour tout couple (N7, N2) formé de deux distinctes de ces normes, étudier si 'application identité

oo
IPIs =" lan|
n=0

de (R[X], N1) dans (R[X], N2) est continue.

[1P|l% = sup |an| -

neN

1
IP; = / POt , Pl = sup |PO)],
0 0<t<1

Solution

Tout d’abord, de maniére évidente

1P < IPlloc < [IPl7 et

I1Pllee < P17 -

Ce sont les seuls comparaisons possibles comme le montre le tableau suivant dans lequel on donne
pour chaque couple (N, N;) une suite P,, de polynomes tels que le rapport N;(P,)/N;(P,) tende vers

’infini.

[Palloc £ E|IPl1 X" [Pallc =1 [Pally =1/(n+1)
[Pall £ E[Plloo 1-x)x" [Pally =2 [Pallc <1/(n+1)
[Paly £ KPS 1+ X+ -+ X" |Rl} =n+1 [Pl =1
[Pall £ EIPIL X" [Pu]l] =1 [Pulli =1/(n+1)
[Pl £ KIIPlloo (1-x)x" [P, =1 [Pollc <1/(n+1)
[Pl £ k[Pl X" [P, =1 [Pulli =1/(n+1)
[Palli £ EIIP|% 1+ X+ -+ X" [P =14+--+1/(n+1) ||P]\ =

[Palloe & K IIP|l5% 1+ X+ 4+ X" | [[Poll =n+1 [Pulls =

On utilise le fait que la suite (14 ---+1/(n + 1)) admet +oo pour limite.

Le seul calcul non trivial est celui du maximum de

Py(z) = (1 —z)z" = 2" — 2"}

dont la dérivée vaut

et s’annule en n/(n + 1). Alors

n 1
P =P =
1P lloc n<n+1> n-+1 (

Pl (z) =na"' — (n+ 1)z"

1

n n
<
n+1 -

n+1"
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L’application identité est donc continue si et seulement si I’on se trouve dans un des quatre cas suivants :

de  (RX], [||ooc) ~dans (R[X],|[.]|1)
de  (RIX],|lIy)  dans  (RIXT, [[.[]2)
de  (RIX][I.I5)  dans  (R[X], [|.[|oo)
de  (RIX], (1) dans  (RIXT [[[5%) -

Exercice 18

1) Dans lespace E = R[X] des polyndmes a coefficients réels on considére les normes définies, par

[Pllc = sup |P(z)] et [P = sup |P(z)|.
0<z<1 <<l

Montrer que ces normes ne sont pas équivalentes.

2) Pour tout entier naturel n, on pose

P /
e sy 1Pl
per,[x] 1P ]loo
Montrer que la suite (K,,) est croissante et tend vers +oo.

3) Calculer K et Ky en exprimant un polynéme P en fonction de ses valeurs en des points conve-
nables de 'intervalle [0, 1].

Solution
1) On a de maniére évidente
[1Plloo < 1Pl -

Par contre si 'on prend

P(X) = (2X — 1)",

on a, sur [0, 1],
1<2r-1<1,

donc

IPllc =1 et [IP] > [P(=1)] = 3",
et donc il n’existe pas de constante K telle que, pour tout polynéme P,
1Pl < K[IPlloo -

2) Sur R, [X] qui est de dimension finie, les normes sont équivalentes, donc K, est un nombre réel. De
plus, puisque R, [X] est inclus dans R,,1[X], on aura K,, < K, et la suite (K,,) est croissante. Elle
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ne peut tendre vers une limite finie K, sinon on aurait
1Pll5 < KI|IPllos ,

pour tout polynéme.

3) Pour R;[X], écrivons un polynéme P en fonction de P(0) et P(1). On a
P(X)=P0)(1-X)+P(1)X =(P(1) — P(0))X + P(0).
Alors, si z appartient & [—1, 1],
[P ()] < (IPO)] + [P(D)]) + [P(O)] < 3[|Plloc -

Donc

IPlloe < 3[[Plloc »
et 'on a égalité pour le polynéme 2X — 1 car
IPllie = =P(=1) =3 et [|Plloc=—P(0)=P(1)=1.

Il en résulte que K1 = 3.

Pour Ry[X], en utilisant le calcul de Iexercice 15, on peut écrire P en fonction de P(0), P(1/2) et
P(1). On a

P(X) = (—4P(1/2) + 2P(1) + 2P(0)) X% + (4P(1/2) — P(1) — 3P(0))X + P(0).
Alors, si x appartient a [—1, 1],
[P(x)] < (4|P(1/2)[ + 2[P(1)] +2|P(0)]) + (4|P(1/2)] + [P(1)[ + 3|P(0)]) + [P(0)] < 17 || P -

Donc

[Pl < 17]1Plos
et 'on a égalité pour le polynoéme 2(2X — 1)2 — 1, car
[Plo% = [P(=1)| =17 et [Pl =P(1)=P(0)=—-P(1/2)=1.

Il en résulte que Ko = 17.

Exercice 19

Dans l'espace E = Ry[X] des polynomes de degré au plus 2 a coefficients réels on pose

1Plloc = sup [P(@)] et [|P]| =max(|PO)], [P1)],[P)])-

Montrer que ce sont des normes équivalentes et trouver les normes de l'identité de (F, ||.||«) dans
(B, [11]) et de (£, [[.]|) dans (E, ||.[loc)--
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Solution

On s’assure tout d’abord que ||.|| est une norme. En effet, si ||P|| est nul, alors P(0), P(1), P(2) sont
nuls et le polynéme P a au moins trois racines. Comme il est de degré au plus 2, c’est le polyndéme
zéro. Les autres propriétés se vérifient facilement.

Puisque E est de dimension finie les normes sont équivalentes.

En utilisant les polynoémes d’interpolation de Lagrange, on a

P@ﬁ:P@ﬂX_lyy_m—PunxX—m+PQﬁﬁ%lﬁ,
donc ) ) )
@) < (PO I =D b)) ae - 2) + Py D

Sur lintervalle [0, 1], on obtient facilement le maximum des trois polynémes qui interviennent ci-

dessus :
|(:1:—1)2(x—2)| <1

jz(x —1)|

—-2) <1
pa-2)l <1, B

<

)

ool —

donc
IP@)] < [PO)]+ PO + 5 1PE)| < 1P].

Il en résulte que

[Pl < [I1P]]-

L’égalité est obtenue pour le polynéme X (X — 2) par exemple. Il en résulte que la norme de 'identité

de (E,|.||) dans (E,||.||s) vaut 1.

Dans l'autre sens

P(X) = 2P(0)(X — 1)(X —1/2) — 4P(1/2)X (X — 1) + 2P(1)X(X —1/2).

Donc
P(2) =3P(0) —8P(1/2) + 6P(1),
et
[P(2)] = 3|P(0)[ + 8[P(1/2)| + 6| P(1)] < 17||Pl|oc -
Alors

[Pl = |P(0)] +|P(1)| +|P(2)] < 19|Plos -
L’égalité a lieu pour 8X (X — 1) + 1 pour lequel

IP|ls = P(0) = P(1) = —P(1/2) =1 et P(2)=17.

Il en résulte que la norme de l'identité de (Ew, ||.||) dans (E, ||.||) vaut 19.
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Exercice 20

Dans l'espace E = R;[X] des polynéomes de degré au plus 1 & coefficients réels on définit deux
normes
[Plloc = sup [P(z)|] et [IP|\x= sup |zP(z)].
0<z<1 0<z<1

Montrer que ce sont des normes équivalentes et trouver la norme de 'identité de (E,||.||o) dans

(B, [|-[I5) et de (E, [|.[l%) dans (E, [|.[loo)-

Solution

L’espace étant de dimension finie, les normes sont équivalentes. On a bien siir
I1Pll5 < I1Plloo
et I'égalité a lieu si P est constant. Donc la norme de l'identité de (E, ||.||o) dans (E, ||.||5) vaut 1.

Si P est un polynéme de degré 1 au plus, on a
[ Plloc = max(|P(0)], | P(1)]).

Cherchons maintenant la norme ||.||, d'un polynoéme P de degré 1. Pour cela étudions le polynome
XP(X) qui est de degré 2. Pour des raisons d’homogénité on peut se contenter de regarder les poly-
némes

P(X)=X—-t,
et 'on cherche le maximum sur [0, 1] de la valeur absolue de
Qi(x) = xP(x) = z(x —t).

Le polynome ayant un extremum en t/2, on étudie différents cas possibles.

a) Sit<0out > 2 lafonction @ est monotone sur [0, 1] et nulle en 0, donc
1Pl = 1Qtlloe = 1Qu(1)] = [1 —1].
b) Si 0 <t <2, alors
1Pl = Qlloo = max(|Q(1)],|Q(t/2)]) = max(|1 —],¢%/4).

bl) Lorsque 1 <¢ <2, 0n a

t2 t2 ! 2
L fl—tl==41—t=(=—1) >0
4 | | il (2 > =

donc
! t2
1Pl = -
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b2) Lorsque 0 <t < 1, cette fois
¢ ¢
Lot=l -1

et cette expression est positive sur [2(v/2 — 1), 1], donc de nouveau

="t
o0 47

e

et négative sur [0, 2(v/2 —1)], et alors

1P =1—t.

[
Par ailleurs
t s t>1/2
1Pl =max(ih 1 -e)={ L, 3 G208

et I'on peut former le tableau suivant

t 1/2 2(v/2-1) 2

1Pillo] 1=t | t : t : t

Pl 1=t 1-—t L t2/4 Lot —1

[Pill ; 7 . 1 ; t

1Pl C 1t : t ct-1
[Pt ]loo

Ce tableau montre que la borne supérieure du quotient est atteinte en t = 2(\/5 — 1) et vaut

4
2(v/2 1)

1Pl
=2(v/2 4 1). Il en résulte que, pour tout P de E, on a
IPlloc < 2(vV2+ 1) [P,
I’égalité étant obtenue pour le polynéme
P(X)=X-2(v2-1).

Donc la norme de I'identité de (E, ||.|[,) dans (E, ||.||ec) vaut 2(v/2 + 1).
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Exercice 21

Soit A une partie fermée non vide de R.

1) Donner une condition nécessaire et suffisante pour que l'on définisse une norme sur R[X] en
posant
[Plla = sup[P(z)].
z€A

2) Soit @ un nombre réel. Si la condition de 1) est réalisée, donner une condition nécessaire et
suffisante pour que l'application d, qui & P associe P(a) soit une forme linéaire continue sur R[X]
muni de la norme ||| 4.

Solution

1) 11 faut déja que I'ensemble A soit borné, donc compact, pour que la borne supérieure soit finie quel
que soit le polynome P. Ensuite pour obtenir la séparation, il faut que la nullité de ||P||4 implique
celle de P. Si I'ensemble A contient une infinité de points, alors P a une infinité de racines et c’est
bien le polynome zéro. Si A = {ay,...,a,}, alors le polynéme (X — aj)--- (X — a,,) est nul sur A et
| P||a est nul sans que P soit nul.

La condition cherchée est donc : « I'ensemble A est un compact contenant une infinité de points ».

2) Si a appartient a A, alors
0a(P)| = [P(a)] < [[Pl|a-

Donc §, est continue, et de norme 1 car on a égalité pour les polyndémes constants.
Soit maintenant un nombre a n’appartenant pas & A. Puisque A est compact, la distance de a & A
n’est pas nulle, et il existe un intervalle I = [a — «, a + ] qui n’est pas inclus dans A. D’autre part,

puisque A est borné, il existe un intervalle compact J contenant AU I. Pour tout entier naturel n non
nul, on définit alors une fonction f;,, continue sur J en posant

fn(:n):{ 0 sizeJ\I

n sirx=n

et qui soit affine sur [a — a, a] et [a, a+ a]. En particulier f,, est nulle sur A.

D’aprés le théoréme de Weierstrass, il existe un polynéme P, tel que

sup | fo(2) — Pala)] < — .
zeJ n
Alors 1
160 (Pn)| = |Pn(a)] > |fn(a)] — [fnla) — Pa(a)| > n — e

D’autre part

1
[Pnlla < sup|fu(z) — Po(z)| + sup | fu(z)] < —.
€A €A n
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Alors

0a(Fr) _ 2
>n“—1.
HPn|A

La limite du membre de gauche est donc infinie et la forme §, n’est pas continue.

La condition nécessaire et suffisante cherchée est donc : « a appartient a A ».

Exercice 22

Dans l'espace R[X] on pose
1P = [P® (k)]
k=0

Montrer que 1'on obtient une norme sur R[X] et que cet espace n’est pas complet.

Solution
Tout d’abord la somme est finie, puisque si P est de degré k, le polynome P*+1) est nul.

La seule propriété non évidente est la séparation. Soit P un polynéme de degré n > 0. Alors le polynéme
P est un polynéme constant non nul et donc P (n) est non nul. Mais

[PM () < P,
et il en résulte que ||P|| n’est pas nul. Le seul polynoéme P tel que || P|| soit nul est le polynéme zéro.

Pour tout entier n, il existe un polynéme P,, de degré au plus n et un seul tel que, si 0 < k < n,
PR (k) =27k
En effet, si I’'on pose

n
Pu(X) =) ap X",
k=0

on est amené, pour déterminer P, & résoudre un systéme de n + 1 équations & n 4+ 1 inconnues dont
la matrice est triangulaire supérieure avec éléments diagonaux non nuls. C’est donc un systéme de
Cramer qui a une solution et une seule.

Sin < m on a alors
1 1 1
1Pa=Pull = > 5= D 5i=5

La suite (P,) est donc une suite de Cauchy.
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La forme linéaire qui a P associe P(k)(k:) est continue puisque
IPE &) <[P

Si la suite (P,) convergeait vers une limite P, la suite (P,(Lk)(k;)) convergerait vers P (k). Mais, si
n>k,on a

Pk (k) =27k,

donc on devrait avoir P*)(k) = 2=* pour tout entier k et aucune dérivée de P ne serait le polynome
zéro, d’ont une contradiction. Il en résulte que R[X] n’est pas complet pour la norme ainsi définie.

Exercice 23

Dans l'espace R[X] on pose

Ni(P)= sup |P(z)] et N(P)= sup |P(z)l.
—1<z<1 0<a<1

Etudier, pour i = 1 et ¢ = 2, la continuité de l'application linéaire 6 de (R[X], N;) dans lui-méme,
qui au polynéme P(X) associe P(—X).

Solution

De maniére évidente, § est une involution de R[X], et pour tout x de [—1, 1], —x est aussi dans
[—1, 1], donc
N1(6(P)) = Ni(P),

et  est une isométrie dans ce cas. Elle est donc continue et de norme Ny.

On remarque que

Ny(6(P)) = sup |P(=z)| = sup [P(u)|.
0<z<1 —1<u<0

Considérons 'application continue f définie sur [—1, 1] qui vaut —x sur [—1, 0] et O sur [0, 1]. Le
théoréme de Weierstrass montre qu’il existe une suite (P,) de polynoémes qui converge dans €'([—1, 1])
pour la norme infinie. Alors, la suite (Na(F,)) converge vers Na(f) = 0. D’autre part, la suite

(N2(0(Pn))) = (_1835<o | P (u)])

converge vers

sup |u|=1.
~1<u<0

Il ne peut donc exister de constante K telle que, pour tout polynéme P,

Ny (6(P)) < KNo(P),
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et 0 n’est pas continue dans ce cas.

Exercice 24

Dans l'espace Ry[X] muni de la norme

I1Pl = sup |P(z)|,
0<z<1

trouver la norme des applications linéaires &2 et ., qui & P associent respectivement sa partie paire
et sa partie impaire.

Solution

On a donc

P(X) + P(—X)
2

Z(P)(X) =
En utilisant le calcul de exercice 15,
P(X) = (—4P(1/2) +2(P(1) + 2P(0))X? + (4P(1/2) — P(1) — 3P(0))X + P(0),
et donc
P(X) = (—4P(1/2) + 2(P(1) + 2P(0))X* + P(0) et 7 (P)= (4P(1/2) — P(1) —3P(0))X .

Alors
|7 (P)|| = [4P(1/2) — P(1) = 3P(0)| < 4|P(1/2)[ + [P(1)| + 3| P(0)| < 8| P]],

I'égalité étant obtenue pour le polynéme Py(X) = 8X? —8X + 1 qui est tel que
Po(0) = Po(1) = —Pp(1/2) =1,

et pour lequel
1P|l =1.

On a aussi
12 (P)|| = [(=4P(1/2)+2(P(1)+2P(0))X* + P(0)|| < 4|P(1/2)|+2|P(1)|+2|P(0)|+|P(0)| < 9]|P|,
avec égalité pour le méme polynéme Fy. Donc

2l =9 et [l7]|=8.



Chapitre 4

Espaces de suites

Exercice 25
1) Soit Iespace £+, des suites bornées de nombres réels, muni de la norme infinie. Montrer que cet
espace est complet.

2) Montrer que le sous-espace £ des suites convergentes est fermé dans E, et que application lim
qui & une telle suite associe sa limite est continue.

3) Montrer que le sous-espace {y des suites de limite nulle est fermé dans le précédent et que le
sous-espace fgg des suites nulles & partir d’un certain rang est dense dans {g.

4) Trouver les formes linéaires continues sur ¢y ainsi que leur norme.

Solution
1) Si l'on note u = (up)n>0 un élément de £, on a donc
[ulloc = sup ua|,
n>0
et, quel que soit n, I'application qui & u associe u,, est continue.

Soit (u(p))p>0 une suite de Cauchy de ¢o. Pour tout € > 0, il existe un entier P tel que, si ¢ > p > P,
on ait, quel que soit n entier,

[un(p) — un(q)] < flup) —u(@)llo <e.

Alors pour tout n, la suite (uy,(p))p>0 est une suite de Cauchy de R et posséde donc une limite wu,,.

En faisant tendre g vers I'infini, on obtient

‘un - un(p)‘ S €,
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donc, d’une part,

[un| < lun(p)] + [un = un(p)| < fun(p)| +& < [u(p)]o + ¢,

ce qui montre que la suite u est bornée, d’autre part, si p > P,

[u(p) = ulloo <€,

ce qui montre que la suite (u(p))p>0 converge vers u dans /. L’espace {5 est donc complet.

2) Une suite convergente étant bornée, elle se trouve bien dans /.. De plus, puisque, pour tout entier
n positif,
|un| < f|uloo ,

on obtient par passage a la limite
[ lim(u)] < [|uflsc ,

et I'application lim est continue et de norme 1 puisque 'on a égalité pour les suites constantes.

Remarque : d’aprés le théoréme de Hahn-Banach, la forme linéaire lim se prolonge & ¢, en une forme
linéaire continue de méme norme.

Soit une suite (u(p))p>o0 de o qui converge vers u dans f,. Montrons que u appartient a ¢c. Pour
tout € > 0 il existe P tel que p > P implique

€
[u(p) = ulleo < 3

)

w

Soit ¢ > p > P. La suite (uy,(p))n>0 converge vers lim(u(p)). Il existe donc Nj tel que n > N; implique

un(p) — lim(u(p))| <

Wl m

De méme la suite (un(q))n>0 converge vers lim(u(q)). Il existe donc Ny tel que n > Ny implique

lun(q) — lim(u(q))| <

Wl ™

Alors, si n > max(N7, N2), on a

[lim(u(p)) — lim(u(q))| < [Tim(u(p)) — un(p)] + [un(p) — un(g)| + un(q) — lim(u(qg))| <€,

ce qui montre que la suite (lim(u(p)))p>0 est une suite de Cauchy de R. Elle converge donc. Soit ¢ sa
limite. Il reste & montre que la suite u converge vers £.

Il existe P, tel que p > P; implique

Wl ™

|un — un(p)| <

Il existe P, tel que p > P, implique
[lim(u(p)) — €] <

Wl ™
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Soit p > max(Py, P). Il existe N tel que n > N implique

[un(p) — lim(u(p))| <

Wl ™

Alors
[up = €] < |un — un(p)| + |un(p) — lim(u(p))| + [lim(u(p)) — €] < ¢,

ce qui montre que u a pour limite /.

3) Le sous-espace {y est 'image réciproque de 0 par 'application lim. Comme lim est continue, on en
déduit que £y est fermé dans £¢.

Enfin, soit u(p) la suite dont les termes sont ceux de u jusqu’au rang p et nuls ensuite. C’est un élément
de ¢ypp On a alors

lu —u(P)lloo = sup [un].
n>p+1
Comme u converge vers 0, il existe N tel que n > N implique

lun| < €.

Alors,sip+1> N,on a
lu = u(p)lo < e,

ce qui montre que la suite (u(p)),>0 converge vers u, et que fpo est dense dans .

4) Soit ® une forme linéaire continue sur ¢y. Il existe une constante K telle que, pour tout u de £y,
@ ()] < K lulloo -
Soit e(p) la suite dont tous les termes sont nuls sauf le p—iéme qui vaut 1. Posons
vp = ®(e(p))
et soit €, le signe de v,. On considére la suite

v(p) = (e0,...,€p,0,...) = ane(n).
n=0

C’est un élément de £y9 de norme 1 et 'on a, pour tout entier p positif,

Z |on| = anvn = [®(v(p))| < K.
n=0 n=0

Il en résulte que la série de terme général v, est absolument convergente. Notons ¢; ’ensemble des
telles suites.
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Réciproquement, si v est un élément de ¢1. On note

oo
[olls = fval
n=0

ce qui définit une norme sur ¢;. Soit u un élément de ¢, alors
[vntn| < [ullss|vnl,

et la série de terme général v,u, converge absolument. On définit une forme linéaire ®, sur £, en
posant

CI)U(U) - i UnplUnp ,
n=0

et alors
Dy (u)] < [[v][1flulloo 5

ce qui montre que ®,, est continue sur £, et donc aussi sur £y, et que, sur cet espace,

@l < llvflr -
En prenant la suite v(p) = (eo,...,&p,0,...) ol &, est le signe de v, on a de nouveau
P
o (0(p))] = Y lval,
n=0

et puisque la limite de la suite (|®,(v(p))|) vaut ||v||1, on en déduit que

o]l = flvfly -

L’application qui & v dans ¢; associe ®,, est donc une bijection isométrique de £1 sur le dual topologique
de fo.

Exercice 26

1) Soit l'espace ¢1 des suites u = (uy)n>0 de nombres réels telles que la série de terme général u,,
soit absolument convergente. On le munit de la norme

Montrer que cet espace est complet.
2) Montrer que sur ¢ les normes 1 et 0o ne sont pas équivalentes.
3) Montrer que le sous-espace £y des suites nulles & partir d’un certain rang est dense dans /1.

4) Déterminer ’ensemble des formes linéaires continues sur ¢; ainsi que leur norme.
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Solution

1) On remarque déja que, pour tout entier n,
Jun| < flull1,

Soit (u(p))p>o0 une suite de Cauchy de £;. Pour tout € > 0, il existe un entier P tel que, si ¢ >p > P,
on ait, quel que soit n entier,

[un(p) — un(q)| < [lu(p) —u(g)ll1 <e.

Alors pour tout n, la suite (uy,(p))p>0 est une suite de Cauchy de R et posséde donc une limite u,,.

On a également, pour tout entier m,

> Jun(p) — unlq)] < llulp) —u(q)r <e.
n=0

En faisant tendre g vers I'infini, on obtient

m
Z [un(p) — un| < e.
n=0

Donc, d’une part,

m m m m
D un] <7 lun®) + Yt = wa () < fun(p)| + € < JJulp)1 +¢,
n=0 n=0 n=0 n=0

ce qui montre que la suite u appartient a ¢1, d’autre part, si p > P,
[u(p) —ully <e,
ce qui montre que la suite (u(p))p>0 converge vers u dans ¢;. L’espace ¢; est donc complet.

2) On a toujours
[ulloo < lull1,

mais si u(p) est la suite qui vaut 1 jusqu’au rang p et 0 ensuite, on obtient

lu(p)lli =p+1 et |lu(p)lleo =1,
et il ne peut exister de constante K telle que, pour tout u de ¢
Jully < Kljul|oo -

Les deux normes ne sont pas équivalentes.
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3) Si u appartient a ¢1, soit u(p) la suite dont les termes sont ceux de u jusqu’au rang p et nuls ensuite.
C’est un élément de £pg. On a alors

o0

lu —u()lli =D lunl.

n=p+1

Comme la série de terme général u,, converge absolument, il existe N tel que n > N implique

(e}

> Jun| <e.

n=p+1

c’est-a-dire
u—uP)lle <€,

ce qui montre que la suite (u(p))pzo converge vers u, et que fgg est dense dans /5.

4) Soit ® une forme linéaire continue. Il existe une constante K telle que, pour tout u de ¢y,
|[@(u)] < K [|ully .
Soit e(p) la suite dont tous les termes sont nuls sauf le p—iéme qui vaut 1. Alors
[®(e(p))| < K,

et la suite (®(e(p)))p>0 est bornée.

Soit v un élément de £;. Si 'on pose
P
u(p) =Y upe(k),
k=0

on a alors, par linéarité,

®(u(p)) = Y Dle(k))uy .

P
k=0

Mais la suite (u(p))p>0 converge vers u, donc (®(u(p)))p>0 converge vers ®(u). Alors

oo

O(u) = lim Y ®(e(k))up =Y @(e(k))uy, .
k=0 k

pP—o0 g
Réciproquement, si v est un élément de 4, et u un élément de ¢7, alors
[Untn| < [Jv]oo|tn]

et la série de terme général v,u, converge absolument. On définit une forme linéaire sur £; en posant

S
@U(U)ZZZE:Unun,
n=0
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et
D0 ()] < [[vfloollullr,

ce qui montre que ®, est continue et que
@l < lolloo -
Si le maximum ||v||o est atteint pour un entier ng, alors
Dy (e(no))| = [vng| = [[V]loo -
Dans le cas contraire, il existe une suite (vy(,)) extraite de v telle que

[olleo = Tim Jo].

Alors
A 1y (e(p()] = Jim 0] = [oleo
Dans les deux cas
1Poll = [[v][oo -

L’application qui & v dans #, associe ®, est donc une bijection isométrique de £, sur le dual topolo-
gique de £4.

Exercice 27

Soit I'espace vectoriel E des suites u = (up)n>0 de nombres réels telles que la suite (w41 — uy) s0it
bornée
1) Montrer que l'on définit une norme sur E en posant

[[ull = fuo| + sup [un1 — un.
n>0

et que 'espace E est complet.

2) Montrer que 'espace £, des suites bornées est inclus dans E et comparer les normes ||.|| et ||.|/c
sur ce sous-espace.

Solution

1) Si |ju|| est nul, cela implique que wuy,4+1 — u, est nul pour tout n, donc que u est constante. Mais on
a également ug = 0 et la suite est nulle. Les autres propriétés de la norme s’obtiennent facilement.

Soit (u(p)) une suite de Cauchy de E. Pour tout € > 0, il existe P tel que ¢ > p > P implique
[u(g) —ul)l = luo(q) —uo(p)| + sup |(Unt1(q) = tn+1(p)) — (un(q) — un(p))|

= |uo(q) — uo(p)| + sup |(tun+1(q) — un(q)) — (un+1(p) — un(p))| < e.
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Donc, quel que soit n,

(1) [uo(q) — uo(P)| + [(unt1(q) — un(q)) — (Un+1(p) — un(p))| <.

Alors (up(p)) est une suite de Cauchy de R et converge vers un nombre ug, et, pour tout n, la suite
(un+41(p) — un(p))p est une suite de Cauchy de R et converge vers un nombre a,. On considére la suite
u = (uy) définie par

n—1
Up = Ug + E ag ,
k=0

qui est telle que
Upt1 — Up = Ap -

En faisant tendre ¢ vers U'infini dans 'inégalité (1) , on obtient, si p > P,

luop — uo(p)| + |an — (un+1(p) — un(p))| = [uo — uo(p)| + [(Un+1 — un) — (Unt1(p) — un(p))| <.

Alors
Iw—%@WHgWWH—%%ﬁwﬂw—w@méa

d’ou 'on déduit
|tnt1 = un| < [(ung1 = tn) = (un41(p) — un(p))] + [(Unt1(p) — un(p))| < &+ [lulp)ll,
ce qui montre que la suite u est dans E. Par ailleurs, si p > P,
lu—u(p)] <e

et la suite (u(p)) converge vers u. Il en résulte que E est complet.

2) Tout d’abord
[ull < Juol + sup(junia] + [un]) < 3juflo ,
n>0

(avec égalité pour la suite (—1,1,0,--+)), ce qui montre que ¢ est inclus dans FE.

Considérons la suite u(p) = (inf(n,p))p>0. On a alors

[u(P)loc =p et [lu(p)| =1.
Il ne peut pas exister de constante K telle que, pour toute suite u de o,
l[ulloo < K [ul|-

Les normes ne sont pas équivalentes sur /..



Chapitre 5

Espaces de fonctions

Exercice 28

Dans Pespace E = €1([0, 1],R) des applications de classe C! sur [0, 1] & valeurs réelles on définit

1
11 = / f@)]dz et s = sup |af(@)].
9 0<z<1

1) Montrer que ce sont des normes sur E et comparer |||} et ||.||; lorsque i =1 et i = 0.

2) Trouver la norme de 'identité de ||.||; dans ||.||;.

Solution

1) La seule propriété qui ne soit pas évidente est la séparation. Si la norme || f||; est nulle alors z f(z)
est nul sur [0, 1]. Il en résulte que f(x) est nul sur |0, 1] et, par continuité, que f(0) est nul. Donc
f est la fonction nulle.

Puisque 0 < x <1, 0n a

x| f(x)] < [f ()],
d’ou
1A < 111l -

Considérons la fonction f, de E définie par

[ n size[0,1/n] [ nz size [0,1/n]
f”(x)_{ 1)z size [1/n, 1] donc mf”(x)_{ 1 size [1/n, 1]

On a alors
[l falloo =n et anHi)o =1,
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donc, il n’existe pas de constante K telle que, pour tout f de F,

1flloo < K [|.f 1l -

ce qui montre que les normes |||’ et ||.][sc ne sont pas équivalentes.

Avec la méme fonction f,,, on a

1/n 1
dx
I fullh = /ndx+ ?zl—l—lnn,
0 1/n
et
1/n 1
1 1 1
anHﬁ:/xndw+/dm:%+1_;:1_%_
0 1/n

La suite (|| f,]|}) converge vers 1 alors que (|| f,]|)1) n’est pas bornée. Donc, il n’existe pas de constante
K telle que, pour tout f de E,

Il < K fI7

ce qui montre que les normes ||.||] et ||.||1 ne sont pas équivalentes.
2) On montre que dans les deux cas la norme de Papplication identique vaut 1.
Pour les normes oo, si f est la fonction constante 1, on a
115 = 1flls =1,
donc, la norme de l'identité de (F, ||.||«) dans (E, ||.||%,) vaut 1.

Pour les normes 1 considérons la fonction f, de E définie par

B 0 size [0,1—1/n]
fn(fl?)—{ n2($_1+1/n) size [1—-1/n,1]

C’est une fonction positive. Tout d’abord, || f,||1 est 'aire d’un triangle de hauteur n et de base 1/n
donc

1
Il =5

Ensuite, en écrivant, si 1 —1/n <z <1,

zfo(z) =nz(z —1+1/n)=n*[(z —1+1/n)* + (1 —1/n)(z — 1+ 1/n)] ,



o1

on obtient

1

Il = n? / (& — 1+ 1/n) +(1—1/n)(z —1+1/n)] de

1-1/n

_ [($—1+1/n)3 N <1_ %> ($_12+1/n)2]1_1/n

Alors la suite (|| fo |}/l fnll1) converge vers 1, donc, la norme de l'identité de (E,||.||1) dans (E,|.|[})
vaut 1.

Remarque : si f n’est pas la fonction nulle, on a toujours

£ < 11 £l

car la fonction (1 — x)|f(x)| est une fonction positive qui n’est pas la fonction nulle sur [0, 1].

Exercice 29
Dans l'espace E = €1([0, 1],R) des applications de classe C! sur [0, 1] & valeurs réelles on définit

LI =1 lloe + 1 oo €t (LN = 1 llco + | £(O)]-

Montrer que ce sont des normes équivalentes et que l’espace est complet, puis trouver la norme de

'identité de (E, ||.||) dans (E, ||.|') et de (E, ||.||') dans (E, ||.||),

Solution

La seule propriété qui ne soit pas évidente est la séparation pour la norme ||.||". Si la norme || f]|’ est
nulle alors || f/||oo est nul, donc f’ est nulle et f est constante, mais aussi f(0) est nul, donc f est nulle.
Par ailleurs

LA = 1£ oo + [£ O < [ £lloe + 1 oo = £

et Dégalité a lieu si f est constante. La norme de 'identité de (F, |.||) dans (E, ||.]|’) est donc égale a 1.

Dans 'autre sens, en partant lorsque 0 < x < 1, de I’égalité

f(z) = / F)di + £(0),
0
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on obtient,
()] < / F®O1dE+ £ < 1l / dt + [F(O)] < | F'lloo + |£(0)],
0 0
et donc
1£llso < #1100 + £(0)].
Alors

IFIF< 2 f oo +1£O)] < 20111,
et 'égalité a lieu pour la fonction f telle que f(x) = z. Donc les normes sont équivalentes et la norme

de l'identité de (E, ||.||") dans (E, ||.||) est égale a 2.

Maintenant, si (f,) est une suite de Cauchy de E, alors (f,(0)) est une suite de Cauchy de R et
converge vers un nombre a, et (f}) est une suite de Cauchy dans 'espace €'([0, 1],R) muni de la
norme infinie, qui est complet, et converge vers une fonction continue g. Pour tout = de [0, 1] posons

T

F@) = o+ /g(t) dt.

0

La fonction f est alors un élément de E tel que

fO =a e f=g,

d’ou
[ fn = FII" = [fu(0) = | + I £}, = glloc »

et l'on en déduit que (f,,) converge vers f. Il en résulte que E est complet.

Exercice 30
Dans Pespace E = ¢1([0, 1],R) des applications de classe C! sur [0, 1] & valeurs réelles on définit

1Al = 1flloo + 1 Nloe et NI =11 + f'lloc + [£(O)]-

Montrer que ce sont des normes équivalentes et trouver la norme de l'identité de (E,||.||) dans
(B, [1II") et de (£, |.I") dans (£, |.]))-

Solution

La seule propriété qui ne soit pas évidente est la séparation pour la norme ||.||". Si la norme || f]| est
nulle alors

f+f =0 et f(0)=0.
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En résolvant I’équation différentielle, on trouve pour tout x de [0, 1],

Par ailleurs

A" < oo + 1 Mo + £ O] < 20 flloc + 1 oo < 201 £1

et Dégalité a lieu si f est constante. La norme de I'identité de (E, ||.||) dans (E, ||.||") est donc égale a 2.

Dans l'autre sens, posons

fHf=h.
Cette équation différentielle se résout en fonction de h. On obtient

T

f(z) = f(0)e ™ +e‘~’”/h(t)etdt.
0
donc, si z appartient a [0, 1],

T

|f(x)] < |f(0)|e™" +e_””/|h(t)letdt < |F0)le™ + e™[|h]l /etdt,
0 0
puis
|f(@)] < 1f0)le™ +e*(e” = D[hllc = [f(0)le™ + (1 — ™) ||l ,

et finalement
F@)] < fO) = I1f + Flloo)e™ + I + flloo -

Si I'on note g(z) le membre de droite, on obtient une fonction monotone g. Alors

[flleo < llglloo = max([g(0)], [g(1)]) = max [If(O)I O™ + @ —eHIf + f/Hoo] :

D’autre part
1 oo = I(f 4+ f) = Flloo < MF+ Flloo + 1 flloo

donc
AL IE + Flloo + 20 flloo < max | 2[£(0)] + If + f/lloo » 2f(0)]e™" + (3 - 26_1)\\f+f'|!oo] -

Comme e > 2, on en déduit que
3—21'>2>1>2",

puis que
IFIl < (3 =27 M)A

Les deux normes sont donc équivalentes et

/1] -1
[I1d[|| = sup <3—2 .
ree IIfII
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Pour montrer que la norme de I'identité de (E, ||.||") dans (E,].]|) vaut 3 — 2e~!, introduisons la suite
de fonctions h,, définies par

B -1 size [0,1—1/n]
h"(x)_{ 2nz —2n+1 size [1-1/n,1]

La fonction h,, est continue croissante sur [0, 1] et varie de —1 a +1, donc ||h, ||« vaut 1. Soit alors
fn la solution, nulle en 0, de I’équation différentielle

fn‘i'fyllzhn-

On a donc
1fall" = llhnlloo + 12 (0)] = 1.
La fonction f,, est de classe C! et s’obtient par la formule

xT

(@) =" / ho(t)edt

0

Si x appartient a U'intervalle [0, 1 —1/n], on obtient

Si - appartient a l'intervalle [1 — 1/n, 1], on obtient cette fois

1-1/n T
folz)=€e"" |— / eldt + / (2nt — 2n + 1)e'dt
0 1-1/n

La deuxiéme intégrale se calcule facilement par parties et ’on trouve finalement

fa(z) =@ [(1 _ el_l/") n <(2na: ~dn+1)é 1 (20 + 1)61—1/n>} 7

ou encore
fn(x) =2nx —4n+ 1+ e ¥ + 2nel—x—1/n )

En particulier
I falloo = |fu(l = 1/n)| =1 — e 1+1/n

On a également sur [1—1/n, 1]

f/ () = hn(x) — fo(x) = 2n — 2nel o/ e7r )

n

donc
I £nlloo > £ (1)] = 2n(1 —e /™) — et

Alors, en utilisant un développement limité, on obtient

[fnll =1 —e V7 pon(l—e V™) —e P =1 —e " L on(1/n+o(1/n)) —e L.
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Le membre de droite définit une suite qui converge vers 3 — 2e~!. Il en résulte que

L - el
AT

= |Ifall,

et quand n tend vers I'infini

/1] -1
[I1d]|| = sup >3—2 .
ree |LfII

Comme on a l'inégalité inverse, on obtient bien 1’égalité.

Exercice 31

Dans l'espace E = ¢1([0, 1],R) des applications de classe C! sur [0, 1] a valeurs réelles montrer
que l'on définit une norme en posant

£ = 1£ O+ 1Lf 12

Montrer que l'on a les inégalités

LA < U2 et (1 flleo < IIFI-

En utilisant la fonction f, définie sur [0, 1] par f,(z) = M, montrer que ||| et ||f|| ne
n

sont pas équivalentes.

Solution

La seule propriété qui ne soit pas évidente est la séparation. Si la norme ||f|| est nulle alors || f’||2 est
nulle, donc f’ est nulle et f est constante, mais aussi f(0) est nul, donc f est nulle.

En utilisant I'inégalité de Schwarz, on obtient

1 2 1 1
|f'(@)| x 1dz | < | ()] de dr |,
/ [rere)(]

ce qui donne

1712 < 1712
Alors .
(@) — £(0)] = / Ftydt| < / () dt < / @l =111 < 1]
0 0 0
puis

[f @) < [f (@) = FOI+ [£O)] < IF O]+ 112
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d’ou 'on déduit que
[ flloo < ILFII-

Avec la fonction f,, on calcule

1

1 1
1= 2@ de == [ coumaydn = [(1 + cos(enma)) dw ==
e = ) (x)de = cos”(nmx) dr = 5 + cos(2nmz)) dx = 5 -
0 0 0

On a alors

T 1
=— et = —.
I£all = 75 et lfallle =

Donc

[full _ mm

Ifalle — V2

et cette suite n’est pas bornée. Il n’existe pas de constante K telle que, pour tout f de E,

1< K Il

ce qui montre que les normes ||.|| et ||.||oc ne sont pas équivalentes.

Exercice 32

suivants :

(a) E est lespace vectoriel des fonctions bornées, muni de la norme ||.||s.
(b) Ej est l'espace des fonctions intégrables, muni de la norme ||.||;.
(c) Es est l'espace des fonctions de carré sommable, muni de la norme ||.|s.

eux n’est inclus dans 'un des deux autres.

que, pour tout f de E,
If1l: < K| fll;-

Dans l’espace vectoriel des fonctions continues sur R & valeurs réelles, on considére les sous-espaces

1) Montrer que l'intersection E de ces trois sous-espaces n’est pas réduite a 0, mais qu’aucun d’entre

2) Montrer que, quels que soient i et j distincts dans {1, 2, 00}, il n’existe pas de constante K telle

Solution

1) La fonction f définie par
fo) = el
appartient & E. En effet

o0 oo

M%zmwzl,wmzjawﬁﬁetw@zjaMm:L

— 00 —00
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Etudions les inclusions.

a) Tout d’abord une fonction constante se trouve dans F, mais ni dans Fj, ni dans Es. Donc Eo
n’est inclus, ni dans F7, ni dans Fs.

b) Considérons la fonction continue f qui est telle que, pour tout entier n > 2, on ait
fn—1/n3) = f(n+1/n®) =0 et f(n)=n

et qui soit affine sur les intervalles [n — 1/n3, n] et [n, n + 1/n3] et nulle ailleurs. C’est une fonction
positive qui n’est pas bornée. L’intégrale est alors la somme des aires des triangles composant le graphe

de cette fonction et
o 00 1
/ f(x)da::zﬁ < 00.
—c0 n=2

Donc E; n’est pas inclus dans E.,. Egalement, la fonction g = /f appartient & F5 mais pas a F.,
donc FEs n’est pas inclus dans E.

2

¢) Si 'on modifie la fonction f précédente en imposant f(n) = n® on trouve cette fois,

[e.e]

/g(m)zdx :_4 f(x)d:c:n;%:oo.

L’intégrale ||g||1 est la somme des aires I, de triangles curvilignes construits sur [n — 1/n% n+1/n3].
On a alors, par symétrie,

I, =2 /n mdx,

n—1/n3

mais sur 'intervalle [n — 1/n3, n], puisque f est affine, on a

et en intégrant

n—1/n3
Finalement
T 43
/g(a:)dx:§ Zﬁ < 00
—c0 n=2

La fonction g se trouve dans E7 mais pas dans FEs, donc Fq n’est pas inclus dans Fs.

Enfin, la fonction f définie par
1

f(x):m
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est dans Fs mais pas dans E7, donc Fy n’est pas inclus dans FEj.

2) On remarque que des fonctions continues nulles en dehors d’un intervalle compact sont nécessaire-
ment dans E. Pour tout entier naturel non nul n, on construit des suites de fonctions positives f;, de
ce type, donnant une contradiction.

a) Soit f,, la fonction continue positive telle que

Jaln—=1/n) = f(n+1/n) =0 et fu(n) =1,

qui soit affine sur les intervalles [n —1/n, n] et [n, n+ 1/n] et nulle ailleurs.

On a alors ( || fn]/1 est I'aire d’un triangle),

1

an”oozl et an”lz
n

ainsi que
1
1V fnlla =1 et [[\/ full2 = T

Il en résulte que 'on ne peut avoir, pour tout f de E

[flloo < K [Ifllr ou [flloo < KIf]l2-

b) Soit f, la fonction continue positive telle que

qui soit affine sur les intervalles [—n — 1, —n] et [n, n+ 1] et nulle ailleurs.

On a alors ( || fn]/1 est I'aire d’un trapéze),

2n+1

1
[ falloo == et [[fulll = )
n n

ainsi que

Wf_nuoo:% et [V Tullz = /2L

n

Il en résulte que ’on ne peut avoir, pour tout f de F

£l < K[ flle ou [Ifll2 < K |[flloo -

¢) Soit f,, la fonction continue positive telle que
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qui soit affine sur les intervalles [0, 1] et [n, n+ 1] et nulle ailleurs. Alors, puisque f,(z) est majoré
par 1 sur [0, 1] et par 1/z sur [n, oo,

nd:n i dx
anle/—:lnn et fall2 < /fn dx+/—2<1+/ @y
X X X
1 1

Il en résulte que ’on ne peut avoir, pour tout f de F

£l < K[| fll2-

d) Soit f,, la fonction continue positive telle que

fulw) = n  sur [—1/n2, 1/n?]
nT 1z oswe [—1/n2, —1] U [1, 1/n2]
qui soit affine sur les intervalles [—2, —1] et [1, 2] et nulle ailleurs. Comme f,(z) est majoré par

1/+/|z|, on a

dx dx
w1 <2 [ —==14 t || ful?>2 |
Hf ||1 > \/7 \/_ € ||f H2 = . nn.

1/n2

Il en résulte que 'on ne peut avoir, pour tout f de E

1fll2 < K[| fll-

Exercice 33

1) Soit @ un nombre réel strictement positif. Soit £ I'espace vectoriel des applications de classe C!
sur [0, a| a valeurs réelles, nulles en 0. Montrer que I'on définit une norme sur E en posant

1A= 11/ lloo -

2) Montrer qu’il existe une constante K telle que, pour tout f de E

1flloo < KIL£II

et trouver la plus petite constante K possible.
3) Montrer que les normes ||.|| et ||.||« ne sont pas équivalentes.
4) On pose

A1 = 1 flloo + 1 Mo -

Montrer que les normes ||.|| et |||’ sont équivalentes et trouver les meilleurs constantes k et K telles
que, pour tout f de E,

B < 1A < KNI
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Solution

1) Si la norme || f|| est nulle, alors la fonction f’ est nulle donc f est constante et, puisque f(0) est nul,
la fonction f est nulle. Les autres propriétés résultent du fait que |||« est une norme sur ¢ ([0, a],R).

2) On écrit

0
Alors . .
f@I< [17 Ol <7 [ de=zlf] <alf].
0 0
et finalement
1llso < all7Il.

On a égalité si 'on prend la fonction f qui & x associe x, car on a alors

[fllo=a et Jfll=Ifllec=1.

La plus petite constante est donc a.

3) Pour tout entier naturel non nul n soit f, la fonction de E définie par

1
fu(lz) =— sin 22T
n a
On a alors - e
/ _— —_—
frnlx) = ~ o8 ——.
1 T

falloo = = et Ifille ==

Il ne peut donc pas exister de constante K telle que pour tout f de E

I < K[| flloo s
et les normes ne sont pas équivalentes.
4) Puisque

[flleo < allfll,
on a donc

A" = 11flloe + IFI1 < (L + @) [1£]] -

La plus petite constante K vaut 1+ a puisque I'on a égalité pour la fonction qui & x associe x.
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Par contre, si f n’est pas la fonction nulle, on a toujours

LA < L1
Cependant en reprenant la fonction f,, définie dans 3),

1

7T T
an” = Hfrlz”oo = E et an”, — E + E )

Dong, la limite du rapport || f,||/|| /||’ vaut 1. Alors la plus grande constante k telle que, pour tout f
de £

EIFIE< IFIN

vaut 1.

Exercice 34

Soit deux réels a, et b tels que a < b. On note E 'espace €([a, b]),R).
1) Montrer que, si p et ¢ sont dans [0, co| tels que p < ¢, on a, pour tout f de F,

1Fllp < (b —a) /P14 £

2) Montrer que les normes ne sont pas équivalentes.

Solution

1) Soit p dans [1, oo [. Tout d’abord

b
12 = / F@OPd < - a) | FI2 .

donc
1£llp < (b= a)"? || fllo

avec égalité si f est constante.

Soit maintenant p et ¢ dans [0, oo tels que p < g. Puisque ¢/p > 1, on obtient en utilisant I'inégalité
de Hélder
p/q

b b pla , 1-p/q b
[isora< | [arapmra) | [rae) = i) oot
On en déduit bien
b 1/p b 1/q

1l = / fora| < | [irora) oo,

a a
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avec égalité si f est constante.

2) Considérons la fonction positive f,, de E définie par

On a alors
Il falloo = (b—a)™,

puis, si p est fini,
b

(b _ a)np+1
b — —a)™ = 7
Il = [0 —ayran = E20
et donc
(b— a)n—l—l/p

[ fnllp = p T )
Alors

[fullso _ (mp+ 1)V

Ifally  (b—a)t/r”
et, sip < q,

||fn”q _ (b— a)l/q—l/p (np+ 1)1/10 ~ (b o a)l/q—l/pli/pnl/p—l/q.
[ fnllp (ng + 1)/ g/

Dans les deux cas la limite est infinie et les normes ne sont pas équivalentes.

Exercice 35 Fonctions lipschitziennes

Soit I un intervalle non vide de R. Une fonction a valeurs réelles définie sur I est dite lipschitzienne
de rapport k, si, quels que soient z et y dans I, on a

[f(z) = fy)l < klz —yl.
o ete @)= Fw)
) - JW
k(f) = sup LD = TW
T#y ‘x - y‘
1) Soit a dans I. Dans 'espace vectoriel .Z(I) des fonctions lipschitziennes sur I, montrer que 'on
définit une norme en posant

[flla = 1f(a)| + E(f),

et que, si a et b sont dans I, les normes ||.||4 et ||.||s sont équivalentes.
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2) Montrer que Z(I) est complet.
3) Montrer que le sous-espace des fonctions contractantes est une partie ouverte de Z(I).

4) Montrer que si I est compact, ’ensemble des fonctions de classe C! sur I est un sous-espace de
Z(I) et que, pour tout f de €*(I), on a

1£lla = 1£(@)] + 1Ml -

En déduire que € (I) est fermé.

Solution

Remarquons que 'on a en particulier, quels que soient = et y dans I,

[f (@) = fFW < B(H) |z =yl < | fllalz -yl

1) Si ||f|la est nul, alors d’une part f(z) — f(y) est nul quels que soient x et y, donc f est constante et
d’autre part f(a) est nul donc f est la fonction nulle. Les autres propriétés de la norme résultent de
celles de la borne supérieure.

On a en particulier
|£(b) = fla)] < k(f)|a—10],
donc
[f@) < |f(a)l +[a—blE(f),
puis
1flle < 1f(a)l+ (Ja = bl + D) E(f) < (la =b[ + 1) flla -

Comme on peut inverser les roles de a et b, les deux normes sont équivalentes.

2) On déduit également du calcul précédent que

[f(b)] < max(1, |a = bf) || fla-

Soit alors (f,,) une suite de Cauchy. On a donc

(L) (@) = frm(2)| < max(1, |z —af) [ fo = fmlla,
et il en résulte que la suite (f,(x)) est une suite de Cauchy réelle et converge donc vers une limite

notée f(x).

La suite de Cauchy (f,) étant bornée, soit K une constante qui la majore. Alors, pour tout entier n
et tout couple (x,y) d’éléments de I,

[fn(2) = fu@)| < I fnlla e =yl < K|z —y],

et, par passage a la limite,

1f(@) = f(y)| < K|z —yl,
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donc f est lipschitzienne.

Soit € > 0. Il existe un entier N tel que, si m > n > N on ait

e
an - fm”a é 5 .

Alors
|fn(a) - fm(a)| <

9

N ™

et, en faisant tendre m vers l'infini,

|[fnla) = fla)] <

N ™

D’autre part
[(Fa@) = Fn@)) = (Foy) = Fn))] < 2= 9l fu = Flla < 2 =915,
et de nouveau, en faisant tendre m vers l'infini,
[(fal) = F(@)) = (fuly) = FO)I < |2 =3l 5.

donc

k(fn—f) <

)

N ™

Alors
[frn = flla = |fala) = f(a)| + k(fn — f) <€,

ce qui prouve que la suite (f,,) converge vers f. L’espace £ (I) est donc complet.

3) Une fonction contractante est une fonction lipschitzienne telle que
k(f)<1.

L’application k étant continue de .£(I) dans R, l'ensemble des fonctions lipschitziennes est 1'image
réciproque par k de U'intervalle ouvert | —oo, 1[. C’est donc un ouvert de Z(I).

4) Si f est de classe C! sur I, la fonction dérivée f’ est bornée sur I. Il résulte du théoréme des
accroissements finis que

[f(z) = f(y)] < sup|f'(t)]]z —yl,
tel
et donc que f est lipschitzienne. On a dans ce cas
k() < 11f Moo -

Réciproquement, puisque I est compact, la fonction |f’| atteint son maximum en un point z¢ de I,

alors
17l = 1 (a0)| = tim LE IO iy

i
—zo  |x — o]
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et il en résulte que
£l = E(f)-

Pour montrer que €(I) est fermé, il suffit de montrer qu’il est complet. Soit (f,, — f,) une suite de
Cauchy de €1(I). Alors (f,(a)) est une suite de Cauchy de R et converge vers un nombre \, et (f)
est une suite de Cauchy de €’ (I) pour la norme infinie, et converge pour cette norme vers une fonction

g. Pour tout x de I posons
€T

f() =A+/g<t>dt,

a

On définit ainsi une fonction f de classe C! et

1fn = flla = [fnla) = A + 12 = glloo

ce qui montre que la suite (f,) converge vers f. Il en résulte que €1 (I) est complet, donc fermé dans
I'espace Z(1).

Exercice 36

1) Soit E l'espace des applications de classe C! sur [0, 1] a valeurs réelles, nulles en 0. Montrer
que

1F1 = 117112
est une norme sur .

2) Trouver la norme de la forme linéaire ® définie par

1
B(f) = / f(t)dt.
0

3) Soit F' le sous-espace de F formé des fonctions qui s’annulent aussi en 1. Trouver la norme de la
restriction de ® a F'.

Solution

1) Sila norme || f|| est nulle, alors la fonction f’ est nulle donc f est constante, et puisque f(0) est nul,
la fonction f est nulle. Les autres propriétés résultent du fait que ||.||2 est une norme sur ([0, 1],R).

2) En intégrant par parties

1 1 1
a(f) = 0/ Feyde =[] - O/ (t— )f (1) dt = 0/ (- Of () dt.
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Ensuite, en utilisant I'inégalité de Schwarz,
1 1/2
1
2(f) < 0/ (=epat] 1F =22 e

L’égalité a lieu dans I'inégalité de Schwarz lorsque f’ est un multiple de I'application ¢ — 1 — ¢. Alors
en prenant

f(t):2t_t27

on obtient égalité. Donc
1
Ol =—.
(K] 7

3) On intégre par parties cette fois de la fagon suivante

o= [ roa=[(-3) ] - [ (-3) rwa= [ (§-)rwa
0 0 0

Ensuite, en utilisant I'inégalité de Schwarz,
1/2

! 2
o< | [(5-0) @) 191 =1k,

0

L’égalité a lieu dans I'inégalité de Schwarz lorsque f est un multiple de Papplication ¢ — 1/2—t¢. Alors
en prenant

f(t) =t- t2 )
on obtient égalité. Donc
1
S||lp=——=.
ol = 5~

Exercice 37

Soit E 'espace des fonctions continues sur [a, b] a valeurs réelles. Soit z¢ un point de [a, b] et L
la forme linéaire définie par

L(f) = f(zo) -

Etudier la continuité de L pour les normes oo, 1 et 2.

Solution

Norme infinie
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Dans ce cas
LA = 1f(@o)| < [ flloo

et on a égalité pour les fonctions constantes. Donc L est continue et de norme 1 dans ce cas.

Supposons tout d’abord que x( se trouve dans l'intervalle ouvert ] a, b[. Soit n un entier tel que

(i)
n > max ,—— | -
ro—a b—xp

Pour une telle valeur de n, soit f, la fonction continue sur [a, b] qui vaut 1 en zg, s’annule sur
[a, zo —1/n] U [0+ 1/n, b] et est affine sur les deux intervalles [xo — 1/n, o] et [zg, zo +1/n].
Alors |L(fy)| vaut 1 et ||f,||1 est 'aire d’un triangle de hauteur 1 et de base 2/n donc vaut 1/n. Il en
résulte que la suite (f,) converge vers 0 pour la norme 1 alors que (L(f,)) ne converge pas vers 0. La
forme linéaire L n’est pas continue dans ce cas.

Si zg = a, soit n un entier tel que

S 1
n .
—b—ux

On prend cette fois la fonction f, qui vaut 1 en zg, s’annule sur [zg + 1/n, b] et est affine sur l'inter-
valle [xg, g + 1/n]. Alors |L(f,)| vaut 1 et || f,||1 est l'aire d’un triangle de hauteur 1 et de base 1/n
donc vaut 1/(2n). La conclusion subsiste.

Démonstration analogue lorsque zg = b.

Pour la norme 2, on utilise la suite (v/f,), et 'on a encore

LV ) =1 et [V allz= Vlfalli,

avec la méme conclusion.

Exercice 38

Soit ¢ une fonction non nulle appartenant a ’espace vectoriel € ([0, 1],C). On munit cet espace
de la norme infinie et 'on définit la forme linéaire T}, en posant

1
T, (f) = / f(@)p(a) de.
0

Montrer que T; » est continue et trouver sa norme.
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Solution

Tout d’abord

1
/ o) ol !dw<|!f|!oo/!w )| da
0

1
T < / o(a)] d.
0

Donc T, est continue et

Pour tout entier naturel non nul n, posons

2
fo= ot
[l +1/n
On a donc ()]
o(x
[falle = sup ————— <
zel0,1] (@) +1/n
Alors

To(f,) e
Il = / dz,
v an”oo "P H‘ 1/”

et, par passage a la limite,

1
T > / o(a)] dx,
0

1
T, = / ()| da
0

d’ou I’égalité

Exercice 39

Soit D l'opérateur de dérivation de I'espace £ = €1([0, 1],R) dans F = €([0, 1],R). On munit
F' de la norme infinie.

1) Montrer que si F est muni de la norme ||.|| définie par

£ =11 flloo + 1Ml

I’application D est continue et trouver sa norme.

2) Montrer que D n’est pas continue si E est muni de la norme infinie.
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Solution

1) On a de maniére évidente

ID(P)lloe = 1" lloc < II£1I-

Donc D est continue et

IID] < 1.
Soit la fonction f,, définie par
sin(nmx
fole) = T,
On a )
I frlloo = o et ”f;LHoo =1.
Donc !
ID(fi)llo =1 et [[fall =1+ —.

nmw

Alors

1
D|| > ————
1P > 7y

et par passage a la limite
D] > 1.

Finalement on obtient
1Dl = 1.

2) Avec la méme suite de fonctions (f,) on ne peut pas avoir pour tout n

K
L= [D(fa)lloe < K [|fulloc = —-

Donc D n’est pas continue dans ce cas.

Exercice 40

On considére les espaces E = €([0, 1],R) et F' = €*([0, 1],R). Soit T I'application de E dans
E ou T(f) est la fonction définie sur [0, 1] par

T(f)(x) =zf(x).

Enfin, soit ||.|| la norme définie sur F' par

A= 1 lloo + 1 Moo -
Etudier la continuité et la norme de T considérée comme application

1) de (B, |[[loo) dans (E, [ .|loo) —  2) de (£ [.]|) dans (E[.]]) ,
3) de (F,[|.[) dans (F [|.[lc) , 4) de (F | [loo) dans (F,|[-]]) -
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Solution
1) Soit f dans E. Pour tout x de [0, 1], on a

T(f) (@) = |ef(z) <|f(2)],

donc

1T ()l < 1flloo s

et on a égalité pour une fonction constante. Alors 1" est continue et
7= 1.

2) Soit f dans F. Alors

T(f)(x) = f(z) +2f'(z),
donc, pour tout x de [0, 1],

IT(f) (@) < |f()] +|f (2)]

et
IT(f) Nloo < [ flloo + 11 lloo

puis
17O = IT(H)lloe + 1T(F) oo < 20 flloo + [1f lc < 211111

avec égalité pour une fonction constante. Alors T' est continue et
7 = 2.

3) On a
IT(lloe < 1flloo < I£I]

avec égalité pour une fonction constante. Alors T est continue et
7]} =1
4) Soit la fonction qui & x associe ™ ou n est entier. On a
T(fp)(x) = 2™ et T(f,) () = (n+1)z".

Alors
IT(f)ll=n+2 et |fullo=1,

et il ne peut pas exister de constante K telle que, pour tout f de F,

IT(HI < K[ floo -

Donc T n’est pas continue.
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Exercice 41

Soit (X, d) un espace métrique compact, (E, ||.]|) un espace vectoriel normé. Si x appartient a X et
fa%(X,E), on pose

1) Montrer que 4, est une application linéaire continue de norme 1 de (¢’ (X, E), ||./|s) dans (E, ||.||).

2) Montrer que, si X posséde un point d’accumulation, I’application qui & x associe d, n’est pas
continue de (X,d) dans (L(¢ (X, E), E), |-ll)-

Solution

1) On a
162 () = LF @) < 1 flloo

avec égalité si f est constante, donc d, est continue et de norme 1.

2) Soit x et y deux points distincts de X et e un vecteur de E' de module 1. Evaluons ||0,(f) — 0, (f)]|
lorsque f est définie par

fz) = d(z,z) +d(z,y) ¢
On a
0(f) = f(@)=—e et 0,(f) =f(y)=e,
et puisque
I = | D e <1
d(z,z) +d(z,y) -
on obtient

On a également

[62(f) — 0y (S)l = lle +-el| = 2.

Par ailleurs, en utilisant 'inégalité triangulaire, on obtient
162 = Sylll < [l Il + Nldylll = 2,

et I'on a, pour toute fonction g,

162(9) — 0y ()]l < 21l9lloo -

Alors puisque 'on a égalité dans le cas de la fonction f, on obtient finalement
16z = dylll = 2.

Si X posséde un point d’accumulation x, alors lorsque y tend vers z, la différence 6, — d, ne tend pas
vers 0 et 'application qui & z associe 0, n’est pas continue de (X, d) dans (L(%€ (X, E), E), |-lI)-
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Exercice 42

Soit @ un nombre réel strictement positif. Dans I'espace €’( [0, a],R) muni de la norme infinie, on
considére I'endomorphisme ® ou ®(f) est défini par

Montrer que ® est continue et trouver sa norme.

Solution
On a i i

[@(f)()] < | ()] +/\f(t)] dt <[ flloo + HfHoo/dw < 1+ a)|[flloo s
donc 0 0

12()lloo < (T +a)[flloo,

et I'application ® est continue. De plus
el <1+a.

Pour tout nombre s tel que a/2 < s < a, soit fs la fonction continue définie par

r— S

fs(x) =

—1 s1 0<z<2s5—a
si 2s—a<zx<a

a—s
Alors, l'intégrale de f, sur l'intervalle [2s — a, a] est nulle et

2s—a

O/fs(t)dtz 0/ fo(t)dt = a—2s,

puis
[@(f)lloo = [®(fs)(a)] =1+2s —a
Alors, puisque ||fs|lco vaut 1, on a
= 12(fs)lloo »

et donc
@] > lim(1+2s—a)=1+a.
sS—a

Finalement
e[l =1+a.
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Exercice 43
1) Soit la fonctions f,, définie par

0 si =

falz) = { ;L'2(ln:L')" si O0<a<1

Calculer

2) Dans €*([0, 1],R) muni de I'une des normes 1 ou infinie, montrer que la forme linéaire ® définie

par
1
- [re
0

n’est pas continue.

Solution
1) Remarquons que f,, est continue sur [0, 1].

En intégrant par parties, on obtient, si n > 1

1
t n
I, = (Int) — n(nt)" tdt = 1 -
[ n] /3 ! T3t
0

Comme de plus Iy = 1/3, on obtient par récurrence,

[\

2) Tout d’abord, on a
fi(x) =2zx(Inz)" + nz(nz)" ! = 2z(nz)" (Inz + n/2),
donc

nt?(2Int)" L dt = 2", + n2" 7,

=
=
~
I
O\r—-
[\
~
N
—~
[\)
=)
~
~—
3
IS8
~
+
O\H

c’est-a-dire | ( 1 |
n! _ 1 (n—1) n!
+n2tH(—1)n ! e = (—1)"2" 13n+1
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Norme infinie

La fonction f] s’annule en e et, puisque f, est négative sur [0, 1], elle posséde un minimum en
ce point. De plus, f,(0) et f,(1) sont nuls, et on aura

1falloe = 1fale™)1 = (52)"

—n/2

donc, d’aprés la formule de Stirling,
n!

|¢(fn)|N}<é>n .
Ml "6 \3) V2T

Comme cette expression tend vers l'infini, il en résulte que ® n’est pas continue.

Alors

Cette fois
n!
”an1 = ’In’ = 3n+1 bl
donc
LA
| full1 ’

et la aussi 'expression tend vers l'infini, il en résulte que ® n’est pas continue.

Exercice 44

Soit (E,|.||) un espace vectoriel normé. Soit I un intervalle fermé borné de R. Si g appartient a
%(I,R), on définit une application linéaire T, de €(I, ), dans lui-méme en posant

Tg(f)zg'f-

Montrer que Ty est continue et trouver sa norme lorsque ¢'(I, E) est muni de la norme infinie. Qu’en
déduit-on pour l'application linéaire de (¢'(I,R), ||.||oc) dans L(€' (I, E), ||.|l|) qui & g associe Ty ?

Solution

Pour tout x de I et toute fonction f de € (I, F), on a

1Ty (F) (@)l = llg(x) f (@)l = lg(@)[ Lf (@)

donc

1Ty (Flloo < Mlgllocl flloo -
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I en résulte que I'application T}, est continue.

Si maintenant f est la fonction constante valant e ol e est un vecteur de norme 1 de F, alors

Tg(f):ge,

et
1T (Flloo = llglloo -

Il en résulte que
TGl = llgllo -

On constate que I'application linéaire de (€ (I,R),||.||s) dans L(€ (I, E), |||.||) qui & g associe T} est
une isométrie.

Exercice 45

Soit deux réels a et b tels que a < b. On note E l'espace €([a, b]),R).
1) Montrer que, pour tout p dans [1, oco], il existe des constantes k et K telles que, quel que soit
f dans €([a, b],

kA < (1 llp < K[ flloo -

2) On considére I'application linéaire T' de (E, ||.||,) dans (E, ||.||4) qui & f associe sa primitive nulle
en a. Etudier la continuité de T'. Calculer sa norme |7, lorsque p ou ¢ est infini, puis lorsque

p=1.

Solution

1) Soit p dans ] 1, oo [. Tout d’abord

b
12 = / FOPd < - a) | FI2 .

donc

1Fllp < (0= @) | fllso

avec égalité si f est constante.

Ensuite, en utilisant I'inégalité de Holder,
b 1-1/p 1/p

b
1l = / 1 () dt < / dt / Fopd | =o-a) Vs,

a a
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avec égalité si f est constante. Donc

b =a) " HIfll < 1fllp < (0= a) P flloo

ce qui reste vrai si p =1 ou p = oo.

2) On a donc
1(7)(e) = [ Fie)dr.
Alors .
T < [ 1@< 5.
puis
IT(F)lloo < 1 £l
avec égalité si f est constante, donc
7,00 = 1.

Alors, d’aprés 1), Papplication T est continue quels que soient p et ¢ et, puisque

IT()llg < & =) NT(f)lloe < (b= a) V| flls < (b= a)=PHV £,

on en déduit que
H‘T’”nq < (b — a)l—l/p+1/q '

a) Si ¢ est infini et p dans [1, co], on a en particulier

IT(Nlloe < b= a)' 2 f

avec égalité si f est constante. Donc
T Mlp,0 = (b—a)' 7.

b) Si p est infini et ¢ dans [1, co[, on a cette fois

xT

T )] < 1 lloe / dt = (z — a) | oo

a

puis
b b
b — q)at!
[ < fo-ama =
Alors "y
b— q
1Tl < LD 2,

(q+ 1)1/
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avec égalité si f est constante, donc

(b _ a)l—l—l/q

Tlloo,qg =
ITle.a = == 577

Ce qui reste vrai si g est infini.
¢) Si p =1, on sait déja que
1
ITl1q < (b—a)t/e.

Soit un entier n tel que n > 1/(b — a). Soit la fonction f, de F, qui vaut 1 en a, qui est nulle sur
[a+1/n, b] et affine sur [a, a +1/n], c’est-a-dire , sur cet intervalle,

fal)=1=n(z—a).
Sur lintervalle [a, a+1/n], on a

T

n n
T(fn)(x) =/(1—n(t—a))dt= (r—a)-5@—a?=(@—a)(1-F@-a).
En particulier
T(f, 1 =
(fu)(a+1/n) 5
et T'(f,) est constante sur [a+ 1/n, b], ce qui donne, puisque f,, est positive,
1
1l = T(£)(b) = o
Si ¢ est fini, calculons maintenant
a+1l/n b ,
q __ _ q _ ﬁ . q i
@ a+1l/n

En faisant, dans la premiére intégrale, le changement de variable n(z — a) = t, on trouve

ITING = 0/1< > (1——> %*(““‘% (21n>q
q q : q
_ (%) %O/< (1--)) dt+<b—a—%> ,
d’out 'on déduit
1/q
17l = 5 %j( <1_%>>th+<b_a__> | ’
0



78 CHAPITRE 5. ESPACES DE FONCTIONS

et
1/q

; q
e (2 (n(1-3)) s o)

i U _ v

n=oo || fully

Donc

ce qui montre que

ITlq > (b—a)*/?,
d’ou I’égalité

ITllg = (b—a)'/e,

qui est encore vraie si ¢ = o0

Exercice 46

Soit E l'espace des fonctions continues sur [a, b] & valeurs réelles. Pour tout f de E on pose

o(f) = inf fla).

z€[a,b]

Etudier la continuité de ® lorsque E est muni de la norme infinie, puis de la norme 1.

Solution

Si f et g sont dans E et x dans [a, b], on a

f(x) = f(z) —g(z) + g(z) < |f(z) — g(z)| + g(x)

donc

inf f(z) < sup |f(z) - g(x)| +g(z).
z€[a,b] z€ [a,b]

Alors
O(f) = IIf = gllo < g(2).

Donc @(f) — ||f — glloo est un minorant de g et 'on en déduit que

O(f) = IIf — glle < @(9)

c’est-a-dire
(f) —2(g9) < If = 9lloo -

En permutant les roles de f et g, on a aussi

®(9) —(f) < If — 9lloo »
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et finalement
12(f) = 2(9)| < If = 9lloo s

ce qui montre la continuité, et méme 'uniforme continuité, de ® pour la norme infinie.

Soit n un entier tel que

n > .
“b-a
Prenons la fonction f, qui vaut —1 en a, s’annule sur [a+ 1/n, b] et est affine sur l'intervalle
[a,a+1/n]. Alors ®(f,) vaut —1 et || f,|1 est laire d'un triangle de hauteur 1 et de base 1/n
donc vaut 1/(2n). Il en résulte que la suite (f,,) converge vers 0 pour la norme 1 alors que (®(f,)) ne
converge pas vers 0. La fonction ® n’est pas continue pour la norme 1.

Exercice 47

Soit E l'espace des fonctions continues sur [a, b] & valeurs réelles muni de la norme infinie.
1) Montrer que les applications f ~ e/ et f+ f2 sont continues de E dans E.

2) Soit % l’ensemble des fonctions de E qui ne s’annulent pas. Montrer que % est ouvert et que
Papplication f + 1/f de % dans E est continue sur % .

3) Soit .# l’ensemble des fonctions positives de E. Montrer que .# est fermé et que 'application
f > \/f est continue sur .Z.

Solution

1) Soit f fixé dans E et g dans la boule fermée de centre f et de rayon 1.

‘ Fonction exponentielle

Il existe, d’aprés le théoréme des accroissements finis, un nombre £(x) compris entre f(x) et g(x) tel
que

e @ — ) — (f(z) — g(z))et@)

Donc
@) = f@) < [f(@) —g@) < [[f =gl <1,
et
@) < [f@)]+ If = glloe < [[flloc +1.
On a alors
et(®) < €@ < 1t fllec
et

”ef — e < et llee If = 9llo 5
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ce qui montre la continuité en f de I'application qui & g associe e9.

| Fonction carré |

On a cette fois
If () = g(2)?| < |f(2) = g(2)| (| ()] + [g(x)])-
et
lg(@)| < |f(@)| + [f(@) = g9(@)| < [[fllc + 1,
d’ont
£ (2)? = 9(2)*] < (2] flloo + DIIf = glloo

et finalement
117 = *lloe < 2l fllse + DS = glloo »

ce qui montre la continuité en f de I'application qui & g associe g2.

2) La fonction f ne s’annule pas. Elle est donc de signe constant. Comme |f| atteint son minimum sur
[a, b], il existe xq tel que

inf |£(2)| = |f(z0)] > 0.

a<z<b

Notons « ce minimum.

Alors si g est telle que
o
g~ fllo < 5.

on aura

9@)| 2 |£@)] - 1) —g(@)| za— 5 =5 >0,

et g appartient & % qui est donc un ouvert de F.

Alors
1 1

‘f(fc) 9(x)

U@ 6@ _ I gl
|f@)]lg(x)] = a?/2
Finalement 5
I1/f =1/gllee = —5 If = glloo

ce qui montre la continuité en f de 'application qui a g associe 1/g.

3) Pour tout x I'application &, qui & f associe f(x) est continue. Alors J, ([0, co[) est une partie
fermée de E et .Z est 'intersection de ces parties fermées quand x décrit [a, b], donc est fermé.

Montrons tout d’abord I'inégalité suivante, valable pour deux nombres réels tels que a > b > 0 :
Vva— Vb <Va—b.

En partant de

Vb < a
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et en multipliant par 2v/b, on trouve

2b < 2v/ab,

puis
—2vab < —-2b,

et enfin

(Va—-Vb)?:=a—-2Vab+b<a—b,
d’ou le résultat. Il en résulte que quels que soient a et b positifs
[Va—vb|<V]a—bl.

Alors, si f et g sont dans .7,

IV =V loo < VI = lloo s

ce qui montre la continuité de la racine carrée.

Exercice 48
Soit la fonction continue f,, définie sur [—1, 1] par

-1 si -1<z<-1/n
fal)=4¢ nx si —1/n<zx<1/n
1 si 1/n<z<1

Montrer que la suite (f,,) est une suite de Cauchy dans l'espace ¢’ ([—1, 1]) muni de la norme ||.||2
mais n’a pas de limite. Qu’en déduit-on pour cet espace ? La suite (f,) est-elle une suite de Cauchy
pour la norme ||.|| ?

Solution

Remarquons que les fonctions f,, sont impaires. D’autre part, en posant

1/2

1
N(f) = / (f(2))? da
0

on obtient une norme sur € ([0, 1]). Donc, si n > m, on a

1

1o Fulll = 2 / (@) = (@) dz = 2N (fn — fin)?

0

Alors, en utilisant I'inégalité triangulaire pour NV, on obtient

”fn - me2 = \/iN(fn - fm) < \/i(N(fn - 1) +N(1 - fm)) :
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Or
i r (ne—1)311/n 1
2 2 [(nm— n_ 1
/(fn 1)*dx = /(nx 1)%dx [7371 }0 3
0 0
d’ou

1 1 2v/2
an—fm\lzéx/i<\/3_n+m>§\/%.

Alors, quel que soit € > 0, si n. > m > N > 8/(3¢2), on a

[fn = fmllz <e
et la suite (f,,) est de Cauchy.

Supposons que la suite (f,) converge vers une fonction f. Soit a > 0. Alors sin > 1/, on a

1 —
/(fn R /(fn PP < e fIR
o —1

donc
—

1

Ja-+ faspr<it- .
a —1

et quand n tend vers l'infini, on en déduit que

/1(1—f)2+/(1+f)2=0,

-1

c’est-a~dire que f vaut 1 sur [a, 1] et —1 sur [—1, —«|. Comme ceci a lieu pour tout nombre o > 0,
on en déduit que f vaut 1 sur |0, 1] et —1 sur [—1, 0[. La fonction f ne peut pas étre continue en 0.
Donc la suite (f,) n’a pas de limite. Il en résulte que l'espace €’ ([—1, 1]) n’est pas complet pour la
norme ||.[|s.

Sin>m,ona
n—m

[fn = fmlloo = | fn(1/n) = fm(1/n)| = |1 —m/n| =
Alors, sin = 2m .

et 'on ne peut pas rendre la norme plus petite qu'un nombre ¢ < 1/2. La suite (f,,) n’est pas une suite
de Cauchy pour la norme infinie.

On peut raisonner d’une autre maniére. Comme ’espace € ([ —1, 1]) est complet pour la norme infinie,
si la suite (f,,) était de Cauchy pour la norme infinie elle convergerait vers une fonction f. Mais, puisque,
pour toute fonction f de €([—1, 1])

1£ll2 < V2| flloo »
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la suite (f,) serait de Cauchy et convergerait vers f pour la norme ||.||2 ce qui n’est pas le cas.

Exercice 49

Soit o un nombre réel. Dans l'espace € ([0, 1],R), soit la fonction f,, définie par

Fulz) = —nl7% 4+n si 0<z<n®
n\T) = 0 si n*<z<l1

1) Déterminer a pour que la suite (f,,) converge vers 0 pour ||.||; et pas pour ||.||2.

2) Déterminer a pour que la suite (f,,) converge vers 0 pour ||.||2 et pas pour ||.|/co-

Solution

1) On a
a+1
2 )

n

[ fnllr =

(c’est l'aire d’un triangle de base n® et de hauteur n). Cette expression tend vers 0 si et seulement si
a < —1.

Par ailleurs

ne

1518 = [ 220-) (e — )2 = 200 [(7
0

et cette expression ne tend pas vers 0 si et seulement si a > —2.
Donc si —2 < o < —1, la suite (f,,) converge vers 0 en norme 1 mais pas en norme 2.

2) La suite f,, converge vers 0 pour la norme 2 si et seulement si @ < —2. D’autre part

[fnlloo = fn(0) =n

et la suite (f,) ne converge jamais vers 0. Donc, si @ < —2, la suite (f,,) converge vers 0 pour la norme
2 et pas pour la norme infinie.
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Exercice 50

Soit F un espace vectoriel normé complet, f une application de E dans E contractante de rapport
k. Pour tout a de E on pose
go=[f+a.

1) Montrer que I’équation g,(z) = x posséde une unique solution notée ®(a). et que ® est une
application uniformément continue de F dans F.

2) Montrer que l'application Idg —f est bijective et que
d=Idg—f)"'.

3) On suppose que f est linéaire continue de norme k < 1. Montrer que ce qui précéde s’applique,
puis, en utilisant la suite (uy)n>0 définie par ug = 0 et pour n > 1, la relation

Up = ga(un—l) 5

trouver une expression de u,, puis de ®(a) en fonction de f.
4) Dans le cas ou E est l'espace €'([0, 1],R) muni de la norme infinie, soit f ’endomorphisme

défini par

T

Fu)(@) = k / u(t) dt .

0

ot |k| < 1. Déterminer ®(a) lorsque a est de classe C!, puis dans le cas général.

Solution

1) On a
9a(z) — ga(W)Il = | f(z) = F(W)I| < Kllz —yl|.

Donc g, est contractante et le théoréme du point fixe peut s’appliquer : il existe ®(a) unique dans E
tel que

Alors
[@(a) = @] = [|ga(®(a)) — go(PO)[| < [ f(P(a)) +a— (f((b)) + D),
puis
[@(a) — 2)[| < [[f(®(a)) = F(RO)[ + lla —bl| < k[[®(a) — 2(b)[| + [|la — b]|-
Alors )
[(a) = B()] <~ lla b

On en déduit que @ est lipschitzienne et donc uniformément continue sur FE.

2) On a pour tout a de E,
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donc

(Idg —f) o ®(a) = a.

Comme 'équation

x—f(z)=a
posséde une solution et une seule qui est ®(a) il en résulte que l'application Idg — f est bijective. Alors
d=Idg—f)"" .

3) Puisque f est linéaire continue de norme k, on a pour tout x de E,

1 (@)]] < K|z,

et 'on en déduit que, quels que soient x et y dans F,

1 (@) = FWIl = 1f @ =)l < Fllz -yl

Donc f est contractant de rapport k. Alors, d’aprés le théoréme du point fixe, la suite (u,) converge
vers ®(a). En partant de ug = 0, alors u; = f(0) + a = a, puis ug = f(a) + a et une récurrence

immédiate donne .
ne
Up = Z f p(a) )
p=0
et par passage a la limite
o
®(a) =Y f*(a).
p=0

4) L’application f est linéaire et I'on a

1
(@) < K] / ()| dt < ] [ufoo -
0

donc

1 ()lloo < 1F[ flulloo -

Ce qui précede s’applique. L’équation s’écrit

f(u):u—a,

c’est-a~dire, pour tout x de [0, 1],

k /u(t) dt = u(x) — a(z) .
0

Si a est dérivable cela équivaut a

ku=v"—d et wu(0)=al(0).
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Cette équation se résout. LL’équation homogéne a pour solution
u(z) = Aek?.
En faisant varier la constante A, on cherche une solution telle que
u(z) = A(x)e* et u(0) = a(0).

On obtient

donc

d (t)e Mdt + A(0).

=
2
1
o\a

Comme A(0) = u(0) = a(0), on trouve, en intégrant par parties,
A(z) = a(z)e ™ + & /a(t)e_ktdt,
0
et finalement, la solution u = ®(a) est définie par
B(a)(x) = a(z) + kek® / a(t)e—Fdt
0

En fait cette solution est valable dans le cas général. Pour le vérifier, on calcule

T

(@) () = k / D (a)(t) dt .

0

On a donc

f(®(a))(z) =k [/x a(t)dt +k jekt (/t a(u)ek“du) dt] .
0 0 0

En intégrant par parties, on obtient

T

r okt okt
f(®(a))(z) =k {/ a(t)dt + k [k/a(u)ek“du] —k /ka(t)ektdt] ,
0

0

et finalement
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Exercice 51

Soit la suite (fy)n>0 de fonctions définies sur [—1, 1] par
folz) =2 2n+\1/5-

Etudier la convergence de cette suite pour les normes oo et 2.

Solution
La fonction f, est paire et I’on peut écrire
Fula) = oY/ @1
La suite (f,,(z)) converge donc vers la fonction f qui & x associe |x|.
Pour z dans [0, 1], posons
gn(@) = f(2) = falz) = x — B HD/CF1)
On obtient en dérivant

_2nt2 en)
2n+1 ’

2n+1
2n 4+ 2

el = 20+ 1\ _ 20k N a1y 1 a1\
nllee = 9n \ \ 5,52 “\2n 2 m+2) 2n+1 \2n+2

La suite (f,,) converge donc vers f pour la norme infinie.

2n+1
La fonction g, posséde un maximum au point < > et, en raison de la parité,

Par ailleurs,

1 1/2 1 1/2
1o = flls = /(fn<t>—f<t>>2dt <1 = Flleo / 1dt| = V2| fu— fllsos
1 1

donc la suite (f,,) converge également vers f pour la norme 2.

1
< .
“2n+1
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Exercice 52

Soit k un nombre réel positif et soit la suite (fy,)n>0 de fonctions définies sur [0, 1] par

fn(z) = nfz e nz?/2

Déterminer les valeurs de k pour lesquelles la suite (|| f,,]|oo) a l'infini pour limite et la suite (|| f,]/1)
converge vers (.

Solution

En dérivant, on obtient

fi(x) = nP(1 = na?)e o2,

et la fonction f, admet un maximum en 1/y/n. Alors

1 fulloe = fu(1/v/n) = e Y2pk=1/2.

La suite (|| fn]/co) @ une limite infinie si et seulement si k > 1/2.

Par ailleurs

1

1
1 1
[ fnlls = / | fu(2)| dz = n* /me‘m2/2dx =nk| - - e "?/2 .= nFt 1 — e 2.
0 0

Alors la suite (|| fn|l1) converge vers 0 si et seulement si k < 1.

1
Finalement les conditions imposées ont lieu si et seulement si 3 <k<1.

Exercice 53

Soit la suite (fy)n>1 de fonctions définies sur [0, 2] par

Etudier la convergence de cette suite pour les normes 2 , 1 et co.

Solution

Soit h,, définie par




Il résulte des propriétés de la suite (z™) que

0 si 0<z«1
lim hy(z) = T si x=1
nree 2 si 1 <ax <2

et donc la suite (f,,) converge simplement vers la fonction f continue définie par

f(x):{sm(o si 0<zx<1

2rx) si 1<z <2

On a alors . ,
1 — FI3 = / Fnle)]? e+ / fule) — f(a)dr.
0 1

On utilise 'inégalité
|sinu — sinv| < |u — vl

vraie quels que soient les réels u et v. (Elle résulte du théoréme des accroissements finis).

En majorant sur [0, 1], on obtient

27T$n+1

n+1
14"

_1+n§27m ,
T

si

|[fn(2)| =

donc

1 1
4 2
/\fn(a;)lz dx < 4rn* /x2”+2 dx = 2n7:— 3
0 0

Sur [1, 2] cette fois

2 n+1 9 n+1 9
fo(z) — f(x)] = |sin mr —sin(27z)| < mr — = * < 2l
1+ 14 2m ™
donc
2 2 42 42
_ T _ T
[ 150 = P < an? [a2nan = S -y < ST
1 1
Finalement ) )
47 47
— <
o= fles 50+ 503

et, puisque le membre de droite converge vers 0, la suite (f,) converge vers f pour la norme 2.

D’aprés l'inégalité de Schwarz, on a

9 1/2

2
1w — Il = / 1 x (falt) — f(8)dt < / dt | 1 Fllo= V2 — fl2.
0

0

89
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Donc la suite (f,,) converge également vers f pour la norme 1.

Par contre, soit u, = 2~'/". Le nombre u,, appartient & l'intervalle 10, 1[. Alors
. 27 —1/n
(fn = F)(un) = fa(up) = sin ?2 )

2
et la suite ((fn, — f)(un)) converge vers sin ?ﬂ qui n’est pas nul. La suite ((f,, — f)(uy)) ne converge

pas vers 0, donc (f,,) ne converge pas vers f pour la norme infinie.

Exercice 54

Soit la suite (fy)n>1 de fonctions définies sur R par

\/(371_3:)3(3:_”) si n<z<3n
n

0 sinon

fu(z) =

Etudier si cette suite converge vers 0 pour les normes oo et 2.

Solution
Pour tout x réel le nombre f,,(x) est nul dés que n > z, et la suite (f,(x)) converge vers 0.
Comme le polynéme P(z) = (3n —z)(xz —n) atteint son maximum en 2n sur 'intervalle [n, 3n], on a

P(2 1
Il =y 2 = =

et la suite (f,) converge vers 0 pour la norme infinie.

D’autre part,
3n

I = [ == g

n3

n

et en posant u = x/n
3

an”% = [B—u)(u—1)du>0.
/

Lea suite (|| fn||2) et donc une suite constante non nulle et la suite (f,,) ne peut converger vers 0 pour
la norme 2.
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Exercice 55

Soit la suite (fy)n>1 de fonctions définies sur [0, 1] par

f1—-nx si 0<z<1/n
fn(:n)—{ 0 si 1/n<z<1

Etudier la convergence de cette suite pour les normes oo et 2.

Solution

Remarquons que les fonctions f, sont continues sur [0, 1]. Pour tout = de |0, 1] le nombre f,(x)
est nul dés que n > 1/xz, et la suite (f,(z)) converge vers 0. Par contre la suite (f,(0)) est la suite
constante 1. La limite simple est donc discontinue en 0 et la convergence ne peut avoir lieu pour la
norme infinie.

Par contre
1/n 1/n
2 2 (na —1)° 1
nlls = 1-— de = | —— =—,
R e e e
0

et la suite (f,,) converge vers 0 pour le norme 2.

Exercice 56
Soit la suite (fy)n>1 de fonctions définies sur [—1, 1] par

sin nx

Etudier la convergence de cette suite pour les normes co et 2.

Solution

La suite (f(0)) est la suite constante nulle, et si z est non nul, la suite (f,(x)) est le produit d’une
suite bornée par une suite qui converge vers 0 donc converge elle aussi vers 0. La limite simple est donc
la fonction constante nulle.

On constate que

_ sin 1 _ _—nln(1+1/n3) _:
fu(l/n) = AT i e sinl.
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Mais

9

S

1
n

et donc la suite (f,(1/n)) converge vers sin 1 qui n’est pas nul. La convergence ne peut avoir lieu en
norme infinie.

Pour la norme 2, on donne une démonstration sans utiliser le théoréme de convergence dominée.

Puisque la fonction f,, est impaire on a

1 n-1/4 1
1full3 =2 / fol)? di = 2 / Falw)?do + / ful)? da
0 0 n—1/4

Majorons les deux intégrales de droite. Comme la fonction f2 est majorée par 1 on a tout d’abord

n—1/4
/ fa(x)?de < n~ V4,
0
Sur intervalle [n=1/4, 1],
1 1
2 < <
fala)” < (1+a2)2n = (14 n-1/2)2n”
donc
/ 1
2 . <t
/ fn(l‘) d:E— (1_|_n—1/2)2n
n—1/4
et finalement
123 < 2up .
ou
1 n 1
Un =11 (1+n-1/2y2n
Or

onIn(1 +n""?) ~ 2¢/n,

tend vers 'infini, donc
—1/2\2 2nIn(1+n~1/2
(14+n~Y2)2n = 2nn(n=5)
tend aussi vers 'infini. Il en résulte que la suite (u,) converge vers 0 et que la suite (f,,) converge vers
0 pour la norme 2.
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Exercice 57

Soit la suite (fy)n>1 de fonctions définies sur [0, 1] par

fn(l') = \/ﬁl'n\/ 1—a2.

Etudier la convergence de cette suite pour les normes co et 2.

Solution

On remarque tout d’abord que la suite (f,(1)) est la suite constante nulle, et que, si 0 < z < 1, la
suite (fy(z)) converge vers 0. La limite simple de (f,,) est donc la fonction nulle. Si la suite convergeait
pour la norme infinie, sa limite serait nécessairement nulle. En dérivant

l,n-l—l ’I’L:L'n_l
fi(x) =+n <nw"‘1\/ 1—22— ﬁ) = % (n— (n+1)z?).

La fonction f, est positive et admet un maximum en

Alors

n (n+1)/2 1 (n+1)/2
[ fnlloo = fnlan) = <n+1> B <1—n+1> .

La suite définie par le membre de droite converge vers e~'/2. La convergence ne peut avoir lieu pour
la norme infinie.

Par contre

1 1
1 1 2n 1
2 2n 2 _ 2n 2n+2 _ _
I3 = 1—a%)de = - dr = - = “on
| fnll2 ”/"E (1—27) dx /(m r ) dz n<2n+1 2n+3> (2n+1)(2n+3) 2n
0 0

La suite (fy) converge donc vers 0 pour la norme 2.

Exercice 58

Soit la suite (f)n>1 de fonctions définies sur [0, 1] par
fn(z) =cosa™ .

Etudier la convergence de cette suite pour les normes oo et 2.
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Solution

La suite (f,(1)) est la suite constante (cos 1), alors que si 0 < z < 1, la suite (f,(z)) converge vers
cos 0 = 1. La limite simple n’est pas continue et la suite ne peut converger pour la norme infinie.

Pour la norme 2, on donne une démonstration sans utiliser le théoréme de convergence dominée.

Notons f la fonction constante 1, et soit u,, dans l'intervalle |0, 1[. On a

1 1 . un . 1 .
||fn—f\|§:/(cosx”—1)2d:p:4/Sin4%d:ﬁ§4 /sin4%d:ﬂ+/sin4%daz
0 0 0 Un

Puisque la fonction sinus est croissante sur l'intervalle [0, 1/2], on peut majorer et 'on obtient
uTL
| fn — flI3 <4 <un sin47”+1—un> .
1
En prenant par exemple 1 — — comme valeur de u,, on a

/n
uz — " In(1-1/4/n) 7
mais

et donc la suite (u?) converge vers 0. Il en résulte que la suite (|| f, — f||3) converge vers 0 et donc que
la suite (f,,) converge vers 1 pour la norme 2.

Exercice 59
Soit la suite (fy)n>1 de fonctions définies sur [0, oo [ par

" —1
x4+ 1

ful(z) =

Etudier la convergence de cette suite pour les normes co et 2.

Solution

Les fonctions f,, sont continues et la suite (f,) converge simplement vers la fonction f définie par

-1 si 0<z<1
flz)= 0 si z=1 ,
1 si z>1
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qui n’est pas continue. La convergence ne peut avoir lieu en norme infinie.

On a

o0

I - 15 = 0/ gt [ e

1
et, en majorant,

1

o0
1 1 1
—fl3<4 /2"d /—d =4 '
I fn — fII3 < M det | —oda 1l on_1
1

0

Il en résulte que la suite (||f, — f||3) converge vers 0 et donc que la suite (f,) converge vers f pour la
norme 2.

Exercice 60 Fonctions a variations bornées

Soit I un intervalle non vide de R et f une fonction numérique définie sur I. Pour toute famille finie
X ={z1,...xz,} de I, telle que 1 < --- < x,,, on pose

n—1
- Z |f(ziv1) = f (@)l
i=1

et 'on note Vi(f) la borne supérieure des sommes précédentes pour tous les choix possibles de
familles finies de I.

1) Montrer que, si X est inclus dans Y, alors V¢(X) est plus petit que V¢(Y).
2) Soit f dans ¥. Montrer que, si a, b, ¢ sont des points de I tel que a <b < ¢, on a

V[a,c] (f) = V[a,b] (f) + V[b,c] (f) :

3) Soit ¥ I’ensemble des fonctions f telles que Vi(f) soit fini. Montrer que ¥ est un sous-espace
vectoriel de l'espace .Z (I,R) des fonctions numériques définies sur I, et que Vi(f) est nul, si et
seulement si f est constante. En déduire que si a est un point de I 'on définit une norme sur ¥ en
posant

If1I = 1f(a)l + Vi (F)-
4) Montrer que ¥ est inclus dans ’espace vectoriel des fonctions bornées et comparer |[|.|| et [|.]/co-
5) Montrer que ¥ est complet pour la norme ||.||.

6) Montrer que f appartient a ¥ si et seulement si f s’écrit comme la différence de deux fonctions
croissantes bornées sur I.

7) On suppose I borné. Montrer que I’ensemble .Z des fonction lipschitziennes sur I est inclus dans
¥'. Comparer sur . la norme lipschitzienne ||.||, de I'ex 35 et la norme ||.|.
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Solution

1) On remarque tout d’abord que si 'on ajoute un point = & une famille X = {z1,...2,}, alors
Vi(X U{z}) > Vp(X).

En effet, si x < 21, on augmente la somme V;(X) en ajoutant |f(x1) — f(z)|. Six > z,, on ajoute cette
fois |f(x) — f(xy)|. Enfin, si
TS ST ST S Tyl S T,

alors
k—1 n—1
Vi(X) = 1f(@ien) — F@)l + 1 f(@rer) — Fl@o)+ D |Firn) — flxs)],
i=1 i=k+1

et, en utilisant I'inégalité triangulaire,

N

1 n—1
Vi(X) <3 1 f@ien) = )|+ 1f (o) = @)+ 1 (@) = fan) |+ D |f (@) = f(@i)] = V(X U{a}) .

i=1 i=k+1

Une récurrence immédiate montre alors que le résultat subiste si I'on ajoute un nombre fini de points.
Donc si X est inclus dans Y, alors V(X)) est inférieur a V(Y).

2) En conséquence, Vq,c) est la borne supérieure des nombres Vy (X) pour toute famille finie X conte-
nant les points a et c, et si b appartient & [a, c], c’est encore la borne supérieure des nombres V(X))
pour toute famille finie X contenant les points a, b et c.

Soit X et Y deux familles de [a, b] et [b, ¢] respectivement contenant les extrémités des intervalles
respectifs. Alors X UY est une famille de [a, c]. et

Vi(XUY) = Vp(X) + Vi(Y),

donc

Vi(X) + Vi (Y) < Vigel (f)-

Alors
Vi(X) < Vig,e] (f) = Vp(Y).

et le membre de droite est un majorant des nombres Vy(X), donc majore la borne supérieure, d’ott
V[a,b] (f) < V[a,c} (f) - Vf(Y) ’

puis
Vf(Y) < V[a,c} (f) - V[a,b] (f) :

Le membre de droite est un majorant des nombres V¢(Y') donc majore la borne supérieure, d’oit

V[b,c] (f) < V[a,c} (f) - V[a,b} (f) s
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et finalement
V[a,b} (f) + V[b,c] (f) < V[a,c} (f) :
Inversement, soit Z une famille de [a, ¢] contenant a, b et c. Alors

Vi(2) =Vi(Z 0 [a, b]) + Vi(Z 0 [b, ¢]) < Vi) (F) + Vig,e ()

et le membre de droite majore les nombres V¢(Z) donc la borne supéreure, d’ott

V[a,c} (f) < V[a,b] (f) + V[b,c} (f) .

On a donc bien égalité.

3) Il résulte facilement des propriétés des bornes supérieures que, si f et g sont deux fonctions définies
sur I, et A un nombre réel,

Vilf +9) SVi(f) +Vilg) et Vi(Af) = A Vi(f)-

Il en résulte que ¥ est stable par addition et multiplication par un scalaire. C’est donc un sous-espace
de Z#(1,R), et Vi est une semi-norme. Ce n’est pas une norme car si f est constante V7(f) est nulle.

Réciproquement, si V(f) est nulle, et si x et y sont deux éléments de I, on a en particulier

Vil{z,y}) = |f(z) = fw)l < Vi(f) =0,

ce qui montre que f(x) = f(y). La fonction f est donc constante.

Si maintenant on ajoute |f(a)|, alors la nullité de ||f|| implique celle de Vi(f), donc f est constante,
mais aussi la nullité de f(a), donc f est la fonction nulle. Les deux autres propriétés de la norme restent
conservées. On en déduit que ||.|| est une norme sur 7.

4) On a, quel que soit = dans I,

|f(@)| = f(a)] < [f(z) = fla)] < Vi(f),
donc
|f(@)] < | £l

et, par suite,

1 fllso < II£II-

Les éléments de ¥ sont donc des fonctions bornées, et la convergence en norme implique la convergence
pour la norme infinie.

Les deux normes ne sont pas équivalentes. Par exemple si I = [0, 1], prenons

fu(z) = % sin?(na).
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On a déja
1
Illoo =

et la suite (f,,) converge vers 0 pour la norme ||.||«. D’autre part

fn(k/(2n)) = { 1?71 Zi k i;pi_ 1

2p+1 2p\ 2p+1 2p+2\ 1
fn< om >_fn<%>—fn< m >_f< m >_E7

5 (35) - () (322)- (52>

p=0
La suite (fy) ne converge pas vers 0 pour la norme ||.|.
5) Soit (fy,) une, suite de Cauchy de ¥ pour la norme ||.||. Alors, d’aprés la question précédente, c’est
aussi une suite de Cauchy pour la norme infinie, et elle converge vers une limite f pour cette norme
qui n’est autre que la limite simple de la suite (f,).

Donc

et

Soit € > 0. Il existe N tel que, sim >n > N,

I fn = fmll = | fula) = fm(@)] + VI(fn — fin) < €.

Donc, pour toute famille ordonnée {z1,...,z,} de I

P

|fu(@) = frn(@)] + D 1(Fa = fn) (@is1) = (fa = fn)(@s)| <.

i=1

En faisant tendre m vers l'infini, on obtient

fala) = F(@)]+ > 1(fn = H@isr) = (fn — Hla)| <e.
i=1

Alors en prenant la borne supérieure, on en déduit que

Vilfa =) SVi(fa = f) + | fala) = f(a)] <e.

En particulier

VI(f) < VI(fn) +Vl(f_ fn) < VI(fn) +e,
ce qui montre que V(f) est finie et donc que f appartient & ¥'. Ensuite, si n > N,

||fn_f|| §€,

donc la suite (f,,) converge vers f pour la norme |.]|.
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6) Pour une fonction croissante bornée g

n—1

Vy(ar,...ow Z l9(xis1) = g(@)] = > (9(@is1) — 9(w:) = g(wn) — g(z1) < 2]|9]loo

=1

Il en résulte que g appartient & ¥ et comme ¥ est un espace vectoriel, la différence de deux fonctions
croissantes bornées appartient encore a 7.

Rermarque : pour une fonction croissante

lgll = lg(a)] + Vi(g) < 3|9/l -

Réciproquement. Soit f dans ¥ et a dans I. On définit une fonction g sur I en posant

B Via) (f) si z2>a
g($)_{ ~Viz,a)(f) si z<a

Cette fonction est croissante. En effet, si a < x <y,
9W) = 9(x) = Via,y) () = Via,e) (f) = Vie, 1 (f) 20,

etsiz<y<a,
g(y) - g(l’) = _V[y,a} (f) + V[m,a} (f) = V[x,y} (f) >0.

Soit alors h = g — f. Cette fonction est également croissante. FEn effet, si a < z <y,

h(y) = (@) = Via,y) () = FW) = Via2) (f) = f(2) = Vg, (f) = (f(y) = f(x)) >0,

etsixz <y <a,

hy) = W) = =Viy,a) (f) = F(y) = (=Via,a) () = f(@)) = Ve, (F) = (f(y) = f(2)) 2 0.

De plus
lg(@)| < Vi(f) et |h(@)] < [f(@)|+ lg(@)| < [ flloo + Vi (f),

et g et h sont bornées.

7) Soit f lipschitzienne sur I et k(f) le plus petit nombre réel k tel que, quels que soient z et y dans I,

[f(@) = fy)l < ke —yl.

Alors, si X = {x1,...,z,} est une famille croissante de points de I,

n—1 n—1
= S 1 (@inn) — F@) < k() (@i — @) = K an — 1) < k(F)8(D),
i=1 =1

ot §(I) est le diameétre de I, et donc f est dans #'. De plus

1< 1 (@)l +6(1) k(f)
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donc

IFIF < max(1,6(1)) (| f(a)] + k(f)) = max(L,6(1)) [ f]la -

Soit maintenant un point a de I tel que a+1/n soit aussi dans I. Soit f,, la fonction continue croissante,
qui vaut 0, si z < a, 1 si x > a+ 1/n et affine sur [a, a+ 1/n]. Alors

[falla =n et [Ifall = 1.

Les deux normes || f]| et ||f]|o ne sont pas équivalentes.

Exercice 61

Soit ¢ une fonction continue bornée et strictement positive sur R. Montrer que dans 'espace E des
fonctions numeériques continues et bornées sur R, on définit une norme en posant

1=l flloo s

A quelle condition cette norme est-elle équivalente & la norme infinie ?

Solution

Si la norme || f|| est nulle alors ¢ f est la fonction nulle et, puisque ¢ ne s’annule pas, f est la fonction
nulle. Les autres propriétés de la norme résultent de celles de ||. |-

On a d’une part

1= llefllos < llelloo I1.flloo

(avec égalité si f est constante).

Dans 'autre sens, en écrivant
)

f=é@ﬂ,

on obtient, si 1/¢ est bornée,

[flloo < 11/ @llcolleflloo = 11/ @lloc I £1I

(avec égalité si f = 1/p). Dans ce cas les normes sont équivalentes.

Maintenant, si 1/ n’est pas bornée, pour tout entier n, il existe un nombre x,, tel que 1/p(x,) > n,
et puisque ¢ est continue, il existe tout un intervalle |u,, v, [ contenant x, sur lequel on a encore
1/¢(xz) > n, cest-a-dire ¢(x) < 1/n. Soit alors la fonction continue f, qui est nulle en dehors de
| un, vn [, qui vaut 1 en z, et qui est affine sur les intervalles [u,, x,,] et [zy, v,]. On a dans ce cas

[ fnlloo =1,
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et
1fnll = 1o falloo =  sup wwnm»g%

TE | Un, Un]

Il ne peut donc pas exister de constante K telle que, pour toute f de E

1 flleo < KN£I

et les normes ne sont pas équivalentes.

Exercice 62

Soit E 'espace vectoriel des fonctions f continues sur R et nulles en dehors d’un intervalle compact
(dépendant de f). Soit ¢ une fonction de E qui n’est pas la fonction nulle. Montrer que 'on définit
une application linéaire continue L, de £ dans E en posant, pour tout x réel

Ldﬁ@%=/f@—ﬂﬂﬂﬁ

et trouver la norme de L.

Solution
On suppose dans ce qui suit que ¢ est nulle en dehors de l'intervalle [c, d].
Soit f dans E, nulle en dehors de [a, b]. Alors la fonction sous le signe somme dans l'intégrale
Ly(f)(x) est nulle si t appartient a C[c, d] et  —t appartient a C[a, b] c’est-a-dire si ¢ appartient a
Clz — b,  — a]. Finalement L,(f)(x) est nulle si ¢ appartient a

Clz—b,2—a] UC[c,d] =C([z—b, z—a] N [c, d]).
C’est vrai en particulier lorsque [z — b, z —a] N [¢, d] est vide, c’est-a-dire lorsque

r—a<c ou d<z-—b,

ou encore
r<a4+c ou zxz>b+d,

finalement lorsque = appartient a C[a + ¢, b+ d]. Donc Ly (f) est nulle en dehors d’un intervalle com-
pact.

On montre maintenant que L (f) est continue.
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Si f est nulle en dehors de [a, b], elle est uniformément continue sur [a, b] et nulle en a et b. Donc,
pour tout € > 0, il existe a > 0 tel que |u — v| < v et u et v dans [a, b] impliquent

S
|f(u)_f(v)|§m

Alors, siu<a<wv<bet|u—v| <aonaaussi|ea—v| <adonc

=|f(w)| =1|f(a) = f(v <
[f(w) = f(0)| = [f(v)] = [f(a) = f(v)] < ol

Demémesia<u<b<wet|u—v| <aonaaussi|u—>b <adonc

[F(w) = F(0)] = | f ()] = |f(w) = f()] < ——
el

(La fonction f est uniformément continue sur R).

En particulier, si [z — y| < «, on aura pour tout réel ¢

[f(x—1) = fly—1)| <

9
el

et

Lo(@) = L) = [ 17z 1)~ fly - 0] o0 de <.

Donc Ly (f) est continue. C’est bien un élément de £. Comme par ailleurs L, est clairement linéaire,
il en résulte que c’est un endomorphisme de F et, en majorant |f(z —t)| dans I'intégrale par ||f||~, on
obtient

[Lo(2)] < I flleollollr s

et donc
I Zalll < ol -
Si n est un entier plus grand que 1 posons maintenant
p(—)
fo(@) = ——s——7—-
! [o(=z)| +1/n

C’est une fonction de E de norme infinie plus petite que 1. Alors

d d
”L<p(fn)Hoo - B - @(t)z
Izl > = > 1, £,)0) = / Fal~)p(t)dt = / ECEay- e

Izl > /‘ e /d (e - 2) a1 = ol - =,

En faisant tendre n vers I’ mﬁm, on en déduit

Ll = Il -

puis

Finalement

Ll = flllr -



Chapitre 6

Convergence uniforme

Dans ce chapitre on étudie la convergence uniforme de suites de fonctions.

Exercice 63

Etudier la convergence uniforme sur R des suites (fy)n>0 ; (gn)n>0 €t (hn)n>0 de fonctions définies
par
1 T sin nx

@)=y 0 b)) =y ) ) = oy
) @)=t D) @ = s 9 () = g

Solution

a) Pour tout z non nul, la suite (f,,(z)) converge vers 0, alors que la suite (f,,(0)) est la suite constante
égale a 1. La limite simple de (f,) n’est pas une fonction continue alors que les fonctions f, sont
continues sur R. La convergence ne peut étre uniforme.

b) Cette fois la suite (g, (z)) converge vers 0 pour tout z réel. Cherchons le maximum de g, sur [0, oo .
En dérivant

' (2) 1 —n2z?
)= ———-—,
In (1 + n22?)?
et g, admet un maximum en 1/n. On a alors pour tout z réel, en raison de la parité de gy,

1

Comme le membre de droite tend vers 0, la convergence est uniforme.

c) Ici aussi la suite (hy(z)) converge vers 0 pour tout x réel. Mais

sin 1
|hn(1/m)| = 5

et la suite (hy,) ne peut converger uniformément vers 0 sur R.
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Exercice 64
Etudier la convergence uniforme sur [0, co| de la suite (fy)n>0 de fonctions définies par

folz) =2 ne

Solution

En dérivant, on obtient ,
fr(@) = Vne ™ (1 —an?).

La fonction f,, atteint son maximume en 1/n? et

6_1

T 32

Sup | fo(@)| = fa(1/n?)

la suite (f,) converge uniformément vers 0 sur [0, oo .

Exercice 65
Etudier la convergence uniforme sur R de la suite (f;,)n>0 de fonctions définies par

e +n?_n

ent 4 n24n’

fu(z) =

Solution

Six > 0, on écrit

et la limite quand n tend vers l'infini vaut 1.

Si z <0, on écrit cette fois

en* 1
1+ — — =
1+ — + -

n n
et la limite vaut encore 1. Alors
2n
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Comme le membre de droite tend vers 0, la suite (f,) converge uniformément sur R vers la fonction
constante 1.

Exercice 66

Etudier la convergence uniforme sur R des suites (fy,)n>0 €t (gn)n>0 de fonctions définies par

a) fn(zr) =arctan(nxz) , b) gy(x) = zarctan(nx).

Solution

a) La suite (f,,(z)) converge vers

—7/2 si <0
flz) = 0 si x=0 ,
/2 si x>0

Comme f n’est pas continue, alors que les fonctions f,, le sont, la convergence n’est pas uniforme.

b) Cette fois la suite (g, (z)) converge vers

—xm/2 st <0
g(x) = 0 st z=0 ,
xm/2 st x>0
c’est-a-dire
(z) = = |2
g B .
Posons
hn =9 —34n,

et étudions cette fonction sur [0, oo | (cela suffit puisque h,, est impaire). On obtient en dérivant

hl (x) = g — arctan(nz) — % ,
puis
B (z) = N
M (14 n2a?)? '

La fonction h], est décroissante et sa limite en 400 est nulle, donc h], est positive et h,, est croissante
positive car h,(0) est nul. Alors, en utilisant, lorsque u est positif, la relation

T
arctan u + arctan — = 3
U
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on obtient

lg — gnlleo = xll)ngo hp(z) = xh_)nslowarctan — =

Comme le membre de droite tend vers 0, la convergence est uniforme.

Exercice 67

Etudier la convergence uniforme sur [0, 1[, puis sur [0, a] (0 < a < 1), de la suite (fy)n>1 de

fonctions définies par
fn(x) = n(z" — z"H1).

Solution

On a donc
fulz) =nz"(1 —2).

Le nombre f,(x) est nul si z vaut 0 ou 1. Donc la suite (f,(x)) converge vers 0 dans ces deux cas. C’est
encore vrai si x appartient a |0, 1] car la limite de la suite (nz™),>¢ est nulle. La suite (f,) converge
simplement vers 0. On obtient en dérivant

falz) =na""H(n — (n+1)z),

et cette fonction s’annule en n/(n + 1) ou f, atteint son maximum. On constate que

n n n+1 1 n+1
fn = =(1- 3
n+1 n+1 n+1

et la limite de la suite (f(n/(n+1))) vaut 1/e. La suite (f,) ne converge pas uniformément vers 0 sur
'intervalle [0, 1].

Sur [0, a]. Dés que n/(n + 1) est plus grand que a, on a

sSup fn(:E) = fn(a) )

z€[0,a]

et la suite (f,(a)) converge vers 0. Donc la suite (f,,) converge uniformément vers 0 sur [0, a].

Exercice 68

Soit @ < 1. Etudier la convergence uniforme sur | —1, 1[, puis sur [—a, a], de la suite (f,)n>0 de
fonctions définies par
fol)=14a+---+2".
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Solution
On a aussi »
1—am
fa(z) 1—2x
et, lorsque |z| < 1, la suite (f,(z)) converge vers
1
Alors
xn+1
F@) ~ fulw) = T
Sur l'intervalle | —1, 1[ le fonction f — f,, n’est pas bornée. Il ne peut y avoir convergence uniforme.
Par contre lorsque —1 < —a <z <a<1,ona
‘x’n+1 an+1
_ - < )

La suite (f,,) converge donc uniformément vers f sur [—a, a].

Exercice 69

Etudier la convergence uniforme sur R de la suite (f;,)n>0 de fonctions définies par

oz
1 4enx’

Solution

Comme la suite (™) a pour limite 400 si z > 0 et 0 si < 0, on en déduit que la suite (f,,) converge
vers 0 dans le premier cas, et vers z dans le second. De plus la suite (f,,(0)) est nulle. Il en résulte que
(fn) converge simplement vers la fonction f définie par

ra={ 9% ez

r si <0

c’est-a-dire
f(z) = inf(x,0).
Posons
gn = fn - f .

Six <0, alors —x >0 et
x —xe™® -
= — — T = =

14 em® 1+em® 1+4+em®

gn(w) = fn(w) - f(l‘) = fn(_w) = gn(_x) :
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La fonction g, est paire. On I’étudie sur [0, co[ ou f, = g, est une fonction positive. En dérivant, on
obtient ( )

1+e™(1 —nz
(@) = f1(e) = o

Pour u > 0, posons
h(u) =1+€e“(1 —u).

donc
h'(u) = —ue™.

La fonction h est décroissante. On a

h(0)=2 et lim h(u) = —oo0,

U—400

et la fonction h posséde un zéro et un seul, noté ug, qui est plus grand que 1, puisque A(1) = 1. Il en
résulte que ug/n est la seule racine de f). Alors, puisque

fn(0) = lim f,(x)=0

T—+00

la fonction f,, posséde un maximum en ug/n, et donc

1fn = Flloo = fulun/n) = ~ —20

nl+eu’

La convergence est donc uniforme.

Exercice 70

Etudier la convergence uniforme sur R de la suite (fy,)n>0 de fonctions définies par

nT
fn(iﬂ) T pdena’
Solution
On écrit
Fulz) = _r
" 14+em/n’

Comme la suite (¢"*/n) a pour limite +00 si > 0 et 0 si < 0, on en déduit que la suite (fy,)
converge vers 0 dans le premier cas, et vers x dans le second. De plus la suite (f,(0)) est nulle. I en
résulte que (f,) converge simplement vert la fonction f définie par

0 si >0
r si <0

)

)= {
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c’est-a-dire

f(x) = inf(x,0).

Posons
gn=In—[-
Siz<0,ona
gn(2)] = |ze®| < |ze™®| _ n[w\e2 nlel
n—+ e’ n n
Pour v > 0, posons
g(u) =ue ™.

On a donc
g'(u) =1 —-u)e™,

et ¢ admet un maximum en 1 qui vaut e~ '. Alors
1
)| < —5
90(0)] < —,
et le suite (f,,) converge uniformément vers f sur | —oo, 0].

Si z > 0, la fonction f,, = g, est positive. En dérivant, on obtient

n+e"(1 —nx)

gn(@) = fr(z) =n

(ﬂ/+-€"x)2
Posons
hp(xz) =n+ €™ (1 —nx),
donc
hl (x) = —nze™®.

La fonction h,, est décroissante. On a

hn(0) =n+1 et lim h,(zx)=—o0.

T—>—+00

Alors la fonction h,, posséde un zéro et une seul, noté u,, et f, admet un maximum en wu,, donc

0 < fu(@) < fr(un),

et
b (up) =n+ €™ —nue™" =0.
Alors nu
n —NUn
Up) = ——— =c¢ .
flun) = 2

Considérons maintenant la suite (,),>3 de nombre réels positifs définie par

B Inlnn

n
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Quand n tend vers l'infini, on a
hn(tn) =n+Inn(l —Inlnn) ~n,
donc ce nombre est strictement positif pour n assez grand et il en résulte que
0<ty, <uy,.
Alors

fn(un) — e~ Mun < e—ntn — e—lnlnn — ,
Inn

et le suite (f,) converge uniformément vers f sur [0, oo |.

En conclusion la convergence est uniforme sur R tout entier.

Exercice 71

1) Etudier la convergence uniforme sur [0, oco[ de la suite (fy)n>1 de fonctions définies par
folz) =1 —z)e™™".

2) Calculer la limite de la suite (I,,) définie par

2

In:/fn(:n)daz.

0

Solution

1) Comme la suite (—2™) a pour limite —co si z > 1 et 0si 0 <z < 1, on en déduit que la suite (fy)
converge vers 0 dans le premier cas, et vers 1 — x dans le second. De plus la suite (f,(1)) est nulle. I
en résulte que (f,) converge simplement vert la fonction f définie par

l—2 si 0<x<1
f(a:)—{ 0 si r>1

Posons

gn:fn_f-

Sio<zr<1l ona
lgn(2)| = (1 — =)™ —1].

Il résulte du théoréme des accroissements finis que, pour tout réel négatif u, on a

e = 1| < ul,
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d’ou
Si 'on pose

on obtient en dérivant
Bl (x) =na" ' —(n+ 12" = 2" (n— (n+ 1)),

et cette fonction s’annule en n/(n + 1). Alors h,, admet un maximum en ce point et

90(@)] < |0/ (0 + 1)) = — ( n )"s; !

n+1l \n+1 n+1"

La suite (fy) converge uniformément vers f sur [0, 1].

Siz > 1, on peut déja majorer la fonction en remarquant que l'on a toujours, pour u > 0,

1
e < —.
eu
En effet, si I'on pose,
g(u) =ue™,

on a donc

et ¢ admet un maximum en 1 qui vaut e~'.

On a alors
x—n

[fn(@)] = lgn(2)] < (z —1)

En étudiant maintenant le membre de droite de cette inéquation, noté h,(x), on obtient en dérivant

e

B (z) = é 10— (n— 1))

qui s’annule en n/(n — 1), et h, admet un maximum en ce point. Alors

9n(o)] < linlinftn = )] = s (22) s L

n n—1)’

et le suite (f,,) converge uniformément vers f sur [1, co|.
En conclusion la convergence est uniforme sur [0, co[ tout entier.

2) Comme la convergence est uniforme

2 1
h—>noloI": flx)de = [ (1 —2)de =
[
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Exercice 72

Etudier la convergence uniforme sur [0, co| de la suite (fy,)n>1 de fonctions définies par

n®+n
o) = o w
Solution
On peut écrire
1+n*1t
Inle) = T3 g

Puisque, si 0 < x < 1, la suite (n*~1) converge vers 0, alors la suite (f,(x)) converge vers 1.
On a également

14 n!t=®
) =
Puisque, si > 1, la suite (n'~%) converge vers 0, alors la suite (f,(z)) converge vers 1/x. Enfin la
suite (f,(1)) est constante et vaut 1.

Il en résulte que (fy,) converge simplement vert la fonction f définie par

1 st 0<z<l1
f(x)_{l/aj si x>1
Posons
9n = fn - f .
Lorsque 0 <x <1,0on a
(1 —z)n® -z _1
gu@) = = = —— L < (1 - o)
Lorsque = > 1,
n(x —1) x—1 -
= = <(r-1 v,
lgn ()] z(zn®+n)  z(l+zn*1) — (z=Dn
Donc, pour tout x > 0
|gn(@)] < |& = 1711
Si 'on pose, pour tout u > 0,
u —ulnn

hp(u) =un™" = ue ,

on obtient en dérivant
h! (u) =n""(1 —ulnn),



113

et cette fonction s’annule en 1/Inn. Alors h,, admet un maximum en ce point et

90(0)] = Bl = 1)) < a1/ l0m)| = ——,

et le suite (f,,) converge uniformément vers f sur [0, co|.

Exercice 73

Etudier la convergence uniforme sur [0, co| de la suite (f,)n>1 de fonctions définies par

falz) = (1 +2™)V".

Solution
Lorsque 0 <x <1,0n a
1< falz) <2'/7

et il résulte du théoréme d’encadrement que la suite (f,(z)) converge vers 1.

Lorsque x > 1, on écrit
1 1/n
folz) =2 <1+ﬁ> =xfn(l/x).

Alors, puisque 1/ > 1, la suite (f,(x)) converge vers z. La limite simple de la suite (f,,) est donc la
fonction f définie par

f(x) = max(1,z).

Sur [0, 1] on a
0 < ful@) = flo) <2V7 -1,

et sur [1, oo,
falz) = f(z) = fulz) — 2z =2(fu(l/2z) — 1) 2 0.

En dérivant f,,(x) — 2 on obtient
f{l(x) _ 1 — xn—l (1 + xn)—l-l-l/n _ 1 — (1 + :L,—n)—l-i-l/n _ 1 S 0
La fonction f, — f est décroissante sur [1, oo [, donc

sup(fo — £)(@) = (fo — 1) =27 — 1.

r>1

Alors,
sup | fo(@) — f(2)] =2Y" =1 = f,(1) — £(1),

x>0

et la suite (f,,) converge uniformément vers f sur [0, co.
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Exercice 74

Etudier la convergence uniforme sur [a, co[ (a > 0) de la suite (fy)n>0 de fonctions définies par

1+nx
S

Solution

On constate que (fn(x)) converge vers 1/x, si > 0, et vers 1/2 si x = 0. La suite (f,,) converge
simplement vers la fonction f définie par

0 si z=0
f(x):{l/aj si >0

Comme f n’est pas continue en 0, alors que les fonctions f,, le sont, la convergence ne peut étre uni-
forme sur [0, oo .

Maintenant si x > a > 0, on a

|z — 2| T+ 2 2 1 2 1
_ — < =(14+-) —<(14+=-)] —.
| fn(@) — f(2)] z(2+nx?) = z(2+ na?) T z) 24+ nx2 — + a) 2+ na?

Comme le membre de droite tend vers 0, on en déduit que la suite (f,) converge uniformément vers f
sur [a, oo].

Exercice 75

Etudier la convergence uniforme sur [0, co| de la suite (f,)n>1 de fonctions définies par

oy =i (a1).

Solution

On constate que (f,(x)) converge vers xlnz, si z > 0, et vers 0 si x = 0. La suite (f,,) converge
simplement vers la fonction f définie par

r@={ e 3520

zlnx si z>0



115

Alors, si x > 0,

n nx n

(@) — @) =2 <ln <x+3> —lnx> —2n <1+ i) — L,

h(x)len(l—k%).

La fonction h est positive et au voisinage de U'infini

1
hz)~z—=1
(0) ~oo =1,

donc h est majorée sur |0, co| par une constante K. Alors, pour tout x > 0,

fule) — f@) <

n

ce qui reste vrai si = 0. La suite (f,,) converge donc uniformément vers f sur [0, co|.

Exercice 76

Etudier la convergence uniforme sur [—a, a] (a > 0), puis sur R, de la suite (f,)n,>1 de fonctions

définies par
na + sin? na

r) = —.
fn(2) n + sin? nx
Solution
En écrivant
sin2 nz
T+
falz) = ———8—,
sin® nx
1+
n

2

on constate, puisque la suite (sin”nzx) est bornée, que la suite (f,(z)) converge vers f(z) = .

Alors | | sin” | | _ =]
T — 1|sin“ nx rz—1 |+ 1
x)— flx)| = < < .
[Ful2) = f(@) n+sin?nz - n T n
Dong, si |z] < a
a+1
fule) = (@) < =

La suite (f,) converge uniformément vers f sur [—a, a]. Par contre

. T <n7r—1+l>sin2(n27r+z) mr—l—l—1
fn(nw—k—)—(mr—l——)‘: 2n — 2/ _ 271,
2n 2n n + sin? <n27r + 5) n+l
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et cette suite converge vers 7. Il ne peut y avoir convergence uniforme sur R.

Exercice 77

Soit (up)p>1 une suite numérique de limite u et (vy)p>1 une suite numérique de limite v > 0.
Montrer que la suite (fy,)n>1 de fonctions définies par

T+ Up
T+ Up

ful(z) =

converge uniformément sur [0, oo .

Solution

La suite (vy,) est strictement positive & partir d’un certain rang ng. On suppose n > ng pour définir
fn- La limite simple est la fonction f définie par

T+ u
J@) = r4+v
Alors
a(un —u 4 v —vn) Fupv —vpu|  x(Jup — ul + v, — vl) |unv — vnul
[fnl@) = f(2)] = (x + vp)(z +0) ~ (z4v)(z+0) (x +vp)(z+v)’

et en minorant (x + vy,)(z + v) par xv ou par v,v, on obtient

[t — u| + v, — | N [unv — vpul

[fn(z) = f(2)] <

v U

Comme le membre de droite tend vers 0, on en déduit que (f,) converge uniformément vers f sur
I'intervalle [0, oo .

Exercice 78

Etudier la convergence uniforme sur [0, co[, puis sur [0, a] (0 < a < 1) et sur [a, oo (a > 1),
de la suite (fy)n>1 de fonctions définies par

0 si =0
Jnlz) = { sin(re2~*" ") si x>0
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Solution

Lorsque x est distinct de 0 et 1, la suite (z" + ™) a l'infini pour limite et (f,(z)) converge vers 0.
Par ailleurs f,,(1) et f,,(0) sont nuls. Donc la suite (f,,) converge simplement vers 0. Cependant

fn(21/") = sin(we‘1/2) ,

et la suite (f,,) ne peut pas converger uniformément vers 0 sur [0, oo,

En utilisant le fait que, pour tout nombre réel u, on a
|sinu| < |ul,

on obtient sur |0, a],

|[fal2)] < 7™ 70" <meTT T

donc

n

[fu(@)] < me?™ ",
ce qui reste vrai si = 0, et le membre de droite tend vers 0. La suite (f,,) converge donc uniformément

vers 0 sur [0, a].

Sur [a, co[, on a de méme

n

’fn(x)‘ < 7_[_62—:(:”—:(:*” < 7T62—:(:” < 7_‘_62—11 ,

et le membre de droite tend vers 0. La suite (f,,) converge donc uniformément vers 0 sur [a, oo |.

Exercice 79

Etudier la convergence uniforme sur [0, oo [, puis sur [0, a] (0 < a < 1) et sur [a, oo (a > 1),
de la suite (fy)n>1 de fonctions définies par

1 si x=
= 4
fn(x) cos __r si x>0
x4+ "

Solution

Six # 1, la suite (2" +2~™) a I'infini pour limite et donc (f,(z)) converge vers cos 0 = 1. Par ailleurs
fn(1) = cos 2w vaut 1, ainsi que f,(0), donc la suite (f,,) converge simplement vers 1. Cependant

)

et la suite (f,) ne peut pas converger uniformément vers 1 sur [0, oo [.
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En utilisant le fait que, pour tout nombre réel u, on a
|cosu — 1| < ul,

on obtient sur ]0, a],

4
|fn($) — 1| S m S 471'(13” S 47T(1n,

ce qui reste vrai si x = 0, donc le membre de droite tend vers 0 et la suite (f,,) converge uniformément
vers 1 sur [0, a].

Sur [a, co[, on a de méme

47

perpp— <Arz™" < 4ma” ",
"+

’fn(x) - 1‘ <

et le membre de droite tend vers 0. La suite (f,,) converge donc uniformément vers 1 sur [a, oo ].

Exercice 80

Etudier la convergence uniforme sur [0, oo[, puis sur [a, co] (a > 0), de la suite (f,)n>0 de

fonctions définies par
27

14+nz’

fn(x) =sin

Solution

Si x est non nul, la suite (f,(x)) converge vers 0, ce qui est encore le cas si z est nul car f,,(z) = sin 27
est nul pour tout n. Donc la suite f,, converge simplement vers 0 sur [0, oco|.

On constate que
2
fn(2/n) = sin g ,

et donc la suite (f,,(2/n)) ne converge pas vers 0. On ne peut avoir convergence uniforme sur [0, oo .

Sur [a, oo, en raison de l'inégalité
|sinu| < |ul,
on obtient
27 27
| < < .
l+nx — 1+4+na

| fn ()

Comme le membre de droite tend vers 0, la suite (fy,) converge uniformément vers 0 sur [a, oo [.
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Exercice 81

Etudier la convergence uniforme sur [0, co[, puis sur [a, co] (a > 0) de la suite (fp)p>0 de

fonctions définies par
7+ n2z?
n 72 .
1+n°x

fn(x) =5l

Solution

Si x est non nul, la suite (f,(x)) converge vers sinx, ce qui est encore le cas si x est nul car
fn(x) = sinm = sin0 est nul pour tout n. Donc la suite (f,) converge simplement vers la fonction
f qui & x associe sinz sur [0, oo .

On constate que

et donc la suite (f,(1/n?) — f(1/n?)) converge vers 1 et pas vers 0. On ne peut avoir convergence
uniforme de (f,) vers f sur [0, co].

I1 résulte du théoréme des accroissements finis que, quels que soient les réels u et v, on a
|sinu — sinv| < |u — vl

et donc, sur [a, oo,

|[fn(z) = f2)] <

7+ n2z? I R e | ™ 1 ™
n?a’

<4
1+ n2x 2 n2g — n?

1+n2x — n2z n

Comme le membre de droite tend vers 0, la suite (f,,) converge uniformément vers f sur [a, oo .

Exercice 82

Soit f une fonction numérique continue non constante sur [0, oo telle que

Jim_ f(z) = f(0).
Etudier la convergence uniforme sur [0, co[, puis sur [a, co] (a > 0), de la suite (fy)n>0 de
fonctions définies par
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Solution

f(0)

Si x est non nul, la suite (f,,(x)) converge vers f(0), ce qui est encore le cas si = est nul car f,,(0) =
pour tout n. Donc la suite (f,) converge simplement vers la fonction constante f(0) sur [0, oo [.

On a
sup | fn(z) — f(0)] = sup |f(nx) — f(0)| = sup|f(z) — f(O)],

>0 >0 x>0

et si f n’est pas constante ce nombre n’est pas nul. On ne peut avoir convergence uniforme de (fy,)
vers f(0) sur [0, oo].

Pour tout € > 0, il existe K tel que x > K implique

[f(z) = fO) <e.

Alors, sin > K/a et siz > a, on a nz > K et

[fn(z) = F(O)] = [f(nx) = fO)] <e.

La suite (f,,) converge uniformément vers f(0) sur [a, oo .

Exercice 83

Soit f une fonction numérique continue en 0 et non constante. Etudier la convergence uniforme sur
R, puis sur [—a, a] (a > 0), de la suite (fy,),>1 de fonctions définies par

fala) = f(x/n).

Solution
La suite (fy) converge simplement vers la fonction constante f(0).

On a
sup | fn(z) — f(0)] = sup |f(z/n) — f(O)] = sup |f(z) = f(O)],

r€R
et si f n’est pas constante ce nombre n’est pas nul. On ne peut avoir convergence uniforme de f,, vers

£(0) sur R.

Pour tout £ > 0, il existe « tel que |z| < a implique

[f(z) = f(O) <e.

Alors, sin > a/a et si x| < a,on a|z|/n < aet

[fu(@) = fO)] = [f(z/n) = FO)| <e.
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La suite (f,) converge uniformément vers f(0) sur [—a, a].

Exercice 84

Soit f une fonction numérique continue sur [0, oo [. Etudier la convergence uniforme sur [0, K|
de la suite (fy)n>1 de fonctions définies par

folz) = f(x+1/n).

Donner un exemple ot 'on a convergence uniforme sur [0, co[ et un exemple ou l'on n’a pas
convergence uniforme sur [0, oo .

Solution
La suite (f,) converge simplement vers f.

Comme f est continue sur R, elle est uniformément continue sur le compact [0, K + 1]. Pour tout
e > 0, il existe a tel que si x et y sont dans [0, K + 1] tels que |z — y| < «a, on ait

[f(@) = fly)l <e.

Alors, sin > 1/« et si x appartient & [0, K ], le nombre z + 1/n appartient & [0, K + 1], et

[f(z) = fle+1/n)] <e.
On a donc convergence uniforme de la suite (f,) vers f sur [0, K].

Si f est uniformément continue sur [0, oo, le calcul précédent et sa conclusion subsistent en rempla-
cgant [0, K 4+ 1] par [0, co[. C’est le cas par exemple de la fonction sinus puisque, quels que soient
les réels u et v,

|sinu — sinv| < |u —v|.

Par contre, si f(z) =€”, on a

fal@) = f(z) = €"(/" = 1)

et cette fonction n’est pas bornée sur [O, 0 [, donc on ne peut avoir convergence uniforme dans ce
cas.
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Exercice 85

Etudier la convergence uniforme sur R de la suite (f;,)n>1 de fonctions définies par
2
T 1 1
fn<:c>=1n<ew2+—+—2> L
n on n
Trouver la limite de la suite (I,,) définie par

1

In:/fn(:n)daz.

-1

Solution

La suite (fy,(z)) converge vers
f(z) =22,

Posons

hn(ac):f(x)—fn(x):w2—1n<e$2+%2+ 1>+l=%—ln<1+<%2+%>e_x2>,

n2 n

et étudions le signe de cette fonction sur [0, co[. (La fonction est paire). En dérivant la premicre
expression, on obtient

1 1
’
h, (x) =2x — 2z o = " nl
2 2
er —|——+—2 x+_+_2
n n n n

La dérivée s’annule en u,, = /1 — 1/n. Elle est négative sur [0, u, | et positive sur [u,, co[. Donc
f — fn est décroissante sur le premier intervalle et croissante sur le second, et f — f,, atteint son
minimum en u,. Ce minimum vaut

(f = fo)(up) = % —In <1 + %e—l-i-l/n) '

En majorant e~/ par 1, et compte tenu du fait que 0 < In(1+4¢) <tsit>0.On obtient alors

1
—ln<1+—>20,
n

0< f(z)— falz) = % —In <1+ <””—2+ %) e-x2> <

SRS

et f — fn est positive. On a donc



et la convergence est uniforme sur R. Alors

1 1
2
lim I, :/ lim f,(x)de = /3:261:13 =-.
n—00 n—00 3
21 21
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Exercice 86

Soit h une fonction continue positive sur R telle que

1
_/1h(a:)dx:1,

et soit f continue sur R. Montrer que la suite (fy)n>1 de fonctions définies sur R par

1/n

fn(z) =n / f(x —t)h(nt)dt.

—-1/n

converge uniformément vers f sur tout intervalle [—K, K.

Solution

En effectuant le changement de variable x = nt, on constate que

1/n 1
n / h(nt)dt:/h(ac)dle.
—1/n -1
On a alors
1/n 1/n 1/n

[ful(z) = f(z)] = |n / f(z = t)h(nt) dt — f(z)n / h(nt) dt| <n / [f(z =) = f(x)[ h(nt) dt .

—1/n —1/n —1/n

Comme f est continue sur R, elle est uniformément continue sur [—K — 1, K + 1]. Pour tout € > 0,

il existe a > 0 tel que, quels que soient x et y dans [—K — 1, K + 1] vérifiant |z — y| < a on ait

[f(@) = fly)l <e.

Soit n > 1/a. Si x appartient & [—K, K|, alors, si t appartient & [—1/n, 1/n], le nombre = —t

appartient & [—K — 1, K + 1]. Il en résulte que
[f(x—t) = f(@)] <e,
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et
1/n

fulz) — f(z)] < en / h(nt)dt =
—1/n

On a donc bien la convergence uniforme sur [—K, K].

Exercice 87

Etudier la convergence uniforme sur [0, oo [, puissur [0, a] (a > 0), de la suite ( f,,)n>1 de fonctions
définies par

n

fn(x) = tan (arctana: — l) )

Solution

La suite (f,) converge simplement vers la fonction f : z + x. En utilisant la formule de développement

tana + tan b
t b)y=———,
anfa + ) 1 —tanatanb

on obtient
z—tan(l/n) (2 +1)tan(1/n)

L+axtan(l/n) 1+ ztan(l/n)

f(@) = falz) =2 —

Lorsque x tend vers U'infini f(x) — f,,(z) est équivalent & x et la fonction n’est pas bornée sur [0, oo,
donc il ne peut y avoir convergence uniforme sur cet intervalle. Par contre sur [0, a]

|fa(z) = f(2)] < (2 + 1) tan(1/n) < (a* + 1) tan(1/n),

et la convergence est uniforme.

Exercice 88

Etudier la convergence uniforme sur [0, 7] de la suite (fy,)n>1 de fonctions définies par

n

fn(x) = arcsin (sinaj — l) )

Solution

On remarque que la fonction f, vérifie la relation

folm —x) = fo(x).
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La limite simple vérifie donc la méme relation. La suite f,, converge simplement vers la fonction f qui
vaut x sur [0, 7/2] et donc m —x sur [7/2, 7].

Posons
9n = f - f n-.
Sur le premier intervalle
1—(sinz —1/n)2 —+/1—sin’z
o () Cos T cos T ~ cost V1—( /n)

B V1—sin2z +/1— (sinz —1/n)? \/1—sin2x\/1—(sina:—1/n)2
Puisque le nombre cos z est positif, le signe de g/,(x) est celui de la différence

D =/1—(sinz —1/n)2 — V1 —sin’z

c’est-a-dire aussi le signe de la différence des carrés

1Y o 9 o N
1—|sine——) —(1—sin“z)=sin“z— (sinx —— ) =— (2sinz——| .
n n n n

La dérivée s’annule en u,, = arcsin(1/2n) et la fonction g, est décroissante sur [0, u,] et croissante
sur [up, 7/2]. Puisque

1
gn(uy) = 2arcsin o 0,
la fonction g, est strictement positive. Alors
0< gn(:n) < max(gn(0)7gn(77/2)) )
puis, en raison de la symeétrie,

1f = frlloo < max(gn(0), gn(7/2))

et la suite (f,,) converge uniformément vers f sur [0, 7].

Remarque : on peut montrer que 'on a en fait
(1) gn(0) = arcsin(1l/n) < w/2 — arcsin(l — 1/n) = gp(7/2).

Tout d’abord

.1 o 1 1
08 gn(0) = cosarcsin — = 4/1 — sin®arcsin — = /1 — —,
n n n

1 1 1
cos gn (m/2) = cos <E — arcsin <1 — —>> = sin arcsin <1 _ _> —1_ =
2 n n n

Alors, puisque la fonction cosinus est décroissante sur [0, /2], en prenant le cosinus des deux membre,
démontrer (1), revient & montrer que

et
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ou encore, en élevant au carré, que

c’est-a-dire

2
n?’

SN

>

ce qui est vrai pour tout entier n strictement positif.

On a donc
If — folloo = m/2 — arcsin(1 — 1/n).

Exercice 89

Etudier la convergence uniforme sur [0, oo [, puissur [0, a] (a > 0), de la suite ( f;,),>1 de fonctions
définies par
fu(z) =n%1n (1 + E) —nx.
n

Solution

En utilisant le développement limité en 0 de In(1 + ), on obtient, si  est fixé et n tend vers l'infini,

Posons )

gn(x) = fn(z) — f(2) = n? In (1 + %) —nx + %

On obtient en dérivant,

n? 22
—-n+x= >0
T+n r+n

, —
La fonction g, est donc croissante. Par ailleurs, en écrivant

2 2
x 2n T 2n
gnl®) =5 <1+?1“(1+;)—?>’

on obtient, quand x tend vers I'infini pour n fixé,
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et la fonction g, n’est pas bornée. Il ne peut y avoir convergence uniforme sur [0, co[. Par contre
comme g, (0) est nul, la fonction g, est croissante positive et sur [0, a]

|9n ()] < gn(a).

La convergence est donc uniforme sur cet intervalle.

Exercice 90

Etudier la convergence uniforme sur R de la suite (f;,)n>1 de fonctions définies par
25

fn(z) = (e

En déduire la limite de la suite (1,,) définie par

15

In:/fn(:n)daz.

0

Solution

La suite (fy(z)) converge vers 0 pour tout = réel. On obtient en dérivant

£ () 5x4(1 + 22)" — 2zn(1 + 22)" 125 5 (2n —5)2?
x - =
" (1 + 22)2n (14 a2)ntl

Lorsque n > 3, la dérivée s’annule en

5
2n—>5"

Ty =

et le maximum de f,, est obtenu en ce point. Donc

d 5 5/2
ol = Faten) = s <0 = (5 ) -

I ;

Comme le membre de droite tend vers 0, la suite (f,,) converge uniformément vers 0 sur R, donc aussi
sur [0, 15], et la suite (I,,) converge donc vers 0.
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Exercice 91

On veut étudier la convergence uniforme sur [0, oo | de la suite (fy,)n>1 de fonctions définies par

2"+ n
o) =~
1) Trouver la limite simple.
2) Montrer la convergence uniforme sur [0, 1].
3) Pour n > 3, on pose
Inlnn
t, =1+ .
n—1

Sur [1, co[, montrer que la fonction g, = f — f,, a un zéro et un seul, noté s, et que, pour n assez
grand,
Sp >ty > 1.

4) Montrer que
Gn(sn) = s " <t,7"

et en déduire la convergence uniforme de la suite (f,,) sur [0, co[.

Solution

1) La suite (f,) converge simplement vers la fonction f définie par

1 si 0<z<1
T si z>1

)= {

On a donc
f(z) =sup(l,2).

2) Etudions la convergence uniforme sur [0, 1]. On a

" — "t (1 - 2)

(@) = fula)] = = < %

" +n " +n

La convergence est donc uniforme sur cet intervalle.

3) Sur [1, oo, posons

n(x —1)
an+n

gn(x) = f(x) = fal2) =

En dérivant on obtient

En posant maintenant
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et en dérivant, on trouve,
vl (x) = n(n —1)z"2(1 —x) <0.

n

La fonction v, décroit strictement sur [1, co[. Comme v, (1) = n + 1 est positif, et que v,(z) tend
vers —oo quand z tend vers 400, la fonction v, s’annule une fois et une seule en un point s, de |1, co|.

Calculons vy, (t,). La suite (¢,) converge vers 1 par valeurs positives, donc

Up(ty) = tz_l(n —(n—1ty) +n
n—1
_ <1+1;11_HT> (1—Inlnn) +n

1—1Inl Inl
= n[l—l—in nn exp <(n—1)ln<1—|— nnn))} .
n n—1

n
) converge vers 0, on a

Inlnn Inlnn Inlnn\?2
In{1+ = 4o ,
n—1 n—1 n—1
2 2
t" ! =exp (Inlnn 4o (Inlnn)= = (Inn) exp | o (nlnn)” .
n—1 n—1

vn(th) = n {1 L Llzminn g ) exp <o (M»] ,

Comme la suite (
n p—

et donc

Alors

n n—1

ce que 'on peut encore écrire

) [ L ()]

Alors I'expression entre crochets tend vers 1 et
Un(tn) ~n.

Il en résulte que pour n assez grand vy, (t,) est positif et donc que
1<t, <s,.

4) Par définition v, (sy,) est nul, donc

ou encore

Alors
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Comme le membre de droite tend vers 0, on en déduit que la suite (g, (s,)) converge vers 0 et donc
que la suite (f,,) converge uniformément vers f sur [1, co[ et finalement sur [0, co.

Exercice 92

Etudier la convergence uniforme sur [0, co| de la suite (f,)n>1 de fonctions définies par

fn(x):{ (1_%)” si 0<z<n

0 si r>n

Solution

Remarquons que, pour z fixé, dés que n > x, alors

ful@) = (1=2)"

n
et la suite (f,(x)) converge vers
flz)=e™".
Posons
g =T = fn-

Tout d’abord, si z > n,
0<gp(x)=e"<e " =gyn).

Le maximum de |g,| sur R est atteint sur [0, n]. Ensuite, si 0 < z < n, on obtient en dérivant,

r\n—1 _
@) =(1-2)" -
Comme la fonction In est croissante, la fonction g/, est du méme signe que la fonction h,, définie par
x\n—l T
hn(aj):ln<1——> —lne_w:(n—l)ln<1——)—|—3:,
n n
dont la dérivée vaut 1
—x
h! = .
n(?) = ——

Sin > 1, la fonction h, est croissante sur [0, 1] et positive puisque h,(0) est nul. Elle est décroissante
sur [1, n] et, puisque sa limite en n vaut —oo, elle s’annule une fois et une seule pour un nombre
sp > 1. Il en est donc de méme pour ¢,. En particulier, puisque g, (s,) est nul, on a

(1 — s—n)n_l =e .
n

Alors

—Sn

Sn\"™ s Sp €
gn(sn) =€ " — <1 N —") — e 5 _ g0 (1 - _n> —2n
n n n
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Mais la fonction qui & x associe xe™* posséde un maximum en 1 et est donc majorée sur [0, oo [ par

e~ L. Alors 1
gn(Sn) = 7”L_ .

— O

Enfin, g, est croissante sur [0, s, ], décroissante sur [s,, n]. De plus ¢,(0) et g,(n) sont positifs,
donc la fonction gy, est positive sur [0, n]. Finalement, pour tout = > 0,

0< f(2) — fulz) < -,

ne

et la suite (f,,) converge uniformément vers f sur [0, co[.

Exercice 93

Soit (u,) une suite numérique de limite nulle et f une fonction numérique uniformément continue
sur R. Montrer que la suite (f,,) de fonctions définies par

fu(z) = f(x + uy)

converge uniformément vers f sur R.

Solution

Quel que soit € > 0, il existe a > 0 tel que |x — y| < a implique

[f(z) = fy)l <e.

Il existe N tel que n > N implique
lun| < .

Alors, pour tout nombre réel z, on a

[fn(@) = f(2)] = [f(z +un) — f(z)| <€,

ce qui montre que la suite (f,) converge uniformément vers f.

Exercice 94

Soit (uy) une suite de fonctions numériques continues définies sur [0, 1] et vérifiant les propriétés
suivantes :

a) la suite (u,,) est uniformément bornée sur [0, 1] ;

b) la suite (uy,) converge uniformément vers 0 sur tout intervalle [a, 1], 0u 0 < a < 1.

Soit f une fonction continue sur [0, 1] et nulle en 0. Montrer que la suite (fu,) converge unifor-
mément vers 0 sur [0, 1].
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Solution

La propriété a) signifie qu’il existe M > 0 tel que, pour tout entier n et tout nombre x de [0, 1]

Comme f est continue sur [0, 1] elle est bornée, donc il existe m > 0 tel que, pour tout nombre x de
I'intervalle [0, 1]
[f(z)] <m.

Comme f est continue et nulle en 0, pour tout € > 0, il existe a tel que, 0 < x < « implique

€

Alors, sur [0, «],
F@)un(@)| < 7 M =e.

La suite (u,) converge uniformément vers 0 sur [«, 1], donc il existe N tel que n > N et x dans
[, 1] impliquent

Alors, sur [a, 1],

Finalement, pour tout = de [0, 1],
|f(@)un(z)] < e

ce qui montre que la suite (fu,) converge uniformement vers 0 sur cet intervalle.

Exercice 95

Soit (u,) une suite de fonctions numériques continues définies sur un intervalle I non vide, qui
converge uniformément vers u sur I, et f une fonction uniformément continue sur R. Montrer que
la suite f o u, converge uniformément vers f owu sur I.

Solution

La fonction f est uniformément continue, donc, pour tout € > 0, il existe a > 0 tel que |s — t| < «
implique

[f(s) = fB) <e.

La suite (u,) converge uniformément vers u, donc il existe N tel que n > N et = dans I impliquent

lup(z) —u(z)| < .
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Alors
|flun(2)) — flu(z))| < e

et la suite (f ouy,) converge uniformément vers f o wu sur I.

Exercice 96

Soit (uy,) une suite de fonctions numériques continues sur R, qui converge uniformément vers u sur
R. On suppose que u est majorée. Montrer que la suite (") converge uniformément vers e* sur R.
Donner un contrexemple si u n’est pas bornée

Solution
Si u est majorée, il en est de méme de e*. Soit alors M le maximum de e*. On écrit
eln —e' =e(e" " —1).

En raison de la continuité en 0 de la fonction exponentielle, pour tout € > 0, il existe o > 0 tel que
|z| < a implique

€
1< —.
e 1] < =
Puisque (u,,) converge uniformément vers u, il existe N tel que n > N implique
lun () —u(z)] < a.

Alors

IN
™

et la suite (e") converge uniformément vers e sur R.

Si 'on pose

up(z) =2+ — et u(z)==x,
n
la suite (u,) converge uniformément vers u sur R. Mais

eun(:c) . eu(x) — e:c(el/n . 1)7

et la fonction e“» — e* n’est pas bornée sur R.
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Exercice 97

On définit une suite de fonctions continues sur [—1, 1] en posant, ug = Id, et si n > 1,

LT
Uy, = sin Eun_l .

Etudier la convergence uniforme de la suite (u,) sur les intervalles fermés inclus dans [—1, 1].

Solution
Posons
A
f(z) =sin (— :n) .
2
L’application f est une bijection strictement croissante et impaire de [—1, 1] dans lui méme qui
conserve les intervalles [0, 1] et [—1, 0].

Posons g = f — Id. On a donc
"(z) = T cos (W ac) 1
IW =5 %3 '
Dans lintervalle [0, 1], ¢’ s’annule en un point « et un seul

2 2

G — — arccos —.
™ ™

Puisque la fonction cosinus est décroissante sur [0, /2], on en déduit que sur [0, «] la fonction ¢’
est strictement positive, donc g est strictement croissante, et sur [«, 1] la fonction ¢’ est strictement
négative, donc g est strictement décroissante. De plus g s’annule en 0 et en 1. Elle est donc positive
sur [0, 1]. Finalement, en utilisant de plus le fait que g est impaire,

f(z) >x sur ]0,1]
flz) <z sur |—1,0]
f(z)=2 en —-1,0,1

La suite u,, est alors définie par ug = Id et, sin > 1,
Up = foUp_1.

Si z appartient a ]0, 1[, une récurrence immédiate montre que la suite (u,(x)) est strictement crois-
sante. Comme elle est majorée par 1, elle converge vers une limite qui est un point fixe de f dans
10, 1]. La limite est donc 1. Par symétrie, la suite converge vers —1 si z appartient & | —1, 0[. Enfin
la suite est constante si x appartient a {—1,0,1}. Donc (u,) a pour limite simple la fonction ¢ définie
par
1 si x€]0,1]
lz) = 0 si x=0
-1 si ze [-1,0]
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Dés que l'intervalle [a, b] contient 0 la fonction £ n’est pas continue sur [a, b] et la convergence n’est
pas uniforme.

Soit x dans U'intervalle [a, b] inclus dans |0, 1[. On a, puisque toutes les fonctions u, sont croissantes
(comme composées de fonctions croissantes),

up(a) <up(z) <1,

et donc
lup(z) =1 =1 —up(z) <1 —wuy(a).

Il en résulte que la suite (u,) converge uniformément vers 1 sur [a, b]. Par symétrie elle converge
uniformément vers —1 si [a, b] est inclus dans [—1, 0.

Exercice 98

On définit une suite de fonctions continues sur [0, 1] en posant, ug = Id, et sin > 1,
2
u
Up = 1— 7” i

Montrer que la suite (u,) converge uniformément vers une fonction constante que I'on déterminera.

Solution

Posons

2

f(x)zl—?.

La fonction f est décroissante sur [0, 1]. On a successivement

FC10,1]) = [f(1), F(O)] = [1/2, 1],

puis
f(11/2,1]) = [ (1), f(1/2)] = [1/2,7/8],
et ensuite

FOI/2,7/8]) = [f(7/8), F(1/2)] = [79/128,7/8] C [1/2,7/8] .

Il en résulte par récurrence que pour tout n > 2,

<up(x) <

N =
ol =3

D’autre part, sur l'intervalle [1/2, 7/8], on a

7
FEl=s<i<t,
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et la fonction f est contractante.
On peut alors appliquer le théoréme du point fixe. (Voir ex 8)

On concidére l'espace vectoriel normé complet € ([0, 1],R) muni de la norme infinie. L’ensemble F’
des fonctions u comprises entre 1/2 et 7/8 est une partie fermée, et Papplication ® qui & u associe

O(u) = fou

est une application de F' dans F'. Comme f est contractante, on a aussi, quels que soient u et v dans F',

F oula) — F ov(a)] < £ luta) — o),
donc .
[9() ~ @)oo = [ o~ f 0 vl < & 1 — vl

et @ est contractante. Alors, puisque
Up = q)(un—l) 5

la suite (uy,)n>2 converge vers le point fixe £ de ®. On a donc

L=9(0),
et, pour tout x de [0, 1],
Y 2
Uz)=1— (‘;)
Mais I’équation
r=1- m_2
B 2

a comme unique solution dans [0, 1] le nombre v/3 — 1. Donc £ est la fonction constante v/3 — 1.



Chapitre 7

Espaces d’applications (bi)linéaires

Exercice 99

1) Soit (E1,]|.[1) et (Es, ||.||2) deux espaces normés, et ® une application bilinéaire de E; X Fy dans
un espace normé (F, ||.|]).

Montrer que ® est continue si et seulement si 'une des deux propriétés suivantes est satisfaite :
(i) @ est continue en (0,0);
(i) il existe une constante K telle que, pour tout couple (A, B) de E; X Fs,

12(A, B)|| < K [[A]l1[|Bll2 -

2) Montrer que ’on définit une norme sur 'espace B(FE1, Es; F') des applications bilinéaires continues
de 1 X E5 dans F' en posant
|2(4, B)|

@[l = :
420,820 [[All1]|Bll2

Solution
1) Si @ est continue sur E; X Es, elle est bien str continue en (0,0) et 'on a (i).

Si @ est continue en (0,0), alors, il existe 1 et 9 strictement positifs, tels que, [|[Ul|1 < ry et |V < ro
impliquent

[eU, V)| <1.
En particulier, si (A, B) appartient & Ey x Fs, et si A et B ne sont pas nuls, on pose

T2

U = —
1B][2

A et V B,

1Al

et I'on obtient deux vecteurs tels que

(Ui =71 et [V]2=ra,
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donc o
(U, V)| = —12||®(A,B)| <1,
d’ott 'on déduit
’ o r1ro

ce qui reste vrai si A ou B est nul. On a donc (ii).

Si (ii) est vérifié, alors, en écrivant

O(A, B) — ®(Ag, By) = ®(A— Ay, B)+ ®(Ag, B— By)
= ®(A— Ay, B— By) + ®(A— Ay, By) + ®(Ao, B — By),

on majore
[®(A, B) — ®(Ao, Bo)|| < K(||A— Aoll1[|B — Boll2 + [|A — Aol[1 ]| Boll2 + | Aoll1/| B — Boll2) -

On en déduit que ®(A, B) tend vers ®(Ag, By) lorsque A tend vers Ay et B vers By. L’application
bilinéaire ® est donc continue.

2) Si |||®]|| est nul, alors ®(A, B) est nul quels que soient A et B non nuls, ce qui reste vrai si A ou B
est nul puisque @ est bilinéaire. Donc ® est la forme bilinéaire nulle. Les autre propriétés de la norme
résultent de celles de la borne supérieure.

Exercice 100

1) Soit (E1, ||.]]1) et (Ea, ||.||2) deux espaces normés de dimension finie, et ® une application bilinéaire
de E; X Ey dans un espace normé (F,|.||). On pose, pour tout A de E;

N(A) — sup 12D

+ [| A1 -
Mo [IM]l2

Montrer que 'on définit ainsi une norme sur E.
2) Montrer qu’il existe une constante K telle que, quels que soient A et B dans F,

12(A, B)|| < KAl [|Bl2 -

Que déduit-on de 'exercice précédent ?
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Solution

1) Soit A fixé dans E;. Comme F5 est de dimension finie, ’application linéaire qui & M dans FE, associe
®(A, M) est continue sur Fs. Il existe donc une constante H telle que, pour tout M de Ej,

@A, M)|| < H [|M]2,

ce qui montre que N(A) est fini.

Si N(A) est nul, alors ||A]|1, donc A, est nul, et 'on vérifie facilement les deux autres propriétés qui
font de N une norme.

2) Sur l'espace Ej de dimension finie, les normes N et ||.||; sont équivalente et il existe une constante
R telle que, pour tout A de Ej,

N(A) < R||Allx,
d’ou 'on déduit 1B (A, M)
sup ———— < (R—1)||Al]1 -
Mo |[IM]|l2
Donc, pour tout B de Es, on a
[2(A, B)||
e < (B=DIAlL,
| B]l2

et en posant K =R —1
[2(A, B)|| < K[| A1 Bl[2 -

D’aprés I'exercice précédent, cela signifie que ® est continue. Donc, toute application bilinéaire sur des
espaces de dimension finie est continue.

Exercice 101

Soit E/ un espace vectoriel normé.

1) Montrer que pour tout élément e de E, il existe un élément ¢, de E’ tel que

pe(e) = llell et el = 1.

(N.B. Cette question nécessite d’utiliser le théoréme de Hahn-Banach).
2) Montrer que E s’envoit isométriquement dans E” et L(E, E) dans L(E, E").
3) Montrer que les espaces L(E, E"), L(E', E'), B(E, E') sont isométriquement isomorphes.

Solution

Pour simplifier les notations, toutes les normes de ces différents espaces seront notées ||.|.
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1) Soit e dans E. Considérons la droite vectorielle F' engendrée par e. Soit €’ la forme linéaire sur F
telle que

e'(e) = llell,
et donc, pour tout vecteur u = Ae de F', oli A est un nombre réel,

€' ()] = [e'(Ae)] = [A'(e)| = [Alllell = [ Aell = [|ull.

donc
€' (w)| < Jlul| .

Alors, d’aprés le théoréme de Hahn-Banach, la forme linéaire ¢’ se prolonge a E tout entier en une
forme linéaire, notée ¢, qui vérifie pour tout u de E 'inégalité

|pe(w)] < Jlull -

Donc ¢, appartient & E et on a égalité lorsque u = e, ce qui donne

el =1

2) [ £ £]

L’application linéaire T qui a e dans F associe la forme linéaire T'(e) sur E’ définie pour tout élément
¢/ de E’ par
T(e)(e') = €'(e)
est une isométrie de E dans E”. En effet,
T(e)(e)] = le'(e)] < [l lle]] -
Donc T'(e) est continue et appartient & E”. De plus
[T(e)]l < [le]l -

Maintenant, en utilisant ’élément . de E’ obtenu dans 1), on a

lell = lpe(e)] = [T(e)(we)| < 1T ()]l

et I'on a égalité. En particulier

1T = 1.

L(E,E) — L(E,E")

Soit ¢ dans L(E, E). On définit une application linéaire continue ¢ de E dans E” en posant,
(=Tol.

(C’est-a-dire, si e est dans F et ¢/ dans E’,
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Alors
el < [T 1el = el -

Pour obtenir 'inégalité inverse, supposons ¢ non nul dans L(E, E) et soit € tel que 0 < & < ||¢||. Puisque
||| est la borne supérieure des nombres [|¢(e)|| lorsque e est de norme inférieure a 1, il existe e dans E
tel que

lel <1 et 0 <[le(e)ll < [l < [le(e)ll + .

Si € est la forme linéaire Pu(e) Obtenue dans 1), on a alors
1] < [le(e)|| +e < [e'(€e))] + e = [Ele)(e)] +e < [[€]l el le']] +& < €] +e,

et en faisant tendre ¢ vers 0, on en tire
el < 11l

d’ou I'égalité.

3)| L(E,E") & L(E',E'

Soit ¢ dans L(FE, E") et ¢ Tapplication linéaire de E’ dans E’ telle que, pour tout e de E et ¢ de E',
on ait

Alors

(') ()] = [ee) () < el llell e[l

On en déduit, pour tout ¢ dans E’,

1N < M1l el

Donc ¢ est continue et appartient a L(E',E"). De plus
€] <€l

Réciproquement, soit A dans L(E’, E') et A 'application linéaire de E dans E” telle que, pour tout e
de FE et tout €’ de E’, on ait

Alors

>
—
a
N—
—
a
N
~
Il

AN @) < ATl Tle] -

On en déduit, pour tout e dans F,
A < 1A el -

Donc \ est continue et appartient & L(E,E"). De plus
A< ALl

Par ailleurs, quels que soient e dans E et ¢/ dans E’, on a

Ne)(e) = Me)(e) = A)(e),
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donc ~
A=A
De méme, R
e)(e) = Ue)(e) = tle)(e),
donc

(=1,
Il en résulte que I'application linéaire de L(E, E”) dans L(E’, E') qui a ¢ associe ¢ est bijective. Alors
1] = [1€]] < (1]l < [lel,

d’ou I’égalité B
1€l =liell,

On a bien une isométrie.

L(F',E') > B(E, E')

Soit £ dans L(E’, E') et £ la forme bilinéaire définie sur E x E’ quels que soient e dans E et ¢/ dans E’
par

le, €)= t()(e).

On a, -
e, ) = [e(e)(e)l < [le]l I Hlell -

Donc ¢ est continue et appartient & B(E, E’). (Voir ex. 99). De plus
12l < 11ell -

Réciproquement, si b est dans B(FE, E’) et b est lapplication linéaire de £ dans E’ telle que, quels que
soient e dans F et ¢’ dans E’,

b(e")(e) = ble, '),

[b(¢')(e)] = [ble, )] < (1Bl ell €'Il,

puis, pour tout € de E’,

16(eNN < bl Hle[] -
Donc b est continue et appartient a L(E', E"). De plus

1] < ]l

Par ailleurs, quels que soient e dans E et ¢/ dans E’, on a

b(e,e') = b(e

~
~—
—~
('b
~—
I
S
—~
o
@,
~
~—

donc
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De méme

donc _
L=1.

Il en résulte que 'application linéaire de L(E’, E') dans B(E, E') qui a /£ associe £ est bijective. Alors
el = (el < lef < liell,

d’ou I’égalité B
1€1] = ll€ll-

On a bien de nouveau une isométrie.

Exercice 102

Soit E et F' deux espaces normés, ¢ une application linéaire de E dans F' non nulle. On suppose
qu’il existe une application k& de E dans R™, bornée sur la boule unité de F, et un nombre réel o
tels que, pour tout x de F,

(1) lo(@)|| < k()] -
1) Montrer que ¢ est continue, que o < 1 et que

llell < sup k(x).

z||=1

2) Montrer que si de plus k est homogéne de puissance 3, alors f =1 — .

3) Montrer que pour toute application linéaire continue ¢ de E dans F' et tout nombre o < 1, il
existe une fonction k de E dans R™, homogéne de puissance 1 — a, bornée sur la boule unité, telle
que, pour tout x de E, on ait (1).

Solution

1) Si y est non nul, on applique I'inégalité (1) & y/||y||. Alors
(W)l :¢<i> §k<l> < sup k),
[yl [yl Iyl =1

[l < llyll sup k(z),

[|z]|=1

d’ou

ce qui prouve que ¢ est continue et que

llell < sup k(z).

llzll=1
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Soit u de norme 1 et A dans |0, 1[. Alors Az appartient a B(0,1) et
Aol = llpAu)l] < k(Au)A® .

d’ou
()l < ku)rr= < At i k(z) .
z||<1

Si 'on avait « > 1, en faisant tendre A vers 0 le membre de droite tendrait vers zéro et ’on trouverait
que ¢(u) est nul pour tout u de norme 1. Alors, pour tout = non nul,

wwwzww(iﬁzm

||

donc ¢ = 0, d’ott une contradiction. Il en résulte que a < 1.

2) Si k est homogeéne de puissance 3, soit  un vecteur de E et A un nombre réel strictement positif.

Alors,
Mie@)] = lleO2) | < kQz) | Az]|® = A*FPk(z) ||,
d’ou
lp(@)]| < A0~ () |-

En faisant tendre A vers 0 si o+ 5 — 1 > 0 et vers l'infini si a + 8 — 1 < 0 le membre de droite tend
vers zéro et 'on trouve que ¢(x) est nul pour tout  de E ce qui n’est pas possible. C’est donc que

b=1—-q.
3) Si z est non nul, posons
(@)l
k(x) = :
]|

ainsi que k(0) = 0. Pour tout = de E, on a donc

lp@)]| = k()= -

Alors, si A est strictement positif et = non nul,

el M@l ey,
A =Tl = Aefae M)

ce qui montre que k est homogéne de puissance 1 — a.

Par ailleurs
sup k(z) = sup [[o(z)] = [lell-

llzll=1 llzll=1
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Exercice 103

Soit E un espace vectoriel normé de dimension finie n et (eq,...,e,) une base de E. Si (z1,...,x,)
sont les coordonnées de x dans cette base, on définit les normes sur F

n 1/p
[#]loc = max |z et ||z, = <Z\xi!”> (pe [1,00]).

1<i<n ;
=1

Soit f une forme linéaire sur £. On note || f||, la norme de f, comme application de (E, ||.||,) dans
(R, ].|) et 'on pose

F = Z f(ei)ei .
k=1

Soit p dans [1, co]. Montrer que
ANy = 11E1q

oul/p+1/qg=1

Solution

On a, d’aprés I'inégalité de Holder,

n
[f@)] =D wif(e)] < lzlpl Fllg,
i=1
ou 1/p+1/q = 1. Alors, pour montrer que
Nl = 11E1q

n
il suffit de trouver un vecteur e = E x;e; réalisant ’égalité.
i=1

p=1,qg=00

Soit e; tel que
|f(e5)] = max [f(e;)].

1<i<n
On pose
0 si i#£j
sign f(ej) si i=j
Alors,
el =Dl =1 et 1@ = 17| = s 160 = 1Pl
donc

£l = 1 oo -
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p=0oc0, qg=1

Pour ¢ compris entre 1 et n, on pose
z; = sign f(e:)
Alors

Izl =1 et [f(@)] =D Ife)l = IFl1,
i=1

donc

£ llloo = [1£1]1 -

l<p<oo, 1<g<

Pour ¢ compris entre 1 et n, on pose cette fois

;= (sign f(e;)) | f(es)| 7.

Alors
n 1/p n 1/p
lzllp = <Z|wilp> = <Z|f(ei)lq> = | F|¥/,
i=1 i=1
et " .
[F @) =) If el 1 (el = [ f(e)|” = IF|12,
i=1 1=1
donc

lzlp1E g = IFIGPIE NG = | FIlf = 1£ ()],

et de nouveau

£l = 11lg -

Exercice 104

Soit E un espace vectoriel normé complet et A dans I'espace L(F) des applications linéaires continues
de E dans FE.

1) Montrer que la série de terme général A™/n! converge. On note exp A sa somme. Montrer que
llexp Al < exp J|A]l
et que, si A et B commutent, on a
exp(A+ B) =expAoexpB.

2) Montrer que si |[|A]| < 1 alors Id —A est inversible et que la série de terme général A™ converge
vers (Id —A)~1.
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Solution

1) On sait que l'espace L(E) est complet pour la norme d’opérateur et que
(AN) 1A Bl < IAI[IBII et [Hdfl=1.

Il en résulte que, pour tout entier naturel n,

A" Al

nl 7 nl

Comme la série de terme général [||A]|"/n! converge dans R, alors la série de terme général A™/n!
converge normalement dans L(F), et, puisque 'espace L(E) est complet, on en déduit qu’elle converge.

On a alors
An A n

et par passage a la limite
llexp Afll < exp || -

A™  B™
Considérons la famille <—' o —'> . Cette famille est normalement sommable puisque
n!  ml!
(n,m)EN?
|||A" B™ B < |||A|||" IBI[™
- m!
Al Bl

et que la famille < > est sommable de somme exp || A]|| exp ||| B]||-
(n,m)eN?

n! m)!

Alors

Y et (S ) X eers -evacers

n=0m=0 n=0 m=0 n=0

On peut également sommer sur les diagonales, donc

SY S ey Y AR L > ()4,

n=0m=0 n=0i+j=n i+j=n

Or, si A et B commutent, on peut utiliser la formule du bindéme

3 (?) Ao BI = (A + B)"

i+j=n
Donc o
An B™ At o BI (A+ B)"
PIPIETE >y e —Zin! = exp(A+ B).
n=0m=0 n=0 i+j=n n=0
2) Puisque

A™ I < lAfl™ ,
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la série de terme général A™ converge normalement dans L(F) lorsque || Af| < 1. Alors

(Id — AE:M ﬁé — AMD = 1d — A"t
k=0

Comme la suite (A™) converge vers 0, on en déduit

(Id—A4) > A"=1d
n=0
Donc Id — A est inversible et son inverse vaut
(Id—A)~ }:A"

Remarque : ce qui précéde reste vrai si 'on remplace L(E) par une algébre normée compléte, munie
d’une norme vérifiant les relations (AN).



Chapitre 8

Espaces de matrices

Exercice 105

1) Soit K = R ou C. Soit E 'espace vectoriel .#,(K) des matrices carrées d’ordre n & coefficients
dans K muni d’'une norme N. Montrer qu’il existe une constante K telle que, quels que soient A et
B dans FE,

N(AB) < KN(A)N(B).

2) On pose

A — gy N(MA)
N(A)—;ué)o NG

Montrer que N’ est une norme sur E vérifiant, quelles que soient A et B dans F
N'(AB) < N'(A)N'(B) et N'(I)=1.
3) En identifiant F a K" on place sur F une des normes définie par

Ni(A) = lai| et Neo(A) = max |azg]
i

ou A = [a;;]. Montrer que

N{(A) = mlaxzj: laij| et N (A)= max zZ: |laij| -

Solution

1) L’application de E? dans E qui & (A, B) associe AB est une forme bilinéaire. D’aprés 1’exercice 100
il existe K tel que
N(AB) < KN(A)N(B).

2) Si N'(A) est nul, alors N(MA) donc M A est nul quel que soit M non nul. En particulier si M = I,
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on trouve que A est nulle et I’on vérifie facilement les deux autres propriétés qui font de N’ une norme.

Quels que soient M et A dans E, il résulte de la définition de N’ que l'on a

N(MA) < N(M)N'(A).

Alors
N(MAB) < N(MA)N'(B) < N(M)N'(A)N'(B),
donc
o — s NOMAB)
N'(AB) _M;E] N () < N'(A)N'(B).

Par ailleurs, si A = I, la définition donne immédiatement
N'(A)=1.

Remarque : on obtient une autre norme N”, vérifiant les mémes propriétés, en remplagant M A par

AM dans la définition.

5) Norme 1]

On a
Ni(MA) = Z | Zmikakj| < ZZ Imik| |a;] -
%] k i k
Alors
NA) < 305 (il Y lagsl) < 35 (Imael ma 3 Jaes)
ik j ik J
et donc

Ni(MA) < (mlgx Z]agj\) Z‘mlk‘ = (mlgx Z]aM) Ni(M).

J i,k J
On en déduit que
Ni(4) < |-
1(4) < m?XZj: |ag;]

Si le maximum de Z lagj| est atteint pour €y, soit alors M la matrice telle que, quel que soit i,
J

Miey = 17
les autres termes étant nuls. Alors

E MiEQg; = gy -
k

Donc

Ni(MA) = Z lagy;| =n Z lag,;| = nm?xz lag;] -
J J

2
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D’autre part Ni(M) vaut n, et finalement

Ny (MA) = Ni(M) mkaxz |ag;] -
J

Il en résulte que

N{(4) = max Y o],
J

On a
Noo(MA) = n}gx ‘ Zk:mikakj‘ < n%z;xzk: Imig| lag;| < n}f;xzk: (m?x ]mig]> lak;]
donc
Noo(MA) < (mi%x |mw|> <mjax§k: |akj|> = No(M) mjaxzkz lag;] -
Notons ej; un nombre de K de module 1 tel que

Ekjakj = |ag;| .

Si le maximum de Z lai;| est atteint pour jo, soit alors M la matrice telle que, quel que soit j, le

k
coefficient m,; soit égal a €j;,, les autres étant nuls. Alors

Z MjokQkj = Z €kjo My -
k k

On obtient

> Miokarjo = Y hjolkjo = Y |akjol,
k k k

et, si j # Jo,

‘ijokakj‘ <Y lerjoaril = D langl s
k k k

et les autres coefficients de M A sont nuls. On a donc
IMA]oo = lag,! .
k
Par ailleurs
[Mllo =1,
ce qui donne finalement

M Alloe = [M oo max 3 la .
k

et donc
NL(4) = max Y fag].
k
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Exercice 106

Soit K = R ou C. On place sur K" les normes 1, 2 ou oo. Soit E l'espace vectoriel ., (K) des
matrices carrées d’ordre n a coefficients dans K. On note [||A|||; la norme de Papplication linéaire de

E dans lui méme de matrice A dans la base canonique. Si A = [a;;], montrer que
D Al = max > laij]
i
2) lAllee = Al = max ) |ayl

J
3) llAllz = A%l = VI[A*AJlz = VA = [ISAS™|

ou A est la plus grande valeur propre de A*A et S une matrice unitaire quelconque.

Solution

Dans ce qui suit, on notera X un vecteur de K™ de coordonnées zj dans la base canonique (Fj, . ..

Par définition, on a

Al = sup [|AX]]; .
X<t

1) [Norme 1]

On a

JAX N =D 3 ags| < D03 lail a1,
( J J

i
et en permutant les sommations

14X T < 37 (D o) oyl < 3 (e Y faanl) oy = (moe 3 faae]) Dl

7 7 J
On en déduit que
AX s < mae 3 fag 1]
i

et donc

lAflx < max > lail
%

s En).

Si 'on prend pour X le vecteur de base E;, qui est de norme 1, le vecteur AFE; a pour coordonnées

(alj, ‘e ,anj) et

IAE;[l =) |aij -
7
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Alors il existe un des vecteurs de base Ej; pour lequel
1Ay [l = max > laigl,
i

et 'on a donc

Al = max > ail-
7
2)

On a ici

JAX [l = max | - agja;| < max Y Jay | fo
J J
et, en majorant |z;| par || X ||, on obtient

[AX oo < [ Xloo max > lagl.
i

Si le maximum précédent est atteint pour ig, notons €; un nombre de K de module 1, tel que

Ejinj = |@igs]

E = Z EjEj .
J
C’est un vecteur dont la norme infinie vaut 1, et I'on a

‘ Zaiojgj‘ = |ai]
i i

et soit

puis
‘Zaijgj‘ < aijl < max > aijl =) laigl
j j j j

donc
|4 oo = max 3" o],
J

et finalement

1 Alloc = max y _ lai;| -
i

On remarque pour finir que l'on passe de ||| A|||1 & [||]A]||coc en inversant les role des lignes et des colonnes,
et donc
llAlloe = lA™ 1 -
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3) [Norme 2]

Si I'on note (X|Y') le produit scalaire de deux vecteurs de K", on a donc
JAX 3 = (AX|AX) = (A*AX|X).
Si A est une valeur propre de la matrice autoadjointe A*A et X un vecteur propre associé, on a alors
JAX[3 = (A*AX|IX) = | X3,
et il en résulte que A est un nombre réel strictement positif.
En diagonalisant la matrice dans une base orthonormée de vecteurs propres, on obtient

(A"AX|X) =) Naj,

otll les nombres x; sont les coordonnées de X dans la base orthonormée. Alors
IAX 3 < (max A) [| X153 = A X3,
avec égalité pour un vecteur propre associé a A. Il en résulte que
IAll2 = VA.
Comme A*A et AA* ont les mémes valeurs propres, on a aussi
lIAll2 = IIA%]ll2 -

Maintenant, si B est autoadjointe, alors B*B = B? et les valeurs propres de B? sont les carrés des
valeurs propres pu; de B. Alors

1Bl = max /2 = mas |
En particulier, puisque A*A est autoadjointe,

A Al = A,

donc
1Alll2 = /[l A* Alll2 -

Pour finir, si S~ = S*, alors la matrice
(SAS™H*(SAS™!) = 5(4*A)S~!
a les mémes valeurs propres que A*A, et donc

Alll2 = [SAS™H2.
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Exercice 107 Norme de Hilbert-Schmidt

Soit K =R ou C et F I'espace vectoriel des matrices carrées d’ordre n a coefficients dans K.

1) Montrer que l'on définit une norme sur E en posant

|Allns = /tr(AA*),

et que, pour tout couple (A, B) de matrices de F, on a
|AB|las < |Allas |1Bl#s -

2) Comparer cette norme aux normes [|.[[1, [||-l2 et |||-/l|co définies dans l’exercice précédent.

Solution
1) La matrice AA* est une matrice autoadjointe de valeurs propres positives. Alors tr(AA*) est la

somme des valeurs propres de cette matrice et est donc positive. Si I'on note a;; les coefficients de la
matrice, on constate que les coefficients diagonaux de AA* valent

dii =Y aindip = Y laix/?,
k

k

donc

tI‘(AA*) = Zd“ = Z |a,~k|2 .
) ik

Alors, si’on identifie E avec 1'espace K”z, la norme ||.||zs n’est autre que la norme ||.||o.

Soit maintenant deux matrices A = [a;;] et B = [b;;] de E. Le produit AB a pour coefficients
Cij = Y ikb;,
k

et d’aprés I'inégalité de Schwarz

e * < <ij\am2> (;w) :

1ABI}s <) <Z !aik!2> <Z !bkj!2> <[ Allms Bl as -
i k k

Remarque : ||A||gs = ||A*||ms.

donc
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2) | Norme |||.[1

En utilisant I'inégalité de Schwarz

1/2
Al = mjaxz |ai;| < mjaX\/ﬁ (Z !%’\2) < vn|Allus.

L’égalité a lieu pour la matrice dont tous les éléments de la premiére colonne valent 1 alors que les
autres sont nuls, car

Al =7 et [Alas=+n.

D’autre part
1/2 1/2

Al = Z(Z\aij\2> < (0] = vanaln.

J

L’égalité a lieu pour la matrice I car

s =vn et [[I]l=1.

Finalement 1
A < A < A .

Norme ||.]||loo

Comme on a

[All s = [|A™[|&rs

et, d’aprés I'exercice précédent,

lAflloo = Al

on obtient le méme encadrement

1
— |Allrs < 1 Alloe < v/ |Allzrs -
\/ﬁH s < Al < vV llAllms

Norme |||.|||2

Le nombre |||A]||2 est une valeur propre de A*A donc inférieure & la somme des valeurs propres (toutes
positives). Donc
2 2
[}z < tr(A*A) = [|Allrs -

L’égalité a lieu pour la matrice A dont tous les éléments sont nuls sauf a7 qui vaut 1 car dans ce cas,
IAlll2 = [Allzs = 1.
Par ailleurs la somme des valeurs propres se majore par n fois la plus grande et donc

1AIIZs < nllAll3 -
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L’égalité a lieu pour la matrice I car

lllz =1 et [[llus = vn.

On a donc

lAlllz < [|Allzs < vr A2 -

Exercice 108

Dans 'espace .#,(K) des matrices carrées d’ordre n a coefficients dans K = R ou C, trouver la
norme de Iapplication linéaire tr qui & une matrice associe sa trace, selon les normes définies dans
un des exercices précédents.

Solution

On part dans tous les cas de 'inégalité

|t1“A| = ‘Za“
[

< Z|au|
i

Al =" |ai]
i

On a alors

[ tr A] < [[A]
avec égalité si A = I puisque

[tr I| = ||I]| =n.
Donc
[ltrff = 1.
|A]| = max |ag;|
ij

On a cette fois

[tr Al < n[lA]

avec égalité si A = I puisque
[trl|=n et || =1.

Donc
ltx]l| = n.
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Al = m?XZ |aij]
i

On a de nouveau
[trA] < n A

avec égalité si A = I puisque
[trI|=n et || =1.

Donc
ltxfl| = n.

Al = m?XZ |aij]
)

Le résultat est le méme que pour la norme précédente en prenant la transposée qui ne change pas la
trace et fait passer d’une norme a 'autre.

Al = Vir(A*A) = [ |ag;[?
ij

En utilisant I'inégalité de Schwarz

[tr Al < v [ lad] < VallAl,

avec égalité si A = I puisque
[trI|=n et |I||=+vn.

Donc

lltx(ll = v/n.

|A|| = VA ott A est la plus grande valeur propre de A*A

Comme la somme des valeurs propres de A*A est inférieure a n fois la plus grande, on a donc

Vir (A*A) < /n||A|l.
Alors, d’aprés ce qui précéde,
[tr A] < v/ny/tr (4*A) <n|4],
avec égalité si A = I puisque
[trI|=n et [I]=1.

Donc
ltx[l| = n.
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Exercice 109

Soit K = R ou C. Soit F 'espace vectoriel .#,(K) des matrices carrées d’ordre n a coefficients dans
K muni de la norme N définie par

N(A) = Zi:mjax lagj] -

Déterminer
N = o
Solution
On a
N(MA) = ZZ:mjaX ‘ Zk:mikakj‘ < ZZ:mjaX (Zk: || \%’!) < ZZ:mjaX (Zk:mgx || !%‘!) :
puis
N(MA) < Z (‘mawx ] m;mx%j jarsl) = (Eijm;x o) (m;x%j jars]) = N (M) m;mx%j Jas]
Donc

N'(A) < max E agql -
(A4) < i e ’ k]’
Notons e; un nombre de K de module 1 tel que

erjarj = laigl,
et soit jg tel que

max Y _larj| = Y _ |akj,| -
T %

Pour tout k, posons alors

Mg = Ekjo Sii:j()
! 0 sinon

La somme Zmikakj est nulle si ¢ est distinct de jy. Dans le cas contraire
k

‘ ijokakj‘ < Iminl lawgl = lars] < larsol
k k k k

et si j = jo

‘ Z mj()kakj‘ = ‘ Z €kjo Ukjo
k k

= Z |akjo |-
k
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Donc

max ‘ ijokakj‘ = lakjol

J % i

N(MA) =) max ‘ Zmikakj( = maX( ijokakj‘ =Y larjo| = max Y |ag|.
A TR k 7%

On obtient finalement

puis

N'(A) = mjaxz lag;] -
k

Exercice 110

Soit K = R ou C. Soit F 'espace vectoriel .#,(K) des matrices carrées d’ordre n a coefficients dans
K muni de la norme N définie par

N(4) = m?XZ | it 5
7

ou dans cette somme les indices sont considérés modulo n.

Déterminer

et comparer les normes N et N'.

Solution

Explicitons les sommations : on aura

D laiiril = laragsl + - 4 lan—jnl + lan—jraal + -+ lang|-
)

(On somme sur les "diagonales".)

Le fait de considérer les indices modulo n permet de faire des changements d’indices sans se préocupper
des bornes de sommation.

On a donc

N(MA) = max > ‘ > mi,kak,i+j‘ < mex SO Ikl larivgl-
) k % k

Etudions la somme

@ = Z Z I k| |aki+] -
ik



En posant k =i + s, on a encore

A= Z Z Mt [@its,ivi] = Z Z M i | | Qs it ] -
A s s i

On obtient
aj < ZZ (\mi,i+s\ m?X\aHs,uj\) => (m?X |Gt s,045] Z \mi,i+s!> :
S 7 S (3
Mais
D Imiirsl < N(M),
i
donc

a; < N(M max |a .
J = ( ) ES : Y | lt-5,0+]
Alors si 'on pose u = £ + s, on obtient

aj =N(M) ngxmu,u_s_,_j .
S

Puis en posant t = j — s,

a; = N(M) Zmuax | @ utt] -
¢
On constate que la majoration ne dépend pas de j. Finalement

N(MA) < Sup &yj = N(M) ngx |Gu,utt]
J t

et donc
N'(4) < Zm?X | it 5
J

Maintenant, pour tout indice j de colonne, notons i; l'indice de ligne tel que
max |ai,ij| = [ai; ;4]
et soit 7' I'ensemble des couples (i; + j,7;). Notons £;; un nombre de K de module 1 tel que
Ekjorj = lakj| -
Posons

m ] Ew si (u,v) €T
we 0 sinon

161

Dans chaque "diagonale" il existe un élément non nul de M et un seul et cet élément est de module 1,

donc N(M) vaut 1.
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Notons ¢;; les coefficients de M A. On a tout d’abord
Z |cii| = Z ‘ Zmikaki .
i i k

Mais dans cette somme les seules termes non nuls sont obtenus lorsque (i, k) appartient & T, et on

obtient alors
g |cii| = E \aij,z’jﬂ" = E mlax\ai,iﬂ’-
i J J

Par ailleurs

S lewiil = 20 | D ks < D0 D Imil x|
% k % k

%

De nouveau, en gardant uniquement les termes non nuls obtenus lorsque (i, k) appartient a 7' dans la
somme de droite

E |Cii4s] < E |G i tstj] < E MAX |ty ts45] -

7 s s

Enfin, en posant v = s + j,

D el < ngx |@u,utol -
i [

Finalement

N(MA) = manZi: i iti|l = Zv:mgx |y uto| = N'(4),

et donc
N'(A) = medx | @i -
j (3
Par construction
N(AM) < N'(A)N(M) et N'(I)=1,

donc, si M =1,
N(A) < N(A)N(I),

avec égalité si A = I. Comme N (I) vaut 1, on a donc
N(A) < N'(A).

En partant de
max|a;;| < Z |aij| < m?XZ lag;| = N(A),
1 (2

on en déduit
N'(A) = max|a;;| < nN(A).
j (2

Et 'on a égalité en prenant la matrice A telle que a;1 = 1 pour tout ¢, les autres termes étant nuls, car

N'(A)=n e N(A)=1.



