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1.8 L’espace semi-normé I ([a, b],K) . . . . . . . . . . . . . . . . . 29
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6.1.2 Application à la mesure de Lebesgue sur R . . . . . . . . 83
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10.2 Théorème de Radon-Nikodym . . . . . . . . . . . . . . . . . . . 211
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Avant-propos

à la huitième édition

Ce livre, issu d’un cours d’intégration dispensé durant plusieurs années en Li-
cence de Mathématiques à l’Université Paris XII Val de Marne puis à Sorbonne
Université (anciennement Université Paris VI Pierre & Marie Curie) ainsi que de-
puis 2014 en troisième année (niveau L3) à l’INSA Rennes, est prioritairement
destiné aux étudiants achevant leur parcours de Licence (L3) ou entamant un par-
cours de Master (M1) spécialisé en Mathématiques. À un premier niveau de lec-
ture, nous y exposons les bases indispensables de la théorie de Lebesgue et ses
premières applications. Les connaissances requises à l’usage de cet ouvrage sont
celles d’un étudiant issu de deuxième année (niveau L2). En outre, nous avons sou-
haité que le lecteur puisse y trouver matière à référence au-delà de la licence, en
maı̂trise, pour l’agrégation, voire en troisième cycle. C’est dans cette optique que
nous avons complété ce premier niveau de lecture par la démonstration détaillée des
grands théorèmes classiques de la théorie (construction de la mesure de Lebesgue,
théorèmes de Riesz, de Lusin, etc.). Parallèlement, nous avons mis l’accent, à tra-
vers de nombreuses applications, sur la puissance de l’intégrale de Lebesgue dans
tous les problèmes mettant en jeu des interversions des symboles d’intégrale et de
limite. Chaque chapitre s’achève par une section d’exercices, mêlant des énoncés
de simple manipulation des définitions et des énoncés plus ambitieux.

Pour la plupart des exercices, le lecteur peut s’appuyer sur des indications re-
groupées en fin de volume, dans le chapitre 18. Nous savons, en effet, par expérience
que des indications plutôt que des corrigés détaillés des exercices, permettent au
lecteur – nous pensons particulièrement aux étudiants qui doivent être acteurs de
leur apprentissage des mathématiques et se confronter aux difficultés de la disci-
pline (Figure 1 ci-contre) – de mieux s’approprier les techniques fondamentales
de l’intégrale de Lebesgue (théorème de convergence dominée, théorèmes de Fu-
bini, changement de variables, convolution, transformées de Fourier et de Laplace).
Néanmoins, les nouveaux exercices sur les transformées de Fourier et de Laplace
ainsi que quelques autres plus anciens y font l’objet de corrections plus détaillées.
Plus généralement, ce chapitre 18 regroupe des indications de résolution fonc-
tion de la difficulté des questions posées. Les exercices dans chaque chapitre ne
suivent pas nécessairement l’ordre du chapitre. Cette configuration devrait per-
mettre aux lecteurs de butiner au gré des difficultés, tels des abeilles ouvrières.
Ils pourront ainsi démontrer – via neuf approches inspirées en partie de la compila-
tion de R. Chapman ( 1) et déclinées sous forme d’exercices au fil des chapitres (cf.
Bâle dans l’index) – la célèbre formule suivante, établie pour la première fois par

1. R. Chapman, “Evaluating ζ(2)”, Department of Mathematics, University of Exeter, 07-2003.
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le mathématicien suisse Euler en 1735 ( 2) :

+∞∑
n=1

1

n2
=
π2

6
,

ou bien les étonnantes identités suivantes (cf. exercices 15.24 et 15.25) :

π =
∑
n∈Z

sinn

n
=
∑
n∈Z

sin2 n

n2
=

∫
R

sin2 x

x2
dx =

∫
R

sinx

x
dx = π,

qui illustrent l’intimité entre dénombrabilité, sommation et intégration, trois no-
tions indissociables de la théorie de l’intégrale de Lebesgue.

La théorie de l’intégration peut être abordée naturellement sous deux angles très
différents : la présentation fonctionnelle, issue de Bourbaki, qui prolonge l’intégrale
de Riemann via le théorème de représentation de Riesz, et l’approche abstraite, qui
s’appuie directement sur la notion de mesure positive. Nous avons choisi la seconde
voie, non seulement pour son caractère (paradoxalement) plus concret, mais aussi
parce qu’elle permet l’introduction naturelle des probabilités et de la statistique. La
contrepartie pour les futurs “analystes” est sans doute de longs développements sur
la mesurabilité. Quoi qu’il en soit, il nous semble que la mesure abstraite reste la
plus accessible des deux approches pour les étudiants d’aujourd’hui, sans doute par
son caractère moins topologique.

L’ouvrage se divise en six parties :
– La partie I, rappels et préliminaires, après un bref retour sur l’intégrale élémentaire
qui permettra de mettre en perspective les atouts décisifs de la théorie de Lebesgue,
est essentiellement consacrée à quelques éléments de théorie des cardinaux et de
topologie. La notion de dénombrabilité, au cœur de l’approche de Borel et Le-
besgue, est notoirement mal connue des étudiants de premier cycle. L’occasion
leur est donnée de faire le point sur cette question. Les “rappels” de topologie
mêlent quelques développements sur les notions de base déjà vues en cours de
structures métriques à des points plus techniques – la séparabilité notamment – qui
se révèleront indispensables à la suite de notre propos.
– La partie II, théorie de la mesure, bâtit les fondations de la théorie de l’inté-
gration : tribus, fonctions mesurables, mesures positives. Un accent tout particu-
lier est mis sur la mesure de Lebesgue. Plusieurs voies d’approfondissement sont
développées : le théorème de Carathéodory et la construction des mesures de Le-
besgue et Stieltjes sur la droite réelle ; la régularité des mesures sur des espaces
localement compacts ou séparables complets.
– La partie III, théorie de l’intégration, débute par la construction de l’intégrale au
sens de Lebesgue. On enchaı̂ne par les trois théorèmes classiques (Beppo Levi,

2. L. Euler, “De summis serierum reciprocarum”, Commentarii academiae scientiarum Petropo-
litanae, vol. 7 (1740), 123-134. Archivé dans Opera Omnia, Series 1, vol. 14, 73-86 (E41).
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Fatou, Lebesgue) et les outils d’étude des intégrales dépendant d’un paramètre
(continuité et dérivation ponctuelle sous le signe somme). Les espaces Lp et les
théorèmes de densité – dont le théorème de Lusin – sont développés ensuite, puis
viennent la mesure produit, les théorèmes de Fubini et le théorème de changement
de variables ainsi que leurs applications au calcul d’intégrales multiples. Cette par-
tie s’achève sur la notion de complétion de mesure et sur ses conséquences, en
particulier le théorème de Fubini-Lebesgue.

– La partie IV, convolution et transformées de Fourier et de Laplace, est consacrée
à des prolongements essentiels de la théorie de l’intégration : la convolution sur Rd

et les transformées de Fourier et de Laplace sur Rd, outils de base de l’Analyse har-
monique mais aussi des Probabilités. Ces notions peuvent être vues comme des ap-
plications importantes des théorèmes de convergences de la partie III. La convolu-
tion avec la notion d’identités approchées est un outil indispensable dans les trans-
formées, notamment pour les théorèmes d’inversion de Fourier (dans L1(Rd) et
L2(Rd)) qui demeurent parmi les plus beaux résultats de l’Analyse, et qui sont aussi
le point de départ de l’Analyse harmonique qui a connu ces dernières décennies un
essor considérable avec le traitement d’images. Nous avons introduit dans cette
huitième édition la transformée de Laplace comme prolongement naturel de la
transformée de Fourier, sans la détailler autant, mais en insistant sur ses appli-
cations avec une vingtaine de nouveaux exercices très développés (sur 13 pages),
traitant notamment de la résolution de diverses équations (équations différentielles,
équations aux dérivées partielles, équations aux différences finies). Avec en points
d’orgue : le théorème de Bernstein-Widder dont la démonstration (cf. exercice
15.39) repose sur tous les théorèmes fondamentaux de l’intégrale de Lebesgue,
et l’intégrale de Riemann-Liouville (cf. exercice 15.40) étroitement liée à la notion
de dérivée fractionnaire, qui termine cet ouvrage.

– La partie V est constituée d’énoncés de QCM et de problèmes d’examen.

– La partie VI propose 30 pages d’indications détaillées (en petits caractères) des
261 exercices que comporte l’ouvrage, et les réponses aux QCM.

Signalons qu’en guise d’introduction, la partie II débute par la reproduction
intégrale du texte de la Note aux Comptes-rendus de l’Académie des Sciences de
Paris d’Henri Lebesgue parue en 1901 et intitulée :

“Sur une généralisation de l’intégrale définie”.

Il y présente, en quatre feuillets d’une puissance et d’une beauté mathématique
saisissantes, les principes fondateurs et les premiers résultats de sa théorie.

Les parties dont le titre est précédé du symbole ♣, correspondent à des complé-
ments ou des approfondissements qui peuvent être passées en première lecture.
De même, certaines applications s’éloignant par trop du cœur de notre propos ou
s’apparentant à des exercices corrigés ont été transcrits en plus petits caractères.
Une table des matières détaillée introduit l’ouvrage et un index avec 477 entrées
(dont un certain nombre de doubles entrées) le conclut.
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Pour une large part, notre goût commun pour l’intégration nous a été transmis
par nos professeurs, le regretté J. Deny et O. Kavian. Cet ouvrage leur doit beau-
coup.

Les judicieux conseils et les encouragements de P.G. Ciarlet nous ont égale-
ment été précieux.

Si toutes les erreurs sont les nôtres, plusieurs personnes ont contribué à en di-
minuer le nombre depuis la première édition : Omer Adelman, Marie-Dominique
de Cayeux, Yannick Baraud, Fabienne Comte, François James, Laurence Marsalle,
Patrick Polo, Jacques Roubaud, Emmanuel Roy, Dominique Simpelaere, Sergio
Vega. Qu’elles en soient ici remerciées. Un remerciement tout particulier à Yan-
nick Joncour pour son énorme travail de relecture : il a débusqué dans la 7ème
version de l’ouvrage un certain nombre de coquilles !

Marc Briane et Gilles Pagès

Paris et Rennes, le 26 juin 2023.



Notations

Ensembles

K = R ou C.
P(X) : ensemble des parties de l’ensemble X .
cA : complémentaire de la partie A de X .
1A : fonction caractéristique de A, i.e. 1A(x) := 1 si x ∈ A et 1A(x) := 0 si x ∈ cA.
⊂ : inclusion au sens large.
∆ : différence symétrique.
cardX : cardinal de l’ensemble X .
X ↪→ Y : injection de X dans Y .
O(X) : ensemble des ouverts de l’espace métrique X .
A : adhérence de la partie A.
Å : intérieur de la partie A.
∂A : frontière de la partie A.
σ(C ) : tribu engendrée par la partie C de P(X).
Λ(C ) : λ-système engendré par la partie C de P(X).
A ×B : ensemble des rectangles A×B à côtés mesurables.
A ⊗B : produit tensoriel des tribus A et B.
(X,A , µ) : complété de l’espace mesuré (X,A , µ).
suppf : support de la fonction f .
µ-p.p. : µ presque partout.

lim
n

↑
An =

⋃
n≥0

↑
An : réunion de la suite d’ensembles (An)n≥0, croissante pour ⊂.

lim
n

↓
An =

⋂
n≥0

↓
An : intersection de la suite d’ensembles (An)n≥0, décroissante pour ⊂.

Fonctions

f(x+) : limite à droite de f en x.
f(x−) : limite à gauche de f en x.
sgn : fonction signe (vaut 0 en 0).
<(f) : partie réelle de f .
=(f) : partie imaginaire de f .
|f | : module de f .
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f+ : maximum entre f et 0.
f− : maximum entre −f et 0.
f ∨ g : maximum entre f et g.
f ∧ g : minimum entre f et g.
sup
i∈I

xi : borne supérieure de la famille de réels (xi)i∈I .

inf
i∈I

xi : borne inférieure de la famille de réels (xi)i∈I .

≡ : identiquement égal à.
dist (x,A) : distance du point x à la partie A.

Convergence de suites

lim
n
fn : limite de la suite (fn)n≥0.

lim
n

↑
fn : limite de la suite croissante (fn)n≥0.

lim
n

↓
fn : limite de la suite décroissante (fn)n≥0.

lim
n
fn : limite supérieure de la suite (fn)n≥0.

lim
n
fn : limite inférieure de la suite (fn)n≥0.

fn → f : la suite (fn)n≥0 converge vers f .
fn ↑ f : la suite (fn)n≥0 converge en croissant vers f .
fn ↓ f : la suite (fn)n≥0 converge en décroissant vers f .

fn
S−→ f : la suite de fonctions (fn)n≥0 converge simplement vers la fonction f .

fn
Ut

−→ f : la suite de fonctions (fn)n≥0 converge uniformément vers la fonction f .

fn
p.p.−→ f : la suite de fonctions (fn)n≥0 converge presque partout vers la fonction f .

fn
‖·‖−→ f : la suite de fonctions (fn)n≥0 converge en norme ‖ · ‖ vers la fonction f .

Espaces de fonctions

E ([a, b],K) : ensemble des fonctions en escalier de [a, b] dans K.
I ([a, b],K) : ensemble des fonctions Riemann-intégrables de [a, b] dans K.
C (X,Y ) : ensemble des fonctions continues de X dans Y .
CK(X,Y ) : ensemble des fonctions continues de X dans Y , à support compact.
C0(Ω,K) : ensemble des fonctions continues de l’ouvert Ω de Rd dans K, de limite nulle à
l’infini.
C n(Ω,K) : ensemble des fonctions de l’ouvert Ω de Rd dans K, n fois différentiables sur Ω.
C n
K(Ω,K) : ensemble des fonctions de C n(Ω,K), à support compact inclus dans Ω.

C n
b (Ω,K) : ensemble des fonctions de C n(Ω,K), à dérivées bornées.

L p
K (µ) : ensemble des fonctions mesurables à valeurs dans K, de puissance pème µ-intégrable.
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L 1
loc,K(λd) : ens. des fonctions à valeurs dans K, λd-intégrables sur tout compact de Rd.

L
∞

K (µ) : ensemble des fonctions mesurables à valeurs dans K, µ-essentiellement bornées.
Lp

K(µ) : ensemble des classes de fonctions de L p
K (µ) pour l’égalité µ-presque partout.

Lipb(X,K) : ensemble des fonctions de X dans K, lipschitziennes bornées.
LipK(X,K) : ensemble des fonctions de X dans K, lipschitziennes à support compact.

Normes

|x| : norme de x dans Kd.
‖f‖sup : norme sup de (la fonction) f .
‖f‖p : (semi-)norme Lp de (la fonction) f .

‖f‖∞ : (semi-)norme du supremum essentiel de (la fonction) f .





Première partie

Rappels et préliminaires





Chapitre 1

Intégrale au sens de Riemann

Ce chapitre est constitué de rappels sur l’intégrale de Riemann et ne com-
porte pas de démonstrations pour lesquelles nous renvoyons, par exemple, à [32]
ou [31]. Il a simplement pour but de mettre en évidence certaines des insuffisances
de cette théorie, élaborée par le mathématicien allemand Riemann dans sa thèse
de doctorat [5] (soutenue en 1854 et publiée en 1857). Ses travaux généralisaient
de façon décisive ceux du mathématicien français Cauchy, auteur dans les années
1820 d’une première théorie essentiellement rigoureuse de l’intégration des fonc-
tions continues. Les deux grands précurseurs de la théorie de l’intégration au 18ème

siècle sont incontestablement Newton – qui développa sous le nom de fluxion une
approche systématique de la réciproque de la dérivation – et Leibniz – pour son
approche géométrique fondée sur le calcul d’aire.

Notations : Dans la suite, on se placera sur un intervalle compact [a, b], non vide et
non réduit à un point (−∞ < a < b < +∞). La lettre K désignera indifféremment
le corps des réels R ou le corps des complexes C.

1.1 Intégrale des fonctions en escalier

Définition 1.1. (a) On appelle subdivision de l’intervalle [a, b] tout (n+ 1)- uplet
σ := (a0, . . . , an) vérifiant a := a0 < · · · < an := b.
(b) Une fonction f : [a, b]→ R est en escalier s’il existe une subdivision (a0, . . . , an)
de [a, b] et des éléments λ1, . . . , λn de K tels que

∀ i∈ {1, . . . , n}, ∀x ∈ ]ai−1, ai[, f(x) = λi. (1.1)

On note E ([a, b],K) l’ensemble des fonctions en escalier de [a, b] dans K.
(c) L’intégrale de f relativement à une subdivision σ, provisoirement notée I(f, σ),
est définie par

I(f, σ) :=

n∑
i=1

λi (ai − ai−1).
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Remarques : • Une fonction en escalier n’est en fait pas spécifiée aux points ai
de la subdivision et l’intégrale I(f, σ) ne dépend donc pas de la valeur de f en ces
points.
• On vérifie d’autre part que I(f, σ) ne dépend pas de la subdivision σ choisie sous

réserve que celle-ci soit “adaptée” à f , i.e. vérifie la relation (1.1).

Notations : La seconde remarque nous conduit à faire disparaı̂tre σ dans la notation
de l’intégrale. En pratique, on note l’intégrale de f entre a et b indifféremment par

les symboles
∫ b

a
f ou

∫ b

a
f(x) dx. La variable x est “muette”, i.e.

∫ b

a
f(x) dx =∫ b

a
f(y) dy, etc.

Proposition 1.1. (a)

∫ b

a
: (E ([a, b],K), ‖ · ‖sup) −→ K est une forme linéaire,

continue puisque
∣∣∣∣∫ b

a
f

∣∣∣∣ ≤ (b − a) ‖f‖sup où ‖f‖sup := sup
x∈[a,b]

|f(x)| désigne la

norme uniforme (le sup est nécessairement fini car f ne prend qu’un nombre fini
de valeurs).

(b) Si f, g∈ E ([a, b],R), alors f ≤ g ⇒
∫ b

a
f ≤

∫ b

a
g.

(c) Si f ∈ E ([a, b],K), alors |f |∈ E ([a, b],R+) et
∣∣∣∣∫ b

a
f

∣∣∣∣ ≤ ∫ b

a
|f |.

1.2 Fonctions intégrables au sens de Riemann

Définition 1.2. f : [a, b] → K est Riemann intégrable – ou intégrable au sens de
Riemann – si

∀ ε > 0, ∃Φε∈ E ([a, b],K), ∃Ψε∈ E ([a, b],R+) telles que


|f − Φε| ≤ Ψε

et∫ b

a
Ψε ≤ ε.

On note I ([a, b],K) l’ensemble des fonctions Riemann intégrables définies sur
[a, b] à valeurs dans K.

Remarques : • On a en particulier pour ε=1, |f | ≤ |Φ1|+Ψ1 donc une fonction
Riemann intégrable est toujours bornée.

• Évidemment E ([a, b],K) ⊂ I ([a, b],K) [prendre Φε :=f et Ψε :=0].

Construction de l’intégrale (esquisse) : Soit f ∈ I ([a, b],K). En prenant suc-
cessivement ε := 1

n , n ≥ 1, la définition 1.2 entraı̂ne l’existence de deux suites
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(Φ̃n)n≥1 et (Ψ̃n)n≥1 vérifiant, pour tout n≥1, |f − Φ̃n| ≤ Ψ̃n et
∫ b

a
Ψ̃n ≤

1

n
. Par

suite,
∀ p, q∈ N∗, |Φ̃p − Φ̃q| ≤ |Φ̃p − f |+ |Φ̃q − f | ≤ Ψ̃p + Ψ̃q

et, partant,

∀ p, q∈ N∗,

∣∣∣∣∫ b

a
Φ̃p −

∫ b

a
Φ̃q

∣∣∣∣ ≤ ∫ b

a
|Φ̃p − Φ̃q| ≤

∫ b

a
(Ψ̃p + Ψ̃q) ≤

1

p
+

1

q
.

La suite
(∫ b

a
Φ̃n

)
n≥1

est donc de Cauchy dans K ; par conséquent elle converge

vers une limite ` finie. On vérifie ensuite immédiatement que ` ne dépend pas des

suites Φ̃n et Ψ̃n sous réserve que |f − Φ̃n| ≤ Ψ̃n et lim
n

∫ b

a
Ψ̃n = 0.

Définition 1.3. La limite commune aux suites
(∫ b

a
Φ̃n

)
n≥1

est notée
∫ b

a
f . C’est

l’intégrale – au sens de Riemann – de la fonction f sur l’intervalle [a, b].

Proposition 1.2. (a) I ([a, b],K) est un K-espace vectoriel et∫ b

a
: (I ([a, b],K), ‖ · ‖sup) −→ K

est une forme linéaire continue de norme b− a.

(b) Si f ∈ I ([a, b],K) alors |f |∈ I ([a, b],R+) et
∣∣∣∣∫ b

a
f

∣∣∣∣ ≤ ∫ b

a
|f |.

(c) Soit ϕ : C → C une application R-linéaire. Alors, pour toute fonction f dans
I ([a, b],C), ϕ(f)∈ I ([a, b],C) et∫ b

a
ϕ(f) = ϕ

(∫ b

a
f

)
.

(d) Si f, g∈ I ([a, b],K) alors f g∈ I ([a, b],K).

Exercice : Montrer que si f1, . . . , fn∈ I ([a, b],R) et si ϕ : Rn → R est monotone
“coordonnée par coordonnée”, alors ϕ(f1, . . . , fn)∈ I ([a, b],R).

Application 1.1. (a) Du point (b) de la proposition précédente, on déduit la positi-
vité et la croissance de l’intégrale au sens où

∀ f, g∈ I ([a, b],R) f ≥ 0⇒
∫ b

a
f ≥ 0 et f ≥ g ⇒

∫ b

a
f ≥

∫ b

a
g.

(b) Du point (c), on déduit que si f ∈ I ([a, b],C), alors <(f), =(f) et f̄ sont
Riemann intégrables.
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Proposition 1.3. (Relation de Chasles) Soit c∈]a, b[. Si f ∈ I ([a, b],K) alors les
restrictions de f à [a, c] et [c, b] sont Riemann intégrables et∫ b

a
f =

∫ c

a
f +

∫ b

c
f.

Conventions : • Pour tout a∈ R,
∫ a

a
f := 0.

• Pour tous réels a > b, on pose
∫ b

a
f := −

∫ a

b
f .

Il est essentiel de noter que, au vu de ces conventions, la relation de Chasles
s’étend à tout triplet a, b, c de réels dès que la fonction f est Riemann intégrable
sur l’intervalle [min(a, b, c),max(a, b, c)].

Proposition 1.4 (Intégrale et convergence uniforme). Soit (fn)n≥1 une suite de
fonctions de I ([a, b],K) qui converge uniformément vers f , i.e. ‖fn− f‖sup → 0,
alors

f ∈ I ([a, b],K) et
∫ b

a
f = lim

n

∫ b

a
fn.

Citons encore un critère de Riemann intégrabilité, souvent utile dans les appli-
cations.

Proposition 1.5. Soit f : [a, b]→ R une fonction bornée et Riemann intégrable sur
tout intervalle [α, β] contenu dans ]a, b[. Alors f est Riemann intégrable sur [a, b].

À ce stade, la question naturelle est évidemment de savoir s’il existe des fonc-
tions Riemann intégrables en dehors des fonctions en escalier.

1.3 Fonctions réglées

Définition 1.4. Une fonction f : [a, b]→ K est réglée s’il existe une suite (fn)n≥1

de fonctions en escalier convergeant uniformément vers f .

En d’autres termes, les fonctions réglées constituent l’adhérence des fonctions
en escalier dans l’ensemble des fonctions bornées pour la norme de la convergence
uniforme ‖ . ‖sup .

Proposition 1.6. Si une fonction f : [a, b]→ K est réglée, alors f ∈ I ([a, b],K).

Ce résultat est un corollaire immédiat de la proposition 1.4.

Théorème 1.1. Une fonction f : [a, b]→ K est réglée si et seulement si elle possède
une limite à droite en chaque point de [a, b[ et une limite à gauche en chaque point
de ]a, b] (ces limites s’entendent dans K).
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Corollaire 1.1. (a) C ([a, b],K) ⊂ I ([a, b],K).

(b) Si une fonction f : [a, b]→ R est monotone, alors f est Riemann intégrable.

Exemples : 1. Soit f la fonction définie sur [0, 1] par f(x) := sin(1/x) si x ∈]0, 1]
et f(0) := 0. La fonction f n’est pas réglée puisque f n’a pas de limite en 0+.
Elle est cependant Riemann intégrable, d’après la proposition 1.5, puisque f est
continue sur ]0, 1] et bornée sur [0, 1].

2. La fonction f définie sur [0, 1] par f(x) := 0 si x /∈ Q et f(x) :=
1

q
si x =

p

q
,

pgcd(p, q) = 1, est réglée (cf. exercice 1.3).

3. La fonction indicatrice des rationnels sur [0, 1] définie par 1Q∩[0,1](x) := 1 si
x∈ Q ∩ [0, 1] et 1Q∩[0,1](x) := 0 sinon, n’est pas Riemann intégrable.
En effet, soient ϕ, ψ ∈ E ([0, 1],R), ψ ≥ 0 telles que |1Q∩[0,1] − ϕ| ≤ ψ. Il vient
ϕ − ψ ≤ 1Q∩[0,1] ≤ ϕ + ψ. Or ϕ ± ψ étant en escalier, on a nécessairement, sauf
éventuellement en un nombre fini de points, ϕ− ψ ≤ 0 ≤ 1 ≤ ϕ+ ψ : en effet, Q
et R \ Q étant denses dans R, tout intervalle ouvert non vide contient à la fois des
rationnels et des irrationnels. En particulier, 1 − ψ ≤ ϕ ≤ ψ et donc ψ ≥ 1

2 sauf

sur un ensemble fini. D’où
∫ 1

0
ψ ≥ 1

2
. Ceci contredit la définition de la Riemann

intégrabilité dès que ε<1/2.
On notera cependant que 1Q∩[0,1] est “très souvent” nulle et qu’il semblerait

raisonnable de poser
∫ 1

0
1Q∩[0,1] = 0.

Application 1.2. (a) Riemann intégrabilité et convergence simple : Soient (rn)n≥1

une numérotation des rationnels de [0, 1] et fn(x) := 1{r1,...,rn}(x), n ≥ 1. Les
fonctions fn sont clairement en escalier donc Riemann intégrables. D’autre part,
pour tout x∈ [0, 1], lim

n
fn(x) = 1Q∩[0,1](x) qui n’est pas Riemann intégrable sur

[0, 1]. On en déduit que I ([a, b],K) n’est pas stable pour la convergence simple.

(b) Composition de fonctions Riemann intégrables : Soient f, g deux fonctions
respectivement définies par :

– f(x) := 0 si x /∈ Q ∩ [0, 1], f(x) :=
1

q
si x =

p

q
, pgcd(p, q) = 1, p ≤ q,

f(0) := 1

– g(x) := 1 si x∈ ]0, 1] et g(0) := 0.

Les fonctions f et g sont Riemann intégrables (cf. exemple 2 pour f , g étant en
escalier), cependant on constate que g◦f = 1Q∩[0,1] /∈ I ([0, 1],R) (cf. exemple 1).
La Riemann intégrabilité n’est donc pas stable par composition. Néanmoins, le
résultat est vrai dès que la fonction g est continue.
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1.4 Intégrale de Riemann et calcul de primitive

Proposition 1.7. Soit f ∈ I ([a, b],K). Alors f est Riemann intégrable sur tout

intervalle [a, x], x∈ [a, b] et l’on pose F (x) :=
∫ x

a
f pour x∈ [a, b].

(a) F est lipschitzienne de rapport ‖f‖sup (i.e. |F (x)− F (y)| ≤ ‖f‖sup |x− y|).
(b) Si f est continue à droite en c ∈ [a, b[, alors F est dérivable à droite en c et
F ′
d(c) = f(c), idem à gauche sur ]a, b].

Corollaire 1.2. Si f est continue sur [a, b], alors f admet une primitive sur [a, b],
i.e. une application F : [a, b] → K telle que F ′ = f , et toute primitive F de f
vérifie :

∀x∈ [a, b], F (x) = F (a) +

∫ x

a
f.

Application 1.3. La fonction (x 7→ 1/x) est continue sur R∗
+ et admet donc une

(unique) primitive nulle en 1 : c’est le logarithme népérien ln(x) :=

∫ x

1

dt

t
.

Contre-exemple : Il existe des fonctions f non Riemann intégrables (et donc a
fortiori non continues) admettant des primitives. Ainsi, la fonction f définie sur
[0, 1] par

f(x) := − 1√
x

cos

(
1

x

)
+

3

2

√
x sin

(
1

x

)
, x∈ ]0, 1], f(0) := 0,

a pour primitive sur [0, 1] la fonction F définie par

F (x) := x
3
2 sin

(
1

x

)
si x∈ ]0, 1], F (0) := 0.

Or, la fonction f n’étant pas bornée – f( 1
2πn) =−

√
2πn – ne peut être Riemann

intégrable sur [0, 1].

Proposition 1.8. Si F : [a, b]→ K est dérivable (à droite) de dérivée (à droite) F ′
d

Riemann intégrable sur [a, b], alors

F (b)− F (a) =
∫ b

a
F ′
d.

1.5 Changement de variable et intégration par parties

Ce sont les deux principaux outils pratiques du calcul intégral élémentaire.

Théorème 1.2 (Changement de variable élémentaire). Soit ϕ ∈ C 1([α, β],R) et
f ∈ C (ϕ([α, β]),K) ⊂ I (ϕ([α, β]),K). Alors :∫ β

α
f(ϕ(u))ϕ′(u) du =

∫ ϕ(β)

ϕ(α)
f(x) dx.
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Remarque : Seuls les changements de variable monotones ont un intérêt pratique.
Dans ce cas ϕ([α, β])=[ϕ(α), ϕ(β)] ou [ϕ(β), ϕ(α)] selon que ϕ est croissante ou
décroissante.

Exemple : Calcul de
∫ a

0

dx

ch(x)
. On pose x := ϕ(u) := argsh(u)∈ C 1([0, sh(a)]),

ϕ(0) = 0, ϕ(sh(a)) = a et ϕ′(u) =
1√

1 + u2
, donc

∫ a

0

dx

ch(x)
=

∫ sh(a)

0

du

ch(argsh(u))
√
1 + u2

=

∫ sh(a)

0

du

1 + u2
= arctan(sh(a)).

Théorème 1.3 (Intégration par parties élémentaire). Soient f, g∈ C 1([a, b],K). La
formule d’intégration par parties s’écrit∫ b

a
f g′ = [f g]ba −

∫ b

a
f ′ g.

Exemple : Calcul d’une primitive de la fonction arctan :∫ x

0
arctan(u) du = [u arctan(u)]x0 −

∫ x

0

u

1 + u2
du = x arctan(x)− 1

2
ln(1 + x2).

1.6 Formules de la moyenne

Proposition 1.9 (Première formule de la moyenne). Soient f ∈ C ([a, b],R) et g ∈
I ([a, b],R+). Alors il existe c∈ [a, b] tel que∫ b

a
f g = f(c)

∫ b

a
g.

Remarques : • Si f ∈ C ([a, b],R), il existe c ∈ [a, b] tel que
∫ b

a
f = f(c) (b−a).

• Le résultat n’est pas vrai si K = C. Ainsi,
∫ 2π

0
eix dx = 0 6= eic (2π − 0) pour

tout c∈ [0, 2π].

Proposition 1.10 (Seconde formule de la moyenne). Soient f, g∈ I ([a, b],R), f
positive et décroissante. Alors il existe c∈ [a, b] tel que∫ b

a
f g = f(a+)

∫ c

a
g.

Application 1.4. Soient f et g deux fonctions à valeurs réelles, Riemann intégra-
bles sur tout intervalle compact de [1,+∞[ et vérifiant : f est positive, décroissante,

lim
x→+∞

f(x) = 0 et G(x) :=
∫ x

1
g est bornée, alors lim

x→+∞

∫ x

1
f g existe dans R.
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DÉMONSTRATION : La fonction
∫ x

1
f g vérifie le critère de Cauchy au voisinage

de +∞. En effet,

∀ ε > 0, ∃Aε ≥ 1, ∀ y ≥ x > Aε,

∣∣∣∣∫ y

1
f g −

∫ x

1
f g

∣∣∣∣ = ∣∣∣∣∫ y

x
f g

∣∣∣∣
= f(x+) |G(c)−G(x)|

≤ 2 f(x) ‖G‖sup < ε. ♦

En appliquant ce dernier résultat aux fonctions f(x) :=
1

xα
et g(x) := sin(x),

on établit que l’intégrale
∫ +∞

1

sin(x)

xα
dx est convergente pour α∈ ]0, 1], bien que

non absolument convergente (nommée intégrale généralisée semi-convergente).

1.7 Sommes de Riemann

Définition 1.5. Soit f : [a, b] → K et σ = (a0, . . . , an) une subdivision de [a, b].
On appelle pas de la subdivision σ la quantité ‖σ‖ := max

1≤i≤n
(ai − ai−1). Soit

ξσ = (ξ1, . . . , ξn) un n-uplet d’éléments de K vérifiant : ξi ∈ [ai−1, ai]. On définit
la somme de Riemann relative à f , σ et ξσ par :

S(f, σ, ξσ) :=

n∑
i=1

(ai − ai−1) f(ξi).

On notera que S(f, σ, ξσ)=
∫ b

a
ϕ où ϕ est une fonction en escalier vérifiant

ϕ(x) := f(ξi) pour x∈]ai−1, ai[.

Théorème 1.4. Si f ∈ I ([a, b],K), alors

∀ ε>0, ∃α>0, ∀σ subdivision de [a, b], ‖σ‖ ≤ α⇒
∣∣∣∣S(f, σ, ξσ)−∫ b

a
f

∣∣∣∣ ≤ ε.
On peut établir ce résultat à titre d’exercice lorsque f ∈ C ([a, b],K) en utilisant

l’uniforme continuité de la fonction f sur le compact [a, b]. Dans le cas général, sa
démonstration est plus délicate.

Application 1.5. Si f ∈ I ([a, b],K), alors

b− a
n

n∑
k=1

f

(
a+ k

b− a
n

)
−→

n→+∞

∫ b

a
f.

Ainsi, par exemple,
n∑
k=1

1

k + n
=

1

n

n∑
k=1

1

1 + k
n

−→
n→+∞

∫ 1

0

dx

1 + x
= ln 2.
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1.8 L’espace semi-normé I ([a, b],K)

Définition 1.6. On pose, pour toute fonction f ∈ I ([a, b],K), N1(f) :=

∫ b

a
|f |.

Proposition 1.11. (I ([a, b],K), N1) est un espace semi-normé non complet.

La semi-norme N1 n’est pas une norme car la fonction f définie sur [0, 1] par

f(x) := 0 si x ∈ ]0, 1] et f(0) := 1, n’est pas nulle sur [0, 1] bien que
∫ 1

0
|f | = 0.

On admettra que l’on peut exhiber une suite (fn)n≥1 d’éléments de I ([a, b],K)
vérifiant :

(i) ∀ ε > 0, ∃nε ≥ 1, ∀ p, q ≥ nε, N1(fp − fq) ≤ ε,
(ii) Pour aucune fonction f ∈ I ([a, b],K) on a limnN1(fn − f) = 0.

Cependant, lorsque la fonction f est continue et positive, on montre aisément

que, si
∫ b

a
f = 0, alors f ≡ 0. On en déduit aussitôt que (C ([a, b],K), N1) est un

espace normé. Mais lui non plus n’est pas complet.

Proposition 1.12. (C ([a, b],K), N1) est un espace normé non complet.

La non-complétude découle du contre-exemple suivant :

Contre-exemple : Soit (fn)n≥2 la suite de C ([0, 1],R) affine par morceaux définie
par fn := 1 sur [0, 12 ] et fn := 0 sur [12+

1
n , 1]. On vérifie, d’une part, que la suite

(fn)n≥2 est de Cauchy dans (C ([0, 1],R), N1) et, d’autre part, qu’elle converge
simplement et dans (I ([0, 1],R), N1) vers f̃∞ := 1[0, 1

2
] /∈ C ([0, 1],R).

Si fn convergeait vers une fonction continue f∞ au sens de la norme N1, on
aurait nécessairement N1(f∞− f̃∞) = 0. Or, on vérifie sans peine que, pour toute
fonction continue f , N1(f−f̃∞)>0. D’où la non-complétude annoncée.

1.9 Intégrales dépendant d’un paramètre

On considère la fonction

f : J × [a, b] −→ K
(t, x) 7−→ f(t, x)

où J est un intervalle ouvert non vide de R.

Proposition 1.13. (a) (Continuité sous le signe intégrale) Si f ∈ C (J × [a, b],K),

alors la fonction F définie par F (t) :=
∫ b

a
f(t, x) dx est continue sur J .
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(b) (Dérivabilité sous le signe somme) Si f et
∂f

∂t
sont dans C (J × [a, b],K), alors

F est dérivable sur J et

∀ t∈ J, F ′(t) =

∫ b

a

∂f

∂t
(t, x) dx.

Remarque : Si g∈ I ([a, b],K) et f(t, x) := g(x) si x ≤ t et f(t, x) := 0 si x > t,

on note que F (t) =
∫ b

a
f(t, x) dx =

∫ t

a
g ne rentre aucunement dans le cadre de

la proposition précédente.

Ce résultat laisse donc ouvert tous les cas où f n’est pas continue et, surtout,
celui où l’intégrale est définie sur un intervalle non compact (R, ]0, 1[, . . . ). En
fait, il existe des théorèmes généraux relatifs aux intégrales généralisées dépendant
d’un paramètre mais ceux-ci sont d’un usage compliqué et il est généralement plus
efficace de “couper” les intégrales en morceaux pour faire le travail “à la main”.

Application 1.6. Calcul de l’intégrale impropre F (t) :=

∫ +∞

0

sinx

x
e−txdx, t≥0.

DÉMONSTRATION : L’idée est de dériver sous le signe intégral pour faire apparaı̂tre la fonction
x 7→ sinx e−tx dont il est facile de calculer une primitive. Mais les théorèmes dont on dispose ne
sont valables que sur des intervalles compacts. On considère donc la suite de fonctions (Fn)n∈N

définie par

Fn(t) :=

∫ n

0

sinx

x
e−tx dx, t ≥ 0.

Étape 1 La suite (Fn)n∈N converge uniformément vers F sur R+ et F est continue sur R+ :

Soient n ≤ m ∈ N∗ et x ∈ R+. La fonction x 7→ x−1 e−tx étant positive, décroissante et
continue, il existe d’après la seconde formule de la moyenne (proposition 1.10), un réel c ∈ [n,m]
tel que

Fm(t)− Fn(t) =

∫ m

n

sinx

x
e−tx dx =

e−nt

n

∫ c

n

sinx dx =
e−nt

n
(cosn− cos c).

Le critère de Cauchy de convergence uniforme est donc vérifié puisque

∀ t∈ R+, |Fm(t)− Fn(t)| ≤
2

n
.

D’autre part, la fonction g définie sur R × R par g(t, x) :=
sinx

x
e−tx si x 6= 0 et g(t, 0) := 1

est continue sur le pavé [0, n]× R+. La fonction Fn est continue sur R+ d’après la proposition 1.13.
Finalement la fonction F est continue sur R+ comme limite uniforme d’une suite de fonctions conti-
nues. Elle l’est donc en particulier en 0.

Étape 2 La fonction F est dérivable sur R∗
+ et F ′(t) =

−1

1 + t2
:

Comme
(
x 7→ sinx

x

)
est continûment dérivable sur R, la fonction g est de classe C1 sur R×R,

donc en particulier sur [0, n] × R+. Par suite, d’après la proposition 1.13(b), la fonction Fn est

dérivable sur R+ et F ′
n(t) = −

∫ n

0

sinx e−tx dx.
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Soient a > 0, t ≥ a et n∈ N∗. Il vient, d’après la relation de Chasles,∣∣∣∣F ′
n(t) +

∫ +∞

0

sinx e−tx dx

∣∣∣∣ = ∣∣∣∣∫ +∞

n

sinx e−tx dx

∣∣∣∣ ≤ ∫ +∞

n

e−tx dx =
1

nt
≤ 1

na

et
∫ +∞

0

sinx e−tx dx = =
(∫ +∞

0

e(i−t)x dx

)
= =

([
e(i−t)x

i−t

]x=+∞

x=0

)
= − 1

1 + t2
.

La suite (F ′
n)n∈N converge donc uniformément vers la fonction t 7→ − 1

1 + t2
sur [a,+∞[.

Comme F est limite simple de la suite (Fn)n∈N sur [a,+∞[, F est dérivable sur [a,+∞[ pour tout

a > 0 i.e. sur R+ et F ′(t) = − 1

1 + t2
pour tout t > 0.

Étape 3 ∀ t ≥ 0, F (t) =
π

2
− arctan t :

D’après l’étape 2, il existe une constante k∈ R telle que pour tout t > 0, F (t) = k − arctan t.
Comme F est continue en 0, on a lim

t→0+
F (t) = F (0) = k. D’autre part, pour tout t > 0,

|F (t)| ≤
∫ +∞

0

∣∣∣∣ sinxx
∣∣∣∣ e−tx dx ≤

∫ +∞

0

e−tx dx =
1

t
,

d’où lim
t→+∞

F (t) = 0 = k − π

2
. Par conséquent, pour tout t ≥ 0, F (t) =

π

2
− arctan t. ♦

Conclusion

On a pu constater à plusieurs reprises dans ce chapitre que l’intégrale de Rie-
mann souffrait de nombreuses limitations tant sur le plan théorique que pratique :
ainsi, une fonction Riemann intégrable est nécessairement bornée, I ([a, b]) l’es-
pace des fonctions Riemann intégrables n’est stable, ni par convergence simple,
ni par composition quand cela est possible. L’espace

(
I ([a, b]), N1

)
n’est pas

complet. Les intégrales dépendant d’un paramètre ne donnent lieu à des résultats
généraux que dans des cadres très restrictifs (fonctions continues).

En outre, malgré toutes ces limitations, l’intégrale de Riemann reste un outil
très technique et d’un maniement délicat. D’où l’intérêt d’introduire une nouvelle
notion d’intégrale possédant un plus vaste champ d’applications et fournissant des
outils plus puissants dans la résolution des questions pratiques.

Quant à l’intégrale de Riemann, elle conserve néanmoins certains attraits, no-
tamment par son extension immédiate aux fonctions à valeurs dans un espace de
Banach (i.e. un espace vectoriel normé complet). En effet, l’extension de l’intégrale
au sens de Lebesgue à ce type de fonctions, qui ne sera pas abordée dans cet ou-
vrage, se révèle, elle, particulièrement délicate.
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1.10 Exercices

Les exercices 1.9, 1.11, 1.12, 1.15, 1.16, 1.18 traitent du problème d’interver-
sion limite-intégrale et pointent les insuffisances de l’intégrale de Riemann liées à
l’emploi restrictif de la convergence uniforme (cf. proposition 1.4), qui nécessite
souvent des découpages d’intégrales assez techniques. Les puissants théorèmes de
l’intégrale de Lebesgue du chapitre 8 permettront de surpasser ces difficultés (cf. en
particulier l’exercice 8.0).

1.1 a) Soient f ∈ I ([a, b],K) et g : R → R une fonction lipschitzienne sur un
intervalle borné contenant l’image de f . Montrer que g ◦ f ∈ I ([a, b],K).

b) Plus généralement, montrer que g ◦ f ∈ I ([a, b],K) si g est continue.

1.2 Lemme de Riemann-Lebesgue et Problème de Bâle 1

a) Soit f ∈ I ([a, b],C). Montrer que lim
n

∫ b

a
f(x) einx dx = 0.

b) Déterminer α, β ∈ R tels que ∀n ∈ N∗,

∫ π

0

(
αx+ β x2

)
cos(nx) dx =

1

n2
.

c) Montrer que pour tout x /∈ 2πZ,
n∑
k=1

cos(kx) =
sin
(
(n+1/2)x

)
2 sin(x/2)

− 1

2
.

d) En déduire la formule
∑
n≥1

1

n2
=
π2

6
en appliquant a) sur [δ, π], δ ∈ ]0, π], et

en majorant l’intégrale sur [0, δ] à l’aide de l’inégalité sin(x/2) ≥ x/π.

1.3 Montrer que la fonction f suivante est réglée :

f(x) :=


0 si x ∈ R \ Q
1

q
si x =

p

q
, p, q ∈ N∗ premiers entre eux.

1.4 Soit f ∈ I ([a, b],R∗
+). Montrer que

∫ b

a
f > 0.

1.5 Calculer la limite de la suite un :=

(
(2n)!
n!nn

)1/n
pour n ≥ 1.

1.6 Soit f ∈I ([0, 1],R). Calculer la limite de Tn :=
1

n

n∑
k=1

(−1)k f
(k
n

)
, n ≥ 1.

1.7 Somme de Riemann

a) Soit f : [a, b[→ R une fonction monotone telle que l’intégrale
∫ b

a
f(x) dx soit

convergente. Montrer que lim
n

b− a
n

n−1∑
k=1

f
(
a+

k

n
(b−a)

)
=

∫ b

a
f(x) dx .
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b) Montrer que pour tout n ∈ N∗,
n−1∏
k=1

sin
(kπ
n

)
=

n

2n−1
.

En déduire, à l’aide du a) la valeur de
∫ π

0
ln(sinx) dx.

1.8 Soient f, g : [0, 1] → R continues telles que f soit décroissante et 0 ≤ g ≤ 1.

Montrer que
∫ 1

0
f(x) g(x) dx ≤

∫ I

0
f(x) dx où I :=

∫ 1

0
g(x) dx.

1.9 Soit (fn)n≥1 la suite de fonctions définies sur [0, 1] par fn(x) :=
n∑
k=1

xk

k
.

Montrer que (fn)n≥1 est de Cauchy mais ne converge pas dans
(
C ([0, 1],R), N1

)
où N1(f) :=

∫ 1
0 |f |.

1.10 a) Soit (fn)n≥0 la suite définie par fn(x) :=
2nx

1 + n 2nx2
pour x ∈ [0, 1].

La suite (fn)n≥0 converge-t-elle uniformément sur [0, 1]? Sur [a, 1] avec a>0?

b) Calculer lim
n

∫ 1

0
fn(x) dx.

1.11 a) Montrer que
∫ 1

0

dx

xx
=
∑
n≥1

1

nn
à l’aide d’un développelement en série.

b) Montrer que
∫ 1

0

lnx

x− 1
dx =

∑
n≥1

1

n2
en développant en série la fonction

x 7→ 1

x− 1
sur [0, a], a ∈ [0, 1[, et en majorant l’intégrale sur [a, 1].

1.12 a) Montrer que pour tout n ≥ 1, la fonction fn : x 7→ ex −
(
1+

x

n

)n
est

positive et croissante sur R+.

b) En déduire la valeur de lim
n

∫ n

0

(
1+

x

n

)n
e−2x dx.

1.13 Étudier la fonction f définie sur R+ par f(x) :=
∫ x

0
sin(1/t) dt pour x ≥ 0,

en particulier au point 0.

1.14 Étudier la fonction f définie sur R+\{1} par f(x) :=
∫ x2

x

dt

ln t
, en particulier

aux points 0 et 1.

1.15 Intégrale de Gauss

Soit f la fonction définie sur R par f(x) :=
∫ 1

0

e−x
2(1+t2)

1 + t2
dt pour x ∈ R.

a) Montrer que ∀x ∈ R, f(x) =
π

4
−
(∫ x

0
e−t

2
dt

)2

.
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b) En déduire la valeur de I :=

∫ +∞

0
e−t

2
dt.

Soit g la fonction définie sur R par g(x) :=
∫ +∞

0

e−x
2(1+t2)

1 + t2
dt pour x ∈ R.

c) Montrer que g est continue sur R et dérivable sur R∗. Calculer g′ et lim
+∞

g puis g.

d) En déduire à nouveau la valeur de I .

1.16 Problème de Bâle 2, seconde résolution d’Euler en 1741 ( 1)

a) Intégrales de Wallis : Soit In :=

∫ 1

0

xn√
1− x2

dx pour n ∈ N.

Montrer que ∀n ∈ N, In+2 =
n+ 1

n+ 2
In, In+1 In =

π

2n+ 2
, In ∼

+∞

√
π

2n
.

b) Soit f la fonction définie par f(x) := (1− x)−
1
2 pour x ∈ [0, 1[.

Montrer que ∀n ∈ N, ∀x ∈ [0, 1[, f (n)(x) =
n!

(2n+ 1) I2n+1
(1− x)−n−

1
2 .

En déduire que ∀x ∈ [0, 1[ , f(x) =

+∞∑
n=0

xn

(2n+ 1) I2n+1
.

c) Montrer que ∀x ∈ [0, 1[ , arcsin (x) =

+∞∑
n=0

x2n+1

(2n+ 1)2 I2n+1
.

d) Montrer, à l’aide de la question c), que

π2

8
=

∫ 1

0

arcsin (x)√
1− x2

dx =

+∞∑
n=0

1

(2n+ 1)2
.

Conclure en séparant les termes pairs et les termes impairs dans
+∞∑
n=1

1

n2
.

1.17 Problème de Bâle 3, tiré de l’article ( 2)

On reprend l’intégrale de Wallis de l’exercice 1.16 : In =

∫ π
2

0
(cos θ)n dθ, obtenu

avec x = cos θ, et on définit Jn =

∫ π
2

0
θ2 (cos θ)2n dθ, pour n ∈ N.

a) Montrer en intégrant par parties, que ∀n ∈ N∗, I2n = n(2n−1) Jn−1−2n2 Jn.

b) En déduire, à l’aide de 1.16 a), que ∀n ∈ N∗,
1

n2
=

2 Jn−1

I2n−2
− 2 Jn

I2n
.

1. L. Euler, “Démonstration de la somme de cette suite 1 + 1/4 + 1/9 + 1/16 + 1/25 + 1/36 + . . .”,
Journal littéraire d’Allemagne, de Suisse et du Nord, vol. 2 (1743), 115-127. Archivé dans Opera
Omnia, Series. 1, vol. 14, 177-186 (E63).

2. Y. Matsuoka, “An elementary proof of the formula
∑+∞

n=1
1
n2 = π2

6
”, Amer. Math. Monthly,

68 (1961), 485-487.
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c) Montrer l’inégalité ∀n ∈ N∗,
Jn
I2n
≤ π2

4

(
1 − I2n+2

I2n

)
en utilisant l’inégalité

de convexité sin θ ≥ 2

π
θ pour θ ∈ [0, π2 ].

d) En déduire que
+∞∑
n=1

1

n2
=
π2

6
.

1.18 Autour du problème de Bâle 4, tiré de l’article ( 3)

a) Montrer que

∀x ∈ ]0, 1[ , ln(x) ln(1− x)−
∫ x

0

ln(1− t)
t

dt−
∫ 1−x

1

ln(1− t)
t

dt = 0.

b) En déduire que

∀x ∈ ]0, 1[ ,
+∞∑
n=1

1

n2
=

+∞∑
n=1

(
xn + (1− x)n

)
n2

+ ln(x) ln(1− x).

c) Montrer la formule
+∞∑
n=1

1

n2
=

+∞∑
n=1

1

2n−1 n2
+ (ln 2)2 .

3. L. Euler, “De summatione innumerabilium progressionum”, Commentarii academiae scien-
tiarum Petropolitanae, vol. 5 (1738), 91-105. Archivé dans Opera Omnia, Series 1, vol. 14, 25-41.
(E20).





Chapitre 2

Éléments de théorie des cardinaux

2.1 Cardinaux

Définition 2.1. Soient X et Y deux ensembles. On dit que X est équipotent à Y , et
l’on note X éq. Y ou cardX = cardY , s’il existe une bijection de X sur Y .

Il est immédiat que tout ensembleX est équipotent à lui-même car l’application
identité sur X est une bijection de X sur X . Si une fonction f : X → Y est
bijective, elle admet une réciproque bijective f−1 : Y → X , en conséquence, si
X éq. Y , alors Y éq. X . Enfin la composée de deux applications bijectives étant
bijective, il est clair que, si X éq. Y et Y éq. Z, alors X éq. Z.

La relation d’équipotence est donc une relation d’équivalence sur la “collection
de tous les ensembles” dont les “classes” définissent les “cardinaux”. La présence
de “guillemets” est justifiée par le fait que la collection de tous les ensembles
n’est pas un ensemble, sinon cet ensemble serait élément de lui-même. La notion
de classe d’équivalence associée de façon naı̈ve à la relation d’équipotence n’est
donc pas parfaitement satisfaisante du point de vue de la rigueur. Cet obstacle peut
néanmoins être contourné, et les cardinaux définis rigoureusement ([16], E-III-3).

Exemples : 1. P(X) et {0, 1}X sont équipotents car l’application définie par

P(X) −→ {0, 1}X
A 7−→ 1A

où 1A(x) :=

{
1 si x∈ A
0 si x /∈ A

est bijective.

2. N est équipotent à 2N car n 7→ 2n est une bijection.

Proposition 2.1. SoitX un ensemble. Les ensemblesX et P(X) ne sont pas équi-
potents et, plus précisément, il n’existe pas de surjection de X sur P(X).

DÉMONSTRATION : Supposons l’existence d’une surjection f deX sur P(X) ; on
pourrait alors trouver un antécédent a à l’ensemble A := {x ∈ X : x /∈ f(x)},
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i.e. un élément a ∈ X tel que f(a) = A. Mais si a ∈ A alors a /∈ f(a) = A et si
a /∈ A alors a ∈ f(a) = A. ♦

Notation-définition :
(a) S’il existe une injection de X dans Y , on notera cardX ≤ cardY .
(b) Si cardX ≤ cardY et X,Y non équipotents, on notera cardX < cardY .

Théorème 2.1 (Bernstein).
(a) S’il existe une injection de X dans Y alors il existe une surjection de Y sur X .
(b) S’il existe une surjection de X sur Y alors il existe une injection de Y dans X .
(c) S’il existe une injection (resp. surjection) de X dans Y et une injection (resp.
surjection) de Y dans X alors X et Y sont équipotents, i.e. ont même cardinal.
(d) Si X et Y sont deux ensembles, ils se trouvent toujours dans une et une seule
des trois situations suivantes :

cardX < cardY ou cardX = cardY ou cardX > cardY .

Ce résultat – difficile – sera admis ici. Pour une démonstration du (c) on peut
notamment consulter [30], p. 59.

Corollaire 2.1. La relation ≤ est une relation d’ordre total sur les cardinaux.

DÉMONSTRATION : La réflexivité est immédiate car, pour tout ensemble X , l’ap-
plication identité IdX est injective. L’antisymétrie découle du point (c). La com-
posée de deux applications injectives étant injective, la relation ≤ est clairement
transitive. La relation est totale d’après le point (d). ♦

Illustrations : 1. Si X ⊂ Y alors cardX ≤ cardY .
2. D’une part cardN ≤ cardP(N) car n 7→ {n} est injective ; d’autre part

cardN < cardP(N) car il n’existe pas de surjection de N sur P(N) d’après la
proposition 2.1.

Définition 2.2. Un ensemble X est infini s’il existe x0 ∈ X et une injection de X
dans X \ {x0}. Dans le cas contraire X est dit fini et l’on note cardX < +∞.

Exemple : N est infini car (n 7→ n+ 1) est une injection de N dans N \ {0}.

Proposition 2.2. S’il existe une injection de X dans Y et si X est infini alors Y est
infini. En particulier, dès qu’un ensemble contient une partie infinie, il est lui-même
infini.

DÉMONSTRATION : Soient i une injection de X dans Y et ϕ une injection de X
dans X \ {x0} alors l’application ψ définie par{

ψ(y) = y si y ∈ Y \ i(X)
ψ(y) = i [ϕ (x)] si y = i(x)∈ i(X)

est une injection de Y dans Y \ {i(x0)}. ♦
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Proposition 2.3. Un ensemble X est infini si et seulement si il existe une injection
de N dans X , i.e. cardX ≥ cardN.

DÉMONSTRATION : Soit X un ensemble infini. Montrons par récurrence que pour
tout n∈ N, il existe (n+1) éléments distincts x0, . . . , xn deX et une injection in de
X dans X \ {x0, . . . , xn}. Le résultat est vrai pour n=0 d’après la définition d’un
ensemble infini. Supposons le vrai pour n. D’après la proposition 2.2, l’ensemble
X \ {x0, . . . , xn} est donc infini ce qui entraı̂ne l’existence d’une injection j de
X \ {x0, . . . , xn} dans X \ {x0, . . . , xn+1} où xn+1 ∈ X \ {x0, . . . , xn}. On
vérifie aussitôt que in+1 :=j ◦ in est une injection de X dans X \ {x0, . . . , xn+1}.
Finalement, l’application de N dans X donnée par (n 7→ xn) est une injection.

Réciproquement, l’existence d’une injection de N dans X entraı̂ne que X est
infini d’après la proposition précédente puisque N est lui-même infini. ♦

Remarque : La proposition 2.3 se reformule de façon équivalente en :
un ensemble X est fini si et seulement si cardX < card N.

Ceci traduit le fait que les ensembles équipotents à N sont les plus “petits”
ensembles infinis au sens des cardinaux.

Exemples : 1. R est infini car N ⊂ R.
2. P(N) est infini car (n 7→ {n}) est une injection de N dans P(N). Cependant
on a vu précédemment que cardN < cardP(N). Il y a donc plusieurs – et même
une infinité – de “classes” d’ensembles infinis dont la plus petite est constituée
par les ensembles équipotents à N. C’est cette classe que nous allons maintenant
étudier plus en détail.

2.2 Ensembles dénombrables

Définition 2.3. (a) L’ensemble X est dit dénombrable s’il existe une injection de
X dans N, i.e. cardX ≤ cardN.
(b) L’ensemble X est dit infini dénombrable si X est équipotent à N, i.e. cardX =
cardN. On note ℵ0 ( 1) le cardinal infini dénombrable.
(c) Si cardX > cardN,X est dit non dénombrable ou parfois infini non dénombra-
ble.

Ainsi N est-il évidemment infini dénombrable et P(N) est-il infini non dénom-
brable (cf. exemple ci-dessus).

Remarque : D’après le théorème de Bernstein, un ensembleX est infini dénombra-
ble si et seulement si il est infini et dénombrable (ce qui assure la cohérence de la
définition).

On déduit immédiatement de ces définitions les propriétés ci-après.

1. ℵ (prononcer “aleph”) est la première lettre de l’alphabet hébraı̈que.
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Proposition 2.4. (a) L’ensemble X est dénombrable si et seulement si il est fini ou
infini dénombrable.
(b) Toute partie d’un ensemble dénombrable est dénombrable.
(c) Si X est infini, Y dénombrable et X ⊂ Y alors Y est infini dénombrable.

DÉMONSTRATION : (b) Soit X ′ ⊂ X . La composée de l’injection canonique de
X ′ dans X par une injection de X dans N est une injection de X ′ dans N. Donc X ′

est dénombrable.
(c) L’ensemble Y est infini d’après la proposition 2.3, dénombrable par définition
donc infini dénombrable. ♦

Application 2.1. (a) Z est infini dénombrable.
(b) N2 est infini dénombrable.
(c) Q est infini dénombrable.

DÉMONSTRATION : (a) L’application Φ définie par

Φ : N −→ Z
2n 7−→ n

2n− 1 7−→ −n

est une bijection, donc Z est bien équipotent à N.
(b) L’application Φ définie par

Φ : N2 −→ N

(p, q) 7−→ Φ(p, q) :=
(p+ q) (p+ q + 1)

2
+ q

est une bijection. Cette application Φ consiste à numéroter les couples de N×N au
fur et à mesure de leur rencontre le long du parcours indiqué ci-dessous.
(c) D’une part N ⊂ Q donc Q est infini. D’autre part, tout rationnel r s’écrit de
façon unique r =

p

q
, (p, q)∈ Z×N∗, pgcd (p, q) = 1 (l’écriture canonique de 0 est

donc 0= 0
1 ). L’application définie par

Q −→ Z× N
p

q
7−→ (p, q)

est donc une injection. Or Z × N est équipotent à N2, lui-même équipotent à N,
donc par composition, il existe une injection de Q dans N. ♦

On déduit immédiatement de la proposition précédente

Corollaire 2.2. (a) Pour tout d≥1, Nd est dénombrable,
(b) Pour tout d ≥ 1, si les ensembles X1, . . . , Xd sont dénombrables, alors le
produit cartésien X1 × . . . × Xd est dénombrable. En outre, si tous les Xi sont
non vides, X1 × . . . × Xd est infini dénombrable dès que l’un des Xi est infini
dénombrable.
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DÉMONSTRATION : On établit directement le point (b) via une récurrence sur d≥2.
Supposons d = 2. Les ensembles X1 et X2 étant dénombrables, il existe deux
injections Φi de Xi dans N, i∈ {1, 2}. On vérifie immédiatement que l’application
Φ : X1 ×X2 → N× N définie par Φ((x1, x2)) := (Φ1(x1),Φ2(x2)) est injective.
Le produit X1 ×X2 est donc dénombrable.

Supposons, par exemple, X2 infini dénombrable. Alors X2 éq. N et l’on peut
supposer que Φ2 est une bijection. Soit x01∈ X1 un élément fixé de l’ensemble non
vide X1. L’ensemble N s’injecte dans X1 ×X2 via Ψ(n)=(x01, (Φ2)

−1(n)).
Le passage de d à d+ 1 se fait en notant d’abord que

X1 × . . .×Xd ×Xd+1 = (X1 × . . .×Xd)×Xd+1.

Enfin, quitte à changer l’indexation des ensembles, on peut toujours supposer, si
l’un des ensembles Xi est infini dénombrable, qu’il s’agit de Xd+1. ♦

Proposition 2.5. Une réunion dénombrable d’ensembles dénombrables est dénom-
brable.

DÉMONSTRATION : Soit X =
⋃
i∈I

Xi, I ⊂ N où chaque ensemble Xi, i ∈ I ,

est dénombrable. Pour tout i ∈ I , on considère une injection ϕi de Xi dans N.
Pour chaque x ∈ X , on définit l’entier naturel n(x) := min {i ∈ I ; x ∈ Xi}.
L’application Φ définie par

Φ : X −→ N2

x 7−→ Φ(x) :=
(
n(x), ϕn(x)(x)

)
est une injection. En effet, si x 6= y, soit n(x) 6= n(y) et Φ(x) 6= Φ(y), soit
n(x) = n(y) = n auquel cas x, y ∈ Xn et ϕn(x) 6= ϕn(y) car ϕn est injective,
donc Φ(x) 6= Φ(y). Par conséquent, X est dénombrable. ♦

(0,0)
(0,1)

(2,2)

(1,0)

(2,0)

(0,3)(0,2)

(3,0)

(4,0)

(3,1)

(1,1) (1,2)

(2,1)

FIGURE 2.1 – Dénombrabibilité de N×N
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Remarque : Si l’un des Xi est infini dénombrable alors X l’est aussi grâce à la
proposition 2.4 (c).

Enfin, on montre le théorème essentiel suivant :

Théorème 2.2. L’ensemble R est infini non dénombrable. Plus précisément,
cardR = cardP(N).

DÉMONSTRATION : Soit Φ l’application définie par

Φ : {0, 1}N −→ [0, 1/2]

x := (xn)n≥0 7−→
+∞∑
n=0

xn
3n+1

.

Φ est une injection car, si (xn)n≥0 6= (yn)n≥0, ` := min{n ; xn 6= yn} est fini. Or

|Φ(x)− Φ(y)| ≥ 1

3`+1
−

+∞∑
n=`+1

1

3n+1
=

1

2

1

3`+1
> 0,

donc, P(N), qui est équipotent à {0, 1}N, s’injecte dans l’intervalle [0, 1/2] par Φ.
Comme [0, 1/2] s’injecte à son tour dans R via l’injection canonique, il vient

cardN < cardP(N) ≤ cardR.

À ce stade, P(N) étant infini non dénombrable, il est immédiat qu’il en est de
même pour R.

Pour établir l’égalité cardR= cardP(N), on s’appuie d’abord sur l’applica-
tion bijective

ϕ : R −→ ]0, 1[

x 7−→ ex

1 + ex
.

Il vient alors

card [0, 1[≤ cardR = card ]0, 1[≤ card [0, 1[

et partant, cardR = card [0, 1[. Soit Ψ l’application définie par

Ψ : [0, 1[ −→ {0, 1}N
x 7−→ Ψ(x) := (xn)n∈N

où


x0 :=[2x],

xn :=

[
2n+1

(
x−

n−1∑
k=0

xk
2k+1

)]
, n≥1,

([x] désigne la partie entière de x). Ψ(x) est alors le développement dyadique

propre de x et l’on a l’égalité x =
+∞∑
n=0

xn
2n+1

qui entraı̂ne à son tour l’injectivité
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de Ψ. Donc cardR = card [0, 1[≤ card {0, 1}N = cardP(N). On en conclut que
cardR=cardP(N), ce qui achève la démonstration. ♦

2.3 Exercices

2.1 Soit f : X → Y une application.
a) Montrer l’équivalence des énoncés suivants :

(i) f surjective,
(ii) pour tout B∈P(Y ), f(f−1(B)) = B,
(iii) pour tout A∈P(X), cf(A) ⊂ f(cA).

b) Montrer l’équivalence des énoncés suivants :
(i) f injective,
(ii) pour tout A∈P(X), f−1(f(A)) = A,
(iii) pour tout A∈P(X), f(cA) ⊂ cf(A),
(iv) pour tous A,B∈P(X), f(A ∩B) = f(A) ∩ f(B).

2.2 Soient A,B∈P(X). Exprimer 1cA, 1A∩B , 1A∪B , 1A\B et 1A∆B à l’aide des
fonctions indicatrices 1A et 1B .

2.3 a) Soient A1, . . . , An∈P(X), n ≥ 1. Montrer que

1(
⋃n

i=1 Ai) =
n∑
k=1

(−1)k+1
∑

I⊂{1,...,n}, card(I)=k

1(
⋂

i∈I Ai).

b) En déduire, si X est fini, la formule de Poincaré :

card

(
n⋃
i=1

Ai

)
=

n∑
k=1

(−1)k+1
∑

I⊂{1,...,n}, card(I)=k

card
(⋂
i∈I

Ai

)
.

2.4 a) Soit n∈N∗ et p1, . . . , pn n nombres premiers distincts. Montrer que Nn est

dénombrable à l’aide de l’application définie par
(
(k1, . . . , kn) 7→ pk11 · · · pknn

)
.

b) En déduire que le produit cartésien d’un nombre fini d’ensembles dénombrables
est dénombrable. Que peut-on dire d’un produit cartésien infini dénombrable d’en-
sembles dénombrables?

2.5 Montrer que R n’est pas dénombrable en considérant le développement décimal
propre de chaque réel (i.e. celui dont la suite des décimales ne stationne pas en 9)
dans [0, 1[.

2.6 Montrer que l’ensemble des parties infinies de N, et plus généralement d’un
ensemble infini, n’est pas dénombrable.

2.7 Montrer que l’ensemble A des nombres réels algébriques, i.e. racines d’un po-
lynôme à coefficients entiers, est dénombrable.
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2.8 Montrer que les points de discontinuité d’une fonction f : R → R monotone,
est dénombrable.

2.9 Montrer que tout ouvert Ω de R est réunion dénombrable d’intervalles ouverts
deux à deux disjoints.



Chapitre 3

Quelques compléments de topologie

Ces quelques rappels et compléments ne sauraient en aucun cas se substituer
à un cours de topologie générale ou de structures métriques. Seules les notions
absolument indispensables en théorie de la mesure et en intégration sont abordées :
la droite achevée R, les limites supérieure et inférieure, la séparabilité et les bases
dénombrables d’ouverts et, enfin, les fonctions distance à un ensemble. À l’inverse,
des notions de base comme l’adhérence ou l’intérieur d’un ensemble, la compacité,
dont il sera fait abondamment usage dans la suite, ne sont ni développées, ni même
redéfinies ici. En cas de doute ou d’absence, le recours à un manuel de topologie
générale ou, plus simplement, de structures métriques (e.g. [18]) s’impose.

3.1 La droite achevée

La droite achevée, généralement désignée par R, est un espace métrique or-
donné répondant à trois exigences essentielles :

– être un sur-ensemble de R aussi “petit” que possible au sens de l’inclusion,

– être compact et totalement ordonné,

– être compatible avec la droite réelle au sens où l’ordre et la topologie sur R,
restreints à R, coı̈ncident avec l’ordre naturel sur R et la topologie associée à la
métrique de la valeur absolue.

Il existe plusieurs façons de procéder qui, peu ou prou, se ramènent à fabri-
quer un homéomorphisme entre R et un intervalle ouvert de R que l’on prolonge
convenablement. Considérons, par exemple, l’application

f : R −→ ]− 1, 1[

x 7−→ x√
x2 + 1

.
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La fonction f est clairement un homéomorphisme entre R et ]−1, 1[ (sa réciproque
f−1(y) :=

y√
1− y2

est bien continue). Or, comme l’intervalle ouvert ] − 1, 1[ a

pour adhérence dans R l’intervalle compact [−1, 1], l’idée pour construire R est
d’ajouter deux éléments notés − : et + : à R pour en faire les antécédents de −1 et
1 par un prolongement f̃ de f à R.

On définit donc

R := R ∪ {+ :,− :} et f̃|R := f, f̃(− :) := −1, f̃(+ :) := 1. (3.1)

Reste maintenant – et c’est le plus important – à définir sur R un ordre total,
noté ≤, et une distance δ.

Ordre sur R :{
(i) l’ordre usuel sur R i.e. x ≤ y si y − x∈ R+ lorsque x, y∈ R,
(ii) ∀x∈ R − :≤ x ≤ + : .

Distance sur R :
∀x, y∈ R, δ(x, y) := |f̃(x)− f̃(y)|. (3.2)

La proposition suivante montre que le but recherché est atteint.

Proposition 3.1. (a) La relation binaire ≤ est un ordre total sur R, pour lequel
toute partie non vide possède une borne supérieure et une borne inférieure, et δ est
une distance sur R.

(b) L’application identité Id : (R, δ|R)→ (R, | . |) est un homéomorphisme.

(c) L’espace (R, δ) est un compact, homéomorphe à l’intervalle [−1, 1] et R est
ouvert dans R. Il existe un tel homéomorphisme compatible avec les ordres sur R
et [−1, 1] ; c’est le cas de l’application f̃ définie par (3.1).

DÉMONSTRATION : (a) Le fait que soit un ordre total est immédiat. De plus, une
partie non vide de R est : soit majorée dans R et possède donc une borne supérieure
dans R et R, soit non-majorée dans R et admet alors + : comme borne supérieure
dans R ; idem pour la borne inférieure. Concernant la distance, il suffit de noter que
f̃ est injective de R dans [−1, 1] car f l’est de R dans ] − 1, 1[. Ceci assure que
δ(x, y)=0 si et seulement si x=y.

(b) Vue la définition de δ sur R, la bi-continuité de l’identité pour δ et | . | consiste
simplement à montrer que f est un homéomorphisme entre R et ]−1, 1[. Ceci a été
établi dans l’introduction de la section. La topologie induite par δ sur R coı̈ncide
donc bien avec celle définie par la valeur absolue.

L’application f̃ est clairement une bijection (strictement) croissante entre R et
[−1, 1]. Enfin, vu que pour tous x, y ∈ R, |f̃(x) − f̃(y)| = δ(x, y), f̃ est une
isométrie bijective, c’est donc un homéomorphisme.
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On en déduit immédiatement que R = f̃−1([−1, 1]) est un intervalle compact
puisque l’application f̃−1 est continue. Enfin R, image réciproque de ] − 1, 1[ par
l’application continue f̃ est ouvert dans R. ♦

On déduit immédiatement du point (b) le corollaire suivant où Od(X) désigne
l’ensemble des ouverts de la topologie définie surX par la distance d (cf. section 3.3
ci-après)

Corollaire 3.1. Oδ(R) ∩ R = O| . |(R).

DÉMONSTRATION : En effet si i : R ↪→ R désigne l’injection canonique, il vient
pour tout O ∈ O(R), i−1(O) = O ∩ R ∈ O(R). Réciproquement, R étant ouvert
dans R, tout ouvert O de R est ouvert dans R, il est donc la trace sur R de. . . lui-
même. ♦

3.2 Limite supérieure et limite inférieure

Dans la suite, R est muni de la distance δ définie par (3.2) qui est compatible
avec l’ordre sur R et qui en fait un espace métrique compact.

Définition 3.1. Soit (xn)n∈N une suite d’éléments de R. On définit la limite supé-
rieure de la suite (xn)n∈N par

lim
n
xn := inf

n≥0

(
sup
k≥n

xk
)
∈ R

et la limite inférieure de la suite (xn)n∈N par

lim
n
xn := sup

n≥0

(
inf
k≥n

xk
)
∈ R.

Remarque : Comme toute suite monotone de R converge, on a immédiatement

lim
n
xn := lim

n

↓(
sup
k≥n

xk
)

et lim
n
xn := lim

n

↑(
inf
k≥n

xk
)
.

Le résultat suivant établit le lien entre limites supérieure et inférieure, monoto-
nie et continuité ; il sera utile dans la suite.

Proposition 3.2. Soit (xn)n∈N une suite d’éléments de R et soit f : R → R une
fonction monotone et continue. Alors

f
(
lim
n
xn
)
= lim

n
f(xn) et f

(
lim
n
xn
)
= lim

n
f(xn) si f est croissante,

f
(
lim
n
xn
)
= lim

n
f(xn) et f

(
lim
n
xn
)
= lim

n
f(xn) si f est décroissante.
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DÉMONSTRATION : Étudions le cas de la limite supérieure lorsque f est croissante,
les autres cas se traitent de façon similaire. Posons yn := sup

k≥n
xk, n∈ N. La crois-

sance de f implique l’inégalité f(yn) ≥ sup
k≥n

f(xk). De plus, par définition de la

borne supérieure, il existe une sous-suite (xϕ(k)) extraite de (xk)k≥n convergeant
vers yn dans R (n est fixé). D’où f(yn) = lim

k
f(xϕ(k)) ≤ sup

k≥n
f(xk) par continuité

de f . Donc f(yn) = sup
k≥n

f(xk). De nouveau par la continuité de f , on a

lim
n
f(xn) = lim

n

↓
sup
k≥n

f(xk) = lim
n

↓
f(yn) = f

(
lim
n

↓
yn
)
= f

(
lim
n
xn
)
,

d’où l’égalité cherchée. ♦

L’intérêt des limites supérieure et inférieure réside essentiellement dans le ré-
sultat suivant :

Proposition 3.3. Soit (xn)n∈N une suite d’éléments de R. lim
n
xn et lim

n
xn sont res-

pectivement la plus grande et la plus petite valeur d’adhérence de la suite (xn)n∈N

dans R. De plus, on a

(xn)n∈N converge dans R ⇔ lim
n
xn = lim

n
xn.

DÉMONSTRATION : Comme (R, δ) est compact, la suite (xn)n∈N possède une va-
leur d’adhérence (théorème de Bolzano-Weierstrass). Soit ` une valeur d’adhéren-
ce de (xn)n∈N. Il existe une suite extraite (xϕ(n))n∈N qui converge vers ` dans
(R, δ). Étant donné que xϕ(n) ≤ supk≥ϕ(n) xk qui converge en décroissant vers
lim
n
xn, on obtient, par compatibilité de la topologie sur R avec l’ordre sur R,

` ≤ lim
n
xn.

Montrons à présent que `+ := lim
n
xn est une valeur d’adhérence de la suite

(xn)n∈N, i.e. par la caractérisation d’une valeur d’adhérence dans un espace métri-
que,

∀ ε > 0, ∀N ∈ N, ∃n ≥ N, δ(xn, `+) ≤ ε.

On pose yn := f̃(xn) ∈ [−1, 1], n ∈ N, où f̃ est définie par (3.1). D’après la
proposition 3.2, on a lim

n
yn = f̃(`+) car f̃ est croissante et continue sur R. Par

conséquent, la suite de terme général zn := sup
k≥n

yk converge en décroissant vers

f̃(`+). Soient ε > 0 et N ∈ N. Il existe donc n0 ≥ N tel que, pour tout n ≥ n0,
f̃(`+) ≤ zn ≤ f̃(`+) + ε. En outre, par définition du sup, il existe n ≥ n0 tel que
yn ≤ zn0 < yn + ε. On dispose donc d’un n ≥ N tel que

f̃(`+)− ε ≤ zn0 − ε ≤ yn ≤ zn ≤ f̃(`+) + ε,
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d’où δ(xn, `+) = |yn − f̃(`+)| ≤ ε.

On obtient un résultat équivalent pour la limite inférieure en remarquant que

lim
n
xn = − lim

n
(−xn).

Enfin, (R, δ) étant compact, la suite (xn)n∈N converge si et seulement si elle
possède une unique valeur d’adhérence, i.e. lim

n
xn = lim

n
xn. ♦

Terminons par deux propriétés des limites supérieure et inférieure, relatives aux
opérations + et ×.

Proposition 3.4. (a) Soient (xn)n∈N et (yn)n∈N deux suites de R, simultanément
majorées dans [− :,+ : [ ou bien minorées dans ]− :,+ :]. Alors

lim
n
(xn + yn) ≤ lim

n
xn + lim

n
yn,

lim
n
(xn + yn) ≥ lim

n
xn + lim

n
yn.

(b) Soient (xn)n∈N et (yn)n∈N deux suites de R+, simultanément majorées dans
R+ ou bien minorées dans ]0,+ :]. Alors

lim
n
(xn yn) ≤ lim

n
xn × lim

n
yn,

lim
n
(xn yn) ≥ lim

n
xn × lim

n
yn.

DÉMONSTRATION : (a) se déduit des majorations suivantes :

sup
k≥n

(xk + yk) ≤ sup
k≥n

xk + sup
k≥n

yk,

inf
k≥n

(xk + yk) ≥ inf
k≥n

xk + inf
k≥n

yk.

(b) s’obtient en appliquant (i) aux suites ln(xn) et ln(yn) – avec la convention
ln(0) = − : et ln(+ :) = + : – puis en appliquant la proposition 3.2 successive-
ment aux fonctions ln et exp. ♦

3.3 Topologie sur un ensemble. Espace métrique

Définition 3.2. (a) On appelle topologie sur un ensemble X la donnée d’une fa-
mille O(X) de parties de X , vérifiant

(i) Ø et X∈ O(X).

(ii) Pour tout n∈ N∗, si O1, . . . , On∈ O(X) alors
n⋂
i=1

Oi∈ O(X) [stabilité

par intersection finie].
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(iii) Soit I un ensemble d’indices quelconque ; si Oi ∈ O(X) pour tout i∈ I
alors

⋃
i∈I

Oi∈ O(X) [stabilité par réunion quelconque].

(b) Les éléments de O(X) sont appelés ouverts de X . Les ensembles complémen-
taires des ouverts sont appelés fermés.

(c) Une topologie est séparée si deux éléments distincts de X appartiennent à deux
ouverts disjoints.

“Exemple” du cas métrique : Si (X, d) est un espace métrique ( 1), la topologie
de X relative à cette distance d est donnée par la famille d’ouverts

Od(X) :=
{ ⋃
i∈I

B̊(xi, ri), xi ∈ X, ri∈ R∗
+, I ensemble quelconque

}
où B̊(x, r) =

{
y ∈ X : d(x, y) < r

}
. On vérifie qu’une telle famille vérifie les

axiomes d’une topologie séparée. En outre, il est clair que, dans ce cadre,

O ∈ Od(X) ⇐⇒ ∀x ∈ O, ∃ rx > 0 tel que B̊(x, rx) ⊂ O.

3.4 Base dénombrable d’ouverts, séparabilité

Définition 3.3. (a) Un espace topologique (X,O(X)) est dit à base dénombrable
d’ouverts s’il existe une famille dénombrable d’ouverts non vides {ωn, n≥1} telle
que

∀O∈ O(X), ∃ I ⊂ N tel que O =
⋃
n∈I

ωn.

(b) Un espace métrique (X, d) est dit séparable s’il contient une suite (xn)n∈N

dense ( 2).

Proposition 3.5. Un espace métrique est séparable si et seulement si il est à base
dénombrable d’ouverts.

DÉMONSTRATION : (⇒) On vérifie qu’une base dénombrable d’ouverts est consti-
tuée par

{
B̊(xn, r), n∈ N, r∈ Q∗

+

}
. En effet, pour tout ouvert O de X ,

O =
⋃

B̊(xn,r)⊂O

B̊(xn, r).

Quant à la dénombrabilité de N×Q∗
+, elle découle des résultats sur les cardinaux

établis dans le chapitre 2.
(⇐) Soit (ωn)n∈N une base dénombrable d’ouverts. Il est immédiat que toute

suite (xn)n∈N telle que xn∈ ωn est dense. ♦

1. Rappelons qu’une distance est une application d : X ×X → R+ vérifiant : d(x, y)=0 si et
seulement si x=y ; d(x, y)=d(y, x) ; d(x, y)≤d(x, z)+d(z, y) pour tous x, y, z∈ X .

2. Rappelons qu’une suite (xn)n∈N est dense dans X si, pour tout x ∈ X , il existe une suite
extraite (xϕx(n))n∈N telle que d(xϕx(n), x) → 0.
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3.5 Exemples de constructions de topologies

3.5.1 Topologie induite

Définition 3.4. Soit (X,O(X)) un espace topologique et Y ⊂ X une partie de X .
On définit la topologie induite (par celle de X) sur Y en posant

O(Y ) := {O ∩ Y, O∈ O(X)} .

Il est à noter que si i : Y ↪→ X désigne l’injection canonique, alors

O(Y ) =
{
i−1(O), O∈ O(X)

}
= i−1 (O(X)) .

En outre, une topologie induite par une topologie séparée est elle-même séparée.

– Le cas métrique : Si la topologie sur X est métrique relativement à une dis-
tance d, on vérifie immédiatement que O(Y ) = Od|Y (Y ) où d|Y désigne la restric-
tion à Y de la distance d.

– Topologie induite et séparabilité : Si (X, d) est séparable, il est à base dénom-
brable d’ouverts. Or, par définition même de la topologie induite, si (ωn)n∈N est
une base dénombrable d’ouverts de X , alors (ωn ∩ Y )n∈N est une base dénombra-
ble d’ouverts de Y donc (Y, d) est séparable.

3.5.2 Topologie produit

Définition 3.5. Si (X,O(X)) et (Y,O(Y )) sont deux espaces topologiques, la to-
pologie produit sur X×Y est définie par la famille d’ouverts :

O(X×Y ) :=
{⋃
i∈I

(Oi×Ωi), Oi×Ωi ∈ O(X)×O(Y ), i ∈ I (ensemble qcq)
}
.

Remarques : • La topologie produit issue de deux topologies séparées est elle-
même séparée.
• La topologie produit sur X×Y est la plus petite topologie sur X×Y qui rende
continues les projections canoniques πX et πY de X×Y respectivement sur les
espaces topologiques (X,O(X)) et (Y,O(Y )).

Si les topologies sur X et Y sont métriques relativement à des distances d et δ,
on vérifie immédiatement (voir par exemple [18]) que O(X×Y ) est également la
topologie associée aux distances usuelles sur X×Y , comme par exemple

D1((x, y), (x
′, y′)) := d(x, x′) + δ(y, y′),

Dp((x, y), (x
′, y′)) :=

(
(d(x, x′)p + δ(y, y′)p

) 1
p , pour p∈ [1,+ : [,

D:((x, y), (x
′, y′)) := max

(
d(x, x′), δ(y, y′)

)
,

et bien d’autres distances sur X×Y définissent cette topologie produit.
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Proposition 3.6. (a) Si (X,O(X)) et (Y,O(Y )) sont à base dénombrable d’ou-
verts, (X×Y,O(X×Y )) est à base dénombrable d’ouverts.

(b) Si (X, d) et (Y, δ) sont séparables alors X×Y est séparable pour toutes les
distances (topologiquement) équivalentes définissant la topologie produit, e.g. les
Dp, p∈ [1,+ :].

DÉMONSTRATION : (a) Soient UX := {Un, n ≥ 1} et VY := {Vn, n ≥ 1} deux
bases dénombrables d’ouverts, respectivement de X et Y . Alors, la famille dénom-
brable UX×VY := {Un×Vm, (n,m)∈ N2} est une base d’ouverts de O(X×Y ).
En effet, si O ∈ O(X×Y ) et z = (x, y) ∈ O = ∪i∈IOi×Ωi, il existe iz ∈ I tel
que (x, y)∈ Oiz×Ωiz ; par définition des bases dénombrables d’ouverts UX et VY ,
il existe alors deux entiers nx et my tels que x ∈ Unx ⊂ Oiz et y ∈ Vmy ⊂ Ωiz .
Finalement, il vient donc

O =
⋃

(x,y)∈O

Unx × Vmy =
⋃

(n,m)∈LO

Un × Vm où LO := {(nx,my), (x, y)∈ O} ⊂ N2.

(b) Ce point est un corollaire immédiat de (a) et de la proposition 3.5. On peut
également procéder directement : si {xn, n≥1} et {yn, n≥1} sont respectivement
denses dans (X, d) et (Y, δ), il est immédiat de par la définition des distances Dp

que {(xn, ym), n, m≥1} est dense dans (X×Y,Dp). ♦

3.6 Distance d’un point à un ensemble

Définition 3.6. Soit (X, d) un espace métrique etA une partie non vide deX . Pour
tout x∈ X , on définit la distance de x à A par

d(x,A) := inf
a∈A

d(x, a) < + : .

Ces fonctions interviennent très souvent en théorie de la mesure car elles four-
nissent un moyen efficace d’approcher des fonctions indicatrices d’ensemble par
des fonctions continues.

Proposition 3.7. (a) Pour tout partie non vide A de X , la fonction x 7→ d(x,A), à
valeurs dans R+, est lipschitzienne de rapport 1 pour la distance d, i.e.

∀x, y∈ X, |d(x,A)− d(y,A)| ≤ d(x, y)

(b) L’ensemble {x∈ X : d(x,A)=0} est égal àA (adhérence de A dans X).

DÉMONSTRATION : (a) Pour tout z ∈A, d(x,A) ≤ d(x, z) ≤ d(x, y) + d(y, z).
Par suite, d(x,A)− d(x, y) est un minorant des d(y, z), z∈A.
Partant, d(x,A) − d(x, y) ≤ d(y,A), et finalement, d(x,A) − d(y,A) ≤ d(x, y).
Les points x et y jouant des rôles symétriques, l’inégalité a bien lieu en valeur
absolue.
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(b) La distance d(x,A) étant toujours positive ou nulle, il découle de la définition
du sup que d(x,A) = 0 si et seulement s’il existe une suite (an)n∈N telle que
lim
n
d(x, an)=0. D’où le résultat, par définition de l’adhérence deA dans un espace

métrique. ♦

D’autres propriétés de ces fonctions seront établies au fil des besoins, mais
toutes reposent sur la proposition 3.7.

3.7 Exercices

3.1 a) Soit (an)n≥0 une suite réelle vérifiant :

∀ p, n, r ≥ 0, apn+r ≤ p an + r α où α est un réel fixé.

Montrer que la suite
(an
n

)
n≥1

converge dans R vers inf
n≥1

an
n

.

b) Soit f : [0, 1]→ R une fonction croissante. On pose Sfn :=
1

n

n∑
k=1

f

(
k

n

)
pour

tout n≥ 1. Montrer, à l’aide de a), que la suite (Sfn)n≥1 converge dans R vers sa
borne inférieure.

3.2 Soit une fonction f : R+ → R+ telle que ∀x, y ≥ 0, f(xy) ≤ f(x) f(y).
Montrer que, pour tout x≥0, la suite de terme général

(
(f(xn))1/n

)
n≥1

converge
vers un élément de [0, f(x)]. Appliquer à f(x) := (1+x)a où a≥0.

3.3 Soit Md(K) l’ensemble des matrices (d×d) à coefficients dans K, muni d’une
norme ‖ · ‖ telle que :

∀A,B∈Md(K), ‖AB‖ ≤ ‖A‖ ‖B‖.

Montrer que, pour toute A ∈Md(R), la suite de terme général ‖An‖
1
n converge

vers un élément de [0, ‖A‖].
3.4 a) Soient X un ensemble non vide et une suite (fn)n≥1 de fonctions fn : X →
R bornées, qui converge simplement vers f : X → R bornée. Montrer que

sup
x∈X

f(x) ≤ lim
n

(
sup
x∈X

fn(x)
)
.

Établir une inégalité analogue pour l’inf .
b) Donner un exemple où l’inégalité est stricte. Montrer qu’il y a égalité si la
convergence de la suite (fn)n≥0 est uniforme.

3.5 Soit (An)n≥0 une suite de P(X). On pose

lim
n
An :=

⋂
n≥0

⋃
k≥n

Ak et lim
n
An :=

⋃
n≥0

⋂
k≥n

Ak.
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a) Calculer les fonctions indicatrices 1∪n≥0An , 1∩n≥0An , 1limn An
et 1limn An à

l’aide des 1An .

b) En déduire les propriétés suivantes :

(i) c(lim
n
An) = lim

n

cAn et lim
n
An ⊂ lim

n
An,

(ii) lim
n
An =

{∑
n≥0 1An =+∞

}
et lim

n
An =

{∑
n≥0 1cAn<+∞

}
,

(iii) lim
n

(An ∪Bn) = lim
n
An ∪ lim

n
Bn et lim

n
(An ∩Bn) ⊂ lim

n
An ∩ lim

n
Bn.



Deuxième partie

Théorie de la mesure





De Riemann vers Lebesgue
Le principe fondateur de l’intégration au sens de Riemann est d’approcher la

surface comprise entre l’axe des abscisses et la courbe du graphe de f à l’aide de
“petits” rectangles [ai−1, ai]×[0,Φi] basés sur l’axe des abscisses et dont la hauteur
Φi est proche de la hauteur “moyenne” de la fonction f sur [ai−1, ai]. C’est très
précisément cette idée qu’exprime le théorème sur les sommes de Riemann (cf.
théorème 1.4).

f(x)

Φi

aiai -1a b
x

FIGURE 3.1 – Intégrale selon Riemann

L’idée novatrice apportée par la théorie de l’intégrale de Lebesgue est, à l’in-
verse, de commencer par découper en “petits” intervalles [bj−1, bj ] l’axe des or-
données, puis d’approximer la surface située sous le graphe de f par∫ b

a
f ≈

∑
j

bj−1 + bj
2

× longueur
(
{x : bj−1 ≤ f(x) ≤ bj}

)
.

La principale difficulté réside dans le fait que les ensembles

Ej := {x : bj−1≤f(x)≤bj}

ne sont généralement pas des intervalles et que leur associer une longueur – ou plus
généralement une “mesure” – est délicat voire même, dans certains cas, impossible.

f(x)

a b

Ej

bj

bj -1

x

FIGURE 3.2 – Intégrale selon Lebesgue
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Avant d’aborder la théorie de l’intégration au sens de Lebesgue elle-même dans
la partie III, il nous faudra donc d’abord définir ce qu’est un ensemble pouvant être
“mesuré”, puis une fonction susceptible d’être intégrée et enfin une mesure elle-
même. C’est l’objet de cette seconde partie.

Cependant, au cas où certains s’interrogeraient sur le caractère central de l’in-
terversion du rôle joué par les abscisses et les ordonnées dans l’intégrale de Le-
besgue par rapport à celle de Riemann, nous avons jugé instructif de reproduire in
extenso le texte fondateur de Lebesque tel qu’il est paru à l’époque aux Comptes-
rendus de l’Académies des Sciences de Paris (cf. [2]), sous forme d’une note de... 4
feuillets. D’autres textes plus étoffés suivront, notamment [4], mais chacun pourra
constater que l’essentiel y est !

Les deux notes de bas de page ci-après font partie intégrante du texte original.

Sur une généralisation de l’intégrale définie

Par M. Henri Lebesgue

29 avril 1901

Dans le cas des fonctions continues, il y a identité entre les notions d’intégrales
et de fonctions primitives. Riemann a défini l’intégrale de certaines fonctions dis-
continues, mais toutes les fonctions dérivées ne sont pas intégrables, au sens de
Riemann. Le problème de la recherche des fonctions primitives n’est donc pas
résolu par l’intégration, et l’on peut désirer une définition de l’intégrale comprenant
comme cas particulier celle de Riemann et permettant de résoudre le problème des
fonctions primitives ( 3).

Pour définir l’intégrale d’une fonction continue croissante

y(x) (a < x < b),

on divise l’intervalle (a, b) en intervalles partiels et l’on fait la somme des quan-
tités obtenues en multipliant la longueur de chaque intervalle partiel par l’une des
valeurs de y quand x est dans cet intervalle. Si x est dans l’intervalle (ai, ai+1),
y varie entre certaines limites mi et mi+1, et réciproquement si y est entre mi et
mi+1, x est entre ai et ai+1. De sorte qu’au lieu de se donner la division de la
variation de x, c’est-à-dire de se donner les nombres ai, on aurait pu se donner la
division de la variation de y, c’est-à-dire les nombres mi. De là deux manières de
généraliser la notion d’intégrale. On sait que la première (se donner les ai) conduit

3. Ces deux conditions imposées a priori à toute généralisation de l’intégrale sont évidemment
compatibles, car toute fonction dérivée intégrable, au sens de Riemann, a pour intégrale une de ses
fonctions primitives.
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à la définition donnée par Riemann et aux définitions des intégrales par excès et par
défaut données par M. Darboux. Voyons la seconde.

Soit la fonction y comprise entre m et M . Donnons-nous

m = m0 < m1 < m2 < · · · < mp−1 < M = mp ;

y = m quand x fait partie d’un ensemble E0 ; mi−1 < y < mi quand x fait partie
d’un ensemble Ei.

Nous définirons plus loin les mesures λ0, λi de ces ensembles. Considérons
l’une ou l’autre des deux sommes

m0λ0 +
∑

miλi ; m0λ0 +
∑

mi−1λi ;

si, quand l’écart maximum entre deux mi consécutifs tend vers zéro, ces sommes
tendent vers une même limite indépendante des mi choisis, cette limite sera par
définition l’intégrale des y qui sera dite intégrable.

Considérons un ensemble de points de (a, b) ; on peut d’une infinité de ma-
nières enfermer ces points dans une infinité dénombrable d’intervalles ( 4) ; la limite
inférieure de la somme des longueurs de ces intervalles est la mesure de l’ensemble.
Un ensemble E est dit mesurable si sa mesure augmentée de celle des points ne
faisant pas partie de E donne la mesure de (a, b) ( 5). Voici deux propriétés de ces
ensembles : une infinité d’ensembles mesurables Ei étant donnée, l’ensemble des
points qui font partie de l’un au moins d’entre eux est mesurable ; si les Ei n’ont
deux à deux aucun point commun, la mesure de l’ensemble obtenu est la somme
des mesures Ei. L’ensemble des points communs à tous les Ei est mesurable.

Il est naturel de considérer d’abord les fonctions telles que les ensembles qui
figurent dans la définition de l’intégrale soient mesurables. On trouve : si une fonc-
tion limitée supérieurement en valeur absolue est telle que, quels que soient A et
B, l’ensemble des valeurs de x pour lesquelles on a A < y ≤ B est mesurable,
elle est intégrable par le procédé indiqué. Une telle fonction sera dite sommable.
L’intégrale d’une fonction sommable est comprise entre l’intégrale par défaut et
l’intégrale par excès. De sorte que, si une fonction intégrable au sens de Riemann
est sommable, l’intégrale est la même avec les deux définitions. Or, toute fonc-
tion intégrable au sens de Riemann est sommable, car l’ensemble de ses points de
discontinuité est de mesure nulle, et l’on peut démontrer que si, en faisant abs-
traction d’un ensemble de valeurs de x de mesure nulle, il reste un ensemble en
chaque point duquel une fonction est continue, cette fonction est sommable. Cette
propriété permet de former immédiatement des fonctions non intégrables au sens
de Riemann et cependant sommables. Soient f(x) et ϕ(x) deux fonctions conti-
nues, ϕ(x) n’étant pas toujours nulle ; une fonction qui ne diffère de f(x) qu’aux

4. Henri Lebesgue pensait sans doute à des intervalles ouverts, comme nous l’a suggéré notre
collègue Patrick Polo.

5. Si l’on ajoute à ces ensembles des ensembles de mesure nulle convenablement choisis, on a
des ensembles mesurables au sens de M. Borel (Leçons sur la théorie des fonctions [1]).
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points d’un ensemble de mesure nulle partout dense et qui en ces points est égale à
f(x) + ϕ(x) est sommable sans être intégrable au sens de Riemann. Exemple : la
fonction égale à 0 si x est irrationnel et à 1 si x est rationnel. Le procédé de forma-
tions qui précède montre que l’ensemble des fonctions sommables a une puissance
supérieure au continu. Voici deux propriétés des fonctions de cet ensemble.

1- Si f et ϕ sont sommables, f + ϕ et fϕ le sont et l’intégrale de f + ϕ est la
somme des intégrales de f et de ϕ.

2- Si une suite de fonctions sommables a une limite, c’est une fonction som-
mable.

L’ensemble des fonctions sommables contient évidemment y = k et y = x ;
donc d’après 1- il contient tous les polynômes et comme, d’après 2- il contient
toutes ses limites, il contient donc toutes les fonctions continues, c’est-à-dire les
fonctions de première classe (voire Baire, Annali di Matematica, 1899), il contient
toutes celles de seconde classe, etc.

En particulier, toute fonction dérivée, limitée supérieurement en valeur absolue,
étant de première classe, est sommable, et l’on peut démontrer que son intégrale,
considérée comme fonction de sa limite supérieure, est une de ses fonctions primi-
tives. Voici maintenant une application géométrique : si |f ′|, |ϕ′|, |ψ′| sont limitées
supérieurement, la courbe

x = f(t), y = ϕ(t), z = ψ(t)

a pour longueur l’intégrale de
√
f ′2 + ϕ′2 + ψ′2. Si ϕ = ψ = 0, on a la variation

totale de la fonction f à variation limitée. Dans le cas où f ′, ϕ′, ψ′ n’existent pas,
on peut obtenir un théorème presque identique en remplaçant les dérivées par les
nombres de Dini.



Chapitre 4

Tribu de parties d’un ensemble

Préliminaires ensemblistes

Dans ce paragraphe préliminaire ont été regroupés les résultats relatifs au ma-
niement des ensembles et des fonctions qui se révèlent absolument indispensables
pour aborder la théorie de la mesure et de l’intégration. Il s’agit pour l’essentiel de
rappels.

(a) Soit X un ensemble, P(X) l’ensemble de ses parties et A, B ∈ P(X). On
note

A ∪B := {x∈ X : x∈ A ou x∈ B},
A ∩B := {x∈ X : x∈ A et x∈ B},
cA := {x∈ X : x /∈ A},
A \B := {x∈ X : x∈ A et x /∈ B} = A ∩ cB,
A∆B := {x∈ X : x∈ A ∪B et x /∈ A ∩B}

= A ∪B \A ∩B = (A \B) ∪ (B \A).

(b) Soit f : X → Y, Ai ⊂ X, Bi ⊂ Y, i∈ I (I ensemble quelconque). On associe
canoniquement à f les fonctions “image directe” fd et “image réciproque” f−1

r

définies par
fd : P(X) −→P(Y )

A 7−→ fd(A) := {f(x), x∈ A}

f−1
r : P(Y ) −→P(X)

B 7−→ f−1
r (B) := {x∈ X : f(x)∈ B}.

(Par souci de simplicité, et malgré les risques de confusion, on note presque systé-
matiquement f au lieu de fd et f−1 au lieu de f−1

r .)

Ces applications ensemblistes fd et f−1
r vérifient les formules de Hausdorff :

soient (Ai)i∈I une famille de parties de X et (Bj)j∈J une famille de parties de Y
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(I et J étant supposés non vides).

fd

(⋃
i∈I

Ai

)
=
⋃
i∈I

fd(Ai), fd

(⋂
i∈I

Ai

)
⊂
⋂
i∈I

fd(Ai)

(avec égalité si f est injective),

f−1
r

( ⋃
j∈J

Bi

)
=
⋃
j∈J

f−1
r (Bj), f−1

r

( ⋂
j∈J

Bj

)
=
⋂
j∈J

f−1
r (Bj),

cf−1
r (B) = f−1

r (cB).

Enfin, lorsque la fonction f est bijective, il existe un lien simple entre l’ap-
plication ensembliste f−1

r et la réciproque f−1 de f : pour toute partie B de Y ,
f−1
r (B) = {f−1(b), b∈ B}.

Notation : Si C ⊂P(Y ) est une famille de parties de Y , on note par extension

f−1 (C ) := {f−1(C), C∈ C } ⊂P(X).

(c) Soit (An)n≥1 une suite (dénombrable) de sous-ensembles. On définit la limite
“supérieure” et la limite “inférieure” des An par :

lim
n
An :=

⋂
n≥1

⋃
k≥n

Ak = {x∈ X : ∀n≥1, ∃ k≥n tel que x∈ Ak},

= {x∈ X : x∈ Ak infiniment souvent}.

lim
n
An :=

⋃
n≥1

⋂
k≥n

Ak = {x∈ X : ∃n≥1, ∀ k≥n tel que x∈ Ak},

= {x∈ X : x∈ Ak à partir d’un certain rang}.

On vérifie immédiatement que lim
n
An ⊂ lim

n
An et l’on parle de lim

n
An en cas

d’égalité entre lim
n
An et lim

n
An.

En outre, si la suite (An)n≥1 est croissante (resp. décroissante) pour l’inclusion,
alors

lim
n
An = lim

n
An =

⋃
n≥1

An (resp.
⋂
n≥1

An).

(d) Lois de Morgan : c
⋂
i∈I

Ai =
⋃
i∈I

cAi et c
⋃
i∈I

Ai =
⋂
i∈I

cAi.

On en déduit aussitôt les relations :

c(lim
n
An) = lim

n

cAn et c(lim
n
An) = lim

n

cAn.
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4.1 Tribu, tribu borélienne

Définition 4.1. (a) Soit X un ensemble. On appelle tribu (ou σ-algèbre) sur X
toute famille A de parties de X vérifiant :

(i) Ø ∈ A ,

(ii) si A ∈ A alors cA∈ A [stabilité par complémentaire],

(iii) si (An)n≥1∈A N∗
, alors

⋃
n≥1

An∈A [stabilité par union dénombrable].

(b) Le doublet (X,A ) est appelé un espace mesurable (au sens “susceptible de
recevoir une mesure”).

Remarque : La condition (iii) entraı̂ne la stabilité de la tribu A par réunion finie.
Il suffit en effet de poser, n0 étant fixé, An=Ø, n>n0.

Exemples de tribus : 1. A := {Ø, X}, tribu dite grossière.

2. A := P(X), tribu dite triviale.

3. Soit A ⊂ X , fixé ; A := {Ø, X, A, cA} : c’est la plus petite tribu contenant le
sous-ensemble A.

4. Si X =
⋃
i∈I

Xi, I non vide, fini ou infini dénombrable, Xi ∩ Xj = Ø dès que

i 6=j (les Xi, i∈ I , forment donc une partition de X) alors

A :=
{ ⋃
j∈J

Xj , J ⊂ I
}

est une tribu.

5. A :=
{
A∈P(X), A dénombrable ou cA dénombrable

}
.

Le seul point à vérifier est l’axiome (iii). Soit (An)n≥1 une suite d’éléments de A .
S’ils sont tous dénombrables, il en est de même de leur réunion (cf. proposition 2.5).
Si l’un des An, disons An0 , n’est pas dénombrable, son complémentaire l’est. Par
suite, c(

⋃
nAn) =

⋂
n
cAn ⊂ cAn0 est nécessairement dénombrable.

En outre, on peut montrer que A 6= P(X) si et seulement si X a un cardinal
infini non dénombrable (résultat notablement moins trivial qui dépasse le cadre de
cet ouvrage).

6. Si (Ai)i∈I , est une famille quelconque de tribus sur X , I 6=Ø, alors

A :=
⋂
i∈I

Ai est une tribu.

Propriétés 4.1. (a) X∈ A .

(b) Si An ∈ A , pour tout n ∈ N, alors
⋂
n∈N

An ∈ A [d’où la stabilité par inter-

section finie en posant An :=X, n> n0].

(c) Si A, B∈ A alors A \B = A ∩ cB∈ A .



64 4. Tribu de parties d’un ensemble

(d) Si A, B∈ A alors A∆B := (A \B) ∪ (B \A)∈ A .

(e) Si An∈ A , pour tout n∈ N, alors lim
n
An et lim

n
An∈ A .

DÉMONSTRATION : (a) X =cØ∈ A .

(b)
⋂
n∈N

An = c
( ⋃
n∈N

cAn

)
∈ A .

Les propriétés (c), (d) et (e) sont immédiates. ♦

Remarque (Contre-exemple) : Si X est un espace topologique ( 1) (ou simple-
ment métrique), la famille O(X) := {O ∈P(X), O ouvert de X} n’est générale-
ment pas une tribu à cause de l’axiome (ii) : si O est ouvert, alors cO n’est en
général pas ouvert. Ainsi R∗

−∈ O(R) mais cR∗
−=R+ /∈ O(R).

Proposition 4.1. -Définition (a) Soit E ⊂ P(X) une famille de parties de X . Il
existe une plus petite tribu (au sens de l’inclusion) contenant E . On la note σ(E ) :
c’est la tribu engendrée par E .

(b) Si T est une tribu, σ(T )=T .

(c) Si E ⊂ F , alors σ(E ) ⊂ σ(F ). En particulier, si E ⊂ T et T est une tribu,
σ(E ) ⊂ T .

DÉMONSTRATION : (a) On considère σ(E ) :=
⋂

T tribu⊃ E

T . L’ensemble P(X) est

bien une tribu qui contient E donc l’ensemble I := {T , T tribu, T ⊃E } est non
vide. σ(E ) est donc bien une tribu d’après l’exemple 6 ci-avant et c’est évidemment
la plus petite.

Les points (b) et (c) découlent immédiatement de la définition d’une tribu en-
gendrée. ♦

Premiers exemples : 1. SoitA∈P(X),A 6= X , non vide fixé. La tribu engendrée
par E := {A} est TA = {Ø, X, A, cA}.
2. La tribu X engendrée par les singletons i.e. E := {{x}, x∈ X} n’est autre que
A := {A∈P(X), A dénombrable ou cA dénombrable}.

Définition 4.2. Soit (X,O(X)) un espace topologique. La tribu borélienne ( 2)
de X , aussi appelée tribu des boréliens de X , est définie par B(X) := σ

(
O(X)

)
.

Remarques : • Il est immédiat que B(X) = σ ({F ∈P(X) : F fermé}).
• En règle générale, B(X) 6= P(X), c’est notamment le cas lorsque X = R.
Ce résultat, délicat à établir, peut se montrer par des arguments de cardinalité ;
en effet, B(R) et R sont équipotents (voir [6], exercice 2.6.11 p.286) et, partant,
card B(R)=card R<card P(R) (cf. proposition 2.1).

1. Voir section 3.3.
2. En hommage au mathématicien français Émile Borel (1871-1956) qui a mis en évidence l’im-

portance de cette famille de parties pour la théorie de la mesure, alors naissante.
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On peut aussi procéder directement en exhibant, à l’aide de l’axiome du choix,
un ensemble non borélien (voir la démonstration du théorème 13.2 (b)).

Boréliens d’un espace topologique à base dénombrable d’ouverts : Un espace to-
pologique (ou plus simplement métrique) (X,O(X)) est à base dénombrable d’ou-
verts s’il existe une famille (ωn)n∈N d’ouverts de X vérifiant :

∀O∈ O(X), ∃ I ⊂ N, O =
⋃
i∈I

ωi.

Ainsi, un espace métrique (X, d) séparable, i.e. contenant une suite (xn)n∈N dense
( 3), est à base dénombrable d’ouverts puisque{

B̊(xn, r), n∈ N, r∈ Q∗
+

}
[N× Q∗

+ est dénombrable]

est une telle base. Pour de plus amples développements on pourra se reporter à la
section 3.3.

On déduit alors immédiatement la proposition suivante de la stabilité d’une
tribu par union dénombrable (axiome (iii)) et de la définition d’une tribu boré-
lienne.

Proposition 4.2. Soit X est un espace topologique possédant une base dénombra-
ble d’ouverts (ωn)n∈N. Alors B(X) = σ ({ωn, n∈ N}).

Application 4.1. On se place sur la droite réelle X = R. Il est immédiat que tout
intervalle I de R est un borélien de R puisque l’on peut toujours l’écrire la réunion
d’un (intervalle) ouvert et d’au plus deux singletons (fermés). Inversement, cer-
taines familles d’intervalles engendrent la tribu borélienne. Ainsi,

B(R) = σ ({[a,+∞[, a∈ Q}) = σ ({]a,+∞[, a∈ Q})
= σ ({[−∞, a[, a∈ Q}) = σ ({]−∞, a], a∈ Q}).

DÉMONSTRATION : L’ensemble Q étant dense dans R,

{]α, β[, α, β∈ Q, α<β}={]ρ−r, ρ+ r[, ρ∈ Q, r∈ Q∗
+}

est une base dénombrable d’ouverts de R. Par suite

B(R) = σ ({]α, β[, α, β∈ Q, α<β}) .

Or ]α, β[=]α,+∞[∩ c[β,+∞[ et ]α,+∞[ =
⋃
n≥1

↑
[α+ 1/n,+∞[ donc

σ ({[α,+∞[, α∈ Q}) ⊃ σ ({]α, β[, α, β∈ Q, α<β}) = B(R).

L’autre inclusion est immédiate (car les intervalles [α,+∞[ sont des fermés
de R). On procède de façon analogue pour les autres égalités. ♦

3. Au sens où, pour tout x∈ X , il existe une suite extraite xϕ(n) → x quand n→ +∞.
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4.2 Autres exemples de tribus

4.2.1 Tribu image-réciproque

Proposition 4.3. Soit f : X → Y et B une tribu sur Y . Alors

A := {f−1(B), B∈ B} est une tribu sur X.

DÉMONSTRATION : Le résultat est évident via les formules de Hausdorff “récipro-
ques” rappelées au début de ce chapitre :

c
(
f−1(B)

)
= f−1( cB︸︷︷︸

∈B

)∈ A et
⋃
n∈N

f−1(Bn) = f−1
( ⋃
n∈N

Bn︸ ︷︷ ︸
∈B

)
∈ A . ♦

Définition 4.3. La tribu
{
f−1(B), B ∈ B

}
est appelée tribu image-réciproque

(sous-entendu “de B par f”). On la note f−1(B) ou σ(f).

Exemples : 1. Tribu-trace : Soient Y ⊂ X et i : Y → (X, A ). On vérifie que
i−1(A ) = {A ∩ Y, A ∈ A } : c’est la tribu-trace de A sur Y . Si Y ∈ A , alors
i−1(A ) ⊂ A .

2. Tribu-bande : Soit π : X × Y → (X,A ) la projection canonique de X × Y
sur X . On appelle tribu-bande π−1(A ) =

{
A× Y, A∈ A

}
.

4.2.2 Tribu image

La terminologie employée est trompeuse car si f : X → Y est une application
et A une tribu sur X , alors {f(A), A∈ A } n’est pas une tribu sur Y en général.

Définition 4.4. Soit f : X → Y et A une tribu sur X . On appelle tribu image de
A par f , la tribu sur Y définie par B :=

{
B ∈P(Y ) : f−1(B)∈ A

}
.

La famille B est clairement une tribu via les formules de Hausdorff “réciproques”.

4.3 Lemme de transport

La proposition suivante est connue sous le nom de lemme de transport.

Proposition 4.4. Soient f : X → Y et E ⊂P(Y ). Alors

σ
(
f−1(E )

)
= f−1 (σ(E )) [toutes deux sont des tribus sur X].

DÉMONSTRATION : On montre la double inclusion.

⊂ : f−1(E ) ⊂ f−1 (σ(E ))︸ ︷︷ ︸
tribu (cf. proposition 4.3)

donc σ
(
f−1(E )

)
⊂ f−1 (σ(E )) .
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⊃ : On considère B la tribu image de la tribu σ
(
f−1(E )

)
par f i.e.

B :=
{
B∈P(Y ) : f−1(B)∈ σ

(
f−1(E )

)}
. E ⊂ B donc σ(E ) ⊂ B et, partant,

f−1 (σ(E )) ⊂ f−1(B). Par définition même de B, f−1(B) ⊂ σ
(
f−1(E )

)
donc

f−1(σ(E )) ⊂ σ
(
f−1(E )

)
. ♦

Remarque : L’énoncé est en fait aisé à retenir, la principale difficulté étant de
comprendre la signification de chacun des deux termes.

Proposition 4.5. (a) Si X est un espace métrique (resp. topologique) et Y ⊂ X
est muni de la distance (resp. topologie) induite (cf. paragraphe 3.5.1), alors

B(Y )={A ∩ Y, A∈ B(X)}.

(b) En outre, B(Y )⊂ B(X) si et seulement si Y ∈ B(X). Dans ce cas,

B(Y ) = {A∈ B(X), A ⊂ Y }.

DÉMONSTRATION : (a) En effet, si l’on désigne par i l’inclusion canonique
i : Y ↪→ X, O(Y ) := {O ∩ Y, O∈ O(X)} = i−1 (O(X)), il vient

B(Y )=σ
(
i−1(O(X))

)
= i−1(σ(O(X)))= i−1(B(X))={A∩Y,A∈B(X)}. ♦

(b) est immédiat car une tribu est stable par intersection finie.

Application 4.2. (a) Boréliens de quelques parties boréliennes usuelles de R :
B(R+)={A∈ B(R) : A⊂ R+} car R+ est fermé dans R donc borélien ; par suite
B(R∗)={A∈ B(R) : 0 /∈ A}, etc.
(b) Boréliens de R : Si X = R et Y = R, on est exactement dans le cadre d’ap-
plication de la proposition 4.5 comme le montre le corollaire 3.1. On en déduit
que

B(R) ⊂ {A, A ∪ {+∞}, A ∪ {−∞}, A ∪ {±∞}, A∈ B(R)}.

Réciproquement, les ensembles {+∞}, {−∞}, {±∞} sont finis donc fermés
dans R et sont donc dans B(R). D’autre part, toujours via la proposition 4.5,
B(R) ⊂ B(R) puisque R∈ O(R) ⊂ B(R). On en déduit une première caractérisa-
tion des boréliens de R :

B(R) = {A, A ∪ {+∞}, A ∪ {−∞}, A ∪ {±∞}, A∈ B(R)} . (4.1)

Comme la tribu borélienne sur R, la tribu B(R) est engendrée par les intervalles
(ici généralisés) [a,+∞], a∈ R, i.e.

B(R) = σ({[a,+∞], a∈ Q}) = σ({]a,+∞], a∈ Q}). (4.2)

Posons T := σ({[a,+∞], a ∈ Q}). Les intervalles généralisés [a,+∞] étant des
fermés de R, donc des boréliens, il est immédiat que T ⊂ B(R). D’autre part

{+∞} =
⋂
n≥1

[n,+∞] ∈ T et {−∞} = c
( ⋃
n≥1

[−n,+∞]
)
∈ T .
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Par suite, R = R \ {±∞}∈ T , si bien que, si i désigne l’injection canonique de R
dans R, i−1(T ) ⊂ T (cf. exemple 1). Le lemme de transport entraı̂ne alors que

i−1(T ) = σ({i−1([a,+∞]), a∈ Q}) = σ({[a,+∞[, a∈ Q}) = B(R).

En conséquence, B(R) ⊂ T . Le résultat découle alors de la caractérisation (4.1).
L’égalité B(R) = σ

(
{]a,+∞], a∈ Q}

)
s’établit de façon analogue.

4.4 Exercices

(X,A ) désigne un espace mesurable.

4.1 Quelle est la tribu engendrée par l’ensemble des parties finies de X ? Donner
une condition suffisante pour qu’elle coı̈ncide avec P(X).

4.2 a) Soient A et B deux tribus sur X . A ∪B est-elle une tribu sur X ?

b) Montrer que

σ(A ∪B) = σ
(
{A ∪B : A∈A , B∈B}

)
= σ

(
{A ∩B : A∈A , B∈B}

)
.

4.3 Soient pour n ∈ N∗, I0n := ]0, 1
2n [, I

k
n := [ k2n ,

k+1
2n [, k ∈ {1, . . . , 2n−1}, et la

tribu Bn définie sur ]0, 1[ par Bn := σ
(
{Ikn, 0≤ k < 2n}

)
. Montrer que la suite

des tribus Bn est croissante mais que leur union n’est pas une tribu.

4.4 Soient (X,A ) et (Y,B) deux espaces mesurables ; on note, pour toutes parties
C ⊂A et D⊂B, C⊗D := σ({A×B, A∈C , B∈D}). On considère des parties
C de A et D de B telles que A =σ(C ), B =σ(D) et X×Y ∈C ×D . Montrer
que C⊗D = A ⊗B.

La tribu A ⊗B est appelée la tribu produit et sera étudiée en détail dans le cha-
pitre 11.

4.5 On définit l’atome de la tribu A , engendré par x ∈ X par ẋ :=
⋂

x∈A,A∈A

A.

a) Montrer que, pour tout x∈X , l’atome de x est égal à la classe d’équivalence de x
modulo la relation d’équivalence∼ définie par : x ∼ y si ∀A∈A , x∈A⇔ y∈A.

b) Montrer que si A est dénombrable alors A contient ses atomes et que chaque
élément de A s’écrit comme une réunion au plus dénombrable d’atomes.

c) En déduire que la tribu A est soit finie, soit non dénombrable.
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Fonctions mesurables

Dans la théorie de l’intégration de Lebesgue, les fonctions mesurables (à va-
leurs réelles ou complexes) joueront en grande partie le rôle dévolu aux fonctions
Riemann intégrables dans la théorie élémentaire.

5.1 Définitions

Définition 5.1. (a) Soient (X,A ) et (Y,B) deux espaces mesurables. Une fonc-
tion f : (X,A )→ (Y,B) est (A ,B)-mesurable (ou plus simplement mesurable)
si ∀B ∈ B, f−1(B) ∈ A .
(b) Si X et Y sont des espaces métriques (ou plus généralement topologiques)
munis de leurs tribus boréliennes respectives A :=B(X) et B :=B(Y ), on parle
alors de fonction borélienne.

Remarques : • La mesurabilité de f peut s’exprimer à l’aide de la tribu image
réciproque via l’inclusion f−1(B) ⊂ A . La tribu f−1(B) est donc la plus petite
tribu sur X rendant la fonction f mesurable ; d’où, par analogie avec la notion de
tribu engendrée, l’autre notation σ(f).
• Dans les applications courantes, Y :=R, R+, C, R ou Rd et est muni de sa tribu
borélienne. On omettra alors couramment de faire figurer celle-ci.
• Si A ⊂ X , on définit l’indicatrice (ou fonction indicatrice) de A par :

1A : (X,A ) −→
(
{0, 1},P({0, 1})

)
x 7−→

{
1 si x∈ A
0 si x /∈ A.

On constate que la fonction 1A est mesurable si et seulement si A∈ A .

Notation : Très souvent, on adoptera la notation {f ∈ B} en lieu et place de
f−1(B) := {x∈ X : f(x)∈ B}. Ainsi {f ≥ b} désignera f−1([b,+∞[), {f = b}
désignera f−1({b}), etc, selon les nécessités du problème.
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Exemple : Toute fonction constante f : (X,A ) → (Y,B) est mesurable. En
effet, si f(x) = y0 pour tout x ∈ X , il est clair que f−1(B) =X ou Ø selon que
y0∈ B ou y0 /∈ B.

Proposition 5.1. Soit f : (X,A ) → (Y,B) avec B = σ(E ) où E désigne une
famille de parties de Y . Alors

f est mesurable si et seulement f−1(E ) ⊂ A

(au sens : ∀B∈ E , f−1(B)∈ A ).

DÉMONSTRATION : La fonction f est mesurable ssi f−1(B) ⊂ A . Or f−1(B)=
f−1(σ(E )) = σ

(
f−1(E )

)
d’après le lemme de transport (cf. proposition 4.4) ; f

est donc mesurable si et seulement si σ
(
f−1(E )

)
⊂ A ou encore de manière

équivalente f−1(E ) ⊂ A , puisque A est une tribu. ♦

Application 5.1. (a) f : (X,A ) → (R,B(R)) ou (R,B(R)) est mesurable si et
seulement si

∀ a∈ R, {f ≥ a} = {x∈ X : f(x) ≥ a}∈ A .

(b) Plus généralement, si Y est un espace topologique, l’application
f : (X,A )→ (Y,B(Y )) est mesurable si et seulement si

∀O∈ O(Y ), f−1(O)∈ A .

(c) En particulier, si X et Y sont des espaces métriques (voire topologiques), toute
fonction continue de X dans Y est borélienne.

Proposition 5.2. Soit f : (X,A ) → (Y,B). Soit Y ′ ∈ B tel que f(X) ⊂ Y ′.
Alors f est (A ,B)-mesurable si et seulement si

∀B∈ B, B ⊂ Y ′, f−1(B)∈ A .

En outre, f vue comme fonction de (X,A ) dans Y ′ est mesurable pour la tribu-
trace de B sur Y ′.

DÉMONSTRATION : L’implication directe est évidente.
Réciproquement, soit B ∈ B. Il est clair que B ∩ Y ′ ∈ B puisque Y ′ ∈ B. Par
suite, f−1(B) = f−1(B ∩ Y ′)∈ A par hypothèse. L’affirmation sur la tribu-trace
est évidente : lorsque Y ′ ∈ B, celle-ci est précisément constituée des éléments de
B contenus dans Y ′. ♦

Application 5.2. (a) Si f : (X,A ) → (R,B(R)) est mesurable et positive alors
f est mesurable de (X,A ) dans (R+,B(R+)). Et inversement si f : (X,A ) →
(R+,B(R+)) est mesurable alors f : (X,A )→ (R,B(R)) l’est aussi car B(R+)
est la tribu-trace de B(R) sur R+.
(b) Si f : (X,A ) → (R,B(R)) est mesurable alors f : (X,A ) → (R,B(R)) est
mesurable et, inversement, si f : (X,A )→ (R,B(R)) est mesurable et f(X) ⊂ R
alors f : (X,A )→ (R,B(R)) est mesurable.
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Proposition 5.3 (Composition). Soient (X,A )
f−→ (Y,B)

g−→ (Z,C ). Si f et g
sont mesurables alors g ◦ f est mesurable.

DÉMONSTRATION : Soit C∈ C . (g◦f)−1(C) = f−1( g−1(C)︸ ︷︷ ︸
∈B

)∈ A . ♦

En combinant l’application 5.1 (c) et la proposition 5.3, on peut construire de
nouvelles fonctions mesurables à partie d’une fonction mesurable donnée.

Application 5.3. (a) Soient a∈ R et f : (X,A ) → (R,B(R)) mesurable. Alors
max(f, a), min(f, a), |f |, f+ :=max(f, 0), f− :=−min(f, 0) sont mesurables.

(b) Si f : (X,A ) → (R∗,B(R∗)) est mesurable alors 1/f est mesurable ; si f :
(X,A )→ R+ est mesurable, alors

√
f l’est aussi et si, en outre, f ne s’annule pas,

ln(f) l’est, etc.

Proposition 5.4. Soit f := (f1, f2) : (X,A ) → (R2,B(R2)). La fonction f est
mesurable si et seulement si f1 et f2 le sont comme fonctions de (X,A ) dans
(R,B(R)).

DÉMONSTRATION : (⇒) f1 = π1 ◦f où π1 : R2 → R désigne la 1ère projection
canonique i.e. π1((x1, x2)) :=x1. π1 est continue donc mesurable et partant f1 l’est
aussi.

(⇐)B(R2) := σ
(
O(R2)

)
et, par définition de la topologie produit de deux espaces

métriques séparables,

O(R2)=
{⋃
i∈I

(Ui × Vi), Ui, Vi ouverts de R, I dénombrable
}

(cf. section 3.4).

D’où il vient, clairement, B(R2) = σ ({U × V, U, V ouverts de R}). D’après la
proposition 5.1, f sera mesurable si f−1(U × V ) ∈ A , U, V ouverts de R. Or,
f−1(U × V )=f−1

1 (U)︸ ︷︷ ︸
∈A

∩ f−1
2 (V )︸ ︷︷ ︸
∈A

∈ A . ♦

Application 5.4. (a) Si l’on identifie C et R2 [i.e. z=x+ iy ≡ (x, y)], la proposi-
tion 5.4 se reformule en : la fonction f : (X,A )→ (C,B(C)) est mesurable si et
seulement si <(f) et =(f) le sont.

(b) Si f : (X,A ) → R ou C est mesurable alors |f |p, p > 0, est mesurable car(
u 7→ |u|p

)
est continue sur R, R ou C, donc borélienne.

5.2 Opérations sur les fonctions mesurables

Proposition 5.5. Soient f, g : (X,A ) → (R,B(R)) deux fonctions mesurables.
Alors, pour tout a ∈ R, α f + g et f g sont mesurables.
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DÉMONSTRATION : D’après la proposition 5.4 ci-avant, l’application
(f, g) : (X,A ) → (R2,B(R2)) est mesurable puisque ses composantes f et g
le sont ; d’autre part, les applications somme : (x1, x2) 7→ αx1 + x2 et produit :
(x1, x2) 7→ x1x2 de (R2,B(R2)) dans (R,B(R)) sont continues donc boréliennes.
On conclut via la proposition 5.3. ♦

Corollaire 5.1. La proposition 5.5 s’étend aux fonctions à valeurs complexes.

DÉMONSTRATION : En effet, si f est mesurable, <(f) et =(f) le sont, donc,
d’après la proposition 5.5, <(f+g)=<(f)+<(g) et =(f+g)==(f)+=(g) sont
mesurables. Partant, f + g l’est aussi grâce à l’application 5.4. Le produit, notam-
ment par une constante complexe, se traite de façon analogue à partir des formules
du produit de deux nombres complexes. ♦

Ces propriétés se résument ainsi :

Proposition 5.6. L’ensemble des fonctions mesurables de (X,A ) dans (K,B(K))
muni des opérations usuelles +, ·,× sur les fonctions est une K-algèbre ( 1).

Proposition 5.7. Soit (fn)n≥1 une suite de fonctions mesurables de (X,A ) à va-
leurs dans (R,B(R)).

(a) sup
n
fn et inf

n
fn sont mesurables,

(b) lim
n
fn et lim

n
fn sont mesurables,

(c) Si fn
S−→ f (“S” pour “simplement” i.e. ∀x ∈ X, fn(x) → f(x) dans R),

alors f est mesurable.

DÉMONSTRATION : Comme B(R) = σ(]a,+∞], a∈ R)=σ([a,+∞], a∈ R), il
suffit, pour établir la mesurabilité d’une fonction g, de vérifier (cf. proposition 5.1)
que

∀ a∈ R, {g > a}∈ A ou ∀ a∈ R, {g ≥ a}∈ A .

(a) {sup
n
fn > a} =

⋃
n≥1

{fn > a}∈ A et {inf
n
fn ≥ a} =

⋂
n≥1

{fn ≥ a}∈ A .

(b) On rappelle que lim
n
fn := inf

n
(sup
k≥n

fk) et lim
n
fn := sup

n
( inf
k≥n

fk) et l’on ap-

plique le point (a).

(c) On sait qu’une suite (xn)n∈N converge dans R si et seulement si lim
n
xn =

lim
n
xn, auquel cas lim

n
xn = lim

n
xn = lim

n
xn. En conséquence, si fn

S−→ f ,

f=lim
n
fn est donc mesurable. ♦

1. i.e. un K-e.v. pour les lois +, · et un anneau pour les lois +,×, ces quatre opérations vérifiant
en outre diverses relations naturelles de compatibilité trivialement vérifiées dans le cas d’espaces
vectoriels de fonctions à valeurs dans K, pour lesquelles nous renvoyons à un ouvrage approprié.
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Exemple : Si f : R → R est dérivable, alors f ′ = lim
n
n
(
f(. + 1/n)− f

)
est

borélienne.

Compléments et raffinements : 1. L’assertion (c) peut être affinée ; en effet, si
l’on ne suppose pas a priori que la suite (fn)n≥1 converge, on sait cependant que

{fn
(R)−→ .} := {x∈ X : lim

n
fn(x) existe dans R}∈ A

puisque {fn
(R)−→ .} = c{lim

n
fn 6= lim

n
fn}

= c

⋃
r∈Q

({lim
n
fn < r} ∩ {lim

n
fn ≥ r})

∈ A .

En outre, l’application lim
n
fn : {fn

(R)−→ .} −→ R est toujours mesurable pour

les tribus A ∩ {fn
(R)−→ .} (tribu-trace) et B(R).

2. L’assertion (c) reste vraie si l’on remplace R par un espace métrique quelconque
(E, d). En effet, soit fn : (X,A )→ (E,B(E)) une suite de fonctions mesurables
convergeant simplement vers une fonction f . Pour tout fermé F de E, il vient

f−1(F ) = {x∈ X : d(f(x), F )=0} = {x∈ X : lim
n
d(fn(x), F ) = 0}

=
⋂
p≥1

⋃
N∈N

⋂
n≥N

{
x∈ X : d(fn(x), F ) ≤

1

p

}
∈ A

car l’application x 7→ d(fn(x), F ), composée de la fonction mesurable fn par la
fonction 1-lipschitzienne e 7→ d(e, F ), est mesurable de (X,A ) dans (R+,B(R+)).

3. Si l’espace métrique (E, d) est en outre complet et séparable ( 2) on peut égale-

ment établir la mesurabilité de {fn
(E)−→ .}. En effet, si (ek)k∈N désigne une suite

dense dans (E, d), on vérifie aisément que

{fn
(E)−→ .} := {x∈ X : (fn(x))n≥1 de Cauchy }

=
⋂
k≥1

⋃
`≥1

⋂
m,n≥`

⋃
p∈N

({
x∈ X/d(fm(x), ep)≤

1

k

}⋂
· · ·

· · ·
{
x∈X/d(fn(x), ep)≤

1

k

})
∈ A .

Les espaces R, R+, C, Rd, Cd sont des espaces métriques séparables complets.

Exercice : En s’inspirant de la méthode proposée dans le premier complément ci-
dessus, montrer que si les fonctions f, g : (X,A ) → (R,B(R)) sont mesurables
alors {f=g}∈ A .

2. Un tel espace est parfois appelé un espace polonais, en hommage aux nombreux
mathématiciens polonais qui ont montré l’importance de tels espaces, notamment en Probabilités.
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5.3 Fonctions étagées sur un espace mesurable

Définition 5.2. Une fonction f : (X,A )→ (K,B(K)) est étagée si elle est mesu-
rable et ne prend qu’un nombre fini de valeurs (K=R ou C).

Il est immédiat que toute fonction étagée f : (X,A )→ (K,B(K)) s’écrit sous
la forme

f =
∑
i∈I

αi1Ai , I fini, αi∈ K, (Ai)i∈I partition A -mesurable de X (5.1)

où l’on entend, par partition A -mesurable, toute partition de X constituée d’élé-
ments (éventuellement vides) de A .

Réciproquement, toute fonction de la forme (5.1) est étagée. En outre, parmi
toutes les décompositions de type (5.1) d’une fonction étagée f , il en existe une et
une seule dans laquelle les αi sont deux à deux distincts. Dans ce cas il est clair
que {αi, i∈ I}=f(X), Ai={f = αi}, i∈ I , et l’on obtient la forme canonique
de f :

f =
∑

α∈f(X)

α 1{f=α}.

Les fonctions étagées jouent dans la construction de l’intégrale de Lebesgue le
rôle dévolu aux fonctions en escalier dans la théorie Riemann.

Exemples : 1. Une fonction f : (X,P(X)) → K est étagée si et seulement si
card(f(X)) est fini.
2. La fonction indicatrice f :=1A d’un ensemble mesurableA∈ A est une fonction
étagée dont la forme canonique est évidemment donnée par

f = 1× 1A + 0× 1cA.

3. Si X = [a, b], (a<b) et A = B([a, b]), toute fonction en escalier f est étagée.
En effet (cf. définition 1.1) elle prend un nombre fini de valeurs et, pour tout α ∈
f([a, b]), l’ensemble {f = α} est une réunion finie d’intervalles de [a, b] donc un
borélien de [a, b]. La réciproque est fausse, ce qui illustre le fait que la notion de
fonction étagée est une généralisation de celle fonction en escalier.

D’autres écritures de type (5.1) sont généralement possibles : ainsi, dès qu’il
existe Ã ⊂ A, Ã∈ A , Ã 6= A, Ø, la fonction f s’écrit également

f = 1× 1Ã + 1× 1A\Ã + 0× 1cA.

Proposition 5.8. L’ensemble

EK(X,A ) :={f : (X,A )→ (K,B(K)), f étagée}

est une K-algèbre réticulée ( 3).

3. i.e. stable par max et par min finis.
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DÉMONSTRATION : La fonction nulle est évidemment étagée. D’autre part, soient
f :=

∑
i∈I αi 1Ai et g :=

∑
j∈J βj 1Bj deux décompositions de type (5.1). Si λ∈ K,

λf + g =
∑

i∈I, j∈J
(λαi + βj)1Ai∩Bj ,

f g =
∑

i∈I, j∈J
αi βj 1Ai∩Bj ,

max(f, g) =
∑

i∈I, j∈J
max(αi, βj)1Ai∩Bj ,

etc., qui sont à leur tour des décompositions de type (5.1) relatives à la partition
A -mesurable (Ai ∩Bj)i∈I, j∈J .

Exercice : Montrer que toute fonction f de la forme f =
∑
i∈I

αi 1Ai , αi ∈ K,

Ai∈ A , i ∈ I , I fini, est étagée.

Théorème 5.1 (Lemme fondamental d’approximation). Soit f : (X,A ) → R, R
ou C, mesurable. Il existe une suite (fn)n≥1 de fonctions étagées, telle que, pour
tout x∈ X , lim

n
fn(x) = f(x). En outre,

(a) si f ≥ 0, on peut choisir la suite (fn)n≥1 croissante et positive, au sens où

∀n ≥ 1, 0 ≤ fn ≤ fn+1.

(b) Si f est bornée, on peut choisir la suite (fn)n≥1 de façon que fn converge
uniformément vers f (i.e. lim

n
sup
x∈X
|fn(x)− f(x)| = 0).

DÉMONSTRATION : (a) Supposons f≥0 et posons pour tout n∈ N,

En,k :=

{
k

2n
≤ f < k + 1

2n

}
, k∈ {0,. . ., n2n − 1}, et En,∞ := {f ≥ n}.

Les ensemblesEn,k etEn,∞ appartiennent à la tribu A comme images réciproques
d’intervalles de R par la fonction mesurable f . On définit alors pour tout n∈ N,

fn :=

n2n−1∑
k=0

k

2n
1En,k

+ n1En,∞ .

Les fonctions fn sont étagées par construction. On vérifie que, si x∈ En,k,

fn+1(x) =

{
fn(x) si 2k

2n+1 ≤ f(x) < 2k+1
2n+1 ,

fn(x) +
1

2n+1 si 2k+1
2n+1 ≤ f(x) < 2(k+1)

2n+1 ,

et si x∈ En,∞,

fn+1(x) =

{
n+ 1>fn(x) si f(x) ≥ n+ 1,

n2n+1+`
2n+1 ≥ n si n2

n+1+`
2n+1 ≤ f(x)< n2n+1+`+1

2n+1 , 0≤ `≤ 2n+1−1.
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On a donc bien établi que fn(x) ≤ fn+1(x) pour tout x∈ X .

Il est évident par construction que, si x∈ {f <n}, 0 ≤ f(x) − fn(x) ≤ 2−n.
Par conséquent, pour tout x∈ {f <n0}, il vient,

∀n ≥ n0, 0 ≤ f(x)− fn(x) ≤ 2−n → 0.

Par suite fn → f sur {f <+∞}=
⋃
k≥1

{f <k}.

Enfin, si x∈{f=+∞}=
⋂
n∈N

{f≥n}, fn(x)=n→ +∞.

Si f est bornée par M , on constate que {f ≥ n} = Ø pour n > M , d’où la
convergence uniforme dans ce cas, car 0 ≤ f(x) − fn(x) ≤ 2−n pour tout x∈ X
dès que n>M .

(b) Cas réel : Si f est à valeurs dans R, on la décompose en f := f+−f− où
f+ :=max(f, 0) et f− :=max(−f, 0). Les fonctions f+ et f− vérifient f± ≥ 0,
f+ + f− = |f |. Ainsi, f+ et f− sont bornées si et seulement si f l’est. Enfin, on
note que, en tout point x∈ X , soit f+(x), soit f−(x) est nul.

On considère alors les suites f+n et f−n relatives à f+ et f− construites au
point (a) et l’on pose fn := f+n − f−n . La fonction fn est clairement étagée et
fn → f quand n → +∞. Aucune forme indéterminée ne peut survenir lors du
passage à la limite ; en effet, 0≤ f±n ≤ f± donc, x∈ X étant fixé, l’une des deux
suites (f+n (x))n≥1 ou (f−n (x))n≥1 est identiquement nulle. La convergence est en
outre uniforme si f est bornée puisque les fonctions f± le sont.

Cas complexe : Si f est à valeurs complexes, on écrit f=<(f)+i=(f). ♦

Remarque : Le lemme fondamental d’approximation repose effectivement sur
l’idée développée dans le préliminaire “De Riemann vers Lebesgue” consistant
à approcher une fonction f en découpant régulièrement l’“axe” des ordonnées, en
lieu et place de l’“axe” des abscisses (comme pour les fonctions en escalier).

5.4 Exercices

(X,A ) désigne un espace mesurable.

5.1 a) Soient Y un ensemble et une fonction f : (X,A ) → Y . f(A ) est-elle une
tribu? Décrire la plus grande tribu sur Y rendant f mesurable.

b) Soit (Y,B) un espace mesurable et f : X → (Y,B). Quelle est la plus petite
tribu sur X rendant f mesurable ?

5.2 Soient (Yi,Bi)i∈I une famille d’espaces mesurables, Y un ensemble, des fonc-
tions fi : Y → Yi et B la tribu engendrée par la famille de fonctions (fi)i∈I ,
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i.e. la plus petite tribu sur Y rendant les fi mesurables. Montrer que la fonc-
tion f : (X,A ) → (Y,B) est mesurable si et seulement si, pour tout i ∈ I ,
fi◦f : (X,A )→ (Yi,Bi) est mesurable.

5.3 a) Montrer que A :=
{
A ∈P(R) : A = −A

}
est une tribu sur R, où −A est

défini par −A := {−a, a∈ A}.
b) Caractériser les fonctions mesurables de (R,A ) dans (R,A ) et les fonctions
mesurables de (R,A ) dans (R,B(R)).

5.4 Soient une fonction f : X → (R,B(R)) et Af := f−1(B(R)) la tribu image-
réciproque de B(R) par f .

a) Soit une fonction h : (R,B(R))→ (R,B(R)) borélienne. Montrer que la fonc-
tion g := h ◦ f est mesurable de (X,Af ) dans (R,B(R)).

b) Soit s : (X,Af ) → (R,B(R)) une fonction étagée mesurable. Montrer qu’il
existe une fonction borélienne t telle que s = t ◦ f . En déduire que si la fonction
g : (X,Af ) → (R,B(R)) est mesurable, alors il existe h borélienne telle que
g = h◦f .

5.5 Soit la fonction f : R→ (R,B(R)) définie par f(x) := x2.

a) Montrer que la tribu image-réciproque par f est Af := {A∈B(R) : A = −A}.
b) Déterminer les fonctions mesurables de (R,Af ) dans (R,B(R)).

5.6 a) Montrer que toute fonction réglée de R dans R est borélienne.

b) En déduire que toute fonction monotone de R dans R est borélienne.

c) Retrouver le résultat du b) en utilisant le fait que l’ensemble des points de dis-
continuité d’une fonction monotone est dénombrable.

5.7 Soit une fonction f : (X,A ) → (C,B(C)) mesurable. Montrer qu’il existe
une fonction mesurable θ : (X,A )→ (R,B(R)) telle que f = eiθ|f |.

5.8 Montrer que la tribu borélienne d’un espace métrique (X, d) coı̈ncide avec la
tribu de Baire, i.e. la tribu engendrée par les fonctions à valeurs réelles, continues
et bornées (cf. exercice 5.2).

5.9 Soient (Y, d) un espace métrique muni de sa tribu borélienne et une suite de
fonctions fn : (X,A )→ (Y,B(Y )) mesurables, convergeant simplement vers f .

a) Montrer que, pour tout Ω∈O(Y ), il existeA∈A tel que f−1(Ω)⊂A⊂f−1(Ω).

b) En déduire que f est mesurable.





Chapitre 6

Mesure positive
sur un espace mesurable

6.1 Définition et exemples

Définition 6.1. (a) Soit (X,A ) un espace mesurable. On appelle mesure (positive)
sur (X,A ) toute application µ : A → R+ vérifiant :

(i) µ(Ø) = 0,

(ii) Si (An)n≥1 est une suite d’éléments de A, deux à deux disjoints (éventuelle-
ment vides) :

µ
( ⋃
n≥1

An

)
=
∑
n≥1

µ(An) [propriété de σ-additivité].

(b) Si µ(X)<+∞, la mesure µ est dite finie ou bornée, si µ(X) = 1, µ est une
probabilité.

Remarque : Les hypothèses ci-dessus entraı̂nent la “simple additivité” de la me-
sure µ : pour toute famille A1,. . ., An de parties de A , deux à deux disjointes,

µ(A1 ∪ · · · ∪An) = µ(A1) + · · ·+ µ(An)

(on pose simplement Ak :=Ø pour k>n et on applique conjointement (i) et (ii)).

Exemples : 1. La mesure nulle sur (X,P(X)) : ∀A∈P(X), µ(A) :=0.

2. La mesure grossière : µ(Ø) := 0 et ∀A∈P(X), A 6= Ø, µ(A) :=+∞.

3. La mesure de Dirac au point a∈ X :

∀A∈P(X), µ(A) :=

{
1 si a∈ A
0 si a /∈ A. (6.1)

La mesure de Dirac en a est notée δa.
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4. La mesure de comptage sur (X,P(X)) :

∀A∈P(X), µ(A) :=

{
card (A) si A est fini,
+∞ sinon.

( 1)

Il est immédiat que card (Ø) = 0 ; d’autre part, si A1, . . . , An sont des parties
de X deux à deux disjointes, card(A1 ∪ · · · ∪ An) = card(A1) + · · · + card(An).
La σ-additivité découle de cette relation de façon claire. Ceci fait bien de m une
mesure.

La mesure de comptage est également caractérisée par le fait que, pour tout
x∈ X , m({x}) = 1.

Cet exemple est important car il fait le lien entre intégration et familles som-
mables indexées par X , entre intégration et séries lorsque X=N.

Les exemples ci-avant sont tous définis sur la tribu triviale P(X) de toutes les
parties deX . Ces mesures existent a fortiori par restriction sur toute tribu A surX .
En revanche, il n’est généralement pas possible de définir une mesure sur P(X)
tout entière.

5. Soit µ une mesure sur (X,A ) et B∈ A . On définit la mesure-trace de µ sur B
par µB :=µ(. ∩ B). Si µ(B)∈ R∗

+, on définit la mesure conditionnelle sachant B
par

µ( . /B) :=
µ(· ∩B)

µ(B)
.

6. La mesure de Lebesgue sur Rd : cet exemple est, de loin, le plus important de
la liste. C’est en effet la mesure de Lebesgue qui est à la base de l’extension de
l’intégrale de Riemann aux fonctions boréliennes de R dans R, puis de Rd dans R.

Quelques préliminaires sont nécessaires pour énoncer le théorème d’existence
et de caractérisation de la mesure de Lebesgue : soit a∈ Rd et A∈ B(Rd), on note
a+A :={a+x, x∈ A}. L’application τa : x 7→ x−a étant clairement continue de
Rd dans Rd, donc borélienne, l’ensemble a+A=τ−1

a (A)∈ B(Rd).

Théorème 6.1. Il existe une unique mesure sur (Rd,B(Rd)) dite mesure de Le-
besgue sur Rd et notée λd vérifiant

(i) λd([0, 1]
d) = 1,

(ii) ∀ a∈ Rd, ∀A∈ B(Rd), λd(a+A) = λd(A).

On notera souvent par la simple lettre λ la mesure de Lebesgue sur la droite
réelle R. Nous admettrons provisoirement l’existence de λd. Dans un premier temps,
nous montrerons simplement que, en dimension 1, la mesure de Lebesgue λ(I)
d’un intervalle I coı̈ncide avec sa longueur (cf. paragraphe 6.1.2). Ceci nous per-
mettra quand même d’établir la partie unicité du théorème (cf. Application 6.1).
Une première approche de la construction de λ sur R comme conséquence du
théorème de Carathéodory est proposée à la section 6.3. La construction complète

1. Le cardinal d’un ensemble A sera aussi noté #A ou |A| selon les cas.
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est abordée à la section 6.5.2, après la démonstration détaillée du théorème de Ca-
rathéodory. Elle peut être évitée en première lecture.

La mesure de Lebesgue λd sur Rd sera construite encore plus loin, au cha-
pitre 11, lorsque nous aborderons la notion de mesure produit. Cette phase fera
l’objet de la section 11.2.2.

6.1.1 Propriétés essentielles

Soit µ une mesure positive sur (X,A ).

P1 : µ est croissante pour l’inclusion :

(a) ∀A, B∈ A , A ⊂ B =⇒ µ(A) ≤ µ(B).
(b) Si en outre µ(A) < +∞, alors µ(B\A) = µ(B)− µ(A) ≤ +∞.
(c) En revanche, si µ(A) = +∞, on ne peut rien dire sur µ(B\A).

DÉMONSTRATION : Ces résultats découlent du fait que B = A ∪ (B\A) (union
disjointe) d’où µ(B) = µ(A)+µ(B\A) ≥ µ(A) [avecA1 :=A, A2 :=B \A]. ♦

P2 : µ est fortement additive :

∀A,B∈ A , µ(A ∪B) + µ(A ∩B) = µ(A) + µ(B).

DÉMONSTRATION : Soit µ(A ∩B)=+∞ et (cf. P1) µ(A)=µ(B)=+∞.
Soit µ(A ∩B)<+∞, auquel cas on décompose A ∪B de façon disjointe en

A ∪B = (A \ (A ∩B)) ∪ (A ∩B) ∪ (B \ (A ∩B)).

D’où : µ(A ∪B) = µ(A \ (A ∩B)) + µ(A ∩B) + µ(B \ (A ∩B))

= µ(A)− µ(A ∩B) + µ(A ∩B) + µ(B)− µ(A ∩B)

= µ(A)− µ(A ∩B) + µ(B). ♦

P3 : µ est “continue à gauche” : Soit (An)n≥1 une suite croissante d’éléments de
A (i.e. An⊂ An+1 pour tout n∈ N).

µ
( ⋃
n≥1

↑
An

)
= lim

n

↑
µ(An).

DÉMONSTRATION : On pose B1 :=A1 et Bn :=An \An−1 pour n≥2. On vérifie

par récurrence que An =

n⋃
k=1

Bk pour tout n≥1.

En effet, supposons que An−1 =

n−1⋃
k=1

Bk. Il vient alors

An = (An \An−1) ∪An−1 = Bn ∪
( n−1⋃
k=1

Bk

)
=

n⋃
k=1

Bk.
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D’autre part les Bk sont deux à deux disjoints par construction. D’où finalement

µ
( ⋃
n≥1

An

)
= µ

( ⋃
n≥1

Bn

)
=
∑
n≥1

µ(Bn) = lim
n

n∑
k=1

µ(Bk) = lim
n
µ
( n⋃
k=1

Bk

)
= lim

n

↑
µ(An). ♦

Remarque : La suite (An)n≥1 étant croissante pour l’inclusion, il vient⋃
n≥1

↑
An = lim

n
An ; d’où l’écriture possible : µ

(
lim
n
An
)
= lim

n
µ(An)... et la ter-

minologie.

P4 : µ est “continue à droite” : Soit (An)n≥1 une suite décroissante d’éléments de
A (i.e. An+1⊂ An pour tout n∈ N), telle qu’il existe n0∈ N avec µ(An0)<+∞.
Alors

µ
( ⋂
n≥1

↓
An

)
= lim

n

↓
µ(An).

DÉMONSTRATION : On applique le résultat précédent à An0\An, n≥n0. Il vient

µ
( ⋃
n≥n0

(An0\An)
)
= lim

n

↑
µ(An0\An) avec

⋃
n≥n0

(An0\An) = An0\
( ⋂
n≥n0

An

)
et, de plus, µ(An0\An) = µ(An0)− µ(An) car µ(An)<+∞ pour n≥n0. D’où

µ(An0)− µ
( ⋂
n≥n0

An

)
= lim

n
(µ(An0)− µ(An)) = µ(An0)− lim

n
µ(An).

On conclut en simplifiant par la quantité finie µ(An0). ♦

Remarques : • La suite (An)n≥1 étant décroissante pour l’inclusion, l’identité peut
se lire µ(lim

n
An) = lim

n
µ(An) dès que le second membre est fini.

• L’existence d’une partieAn0 de µ-mesure finie est indispensable comme l’illustre
le contre-exemple suivant : on munit (N,P(N)) de la mesure de comptage et l’on
pose pour tout n ≥ 1, An := {k ∈ N, k ≥ n}. On vérifie immédiatement que
An+1 ⊂ An,

⋂
n≥1

An = Ø et µ(An)=+∞, pour tout n≥1.

P5 : µ est sous-additive : Soient (An)n≥1 une suite d’éléments de A , alors

µ
( ⋃
n≥1

An

)
≤
∑
n≥1

µ(An).

DÉMONSTRATION : On procède par récurrence. Si n=1, l’inégalité est triviale.
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Si n=2 : µ(A1 ∪A2) ≤ µ(A1 ∪A2)+µ(A1 ∩A2) = µ(A1)+µ(A2) d’après P2.
Supposons acquis le résultat au rang n ; il vient

µ
( n+1⋃
k=1

Ak

)
= µ

(
An+1 ∪

( n⋃
k=1

Ak

))
≤ µ(An+1) + µ

( n⋃
k=1

Ak

)
≤

n+1∑
k=1

µ(Ak).

Donc, pour tout n≥1, µ

(
n⋃
k=1

Ak

)
≤

n∑
k=1

µ(Ak) ≤
∑
k≥1

µ(Ak). Appliquant la pro-

priété P3 à la suite croissante
n⋃
k=1

Ak, n≥1, on obtient

µ
( ⋃
n≥1

An

)
= lim

n

↑
µ
( n⋃
k=1

An

)
≤
∑
n≥1

µ(An). ♦

6.1.2 Application à la mesure de Lebesgue sur R

Proposition 6.1. Soit λ la mesure de Lebesgue sur R. Pour tout intervalle I de R,
λ(I) = long(I), où long(I) désigne la longueur de l’intervalle I .

DÉMONSTRATION : Étape 1 : Soit α := λ({0}). L’invariance par translation de λ
entraı̂ne que, pour tout x∈ R, λ({x})=α. Donc, pour tout n≥1,

nα = λ

({
1

k
, 1≤k≤n

})
≤ λ([0, 1]) = 1 puisque

{
1

k
, 1≤k≤n

}
⊂ [0, 1].

D’où 0≤α≤ 1
n → 0 quand n→ +∞. Finalement,

∀x∈ R, λ({x}) = 0.

Étape 2 : Toujours d’après la propriété d’invariance par translation,

1=λ([0, 1])=λ(]0, 1])=λ

(
n⋃
k=1

]
k−1
n , kn

])
=

n∑
k=1

λ
(]
k−1
n , kn

])
=nλ

(]
0, 1n

])
.

Il vient alors λ
(]
0, 1n

])
= 1
n puis, pour tous k1, k2∈ Z, k1≤k2,

λ
(]

k1
n ,

k2
n

])
=

k2∑
k=k1+1

λ
(]
k−1
n , kn

])
= (k2 − k1)

1

n
=
k2
n
− k1
n
.

Par suite : ∀ r, r′ ∈ Q, r < r′, λ(]r, r′]) = r′−r. Soient maintenant a, b ∈ R,
a< b. Il existe deux suites de rationnels rn ↓ a et r′n ↑ b, rn<r′n. Les intervalles
An :=]rn, r

′
n] croissent vers ]a, b[ (i.e.

⋃
n

↑
An =]a, b[), donc, d’après P3,

λ(]a, b[) = λ(
⋃
n

↑
An) = lim

n
(An) = lim

n
(r′n − rn) = b− a.
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On conclut en notant que λ([a, b])=λ(]a, b])=λ(]a, b[)=λ[a, b[). Enfin,

[a,+∞[=
⋃
n≥1

[a+n−1, a+n[ donc λ([a,+∞[) =
∑
n≥1

1=+∞.

Les autres types d’intervalles se traitent de façon analogue. ♦

Cette proposition se généralise en dimension supérieure par

Proposition 6.2. Pour tout pavé P := I1 × · · · × Id de Rd (produit cartésien
d’intervalles)

λd(P ) = Vol(P ) :=
∏

1≤`≤d
long(I`).

(avec la convention 0× (+∞) = 0).

La démonstration directe de cette proposition est possible et suit le même ca-
nevas que celui du cadre réel, quelques difficultés techniques en plus. Nous verrons
plus loin – au chapitre 11 – une autre démarche permettant à la fois de construire
et de caractériser la mesure de Lebesgue sur Rd, fondée sur la notion de produit
de mesures. Néanmoins, cette approche s’appuie sur l’existence de la mesure de
Lebesgue réelle.

6.2 Caractérisation d’une mesure. Unicité

Les tribus, notamment boréliennes, sont généralement très “riches” en ensem-
bles au sens où il est impossible d’en décrire exhaustivement les éléments. Ainsi, si
X est un espace topologique et B(X)=σ

(
O(X)

)
la tribu borélienne surX , B(X)

contient non seulement les ouverts et les fermés mais également les intersections
dénombrables d’ouverts (dits ensembles de type “Gδ”), les réunions dénombrables
de fermés (dits ensembles de type “Fσ”), les réunions et intersections dénombrables
de tels ensembles, et ainsi de suite.

En particulier, vérifier que deux mesures sont égales sur une tribu A semble a
priori une tâche titanesque et pour tout dire inextricable. Le but du théorème de
caractérisation ci-après, en amont des théorèmes dits de classe monotone, est de
proposer un moyen de surmonter ce problème ou plus exactement de le contourner.

6.2.1 Un théorème de classe monotone

Définition 6.2. On appelle λ-système toute famille Λ de parties de X vérifiant :

(i) Ø∈ Λ,

(ii) Si (An)n≥1 est une suite croissante (An ⊂ An+1) d’éléments de Λ alors⋃
n≥1

↑
An∈ Λ [stabilité par réunion dénombrable croissante].

(iii) Si A,B∈ Λ et A⊂ B alors B \A∈ Λ [stabilité par différence propre].
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Proposition 6.3. (a) Si E est une famille de parties de X , il existe un plus petit
λ-système Λ(E ) contenant E .

(b) Si X ∈ Λ et Λ est stable par intersection finie, alors le λ-système Λ est une
tribu.

DÉMONSTRATION : (a) Une fois noté que P(X) est un λ-système contenant E , il
suffit de vérifier que Λ(E ) :=

⋂
Λ ⊃ E

Λ λ-système

Λ est un λ-système ce qui est immédiat. C’est

forcément le plus petit.

(b) Comme X ∈ Λ, Λ est donc stable par complémentaire d’après (iii). Reste la
stabilité par réunion dénombrable. Comme

⋃
n≥1

An =
⋃
n≥1

↑

(
n⋃
k=1

Ak

)
,

il suffit d’établir la stabilité par réunion finie qui se déduit de

A ∪B =c (cA ∩ cB) ∈ Λ. ♦

Théorème 6.2. Soit E une famille de parties de X , stable par intersection finie et
contenant X (une telle famille prend le nom de π-système), alors

Λ(E ) = σ(E ).

DÉMONSTRATION : Il suffit, au vu de la proposition 6.3, d’établir que Λ(E ) est
stable par intersection finie (puisque X∈ Λ(E )).

Soit donc E ∈ E fixé et ΛE := {A∈ Λ(E ) : A ∩ E ∈ Λ(E )}. On vérifie sans
difficulté que ΛE est un λ-système contenant E , donc Λ(E ) i.e.

∀E∈ E , ∀A∈ Λ(E ), A ∩ E∈ Λ(E ).

Soit maintenant B ∈ Λ(E ) et ΛB :=
{
A ∈ Λ(E ) : A ∩ B ∈ Λ(E )

}
. ΛB est

un λ-système, contenant E d’après ce qui précède. Donc ΛB = Λ(E ) pour tout
B∈ Λ(E ).

Finalement X ∈ Λ(E ) et Λ(E ) est stable par intersection finie, c’est donc une
tribu et, partant, Λ(E ) ⊃ σ(E ). Comme une tribu est clairement un λ-système,
Λ(E ) = σ(E ). ♦

6.2.2 Application à la caractérisation d’une mesure

Corollaire 6.1. Soient µ et ν deux mesures finies sur un espace mesurable (X,A )
et E ⊂ A un π-système (X ∈ E , E stable par intersection finie) engendrant A
(i.e. A =σ(E )). Si pour tout E∈ E , µ(E) = ν(E), alors µ = ν.
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DÉMONSTRATION : Soit Λ := {A ∈ A : µ(A) = ν(A)}. Λ est un λ-système et
Λ⊃ E donc, d’après le théorème 6.2, Λ⊃ σ(A )=A . ♦

Remarque : Le point crucial nécessitant la finitude de µ et ν est la stabilité de Λ
par différence propre ; en effet si A⊂ B et µ(A)<+∞,

µ(B \A)=µ(B)−µ(A)=ν(B)−ν(A)=ν(B \A)

si µ et ν coı̈ncident surA etB. On peut cependant partiellement relaxer l’hypothèse
de finitude de µ et ν.

Corollaire 6.2. Soient µ et ν deux mesures sur (X,A ) et E ⊂ A vérifiant

(i) E est un π-système et σ(E ) = A ,

(ii) ∀A∈ E , µ(A) = ν(A),

(iii) il existe une suite En ∈ E , n≥ 1, En⊂ En+1, telle que X =
⋃
n≥1

↑
En et

µ(En)=ν(En)<+∞.

Alors µ = ν.

DÉMONSTRATION : On applique le corollaire 6.1 aux mesures finies sur (X,A )
définies par µn := µ(. ∩ En) et νn := (. ∩ En), n ≥ 1. Comme En ∈ E et E
est stable par intersection finie, E ∩ En ⊂ E donc µn et νn coı̈ncident sur E et,
partant, µn = νn pour tout n≥ 1. Soit alors A ∈ A ; on écrit A=

⋃
n≥1

↑
(A ∩ En),

d’où, d’après la propriété P3,

µ(A) = lim
n
µ(A∩En) = lim

n
µn(A) = lim

n
νn(A) = lim

n
ν(A∩En) = ν(A). ♦

Remarque : On peut remplacer dans (iii) la suite croissante (En)n≥1 par une
partition de X =

⋃
n≥1En avec µ(En)=ν(En)<+∞.

Application 6.1. (a) Unicité de la mesure de Lebesgue sur R
On vérifie les hypothèses du corollaire 6.2 ci-avant avec En := [−n, n] et

E l’ensemble des intervalles de R. Si λ et λ′ sont deux mesures sur (R,B(R))
vérifiant les hypothèses du théorème d’existence et de caractérisation de la mesure
de Lebesgue (théorème 6.1 dans l’exemple no 6), alors, d’après la proposition 6.1,
λ et λ′ coı̈ncident sur E et λ([−n, n]) = λ′([−n, n]) = 2n <+∞. On conclut en
montrant, ce qui est immédiat, que E est un π-système et que σ(E )=B(R). ♦

(b) Caractérisation d’une mesure sur (R,B(R))
Si deux mesures µ et ν vérifient µ([0, x]) = ν([0, x]) < +∞ pour tout x ∈ R

([0, x] désigne ici le segment d’extrémités 0 et x), alors µ=ν.
On pose E :={[0, x], x∈ R} ∪ {R}. La famille E est clairement un π-système

vérifiant les conditions du corollaire 6.2. D’autre part, il est immédiat que σ(E )=
B(R) à partir de la caractérisation de B(R) fournie par l’application 4.1.
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6.3 Construction de mesures par prolongement (I)

6.3.1 Théorème de prolongement de Carathéodory

Définition 6.3. Une famille C de parties de X est une algèbre de Boole si

(i) X∈ C ,

(ii) pour tous A, B∈ C , A ∪B∈ C [stabilité par réunion finie],

(iii) pour tout A∈ C , cA∈ C [stabilité par complémentaire].

Théorème 6.3 (Carathéodory). Soient C une algèbre de Boole sur X et une appli-
cation µ : C → R+ vérifiant :

(i) µ(Ø) = 0,

(ii) pour tous A, B ∈ C tels que A ∩ B = Ø, µ(A ∪ B) = µ(A)+µ(B)
[additivité finie],

(iii)


pour toute suite décroissante (An)n≥1 d’éléments de C

si µ(A1) < +∞ et
⋂
n≥1

↓
An = Ø alors lim

n
µ(An) = 0,

(iv)



Il existe une suite croissante (En)n≥1 d’éléments de C vérifiant
(α) X =

⋃
n≥1

↑
En,

(β) pour tout n≥1, µ(En)<+∞
(γ) pour tout A∈ C , lim

n

↑
µ(A ∩ En) = µ(A).

Il existe alors une unique mesure µ̃ sur la tribu σ(C ) coı̈ncidant avec µ sur C .

Terminologie : La condition (iii) est appelée propriété de Carathéodory ou parfois
aussi continuité de la mesure en Ø.

Ce théorème est à la base de la construction de la mesure de Lebesgue sur R. Sa
démonstration, longue et délicate, fait intervenir la notion de mesure extérieure. Elle
est détaillée dans la section 6.5. Le paragraphe 6.5.2 est, lui, plus particulièrement
consacré à la mesure de Lebesgue elle-même et aux mesures de Stieltjes qui en sont
une généralisation. Enfin, une troisième application, la construction de produits
infinis de mesures, est proposée à la section 11.4.

Notons cependant dès maintenant que l’unicité de µ̃ découle directement des
résultats de caractérisation établis à la section 6.2 : en effet, une algèbre de Boole
est en particulier un π-système.

Remarques et compléments : • Si µ(X) < +∞, l’hypothèse (iv) est toujours
vérifiée avec la suite En :=X, n≥1.

• Dans la formulation du théorème, la condition de Carathéodory a été privilégiée
pour des raisons historiques. Cette condition exprime la continuité “à droite” de µ
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le long des suites d’éléments de C décroissant vers l’ensemble vide. Cependant, il
est souvent utile de remarquer que, sous l’hypothèse d’additivité finie de µ sur C ,
il y a équivalence entre, d’une part, (iii) et (iv)(γ) et, d’autre part, la propriété de
continuité “à gauche” de µ sur C :

Pour toute suite croissante pour l’inclusion (An)n≥1 de C ,⋃
n≥1

An ∈ C =⇒ µ
( ⋃
n≥1

An

)
= lim

n

↑
µ(An).

DÉMONSTRATION :(⇐) : Pour (iii), on s’appuie sur l’additivité finie de µ sur C
et l’on raisonne sur la suite décroissante A′

n := A1 \An. Le reste est évident.

(⇒) : Si µ
( ⋃
n≥1

↑
An

)
< +∞, on pose A′

k :=
( ⋃
n≥1

↑
An

)
\ Ak. On conclut en

notant que la suite (A′
k)k≥1 est décroissante et que

⋂
k≥1

↓
A′
k = Ø.

Si µ
( ⋃
n≥1

↑
An

)
= +∞, le cas précédent montre néanmoins que, pour tout

p∈ N,

lim
n
µ(An) ≥ lim

n
µ(An ∩ Ep) = lim

n

↑
µ(An ∩ Ep) = µ

( ⋃
n≥1

↑
An ∩ Ep

)
.

Or, d’après (iv)(γ) on a

lim
p
µ
( ⋃
n≥1

↑
An ∩ Ep

)
= µ

( ⋃
n≥1

↑
An

)
.

Par suite, il vient lim
n
µ(An) = +∞. ♦

• De la même façon, on montre que, sous l’hypothèse d’additivité finie de µ sur C ,
les conditions (iii) et (iv)(γ) sont équivalentes à la σ-additivité de µ le long des
suites d’éléments deux à deux disjoints de C dont la réunion est dans C .

6.3.2 Principes de construction de la mesure de Lebesgue sur R

On considère

C :=
{
I1 ∪ · · · ∪ In, n≥1, Ik intervalles de R deux à deux disjoints

}
.

C est bien une algèbre de Boole. On définit alors la fonction long : C → R+

définie par

long (I1 ∪ · · · ∪ In) :=
n∑
k=1

long(Ik).

Cette définition est consistante car long (I1 ∪ · · · ∪ In) ne dépend pas de la dé-
composition en intervalles disjoints choisie. La fonction long vérifie les hypothèses
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(i)-(iv) du théorème de Carathéodory avec En := [−n, n], n ≥ 1. La mesure de
Lebesgue λ est alors définie comme l’unique prolongement de la fonction long à
σ(C )=B(R). Pour finir, il reste à établir l’invariance de la mesure λ par les transla-
tions de R. Or, si a∈ R, il est clair que λ et λ(.+a) sont deux mesures sur (R,B(R))
coı̈ncidant avec la mesure de longueur long sur le π-système générateur C . D’où
λ=λ(·+ a).

Pour plus de détails, notamment sur la consistance de la définition de la fonction
long et sur ses propriétés, se reporter au chapitre 6.5 ci-après.

Remarque : On peut, de façon analogue, construire directement la mesure de Le-
besgue sur (Rd,B(Rd)) en utilisant les hyperpavés en lieu et place des intervalles.
Nous verrons cependant au chapitre 11 une méthode alternative fondée sur la notion
de mesure produit.

6.4 Régularité de la mesure de Lebesgue

La régularité est une propriété importante de la mesure de Lebesgue : c’est le
résultat-clé des théorèmes d’approximation et de densité en théorie de l’intégration.

Théorème 6.4. Soit λd la mesure de Lebesgue sur (Rd,B(Rd)). Alors

∀A ∈ B(Rd), λd(A) =

{
sup

{
λd(K), K ⊂ A, K compact

}
inf
{
λd(O), O ⊃ A, O ouvert

} . (6.2)

La mesure λd est dite (intérieurement et extérieurement) régulière.

Ce théorème est en fait un cas particulier du résultat plus général suivant, établi
à la section 6.6.

Théorème 6.5. Si (X, d) est un espace métrique et µ une mesure sur les boréliens
B(X) vérifiant :
(a) (X, d) est localement compact séparable et µ est finie sur les compacts,

ou
(b) (X, d) est complet séparable et µ est finie,
alors µ est régulière au sens de (6.2).

Remarque : C’est la propriété de régularité extérieure

µ(A) = inf
{
µ(O), O⊃ A, O ouvert

}
qui est à la base des théorèmes de densité (cf. sections 9.4 et 9.7). On verra que
celle-ci est vérifiée dès qu’il existe une suite d’ouverts (En)n≥1 telle que

∀n ≥ 1, En⊂ En+1, X =
⋃
n≥1

↑
En et ∀n ≥ 1, µ(En) < +∞.
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6.5 ♣ Construction de mesures par prolongement (II)

Le propos de cette section de compléments est d’établir le théorème de Ca-
rathéodory, énoncé sans démonstration à la section 6.3, et d’en déduire une cons-
truction de la mesure de Lebesgue sur R puis, par extension, de la mesure de
Stieltjes.

6.5.1 Démonstration du théorème de Carathéodory

Rappel : Une famille C de parties de X est une algèbre de Boole (sur X) si
(i) X∈ C ,
(ii) pour tous A, B∈ C , A ∪B∈ C [stabilité par réunion finie],
(iii) pour tout A∈ C , cA∈ C [stabilité par complémentaire].

Une algèbre de Boole est stable par intersection finie puisque
A ∩B = c(cA ∪c B) ; d’autre part, Ø =c X∈ C .

Théorème 6.6 (Carathéodory). Soit C une algèbre de Boole sur un ensemble X et
une application µ : C → R+ vérifiant :

(i) µ(Ø) = 0,
(ii) pour tous A,B ∈ C tels que A ∩ B = Ø, µ(A ∪ B) = µ(A) + µ(B)

[additivité finie],

(iii)


pour toute suite décroissante (An)n≥1 d’éléments de C ,

si µ(A1) < +∞ et
⋂
n≥1

↓
An = Ø, alors lim

n
µ(An) = 0,

(iv)


il existe une suite croissante (En)n≥1 d’éléments de C vérifiant
− X =

⋃↑

n≥1En,

− pour tout n≥1, µ(En)<+∞
− pour tout A∈ C , lim

n

↑
µ(A ∩ En) = µ(A).

Alors, il existe une unique mesure µ̃ sur la tribu σ(C ) engendrée par C et
coı̈ncidant avec µ sur C .

Définition 6.4.
(a) Par analogie avec le cadre général, une application µ : C → R+ vérifiant
(i)-(iii) (resp. (i)-(iv)) est appelée une mesure (resp. mesure σ-finie) sur l’algèbre
de Boole C .
(b) Une application m : P(X)→ R+ est appelée mesure extérieure si elle vérifie

(i)m(Ø) = 0,
(ii) pour tous A,B∈P(X) tels que A ⊂ B, m(A) ≤ m(B) [croissance],
(iii) pour toute suite (An)n≥1 de parties de X

m
( ⋃
n≥1

An

)
≤
∑
n≥1

m(An) [σ-sous-additivité].
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On notera bien qu’une mesure extérieure est toujours définie sur l’ensemble
P(X) de toutes les parties de X .

Remarque : Il est immédiat qu’une mesure µ sur une algèbre de Boole C vérifie
les propriétés P1 (croissance) et P2 (additivité “forte”) de la section 6.1.1 i.e.

P1 : pour tous A, B∈ C tels que A ⊂ B on a B\A = B ∩ cA∈ C et
µ(B) = µ(A) + µ(B\A) ≥ µ(A).

P2 : pour tous A, B∈ C , µ(A ∪B) + µ(A∩B) = µ(A) + µ(B).

DÉMONSTRATION DE LA PARTIE UNICITÉ DU THÉORÈME : L’unicité de µ̃ est une
conséquence immédiate du corollaire 6.2 (section 6.2) sur la caractérisation d’une
mesure. En effet, une algèbre de Boole est en particulier un π-système. ♦

La démonstration de l’existence occupe les deux paragraphes suivants.

Existence de µ̃ lorsque µ(X)<+∞

Dans ce cadre, µ étant croissante, µ(A)≤µ(X)<+∞, pour toute partieA∈ C
et l’hypothèse (iv) est vide (En :=X convient). Procédons par étapes.

Étape 1 Propriété d’une mesure définie sur une algèbre de Boole :

Si µ est une mesure finie sur l’algèbre C , alors
(a) µ est σ-additive sur C au sens où, pour toute suite (An)n≥1 d’éléments de C

deux à deux disjoints,⋃
n≥1

An∈ C =⇒ µ
( ⋃
n≥1

An

)
=
∑
n≥1

µ(An).

(b) µ est “continue à droite” au sens où, pour toute suite croissante (An)n≥1 d’élé-
ments de C ,

si
⋃
n≥1

↑
An∈ C , alors µ

( ⋃
n≥1

↑
An

)
= lim

n

↑
µ(An).

(c) µ est σ-sous-additive sur C au sens où, pour toute suite (An)n≥1 d’éléments
de C ,

si
⋃
n≥1

An∈ C , alors µ
( ⋃
n≥1

An

)
≤
∑
n≥1

µ(An).

DÉMONSTRATION : (a) Pour tout n≥1, on pose

A′
n :=

⋃
k≥n+1

Ak =
( ⋃
k≥1

Ak

)
\
( n⋃
k=1

Ak

)
∈ C .
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Les A1, . . . , An et A′
n sont deux à deux disjoints et A1 ∪ · · · ∪An ∪A′

n =
⋃
k≥1

Ak

donc
µ
( ⋃
k≥1

Ak

)
= µ(A1) + · · ·+ µ(An) + µ(A′

n)

par additivité finie. Or A′
n+1 ⊂A′

n et ∩nA′
n=Ø car les Ak sont deux à deux dis-

joints, si bien que, d’après (iii), µ(A′
n) ↓ 0. D’où le résultat annoncé.

(b) et (c) se démontrent en recopiant les preuves des propriétés P3 et P5 de la
section 6.1.1, une fois vérifié que tous les ensembles considérés sont dans C . ♦

Étape 2 Construction d’une mesure extérieure µ∗ prolongeant µ :
Pour tout A⊂ X , on pose

µ∗(A) :=inf
{∑
n≥1

µ(Bn), A ⊂
⋃
n≥1

Bn, Bn∈ C
}
.

µ∗ est une mesure extérieure coı̈ncidant avec µ sur C (donc µ∗ est finie).

DÉMONSTRATION : Commençons par montrer que µ∗=µ sur C . Soit A∈ C . En
spécifiant B1 :=A∈ C , Bk :=Ø∈ C , k≥2, il vient µ∗(A)≤µ(A).

Soient Bn ∈ C , n ≥ 1, vérifiant A ⊂
⋃
n≥1

Bn ; A =
⋃
n≥1

(A ∩Bn)︸ ︷︷ ︸
∈C

donc, la

σ-sous-additivité de µ sur C établie à l’étape 1 entraı̂ne

µ(A) ≤
∑
n≥1

µ(A ∩Bn) ≤
∑
n≥1

µ(Bn) (µ est croissante sur C ).

D’où µ(A) ≤ µ∗(A). Finalement µ et µ∗ coı̈ncident sur C .

Vérifions maintenant que µ∗ est bien une mesure extérieure.
– µ∗(Ø)=µ(Ø)=0 car Ø∈ C ,
– µ∗ est clairement croissante pour l’inclusion,
– σ-sous-additivité : Soit (An)n≥1 une suite de parties de X . Par définition de

µ∗, il existe pour tout ε>0 et tout n≥1 une suite (B
(n)
k )k≥1 d’éléments de C telle

que
∀n ≥ 1, An ⊂

⋃
k≥1

B
(n)
k et

∑
k≥1

µ(B
(n)
k ) ≤ µ∗(An) +

ε

2n
.

D’où il vient, en sommant en n,
∑
n,k≥1

µ(B
(n)
k ) ≤ ε+

∑
n≥1

µ∗(An).

Or
⋃
n≥1

An ⊂
⋃

(n,k)∈(N∗)2

B
(n)
k et (N∗)2 est dénombrable donc, pour tout ε>0,

µ∗
( ⋃
n≥1

An

)
≤
∑
n≥1

µ∗(An) + ε.
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D’où le résultat. ♦

Étape 3 Fabrication de µ̃ par restriction de la mesure extérieure µ∗ :

(a) T ∗ :={A⊂ X : ∀B⊂ X, µ∗(B) = µ∗(B ∩A) + µ∗(B ∩ cA)} est une tribu
contenant C et, par conséquent, σ(C ).

(b) La restriction de µ∗ à T ∗ est une mesure sur (X,T ∗). Par suite µ̃ := µ∗|σ(C )
est une solution au problème de prolongement.

DÉMONSTRATION : Les assertions (a) et (b) s’établissent simultanément.

– Ø∈ T ∗ car µ∗(Ø)=0,

– Si A∈ T ∗, cA∈ T ∗ par un simple argument de symétrie : c(cA) = A.

– Stabilité par réunion finie : soient A, A′∈ T ∗ et B⊂ X .

µ∗(B) = µ∗(B ∩A) + µ∗(B ∩ cA),

= µ∗((B ∩A) ∩A′) + µ∗((B ∩A) ∩ cA′) + µ∗((B ∩ cA) ∩A′)

+µ∗((B ∩ cA) ∩ cA′),

= µ∗(B ∩ (A ∩A′)) + µ∗(B ∩ (A ∩ cA′)) + µ∗(B ∩ ( cA ∩A′))

+µ∗(B ∩ c(A ∪A′)).

Or A∪A′=(A∩ A′)∪ (A′ ∩ cA)∪ (A∩ cA′). La mesure extérieure µ∗ étant
sous-additive, il vient en intersectant par B,

µ∗(B ∩ (A∩A′))+µ∗(B ∩ (A∩ cA′))+µ∗(B ∩ (cA∩A′)) ≥ µ∗(B ∩ (A∪A′))

et partant µ∗(B) ≥ µ∗(B ∩ (A ∪A′)) + µ∗(B ∩ c(A ∪A′)).
L’autre inégalité découle directement de la sous-additivité de µ∗. Il y a donc

égalité et par conséquent A ∪ A′ ∈ T ∗ ; ceci montre que T ∗ est une algèbre de
Boole.

– Stabilité par réunion dénombrable et σ-additivité de µ∗ sur T ∗ : On constate
d’abord que si A, A′∈ T ∗ et A ∩A′=Ø, alors pour tout B⊂ X ,

µ∗(B) = µ∗(B ∩A) + µ∗(B ∩ cA) ≥ µ∗(B ∩A) + µ∗(B ∩A′),

l’inégalité découlant de la croissance de µ∗ et de l’inclusionA′⊂ cA. Une récurren-
ce immédiate montre alors que, pour tous A1,. . ., An∈ T ∗, deux à deux disjoints,

∀B⊂ X, µ∗(B) ≥
n∑
i=1

µ∗(B ∩Ai). (6.3)

Soit (An)n≥1 une suite de T ∗. On pose A′
1 :=A1 et A′

n :=An\
n−1⋃
k=1

A′
k pour

tout n ≥ 2. Les A′
n sont deux à deux disjoints. D’autre part, il est immédiat par
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récurrence que A′
n⊂ An=

⋃
1≤k≤n

A′
k et partant

⋃
n≥1

An=
⋃
n≥1

A′
n. Enfin, T ∗ étant

une algèbre de Boole, chacun des A′
k est dans T ∗. Pour conclure, il suffit donc de

montrer que
⋃
n≥1

A′
n∈ T ∗. Soit B⊂ X . Comme An=

⋃
1≤k≤n

A′
k∈ T ∗, il vient

µ∗(B) = µ∗
(
B ∩

⋃
1≤k≤n

A′
k

)
+ µ∗

(
B ∩ c

⋃
1≤k≤n

A′
k

)
.

OrB ∩
( ⋃

1≤k≤n
A′
k

)
=
⋃

1≤k≤n
(B ∩A′

k). Cette dernière réunion étant disjointe, l’iné-

galité (6.3) implique donc

∀n ≥ 1, µ∗(B)≥
n∑
k=1

µ∗(B ∩A′
k) + µ∗

(
B ∩ c

( ⋃
1≤k≤n

A′
k

))
≥

n∑
k=1

µ∗(B ∩A′
k) + µ∗

(
B ∩ c

( ⋃
k≥1

A′
k

))
,

d’où, avec n→ +∞, µ∗(B)≥
∑
k≥1

µ∗(B ∩A′
k) + µ∗

(
B ∩ c

( ⋃
k≥1

A′
k

))
. (6.4)

La σ-sous-additivité de la mesure extérieure µ∗ entraı̂ne alors

µ∗(B) ≥ µ∗
(
B ∩

( ⋃
n≥1

A′
n

))
+ µ∗

(
B ∩ c

( ⋃
n≥1

A′
n

))
.

Finalement, la σ-sous-additivité de la mesure extérieure µ∗ assure l’inégalité op-
posée, d’où, pour toute partie B de X ,

µ∗(B) = µ∗
(
B ∩

( ⋃
n≥1

A′
n

))
+ µ∗

(
B ∩ c

( ⋃
n≥1

A′
n

))
. (6.5)

En conséquence,
⋃
n≥1

An=
⋃
n≥1

A′
n∈ T ∗. T ∗ est donc bien une tribu.

Enfin, en posantB :=
⋃
n≥1

A′
n dans (6.4), il vient pour toute suite (A′

n)n≥1 d’élé-

ments deux à deux disjoints de T ∗ :

µ∗
( ⋃
n≥1

A′
n

)
=
∑
n≥1

µ∗(A′
n).

En conclusion, µ∗ est σ-additive sur T ∗, c’est donc une mesure sur (X,T ∗).

– La tribu T ∗ contient σ(C ) : SoientA∈ C etB⊂ X . Pour tout ε>0, il existe
une suite (Bε

n)n≥1 de parties de C telles queB⊂
⋃
n≥1

Bε
n et

∑
n≥1

µ(Bε
n) ≤ µ∗(B)+ε.
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L’additivité de µ sur l’algèbre de Boole C et l’appartenance à C de Bε
n ∩ A et

Bε
n ∩ cA pour tout n≥1, entraı̂nent

µ∗(B) ≥
∑
n≥1

µ∗(Bε
n ∩A) +

∑
n≥1

µ∗(Bε
n ∩ cA)− ε,

d’où par sous-additivité de µ∗, µ∗(B) ≥ µ∗(B ∩A)+µ∗(B ∩ cA)− ε. L’inégalité
étant vraie pour tout ε >0, il vient

µ∗(B) ≥ µ∗(B ∩A) + µ∗(B ∩ cA).

L’égalité se déduit de la sous-additivité de µ∗ ce qui montre que A∈ T ∗. ♦

Le cas général : µ σ-finie

On réintroduit en lieu et place de µ(X) < +∞ l’hypothèse de “σ-finitude”
(iv) :

Il existe une suite croissante (Ep)p≥1 d’éléments de C telle que

∀ p ≥ 1, µ(Ep)<+∞, X =
⋃
p≥1

↑
Ep, et ∀A∈ C , µ(A ∩ Ep) ↑ µ(A).

Pour tout p≥ 1, on pose µp := µ(. ∩ Ep). Ceci définit clairement une suite de
mesures finies sur l’algèbre C qui se prolongent en autant de mesures finies µ̃p sur
la tribu σ(C ).

D’autre part µ̃p+1( . ∩Ep)= µ̃p puisque, d’après le théorème de caractérisation
(section 6.2), ces deux mesures finies coı̈ncident sur le π-système générateur C .
Par suite,

∀A∈ σ(C ), ∀ p≥ 1, µ̃p(A) = µ̃p+1(A ∩ Ep) ≤ µ̃p+1(A)

i.e. la suite (µ̃p(A))p≥1 est croissante. On pose alors

∀A ∈ σ(C ), µ̃(A) := lim
p

↑
µ̃p(A).

Vérifions alors que µ̃ est une mesure sur σ(C ) :

– µ̃(Ø) = limp µ̃p(Ø) = 0,

– Soit (An)n≥1 une suite d’éléments de σ(C ) deux à deux disjoints. Pour tout
p≥1,

µ̃p

( ⋃
n≥1

An

)
=
∑
n≥1

µ̃p(An) ≤
∑
n≥1

µ̃(An)

d’où il vient µ̃
( ⋃
n≥1

An

)
= lim

p
µ̃p

( ⋃
n≥1

An

)
≤
∑
n≥1

µ̃(An).
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D’autre part, pour tout n≥ 1 et pour tout p≥ 1, µ̃p
( ⋃
n≥1

An

)
≥

n∑
k=1

µ̃p(Ak),

donc, pour tout n≥ 1, µ̃
( ⋃
n≥1

An

)
≥

n∑
k=1

µ̃(Ak) d’où µ̃
( ⋃
n≥1

An

)
≥
∑
k≥1

µ̃(Ak).

Ceci établit la σ-additivité de µ̃ sur σ(C ).

Soit A∈ C . Il vient, grâce à (iv) et par construction de µ̃p,

µ̃(A) = lim
p
µ̃p(A) = lim

p
µ(A ∩ Ep) = µ(A). ♦

La propriété de Carathéodory est essentielle pour assurer l’existence de la me-
sure µ comme le montre l’exemple suivant.

Exemple : On se place sur l’ensemble N que l’on munit de l’algèbre de Boole

C := {A∈P(N) : A ou cA est finie}.

On pose µ(A) := 0 si A est fini et µ(A) := 1 si cA est fini. On vérifie aussitôt
que µ est une mesure sur l’algèbre C i.e. µ(Ø) = 0 et µ est finiment additive.
Cependant µ ne vérifie pas la propriété de Carathéodory : on considère, pour tout
n≥1, An := {n, n+ 1, . . .}. Il est clair que ∩nAn = Ø alors que, pour tout n≥1,
An∈ C et µ(An)=1.

Effectivement, µ ne peut se prolonger en une mesure µ̃ sur P(N) = σ(C ) ;
en effet, si une telle mesure existait tout ensemble infini A aurait pour mesure 0
puisque

µ̃(A) = lim
n

↑
µ(A ∩ {1, 2, . . . , n}) = 0.

Par suite, on aurait µ̃(N) = 0 = µ(N) = 1 !

6.5.2 Construction de mesures sur R : Lebesgue, Stieltjes

Pour construire la mesure de Lebesgue sur R – qui est notre but essentiel – nous
allons encore appauvrir la structure d’algèbre de Boole.

Semi-algèbres et fonctions additives

Définition 6.5. Une famille S de parties de X est une semi-algèbre si

(i) Ø∈ S ,

(ii) pour tous A, B∈ S , A ∩B∈ S [stabilité par intersection finie],

(iii) pour tout A ∈ S , il existe n ≥ 1 et A1, . . . , An ∈ S deux à deux

disjoints, tels que cA =

n⋃
i=1

Ai.
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Exemple (essentiel) : La famille SI := {I ⊂ R, I intervalle (quelconque) de R}
est clairement une semi-algèbre puisque Ø∈ SI , SI est stable par intersection et,
pour tout intervalle I de R, cI = I1 ∪ I2 où I1 et I2 sont deux intervalles disjoints
(éventuellement vides).

Remarque : Comme le montre l’exemple ci-dessus, une semi-algèbre n’est géné-
ralement pas stable par réunion finie.

Proposition 6.4. Soit S une semi-algèbre.

(a) C (S ) :=

{
n⋃
i=1

Ai, Ai∈ S , deux à deux disjoints, n ≥ 1

}
est la plus petite

algèbre de Boole contenant S .

(b) Soit µ : S → R+ une application vérifiant µ(Ø)=0 et la propriété d’additivité
finie suivante : pour toute famille finie (Ai)1≤i≤n d’éléments de S deux à deux
disjoints dont l’union est dans S , on a

µ

(
n⋃
i=1

Ai

)
=

n∑
i=1

µ(Ai).

Alors µ admet un unique prolongement µ à C (S ) vérifiant la propriété d’additi-
vité finie (au sens du point (ii) du théorème de Carathéodory).

DÉMONSTRATION : (a) Toute algèbre de Boole contenant S contient C (S ) (sta-
bilité par réunion finie). Reste à montrer que C (S ) est une algèbre.

– Ø∈ S ⊂ C (S ) .
– C (S ) est stable par intersection finie car d’une part(

n⋃
i=1

Ai

)⋂ m⋃
j=1

Bj

 =
⋃
i,j

(Ai ∩Bj),

et d’autre part, les Ai ∩ Bj sont deux à deux disjoints dès que les familles Ai,
1≤ i≤n, et Bj , 1≤ j≤m, sont constituées de parties deux à deux disjointes. La
stabilité par réunion finie découlera de la stabilité par passage au complémentaire.

– Soit A :=

n⋃
i=1

Ai, Ai∈ S ; par hypothèse chaque cAi s’écrit cAi=
m(i)⋃
k=1

B
(i)
k

où les B(i)
k sont des parties de S deux à deux disjointes. Quitte à rajouter des

B
(i)
k := Ø, on peut remplacer les m(i) par leur maximum m := max1≤i≤nm(i).

D’où il vient

cA =

n⋂
i=1

cAi=

n⋂
i=1

(
m⋃
k=1

B
(i)
k

)
=

⋃
1≤k1,...,kn≤m

(
n⋂
i=1

B
(i)
ki

)
︸ ︷︷ ︸

∈S

.
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Par suite cA∈ C (S ) puisque les ensembles
n⋂
i=1

B
(i)
ki

, 1≤ k1, . . . , kn≤m, sont

clairement deux à deux disjoints.

(b) Pour tout A :=
n⋃
i=1

Ai∈ C (S ) (Ai∈ S , deux à deux disjoints), on pose

µ(A) :=

n∑
i=1

µ(Ai).

Cette définition est consistante ; en effet, siA admet une décompositionA :=
m⋃
j=1

A′
j

de même type, alors A=
⋃
i,j

(Ai ∩A′
j) et l’on a bien, par additivité de µ sur S ,

n∑
i=1

µ(Ai) =
∑
i,j

µ(Ai ∩A′
j) =

m∑
j=1

µ(A′
j).

En outre µ est ainsi entièrement déterminée par les valeurs de µ sur S , d’où
l’unicité. L’additivité finie de µ est évidente au vu de sa définition. ♦

Remarque : De l’additivité finie de µ, on déduit immédiatement
– sa croissance : A⊂ B ⇒ µ(A)≤µ(B) pour tous A, B∈ C (S ),
– sa “forte” additivité : pour tous A, B∈ C (S ),

µ(A ∪B) + µ(A ∩B)=µ(A) + µ(B),

– et enfin, par récurrence, sa sous-additivité finie :

∀A1,. . ., An∈ C (S ), µ(A1 ∪ · · · ∪An) ≤ µ(A1) +· · ·+ µ(An).

Construction de la mesure de Lebesgue sur R

Soit I un intervalle de R ; la longueur long(I) de I est définie dans R+ par :

long(I) := sup I − inf I ≤ +∞ si I 6= Ø et long(Ø) = 0.

On rappelle d’autre part que la semi-algèbre SI :={I, I intervalle deR} vérifie
(cf. application 4.1, section 4.1) : σ(SI)=σ({[a,+∞[, a∈ R})=B(R).

Théorème 6.7. Il existe une unique mesure sur (R,B(R)), notée λ, coı̈ncidant avec
la mesure de longueur long sur SI . λ est appelée la mesure de Lebesgue sur R.
Elle vérifie

λ([0, 1])=1 et ∀ a∈ R, λ = λ(.+ a).

Ces deux propriétés caractérisent la mesure de Lebesgue.
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DÉMONSTRATION : La mesure de longueur long est clairement finiment additive
sur SI au sens de la proposition 6.4(b) puisque, plus généralement, si I et J sont
deux intervalles vérifiant I ∩ J=Ø, long(I ∪ J)= long(I) + long(J).

D’après la proposition 6.4 ci-avant, elle admet donc un unique prolongement
long à l’algèbre C (SI) =

{
I1 ∪ · · · ∪ In, Ik intervalles 2 à 2 disjoints, n ≥ 1

}
qui soit finiment additif au sens de la condition (ii) du théorème de Carathéodory
(théorème 6.6). Le point (i) étant évident, reste à établir (iii) et (iv).

Étape 1 Vérification de (iii) :

Soit (An)n≥1 une suite décroissante pour l’inclusion d’éléments de C (SI)

vérifiant long (A1)<+∞ et
⋂
n≥1

↓
An=Ø. L’ensembleA1 est borné comme réunion

finie d’intervalles de longueur globale finie ; pour tout n≥1, on écrit :
An = I

(n)
1 ∪ · · · ∪ I(n)pn où les I(n)k sont des intervalles deux à deux disjoints.

Si pour un certain n, An = Ø, le résultat est évident. Sinon, les pn sont non
nuls. Soit ε>0 ; on pose

J
(n)
k :=

[
α
(n)
k +

ε

pn2n+1
, β

(n)
k − ε

pn2n+1

]
si β

(n)
k − α(n)

k ≥ ε

pn2n

et J (n)
k :=Ø sinon, où α(n)

k et β(n)k désignent respectivement les bornes inférieures
et supérieures de I(n)k . L’intervalle J (n)

k est un compact (éventuellement vide) conte-

nu dans I(n)k . On pose alors, pour tout n≥ 1, A′
n :=

pn⋃
k=1

J
(n)
k . Il est immédiat que

A′
n∈ C (SI), A

′
n⊂ An et

long (An\A′
n) ≤

pn∑
k=1

2ε

pn2n+1
=
ε

2n
.

Par construction lesA′
n sont compacts, donc fermés dans le compactA1, et

⋂
n≥1

A′
n

est vide, il existe donc nε ≥ 1 tel que
nε⋂
k=1

A′
k=Ø. Or, d’après les lois de Morgan

appliquées à l’espace de référence Anε =

nε⋂
k=1

Ak , il vient

Anε =

nε⋂
k=1

Ak =

(
nε⋂
k=1

Ak

)
\

(
nε⋂
k=1

A′
k

)
=

nε⋃
k=1

( nε⋂
j=1

Aj

)
\A′

k


⊂

nε⋃
k=1

(Ak \A′
k).
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D’où long (Anε) ≤
nε∑
k=1

long (Ak \ A′
k) ≤ ε. Finalement, pour tout n ≥ nε, il

vient long (An) ≤ long (Anε) ≤ ε. On a donc bien établi que lim
n

long (An) = 0.

Étape 2 Vérification de (iv) :

On pose En := [−n, n]. On a En ⊂ En+1,
⋃
n

En = R et long (En) = 2n.

Soit A ∈ C (SI). Si long (A) < +∞, A est borné donc, pour n assez grand,
A ⊂ En et long (A ∩ En) = long (A). Si long (A) =+∞, l’un des intervalles
constituant A n’est pas borné, il suffit donc de vérifier (iv) pour ceux-ci ; or, pour
n assez grand, long

(
[a,+∞[∩En

)
=long ([a, n]) = n− a , donc

lim
n

long
(
[a,+∞[∩En

)
= +∞ = long ([a,+∞[) ;

idem pour les autres intervalles non bornés.

Étape 3 Propriétés de la mesure de Lebesgue :

La mesure de Lebesgue λ := l̃ong ainsi construite sur B(R) est unique grâce
aux résultats d’unicité du théorème de prolongement et de la proposition 6.4(b) ci-
avant (on peut également conclure en notant que SI est un π-système contenant
les En=[−n, n] et engendrant B(R)).

La mesure λ(. + a) (cf. section 6.1) coı̈ncide avec λ sur SI puisque l’on a
long(I + a)=long(I) pour tout I∈ SI . Elles coı̈ncident donc sur σ(SI)=B(R).
D’autre part λ([0, 1])=long([0, 1])=1− 0=1.

Le fait que l’invariance par translation et la longueur 1 de l’intervalle unité
caractérisent la mesure de Lebesgue parmi toutes les mesures sur (R,B(R)) a déjà
été établi dans l’application 6.1 (section 6.2.2). ♦

Remarque : On aurait tout aussi bien pu construire directement la mesure de Le-
besgue λd sur (Rd,B(Rd)) en nous appuyant sur la semi-algèbre des hyperpavés

SI,d :=

{
d∏
i=1

Ii, Ii intervalle de R

}
,

et la mesure d’hypervolume Vol définie par

Vol(I1 × · · · × Id) =
d∏
i=1

long(Ii)∈ R+

(toujours avec la convention 0× (+∞) = 0).
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Mesures de Stieltjes sur R

La notion de mesure de Stieltjes est une généralisation naturelle de la mesure
de Lebesgue sur R consistant à attribuer à chaque intervalle ]a, b], a, b ∈ R, non
plus sa longueur, mais une masse F (b)− F (a) où F est une application croissante
de R dans R, continue à droite.

On peut également voir la notion de mesure de Stieltjes de la façon suivante :
on définit la “fonction de répartition” d’une mesure µ sur (R,B(R)) par

Fµ(t) :=

{
µ(]0, t]) si t ≥ 0

−µ(]t, 0]) si t ≤ 0
.

Si µ est finie sur les compacts, alors Fµ est une fonction de R dans R+ croissante,
continue à droite, nulle en 0. Une question naturelle est de savoir si cette propriété
admet une réciproque. Les mesures de Stieltjes apportent une réponse affirmative à
cette question.

Théorème 6.8. (Stieltjes) Soit F : R→ R une fonction croissante continue à droite.
Il existe une unique mesure µF sur R,B(R)), appelée mesure de Stieltjes associée
à F , vérifiant :

∀ a, b∈ R, µF (]a, b]) = F (b)− F (a).

La démonstration de ce théorème est très proche de la construction de la mesure
de Lebesgue, particulièrement lorsque F (±∞) := lim

±∞
F = ±∞. En particulier, si

F (x) := x, la mesure µF alors construite n’est autre que la mesure de Lebesgue
elle-même.

DÉMONSTRATION : Étape 1 Construction du “germe” de µF :
Soit S ′

I := {]a, b], ]a,+∞[, −∞ ≤ a ≤ b < +∞}. S ′
I est clairement une

semi-algèbre sur laquelle l’application longF : S ′
I → S ′

I définie par

longF (]a, b]) := F (b)− F (a) et longF (]a,+∞[) = F (+∞)− F (b)

est clairement finiment additive. En effet,

longF (]a, b]∪]b, c]) = longF (]a, c]) = F (c)− F (a)
= (F (c)− F (b)) + (F (b)− F (c))
= longF (]a, b]) + longF (]b, c]),

idem pour ]a, b] et ]b,+∞[. D’après la proposition 6.4 ci-avant, longF admet donc
un unique prolongement long F à l’algèbre

C (S ′
I) :=

{
I1 ∪ · · · ∪ In, Ik∈ S ′

I , n ≥ 1
}

qui soit finiment additif au sens de la condition (ii) du théorème de Carathéodory
(théorème 6.6).
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D’autre part, comme B(R) = σ({]a,+∞[, a ∈ R}) (cf. application 4.1, sec-
tion 4.1), il est immédiat que B(R) ⊂ σ(S ′

I) i.e. B(R) = σ(C (S ′
I)).

À ce stade, le point (i) étant évident, reste à établir (iii) et (iv).

Étape 2 Vérification de (iii) et (iv) lorsque F (±∞) = ±∞ :

– Assertion (iii) : Comme F (±∞) = ±∞, il est clair que, pour toute partie
A ∈ C (S ′

I), A est bornée dans R si et seulement si longF (A) < +∞.
Soit donc (An)n≥1 une suite décroissante pour l’inclusion d’éléments de C (SI)

vérifiant long (A1) < +∞ et
⋂
n≥1

↓
An=Ø. L’ensemble A1 est borné comme

réunion finie d’intervalles de longueur globale finie ; pour tout n≥ 1, on écrit en-
suite : An = I

(n)
1 ∪ · · · ∪ I(n)pn où les I(n)k = ]α

(n)
k , β

(n)
k ], 1≤ k≤ pn, sont deux à

deux disjoints.

Si pour un certain n, An=Ø, le résultat est évident. Sinon, tous les pn sont non
nuls. Soit ε > 0 ; on construit alors, pour tout n et tout k, J (n)

k :=
]
α̃
(n)
k , β

(n)
k

]
de

façon que, d’une part, J (n)
k ⊂ I(n)k et, d’autre part,

F (α̃
(n)
k )− F (α(n)

k ) ≤ ε

pn2n
.

Chaque intervalle J (n)
k est compact (éventuellement vide). On pose alors, pour tout

n≥1, A′
n :=

pn⋃
k=1

J
(n)
k . Il est immédiat que A′

n∈ C (S ′
I), A

′
n⊂ An et

long (An\A′
n) ≤

pn∑
k=1

ε

pn2n
=

ε

2n
.

Par construction les A′
n :=

pn⋃
k=1

J
(n)
k sont compacts, donc fermés dans le compact

A1, et
⋂
n≥1

A′
n=Ø, il existe donc nε ≥ 1 tel que

nε⋂
k=1

A′
k ⊂

nε⋂
k=1

A′
k=Ø . On en

déduit comme dans le théorème 6.7 que longF (Anε) ≤ ε. On a donc bien établi
que

lim
n

long F (An)=0.

– Assertion (iv) : elle s’établit comme dans le théorème 6.7 à partir des inter-
valles En :=]− n, n].

Le prolongement l̃ong F répond alors à la question posée.

Étape 3 Cas général : Supposons par exemple que F (+∞)∈ R et F (−∞) = −∞.
Soit ε > 0. Il existe un réel Lε tel que F (+∞) − F (Lε) ≤ ε. On reprend la
démonstration de l’assertion (iii) ci-avant en notant que An ∩ ] −∞, Lε] est une
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suite décroissante d’éléments de C (S ′
I) et queAn ∩ ]−∞, Lε]∈ C (S ′

I) est borné
dans R. En outre long F (An) = long F (An ∩ ]−∞, Lε])+longF (An ∩ ]Lε,+∞]).

D’après l’étape 2, lim
n

(
long F (An ∩ ]−∞, Lε])

)
≤ε. D’autre part, il est immé-

diat via la croissance de F que long F (An ∩ ]Lε,+∞]) ≤ F (+∞)− F (Lε) ≤ ε.
D’où, lim

n

(
long F (An)

)
≤2ε, pour tout ε>0 i.e. lim

n
long F (An)=0.

Les autres cas se traitent de façon analogue. Quant à l’assertion (iv) elle est
inchangée. ♦

Notation : On adopte, pour des raisons de maniabilité formelle, la notation dF au
lieu de µF dans la plupart des applications courantes.

Remarque : L’existence de la mesure de Stieltjes acquise, il est immédiat que, pour
tous a, b, −∞ < a ≤ b < +∞,

µF ([a, b]) = F (b)−F (a−) (en particulier µ({a}) = ∆F (a) := F (a)− F (a−)).

6.6 ♣ Régularité d’une mesure sur un espace métrique

Dans cette section, l’espace ambiant X est un espace métrique dont la distance
sera notée d. Toutes les mesures considérées sont définies sur la tribu borélienne
B(X)=σ(O(X)) relative à la topologie définie par d.

Le but poursuivi ici est de montrer que, à défaut de pouvoir décrire précisément
la tribu borélienne, il est généralement possible d’encadrer avec une précision ar-
bitraire la mesure de tout borélien par celles d’un ouvert plus grand et d’un fermé
(ou d’un compact) plus petit.

Ceci conduit à poser les définitions suivantes

Définition 6.6. (a) Une mesure µ sur (X,B(X)) est extérieurement régulière si

∀A∈ B(X), µ(A) = inf
{
µ(O), O ouvert, A ⊂ O

}
.

(b) Une mesure µ sur (X,B(X)) est intérieurement régulière si

∀A ∈ B(X), µ(A) = sup
{
µ(K), K compact, A ⊃ K

}
.

(c) Une mesure µ sur (X,B(X)) est régulière si elle est à la fois extérieurement
et intérieurement régulière.

6.6.1 Le cas d’une mesure finie

Proposition 6.5. Soit µ une mesure positive finie sur (X,B(X)). Alors, pour tout
A∈ B(X) et tout ε>0, il existe un ouvert O et un fermé F tels que

F ⊂ A ⊂ O et µ(O\F ) ≤ ε. (6.6)
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DÉMONSTRATION : Le principe de la démonstration est de montrer que

T :=
{
A ∈ B(X) : A vérifie (6.6)

}
est une tribu contenant O(X), et par conséquent B(X).

– T contient O(X) : Soient A∈ O(X) et ε>0 ; on pose O :=A et, pour tout
δ>0,

Fδ :=
{
x ∈ X : d(x, cA) ≥ δ

}
.

La fonction x 7→ d(x, cA) est continue (cf. proposition 3.7(a)) donc Fδ est fermé
et ⋃

p≥1

↑
F 1

p
=
{
x ∈ X : d(x, cA) > 0

}
= c(cA) = A.

La continuité à gauche d’une mesure (P3, section 6.1.1), entraı̂ne

lim
p

↑
µ(F 1

p
) = µ(O).

Donc, µ(O) étant finie, lim
p
µ(O\ F 1

p
) = 0 ; finalement, pour p assez grand, on a

µ(O\ F 1
p
)<ε. On a ainsi montré que O(X)⊂ T .

– T est stable par union dénombrable : SoientAn, n≥1, une suite d’éléments
de T et ε > 0. Par hypothèse, il existe pour tout n ≥ 1 des ensembles Fn et On
respectivement fermés et ouverts tels que

∀n ≥ 1, Fn ⊂ An ⊂ On et µ(On\Fn) ≤
ε

2n+1
.

Or
⋃
n≥1

Fn⊂
⋃
n≥1

An⊂
⋃
n≥1

On et l’on vérifie d’autre part sans peine que

( ⋃
n≥1

On

)
\
( ⋃
n≥1

Fn

)
⊂
⋃
n≥1

(On \ Fn).

D’où il ressort par σ-sous additivité (propriété P5, section 6.1.1) que

µ

(( ⋃
n≥1

On

)
\
( ⋃
n≥1

Fn

))
≤
∑
n≥1

µ(On\Fn) ≤
∑
n≥1

ε

2n+1
≤ ε

2
.

D’autre part, comme
⋃
n≥1

Fn=
⋃
n≥1

↑
( n⋃
k=1

Fk

)
, il existe nε≥1 tel que

µ
( ⋃
n≥1

Fn

)
≤ µ

( nε⋃
k=1

Fk

)
+
ε

2
.
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On pose alors O :=
⋃
n≥1

On et F :=

nε⋃
k=1

Fk. L’ensemble O est ouvert, F est

fermé et l’on a F ⊂
⋃
n≥1

An⊂ O. Enfin, µ(O) étant finie,

µ(O\F ) = µ(O)−µ(F ) = µ
( ⋃
n≥1

On

)
−µ
( ⋃
n≥1

Fn

)
+µ
( ⋃
n≥1

Fn

)
−µ(F ) ≤ ε.

– T est stable par complémentaire : Soit A ∈ T et ε > 0, F et O tels que
F ⊂ A ⊂ O et µ(O\F )≤ ε. Il est clair que cO⊂ cA⊂ cF . cO est fermé, cF est
ouvert et cF \cO=O\F donc µ(cF \cO)=µ(O\F )≤ε. ♦

La proposition précédente aurait pu s’énoncer de façon équivalente sous la
forme suivante

∀A∈ B(X), µ(A) =

{
sup

{
µ(F ), F fermé, F ⊂ A

}
inf
{
µ(O), O ouvert, A ⊂ O

}
.

C’est cette dernière formulation que nous allons maintenant essayer d’étendre
à certaines mesures de masse infinie, sous réserve qu’elles soient cependant finies
sur des boréliens “suffisamment gros”.

6.6.2 Le cas d’une mesure σ-finie

Définition 6.7. Une mesure µ sur un espace mesurable (X,A ) est dite σ-finie s’il
existe une suite croissante (En)n≥1 de boréliens vérifiant

X =
⋃
n≥1

↑
En et µ(En) < +∞ pour tout n ≥ 1.

Par extension, l’espace (X,A , µ) est dit σ-fini.

Théorème 6.9. (a) Si µ est une mesure σ-finie sur (X,B(X)), alors

∀A∈ B(X), µ(A) = sup {µ(F ), F fermé, F ⊂ A}.

(b) Si, en outre, X=
⋃
n≥1

E̊n, alors la mesure µ est extérieurement régulière i.e.

∀A∈ B(X), µ(A) = inf {µ(O), O ouvert, A ⊂ O}.

(c) Enfin, si l’on peut choisir les boréliensEn compacts, la mesure µ est intérieure-
ment régulière i.e.

∀A∈ B(X), µ(A) = sup {µ(K), K compact, A ⊃ K}.
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DÉMONSTRATION : (a) Cas 1 µ(A)<+∞ :
Soit ε> 0 ; A =

⋃
n≥1

↑
(A ∩ En) donc il existe, toujours par la propriété P3), un

entier nε ≥ 1 tel que µ(A) ≤ µ(A ∩ Enε) +
ε
2 i.e. µ(A∩

cEnε) ≤ ε
2 . On pose

alors µ̃ :=µ(.∩Enε) ; µ̃ est une mesure finie sur (X,B(X)) (cf. section 6.1) donc,
d’après la proposition 6.5 ci-avant, il existe F , fermé, F ⊂ A, tel que µ̃(A\F )≤ ε

2 .
Partant,

µ(A\F ) = µ((A\F ) ∩ Enε) + µ((A\F ) ∩ cEnε)

≤ µ̃(A\F ) + µ(A ∩ cEnε)

≤ ε

2
+
ε

2
= ε.

Cas 2 µ(A)=+∞ :
Toujours d’après P3, µ(A)=lim

n

↑
µ(A ∩ En) ; or d’après le cas 1,

µ(A ∩ En) = sup
{
µ(F ), F ⊂ A ∩ En, F fermé

}
≤ sup

{
µ(F ), F ⊂ A, F fermé

}
.

D’où µ(A)≤
{
sup {µ(F ), F ⊂ A, F fermé

}
. L’autre inégalité est évidente.

(b) On pose, pour tout n≥ 1, µn := µ(· ∩ En). Soit A∈ B(X) et ε > 0. D’après
la proposition 6.5, il existe donc, pour tout n≥ 1, On ∈ O(X) tel que A⊂ On et
µn(On \A) ≤ ε/2n, soit encore

A ⊂ On et µ(On ∩ En) ≤ µ(A ∩ En) +
ε

2n
.

Nous allons établir par récurrence sur n la propriété

Pn ≡ µ

(
n⋃
k=1

(Ok ∩ Ek)

)
≤ µ(A ∩ En) +

n∑
k=1

ε

2k
. (6.7)

P1 est immédiate. Supposons Pn vraie. Comme µ
(⋃n+1

k=1(Ok ∩ Ek)
)

est finie,
la forte additivité de µ (propriété P2, section 6.1.1) et l’hypothèse de récurrence
entraı̂nent

µ

(
n+1⋃
k=1

(Ok∩Ek)

)
= µ(On+1∩En+1) + µ

(
n⋃
k=1

(Ok∩Ek)

)

−µ

(
(On+1∩En+1) ∩

n⋃
k=1

(Ok ∩ Ek)

)
≤ µ(A ∩ En+1) +

ε

2n+1
+ µ(A∩En)

+

n∑
k=1

ε

2k
− µ

(
(On+1∩En+1) ∩

n⋃
k=1

(Ok∩Ek)

)
.
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Or, on a simultanément

A∩En⊂
n⋃
k=1

(A ∩ Ek)⊂
n⋃
k=1

(Ok ∩ Ek) et A∩En⊂ A∩En+1⊂ On+1∩En+1 ;

d’où il vient

µ(A ∩ En) ≤ µ

(
(On+1 ∩ En+1) ∩

( n⋃
k=1

(Ok ∩ Ek)
))

< +∞,

si bien que

µ

(
n+1⋃
k=1

(Ok ∩ Ek)

)
≤ µ(A ∩ En+1) +

n+1∑
k=1

ε

2k
.

Pn+1 est donc établie. L’ouvert
⋃
n≥1

(On ∩ E̊n) étant contenu dans
⋃
n≥1

(On ∩ En),

passer à la limite dans l’inégalité conduit à

µ
( ⋃
n≥1

(On ∩ E̊n)
)
≤ µ

( ⋃
n≥1

(On ∩ En)
)
≤ µ(A) + ε.

Reste à montrer que
⋃
n≥1

(On ∩ E̊n) contient A. Or, comme X =
⋃
n≥1

↑
E̊n par

hypothèse, A =
⋃
n≥1

(A ∩ E̊n) ⊂
⋃
n≥1

(On ∩ E̊n).

(c) On remarque simplement que les ensembles F ∩ En sont compacts comme
fermés dans des compacts et que µ(F )=lim

n

↑
µ(F ∩ En). ♦

6.6.3 Régularité des mesures de Borel

Les mesures de Borel sont un premier exemple où l’ensemble des hypothèses
du théorème 6.9 sont remplies.

Définition 6.8. Une mesure µ sur (X,B(X)) est appelée mesure de Borel si, pour
tout compact K de X , µ(K) est fini.

Pour l’essentiel, on ne s’intéresse qu’aux mesures de Borel définies sur un es-
pace séparable (i.e. possédant une suite dense, voir section 3.4) et localement com-
pact.

Définition 6.9. Un espace métrique (X, d) est localement compact si tout point
x∈ X admet un voisinage compact Kx i.e. tel que x∈ K̊x.

On montre que, dans un tel espace, tout voisinage de x contient un voisinage
compact de x (cf. [18]).
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Exemple fondamental : Rd, muni de sa structure d’e.v.n. est un espace localement
compact séparable. En revanche, un e.v.n. de dimension infinie n’est jamais locale-
ment compact. La mesure de Lebesgue λd sur (Rd,B(Rd)) est une mesure de Borel
puisque, tout compact K étant borné, il existe M>0 tel que K ⊂ [−M,M ]d, d’où
λ(K) ≤ (2M)d < +∞.

Le théorème de régularité des mesures de Borel s’énonce ainsi.

Théorème 6.10. Toute mesure de Borel sur un espace métrique localement compact
et séparable est régulière i.e.

∀A∈ B(X), µ(A) =

{
inf {µ(O), A ⊂ O, O ouvert}
sup {µ(K), K ⊂ A, K compact}.

(6.8)

DÉMONSTRATION : À ce stade la démonstration est purement topologique. En
effet, au vu du théorème 6.9, il suffit de montrer l’existence d’une suite de compacts
(Ln)n≥1 vérifiant X=

⋃
n≥1

↑
L̊n et Ln⊂ Ln+1.

Étape 1 (X, d) est σ-compact :

Par σ-compact, on entend X=
⋃
n≥1

↑
Kn, Kn⊂ Kn+1, Kn compact.

Soit I :=
{
(n, r) ∈ N∗ × Q∗

+ : B(xn, r) compact
}

; I étant (au plus) infini
dénombrable, on peut l’écrire comme réunion dénombrable d’une suite croissante
d’ensembles finis Ip, p≥1.

Soit x ∈ X ; x admet un voisinage compact Kx. Donc il existe n ∈ N∗ et
r ∈ Q∗

+ tel que x ∈ B(xn, r) ⊂ K̊x. Par suite X=
⋃

(n,r)∈I

B(xn, r). On pose

Kp :=
⋃

(n,r)∈Ip

B(xn, r). Il est clair que X =
⋃
p≥1

↑
Kp et que les Kp sont compacts

comme réunion finie de compacts. D’où le résultat.

Étape 2 Construction des Ln par récurrence :

On pose L1 :=K1 ; puis l’on suppose construits des compacts L1, . . . , Ln tels
que Kk ⊂ Lk, 1 ≤ k ≤ n et Lk−1 ⊂ L̊k, 2 ≤ k ≤ n. L’ensemble Kn+1 ∪ Ln
est compact et, par locale compacité de X , tout x ∈ Kn+1 ∪ Ln a un voisinage
compact Vx. Or, x ∈ V̊x par hypothèse donc la famille (V̊x)x∈Kn+1∪Ln forme un
recouvrement ouvert dont on peut extraire un recouvrement fini V̊x1 ∪· · ·∪ V̊xp . On
pose alors Ln+1 := Vx1 ∪ · · · ∪ Vxp . L’ensemble Ln+1 ainsi construit est compact
comme réunion finie de compacts, Kn+1⊂ Ln+1 et Ln⊂ V̊x1 ∪· · ·∪ V̊xp ⊂ L̊n+1.
La suite de compacts ainsi construite vérifie finalement

X=
⋃
n≥1

↑
Kn⊂

⋃
n≥1

↑
Ln⊂

⋃
n≥1

↑
L̊n+1 ⊂

⋃
n≥1

↑
L̊n ⊂ X. ♦
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Application 6.2. Toute mesure de Borel µ sur (Rd,B(Rd)) (i.e. finie sur les com-
pacts) est régulière ; c’est évidemment le cas de la mesure de Lebesgue λd mais
aussi de toutes les mesures à densité de la forme µ = f.λd où f est borélienne
positive et localement Lebesgue intégrable i.e.

∀K⊂ Rd, K compact,
∫
K
f dλd < +∞.

Compléments topologiques : (a) Un espace métrique σ-compact est toujours
séparable. En effet un espace métrique compact, notons-le K, est toujours sépara-
ble. Pour tout r ∈ Q∗

+, on peut, par compacité, recouvrir K par un nombre fini de
boules de rayon r :

K=
⋃

1≤i≤nr

B̊(x
(r)
i , r).

Il est alors immédiat que {x(r)i , 1 ≤ i ≤ nr, r ∈ Q∗
+} est dénombrable et

dense dans K. Si maintenant un espace métrique X est réunion dénombrable de
compacts, ceux-ci sont séparables et partant X l’est car une réunion dénombrable
d’ensembles dénombrables est dénombrable (cf. proposition 2.5).

(b) En combinant l’assertion (a) et l’étape 1 du théorème 6.10 ci-avant, on obtient
que, dans un espace métrique (X, d) localement compact, il y a équivalence entre
séparabilité et σ-compacité :

(c) En fait, le théorème de métrisabilité d’Urysohn entraı̂ne que, si un espace to-
pologique séparé, non métrisé a priori, est localement compact et admet une base
dénombrable d’ouverts, alors il est métrisable au sens où sa topologie (voir sec-
tion 3.3) est engendrée par une distance (voir [21], p. 218 ( 2)).

6.6.4 Régularité des mesures finies sur un espace polonais

La régularité peut également être obtenue sous des hypothèses de complétude
lorsque µ est finie.

Définition 6.10. Un espace métrique (X, d) est appelé polonais s’il est à la fois
séparable et complet.

Théorème 6.11. Soit (X, d) un espace polonais. Toute mesure µ finie sur l’espace
(X,B(X)) vérifie

(a) ∀ ε > 0, ∃Kε⊂ X , Kε compact tel que µ(cKε)≤ε.

(b) µ est régulière au sens de (6.8).

2. Le résultat subsiste si l’on remplace l’hypothèse de locale compacité par celle, plus faible, de
régularité qui stipule que tout voisinage d’un point x∈ X contient un voisinage fermé.
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DÉMONSTRATION : (a) Soit (xn)n≥1 une suite dense dans X et ε > 0 ; pour tout
p≥1, il existe np∈ N∗ tel que

µ

(
c

( np⋃
n=1

B(xn, 1/p)

))
≤ ε

2p
car X=

⋃
n≥1

B(xn, 1/p) et µ(X)<+∞.

On pose alors

Kε :=
⋂
p≥1

⋃
n≤np

B(xn, 1/p).

Kε ⊂
⋃
n≤np

B(xn, 1/p) pour tout p≥1, donc Kε est un ensemble précompact dans

l’espace complet (X, d) ; Kε étant fermé, il est donc compact (cf. [25] p. 137).
D’autre part, la σ-additivité de µ entraı̂ne

µ(cKε) ≤ µ

⋃
p≥1

c

( np⋃
n=1

B(xn, 1/p)

) ≤∑
p≥1

ε

2p
= ε.

(b) Ce point est une application immédiate de la proposition 6.5 et de l’assertion
(a) puisque, si F est fermé et K compact, F ∩K est compact. ♦

6.6.5 Application à la caractérisation des mesures

A partir des théorèmes précédents et de la proposition 6.5, on retrouve (ou on
obtient) des résultats utiles de caractérisation des mesures.

Théorème 6.12. Soient (X, d) un espace métrique et µ et µ′ deux mesures sur
(X,B(X)). Si µ et µ′ vérifient l’une des trois propriétés suivantes :

(a) X=
⋃
n≥1

↑
En, En ouvert, µ(En)=µ′(En)<+∞ et µ|O(X)=µ

′
|O(X) (thm. 6.9),

ou

(b) (X, d) est localement compact, séparable et pour tout compactK deX , µ(K) =
µ′(K)<+∞ (cf. théorème 6.10),

ou

(c) (X, d) séparable complet, µ(X) = µ′(X) < +∞ et pour tout compact K,
µ(K) = µ′(K) (cf. théorème 6.11),

alors µ=µ′.

6.7 Exercices

(X,A , µ) désigne un espace mesuré.
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Notation : une propriété est vérifiée µ-p.p. si elle est vraie sur le complémentaire
d’un ensemble mesurable de µ-mesure nulle.
6.1 On considère (An)n≥0 et (Bn)n≥0 deux suites de A telles que, pour tout n∈
N, An ⊂ Bn et µ(An) < +∞. Majorer µ(

⋃
n≥0Bn \

⋃
n≥0An) et µ(

⋂
n≥0Bn \⋂

n≥0An) à l’aide des termes de la suite (µ(Bn)−µ(An))n≥0.
6.2 Soient (Y,B) un espace mesurable et f : (X,A )→ (Y,B) une fonction me-
surable. Montrer que l’application µf : B → R+ définie par µf (B) := µ(f−1(B))
est une mesure sur (Y,B).
6.3 Dans chacun des cas suivants, montrer que l’application µ définit une mesure
et caractériser les ensembles de mesure nulle :
a) A := P(X) et pour x∈X fixé, µ(A) := 1A(x),
b) X := R, A := {A ∈P(R) : A ou cA dénombrable} et µ(A) := 0 si A est
dénombrable, µ(A) := 1 sinon,

c) X := N, A := P(N) et, (un)n≥0∈RN
+ étant fixée, µ(A) :=

∑
n∈A

un.

6.4 Soit f : (X,A )→ (R,B(R)) une fonction mesurable.
a) Montrer que si µ(X) 6=0 alors il existe A∈A , µ(A) 6=0, tel que f soit bornée
sur A.
b) Montrer que si µ({f 6=0}) 6=0 alors il existe A∈A , µ(A) 6=0, tel que |f | soit
minorée sur A par une constante strictement positive.

6.5 Soient µ une mesure finie sur B(R). On lui associe la fonction F définie sur R
par F (x) := µ([x,+∞[).
a) Montrer que la mesure µ est uniquement déterminée par la donnée de F .
b) Montrer que F est décroissante et continue à gauche sur R, et calculer les limites
en ±∞ de F .
c) Calculer µ({x}) pour x∈R, puis montrer que F est continue en x si et seulement
si µ({x})=0. Que peut-on en déduire sur l’ensemble D := {x∈R : µ({x}) 6=0}?

6.6 Une partie N ∈P(X) est dite négligeable par rapport à la mesure µ, ou µ-
négligeable, s’il existe A∈A tel que N ⊂A et µ(A)=0. On note N l’ensemble
des parties µ-négligeables et A := {A ∪N : (A,N)∈A ×N }.
a) Montrer que C∈ A si et seulement si il existe A,B∈A tels que A⊂C⊂B et
µ(B\A)=0.
b) Montrer que A est une tribu.
c) On pose pour tout C∈ A , µ(C) := µ(A) si A⊂C⊂B et µ(B\A)=0. Montrer
que µ définit bien une application et une mesure sur A qui coı̈ncide avec µ sur A .
d) Montrer que la mesure µ est complète, i.e. A contient toutes les parties µ-
négligeables.
La tribu A est appelée la tribu complétée de la mesure µ et sera étudiée en détail
au chapitre 13.
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6.7 On considère a, b ∈ R et f : R → R la fonction définie par f(x) := a x+b.
Montrer que, pour tout A∈B(R), f(A)∈B(R) et λ(f(A)) = |a|λ(A).

6.8 a) Montrer l’existence d’un ouvert dense de R de mesure arbitrairement petite.

b) En déduire que, pour tout ε > 0, il existe un fermé F de R d’intérieur vide tel
que, pour tout A∈B(R), λ(F∩A)≥λ(A)−ε.

6.9 Déterminer A,B∈B(R) tels que A+B=R et λ(A)=λ(B)=0.

6.10 Montrer que le graphe d’une fonction f : Rd → R continue est une partie
λd+1-négligeable de Rd+1.

6.11 Soient (X, d) un espace métrique et µ une mesure finie sur la tribu borélienne
B(X). On dit que A∈B(X) vérifie la propriété de régularité (∗) si

µ(A) = inf {µ(O) : A⊂ O, O∈O(X)} = sup {µ(F ) : F ⊂ A, cF ∈O(X)}.

a) Montrer que tout fermé de X vérifie (∗).
b) Montrer que l’ensemble des parties vérifiant (∗) est une tribu.

c) En déduire que tout borélien de X vérifie (∗).

6.12 Soient (X,A , µ) un espace mesuré de masse totale finie et une suite de fonc-
tions fn : (X,A )→ (R,B(R)) mesurables.

a) Montrer que l’ensemble de convergence de la suite (fn)n≥1 est défini par

C :=
⋂
k≥1

⋃
n≥1

⋂
i,j≥n

{
|fi − fj |≤ 1/k

}
.

b) On suppose que la suite (fn)n≥1 converge µ-p.p. vers une fonction mesurable

f , au sens où µ(cC)=0. On définit pour k, n∈N∗,

Akn :=

n⋃
p=1

⋂
i≥p

{
|fi − f | ≤ 1/k

}
.

Montrer que, pour tout ε > 0 et pour tout k ∈ N∗, il existe nk,ε ∈ N∗ tel que
µ(cAknk,ε

)< ε
2k

.

c) En déduire le théorème d’Egoroff : pour tout ε > 0, il existe Aε ∈ A tel que
µ(cAε)<ε et fn converge uniformément vers f sur Aε.

d) Montrer par un exemple simple (sur (N,P(N)) muni de la mesure de comp-
tage ou sur (R,B(R)) muni de la mesure de Lebesgue) que ce résultat est faux en
général si µ(X)=+∞.

6.13 Soient une suite de fonctions fn : (X,A ) → (R,B(R)) mesurables et f
mesurable. On dit que la suite (fn)n≥1 converge en mesure vers f si

∀ ε>0, lim
n
µ
(
{|fn − f |>ε}

)
= 0.
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a) Montrer que si µ(X) < +∞ et la suite (fn)n≥1 converge µ-p.p. vers f , alors
elle converge en mesure vers f .

b) Montrer que si la suite (fn)n≥1 converge en mesure vers f alors elle possède
une sous-suite qui converge µ-p.p. vers f .

6.14 Soit X un espace métrique séparable muni de sa tribu borélienne B(X) et
d’une mesure µ. On définit pour chaque fonction f : X → K mesurable, le support
essentiel de f par

Sµf :=
⋂

F∈S µ
f

F où S µ
f := {F fermé de X : f=0 µ-p.p. sur cF}.

a) Montrer que, si f est continue, Sµf est contenu dans le support usuel de la fonc-

tion f f (i.e. supp f := {f 6=0}). Montrer qu’il y a égalité si tous les ouverts non
vides de X ont une mesure non nulle sous µ.

b) Soit f : X → K mesurable. Montrer que f=0 µ-p.p. sur cSµf .

c) Soient f, g : X → K mesurables. Montrer que si |f |≤ |g| µ-p.p. alors Sµf ⊂S
µ
g ,

et que si |f |= |g| µ-p.p. alors Sµf =S
µ
g .

d) Soit (fn)n≥0 une suite de fonctions mesurables positives qui croı̂t vers une fonc-

tion f . Montrer que Sµf =
⋃
n≥0

↑Sµfn .

6.15 Soit (X,B(X)) un espace métrique séparable muni de sa tribu borélienne.
Soit µ une mesure sur (X,B(X)).

a) On pose Oµ := {O ∈ O(X) : µ(O) = 0}. Montrer que O est non vide et
admet un plus grand élément Ωµ pour l’inclusion. On définit le support de µ par
suppµ :=c Ωµ.

b) Déterminer le support d’une mesure de Dirac δa, de la mesure de Lebesgue λd,
de la mesure de comptage m.

c) Soient f : X → R+ une fonction mesurable positive et ν := f.µ. Montrer que
supp ν := Sµf (support µ-essentiel de f défini à l’exercice 14.

6.16 Soient (X, d) un espace métrique et α, ε > 0. Pour toute partie A de X , on
désigne par Rε(A) l’ensemble des recouvrements dénombrables (Bk)k≥1 deA par
des boules Bk de diamètre ≤ε, et on pose

µεα(A) := inf
Rε(A)

( ∑
k≥1

(diamBk)
α
)
.

a) Montrer que la fonction ε 7→ µεα(A) est décroissante sur R∗
+.

b) Montrer que l’application µεα est une mesure extérieure (cf. définition (6.4)).

c) En déduire que l’application µα := lim
ε→0

µεα est une mesure extérieure appelée la

mesure de Hausdorff.
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d) Montrer que, pour toute partie A de X , la fonction α 7→ µα(A) est décroissante
sur R∗

+ ainsi que la fonction α 7→ ε−α µεα(A), pour tout ε>0.

6.17 On se place sur l’e.v.n. Rd, d ∈ N∗ et on reprend les notations de l’exercice
précédent.

a) Soient α≥d et ε>0. Montrer qu’il existe une constante cd strictement positive
(qui dépend de la norme choisie sur Rd) telle que, pour tout hypercube Q de Rd,
µεα(Q) ≤ cd εα−d λd(Q).

b) En déduire que, pour tout α>d et pour toute partie bornée A de Rd, µα(A)=0.

c) Soit A une partie bornée de Rd. On définit la dimension de Hausdorff de A par

H (A) := inf {α > 0 : µα(A) = 0} ∈ [0, d].

Montrer que, pour tout α > H (A), µα(A) = 0 et que, pour tout α < H (A),
µα(A) = +∞.

d) Soit Q un hypercube de Rd. Montrer que H (Q)=d.

6.18 On définit sur la tribu A la relation R par : pour tous A,B ∈ A , AR B si
µ(A∆B) = 0, où ∆ désigne la différence symétrique.

a) Montrer que R est une relation d’équivalence sur A et caractériser la classe
d’équivalence de l’ensemble Ø.

On note par A /R l’ensemble quotient de A modulo la relation d’équivalence
R et par Ȧ la classe d’un élément A de A .

b) Soient Ȧ, Ḃ ∈ A /R. Montrer que le nombre µ(A∆B) ne dépend pas des
représentants A et B dans les classes respectives Ȧ et Ḃ.

c) Montrer que l’application d définie sur A /R×A /R par

d(Ȧ, Ḃ) := arctan(µ(A∆B)), Ȧ, Ḃ∈A /R,

est une distance sur A /R.

d) Soit ν une mesure sur A telle que

∀ ε>0, ∃ δ>0, µ(A)<δ ⇒ ν(A)<ε.

Montrer que l’application Ȧ 7→ ν(A) est bien définie et continue sur (A /R, d).

6.19 Soit A∈ B(R), on note −A := {−a ; a∈ A} et |A| := {|a| ; a∈ A}.
a) Montrer que −A ∈ B(R) et |A| ∈ B(R+).

b) Montrer que λ(A) = λ(−A) et λ(|A|) ≤ λ(A).

6.20 Soit espace (X,A , µ) un espace mesuré tel que µ(X) = 1.

a) Montrer que∣∣µ(A ∩B)− µ(A)µ(B)
∣∣ ≤√µ(A)(1− µ(A))µ(B)(1− µ(B)) ≤ 1

4
.
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b) Montrer les deux inégalités

µ(A ∩B)− µ(A)µ(B) ≤ min
(
µ(A)(1− µ(B)), µ(B)(1− µ(A))

)
et µ(A)µ(B)− µ(A ∩B) ≤ min

(
µ(A)(1− µ(A)), µ(B)(1− µ(B))

)
.

c) Montrer que les inégalités obtenues en b) sont plus fines que celle obtenue en a).

6.21 a) Soit µ la mesure définie sur B(R∗
+) par µ(A) :=

∫
A

dx

x
. Montrer que µ est

invariante par homothétie de rapport > 0.
b) Soit µ′ une mesure sur B(R∗

+), invariante par homothétie, avec µ′([1, e]) = 1.
Montrer que µ′ = µ.
c) Montrer que, pour tout A ∈ B(R∗

+) et tout α > 0, Aα ∈ B(R∗
+) et

µ(Aα) = αµ(A).

6.22 On se place sur un espace X muni d’une tribu A .
a) Montrer qu’une application µ : A → R+ vérifiant

(i) µ(Ø) = 0,

(ii) ∀A,B ∈ A , A ∩B = Ø ⇒ µ(A ∪B) = µ(A) + µ(B),

(iii) pour toute suite (An)n≥1 d’éléments de A , croissante pour l’inclusion,

µ
(⋃

n

An

)
= lim

n

↑
µ(An),

est une mesure sur (X,A ).
b) On considère une suite (νn)n≥1 croissante majorée de mesures positives finies
sur (X,A ), c’est-à-dire vérifiant

sup
n
νn(X) < +∞ et ∀n∈ N∗, ∀A∈ A , νn(A) ≤ νn+1(A).

Montrer que l’application ν définie sur A par ν(A) := lim
n
νn(A) est une mesure

finie.

6.23 Théorème de classe monotone fonctionnelle

Soient (X,A ) un espace mesurable, H un R-s.e.v. de l’espace des fonctions
bornées de X dans R et C un π-système de parties de X . On suppose que H
vérifie

(i) ∀C∈ C , 1C ∈H

(ii) Si f = lim
n

↑
fn, fn∈H , fn ≥ 0, alors f ∈H .

a) Soit T := {A⊂ X : 1A∈ H }. Montrer que T est un λ-système. En déduire
que H contient toutes les indicatrices d’éléments de σ(C ).
b) Montrer que H contient toutes les fonctions bornées σ(C )-mesurables.
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Chapitre 7

Intégrale par rapport
à une mesure positive

Dans de ce chapitre, (X,A , µ) désignera un espace mesuré quelconque. L’usa-
ge de {f ∈ B} en lieu et place de f−1(B) pour noter l’image réciproque ensem-
bliste {x ∈ X : f(x) ∈ B} ainsi que ses diverses variantes {f = a}, {f 6= a},
{f≤a}, etc., sera généralisé.

On adoptera les conventions suivantes :

0× µ(A) = 0 pour tout A∈ A , y compris si µ(A) = +∞, (7.1)

0×f(x)=0 pour toute fonction f , y compris si f(x)=±∞. (7.2)

Ainsi, on posera 0 × µ({f = 0}) = 0 même si µ({f = 0}) = +∞. De même,
le produit f(x)g(x) vaut 0 dès que f(x) ou g(x) vaut 0, même si l’autre terme
est infini. Par exemple, la fonction f̃ définie par f̃ := f 1{|f |<+∞} vaut 0 en tout
point x tel que f(x) = ±∞.

On synthétise parfois ces conventions à l’aide du raccourci (dangereux)

“0× (±∞) = 0”.

7.1 Intégrale d’une fonction étagée positive

Parmi toutes les écritures possibles d’une fonction étagée f ∈ EK(A ), on dis-
tingue sa forme canonique :

f =
∑

α∈f(X)

α 1{f=α}.

C’est sur cette forme canonique que l’on s’appuie pour définir l’intégrale d’une
fonction étagée positive.
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Définition 7.1. Soit f ∈ ER+(A ) une fonction étagée positive sur (X,A ). L’inté-
grale de f par rapport à la mesure µ est définie par∫

X
f dµ :=

∑
α∈f(X)

αµ({f = α})∈ R+.

Proposition 7.1. Soit f une fonction étagée. Pour toute décomposition
f :=

∑
i∈I αi1Ai où (Ai)i∈I désigne une partition A -mesurable finie de X ,∫

X
f dµ =

∑
i∈I

αiµ(Ai).

DÉMONSTRATION : On vérifie que∑
i∈I

αi µ(Ai) =
∑

α∈f(X)

∑
i:αi=α

αi µ(Ai) =
∑

α∈f(X)

α
∑

i/αi=α

µ(Ai).

Or,
⋃

i/αi=α

Ai = {f = α} pour tout α ∈ f(X) et les Ai étant deux à deux dis-

joints par hypothèse, il est clair que
∑

i/αi=α

µ(Ai) = µ({f = α}). D’où le résultat

annoncé. ♦

Notations : On note aussi∫
X
f(x) dµ(x) ou

∫
X
f(x)µ(dx) la quantité

∫
X
f dµ.

En l’absence d’ambiguı̈té, on omet parfois de mentionner l’espace X .

Remarques : • Si f≡0 (fonction nulle),
∫
X
f dµ = 0×µ(X) = 0 (ce point repose

sur la convention (7.1) dès que µ(X)=+∞).

• On constate sur la définition que∫
X
f dµ < +∞ ⇐⇒ µ({f 6=0}) < +∞.

(ce point utilise également la convention (7.1)).

Exemples : 1. Mesure de Dirac : Soient µ :=δa la mesure de Dirac au point a∈ X
et f : X → R+ une fonction ne prenant qu’un nombre fini de valeurs. Alors∫

X
f dµ = f(a).

En effet, µ({f=f(a)})=1 et µ({f=α})=0 pour tout α∈ f(X) \ {f(a)}.
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2. Mesure de comptage : Soit m la mesure de comptage sur (X,P(X)), définie
par m(A) = card(A) pour tout A∈ P(X). Alors, si la fonction f : X → R+ ne
prend qu’un nombre fini de valeurs,∫

X
f dm :=

∑
α∈f(X)

α card {f=α}.

– Soit card {f 6=0}<+∞ et il est clair que
∫
X
f dm =

∑
x∈X, f(x) 6=0

f(x), cette

somme ne comportant qu’un nombre fini de termes. On la note – abusivement –∑
x∈X

f(x).

– Soit card {f 6=0}=+∞ et
∫
X
f dm = +∞. On pose alors, conventionnelle-

ment,
∑
x∈X

f(x) :=

∫
X
f dm=+∞ de façon que, dans tous les cas, on ait

∫
X
f dm =

∑
x∈X

f(x).

Lorsque X=N, ∫
N
f(n) dm(n) =

∑
n∈N

f(n)

n’est autre que la somme de la série de terme général f(n) (la fonction n 7→ f(n)
ne prenant qu’un nombre fini de valeurs positives).

Propriétés 7.1. Soient f, g deux fonctions étagées positives définies sur (X,A , µ).

(a)

∫
X
(f + g) dµ =

∫
X
f dµ+

∫
X
g dµ [additivité],

(b) f ≤ g ⇒
∫
X
f dµ ≤

∫
X
g dµ [croissance],

(c) pour tout λ ≥ 0,
∫
X
λf dµ = λ

∫
X
f dµ [positive homogénéité].

DÉMONSTRATION : (a) On écrit les fonctions f et g sous la forme f :=
∑
i∈I

αi1Ai

et g :=
∑
j∈J

βj1Bj où (Ai)i∈I et (Bj)j∈J sont deux partitions A -mesurables finies

deX . On a déjà vu qu’alors f + g =
∑

(i,j)∈I×J

(αi + βj)1Ai∩Bj où (Ai∩Bj)(i,j)∈I×J
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est une partition A -mesurable finie de X . D’où∫
X
(f + g) dµ=

∑
(i,j)∈I×J

(αi + βj)µ(Ai ∩Bj)

=
∑
i∈I

αi
∑
j∈J

µ(Ai ∩Bj) +
∑
j∈J

βj
∑
i∈I

µ(Ai ∩Bj)

=
∑
i∈I

αiµ(Ai) +
∑
j∈J

βjµ(Bj) =

∫
X
f dµ+

∫
X
g dm.

(b) On écrit g = f +(g−f). La fonction g−f est positive par hypothèse et étagée

car g − f =
∑

(i,j)∈I×J

(βj − αi)1Ai∩Bj . Donc
∫
X
(g − f) dµ ≥ 0. D’où, d’après

l’assertion (a), ∫
X
g dµ =

∫
X
f dµ+

∫
X
(g − f) dµ ≥

∫
X
f dµ.

(c) Si λ=0, c’est clair.
Si λ 6= 0, alors (λf)(X) = {λα, α ∈ f(X)} et {λf = λα}= {f = α} . D’où
finalement∫
X
λf dµ =

∑
α∈f(X)

λαµ({λf=λα}) = λ
∑

α∈f(X)

αµ({f=α}) = λ

∫
X
f dµ. ♦

Le lemme suivant, bien que constitué de résultats très simples, est le premier
maillon important de la construction de l’intégrale de Lebesgue.

Lemme 7.1. (a) Si A∈ A et f ∈ ER+(A ) alors 1Af ∈ ER+(A ) et l’on pose∫
A
f dµ :=

∫
X
(1Af) dm.

(b) Soient A,B∈ A , A ∩B = Ø et f ∈ ER+(A ). Alors∫
A∪B

f dµ =

∫
A
f dµ+

∫
B
f dµ.

(c) Soit (En)n≥1, une suite d’éléments de A , croissante pour l’inclusion et vérifiant
X=

⋃
n≥1

↑
En. Alors pour toute f ∈ ER+(A ),

∫
X
f dµ = lim

n

↑
∫
En

f dµ.
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DÉMONSTRATION : (a) Si f :=
∑
i∈I

αi1Ai , alors 1Af =
∑
i∈I

αi1Ai∩A + 0× 1cA

est étagée positive car {cA, Ai ∩ A, i∈ I} forme une partition A -mesurable finie
de X .
(b) découle de l’additivité de l’intégrale et de l’égalité 1A∪Bf=1Af + 1Bf .

(c) Si f :=
∑
i∈I

αi 1Ai alors, d’après le point (a),

∀n ≥ 1,

∫
En

f dµ =
∑
i∈I

αiµ(En ∩Ai) + 0× µ(cEn)︸ ︷︷ ︸
=0 via la convention

,

d’où lim
n

∫
En

f dµ =
∑
i∈I

αi µ(Ai) =

∫
X
fdµ d’après la propriété P3 (“continuité

à gauche” d’une mesure) puisque Ai=
⋃
n≥1

↑
(Ai ∩ En) pour tout i∈ I. ♦

7.2 Intégrale d’une fonction mesurable positive

On désigne par

M+(A ) :=
{
f : (X,A )→ (R+,B(R+)), mesurables

}
l’ensemble des fonctions mesurables positives, finies ou non, définies sur (X,A ).

Définition 7.2. (a) Si f ∈M+(A ), on pose∫
X
f dµ := sup

{∫
X
ϕdµ, ϕ ≤ f, ϕ∈ ER+(A )

}
. (7.3)

L’intégrale
∫
X
f dµ ∈ R+ car la fonction nulle est étagée, d’intégrale nulle et

minore f .

(b) f est µ-intégrable si
∫
X
f dµ<+∞.

Propriétés 7.2. (a) Lorsque la fonction f est en fait étagée positive, la définition

(7.3) de
∫
X
f dµ coı̈ncide avec celle donnée à la section précédente pour de telles

fonctions.

(b) Si f, g∈M+(A ) et f ≤ g, alors
∫
X
f dµ ≤

∫
X
gdµ.

DÉMONSTRATION : (a) D’après la propriété de croissance de l’intégrale sur les
fonctions étagées établie à la propriété 7.1 (b), pour toute ϕ∈ER+(A ),∫

X
ϕdµ ≤

∫
X
f dµ.
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(b) Si f ≤ g, alors
{
ϕ∈ ER+(A ) : ϕ≤f

}
⊂
{
ϕ∈ ER+(A ) : ϕ ≤ g

}
et partant,∫

X
f dµ ≤

∫
X
g dm. ♦

Le théorème suivant est la clé des propriétés élémentaires de l’intégrale de Le-
besgue.

Théorème 7.1 (Théorème de Beppo Levi ou théorème de convergence monotone).
Soit (fn)n≥1 une suite croissante d’éléments de M+(A ) (au sens 0 ≤ fn ≤ fn+1).
Alors

f := lim
n
fn∈M+(A ) et

∫
X
f dµ = lim

n

↑
∫
X
fn dµ.

DÉMONSTRATION : étape 1 : La mesurabilité de f a été établie dans la proposi-
tion 5.7 (c). D’autre part, on déduit de la double inégalité fn ≤ fn+1 ≤ f et de la

propriété 7.2 (b) ci-avant que
∫
X
c dµ ≤

∫
X
fn+1 dµ ≤

∫
X
f dµ.

Par suite on obtient lim
n

↑
∫
X
fn dµ ≤

∫
X
f dµ.

étape 2 : Soit maintenant ϕ ∈ ER+(A ), ϕ ≤ f et λ ∈ ]0, 1[. On définit pour tout
n≥1, En :={fn≥λϕ}. Il est clair que En={fn−λϕ≥0}∈ A et En⊂ En+1 car
fn≤fn+1. D’autre part, X=

⋃
n≥1

↑
En puisque

⋂
n≥1

↓ cEn =
⋂
n≥1

{fn < λϕ} ⊂ {f ≤ λϕ} ∩ {f > 0} = Ø.

D’autre part, on vérifie immédiatement que 1Enλϕ ≤ fn pour tout n≥1, d’où,
toujours d’après la propriété 7.2 (b),

∀n ≥ 1, λ

∫
En

ϕdµ =

∫
En

λϕdµ ≤
∫
X
fn dµ ≤ lim

k

∫
X
fkdµ.

D’après le lemme 7.1 (c) ci-dessus, il vient en passant à la limite en n,

∀λ∈ ]0, 1[, λ
∫
X
ϕdµ ≤ lim

k

∫
X
fkdµ et partant

∫
X
ϕdµ ≤ lim

k

∫
X
fkdµ.

Finalement
∫
X
f dµ=sup

{∫
X
ϕdµ, ϕ∈ ER+(A ), ϕ ≤ f

}
≤ lim

k

∫
X
fkdµ. ♦

En fait, le théorème de Beppo Levi n’est pas seulement une étape technique es-
sentielle dans la construction de l’intégrale de Lebesgue, c’est aussi un résultat aux
multiples applications pratiques, notamment pour l’étude des suites d’intégrales et
des intégrales dépendant d’un paramètre. Cet aspect est illustré par l’application 7.1
proposée en fin de chapitre.

On peut maintenant étendre les propriétés élémentaires déjà établies sur les
fonctions étagées.
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Propriétés 7.3. Soient f, g∈M+(A ).

(a) f ≤ g ⇒ 0 ≤
∫
X
f dµ ≤

∫
X
g dm [croissance],

(b)

∫
X
(f + g) dµ =

∫
X
f dµ+

∫
X
g dm [additivité],

(c) pour tout λ ≥ 0,
∫
X
λf dµ = λ

∫
X
f dµ [positive homogénéité].

DÉMONSTRATION : (a) a fait l’objet de la proposition 7.2 (b) préliminaire au
théorème de Beppo Levi.

(b) L’égalité est vraie si f, g∈ ER+(A ). D’après le lemme fondamental d’approxi-
mation (théorème 5.1), il existe fn, gn∈ ER+(A ), n≥1, telles que fn ↑f et gn ↑g.
On conclut via le théorème de Beppo Levi, une fois noté que (fn+gn)↑(f+g) :

∫
X(f + g) dµ = limn

∫
X(fn + gn) dµ = lim

n

(∫
X
fn dµ+

∫
X
gndµ

)
=

∫
X
f dµ+

∫
X
g dm.

(c) Si λ=0, le résultat est évident, modulo la convention 7.1 si besoin est. Si λ>0,
on procède comme ci-dessus via le lemme d’approximation. ♦

Proposition 7.2. Soit f ∈M+(A ). Alors,∫
X
f dµ = 0 ⇔ µ({f 6= 0}) = 0.

DÉMONSTRATION : Si f est étagée, l’équivalence est évidente modulo la conven-
tion 0×(+∞)=0.

Si f ∈ M+(A ), f = lim
n

↑
fn, fn ∈ ER+(A ), d’après le lemme d’approxima-

tion. En particulier {f 6=0}={f >0}=
⋃
n≥1

↑{fn 6=0} et donc

µ({f 6=0})=lim
n

↑
µ({fn 6=0})

par “continuité à gauche” de la mesure (propriété P3, chapitre 6).

(⇒) Si
∫
X
f dµ = 0, alors, d’après la proposition 7.3 (a) ci-avant,

∫
X
fn dµ = 0

pour tout n≥1 et partant µ({fn 6=0}) = 0. D’où, µ({f 6=0})=lim
n
µ({fn 6=0})=

0.

(⇐) Si µ({f 6=0})=0, alors µ({fn 6=0})=0 et donc
∫
X
fn dµ=0 pour tout n ≥ 1.

Partant,
∫
X
f dµ = lim

n

↑
∫
X
fn dµ = 0 d’après le théorème de Beppo Levi. ♦
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La notation “µ-p.p.” : à la formulation µ({f 6=0})=0, on préfèrera généralement
“f = 0 µ-p.p.”, l’abréviation p.p. signifiant “presque partout”. Idem avec f = g
µ-p.p. pour µ({f 6=g})=0.

Rapidement, on cèdera à la tentation d’étendre le champ d’utilisation de cette
notation. Ainsi, si (fn)n≥1 et f sont des fonctions mesurables définies sur (X,A ),
on dira que fn → f µ-p.p. pour signifier que µ(c{x∈ X : lim

n
fn(x) = f(x)}) = 0.

Plus généralement, on dira qu’une proposition Px est vraie µ(dx)-p.p. si

{x∈ X : Px fausse} ∈ A et µ({x∈ X : Px fausse}) = 0.

Parfois même, on dira qu’une proposition Px est vraie µ(dx)-p.p. s’il existe N ∈
A tel que

{x∈ X : Px fausse} ⊂ N et µ(N) = 0.

Corollaire 7.1. Soient f, g∈M+(A ). Si f=g µ-p.p. alors
∫
X
f dµ =

∫
X
g dm.

DÉMONSTRATION : D’après la proposition 5.7 (c), les fonctions max(f, g) et
min(f, g) sont A -mesurables donc la fonction h définie par

h :=

{
max(f, g)−min(f, g) sur {min(f, g) < +∞},
0 sur {f=g=+∞}

l’est aussi( 1). En outre, h est positive par construction. Or, h est nulle sur {f = g}
donc, par hypothèse, h=0 µ-p.p. et partant

∫
X
hdµ = 0. Comme

max(f, g)=min(f, g)+, h∫
X
max(f, g)dµ =

∫
X
min(f, g) dm, si bien que, partant de

∫
X
max(f, g) dm ≥


∫
X
f dµ∫

X
g dµ

 ≥
∫
X
min(f, g) dm,

on conclut que
∫
X
f dµ =

∫
X
g dµ. ♦

Proposition 7.3 (Inégalité de Markov). Soit f ∈M+(A ). Alors,

∀A>0, µ({f ≥ A}) ≤ 1

A

∫
X
f dµ.

1. En effet plus généralement si l’on pose h1 = min(f, g) et h2 = max(f, g), on vérifie que
pour tout a∈ R∗

+, {h ≥ a}= {h2 ≥ h1 + a} ∩ {h1 < +∞}∈ A et si a ≤ 0, {h ≥ a} = X∈ A .
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DÉMONSTRATION : L’inégalité f ≥ A1{f≥A} et la propriété de croissance de
l’intégrale entraı̂nent∫

X
f dµ ≥

∫
X
A1{f≥A} dµ = Aµ({f≥A}). ♦

Corollaire 7.2. Si f ∈M+(A ) est µ-intégrable alors µ({f=+∞})=0.

DÉMONSTRATION : On vérifie que

{f=+∞} =
⋂
n≥1

↓{f≥n} et µ({f≥1} ≤
∫
X
f dµ < +∞.

La propriété de continuité à droite de la mesure (P4, chapitre 6) donne

µ({f=+∞})=lim
n

↓
µ({f≥n}) ≤ lim

n

1

n

∫
X
f dµ = 0. ♦

Exemples : 1. Mesure de comptage sur N : Si X=N, A =P(N) et m désigne la
mesure de comptage définie par m(A)=card(A), il est immédiat que

M+(A ) :={suites (un)n∈N à valeurs dans R+}.

L’intégrale
∫

N
undm(n) d’une suite à termes positifs (un)n∈N par rapport à m

n’est autre que la somme de sa série
∑
n∈N

un.

En effet, si l’on pose, pour tout N ∈ N, u(N)
n := un pour n < N et u(N)

n := 0

pour n ≥ N , il est clair que (u(N)
n )n∈N est une suite à termes positifs pour toutN ≥

0 et que (u
(N)
n )n∈N ↑ (un)n∈N quand N ↑ +∞. D’autre part, la suite (u

(N)
n )n∈N

est étagée car elle prend au plus N + 1 valeurs donc, d’après l’exemple 2 de la
section 7.1, ∫

N
u(N)
n dm(n) =

∑
n∈N

u(N)
n =

N−1∑
n=0

un.

Finalement,∫
N
undm(n) = lim

N

∫
N
u(N)
n dm(n) = lim

N

N−1∑
n=0

un =
∑
n∈N

un.

2. Mesure de comptage sur X : Plus généralement si m désigne la mesure de
comptage sur un ensemble (X,P(X)), on obtient la théorie dite “des familles
sommables” à termes positifs qui permet de définir la quantité

∑
x∈X

u(x) – où

u : x 7→ u(x) désigne une fonction quelconque de X dans R+ – comme l’intégrale∫
X
u(x)dm(x).
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L’inégalité de Markov montre que, si
∑
x∈X

u(x) < +∞ , alors {u 6= 0} est au

plus dénombrable. En effet, on a pour tout n≥1,

card
(
{x ∈ X : u(x)≥1/n}

)
≤ n

∑
x∈X

u(x) < +∞.

ATTENTION ! La réciproque du corollaire 7.2 est fausse. Ainsi, sur l’espace
mesuré (N,P(N),m), si l’on pose f0 := 0, fn := 1

n , n ≥ 1, la suite (fn)n∈N est
m-p.p. finie (en fait fn est finie partout !) et∫

N
fn dm(n) =

∑
n≥1

1

n
= +∞.

Des exemples similaires peuvent être construits sur (R,B(R), λ).

7.3 L’espace L 1
K (µ) des fonctions intégrables

Comme toujours K=R ou C. On considérera aussi des fonctions à valeurs dans
R et R+ voire, exceptionnellement, dans le compactifié d’Alexandroff C de C ( 2).

Définition 7.3. (a) Une fonction f : (X,A ) → (K,B(K)) est µ-intégrable si |f |
est µ-intégrable (i.e.

∫
X
|f | dµ<+∞).

(b) On note

L 1
K(X,A , µ) :=

{
f : (X,A )→ (K,B(K)), mesurable,

∫
X
|f | dµ<+∞

}
,

l’ensemble des fonctions µ-intégrables définies sur X à valeurs dans K. En l’ab-
sence d’ambiguı̈té on écrira généralement L 1

K(µ), voire L 1(µ). Cette définition
s’étend aux ensembles de fonctions intégrables à valeurs dans R+, R, etc.

Remarques (importantes) : • Si f est à valeurs dans R, il découle de l’identité
|f | = f+ + f−, de la croissance et de l’additivité de l’intégrale sur les fonctions
mesurables positives, que

f ∈ L 1
R
(µ) ⇐⇒ f±∈ L 1

R+
(µ).

• Si f ∈ L 1
R
(µ) alors µ({f=±∞})=0 i.e. f est µ-p.p. finie.

En effet, {f = ±∞} = {|f | = +∞} donc, d’après le corollaire 7.2 ci-avant,
µ({f=±∞})=µ({|f |=+∞})=0.
• Si f et g sont à valeurs dans R avec f=g µ-p.p., alors f ∈ L 1

R
(µ) si et seulement

si g∈ L 1
R
(µ).

2. Voir [25] pour la construction du compactifié d’Alexandroff d’un espace localement compact.
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En effet, il est immédiat que |f |= |g| sur {f = g}. Alors |f |= |g| µ-p.p.. D’où∫
X
|f | dµ=

∫
X
|g| dµ d’après le corollaire 7.1 ci-avant. Ces deux nombres sont donc

finis simultanément.
• Si f est à valeurs dans C, |<(f)| et |=(f) ≤ |f | ≤ |<(f)|+ |=(f)|.
Donc f ∈ L 1

C(µ) si et seulement si <(f) et =(f) ∈ L 1
R(µ).

En outre, on montre comme dans le cas réel que, si f et g sont à valeurs dans C
avec f = g µ-p.p., alors f ∈ L 1

C
(µ) si et seulement si g ∈ L 1

C
(µ).

Définition 7.4. (a) Si f ∈ L 1
R
(µ), on pose∫

X
f dµ :=

∫
X
f+dµ−

∫
X
f−dµ.

(b) Si f ∈ L 1
C(µ), on pose∫

X
f dµ :=

∫
X
<(f) dµ+ i

∫
X
=(f) dm.

Remarques (toujours aussi importantes) :
• Si f=g µ-p.p. (à valeurs dans R), on vient de voir que f ∈ L 1

R
(µ) si et seulement

si g ∈ L 1
R
(µ). En outre,

∫
X
f±dµ =

∫
X
g±dµ car f± = g± sur {f = g}, donc

µ-p.p. (cf. corollaire 7.1). Partant,
∫
X
f dµ=

∫
X
g dm.

• Soit f ∈ L 1
R
(µ). D’après ce qui précède, si l’on pose f̃ := f 1{f∈R}, il vient

aussitôt, f̃=f µ-p.p., f̃ ∈ L 1
R(µ) et

∫
X
f̃dµ=

∫
X
f dµ. ♦

Au vu de la dernière remarque ci-dessus, on évitera autant que possible de
considérer dans la suite des fonctions µ-intégrables à valeurs dans R et l’on ne fera
plus référence à L 1

R
(µ).

Exemples : 1. Sur (N,P(N)) muni de la mesure de comptage m, il y a iden-
tité entre fonctions m-intégrables et séries absolument convergentes. En d’autres
termes,

L 1
K(m)=`1K(m) :=

{
(un)n∈N :

∑
n∈N

|un| < +∞
}
.

2. Sur (X,P(X)), toujours muni de la mesure de comptage, les fonctions m-
intégrables sont les familles dites “absolument sommables”.

Théorème 7.2. (K = R ou C) L 1
K(µ) est un K-e.v. et f 7→

∫
X
f dµ est une forme

linéaire positive (au sens : f ≥ 0 ⇒
∫
X
f dµ ≥ 0). Elle est donc croissante :

∀ f, g ∈ L 1
K(µ), f ≤ g ⇒

∫
X
f dµ ≤

∫
X
g dm.
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DÉMONSTRATION : Le cas réel : Si f, g ∈ L 1
R(µ), alors |f +g| ≤ |f |+ |g| ∈

L 1
R+

(µ). D’autre part,

f + g = (f + g)+ − (f + g)− = f+ + g+ − f− − g−,
d’où (f + g)+ + f− + g− = (f + g)− + f+ + g+.

Par additivité de l’intégrale sur M+(A ), il vient :

0 ≤
∫
X
(f + g)+dµ+

∫
X
f−dµ+

∫
X
g−d

=

∫
X
(f + g)−dµ+

∫
X
f+dµ+

∫
X
g+dµ<+∞.

Toutes les intégrales considérées sont donc finies. On en déduit l’additivité sur
L 1

R(µ) en revenant à l’ordre originel des termes.
L’homogénéité se traite à partir de la positive homogénéité :
– Si λ≥0, (λf)±=λf±, on conclut par la positive homogénéité sur M+(A ).
– Si λ<0, (λf)±=−λf∓ et l’on conclut de même.

Le cas complexe : La R-linéarité de < et de = assurent l’additivité. Pour l’ho-
mogénéité, on commence par λ = i. On s’appuie ensuite sur le cas réel et sur
le développement (α+ iβ)(<(f)+ i=(f)) = (α<(f) − β=(f)) + i(α=(f) +
β<(f)). ♦

Remarque (exercice) : ‖f‖1 :=

∫
X
|f | dµ est une semi-norme sur L 1

K(µ) dont

le noyau est le K-e.v. {f ∈ L 1
K(µ) : f = 0 µ-p.p.} (pour les définitions, voir

chapitre 9.3.1).

Proposition 7.4. (Inégalité triangulaire pour les intégrales)

(a) Pour toute f ∈ L 1
K(µ),

∣∣∣∣∫
X
f dµ

∣∣∣∣ ≤ ∫
X
|f |dµ.

(b) Cas d’égalité :
– Si K=R, l’égalité a lieu si et seulement si, µ-p.p., f est de signe constant.
– Si K = C, l’égalité a lieu si et seulement si il existe α ∈ C, |α|= 1, tel que

f=α|f | µ-p.p. (en d’autres termes f a un argument µ-p.p. constant).

DÉMONSTRATION : (a) Soit λ∈ C tel que
∣∣∣∣∫
X
fdµ

∣∣∣∣ = λ

∫
X
f dµ. On peut toujours

choisir |λ|=1 et∣∣∣∣∫
X
f dµ

∣∣∣∣= ∫
X
λf dµ =

∫
X
<(λf)︸ ︷︷ ︸

∈R

dµ+ i

∫
X
=(λf) dm︸ ︷︷ ︸

=0

≤
∫
X
|<(λf)| dµ

≤
∫
X
|λf |dµ =

∫
X
|f | dµ. (7.4)
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(b) Il y a égalité dans l’inégalité triangulaire si et seulement si il y a égalité dans les
deux inégalités de (7.4) i.e. si∫

X
|<(λf)| − <(λf)︸ ︷︷ ︸

≥0

dµ = 0 et
∫
X
|λf | − |<(λf)|︸ ︷︷ ︸

≥0

dµ.

Par conséquent, d’après la proposition 7.2,

il y a égalité si et seulement si <(λf) ≥ 0 et =(λf) = 0 µ-p.p.,

si et seulement si λf = |λf | µ-p.p.,

si et seulement si λf = |f | µ-p.p.
On conclut en posant α :=1/λ. ♦

7.4 Intégrales de Riemann et de Lebesgue sur un inter-
valle compact

Nous allons montrer que les intégrales au sens de Riemann et au sens de Le-
besgue (par rapport à la mesure de Lebesgue) sur un intervalle compact [a, b]
coı̈ncident en un certain sens sur l’ensemble des fonctions Riemann intégrables.

Proposition 7.5. (a) résultat général : Pour toute fonction f ∈ IK([a, b]), il existe
une fonction g∈ L 1

K([a, b],B([a, b]), λ) telle que :

(i) f=g λ-p.p., au sens où

∃A∈ B([a, b]) tel que λ(A)=0 et ∀x /∈ A, f(x)=g(x),

(ii)

∫ b

a
f =

∫
[a,b]

g dλ.

(b) Point de vue pratique : En particulier, si f : [a, b] → R est borélienne et

Riemann intégrable, alors f ∈ L 1
K([a, b],B([a, b]), λ) et

∫ b

a
f =

∫
[a,b]

f dλ.

Remarques : • Si l’on s’était placé sur la tribu de Lebesgue B([a, b])
λ

i.e. la tribu
borélienne “complétée” des ensembles “négligeables”, on aurait pu reformuler le
point (a) en :

IK([a, b]) ⊂ L 1
K

(
[a, b],B([a, b])

λ
, λ
)

et
∫ b

a
f =

∫
[a,b]

fdλ.

La notion de tribu complétée est définie et étudiée en détail au chapitre 13.
• Le point (b) entraı̂ne notamment que l’intégrale par rapport à la mesure de Le-
besgue sur [a, b] et l’intégrale au sens de Riemann sur [a, b] coı̈ncident sur les fonc-
tions réglées. En effet, toute fonction réglée est borélienne puisque, par définition,
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elle est limite (uniforme) d’une suite de fonctions en escalier (cf. définition 1.4). Or
toute fonction en escalier sur [a, b] est borélienne car étagée.

On montre d’autre part qu’une fonction définie sur [a, b] est réglée si et seule-
ment si elle admet une limite à droite et à gauche en tout point où cela a un sens.
Ainsi, toute fonction continue ou monotone (ou à variation finie) est réglée.

DÉMONSTRATION : (a) Soit f ∈ IR([a, b]). Par définition de la Riemann intégrabi-
lité, il existe deux suites de fonctions en escalier (Φn)n≥1 et (Ψn)n≥1 sur [a, b]
vérifiant

|Φn − f | ≤ Ψn,

∫ b

a
Ψn → 0 et

∫ b

a
Φn →

∫ b

a
f.

Si l’on pose, pour tout n≥1, αn :=Φn−Ψn et βn :=Φn+Ψn, il vient

αn ≤ f ≤ βn avec
∫ b

a
(βn − αn)→ 0 et

∫ b

a
αn →

∫ b

a
f.

Remarquons d’abord – mais c’est évident – que si γ est une fonction en escalier sur

[a, b], γ est étagée et
∫ b

a
γ=

∫
[a,b]

γdλ.

On pose α̃n :=max(α1,. . ., αn) et β̃n :=min(β1,. . ., βn). α̃n et β̃n sont étagées
et vérifient :

αn ≤ α̃n ≤ α̃n+1 ≤ f ≤ β̃n+1 ≤ β̃n ≤ βn.
On peut définir α̃ :=lim↑

n α̃n et β̃ :=lim↓
n β̃n. Les fonctions α̃ et β̃ sont borélien-

nes (cf. proposition 5.7 (c)) et l’on a : α̃ ≤ f ≤ β̃ avec∫ b

a
αn =

∫
[a,b]
αndλ ≤

∫
[a,b]
α̃ndλ ≤

∫
[a,b]
α̃dλ ≤

∫
[a,b]
β̃dλ ≤

∫
[a,b]
β̃ndλ =

∫ b

a
β̃n ≤

∫ b

a
βn.

D’où, en passant à la limite,
∫
[a,b]

α̃ dλ=

∫ b

a
f .

On pose maintenant γ := β̃− α̃∈M+(B([a, b])). Il est loisible de définir γ car
α̃ et β̃ sont à valeur finies ; en effet α1 ≤ α̃ ≤ β̃ ≤ β1 et α1 et β1 sont bornées en

tant que fonctions en escalier. Comme
∫
[a,b]

γ dλ = 0 et γ ≥ 0, λ({γ 6=0}) = 0.

On conclut avec g := 1{γ=0} = α̃1{γ=0}. La fonction g est donc borélienne, g = f
µ-p.p. et ∫

[a,b]
gdλ =

∫
[a,b]

α̃ 1{γ=0} dλ =

∫
[a,b]

α̃ dλ =

∫ b

a
f.

Si K = C, on raisonne sur <(f) et =(f) ∈ IR([a, b]).
(b) Ce point découle immédiatement du (a) et du fait qu’alors f = g λ-p.p.. ♦

Notation : On utilisera indifféremment les notations
∫ b

a
f(x) dx et

∫
[a,b]

f dλ

pour désigner l’intégrale sur [a, b] d’une fonction “raisonnable” (au sens borélienne
et Lebesgue intégrable).
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à partir de la proposition 7.5 et du théorème de convergence dominée établi au
chapitre suivant (théorème 8.3), on montre que toute fonction localementRiemann
intégrable sur R (i.e. intégrable sur tout compact) d’intégrale absolument conver-
gente est λ-p.p. égale à une fonction borélienne de L 1

R(λ) ayant même intégrale.
Dans ce cas on écrira donc indifféremment∫ +∞

−∞
f(x) dx,

∫
R
f dλ,

∫
R
f(x)λ(dx),

∫
R
f(x) dλ(x), etc.

Remarque : Si f := 1Q∩[0,1], f /∈ IR([0, 1]) (cf. chapitre 1) mais f ∈ L 1
R(λ)

et
∫

R
fdλ=0. En effet, Q ∩ [0, 1] est borélien comme réunion dénombrable de

fermés (les singletons) donc f est borélienne, d’autre part, si (rn)n∈N désigne une
numérotation de Q ∩ [0, 1],∫

R
f dλ = λ(Q ∩ [0, 1]) =

∑
n≥1

λ({rn}) = 0.

Application 7.1. Un exemple pratique d’utilisation du théorème de Beppo Levi : étude de la conver-

gence de la suite In(α) :=
∫ n

0

(
1− x

n

)n
eαx dx, n∈ N∗, selon les valeurs du paramètre α∈ R.

L’idée de départ consiste à écrire

In(α) =

∫ +∞

0

fn(x) e
αx dx où fn(x) := 1[0,n](x)

(
1− x

n

)n
, x ≥ 0,

puis à appliquer le théorème 7.1 de Beppo Levi à la suite (fn)n∈N∗ .

Montrons que la suite (fn)n∈N∗ est croissante. On remarque d’abord que

∀n∈ N∗, fn ≤ fn+1 ⇐⇒ ∀x∈ [0, n[,
(
1− x

n

)n
≤
(
1− x

n+ 1

)n+1

.

Pour démontrer cette dernière inégalité, il suffit de vérifier que la fonction gn définie sur [0, n[
par

gn(x) := (n+ 1) ln

(
1− x

n+ 1

)
− n ln

(
1− x

n

)
est positive. Or gn est dérivable sur [0, n[ et

g′n(x) =
n

n− x
− n+ 1

n+ 1− x
=

x

(n− x) (n+ 1− x)
≥ 0,

donc gn est croissante sur [0, n[ et comme gn(0) = 0, gn est positive.

Il est clair d’autre part que fn(x) converge simplement vers e−x pour tout x∈ R+ puisque, dès
que n ≥ x,

fn(x) =
(
1− x

n

)n
= en ln(1− x

n
) = e−x+no( x

n
) → e−x quand n→ +∞.

Finalement, il vient, d’après le théorème de Beppo Levi (théorème 7.1),

lim
n
In(α) =

∫ +∞

0

e(α−1)x dx =

{ 1

1− α
si α < 1

+∞ si α ≥ 1.
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7.5 Exercices

(X,A , µ) désigne un espace mesuré.

7.1 a) Soit f ∈L 1
R(µ) telle que pour tout A∈A ,

∫
A
fdµ = 0.

Montrer que f=0 µ-p.p..

b) Soient f ∈L 1
R(µ) et F un fermé de R tels que, pour tout A∈A avec µ(A)>0,

1

µ(A)

∫
A
fdµ ∈ F . Montrer que f ∈F µ-p.p..

7.2 Montrer que l’espace mesuré (X,A , µ) est σ-fini (i.e. X =
⋃
n≥0

↑
En où pour

tout n ≥ 0, En ∈ A et µ(En) < +∞) si et seulement s’il existe une fonction f
intégrable et strictement positive.

7.3 Soit f : X → R une fonction mesurable. Montrer l’équivalence

f ∈L 1
R(µ) ⇐⇒

∑
n∈Z

2n µ
(
{2n≤|f |<2n+1}

)
< +∞.

7.4 Soient (X,A , µ) un espace mesuré de masse totale finie et f : X → R une
fonction mesurable.

a) Montrer que f ∈L 1
R(µ) si et seulement si

∑
n≥1

nµ
(
{n≤|f |<n+1}

)
< +∞.

b) Montrer que pour tout n∈N∗,

n∑
k=1

k µ
(
{k≤|f |<k+1}

)
=

n∑
k=1

µ
(
{|f |≥k}

)
− nµ

(
{|f |≥n+1}

)
.

c) Soit (un)n≥1 une suite décroissante convergeant vers 0 et telle que la suite de

terme général vn :=
n∑
k=1

uk − nun+1 soit bornée. Montrer que
∑
n≥1

un<+∞.

d) En déduire que f ∈L 1
R(µ) si et seulement si

∑
n≥1

µ({|f |≥n}) < +∞.

e) Les résultats de a) et d) subsistent-ils si µ(X)=+∞?

7.5 a) Soit f ∈ L 1
R(µ). Montrer que, pour tout ε > 0, il existe Aε ∈ A tel que

µ(Aε)<+∞, f soit bornée sur Aε et
∫
X\Aε

|f |dµ < ε.

b) En déduire la continuité de l’intégrale par rapport à la mesure :

∀ ε > 0, ∃ δ > 0, ∀A ∈ A , µ(A) ≤ δ ⇒
∫
A
|f |dµ ≤ ε.

Une autre démonstration est proposée dans l’application 8.4, chapitre 8.
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7.6 Soit f ∈L 1
R(R). On définit la fonction F sur R par

F (x) :=

∫ x

0
f(t)dt :=


∫
[0,x]

fdλ si x≥0,

−
∫
[x,0]

fdλ si x≤0.

Montrer que F est uniformément continue sur R.

7.7 a) Soit (fn)n≥0 une suite de fonctions mesurables positives. Montrer que∫
X

∑
n≥0

fn dµ =
∑
n≥0

∫
X
fn dµ.

b) Soit (ap,q)p,q∈N une famille de R+. Montrer que
∑
p≥0

∑
q≥0

ap,q =
∑
q≥0

∑
p≥0

ap,q.

7.8 Soit (fn)n≥0 une suite décroissante de fonctions mesurables positives qui con-
verge vers f sur X .
a) Montrer que s’il existe n0≥0 tel que fn0 ∈L 1(µ), alors

lim
n

∫
X
fn dµ =

∫
X
f dµ.

b) Le résultat subsiste-t-il sans l’hypothèse d’intégrabilité du a)?

7.9 Soit f : [a, b] → R une fonction mesurable bornée. L’oscillation de f au point
x∈ [a, b] est définie par

ω(x) := lim
h→0+

(
sup

y,z∈Ih(x)
|f(y)−f(z)|

)
où Ih(x) := [a, b] ∩ [x−h, x+h].

a) Montrer que f est continue en x si et seulement si ω(x)=0.
b) Soient

(
σn := {a=x0n<x1n< · · ·<xnn=b}

)
n≥1

une suite croissante de subdi-
visions dont le pas tend vers 0, et les suites de fonctions en escalier définies par
ϕn(x) := inf

Ikn

f , ψn(x) := sup
Ikn

f si x ∈ Ikn := [xkn, x
k+1
n [, 0≤ k < n, et ϕn(b) =

ψn(b) := 0. Montrer que les suites (ϕn)n≥1 et (ψn)n≥1 sont monotones et lim
n
ψn−

lim
n
ϕn=ω λ-p.p..

c) En déduire que f est Riemann intégrable ssi f est continue λ-p.p..

7.10 Soit (X,A , µ) un espace de probabilité (µ(X) = 1) ; soient I un intervalle
ouvert non vide de R et une fonction ϕ : I → R positive ou bornée, et convexe, i.e.

∀x, y∈I, ∀ t∈ [0, 1], ϕ(tx+(1−t)y) ≤ t ϕ(x) + (1−t)ϕ(y).

a) Soit x0∈I . Montrer que ϕ′
d(x0) existe et que pour tout x∈R,

ϕ(x) ≥ ϕ(x0) + ϕ′
d(x0) (x−x0).
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b) Montrer que toute fonction f ∈L 1
I (µ) vérifie l’inégalité de Jensen :

ϕ

(∫
X
fdµ

)
≤
∫
X
ϕ◦f dµ.

7.11 Soient (X,µ) un espace mesuré et f, g deux fonctions positives intégrables
sur (X,µ) telles que f ln f , f ln g soient intégrables sur (X,µ), g > 0 dµ-p.p.,∫
X
f dµ =

∫
X
g dµ = 1. Montrer l’inégalité d’entropie :

∫
X
f ln f dµ ≥

∫
X
f ln g dµ.

7.12 Soit f :R+ → R+ borélienne. Calculer la limite lim
n

∫ 1

0

n f(n t)√
1+t

dt.

7.13 Soit (X,A , µ) un espace mesuré tel que µ(X) > 0. Dans cet exercice, la
notation f−1 désigne la fonction inverse 1/f de f .

a) Montrer que, pour tous a, b ≥ 0 et u, v > 0,

√
a+
√
b = 1 =⇒ 1

u+ v
≤ a

u
+
b

v
.

b) Soient f, g ∈ L 1
R+

(µ) positives et non nulles µ-p.p.. Montrer que

‖(f + g)−1‖1 ≤
‖f‖2

1
‖f−1‖1 + ‖g‖21 ‖g

−1‖1
(‖f‖1 + ‖g‖1)2

.

c) En déduire l’inégalité

‖f + g‖1 ‖(f + g)−1‖1 ≤ max
(
‖f‖1 ‖f−1‖1 , ‖g‖1 ‖g−1‖1

)
.

7.14 Montrer l’équivalence

Ia :=

∫ +∞

0

[
(1 + x)a − xa

]2
dx < +∞ ⇐⇒ − 1

2
< a ≤ 0.

7.15 Soit f : [1,+∞[→ R la fonction définie par f(x) :=
sinx

x
pour x ≥ 0.

a) Montrer que lim
x→+∞

∫ x

1

cos (2t)

t
dt existe.

b) En considérant la fonction (f sin) et en utilisant la question a), montrer que f
n’est pas intégrable sur [1,+∞[.

c) Soit a > 0. Montrer que |f |a est intégrable sur [1,+∞[ si et seulement si a > 1.



Chapitre 8

Théorèmes de convergence
et applications

Dès la phase de construction de l’intégrale au sens de Lebesgue, un théorème
d’un type nouveau a été établi, autorisant sans hypothèse de convergence uniforme,
l’interversion des symboles de limite et d’intégrales : le théorème de Beppo Levi,
dit aussi théorème de convergence monotone. Nous rappelons ci-dessous l’énoncé
de ce théorème, démontré au chapitre 7.2 :

Théorème 8.1. (Beppo Levi) Soit (X,A , µ) un espace mesuré et (fn)n≥1 une suite
croissante de fonctions mesurables positives. Alors

lim
n
fn est A -mesurable et

∫
X
lim
n
fn dµ = lim

n

∫
X
fn dµ ∈ R+.

Le propos de ce chapitre est de constituer, à partir de ce théorème, un arsenal de
nouveaux outils pour résoudre les problèmes de convergence de suites d’intégrales.
Ce sont ces outils qui, pour une large part, fondent la supériorité de la théorie de
Lebesgue, y compris dans les applications les plus courantes : intégrales dépendant
d’un paramètre, fonction définie sous forme intégrale, etc.

Dans la suite du chapitre on se placera, sauf mention contraire, sur un espace
mesurable (X,A , µ).

8.1 Lemme de Fatou et théorème de convergence dominée

Théorème 8.2 (Lemme de Fatou). Soit (fn)n≥1 une suite de fonctions A -mesu-
rables positives, alors :

0 ≤
∫
X
lim
n
fndµ ≤ lim

n

∫
X
fndµ ≤ +∞.
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DÉMONSTRATION : On pose, pour tout n≥ 1, ϕn := infk≥n fk. Les fonctions ϕn
sont positives, A -mesurables grâce à la proposition 5.7 (a), ϕn ≤ ϕn+1 et ϕn
converge simplement vers lim

n
fn. Il vient, d’après le théorème de Beppo Levi,

∫
X
lim
n
fn dµ =

∫
X
lim
n
ϕn dµ = lim

n

∫
X
ϕn dµ.

D’autre part, ϕn ≤ fn donc
∫
X
ϕn dµ ≤

∫
X
fn dµ et, partant,

lim
n

∫
X
ϕn dµ = lim

n

∫
X
ϕn dµ ≤ lim

n

∫
X
fndµ.

La conclusion découle de la combinaison des deux séries d’inégalités. ♦

Exemples d’utilisation : 1. Soit (fn)n≥1 une suite de fonctions intégrables conver-

geant simplement vers f et vérifiant sup
n

∫
X
|fn|dµ < +∞. Alors f ∈ L 1(µ)

puisque∫
X
|f |dµ=

∫
X
lim
n
|fn|dµ=

∫
X
lim
n
|fn|dµ ≤ lim

n

∫
X
|fn|dµ ≤sup

n

∫
X
|fn|dµ<+∞.

2. À l’inverse, si une suite de fonctions positives (fn)n≥1 vérifie lim
n
fn = +∞, le

lemme de Fatou entraı̂ne que lim
n

∫
X
fn dµ = +∞ dès que µ(X)>0.

3. Lemme de Fatou étendu : Soit (fn)n≥1 une suite de fonctions de L 1
R(µ) µ-

p.p.minorées par une fonction g∈ L 1
R(µ).

Si lim
n
fn = +∞, alors lim

n

∫
X
fn dµ = +∞ dès que µ(X)>0.

Le lemme de Fatou appliqué à la suite de fonctions positives (fn−g)n≥1 montre
que

0 ≤
∫
X
lim
n
(fn − g)dµ ≤ lim

n

∫
X
(fn − g) dµ ≤ +∞.

Or lim
n
(fn − g) = (lim

n
fn) − g = +∞ µ-p.p. puisque, g étant intégrable est finie

µ-p.p.. Il vient alors ∫
X
(+∞) dµ ≤ lim

n

∫
X
fn dµ−

∫
X
g dµ

par linéarité de l’intégrale. On conclut en notant
∫
X
g dµ est un nombre réel et que

µ(X)× (+∞) = +∞.
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Application 8.1. Intégration d’une dérivée : Soit f une fonction croissante sur [0, 1]
(donc en particulier Riemann intégrable sur [0,1]), continue en 0 et 1 et dérivable
λ-presque partout dans [0, 1] (on peut montrer que cette condition est une consé-
quence de la croissance de la fonction f ). Alors l’inégalité suivante est toujours
vérifiée ∫ 1

0
f ′(x) dx ≤ f(1)− f(0).

DÉMONSTRATION : On définit sur [0, 1] la suite (gn)n≥1 par

gn(x) :=

{
n (f(x+ 1/n)− f(x)) si x ≤ 1− 1/n
0 si x > 1− 1/n.

Les fonctions gn sont positives et, pour λ-presque tout x ∈ [0, 1[, gn(x) converge
vers f ′(x). La fonction f ′ est positive là où elle existe et on la fixe égale à 0 ailleurs.
Comme lim

n
gn = f ′ λ-p.p., le lemme de Fatou (théorème 8.2) entraı̂ne

∫ 1

0
f ′(x) dx =

∫ 1

0
lim
n
gn(x) dx ≤ lim

n

∫ 1

0
gn(x) dx.

D’autre part, on a∫ 1

0
gn(x) dx= n

∫ 1−1/n

0
f(x+ 1/n) dx− n

∫ 1−1/n

0
f(x) dx

= n

∫ 1

1/n
f(x) dx− n

∫ 1−1/n

0
f(x) dx

et en considérant la fonction F (x) :=
∫ x

0
f(t) dt, il vient

∫ 1

0
gn(x) dx = n (F (1)− F (1− 1/n))−n (F (1/n)− F (0)) −→

n→+∞
f(1)−f(0)

car la continuité de f en 0 et 1 implique F ′(0) = f(0) et F ′(1) = f(1), d’où le
résultat. ♦

Remarque : L’inégalité précédente peut être stricte. Ainsi, la fonction f définie sur
[0, 1] par f := 1[1/2,1] est croissante, continue en 0 et 1 et f ′(x) = 0 si x 6= 1/2.

Elle vérifie donc les hypothèses précédentes, cependant∫ 1

0
f ′(x) dx = 0 < f(1)− f(0) = 1.

Dans la proposition 13.2, l’exemple d’une fonction continue sur [0,1] et véri-
fiant la même inégalité stricte sera proposé ; il s’agit de la fonction de Lebesgue,
définie à partir de l’ensemble triadique de Cantor.
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Théorème 8.3 (Théorème de convergence dominée). Soit (fn)n≥1 une suite d’élé-
ments de L 1

K(µ) (K=R ou C) vérifiant :
(i) µ(dx)-p.p., fn(x) converge (dans K) quand n→ +∞,
(ii) il existe g∈ L 1

R+
(µ) telle que, pour tout n ≥1, |fn(x)| ≤ g(x) µ(dx)-p.p..

Alors, il existe f ∈ L 1
K(µ) telle que

(I) fn(x) converge vers f(x) µ(dx)-p.p.,

(II) lim
n

∫
X
fn dµ =

∫
X
fdµ (et même lim

n

∫
X
|fn − f | dµ = 0).

Remarque : Dans les applications courantes, la fonction f est généralement direc-
tement disponible dans l’énoncé et l’on prend alors (I) comme hypothèse à la place
de (i), l’intégrabilité de f découlant de (ii).

DÉMONSTRATION : Si K = R, on pose f := lim
n
fn. La fonction f est mesurable,

{fn
(R)−→ f}={lim

n
fn=lim

n
fn∈ R}∈ A et d’après (i), µ(c{fn

(R)−→ f})=0.

Si K=C, on raisonne de façon analogue sur <(fn) et =(fn).

SoitA :=(
⋂
n≥1

{|fn| ≤ g}) ∩ {g<+∞} ∩ {fn
(K)−→ f}.A est clairement un élé-

ment de A , en outre, d’après (i), (ii) et la σ-sous-additivité de la mesure µ,

µ(cA) ≤ µ(c{fn
(K)−→ f})+µ({g=+∞})+

∑
n≥1

µ({|fn|>g})=0.

Or, sur A, |f |=limn |fn|≤g donc |f |≤g µ-p.p. et, partant :∫
X
|f |dµ =︸︷︷︸

via le corollaire 7.1

∫
X
|f |1{|f |≤g}dµ ≤

∫
X
gdµ < +∞.

La fonction f est donc bien dans L 1
K(µ).

Considérons d’autre part la suite de fonctions (2g−1A|fn− f |)n≥1. Ces fonc-
tions sont clairement A -mesurables et positives, d’où, via le lemme de Fatou,∫

X
lim
n
(2g − 1A|fn − f |)dµ ≤ lim

n

∫
X
(2g − 1A|fn − f |)dµ

i.e. 2

∫
X
gdµ−

∫
X
lim
n

1A|fn − f |︸ ︷︷ ︸
=0 ... partout !

dµ ≤ 2

∫
X
gdµ− lim

n

∫
A
|fn − f |dµ

d’où lim
n

∫
A
|fn − f |dµ= 0. Or,

∫
X
|fn − f |dµ =

∫
A
|fn − f |dµ car µ(cA) = 0.

D’où finalement,

0 ≤ lim
n

∫
X
|fn − f |dµ ≤ lim

n

∫
X
|fn − f |dµ = 0,
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i.e. lim
n

∫
X
|fn − f |dµ = 0. ♦

Remarques autour de l’hypothèse de domination (ii) : • Dans le cadre élémen-
taire de l’intégrale de Riemann sur un compact [a, b], on requiert la convergence
uniforme de la suite de fonctions (Riemann intégrables) fn vers f pour assurer la
convergence des intégrales correspondantes (cf. proposition 1.4). Or, dans une telle
situation, il est immédiat qu’il existe une constante réelle positive C :=sup

n
‖fn‖sup

telle que |fn| ≤ C. Ceci correspond à une hypothèse de domination particulière
puisque la fonction constante égale à C est évidemment intégrable sur l’intervalle
[a, b].

En revanche, l’hypothèse de domination peut être vérifiée en l’absence de conver-
gence uniforme. On se place sur ([0, 1],B([0, 1]), λ) où λ désigne la mesure de
Lebesgue restreinte à l’intervalle [0, 1]. On pose, pour tout n≥1,

fn(x) := min
(e−nx2√

x
, n
)
, x∈ [0, 1].

Il est immédiat que les fonctions fn sont continues, donc boréliennes, et convergent
vers la fonction nulle pour tout x ∈ ]0, 1], donc λ(dx)-p.p.. D’autre part, comme
sup
x∈[0,1]

|fn(x)| = n pour tout n ∈ N∗, cette convergence n’est pas uniforme. En

revanche, pour tout x ∈ ]0, 1], |fn(x)| = fn(x) ≤ g(x) := 1/
√
x 1]0,1]. La fonction

g∈ L 1(λ) donc, par application du théorème de convergence dominée, on obtient

lim
n

∫ 1

0
fn(x) dx=0.

• Il serait erroné de croire pour autant que l’hypothèse de domination couvre toutes
les situations de convergence d’intégrales. Ainsi, sur (R,B(R), λ) on considère une
fonction f , continue, nulle en dehors de l’intervalle [0, 1], positive et d’intégrale
non nulle. On pose alors, pour tout n≥1,

fn(x) :=
f(x+ n)

n
, x∈ R.

La suite de fonctions fn, parfois appelée “bosse glissante”, converge vers la fonc-
tion nulle lorsque n → +∞. Par ailleurs, il est immédiat via un changement de
variable élémentaire – ces intégrales existent au sens de Riemann! – que la suite

d’intégrales
∫

R
fn dλ =

1

n

∫ 1

0
f(x) dx converge vers 0. Cependant la suite fn n’est

dominée par aucune fonction intégrable g puisque la plus petite fonction dominante
possible, g(x) := sup

n
|fn(x)|, a pour intégrale

∫
R
g dλ =

∑
n≥1

1

n

∫ 1

0
f(x) dx = +∞

(les fonctions fn sont, en effet, à support deux à deux disjoints).



142 8. Théorèmes de convergence et applications

Application 8.2. Intégration d’une dérivée (suite) : Soit f une fonction partout
dérivable sur [0, 1], de dérivée f ′ bornée. Alors f est l’intégrale de sa dérivée au
sens où ∫ 1

0
f ′(x) dx = f(1)− f(0).

DÉMONSTRATION : On reprend la suite (gn)n≥1 définie dans l’application 8.1
illustrant le lemme de Fatou. Pour tout x ∈ [0, 1[, la suite gn(x) converge vers
f ′(x). Soit M := supx∈[0,1] |f ′(x)|. M est fini par hypothèse. D’après le théorème
des accroissements finis, |gn(x)| ≤ M pour tout x ≤ 1 − 1/n et l’inégalité est
évidente si x > 1 − 1/n ; la relation de domination |gn(x)| ≤ M est vraie pour
tout x ∈ [0, 1]. La fonction constante égale à M est intégrable sur ([0, 1], λ(dx))
donc la suite (gn)n≥1 vérifie les hypothèses du théorème de convergence dominée
(théorème 8.3). Finalement,∫ 1

0
f ′(x) dx = lim

n

∫ 1

0
gn(x) dx.

D’autre part, on a comme dans l’application 8.1,

lim
n

∫ 1

0
gn(x) dx = f(1)− f(0)

ce qui établit l’égalité cherchée. ♦

Application 8.3. Convergence de la suite In(α) :=

∫ n

0

(
1 +

x

n

)n
e−αx dx selon les valeurs du

paramètre α ∈ R.

Soit (fn)n∈N∗ la suite de fonctions positives définies par fn(x) := 1[0,n](x)
(
1 +

x

n

)n
, x ≥ 0.

La suite fn(x) converge vers ex pour tout x ≥ 0 donc, d’après le lemme de Fatou,∫ +∞

0

e(1−α)x dx ≤ lim
n
In(α) et donc lim

n
In(α) = +∞ dès que α ≤ 1.

Reste à étudier le cas où α > 1. On peut remarquer que pour tout x ≥ 0,

ex −
(
1 +

x

n

)n
=

+∞∑
k=0

xk

k!
−

n∑
k=0

Ck
n
xk

nk
≥

n∑
k=0

(
1

k!
− Ck

n

nk

)
xk ≥ 0

vu que, pour tout k ∈ {0, . . . , n}, k!Ck
n

nk
=
n(n− 1) . . . (n− k + 1)

nk
≤ 1.

D’où la relation de domination

∀x ≥ 0, 0 ≤ fn(x) e
−αx ≤ e(1−α)x ∈ L 1(R+) si α > 1.

Le théorème de convergence dominée entraı̂ne finalement

lim
n
In(α) =

∫ +∞

0

e(1−α)x dx =
1

α− 1
si α > 1. ♦
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8.2 Application aux séries de fonctions

La puissance et la simplicité d’utilisation des résultats précédents sont parti-
culièrement mises en évidence dans les théorèmes d’interversion des symboles de
“somme” et d’“intégrale” pour l’intégration des séries de fonctions.

Théorème 8.4. Soit (ϕn)n≥1 une suite de fonctions A -mesurables à valeurs dans R
ou C.

(a) Si les fonctions ϕn sont positives pour tout n≥1, alors∫
X

(∑
n≥1

ϕn

)
dµ =

∑
n≥1

∫
X
ϕn dµ.

(b) Si
∑
n≥1

∫
X
|ϕn|dµ<+∞ alors les fonctions ϕn,

∑
n≥1

|ϕn| et la fonction définie

µ-p.p.
∑
n≥1

ϕn sont µ-intégrables. En outre

∫
X

(∑
n≥1

ϕn

)
dµ =

∑
n≥1

∫
X
ϕn dµ.

DÉMONSTRATION : (a) On applique le théorème 8.1 (Beppo Levi) à la suite crois-

sante de fonctions positives fn :=
n∑
k=1

ϕk, n ≥ 1, puis on conclut par linéarité de

l’intégrale :∫
X

(∑
n≥1

ϕn

)
dµ = lim

n

∫
X

n∑
k=1

ϕk dµ = lim
n

n∑
k=1

∫
X
ϕk dµ.

(b) Soit g :=
∑
n≥1

|ϕn|. D’après (a), g ∈ L 1
R+

(µ). En particulier, g < +∞ µ-p.p.

d’après le corollaire 7.2 et, par conséquent, µ(dx)-p.p. la série
∑
n≥1

ϕn(x) est abso-

lument convergente (dans R ou C). La fonction
∑
n≥1

ϕn est donc bien définie, sauf,

éventuellement sur un ensemble négligeable, où on lui attribue, par exemple, la
valeur 0.

D’autre part, la suite de fonctions (fn)n≥1 définie en (a) vérifie simultanément
fn

µ-p.p.−→
∑
n≥1

ϕn quand n → +∞ et |fn| ≤ g. La conclusion découle alors du

théorème de convergence dominée (théorème 8.3). ♦
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Application 8.4. (a) Lemme de Borel-Cantelli : Soit (An)n≥1 une famille de parties
de A . Alors

+∞∑
n=1

µ(An) < +∞ =⇒ µ(lim
n
An) = 0.

(b) Continuité de l’intégrale par rapport à la mesure : Soit f ∈ L 1
K(µ). Alors,

∀ ε > 0, ∃ δ > 0, ∀A ∈ A , µ(A) ≤ δ =⇒
∫
A
|f | dµ ≤ ε.

Autrement dit, l’intégrale d’une fonction intégrable f sur un ensemble mesu-
rable peut être rendue arbitrairement petite si l’ensemble a une mesure suffisam-
ment petite.

DÉMONSTRATION : (a) D’après le théorème 8.4,∫
X

(
+∞∑
n=1

1An

)
dµ =

+∞∑
n=1

µ(An) < +∞,

d’où, d’après le corollaire 7.2, la fonction positive et définie par la série
∑
n≥1

1An

est finie µ-p.p.. Son terme général, qui vaut 0 ou 1, tend donc µ-p.p. vers 0, ce qui
nécessite qu’il stationne en 0. On a donc montré que

µ(lim
n
An) = µ(

⋂
n≥1

⋃
k≥n

Ak) = µ ({x ∈ X : ∀n∈ N∗, ∃ k ≥ n, x ∈ Ak}) = 0.

(b) On raisonne par l’absurde en supposant qu’il existe ε0 > 0 et une suite (An)n≥1

d’éléments de A telle que µ(An) ≤ 1/2n et
∫
An

|f | dµ > ε0. D’après le lemme

de Borel-Cantelli ci-avant, µ(dx)-p.p. 1An(x)|f |(x) = 0 à partir d’un certain rang.
Comme 0 ≤ 1An |f | ≤ |f | ∈ L 1(µ), le théorème de convergence dominée en-

traı̂ne alors
∫
An

|f | dµ −→
n→+∞

0, ce qui contredit l’hypothèse. ♦

8.3 Intégrales dépendant d’un paramètre

Rappels : Soient (E, d) un espace métrique, g : E → K et u∞ ∈ E. Alors,

(a) lim
u→u∞

g(u)=` si et seulement si, pour toute suite (un)n≥1 convergeant vers u∞

et un 6=u∞ pour tout n≥1, lim
n
g(un) = `.

(b) g est continue en u∞ si et seulement si, pour toute suite (un)n≥1 convergeant
vers u∞ , lim

n
g(un) = g(u∞).

Dans ce qui suit, on se donne une application f : E ×X → K.
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Théorème 8.5 (Continuité sous le signe intégrale). Soit u∞ ∈ E. Si
(i) pour tout u∈ E,

(
x 7→ f(u, x)

)
est mesurable de (X,A ) dans (K,B(K)),

(ii) µ(dx)-p.p.,
(
u 7→ f(u, x)

)
est continue en u∞ ,

(iii) il existe g ∈ L 1
R+

(µ) telle que ∀u ∈ E, |f(u, x)| ≤ g(x) µ(dx)-p.p.,

alors la fonction F (u) :=

∫
X
f(u, x)µ(dx) est définie en tout point u ∈ E et est

continue en u∞ .

Remarques : • l’hypothèse (iii) ci-dessus est communément appelée hypothèse
de domination.
• On peut proposer un énoncé formellement plus précis – mais aussi plus lourd –
de l’hypothèse (ii) sous la forme :

∃N ∈ A tel que µ(N) = 0 et ∀x /∈ N, u 7→ f(u, x) est continue en u∞ .

• On peut, dans l’énoncé précédent, remplacer dans (ii) le terme “continue” par “a
pour limite finie `(x)”. La conclusion devient alors : ` est µ-intégrable et F a pour

limite (finie)
∫
X
`(x)µ(dx) en u∞ .

DÉMONSTRATION : On s’appuie sur la caractérisation séquentielle de la continuité
rappelée ci-avant. Soit un → u∞ ; on pose, pour tout n≥1, fn :=f(un, ·), et f∞ :=

f(u∞ , ·). F (un) =
∫
X
fn dµ −→ F (u∞) =

∫
X
f∞dµ par simple application du

théorème de convergence dominée. ♦

Application 8.5. (a) Fonction d’une variable réelle définie par une intégrale de la
borne supérieure : λ désigne ici la mesure de Lebesgue sur R. Soient f ∈ L 1

K(λ)
et a∈ R ∪ {−∞}. Alors, la fonction F définie par

u 7−→ F (u) :=

∫ u

a
f(x)λ(dx) :=


∫
]a,u]

fdλ si u ≥ a

−
∫
[u,a[

fdλ si u ≤ a,

est continue en tout point de R.
DÉMONSTRATION : On se convainc immédiatement que, ainsi définie, l’intégrale
de la borne supérieure vérifie la relation de Chasles. En particulier,∫ u

a
fdλ=

∫ u

−∞
fdλ−

∫ a

−∞
fdλ ; il suffit donc d’étudier le cas où a=−∞, i.e.

F (u) :=

∫
]−∞,u]

f(x)λ(dx).

On poseϕ(u, x) :=1
]−∞,u]

(x)f(x)=1
[x,+∞[

(u)f(x). La fonctionϕ vérifie clai-
rement (i) et la relation de domination (iii) découle de l’inégalité |ϕ(u, x)| ≤
|f(x)|.
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Enfin, si u∞ ∈ R, l’ensemble des x pour lesquels la fonction u 7→ ϕ(u, x) est
discontinue en u∞ est inclus dans {u∞}. Comme λ({u∞})=0, (ii) est à son tour
vérifiée. Finalement, F est continue en tout point u∞ ∈ R. ♦

(a′) Une généralisation simple : Le résultat ci-dessus n’utilise de la mesure de
Lebesgue λ que sa propriété de ne charger aucun point. Par suite, si µ est une
mesure diffuse sur (R,B(R)), au sens où, pour tout x∈ R, µ({x})=0, il vient

∀ f ∈ L 1
K(µ), u 7→

∫
]−∞,u]

f(x)µ(dx) est continue sur R.

On notera au passage que le théorème de “continuité sous le signe d’intégrale”
dans le cadre Riemann n’englobait pas, lui, la continuité des intégrales de la borne
supérieure.

(a′′) Exercice : Montrer, en s’appuyant sur la propriété de continuité par rapport

à la mesure établie dans l’application 8.4, qu’en fait u 7→
∫ u

a
f(x)λ(dx) est uni-

formément continue sur R.

(b) Transformée de Fourier : Soit f ∈ L 1
R(λ), alors la fonction f̂ définie en tout

point u de R par

f̂(u) :=

∫
R
eiuxf(x)λ(dx)

est bien définie et continue sur R. La fonction f̂ est appelée la transformée de Fou-
rier de f . L’étude approfondie de cette transformation fait l’objet du chapitre 15.

La continuité de f̂ découle immédiatement du théorème 8.5 puisque, pour tout
x∈ R, (u 7→ eiux) est une fonction continue à valeurs complexes de module 1.

Il est possible d’améliorer sensiblement ce résultat et d’établir que f̂ est uni-
formément continue sur R. En effet, l’inégalité des accroissements finis entraı̂ne
que, pour tous u, v, x ∈ R, |eiux − eivx| ≤ |ux − vx| = |u − v||x| (y 7→ eiy

a pour dérivée y 7→ ieiy dont le module est constamment égal à 1). Par suite,
|eiux − eivx| ≤ min(|u− v||x|, 2), d’où

|f̂(u)− f̂(v)| ≤
∫

R
|eiux − eivx| |f(x)|λ(dx) ≤ ϕ(u− v)

où ϕ(w) :=

∫
R
min(w|x|, 2)|f(x)|λ(dx).

Le théorème 8.5 assure la continuité de ϕ et, partant, lim
w→0

ϕ(w) = ϕ(0) = 0.

Ceci entraı̂ne alors l’uniforme continuité de f̂ via l’inégalité précédente.

Il est à noter que la mesure de Lebesgue ne joue ici aucun rôle particulier et
peut être remplacée par n’importe quelle mesure positive µ sur (R,B(R)).
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(c) Convolution : Soit f ∈ L 1
K(λ) et ϕ : R → K, continue et bornée. Alors la

convolée de f et ϕ, définie par

∀u ∈ R, (f ∗ ϕ)(u) :=
∫

R
ϕ(u− x)f(x)λ(dx),

est continue bornée.

On pose f(u, x) := ϕ(u − x)f(x). La fonction u 7→ f(u, x) est clairement
continue pour tout x∈ I . La relation de domination découle du fait que

|f(u, x)| ≤ sup
v∈R
|ϕ(v)| |f(x)|.

On verra au chapitre 14 que cette notion de convolution admet de nombreuses ex-
tensions, notamment au cas où ϕ est seulement intégrable.

(d) Fonctions définies par une série de fonctions continues : SiX :=N, A :=P(N)
et m la mesure de comptage, on retrouve le résultat classique sur la continuité des
séries de fonctions : si les fonctions fn, n ≥ 1, sont continues sur E (resp. en
u0 ∈ E) et

∑
n≥1

sup
u∈E
|fn(u)|<+∞ – on dit que la suite converge normalement –

alors u 7→
∑
n≥1

fn(u) est continue sur E (resp. en u0∈ E).

Théorème 8.6 (Dérivation sous le signe intégrale). On suppose ici que E=I , où I
désigne un intervalle ouvert non vide de R. Soit u∞ ∈ I . Si la fonction f vérifie

(i) pour tout u∈ I , f(u, ·)∈ L 1
K(µ),

(ii) µ(dx)-p.p.,
∂f

∂u
(u∞ , x) existe,

(iii) il existe g∈ L 1
R+

(µ) telle que

∀u ∈ I, µ(dx)-p.p. |f(u, x)− f(u∞ , x)| ≤ g(x) |u− u∞ |,

alors la fonction F (u) :=

∫
X
f(u, x)µ(dx) est définie en tout point u ∈ I ,

dérivable en u∞ de dérivée

F ′(u∞) =

∫
X

∂f

∂u
(u∞ , x)µ(dx).

DÉMONSTRATION : Soit (un)n≥0 une suite de réels de I convergeant vers u∞ sans
jamais prendre la valeur u∞ . On pose, pour tout n≥0,

ϕn(x) :=
f(un, x)− f(u∞ , x)

un − u∞
.
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D’après la condition (ii), µ(dx)-p.p., ϕn(x) converge vers
∂f

∂u
(u∞ , x). D’autre

part, la condition (iii) entraı̂ne la condition de domination puisque, pour tout n≥0,
µ(dx)-p.p. |ϕn(x)| ≤ g(x). Il vient donc, par convergence dominée,

lim
n→+∞

(
F (un)− F (u∞)

un − u∞

)
=

∫
X

∂f

∂u
(u∞ , x)µ(dx). ♦

Remarques : • En fait ce théorème est une application directe de la version “limite
finie” du théorème 8.5 de continuité sous le signe intégrale.

• Si l’on remplace (ii) par

(ii)d u 7→ f(u, x) est µ(dx)-p.p. dérivable à droite en u∞ ,

alors F est dérivable à droite en u∞ et F ′
d(u∞) :=

∫
X

∂df

∂u
(u∞ , x)µ(dx) ; idem pour

la dérivabilité à gauche.

•On établit de façon tout à fait analogue une version “holomorphe” sur un ouvert de
C et une version “différentiable” sur un ouvert Ω de Rd du théorème de dérivation
ci-avant.

On peut déduire de ce résultat un théorème de dérivabilité global sur l’inter-
valle I , souvent très utile dans les applications courantes.

Corollaire 8.1 (Dérivation globale sur un intervalle ouvert). Sous les hypothèses

(i) pour tout u∈ I , f(u, .)∈ L 1
K(µ),

(ii)′ µ(dx)-p.p.,
(
u 7→ f(u, x)

)
est dérivable sur tout l’intervalle I ,

(iii)′ µ(dx)-p.p., pour tout u ∈ I ,
∣∣∣∣∂f∂u (u, x)

∣∣∣∣ ≤ g(x) où g ∈ L 1
R+

(µ),

alors la fonction F (u) :=

∫
X
f(u, x)µ(dx) est définie et dérivable sur tout l’in-

tervalle I , de dérivée

F ′(u) =

∫
X

∂f

∂u
(u, x)µ(dx).

DÉMONSTRATION : Soit u∞ ∈ I fixé. Les conditions (ii)′ et (iii)′ alliées au
théorème des accroissements finis entraı̂nent immédiatement que, pour tout u∈ I ,

µ(dx)-p.p. |f(u, x)−f(u∞ , x)| ≤ sup
v∈(u,u∞ )

∣∣∣∣∂f∂u (v, x)
∣∣∣∣ |u−u∞ | ≤ g(x) |u−u∞ |.

Ceci assure que l’hypothèse (iii) du théorème 8.6 est vérifiée. Il ne reste plus qu’à
remarquer que (ii)′ implique évidemment (ii) en u∞ . ♦

Les trois premières des quatre applications ci-après découlent immédiatement
du corollaire 8.1, la quatrième ne peut être résolue qu’à l’aide du théorème 8.6,
bien que le résultat de dérivation obtenu y soit également global.
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Application 8.6. (a) Transformée de Fourier : Si f et (x 7→ x f(x)) ∈ L 1
R(λ),

alors f̂(u) :=
∫

R
eiuxf(x)λ(dx) est continûment dérivable sur R et

∀u ∈ R, f̂ ′(u) = i

∫
R
eiuxxf(x)λ(dx) = i x̂f(x)(u).

Cette fonctionnelle fait l’objet d’une étude approfondie dans le chapitre 15.
(b) Convolution : Si f ∈ L 1

R(λ) et ϕ est dérivable, bornée à dérivée bornée sur R,

alors f ∗ ϕ(u) :=
∫

R
ϕ(u− x)f(x)λ(dx) est dérivable sur R et

∀u ∈ R, (f ∗ ϕ)′(u) = (f ∗ ϕ′)(u).

Cette opération fait l’objet d’une étude approfondie dans le chapitre 14.
(c) Fonction définie par une série de fonctions dérivables : On considère la mesure
de comptage m sur (N,P(N)) et une suite (fn)n≥1 de fonctions dérivables sur un
intervalle I . Si pour tout u∈ I , on a∑

n≥1

|fn(u)|+ sup
v∈I
|f ′n(v)|< +∞,

alors la fonction u 7→
∑
n≥1

fn(u) est dérivable sur I de dérivée u 7→
∑
n≥1

f ′n(u).

(d) Un calcul de primitive : Soient µ une mesure positive sur (R,B(R)) ne char-
geant pas un réel t0 donné, i.e. µ({t0}) = 0, et une fonction f ∈ L 1

R(µ) telle que
(x 7→ x f(x))∈ L 1

R(µ). On pose

F (t) :=

∫
R
(t− x)+f(x)µ(dx) où u+ :=max(u, 0) =

{
0 si u ≤ 0
u si u > 0.

La fonction F est définie sur R+ et dérivable en t0 de dérivée

F ′(t0) =

∫
]−∞,t0]

f(x)µ(dx).

DÉMONSTRATION DE (d) : la fonction F est bien définie sur tout R car

(t− x)+|f(x)| ≤ (|t|+ |x|)|f(x)| ∈ L 1
R(µ).

D’autre part, pour tout x 6= t0, et donc µ(dx)-p.p., t 7→ (t− x)+f(x) est dérivable

en t0 de dérivée t 7→
{
f(x) si x < t0
0 si x > t0

≡ f(x)1
]−∞,t0[

(x). Enfin

|(t− x)+f(x)− (t0 − x)+f(x)|= |max(t− x, 0)−max(t0 − x, 0)||f(x)|
≤max(|(t− x)− (t0 − x)|, 0)|f(x)|
≤ |t− t0| |f(x)|.
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d’où la condition de domination (iii). Par conséquent, on peut affirmer d’après le
théorème de dérivation sous le signe intégrale (théorème 8.6), que

F ′(t0) =

∫
]−∞,t0[

f(x)µ(dx) =

∫
]−∞,t0]

f(x)µ(dx).

En particulier, si µ est une mesure diffuse, i.e. ne chargeant aucun point de R, on a

établi queF (t) :=
∫

R
(t− x)+f(x)µ(dx) est une primitive de t 7→

∫ t

−∞

f(x)µ(dx).

Application 8.7. Étude de la fonction F (t) :=

∫ 1

0

√
ϕ(x)2 + t dx où ϕ ∈ L 1

R ([0, 1], λ).

B Existence et continuité sur R+ : Soit f la fonction définie par f(t, x) :=
√
ϕ(x)2 + t . À

t fixé, la fonction x 7→ f(t, x), composée de la fonction mesurable ϕ par la fonction continue
y 7→

√
y2 + t , est donc mesurable. D’autre part, comme

√
ϕ2(x) + t ≤ |ϕ(x)| +

√
t et ϕ est

λ(dx)-intégrable sur [0, 1] par hypothèse, F est bien définie sur R+.
La continuité sur R+ de t 7→ f(t, x) pour tout x ∈ [0, 1] et la relation de domination

∀ t ∈ [0, a],
√
ϕ(x)2 + t ≤ |ϕ(x)|+

√
a ∈ L 1([0, 1], λ)

assurent, via le théorème 8.5, la continuité de F sur tout intervalle [0, a] et partant sur R+.

B Dérivabilité sur R∗
+ : Soit t0 > 0. Pour tout x ∈ [0, 1], t 7→ f(t, x) est dérivable en t0 et

vérifie en outre

|f(t, x)− f(t0, x)| =
|t− t0|√

ϕ(x)2 + t +
√
ϕ(x)2 + t0

≤ 1√
t0

|t− t0|.

La fonction constante égale à
1√
t0

est dx-intégrable sur [0,1]. Donc d’après le théorème 8.6 de

dérivation sous le signe intégral, F est dérivable en t0 et

F ′(t0) =

∫ 1

0

dx

2
√
ϕ(x)2 + t0

.

B Dérivabilité en 0 : Montrons que F est dérivable (à droite) en 0 si et seulement si la fonction
1

ϕ
∈ L 1([0, 1], λ).

Supposons que
1

ϕ
∈ L 1([0, 1], λ). Alors, pour λ-presque tout x ∈ [0, 1], ϕ(x) 6= 0 ; or la fonction

t 7→ f(t, x) est dérivable en 0 de dérivée
1

2|ϕ(x)| en tout point x tel que ϕ(x) 6= 0. En outre, f

vérifie la relation de domination suivante

λ(dx)-p.p., |f(t, x)− f(0, x)| = |t|√
ϕ(x)2 + t + |ϕ(x)|

≤ |t|
|ϕ(x)|1{ϕ 6=0}(x) ∈ L 1([0, 1], dx).

Le théorème 8.6 de dérivation sous le signe intégral entraı̂ne que F est dérivable en 0 avec

F ′(0) =

∫ 1

0

dx

2|ϕ(x)| .

Réciproquement, supposons F dérivable (à droite) en 0. Soit (hn)n≥1 la suite de fonctions
positives définies par

hn(x) :=

{
n
(√

ϕ(x)2 + 1/n− |ϕ(x)|
)

si |ϕ(x)| < +∞
0 si |ϕ(x)| = +∞.
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Pour tout x∈ [0, 1], la suite (hn(x))n≥1 converge vers
1

2|ϕ(x)| . Or d’après le lemme de Fatou,

∫ 1

0

1

2|ϕ(x)| dx ≤ lim
n

∫ 1

0

hn(x) dx = lim
n
n (F (1/n)− F (0)) = F ′(0) < +∞.

Donc
1

ϕ
∈ L 1([0, 1]).

On peut aussi procéder de la manière suivante pour établir la nécessité de cette condition. En
effet, l’expression de F ′(t) pour t > 0 montre que F ′ est décroissante positive sur R+. Ceci entraı̂ne
l’existence de ` := lim

t→0+
F ′(t) ∈ [0,+∞]. La fonction F étant par ailleurs continue, il s’ensuit,

d’après le théorème de prolongement de la dérivée, que

` = lim
t→0+

F (t)− F (0)

t
.

La fonction F est dérivable en 0 si et seulement si ` < +∞. Or, d’après le théorème de Beppo Levi

(théorème 7.1) appliqué à la suite croissante de fonctions x 7−→ 1

2
√
ϕ(x)2 + 1/n

, il vient

` = lim
n
F ′(1/n) = lim

n

∫ 1

0

dx

2
√
ϕ(x)2 + 1/n

=

∫ 1

0

dx

2|ϕ(x)| ,

d’où la condition annoncée.

8.4 Mesures à densité : première approche

On se place toujours sur l’espace mesuré (X,A , µ). Rappelons que l’intégrale∫
A
fdµ est définie comme

∫
(1Af)dµ dès qu’elle existe (notamment si f ∈ L 1

K(µ)).

Proposition 8.1. (a) Soit f : (X,A ) → R+. On pose, pour toute partie A∈ A ,

ν(A) :=

∫
A
fdµ. Alors ν est une mesure sur A , notée ν := f.µ (ou parfois fdµ)

vérifiant :

∀A ∈ A , µ(A) = 0 =⇒ ν(A) = 0 [convention 0× (+∞)=0]. (8.1)

(b) ν est une mesure finie si et seulement si la fonction f ∈ L 1
R+

(µ), auquel cas

ν(X)=

∫
X
fdµ.

(c) Soit g : (XA )→ R+ mesurable. Alors

g∈ L 1(ν) si et seulement si gf ∈ L 1(µ)

et dans ce cas ∫
X
gdν =

∫
X
gfdµ.

En outre l’égalité ci-dessus est toujours vérifiée si g est mesurable positive.
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DÉMONSTRATION : (a) ν est bien une application de A dans R+. D’autre part,

ν(Ø)=

∫
Ø
fdµ=

∫
X
0 dµ=0. Enfin, soit (An)n≥1 une suite de parties de A deux

à deux disjointes.

1⋃
n≥1 An

=
∑
n≥1

1An = lim
n

↑
n∑
k=1

1Ak
d’où 0 ≤ f 1⋃

n≥1 An
=
∑
n≥1

f 1An .

Le théorème de Beppo Levi pour les séries entraı̂ne alors ν(A) =
∑
n≥1

ν(An).

Si µ(A) = 0 alors ν(A) =

∫
A
f dµ = 0 car 1A f = 0 µ-p.p..

(b) est évident.
(c) Si g = 1A , A ∈ A , l’identité se résume à la définition de ν. On l’étend alors
aux fonctions étagées positives par linéarité de l’intégrale, puis aux fonctions me-
surables positives par le théorème de Beppo Levi. Si g est de signe quelconque,
l’identité est vraie pour les fonctions g± (à valeurs dans R+). Or g (resp. gf ) est
ν-intégrable (resp. µ-intégrable) si et seulement si les fonctions g± (resp. (gf)±) le
sont (et (gf)± = g±f car f est positive). Enfin, si les intégrales associées sont fi-
nies alors on peut soustraire ces identités membre à membre pour obtenir le résultat
annoncé. ♦

Définition 8.1. (a) Si deux mesures µ et ν vérifient la relation (8.1), la mesure ν
est dite absolument continue par rapport à µ et l’on note ν � µ.

(b) Si ν = f.µ , f est appelée selon les cas densité de ν par rapport à µ ou dérivée

de Radon-Nikodym de ν par rapport à µ. On la note souvent
dν

dµ
.

Remarque : Sous certaines hypothèses supplémentaires sur les mesures µ et ν,
la proposition 8.1 admet une réciproque, autrement plus délicate à établir, appelée
théorème de Radon-Nikodym. Ainsi, lorsque µ et ν sont des mesures finies, ce
théorème stipule qu’il y a équivalence entre :

(i) µ et ν vérifient la propriété (8.1),
(ii) il existe f ∈ L 1

R+
(µ) telle que ν = f.µ.

La démonstration détaillée du théorème de Radon-Nikodym et de son extension
à des mesures (raisonnables) de masse infinie est proposée au chapitre 10.

Exemples : 1. SoitD ∈ A . La restriction µD := µ(.∩D) est absolument continue
par rapport à µ et µD := 1D.µ.
2. Le théorème de changement de variables dans les intégrales multiples qui sera
établi au chapitre 12, fait intervenir la mesure |Jϕ|.λd où Jϕ désigne le Jacobien du
changement de variables ϕ et λd la mesure de Lebesgue sur Rd.

La notion de dérivée de Radon-Nikodym admet d’importantes applications en
probabilités, notamment pour la construction de l’espérance conditionnelle.
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8.5 Exercices

(X,A , µ) désigne un espace mesuré.

8.0 Reprendre les exercices 1.9, 1.11, 1.12, 1.15 1.16, 1.18 en utilisant les théorèmes
de convergence de l’intégrale de Lebesgue.

8.1 Soit A∈A . Appliquer le lemme de Fatou à (fn)n≥0 définie par f2n := 1A et
f2n+1 := 1cA. Que peut-on en conclure ?

8.2 Soit (fn)n≥1 une suite de L 1
R(µ) qui converge uniformément vers f .

a) Montrer que si µ(X)<+∞ alors lim
n

∫
X
fn dµ =

∫
X
f dµ.

b) Si f ∈ L 1
R(µ) et si lim

n

∫
X
fn dµ existe, la conclusion du a) subsiste-t-elle ?

8.3 Soit (fn)n≥0 une suite de L 1
R(µ) qui converge µ-p.p. vers f ∈L 1

R(µ) et telle

que lim
n

∫
X
fn dµ =

∫
X
fdµ.

a) Montrer le théorème de Scheffé : : Si fn ≥ 0 µ-p.p. pour tout n ≥ 0, alors

lim
n

∫
X
|fn−f | dµ = 0.

b) La convergence obtenue en a) est-elle vraie en général ?

8.4 Soit (fn)n≥0 une suite de L 1
R(µ) qui converge µ-p.p. vers f ∈L 1

R(µ).

Montrer que lim
n

∫
X
|fn−f | dµ = 0 ⇔ lim

n

∫
X
|fn| dµ =

∫
X
|f | dµ .

8.5 a) Soit (fn)n≥0 une suite de L 1
R(µ). Montrer que

∑
n≥0

(∫
X
|fn| dµ

)
< +∞ =⇒

∫
X

(∑
n≥0

fn

)
dµ =

∑
n≥0

∫
X
fn dµ.

b) Soit (fn)n≥0 la suite de fonctions définies sur R+ par fn(x) := e−nx−2e−2nx.

Calculer
∫

R+

(∑
n≥1

fn(x) dx
)

et
∑
n≥1

(∫
R+

fn(x) dx
)

puis conclure.

8.6 a) Soit (ap,q)p,q∈N une famille de réels. Montrer que∑
p≥0

∑
q≥0

|ap,q| < +∞ =⇒
∑
p≥0

∑
q≥0

ap,q =
∑
q≥0

∑
p≥0

ap,q.

b) Soit ap,q :=
2p+ 1

p+ q + 2
− p

p+ q + 1
− p+ 1

p+ q + 3
.

Calculer
∑
p≥0

(∑
q≥0

ap,q

)
et
∑
q≥0

(∑
p≥0

ap,q

)
puis conclure.
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8.7 a) Montrer que
∫ +∞

0

sinx

ex−1
dx =

∑
n≥1

1

n2+1
.

b) Soit f : R → R une fonction borélienne telle que, pour tout a ∈ R, la fonction
(x 7→ eaxf(x)) soit intégrable. Montrer que, pour tout z∈C,∫

R
ezxf(x) dx =

∑
n≥0

zn

n !

∫
R
xnf(x) dx.

8.8 a) Montrer que le théorème de convergence dominée s’applique aux sommes

partielles de
∑
n≥0

(−x)n sur ([0, 1],B([0, 1]), λ). En déduire la valeur de
∑
n≥1

(−1)n

n
.

b) Soit z∈C, 0<<(z)<1. Montrer que
∫ +∞

0

xz−1

1 + x
dx=

1

z
+
∑
n≥1

(−1)n 2 z

z2−n2
.

8.9 Soit f ∈L 1
R(]0, 1[), positive et monotone. Calculer lim

n

∫ 1

0
f(xn) dx.

8.10 Constante d’Euler-Mascheroni

Soit In(a) :=
∫ +∞

0
e−n sin2 xe−ax dx pour n ∈ N et a ∈ R+.

a) On suppose que a > 0. Calculer en justifiant lim
n→+∞

In(a).

b) Montrer que In(0) :=

∫ +∞

−π
e−n sin2 x dx . En déduire la valeur de In(0).

8.11 Montrer les égalités suivantes donnant la constante d’Euler-Mascheroni γ

lim
n

∫ n

0

(
1− x

n

)n
lnx dx = γ := lim

n

(
lnn−

n∑
k=1

1

k

)
=

∫ +∞

0
e−x lnx dx.

8.12 a) Soit f ∈L 1
R([0, 1]). Calculer lim

n

∫ 1

0
xnf(x)dx.

b) On suppose que f possède en 1 une limite `∈R. Calculer lim
n

∫ 1

0
nxnf(x) dx.

c) On suppose que
(
x 7→ f(x)/(1−x)

)
∈ L 1

R
([0, 1]). Calculer lim

n

∫ 1

0
nxnf(x) dx.

8.13 Soit une suite (bn)n≥1 de R telle que la suite définie par fn(x) :=
n∑
k=1

bk sin(kx)

converge λ(dx)-p.p. vers f ∈L 1
R
([−π, π]) et lim

n

∫ π

−π
|fn(x)−f(x)| dx = 0.

a) Montrer que, pour tout n≥1, bn=
1

π

∫ π

−π
f(x) sin(nx) dx.

b) Montrer, à l’aide d’une transformation d’Abel, que
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∀n≥ 1, ∀x∈ R,

∣∣∣∣∣
n∑
k=1

sin(kx)

k

∣∣∣∣∣ ≤ π + 1.

c) En déduire que la série
+∞∑
n=1

bn
n

est convergente.

d) Montrer que la suite de fonctions définies par
(
x 7→

n∑
k=2

sin(kx)

ln k

)
converge

simplement sur R. Converge-t-elle dans L 1([−π, π])?

8.14 Soit f : R→ R une fonction borélienne, bornée et T -périodique.
a) Montrer que, pour tout borélien borné A de R,

lim
n

∫
A
f(nx)λ(dx) =

λ(A)

T

∫ T

0
f(t) dt.

b) Soit E l’ensemble des x∈ [0, T ] tels que la suite (f(nx))n≥0 converge vers g(x)

réel. Montrer, en justifiant l’écriture, que
∫
E
g(x)λ(dx) =

λ(E)

T

∫ T

0
f(t) dt.

c) Montrer que λ(E)=0 lorsque f := cos.

8.15 Soit f la fonction définie sur R+ par f(t) :=
∫ +∞

0

sin2 x

x2
e−tx dx.

a) Montrer que f est continue sur R+ et deux fois dérivable sur R∗
+.

b) Calculer f ′′ et les limites en +∞ de f et f ′. En déduire une expression de f .

8.16 Soit f la fonction définie sur R par f(t) :=
∫ +∞

0
arctan

( t

sinhx

)
dx.

a) Montrer que f est continue sur R+ et dérivable sur R∗ mais pas dérivable en 0.

b) Donner une expression simple de f ′. En déduire des équivalents de f en 0,+∞.

8.17 La transformée de Fourier de f ∈ L 1
R(R) est f̂(t) :=

∫ +∞

−∞
f(x) e−itx dx

pour t ∈ R. à l’aide du théorème de dérivation sous le signe intégral, calculer f̂
dans les deux cas suivants :

a) f(x) := e−x
2
. b) f(x) :=

1

x2+1
. Le calcul se fait en trois étapes :

i) Soit (gn)n≥1 la suite de fonctions définies sur R par gn(t) :=
∫ n

−n

e−itx

x2+1
dx .

Montrer que la suite (g′n)n≥1 converge uniformément sur tout intervalle
[a,+∞[, a > 0. En déduire que la fonction f̂ est dérivable sur R∗ et que

∀ t > 0, (f̂)′(t)=

∫ +∞

−∞

−iu
u2+t2

e−iudu.

ii) Montrer que f̂ est deux fois dérivable sur R∗
+ et que (f̂)′′ = f̂ .

iii) Calculer f̂(0) et lim
+∞

f̂ . En déduire que ∀ t ∈ R, f̂(t) = π e−|t|.
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8.18 Fonction Γ et formule de Stirling

Soit la fonction Γ définie sur R∗
+ par Γ(t) :=

∫ +∞

0
xt−1 e−x dx pour t > 0.

a) Montrer que Γ est indéfiniment dérivable sur R∗
+.

b) Montrer que, pour tout n∈N∗, Γ(n+1) = n! .

c) Montrer que ∀ t > 0, Γ(t+ 1) =
√
t tt e−t

∫ +∞

−
√
t

(
1 +

y√
t

)t
e−

√
t y dy.

d) Montrer que, pour tout y ≥ 0, la fonction
(
t 7→ t ln(1 + y/

√
t) − y

√
t
)

est
décroissante sur R∗

+, et pour tout y∈ ]−
√
t, 0 [, t ln(1 + y/

√
t)− y

√
t ≤ −y2/2.

e) Déduire des questions précédentes et de l’égalité
∫ +∞

0
e−y

2/2dy =
√
2π , la

formule de Stirling Γ(t+ 1) ∼
t→+∞

√
2πt tt e−t .

8.19 Soient ϕ∈L 1
R([0, 1]) et f définie sur R par f(t) :=

∫ 1

0
|ϕ(x)−t| dx.

a) Montrer que f est continue sur R.

b) Soit t∈R. Montrer que si λ({ϕ= t})=0 alors f est dérivable en t.

c) Montrer que, réciproquement, si f est dérivable en t alors λ({ϕ= t})=0.

8.20 Soit (X,A , µ) un espace mesuré de masse finie. Une famille (fi)i∈I de fonc-
tions mesurables de X dans K est dite équiintégrable en probabilité si

lim
c→+∞

(
sup
i∈I

∫
{|fi|≥c}

|fi| dµ
)
= 0.

a) Montrer que toute famille finie de L 1
K(µ) est équiintégrable en probabilité.

b) Montrer que la famille (fi)i∈I est équiintégrable en probabilité ssi
sup
i∈I
‖fi‖1 < +∞ et

∀ ε>0, ∃ δ>0, ∀A∈A , µ(A)<δ ⇒ ∀ i∈I,
∫
A
|fi|dµ<ε.

c) Montrer que si les familles (fi)i∈I et (gi)i∈I sont équiintégrables en probabilité,
il en est de même de la famille (fi+gi)i∈I .

d) Soit (fn)n≥1 une suite équiintégrable en probabilité qui converge µ-p.p. vers
une fonction f . Montrer que f ∈L 1

K(µ) et lim
n
‖fn−f‖1 = 0.

8.21 Une famille (fi)i∈I de L 1
K(µ) est dite équiintégrable si

∀ ε>0, ∃Aε∈A , µ(Aε)<+∞ et ∀ i∈I,
∫

cAε

|fi|dµ<ε,

∀ ε>0, ∃ δε>0, ∀A∈A , µ(A)<δε =⇒ ∀ i∈I,
∫
A
|fi|dµ<ε.

Soit (fn)n≥1 une suite de L 1
K(µ) qui converge µ-p.p. vers f ∈ L 1

K(µ). On va
montrer le théorème de Vitali : lim

n
‖fn−f‖1 = 0 ⇔ (fn)n≥1 est équiintégrable.

a) Montrer que toute famille finie de L 1
K(µ) est équiintégrable.
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b) Montrer l’implication (⇒) du théorème de Vitali.

c) Montrer l’implication (⇐) du théorème de Vitali.

d) Montrer que la condition d’équiintégrabilité n’est pas suffisante si on omet l’hy-
pothèse de convergence µ-p.p. dans le théorème de Vitali.

8.22 Soit (X,A , µ) un espace mesuré de masse finie. On pose, pour toutes fonc-

tions f, g : X → K mesurables, d(f, g) :=
∫
X
(|f − g| ∧ 1) dµ.

a) Montrer que d définit une distance sur l’ensemble E des classes d’équivalence
de fonctions mesurables de X dans K, modulo la relation “d’égalité µ-p.p.”.

b) Montrer que la convergence en mesure (cf. exercice 6.13) est équivalente à la
convergence définie par la distance d.

c) On se propose de montrer que (E, d) est un espace complet. Soit (fn)n≥1 une
suite de Cauchy de E. On procède en quatre étapes :

i) Construire une sous-suite (fnk
)k≥1 telle que d(fnk+1

, fnk
) < k−2 , k ≥ 1.

ii) Montrer que
∑
k≥1

1Ak
|fnk+1

−fnk
| ∈ L 1(X), Ak := {|fnk+1

−fnk
| ≤ 1}.

iii) Montrer que µ
(
lim
k

cAk
)
= 0.

iv) En déduire que
∑
k≥1

|fnk+1
− fnk

| < +∞ µ-p.p., et conclure.

8.23 Soient (An)n≥0 une suite d’un espace mesuré (X,A , µ) et f ∈L 1
R(µ) tels

que lim
n

∫
X
|1An − f | dµ = 0 , où 1An est la fonction caractéristique de An.

a) Montrer que ∀n ∈ N, {|f | > 2} ⊂
{
|1An − f | > 1

}
.

b) Montrer que
∫
X

1{|f |>2} dµ ≤
∫
X

1{|1An−f |>1} dµ ≤
∫
X
|1An − f | dµ.

En déduire que |f | ≤ 2 µ-p.p. sur X .

c) Montrer à l’aide de la question b) que lim
n→+∞

∫
X

∣∣1An − f2
∣∣ dµ = 0.

d) En déduire f2 = f µ-p.p. sur X , et en conclure que f coı̈ncide presque partout
avec une fonction caractéristique d’une partie A de X telle que µ(A) < +∞.
e) Montrer que si

∑
n≥0

µ(An∆A)<+∞ alors 1An

µ-p.p.−→ 1A.

8.24 On considère l’espace métrique quotient (A /R, d) de l’exercice 6.18. Soient
(An)n≥0 une suite de A et A∈A .

a) Montrer que si limn d(Ȧn, Ȧ) = 0 alors il existe une sous-suite (Aϕ(n))n≥0

telle que AR
(
limnAϕ(n)

)
et AR

(
limnAϕ(n)

)
.

b) On suppose que µ(X)<+∞. Montrer que siAR
(
limnAn

)
etAR

(
limnAn

)
alors limn d(Ȧn, Ȧ)= 0.

8.25 Soit f : R→ R une fonction convexe.
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a) Soit ϕ ∈ CK(R) positive. Montrer que∫
R
(f ′d(x)−f ′g(x))ϕ(x) dx ≤ lim

n

[
n

∫
R
f(x)

(
ϕ(x+ 1

n) + ϕ(x− 1
n)− 2ϕ(x)

)
dx

]
.

b) En déduire que f est dérivable λ1-p.p. sur R.

8.26 Soit (X,A , µ) un espace mesuré tel que µ(X) = 1 et soit f ∈ L 1
R(µ).

a) Montrer que la fonction F définie sur R par F (y) :=

∫
R
|f(x) − y|µ(dx) est

1-lipschitzienne et convexe.
b) Montrer que F est dérivable en tout point y de R tel que µ({f = y}) = 0, et que
F ′(y) = µ

(
{f ≤ y})− µ({f ≥ y}

)
= 2µ

(
{f ≤ y}

)
− 1.

c) En déduire que si la mesure µ est diffuse, i.e. µ({f = y}) = 0 pour tout y ∈ R,
alors F atteint son minimum dans l’intervalle fermé

{
y ∈ R : µ({f ≤ y}) = 1

2

}
.

8.27 a) Calculer lim
n

∫ +∞

0

sin(nxn)

nxn+
1
2

dx , après avoir justifié l’intégrabilité.

b) Calculer la limite lim
n

∫ +∞

0

ln (1 + xn)

1 + nx2
dx.

c) Calculer la limite lim
n→+∞

∫ +∞

0

sin (xn)

xn
dx .

8.28 Soit µ une mesure positive sur (R,B(R)) telle que
∫

R
|x|p µ(dx) < +∞ où

p ∈ [1,+∞[. On définit la fonction distorsion par

Dµ,p
n (x) :=

∫
R

min
1≤i≤n

|xi−u|p µ(du), x ∈ S + :=
{
y ∈ Rn : y1 < y2 < · · · < yn

}
.

a) Montrer que la fonction Dp
n est continue sur S +.

b) On fait l’hypothèse que la mesure µ est diffuse (i.e. µ({x}) = 0 pour tout x ∈ R).
Montrer que Dµ,p

n est continûment différentiable en tout point de S + et que pour

i ∈ {1, . . . , n}, ∂Dµ,p
n

∂xi
(x1, . . . , xn) = p

∫ x̃
i+1

2

x̃
i− 1

2

sgn(xi − u) |xi − u|p−1µ(du) où

x̃ 1
2
:= −∞, x̃i− 1

2
:= xi+xi−1

2 , 2 ≤ i ≤ n, x̃n+ 1
2
:= +∞.

8.29 Soient z ∈ C \ {0} avec <(z) ≥ 0 et f : R+ → C la fonction définie par

f(t) :=

∫ +∞

−∞

e−(x2+z) t2

x2 + z
dx, pour t ∈ R+.

a) Montrer que f est continue sur R+, dérivable sur R∗
+ et lim

t→+∞
f(t) = 0.

b) Montrer que f(0) =

∫ +∞

−∞

dx

x2 + z
=

π√
z

où
√
z :=

√
|z| ei arg z/2 avec

arg z ∈ [−π
2 ,

π
2 ], est la détermination principale de la racine carré de z.
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c) Déterminer, à l’aide de l’exercice 1.15, la valeur de f ′(t) pour t ∈ R∗
+.

d) En déduire que l’intégrale de Fresnel est donnée par la formule∫ +∞

−∞
e−z t

2
dt =

√
π√
z

pour z ∈ C \ {0}, <(z) ≥ 0,

qui est semi-convergente si <(z) = 0.

8.30 a) Soit (bn)n∈N∗ une suite de R∗
+ décroissante et tendant vers 0. Montrer que

la série f(x) :=

+∞∑
n=1

bn sin(nx) converge pour tout x ∈ [0, π], uniformément sur

[δ, π] pour tout δ ∈ ]0, π].

b) Montrer, à l’aide de l’exercice 8.13 b), que la série
+∞∑
n=1

bn
n

sin(nx) converge

uniformément sur [0, π].
c) On suppose que f ∈ L 1([0, π]). Déduire de la convergence du a) sur [δ, π] et

de la convergence du b) sur [0, π], que ∀n ≥ 1, bn =
2

π

∫ π

0
f(x) sin(nx) dx.

d) Montrer que la série
+∞∑
n=1

bn
n

est convergente.

e) En déduire que la fonction
(
x 7→

+∞∑
n=2

sin(nx)

lnn

)
n’appartient pas à L 1([0, π]).

f) Montrer qu’il n’existe pas de fonction f ∈ L 1([−π, π]) telle que

∀n ≥ 2,
1

lnn
=

1

π

∫ π

−π
f(x) sin(nx) dx.

8.31 a) Soit (an)n∈N une suite de R∗
+ décroissant vers 0 et telle que pour tout n ≥ 1,

an−1 + an+1 − 2an ≥ 0 . Montrer que
+∞∑
n=1

n (an−1 + an+1 − 2an) < +∞.

b) Montrer que le noyau de Fejér Fn, n ≥ 1, vérifie

Fn(x) := 1 + 2
n∑
k=1

(
1− k

n

)
cos(kx) =

1

n

(sin(nx/2)
sin(x/2)

)2
pour tout x ∈ ]0, π].

En déduire que la suite définie par fn(x) :=
n∑
k=1

k (ak−1 + ak+1 − 2ak)Fk(x)

pour x ∈ ]0, π], converge dans L 1([0, π]) vers une fonction positive f ∈ L 1([0, π]).
c) En rappelant que pour une fonction 2π-périodique réelle f dans L 1([−π, π]),
ses coefficients de Fourier réels sont définis pour k ∈ N, par

a0 :=
1

2π

∫ π

−π
f(t) dt, ak :=

1

π

∫ π

−π
f(t) cos(kt) dt pour k ≥ 1,

bk :=
1

π

∫ π

−π
f(t) sin(kt) dt,
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calculer pour n ≥ 1 les coefficients de Fourier de Fn et de fn, puis montrer que

fn(x) =
n∑
k=0

[
ak + (n− k)an+1 − (n+ 1− k)an

]
cos(kx) pour tout x ∈ ]0, π].

d) En déduire que f(x) =
+∞∑
k=0

ak cos(kx), λ(dx)-p.p. sur [0, π].

e) Montrer que la fonction
(
x 7→

+∞∑
n=2

cos(nx)

lnn

)
appartient à L 1([0, π]).

Remarque : Des exercices 8.30 et 8.31 on déduit le résultat assez surprenant :

(
x 7→

+∞∑
n=2

cos(nx)

lnn

)
∈ L 1([0, π]) et

(
x 7→

+∞∑
n=2

sin(nx)

lnn

)
/∈ L 1([0, π]).

8.32 Soient (fn)n≥0 et (gn)n≥0 deux suites de fonctions mesurables sur un espace
mesuré (X,A , µ), vérifiant 0 ≤ fn ≤ gn µ-p.p., fn → f et gn → g µ-p.p..

a) Montrer le lemme de Pratt :

lim
n→+∞

∫
X
gn dµ =

∫
X
g dµ < +∞ ⇒ lim

n→+∞

∫
X
fn dµ =

∫
X
f dµ.

b) Étudier le cas où µ est la mesure de Lebesgue surA = R, fn(x) :=
1

(x+ n)2 + 1
et gn(x) := 1 pour x ∈ R. Que peut-on en conclure?

8.33 Soit f ∈ L 1
loc(R

d) telle que ∀ϕ ∈ C∞
c (Rd),

∫
Rd

f(x)ϕ(x)λd(dx) = 0.

a) Montrer que pour chaque ouvert borné Ω de Rd, il existe une suite (ϕn) de
C∞
c (Ω) bornée par une constante, qui converge λd(dx)-p.p. vers f/|f | 1{f 6=0} sur Ω.

b) En déduire que f = 0 λd(dx)-p.p. sur Rd.

8.34 Asymptotique du flot d’un système différentiel

Soit a ∈ C1
] (R

2) et Z2-périodique – i.e. a(x1, x2) est périodique de période 1 par
rapport aux variables x1 et x2 – et strictement positive sur R2, et soit ξ un vecteur
non nul de R2. On considère pour x ∈ R2 fixé, la solution X(·, x) du système
différentiel 

∂X

∂t
(t, x) = a

(
X(t, x)

)
ξ, t ≥ 0

X(0, x) = x.

La fonction vectorielle X est appelée le flot du système différentiel.
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a) Justifier le développement en série de Fourier de la fonction 1/a :

∀x = (x1, x2) ∈ R2,
1

a(x)
=
∑
n∈Z2

αn e
2iπ (x·n) où

{
(αn)n∈Z2 ∈ `1(Z2)

x · n := n1 x1 + n2 x2.

b) Montrer que ∀ (t, x) ∈ R+×R2, X(t, x)=F−1
x (t) ξ+x, Fx(t) :=

∫ t

0

ds

a(s ξ + x)
.

c) Montrer que

∀ (t, x) ∈ R+ × R2, Fx(t) = t
∑

n∈Z2 : ξ·n=0

αn e
2iπ (x·n)

+
∑

n∈Z2 : ξ·n 6=0

αn e
2iπ (x·n) eiπ t (ξ·n)

sin
(
π t (ξ · n)

)
π (ξ · n)

d) En déduire que ∀x ∈ R2, lim
t→+∞

Fx(t)

t
=

∑
n∈Z2 : ξ·n=0

αn e
2iπ (x·n) > 0,

puis que ∀x ∈ R2, lim
t→+∞

X(t, x)

t
=
( ∑
n∈Z2 : ξ·n=0

αn e
2iπ (x·n)

)−1
ξ.

e) On suppose le vecteur ξ = (ξ1, ξ2) incommensurable dans R2, i.e. ξ1/ξ2 /∈ Q.

Montrer que ∀x ∈ R2, lim
t→+∞

X(t, x)

t
= a ξ où a :=

(∫
[0,1]2

dy

a(y)

)−1
, i.e.

a est la moyenne harmonique de a.

8.35 Problème de Bâle 5

Soit fr, r ∈ [0, 1[, la fonction définie par fr(x) :=

+∞∑
n=1

rn
sin2(nx)

n2
pour x ∈ R.

a) Montrer que ∀ t ∈ R, f ′′r (t) =
d

dt

[
arctan

(
r sin(2t)

1− r cos(2t)

)]
.

b) En déduire que ∀x ∈ R, fr(x) =

∫ x

0
arctan

(
r sin(2t)

1− r cos(2t)

)
dt .

c) Montrer que ∀x ∈ R , f1(x) := lim
r→1−

fr(x) =

∫ x

0
arctan

(
cotan(t)

)
dt .

d) En déduire que
+∞∑
n=0

1

(2n+ 1)2
=
π2

8
et

+∞∑
n=1

1

n2
=
π2

6
.

8.36 Constante d’Apéry ζ(3) ( 1)

On pose Cn(t) :=
n∑
k=1

cos(2kt)

k
pour t ∈ R et n ∈ N∗.

1. R. Apéry, “Irrationalité de ζ(2) et ζ(3)”, Astérisque, 61 (1979), 11-13.
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a) Montrer, à l’aide de la somme classique des sin(k t), que

∀ θ ∈ ]0, π2 [ , Cn(
π
2 − θ)− Cn(θ) =

∫ π
2
−θ

θ

cos
(
(2n+ 1) t

)
− cos(t)

sin(t)
dt.

b) Montrer que lim
n→+∞

∫ π
2

0
θ
(
Cn(

π
2 − θ)− Cn(θ)

)
dθ =

+∞∑
n=0

1

(2n+ 1)3
.

c) Montrer, à l’aide de l’inégalité sin(t) ≥ 2
π t pour t ∈ [0, π2 ], qu’il existe une

constante c > 0 telle que

∀ δ ∈ ]0, π4 ],

∣∣∣∣∣
∫ δ

0
θ

(∫ π
2
−θ

θ

cos
(
(2n+ 1) t

)
sin(t)

dt

)
dθ

∣∣∣∣∣ ≤ c δ2 | ln(δ)|.
d) Montrer, à l’aide du lemme de Riemann-Lebesgue (cf. exercice 1.2 a)) combiné
avec le théorème de convergence dominée de Lebesgue, que l’on a pour δ ∈ ]0, π4 ],

lim
n→+∞

∣∣∣∣∣
∫ π

2

δ
θ

(∫ π
2
−θ

θ

cos
(
(2n+ 1) t

)
sin(t)

dt

)
dθ

∣∣∣∣∣ = 0.

e) En déduire que ζ(3) :=

+∞∑
n=0

1

(2n+ 1)3
=

∫ π
2

0
θ ln

(
tan(θ)

)
dθ .

8.37 Reprendre les exercices 8.35 et 8.36 en utilisant la détermination principale du
logarithme complexe log z := ln |z|+ i arg(z) où arg(z) ∈ ]− π

2 ,
π
2 [ , qui vérifie

log′(z) =
1

z
et ∀ |z| ≤ 1, <(z) > 0, log (1− z) =

+∞∑
n=1

zn

n
.

a) Dans l’exercice 8.35, montrer que ∀ t ∈ R, f ′r(t) = arg
(
1− r e2it

)
.

b) Dans l’exercice 8.36, montrer que ∀ t ∈ ]0, π[, Cn(t) = <
[
log
(
1− e2it

)]
.

8.38 Problème de Bâle 6, tiré de l’article ( 2)

a) Montrer que I :=

+∞∑
n=1

(−1)n−1

n2
= 2

∫ 1

0

ln(1 + x2)

x
dx =

∫ 1

0

ln(1 + x)

x
dx.

b) Montrer que la fonction f définie par f(t) :=

∫ 1

0

ln(1− 2x cos t+ x2)

x
dx

pour t ∈ R, est continue sur R.

c) Montrer que ∀ t ∈ ]0, π[ , f ′(t) = π − t.

d) Déduire de a) et c) que ∀ t ∈ [0, π], f(t) = 2 I − π2

2
+ π t − t2

2
, puis les

valeur de I et de
+∞∑
n=1

1

n2
=
π2

6
.

2. H. Haruki & S. Haruki, Euler’s integrals, Amer. Math. Monthly, 90 (7) (1983), 464-466.



Chapitre 9

Espaces Lp

Ce chapitre est consacré à l’étude des espaces vectoriels constitués de fonctions
ayant une puissance donnée intégrable. Ces ensembles qui généralisent l’espace
L 1

K(µ) des fonctions µ- intégrables ont des propriétés analogues.
Dans tout ce chapitre, la lettre K désignera indifféremment le corps des réels

ou le corps des complexes. Enfin, le triplet (X,A , µ) désignera un espace mesuré
quelconque.

9.1 Espaces LpK(µ) : définition et premières propriétés

Définition 9.1. Pour tout réel p>0, on définit

L p
K(X,A , µ) :=

{
f : (X,A )→ (K,B(K)) mesurable :

∫
X
|f |p dµ < +∞

}
.

Sauf situation ambiguë, on privilégiera la notation plus concise L p
K(µ).

Exemple : Si m est la mesure de comptage (i.e. m(A) = cardA) sur (N,P(N)),
alors

L p
K(m) = `pK(N) :=

{
(an)n≥0∈ KN :

∑
n≥0

|an|p < +∞
}
.

Proposition 9.1. Pour tout p>0, L p
K(µ) est un K- e.v.

DÉMONSTRATION : On vérifie que L p
K(µ) est un s.e.v. du K- e.v. F (X,K) des

fonctions de X dans K. Tout d’abord, il est immédiat la fonction nulle est dans
L p

K(µ). Soient λ∈ K et f, g∈ L p
K(µ).

|λ f + g|p ≤ (|λ| |f |+ |g|)p ≤ (2max(|λ| |f |, |g|))p

≤ 2p |λ|p |f |p + 2p |g|p

d’où
∫
X
|λ f + g|pdµ≤ 2p |λ|p

∫
X
|f |pdµ+ 2p

∫
X
|g|pdµ < +∞. ♦
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Proposition 9.2. (a) Si µ(X) < +∞, alors

0 < p ≤ q ⇒ L q
K(µ) ⊂ L p

K(µ).

(b) Si m est la mesure de comptage sur N, alors

0 < p ≤ q ⇒ `pK(N) ⊂ `qK(N).

DÉMONSTRATION : (a) Si 0 < p ≤ q alors |f |p ≤ |f |q 1{|f |≥1} + 1{|f |≤1}. Donc,
dès que f ∈ L q

K(µ)∫
X
|f |pdµ ≤

∫
X
|f |qdµ+ µ({|f | ≤ 1}) < +∞.

(b) Si 0 < p ≤ q et
∑
n≥0

|an|p < +∞ alors limn an = 0 ; donc à partir d’un certain

rang N , |an| ≤ 1. D’où |an|q ≤ |an|p pour n ≥ N , et
∑
n≥0

|an|q < +∞. ♦

Remarques : • L’assertion (b) s’étend immédiatement au cas de la mesure de
comptage m sur un ensemble (X,P(X)) quelconque et aux espaces de familles
de puissance p-ème sommable indexées par X , en l’espèce

`pK(m) :=
{
(ax)x∈X ∈ KX :

∑
x∈X
|ax|p < +∞

}
.

• Sur (R,B(R)) muni de la mesure de Lebesgue λ, on observe que

1]0,1]√
·
∈ L 1

R(λ) \L 2
R(λ) et

1√
(·)2 + 1

∈ L 2
R(λ) \L 1

R(λ),

donc il n’y a aucune inclusion entre L 1
R(λ) et L 2

R(λ).

9.2 Inégalités de Hölder et de Minkowski

Pour toute fonction f : (X,A ) → K et pour tout réel p > 0, on définit la
quantité

‖f‖p :=
(∫

X
|f |p dµ

) 1
p

≤ +∞ convention : (+∞)
1
p = +∞

appelée “norme L p” de f . Cette terminologie – inappropriée dans bien des situa-
tions – sera justifiée plus loin (cf. théorème 9.2) lorsque p ≥ 1.

Remarque : Il est souvent utile de noter que ‖ . ‖p possède la propriété de “crois-
sance” suivante : si |f | ≤ |g| alors ‖f‖p ≤ ‖g‖p.
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Théorème 9.1 (Inégalité de Hölder). Soient f, g : X → K mesurables et p, q > 1

vérifiant
1

p
+
1

q
=1.

(a) Si f et g sont réelles et positives alors

0 ≤
∫
X
fg dµ ≤ ‖f‖p ‖g‖q ≤ +∞. (9.1)

En outre, lorsque ‖f‖p + ‖g‖q < +∞, il y a égalité dans (9.1) si et seulement
si il existe (α, β)∈ R2

+ \ {(0, 0)} tel que α fp = β gq µ-p.p..

(b) Si f ∈ L p
K(µ) et g∈ L q

K(µ) alors fg∈ L 1
K(µ) et

‖fg‖1 ≤ ‖f‖p ‖g‖q. (9.2)

En outre, il y a égalité si et seulement si il existe (α, β)∈ R2
+ \ {(0, 0)} tel que

α |f |p = β |g|q µ-p.p..

DÉMONSTRATION : (a) étape 1 Inégalité de Young : On pose pour tout α∈ ]0, 1[ et
tout x∈ R+, ϕα(x) :=xα − αx. La fonction ϕα est dérivable sur R∗

+ et ϕ′
α(x) =

α (xα−1−1). Par suite, ϕ′
α(x) < 0 sur ]1,+∞[ et ϕ′

α(x) > 0 sur ]0, 1[. Finalement,
pour tout x∈ R+,ϕα(x) ≤ ϕα(1) avec égalité si et seulement si x = 1. Soit encore,
pour tout x∈ R+, xα ≤ αx+ 1− α avec égalité si et seulement si x = 1.

Par conséquent, en posant x =
u

v
lorsque u≥0 et v>0, il vient

uα v1−α ≤ αu+ (1− α) v avec égalité si et seulement si u = v. (9.3)

L’examen du cas u∈ R+ et v=0 montre que (9.3) est valide pour tous u, v∈ R+.
Cette inégalité est connue sous le nom d’inégalité de Young.

étape 2 Inégalité de Hölder :

– Soit ‖f‖p ou ‖g‖q = 0 et f ou g = 0 µ-p.p.. Dans ce cas fg=0 µ-p.p.. et il
y a donc trivialement égalité (f et g sont supposées à valeurs dans K).

– Soit ces deux quantités sont non nulles et, si ‖f‖p ou ‖g‖q = +∞, l’inégalité
est évidente.

– Soit, enfin, ‖f‖p et ‖g‖q sont dans R∗
+. On pose alors

α :=
1

p
(d’où 1− α =

1

q
), u :=

fp(x)

‖f‖pp
et v :=

gq(x)

‖g‖qq
.

Il vient alors, d’après l’inégalité (9.3),

∀x∈ X, f(x) g(x)

‖f‖p ‖g‖q
≤ 1

p

fp(x)

‖f‖pp
+

1

q

gq(x)

‖g‖qq
,
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avec égalité en les points x∈ X vérifiant
fp(x)

‖f‖pp
=
gq(x)

‖g‖qq
. L’intégration par rapport

à µ conduit à

0 ≤
∫
X
fg dµ ≤ ‖f‖p ‖g‖q

(
1

p

∫
X

fp(x)

‖f‖pp
µ(dx) +

1

q

∫
X

gq(x)

‖g‖qq
µ(dx)

)
︸ ︷︷ ︸

= 1
= ‖f‖p ‖g‖q < +∞.

L’égalité a lieu si et seulement si
fp(x)

‖f‖pp
=
gq(x)

‖g‖qq
µ(dx)-p.p.. En effet, si les fonc-

tions ϕ et ψ vérifient 0 ≤ ϕ ≤ ψ ∈ L 1
R(µ), alors

∫
X
ϕdµ =

∫
X
ψ dµ si et

seulement si ϕ = ψ µ-p.p..
Finalement, il n’y a égalité dans l’inégalité (9.1) que dans les deux cas suivants :
– f ou g = 0 µ-p.p.,
– il existe α, β > 0 tels que α fp = β gq µ-p.p..
D’où la caractérisation de l’énoncé.

(b) On applique (a) à |f | et |g|. ♦

Définition 9.2. Deux réels p, q > 1 tels que
1

p
+

1

q
= 1 sont appelés exposants

conjugués.

Remarques : • Extension immédiate : Dans le théorème 9.1 (a), on peut considé-
rer que les fonctions f et g sont à valeurs dans R+, sous réserve d’appliquer la
convention 0× (+∞)=0 aux produits f(x)g(x).
• Retour sur le cas d’égalité : En revanche, si ‖f‖p ou ‖g‖q = +∞, il peut y
avoir égalité dans l’inégalité (9.1) sans que fp et gq soient proportionnelles. Ainsi
si X =R, p= q=2 et µ= λ, f(x) := x−

3
4 1[1,+∞[(x) et g(x) := x−

1
4 1[1,+∞[(x),

on vérifie que 0 < ‖f‖2 < +∞, ‖g‖2 = +∞ et
∫

R
f(x)g(x)λ(dx) = +∞. Il y a

donc égalité dans (9.1) bien que f2 et g2 soient clairement non proportionnelles.

Corollaire 9.1. (a) Si f ∈ L p
K(µ) et g∈ L q

K(µ) alors
∣∣∣∣∫
X
fg dµ

∣∣∣∣ ≤ ‖f‖p ‖g‖q.
(b) Si p=q=2, on retrouve l’inégalité de Cauchy-Schwarz

∀ f, g∈ L 2
C(µ), f g∈ L 1

C(µ) et
∣∣∣∣∫
X
f g dµ

∣∣∣∣ ≤ ‖f‖2 ‖g‖2 (9.4)

avec égalité si et seulement si f = 0 µ-p.p. ou g=c f µ-p.p., c∈ C.

DÉMONSTRATION : (a) est une application évidente de l’inégalité triangulaire pour
les intégrales ∣∣∣∣∫

X
fg dµ

∣∣∣∣ ≤ ∫
X
|fg| dµ ≤ ‖f‖p ‖g‖q.
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(b) On applique (a) à f et g. Le cas d’égalité s’obtient en combinant les différents
cas d’égalité. Supposons que f(x) ne soit pas µ(dx)-p.p. nulle. Alors le cas d’égalité
dans l’inégalité de Hölder (9.2) entraı̂ne : |g|2 = ρ2 |f |2 µ-p.p., où ρ=

√
α/β. Par

suite, |g| = ρ |f | µ-p.p.. Le cas d’égalité dans l’inégalité triangulaire (cf. proposi-
tion 7.4 (b)) entraı̂ne à son tour : f g = eiθ |fg| µ-p.p.. D’où

f g = ρ eiθ |f |2 = ρ eiθ f f, µ-p.p..

Sur {f 6=0}, on a donc g=c f µ-p.p. avec c=ρ e−iθ et, sur {f=0}, g = 0, l’égalité
g = c f restant donc valable. Réciproquement, si g = c f , l’égalité dans (9.4) est
évidente. ♦

Remarque : Un traitement direct, fondé sur le fait que

∀λ∈ C,
∫
X
|λ f + g|2 dµ ≥ 0,

permet évidemment de retrouver plus rapidement le résultat du corollaire 9.1 (b), y
compris le cas d’égalité. L’adaptation au cas réel est immédiate.

Corollaire 9.2. Si µ est une mesure de probabilité i.e. µ(X)=1, alors l’application
r 7→ ‖f‖r est croissante. En outre, s’il existe r, s ∈ [1,+∞[, r < s, tels que
‖f‖r=‖f‖s<+∞, alors |f | est µ-p.p. constante.

DÉMONSTRATION : Soient r, s ∈ [1,+∞[, r < s. On applique l’inégalité de
Hölder aux fonctions f et 1 avec le couple d’exposants conjugués p := s

r et q := s
s−r .

il vient

‖f‖rr=
∫
X
|f |r1 dµ ≤

(∫
X
|f |r

s
r dµ

) r
s
(∫

X
1

s
s−r dµ

) s−r
s

=‖f‖rsµ(X)
s−r
s =‖f‖rs.

Le cas d’égalité dans l’inégalité de Hölder entraı̂ne immédiatement que |f | est µ-
p.p. proportionnelle à 1 en cas d’égalité de ‖f‖r et ‖f‖s dans R+. ♦

L’une des applications essentielles de l’inégalité de Hölder est sans nul doute
l’inégalité de Minkowski.

Théorème 9.2 (Inégalité de Minkowski). (a) Si p∈ [1,+∞[, alors
(
L p

K(µ), ‖ · ‖p
)

est un K- e.v. semi-normé. En particulier

∀f, g∈ L p
K(µ), ‖f + g‖p ≤ ‖f‖p + ‖g‖p. (9.5)

(b) Cas d’égalité : De plus,

– si p > 1, il y a égalité si et seulement si f = 0 µ-p.p. ou g = α f µ-p.p., pour
un α ≥ 0,

– si p = 1, il y a égalité si et seulement si f g ≥ 0 µ-p.p.
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DÉMONSTRATION : (a) Le seul point non trivial est l’inégalité triangulaire. Soit
p∈ [1,+∞[. En intégrant par rapport à µ l’inégalité

|f + g|p ≤ |f | |f + g|p−1 + |g| |f + g|p−1 (convention x0 = 1, x ≥ 0), (9.6)

il vient : ‖f + g‖pp ≤
∫
X
|f | |f + g|p−1 dµ+

∫
X
|g| |f + g|p−1 dµ.

Si p = 1 l’inégalité (9.5) est établie. Sinon, l’inégalité de Hölder entraı̂ne :

‖f + g‖pp ≤ ‖f‖p
(∫

X
|f + g|(p−1)q dµ

)1
q

+ ‖g‖p
(∫

X
|f + g|(p−1)q dµ

)1
q

où les exposants p et q sont conjugués ; en particulier, (p− 1) q = p et, partant,

‖f + g‖pp ≤ (‖f‖p + ‖g‖p) ‖f + g‖p−1
p .

Comme f +g∈ L p
K(µ), ‖f +g‖p < +∞, on peut donc simplifier, l’inégalité étant

triviale si ‖f + g‖p = 0.
(b) Cas d’égalité :

– Si p > 1, il vient par double application du cas d’égalité dans l’inégalité de
Hölder, β |f + g|p = γ |f |p µ-p.p. et δ |f + g|p = ε |g|p µ-p.p. où (β, γ) et (δ, ε)
sont dans R2

+ \ {(0, 0)}.
Si f ou g = 0 µ-p.p., il y a évidemment égalité.
Supposons maintenant f et g non µ-p.p. nulles. Il ne peut y avoir égalité lorsque

f + g = 0 µ-p.p. car ‖f‖p et ‖g‖p sont alors strictement positifs. Donc f + g n’est
pas µ-p.p. nulle et, partant, les quatre coefficients β, γ, δ, ε sont strictement positifs.
En particulier, |g|p = γδ

βε |f |
p µ-p.p., soit encore |g| = α |f | µ-p.p., α > 0. On en

déduit en outre que f = g = 0 µ-p.p. sur {f + g = 0}.
D’autre part, on doit avoir égalité µ-p.p. dans l’inégalité (9.6), c’est-à-dire |f +

g| = |f |+ |g| µ-p.p. sur {f + g 6= 0}. En élevant au carré, il vient alors

|f |2 + |g|2 + 2<(fg) = |f |2 + |g|2 + 2 |f | |g| µ-p.p. sur {f + g 6= 0}.

étant donné que |f | |g| = |f g| et que <(z) = |z| si et seulement si z∈ R+, on
a donc nécessairement f g = |fg| ≥ 0 µ-p.p. sur {f + g 6= 0}. Par conséquent,
f |g|2 = |f | |g| g µ-p.p. sur {f + g 6= 0}. On déduit aussi que f 6=0 et g 6=0 µ-p.p.
sur {f + g 6=0} ; on peut donc écrire que g = |g|

|f | f = α f µ-p.p. sur {f + g 6= 0}.
Comme f = g = 0 µ-p.p. sur {f + g = 0}, on a évidemment g = α f µ-p.p. sur
{f + g = 0}. Ceci établit que le cas d’égalité avec p > 1 a lieu si et seulement si

f = 0 ou g = 0 µ-p.p. ou g = α f µ-p.p. pour un α > 0,

i.e. si et seulement si f = 0 ou g = α f µ-p.p. pour un α ≥ 0.
– Si p = 1, le cas d’égalité se réduit à |f + g| = |f | + |g| µ-p.p. ce qui,

conformément aux calculs précédents, est équivalent à f g ≥ 0. ♦
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Application 9.1. Inégalités de Hölder et Minkowski inverses :

Soit p∈ ]0, 1[. Pour toutes fonctions mesurables f, g : (X,A , µ)→ R∗
+, l’iné-

galité de Hölder inverse est vérifiée i.e.∫
X
fg dµ ≥

(∫
X
fp dµ

)1
p
(∫

X
gq dµ

)1
q

où
1

p
+

1

q
= 1.

De même, l’inégalité de Minkowski s’inverse en(∫
X
(f + g)p dµ

)1
p

≥
(∫

X
fp dµ

)1
p

+

(∫
X
gp dµ

)1
p

.

DÉMONSTRATION :

– Inégalité de Hölder inverse : Soient les réels

q :=
p

p− 1
< 0, p′ :=

1

p
∈ ]1,+∞[, q′ := −q

p
= 1− q ∈ ]1,+∞[.

En écrivant fp = g−p (fg)p et en notant que (p′, q′) est un couple d’exposants
conjugués, il vient d’après l’inégalité de Hölder (9.2) appliquée à g−p et (fg)p

pour le couple (p′, q′) :∫
X
fp dµ=

∫
X
g−p (fg)p dµ ≤

(∫
X
g−pq

′
dµ

) 1
q′
(∫

X
(fg)pp

′
dµ

) 1
p′

,

i.e.

∫
X
fp dµ≤

(∫
X
gq dµ

)− p
q
(∫

X
fg dµ

)p
.

La racine p-ème de l’inégalité ci-dessus donne alors(∫
X
fp dµ

)1
p

≤
(∫

X
gq dµ

)− 1
q
∫
X
fg dµ.

à ce stade, on distingue les trois cas habituels :

–
(∫

X
gq dµ

)− 1
q

= 0, auquel cas g=0 µ-p.p. car −1
q >0. Ceci est impossible

par hypothèse.

–
(∫

X
gq dµ

)− 1
q

= +∞, auquel cas l’inégalité annoncée est immédiate (le

terme de droite est alors nul).

–
(∫

X
gq dµ

)− 1
q

∈ R∗
+ et l’inégalité de Hölder inverse apparaı̂t en multipliant

par
(∫

X
gq dµ

)1
q

.
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– Inégalité de Minkowski inverse : On décompose (f + g)p comme dans la
démonstration de l’inégalité de Minkowski naturelle 9.5 en

(f + g)p = f (f + g)p−1 + g (f + g)p−1.

L’inégalité de Hölder inverse associée au couple d’exposants (p, q) conduit à∫
X
(f + g)p dµ ≥

[(∫
X
fp dµ

)1
p

+

(∫
X
gp dµ

)1
p

](∫
X
(f + g)p dµ

)1
q

.

L’inégalité de Minkowski inverse s’en déduit en divisant par le dernier terme à
droite de l’inégalité (cette quantité est non nulle et si elle est infinie, le résultat est
trivial). ♦

9.3 Les espaces de Banach LpK(µ), 1≤p <+∞

9.3.1 Préliminaires sur les espaces semi-normés

Définition 9.3. Soit E un K-espace vectoriel. On appelle semi-norme toute appli-
cation N : E → R+ vérifiant

(i) N(0E) = 0 où 0E désigne le vecteur nul de E,

(ii) ∀λ∈ K, ∀x∈ E, N(λx) = |λ|N(x),

(iii) ∀x, y∈ E, N(x+ y) ≤ N(x) +N(y).

Toute norme est donc une semi-norme et une semi-norme est une norme si,
outre l’axiome (i), elle vérifie : N(x) = 0 ⇒ x = 0E .

D’autre part, il est utile de noter que l’axiome (iii) entraı̂ne l’inégalité triangu-
laire “complète” i.e. |N(x)−N(y)| ≤ N(x− y).

Définition 9.4. Soit (E,N) un K-e.v. semi-normé. Alors l’ensemble

V := {x∈ E : N(x) = 0}

est un K- s.e.v. de E appelé noyau de la semi-norme N (on le note parfois KerN ).

Le fait que V soit un K-e.v. est immédiat puisque 0E ∈ V et si x, y ∈ V et
λ∈ K alors N(λx+ y) ≤ |λ|N(x) +N(y) = 0.

à ce stade on souhaite associer canoniquement à cet espace semi-normé un K-
e.v. normé qui soit aussi “proche” que possible de (E,N). Pour ce faire on introduit
la relation binaire sur E définie par

∀x, y∈ E, x ∼ y ⇔ x− y∈ V.

On vérifie que∼ est une relation d’équivalence, compatible avec l’addition et la
multiplication par un scalaire (i.e. si x ∼ x′ et y ∼ y′ alors λx+y ∼ λx′+y′). En
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conséquence, l’ensemble quotient E = {x : x∈ E} des classes d’équivalence de
la relation ∼ est naturellement muni d’une structure de K-e.v., dite structure d’e.v.
quotient, définie à partir des opérations :

x+ y := x+ y et λ · x := λ · x.

L’ensemble E, généralement noté E/V , est appelé l’ espace quotient de E
par V . On le munit alors de

N(x) := N(x).

Cette définition est cohérente car la valeur de N(x) est constante lorsque x varie
au sein d’une classe d’équivalence. En effet, si x ∼ y, x− y∈ V et partant,
|N(x)−N(y)| ≤ N(x− y)=0.

On vérifie alors immédiatement que (E/V, N) est un K- e.v. normé. On a ainsi
construit le K- e.v. normé canoniquement associé au K- e.v. semi-normé (E,N).

En règle générale, on abandonne la notationN pour la norme sur l’e.v. quotient
au profit de la lettreN . Ceci constitue un abus de notation manifeste mais inévitable
en pratique.

9.3.2 Construction et propriétés

Lorsque p≥ 1, les espaces normés Lp(µ) se construisent à partir des espaces
semi-normés (L p(µ), ‖ · ‖p) par simple application de la procédure canonique
décrite ci-avant. D’où la définition suivante.

Définition 9.5. On pose LpK(µ) := L p
K(µ) : {‖ · ‖p = 0}. (LpK(µ), ‖ · ‖p) forme

est un K-espace vectoriel normé (avec l’abus de notation usuel concernant ‖ · ‖p).

Interprétation : ‖f‖p = 0 si et seulement si |f |p = 0 µ-p.p., donc ‖f‖p = 0
si et seulement si f = 0 µ-p.p.. En conséquence, la classe d’équivalence f de
f ∈ L p

K(µ) est de la forme

f =
{
g∈ L p

K(µ) : g = f µ-p.p.
}
.

ATTENTION! Dans la pratique, on désignera indifféremment par f , la fonction
f ∈ L p

K(µ) ou sa classe f ∈ LpK(µ). Ceci constitue un nouvel abus de notation,
aussi systématique qu’inévitable.

Remarque : Si le seul ensemble mesurable de mesure nulle sur (X,A , µ) est Ø,
il est évident que la seule fonction µ-p.p. nulle est la fonction identiquement nulle.
En conséquence, le noyau de ‖ .‖p sera réduit à {0} et les espaces L p

K(µ) et LpK(µ)
coı̈ncideront puisque f={f}. Cette situation n’est pas qu’anecdotique puisqu’elle
se rencontre dès que l’on munit un espace X de la mesure de comptage. Ainsi

Lp(N,P(N),m)=L p(N,P(N),m)=`p(N)=
{
(an)n≥0 :

∑
n≥0|an|

p<+∞
}
.
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Théorème 9.3 (Riesz-Fisher). (a) Pour tout p∈ [1,+∞[, l’espace vectoriel normé
(LpK(µ), ‖ · ‖p) est complet (i.e. toute suite de Cauchy pour la norme ‖ · ‖p converge
pour cette norme).

(b) Soient (fn)n≥1 une suite d’éléments de L p
K(µ) et f ∈ L p

K(µ). Si fn
‖·‖p−→ f , il

existe une suite extraite (fϕ(n))n∈N et une fonction g∈ L p
K(µ) telles que |fϕ(n)| ≤

g µ-p.p. et fϕ(n)
µ-p.p.−→ f .

Ce théorème repose sur deux lemmes.

Lemme 9.1 (Inégalité de Minkowski généralisée). Soit fn : (X,A )→ R+, n ≥ 1,
une suite de fonctions positives. Alors, pour tout p∈ [1,+∞[,∥∥∥∑

n≥1

fn

∥∥∥
p
≤
∑
n≥1

‖fn‖p ≤ +∞.

DÉMONSTRATION : Pour toutes fonction A -mesurables positives f, g,
‖f + g‖p ≤ ‖f‖p + ‖g‖p ≤ +∞ (si ‖f‖p + ‖g‖p < +∞ il s’agit de l’inégalité de
Minkowski classique, sinon c’est évident). On en déduit par récurrence que, pour
tout n ≥ 1, ∥∥∥ n∑

k=1

fk

∥∥∥
p
≤

n∑
k=1

‖fk‖p ≤
∑
k≥1

‖fk‖p ≤ +∞.

On conclut par le théorème de Beppo Levi après avoir remarqué que(
n∑
k=1

fk

)p
↑

∑
k≥1

fk

p

quand n→ +∞. ♦

Lemme 9.2. Soit (E, ‖ · ‖) un K- e.v. normé. (E, ‖ · ‖) est un espace de Banach
(i.e. un espace complet) si et seulement si toute série absolument convergente est
convergente.

DÉMONSTRATION : (⇒) Soient (un)n≥0 une suite de E et Sn := u0 + · · · + un.
On remarque simplement que

‖Sn+p − Sn‖ ≤
n+p∑

k=n+1

‖uk‖.

Donc, si la série de terme général ‖un‖ converge, elle est de Cauchy et, par suite,
(Sn)n≥0 est de Cauchy, donc convergente puisque (E, ‖ · ‖) est complet.

(⇐) (le sens utile ici !) On considère une suite de Cauchy (xn)n∈N. La suite
(xn)n∈N convergera dès qu’une suite extraite (xϕ(n))n∈N convergera. Or, grâce à
la propriété de Cauchy, on peut construire de proche en proche ϕ(0) := 0 et

ϕ(n) := min {k > ϕ(n− 1) : ∀ ` ≥ k, ‖x` − xk‖ < 2−n}, n ≥ 1.
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Pour tout n ≥ 1, ‖xϕ(n+1) − xϕ(n)‖ < 2−n. On pose alors un := xϕ(n) −
xϕ(n−1) si n ≥ 1 et u0 := x0. Il est clair que xϕ(n) =

∑n
k=0 uk et que ‖uk‖ <

21−k, pour tout k ≥ 2. Donc la série
∑

n≥0 ‖un‖ est convergente. Partant, la suite
(xϕ(n))n∈N converge dans E d’où le résultat. ♦

DÉMONSTRATION DU THÉORÈME DE RIESZ-FISHER : (a) Soit une série de terme
général un, n ≥ 0, absolument convergente dans (LpK(µ), ‖ · ‖p), i.e. vérifiant que∑

n≥0 ‖un‖p < +∞. D’après le lemme 9.1, ‖
∑

n≥0 |un|‖p < +∞ donc, en par-
ticulier, pour µ presque tout x, la série

∑
n≥0 |un(x)| est convergente. Le corps K

étant complet, la série de terme général un(x) converge alors dans K. On pose donc

U(x) :=


∑
n≥0

un(x) sur
{
x∈ X :

∑
n≥1 |un(x)| < +∞

}
0 sur c

{
x∈ X :

∑
n≥1 |un(x)| < +∞

}
.

Or, |U −
n∑
k=0

uk| ≤
∑

k≥n+1

|uk| µ-p.p.. Il vient donc, toujours via le lemme 9.1,

‖U −
n∑
k=1

uk‖p = ‖
∑

k≥n+1

|uk|‖p ≤
∑

k≥n+1

‖uk‖p −→
n→+∞

0

donc
n∑
k=0

uk
µ-p.p. et ‖ · ‖p−→ U.

On conclut via le lemme 9.2.

(b) En reprenant la démonstration du sens réciproque dans le lemme 9.2 ci-avant,

on constate que, si fn
‖·‖p−→ f , alors il existe une suite extraite (fϕ(n))n≥0 telle que∑

n≥0 ‖fϕ(n+1) − fϕ(n)‖p < +∞. La démonstration du point (a) montre alors
à son tour que fϕ(n) converge µ-p.p. et dans LpK(µ). L’unicité de la limite dans
(LpK(µ), ‖ · ‖p) entraı̂ne que celle-ci ne peut être que f . D’où le résultat, puisque

|fϕ(n)| ≤ g := |fϕ(0)|+
∑
n≥0

|fϕ(n+1) − fϕ(n)|∈ L
p
K(µ). ♦

Corollaire 9.3. L2
K(µ) muni du produit scalaire

(f, g)2 :=

∫
X
f g dµ

est un espace de Hilbert sur K (g désigne ici la fonction conjuguée de g lorsque
K=C).

DÉMONSTRATION : Il est immédiat que ( · , · )2 est bilinéaire (resp. sesquilinéaire),
symétrique (resp. hermitienne), définie positive si K = R (resp. K = C). On a
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évidemment (f, f)2 = ‖f‖22. La complétude de (L2
K(µ), (·, ·)2) résulte du théorème

de Riesz-Fisher. ♦

L’étude plus approfondie de l’espace L2
K(µ) fera l’objet de la section 9.6.

Pour conclure ce paragraphe, il est utile d’examiner la nature des liens existants
entre convergence Lp et µ-p.p..

Liens entre convergence Lp et convergence µ-p.p. :
Exemple de convergence Lp non µ-p.p. : Soient X := [0, 1], A := B([0, 1]) et
µ :=λ. On pose pour n ≥ 0 et k∈ {0, . . . , 2n − 1}, f2n+k := 1[ k

2n
, k+1
2n

[. On vérifie

que ceci définit bien une suite (fn)n≥1. Il est clair que ‖f2n+k‖p = 2
−n

p → 0
quand n → +∞. à l’inverse si, x étant fixé dans [0, 1[, on considère la suite de
ses approximations dyadiques par défaut : k

x
n

2n ≤ x < kxn+1
2n , kxn∈ {0, . . . , 2n − 1},

il est clair que f2n+kxn(x) = 1 pour tout n ∈ N. Finalement, il vient pour tout
p∈ [1,+∞[,

fn
‖·‖p−→ 0 quand n→ +∞ et ∀x∈ [0, 1[, ∀n ≥ 0, f2n+kxn(x) = 1.

Convergence µ-p.p. Lp-dominée : La convergence µ-p.p. de fonctions de L p(µ)
entraı̂ne-t-elle la convergence dans Lp(µ)? La réponse est négative en général : le
résultat est déjà faux pour p = 1 (cf. seconde remarque après le théorème de conver-
gence dominée dans le chapitre 8). La fabrication d’une variante Lp est immédiate.
Il reste que, sous une hypothèse de domination Lp, ce passage devient valide. C’est
l’objet de la proposition ci-dessous, simple variante du théorème de convergence
dominée de Lebesgue.

Proposition 9.3 (Convergence Lp-dominée). Soit (fn)n∈N une suite de fonctions
de L p

K(µ) convergeant µ-p.p. vers une fonction f .

(a) Si sup
n
‖fn‖p < +∞, la fonction f appartient à L p

K(µ).

(b) S’il existe une fonction g∈ L p
R+

(µ) telle que |fn| ≤ g µ-p.p. pour tout n∈ N,

alors fn
Lp(µ)−→ f .

DÉMONSTRATION : (a) est une conséquence immédiate du lemme de Fatou ap-
pliqué à la suite (|fn|p)n∈N.

(b) On pose, pour tout n∈ N, gn := |f − fn|. Par hypothèse, la suite gn converge
µ-p.p. vers la fonction nulle. D’autre part, en dehors de l’ensemble de mesure nulle
∪n∈N{|fn| > g}, il est clair que |f | ≤ g.

D’où, µ-p.p., gpn = |f − fn|p ≤ (2g)p = 2pgp ∈ L 1(µ). Le théorème de

convergence dominée entraı̂ne alors que
∫
X
|f−fn|pdµ→ 0 quand n→ +∞. ♦
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Application 9.2. Continuité de f 7→ g ◦ f :

Soient r, s ∈ [1,+∞[ et g : R → R une fonction continue. Si la fonction g
vérifie la condition

∃ c∈ R+, ∀ y∈ R, |g(y)| ≤ c |y|r/s, (9.7)

alors l’application Φ :
L r

R(X,A , µ) −→ L s
R(X,A , µ)

f 7−→ g ◦ f est continue.

DÉMONSTRATION : Soit f ∈ L r
R(X,A , µ) ; la fonction g◦f est mesurable comme

composée d’une fonction continue et d’une fonction mesurable. La condition (9.7)
entraı̂ne

|Φ(f)(x)|s = |g(f(x))|s ≤ cs |f(x)|r∈ L 1
R(µ)

donc Φ(f)∈ L s
R(µ) et Φ est bien définie de L r

R(µ) dans L s
R(µ). De plus, Φ vérifie

∀ f ∈ L r
R(µ), ‖Φ(f)‖s ≤ c ‖f‖r/sr .

Pour montrer que Φ est continue, on s’appuie sur la caractérisation séquentielle
de la continuité. Soit (fn)n∈N une suite de L r

R(µ) convergeant vers f pour la norme
‖ · ‖r. La suite des normes ‖Φ(fn) − Φ(f)‖s est bornée dans R+ d’après la majo-
ration précédente, elle possède donc au moins une valeur d’adhérence, soit `. Or,
d’après le théorème 9.3 (b) (Riesz-Fisher), il existe une suite extraite (fϕ(n))n∈N

convergeant µ-p.p. vers f en restant dominée par une fonction h ∈ L r(µ), i.e.
|fϕ(n)| ≤ h µ-p.p., et telle que ` = lim

n
‖Φ(fϕ(n))− Φ(f)‖s.

La suite Φ(fϕ(n)) converge µ-p.p. vers Φ(f) car g est continue sur R. En outre,
on a la relation de domination

µ-p.p. |Φ(fϕ(n))− Φ(f)|s ≤ cs
(
|fϕ(n)|r/s + |f |r/s

)s
≤ cs 2s |h|r∈ L 1

R(µ).

Donc d’après le théorème de convergence dominée 8.3, la suite Φ(fϕ(n)) converge
vers Φ(f) dans L s

R(µ) et par conséquent ` = 0. La suite bornée de terme général
‖Φ(fn)−Φ(f)‖s possède 0 comme unique valeur d’adhérence, elle converge donc
vers 0. D’où la continuité de Φ en f . ♦

En fait la condition (9.7) est nécessaire lorsque (X,A , µ) = (R,B(R), µ) (cf.
exercice 9.12).

9.4 Théorèmes de densité dans les LpK(µ), 1≤p<+∞, (I)

Cette section est consacrée à une première approche des théorèmes de den-
sité. Hormis quelques résultats élémentaires, on s’y cantonnera au cas de la droite
réelle et de la mesure de Lebesgue. Un exposé plus exhaustif est proposé dans la
section 9.7, comprenant notamment le théorème de Lusin.
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Nous persévérons dans l’abus consistant à confondre une fonction et son repré-
sentant dans le quotient Lp(µ). Ainsi, nous nous autoriserons à écrire que tel sous-
ensemble E de L p(µ) est dense dans (Lp(µ), ‖ · ‖p), pour exprimer que le sous-
ensemble de Lp(µ) constitué des classes d’équivalence ayant un représentant dans
E est dense dans (Lp(µ), ‖ · ‖p).

Rappel : Il a été établi au chapitre 7 qu’une fonction étagée ϕ – fonction mesurable
ne prenant qu’un nombre fini de valeurs finies – est intégrable si et seulement si
µ({ϕ 6= 0}) < +∞. Ce résultat s’appuie sur la convention (7.1) : 0 × µ(A) = 0,
pour tout A∈ A . En outre, dans ce cas, ϕ∈ L p

K(µ) pour tout p∈ [1,+∞[.

Proposition 9.4. Pour tout p∈ [1,+∞[, l’ensemble des fonctions étagées intégra-
bles est dense dans LpK(µ).

DÉMONSTRATION : Toute fonction f ∈ L p
K(µ) s’écrit comme combinaison liné-

aire d’au plus quatre fonctions de L p
R+

(µ). On peut donc supposer f ≥ 0. Or,
d’après le lemme fondamental d’approximation 5.1, il existe une suite (ϕn)n≥1

de fonctions étagées positives croissant vers f . D’où ϕn ∈ L p
K(µ) et, d’après le

théorème de convergence dominée, ϕn
‖·‖p−→ f car |f − ϕn|p ≤ fp∈ L 1(µ). ♦

Pour établir les autres théorèmes de densité, nous avons besoin du lemme topo-
logique élémentaire suivant, dont la validité ne se limite d’ailleurs pas aux espaces
Lp.

Lemme 9.3. Soient C ⊂ D ⊂ L p
K(µ). Si C est ‖ · ‖p- dense dans D et D est

‖ · ‖p- dense dans LpK(µ) alors C est ‖ · ‖p- dense dans LpK(µ).

DÉMONSTRATION : Soit f ∈ LpK(µ) et n ∈ N∗. Par densité de D dans LpK(µ), il
existe gn∈ D tel que ‖f − gn‖p ≤ 1

2n . Par densité de C dans D , il existe hn∈ C
tel que ‖gn − hn‖p ≤ 1

2n . Finalement, pour tout n ≥ 1, ‖f − hn‖p ≤ 1
n ce qui

assure le résultat. ♦

Théorème 9.4. On se place sur (R,B(R), λ), λ mesure de Lebesgue. Alors :
(a) L’ensemble des fonctions en escalier à support compact est dense dans tous les
espaces LpK(λ), 1 ≤ p < +∞.
(b) L’ensemble CK(R,K) des fonctions continues à support compact est dense dans
tous les espaces LpK(λ), 1 ≤ p < +∞.

DÉMONSTRATION : (a) D’après la proposition 9.4 et le lemme 9.3, le problème
se réduit à approcher en (semi-)norme ‖ · ‖p une fonction étagée (positive) par
une suite de fonctions en escalier à support compact. Il suffit même, par linéarité,
d’approcher l’indicatrice 1A d’un borélienA∈ B(R) de mesure de Lebesgue λ(A)
finie.

La mesure de Lebesgue étant extérieurement régulière (cf. théorème 6.10, sec-
tion 6.6), on a

λ(A) = inf {λ(O) : A ⊂ O, O ouvert de R}.
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Il existe donc une suite d’ouverts (Ωn)n≥1 telle queA ⊂ Ωn et λ(Ωn)→ λ(A). On
pose alors Ω̃n := Ωn ∩ ]−n, n[. La fonction indicatrice 1

Ω̃n
est à support compact

et ∥∥∥1Ω̃n
− 1A

∥∥∥
p
=
∥∥1]−n,n[ (1Ωn − 1A) + 1A∩]−n,n[ − 1A

∥∥
p

≤ ‖1Ωn − 1A‖p +
∥∥1A\]−n,n[∥∥p

≤ (λ(Ωn)− λ(A))
1
p + (λ(A\]− n, n[))

1
p −→
n→+∞

0

car A\]− n, n[ ↓ Ø et λ(A) < +∞. On conclut en notant que tout ouvert borné Ω
de R est réunion dénombrable d’intervalles ouverts (bornés) deux à deux disjoints,
i.e.

1Ω =
∑
n≥1

1In = lim
n

↑
n∑
k=1

1Ik (Ik intervalles ouverts, éventuellement vides).

La convergence a lieu dans L p
K(λ) par convergence dominée.

(b) Au vu de (a) il suffit d’approcher dans L p
K(λ) l’indicatrice 1I d’un intervalle

ouvert borné I = ]a, b[ par des fonctions continues à support compact. Par exemple,
pour tout n> 2

b−a , on définit ϕn∈ C (R,R) par ϕn :=1 sur ]a + 1
n , b −

1
n [, ϕn est

affine sur ]a, a+ 1
n ]∪ [b−

1
n , b[ et ϕn est nulle hors de I . On vérifie immédiatement

que

‖1I − ϕn‖p =
(

2

n(p+ 1)

)1/p

−→
n→+∞

0. ♦

Remarques et compléments : • Ce théorème s’étend à d’autres cadres que la me-
sure de Lebesgue sur R. Ainsi, on généralise à Rd la notion de fonction en escalier
en :

f : Rd → K est en escalier si f =

n∑
k=1

αk 1Pk
,

où les Pk sont des pavés de la forme : Pk =
∏d
i=1 I

i
k, Iik intervalles de R. On montre

aisément, en adaptant la démonstration précédente, que le théorème 9.4 (a) s’étend
aux mesures µ sur (Rd,B(Rd)) finies sur les compacts. Il reste donc en particulier
vrai pour la mesure de Lebesgue λd sur Rd.

La difficulté lorsque d≥2 provient du fait qu’un ouvert Ω de Rd n’est générale-
ment pas une réunion de pavés ouverts deux à deux disjoints (autrement dit ses
composantes connexes ne sont pas nécessairement des pavés ouverts !). En re-
vanche, c’est une réunion dénombrable de pavés ouverts : Ω =

⋃
n≥1

Pn. Il suffit

alors de remarquer que toute réunion finie de pavés s’écrit comme une réunion
finie de pavés deux à deux disjoints, i.e.

∀n≥1,

n⋃
k=1

Pk =

pn⋃
k=1

Pnk où les Pnk sont des pavés deux à deux disjoints.



178 9. Espaces Lp

On obtient donc

1Ω = lim
n

↑
1⋃n

k=1 Pk
= lim

n

↑
pn∑
k=1

1Pn
k
.

Le reste de la démonstration est inchangé.
Le point (b) s’étend également aux mesures µ sur (Rd,B(Rd)) finies sur les

compacts et apparaı̂t comme un cas particulier du théorème 9.10, section 9.7.

• Plus généralement encore, on peut montrer (cf. exercice 9.18) que si X est un
espace métrique localement compact ( 1) séparable (un tel espace possède une
base dénombrable d’ouverts d’après la proposition 3.5) et si µ est une mesure sur
(X,B(X)) finie sur les compacts de X , alors l’ensemble{

n∑
k=1

αk 1Ok
: αk∈K, Ok∈O(X) et µ(Ok)<+∞

}

est dense dans tous les LpK(µ).
Cette dernière généralisation consiste à remarquer que de telles mesures sont

extérieurement régulières puis à reproduire le début de la démonstration de l’asser-
tion (a).

Application 9.3. Soit Y := [0, 1]d, d ≥ 1. Pour tout p≥ 1, on désigne par L p
#(Y, λd) l’ensemble

des fonctions boréliennes f définies sur Rd avec |f |p λd-intégrables sur tout compact de Rd, et Y -
périodiques, au sens où f(y + ei) = f(y) λd-p.p. pour tout vecteur ei, 1 ≤ i ≤ d, de la base
canonique de Rd.

Soient p, q deux exposants conjugués finis. Alors, pour toute fonction f ∈ L p
#(Y, λd) et toute

fonction g∈ L q(Rd) nulle hors d’un compact,

lim
n

∫
Rd

f(nx) g(x) dx =

∫
Y

f(y) dy

∫
Rd

g(x) dx.

DÉMONSTRATION : étape 1 : Soient α > 0, A ∈ B(Rd) et h : Rd → R une fonction borélienne
positive ou intégrable sur αA. Alors l’égalité suivante est vérifiée∫

A

h(αx) dx = α−d

∫
αA

h(y) dy où αA := {αx, x∈ A}.

Ce résultat est un cas particulier du théorème général de changement de variables (cf. proposi-
tion 12.1) qui sera établi au chapitre 12.

étape 2 Pour tout pavé compact Q :=
∏

1≤i≤d[ai, bi] et toute fonction h∈ L 1
#(Y, λd),

lim
n

∫
Q

h(nx) dx = λd(Q)

∫
Y

h(y) dy.

Pour n> max
1≤i≤d

(bi − ai)
−1, on considère le pavage disjoint {Yκ}κ∈Zd de Rd défini par

Yκ :=
1

n
κ+

1

n
[0, 1[d, κ∈ Zd,

1. Est localement compact tout espace topologique dont chaque point admet un voisinage com-
pact.
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et l’on pose
In :={κ ∈ Zd : Yκ ⊂ Q} et Jn :={κ ∈ Zd : Yκ ∩ ∂Q 6= Ø}.

On définit ensuite, pour tout n≥1, les pavés de Rd

Q
n
:=

d∏
i=1

[ai+
1
n
, bi− 1

n
] ⊂ Q ⊂ Qn :=

d∏
i=1

[ai− 1
n
, bi+

1
n
].

Il est facile de vérifier que si κ∈ Jn alors Yκ ⊂ Qn \ Q
n

. En outre, les Yκ étant deux à deux
disjoints,

λd(
⋃

κ∈Jn

Yκ) =
∑
κ∈Jn

λd(Yκ) = n−d card Jn ≤ λd(Qn \Q
n
) = O(n−1). (9.8)

De même,

λd(Q) = λd(
⋃

κ∈In

Yκ) + λd(
⋃

κ∈Jn

Yκ ∩Q) =
∑
κ∈In

λd(Yκ) +O(n−1) = n−d card In +O(n−1),

(9.9)
d’où n−dcard In = λd(Q) +O(n−1). D’autre part, on peut écrire∫

Q

h(nx) dx =
∑
κ∈In

∫
Yκ

h(nx) dx+
∑
κ∈Jn

∫
Yκ∩Q

h(nx) dx.

L’étape 1, la Y -périodicité de h et le fait que la mesure de Lebesgue λd ne charge pas les hyperplans
entraı̂nent∫

Yκ

h(nx)dx = n−d

∫
nYκ

h(y)dy = n−d

∫
[0,1[d+κ

h(y)dy = n−d

∫
[0,1[d

h(y)dy = n−d

∫
Y

h(y)dy.

(9.10)
De même ∣∣∣∣∫

Yκ∩Q

h(nx) dx

∣∣∣∣ ≤ ∫
Yκ

|h(nx)| dx = n−d

∫
Y

|h(y)| dy. (9.11)

En combinant les résultats obtenus en (9.8), (9.9), (9.10) et (9.11), on obtient∫
Q

h(nx) dx = n−d card In
∫
Y

h(y) dy +O(n−d card Jn) = λd(Q)

∫
Y

h(y) dy +O(n−1),

ce qui conduit aussitôt au résultat annoncé.
étape 3 (Cas général) :

Soient g ∈ L q
R(R

d), nulle hors d’un pavé compact Q de Rd, et p > 1 tel que 1/p + 1/q = 1.
D’après le théorème de densité 9.4 – adapté à Lp(Rd) selon la remarque qui suit le théorème – il
existe, pour tout ε > 0 une fonction ϕ, combinaison linéaire de fonctions indicatrices de pavés de Rd

aux côtés parallèles aux axes, telle que ‖g−ϕ‖q < ε. Quitte à changer ϕ en 1Q ϕ, on peut supposer
que ϕ est nulle hors de Q, puisque ‖g − 1Q ϕ‖q ≤ ‖g − ϕ‖q < ε.

Remarquons d’abord qu’en vertu de l’étape 1, x 7→ f(nx)∈ L p
#(Y, λd). Par suite, sa restriction

à Q appartient à L p(Q). Comme g ∈ L q(Q), l’inégalité de Hölder assure l’intégrabilité de la
fonction x 7→ f(nx) g(x) sur Q. On écrit alors∫

Rd

f(nx) g(x) dx =

∫
Q

f(nx)ϕ(x) dx+

∫
Q

f(nx) (g(x)− ϕ(x)) dx.

Soit h := |f |p. La fonction h est dans L 1
#(Y, λd) car la restriction de λd à Y étant finie,

L p
#(Y, λd) est inclus dans L 1

#(Y, λd). On peut donc appliquer l’étape 2 à h et, partant, la suite des
normes ‖f(n . )‖Lp(Q) converge vers un réel. L’inégalité de Hölder fournit alors les majorations∣∣∣∣∫

Q

f(nx) (g(x)− ϕ(x)) dx

∣∣∣∣ ≤ ‖f(nx)‖Lp(Q) ‖g − ϕ‖Lq(Q) < c1 ε

et
∣∣∣∣∫

Q

g(x) dx−
∫
Q

ϕ(x)dx

∣∣∣∣ ≤ ∫
Rd

1Q(x)|g(x)− ϕ(x)|dx ≤ (λd(Q))1/p ‖g − ϕ‖q ≤ c2 ε
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qui impliquent∣∣∣∣∫
Q

f(nx)g(x)dx−
∫
Y

f(y)dy

∫
Q

g(x)dx

∣∣∣∣ ≤ ∣∣∣∣∫
Q

f(nx)ϕ(x)dx−
∫
Y

f(y) dy

∫
Q

ϕ(x)dx

∣∣∣∣+ c ε.

D’autre part, de nouveau grâce à l’étape 2, on a

lim
n

∫
Q

f(nx)ϕ(x) dx =

∫
Y

f(y) dy

∫
Q

ϕ(x) dx.

On en déduit donc que, pour tout ε>0,

lim
n

∣∣∣∣∫
Q

f(nx) g(x) dx−
∫
Y

f(y) dy

∫
Q

g(x) dx

∣∣∣∣ ≤ c ε,

d’où la limite cherchée. ♦

9.5 L’espace L∞K (µ) (µ 6= 0)

Dans cette section, on suppose que la mesure µ sur (X,A ) n’est pas nulle.

Définition 9.6. Soit f : (X,A )→ R+. On définit le supremum essentiel de f par

supess (f) :=inf
{
M>0 : µ({f >M}) = 0

}
≥ 0,

avec la convention classique inf Ø = +∞.

Proposition 9.5. Si supess (f) < +∞, alors

supess (f) :=min
{
M : µ({f >M}) = 0

}
,

i.e.

(a) ∀M ≥ supess (f), µ({f > M}) = 0,

(b) ∀M < supess (f), µ({f > M}) > 0.

DÉMONSTRATION : M 7→ {f > M} est décroissante pour l’inclusion donc la
fonction M 7→ µ({f >M}) est décroissante positive. Le seul point à vérifier est la
valeur de µ({f >M}) en M = supess (f). Or

µ
(
{f >supess (f)}

)
= µ

( ⋃
n≥1

↑{f >supess (f)+1/n}
)

= lim
n

↑
µ
(
{f >supess (f)+1/n}

)
= 0. ♦

Définition 9.7. (a) Soit f : (X,A )→ K, on pose ‖f‖∞ :=supess (|f |).
(b) On note L ∞

K (µ) :=
{
f : (X,A ) → K : ‖f‖∞ < +∞

}
l’ensemble des

fonctions µ- essentiellement bornées.
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Remarques : • Si f=g µ-p.p. alors supess (f)=supess (g).
• Si la fonction f : (X,A ) → (K,B(K)) est mesurable bornée alors f ∈L ∞

K (µ)
et ‖f‖∞≤‖f‖sup := sup

x∈X
|f(x)|, car µ({|f |>‖f‖sup})=µ(Ø)=0.

• Soit (X,B(X), µ) un espace topologique muni de sa tribu borélienne et d’une
mesure µ chargeant tous les ouverts non vides. Alors, si f : (X,A )→ (K,B(K))
est continue, ‖f‖∞ = ‖f‖sup . En effet, si ‖f‖∞ < ‖f‖sup , l’ensemble {|f | >
‖f‖∞} est alors un ouvert non vide, donc nécessairement chargé par µ. D’où la
contradiction.

Les fonctions µ-essentiellement bornées se caractérisent à l’aide des fonctions
bornées usuelles :

Lemme 9.4. Soit f : (X,A ) → K une fonction mesurable. f ∈ L ∞
K (µ) si et

seulement si il existe une fonction g : (X,A ) → K mesurable bornée telle que
f = g µ-p.p. et ‖g‖∞ = ‖g‖sup = ‖f‖∞ .

DÉMONSTRATION : (⇒) On pose g :=f 1{|f |≤‖f‖∞}.
Alors f = g µ-p.p. et |g| ≤ ‖f‖∞ , donc ‖g‖sup ≤ ‖f‖∞ = ‖g‖∞ . De plus, par la
remarque précédente, ‖g‖∞ ≤ ‖g‖sup .
(⇐) Ce sens est évident vu que f=g µ-p.p. entraı̂ne |f |= |g| µ-p.p.. ♦

Théorème 9.5. (a)
(
L ∞

K (µ), ‖ · ‖∞
)

est un K- e.v. semi-normé et

{‖ · ‖∞ = 0} = {f : f = 0 µ-p.p.}.

(b) L’e.v.n. quotient L∞
K (µ) :=L ∞

K (µ) : {‖ · ‖∞ = 0} muni de ‖ · ‖∞ est complet,
i.e. est un espace de Banach.

DÉMONSTRATION : (a) On vérifie immédiatement à l’aide du lemme 9.4 que
L ∞

K (µ) est un K- s.e.v. de F (X,K). On procède de même pour vérifier que ‖ · ‖∞
est une semi-norme, sachant que ‖·‖sup est une norme sur l’ensemble des fonctions
bornées. Soient f1, f2 ∈ L ∞

K (µ) et g1, g2 mesurables bornées telles que fi = gi
µ-p.p. et ‖fi‖∞ = ‖gi‖sup , i=1, 2. Alors f1 + f2 = g1 + g2 µ-p.p. donc

‖f1+f2‖∞ = ‖g1+g2‖∞ ≤ ‖g1+g2‖sup ≤ ‖g1‖sup+‖g2‖sup = ‖f1‖∞+‖f2‖∞ .

Soient f ∈L
∞
K , λ∈K et g fonction mesurable bornée vérifiant f = g µ-p.p. et

‖f‖∞ =‖g‖sup . Il vient λf=λg µ-p.p. donc, d’après le lemme 9.4,

‖λf‖∞ =‖λg‖sup = |λ|‖g‖sup = |λ|‖f‖∞ .

Enfin ‖0‖∞ = 0, donc ‖ . ‖∞ est bien une semi-norme. Déterminons-en le
noyau. Soient f ∈ L ∞

K (µ), ‖f‖∞ = 0 et g mesurable bornée associée à f via
le lemme 9.4. Il est clair que ‖g‖sup =0 i.e. g≡0 d’où f=0 µ-p.p..
(b) Pour la complétude, on s’appuie à nouveau sur l’espace B(X,K) des fonctions
bornées de X dans K. En effet B(X,K), muni de la norme de la convergence
uniforme ‖ · ‖sup , est complet. Soit (fn)n≥1 de Cauchy dans

(
L ∞

K (µ), ‖ · ‖∞
)
.
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On pose alors

A∞ :=
( ⋃
n≥1

{|fn| > ‖fn‖∞}
)⋃( ⋃

n,m

{|fn − fm| > ‖fn − fm‖∞}
)
,

µ(A∞) = 0 comme réunion dénombrable d’ensembles négligeables. On définit
alors les fonctions bornées gn :=fn 1cA∞ . Ces fonctions vérifient

|gn−gm| = |fn−fm| 1cA∞ ≤ ‖fn−fm‖∞ d’où ‖gn−gm‖sup ≤ ‖fn−fm‖∞ .

La suite (gn)n≥1 est donc de Cauchy dans l’espace complet (B(X,K), ‖ · ‖sup).

Par conséquent, gn
‖·‖sup−→ g. En particulier, gn

S−→ g (convergence simple) donc g
est mesurable puisque les gn le sont.

Enfin, ‖fn − g‖∞ ≤ ‖(gn − g) 1cA∞‖∞ + ‖(fn − gn) 1cA∞‖∞︸ ︷︷ ︸
=0

≤ ‖gn − g‖∞ ≤ ‖gn − g‖sup −→
n→+∞

0. ♦

Poursuivons par deux propriétés classiques.

Proposition 9.6. (a) (Inégalité de Hölder) Pour tous p, q∈ [1,+∞], 1
p +

1
q = 1, si

f ∈ L p
K(µ) et f ∈ L q

K(µ), alors

fg∈L 1
K(µ) et

∫
X
|fg| dµ ≤ ‖f‖p ‖g‖q < +∞.

(b) Pour toute fonction mesurable f : (X,A )→ K, ‖f‖∞ ≤ lim
p→+∞

‖f‖p( 2).

(c) La notation ‖ · ‖∞ se justifie notamment par la propriété suivante :

∀ f ∈
⋃
p>0

L p
K(µ), lim

p→+∞
‖f‖p = ‖f‖∞ .

DÉMONSTRATION : (a) Le seul cas à étudier est p=1 et q=+∞. Or,

|fg| ≤ |f | ‖g‖∞ µ-p.p. donc
∫
X
|fg| dµ ≤ ‖f‖1 ‖g‖∞ .

(b) Si ‖f‖∞ = 0, f = 0 µ-p.p. donc ‖f‖p = 0 pour tout p > 0. Si ‖f‖∞ > 0,
pour tout A∈ ]0, ‖f‖∞ [, |f |p ≥ Ap 1{|f |≥A}. Là, deux cas sont possibles :

– soit il existe A0 ∈ ]0, ‖f‖∞ [ tel que µ({|f | ≥ A0}) = +∞ et ‖f‖p = +∞
pour tout p > 0, partant lim

p→+∞
‖f‖p = +∞ ≥ ‖f‖∞ ;

2. Soit F : R → R. On pose

lim
x→+∞

F (x) := lim
x→+∞

↑( inf
y>x

F (y)) ∈ R et lim
x→+∞

F (x) := lim
x→+∞

↓(sup
y>x

F (y)) ∈ R.
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– soit, pour tout A ∈ ]0, ‖f‖∞ [, µ({|f | ≥ A}) < +∞. Alors, il vient
‖f‖p ≥ Aµ({|f | ≥ A})

1
p . Comme 0 < µ({|f | ≥ A}) < +∞, µ({|f | ≥

A})
1
p

p−→ 1 donc lim
p
‖f‖p ≥ A pour tout A ∈ ]0, ‖f‖∞ [ ; par suite lim

p
‖f‖p ≥

‖f‖∞ .
(c) Soit f ∈ L r

K(µ). Au vu du point (b), il suffit d’établir que lim
p
‖f‖p ≤ ‖f‖∞ .

En outre, on peut supposer que 0 < ‖f‖∞< +∞. Il vient |f(x)|/‖f‖∞≤1 µ-p.p.
d’où, pour tout p ≥ r,

|f(x)|p

‖f‖p∞
≤ |f(x)|

r

‖f‖r∞
µ-p.p. et partant ‖f‖p ≤

(
‖f‖r
‖f‖∞

)r/p
‖f‖∞ .

Finalement, lim
p
‖f‖p ≤ ‖f‖∞ . D’où le résultat. ♦

Remarques : • Sur (R,B(R), λ), f :=1 /∈L p(λ) pour tout p∈ [1,∞[, c’est-à-dire
‖f‖p = +∞ bien que ‖f‖∞ = 1. On a donc lim

p
‖f‖p > ‖f‖∞ . Cette situation

s’étend à tout espace mesuré (X,A , µ) où µ(X)=+∞.
• Si l’on se place maintenant sur (X,A ) = (N,P(N)) muni de la mesure de
comptage, on vérifie immédiatement que

∀ p > 0, `pK(N) ⊂ `∞K (N) :=
{
x = (xn)n∈N : sup

n∈N
|xn| < +∞

}
.

En outre, d’après la proposition 9.6 (b), on a donc

∀ f ∈
⋃
r>0

`rK(N), lim
p→+∞

(∑
n≥1

|xn|p
) 1

p
= sup

n∈N
|xn|.

• On rappelle que, si µ(X) < +∞, L ∞
K (µ) ⊂ L p

K(µ) pour tout p>0.
• Il est à noter que les théorèmes de densité énoncés à la section 9.4 pour les espaces
L p

K(µ), 1≤p<+∞, sont faux dans le cas p=+∞. Ainsi,

CK(R,K)
‖ · ‖∞ =

{
f ∈L ∞

K (µ) : ∃ g∈ C (R,K), f=g µ -p.p. et lim
|x|→+∞

|g(x)|=0
}
.

On dispose uniquement du résultat de densité ci-après.

Théorème 9.6. L’ensemble des fonctions étagées est dense dans L∞
K (µ).

DÉMONSTRATION : C’est une conséquence immédiate du lemme fondamental
d’approximation : lemme 5.1, chapitre 5. ♦

Terminons par un résultat qui illustre également bien la différence entre les
espaces Lp, 1≤ p <+∞, d’une part et l’espace L∞ d’autre part. Pour simplifier,
on l’énonce sur (Rd,B(Rd), λd).



184 9. Espaces Lp

Proposition 9.7. L’espace normé LpR(λd) est séparable (i.e. contient une partie
dénombrable dense) si 1≤p< +∞ et n’est pas séparable si p=+∞.

DÉMONSTRATION : Cas p<+∞ : On considère le sous-espace D de fonctions en
escalier sur Rd défini par

D :=

{
n∑
k=1

αk 1∏d
i=1]ai,bi[

; αk, ai, bi∈ Q, n∈ N∗

}
.

Il est clair que D est une partie dénombrable de Lp(Rd). De plus, D est dense dans
LpR(λd) en vertu du théorème 9.4 adapté à Rd (cf. la remarque qui suit le théorème).

Cas p = +∞ : Soit A une partie borélienne bornée de Rd de mesure de Le-
besgue non nulle. Montrons que

∀α, α′∈ Rd, α 6= α′, B(1α+A, 1/4) ∩B(1α′+A, 1/4) = Ø,

où B(f, r) désigne la boule (ouverte) de centre f et de rayon r dans L∞
R (λd). S’il

existe ϕ∈ B(1α+A, 1/4) ∩B(1α′+A, 1/4) alors par l’inégalité triangulaire,

‖1α+A − 1α′+A‖∞ ≤ ‖1α+A − ϕ‖∞ + ‖ϕ− 1α′+A‖∞ < 1/4 + 1/4 < 1.

Or, ‖1α+A − 1α′+A‖∞ , ne pouvant prendre que les valeurs 0 ou 1, vaut donc 0.
D’autre part, on remarque que 1α+A(x) = 1A(x − α). L’invariance de la norme
L∞ par translation entraı̂ne alors immédiatement que, pour tout n∈ N∗,

‖1n(α′−α)+A − 1(n−1)(α′−α)+A‖∞=‖1α′−α+A − 1A‖∞=‖1α′+A − 1α+A‖∞ =0.

D’où, pour tout n∈ N, via l’inégalité triangulaire

‖1n(α′−α)+A − 1A‖∞ ≤
n∑
k=1

‖1k(α′−α)+A − 1(k−1)(α′−α)+A‖∞ = 0.

Or, l’ensemble A étant borné, il existe un n0 telle que A ∩ [n0(α
′−α)+A] = Ø.

L’égalité 1n0(α′−α)+A = 1A n’est donc possible que si les deux indicatrices sont
nulles λd-p.p.. Ceci est impossible par hypothèse (λd(A) 6=0).

Supposons à présent l’existence d’une partie D :={fn ; n ∈ N} dénombrable
dense dans L∞

R (λd). Il existe alors, pour chaque α ∈ Rd, un (plus petit) entier
n(α) ∈ N tel que fn(α) ∈ B(1α+A, 1/4). On définit ainsi une application

(
α 7→

n(α)
)

de Rd dans N. Cette application est clairement injective d’après ce qui pré-
cède. Ceci est impossible car Rd n’est pas dénombrable. ♦

Remarque : On a en fait établi dans la proposition ci-dessus que le R sous-espace
vectoriel de (L∞

R (Rd),B(Rd), λd) engendré par la famille de fonctions indicatrices
{1α+A, α ∈ Rd} n’est pas séparable. Ce sous-espace vectoriel est évidemment
beaucoup plus petit que (L∞

R (Rd),B(Rd), λd).
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Application 9.4. Applications linéaires locales continues sur L1
R(µ) :

Soient (X,A , µ) un espace mesuré de masse totale finie et Φ une application linéaire continue
de L1

R(µ) dans L1
R(µ). On suppose qu’en outre, Φ est locale, i.e. pour toute fonction f ∈L1

R(µ) et
toute partie A∈A

1Af = 0 µ-p.p.⇒ 1AΦ(f) = 0 µ-p.p..

Alors il existe ϕ∈L∞(µ) tel que pour toute fonction f ∈L1
R(µ), Φ(f) = ϕf .

DÉMONSTRATION : étape 1 : Si A∈ A et f ∈ L1
R(µ) alors Φ(1A f) = 1A Φ(f).

Soient g :=Φ(1A f)− 1A Φ(f) et h :=Φ(1cA f)− 1cA Φ(f). Le caractère local de Φ entraı̂ne que

1Ah = 1cAg = 0 µ-p.p. d’où gh = (1Ag + 1cAg)h = 0 µ-p.p.

La linéarité de Φ entraı̂ne à son tour

g + h = Φ(1A f + 1cA f)− (1A + 1cA ) Φ(f) = Φ(f)− Φ(f) = 0 µ-p.p..

Donc g2 = −gh = 0 µ-p.p. et par conséquent Φ(1A f)=1A Φ(f) µ-p.p..

étape 2 : ϕ :=Φ(1X) ∈ L∞
R (µ) et ‖ϕ‖∞ ≤ ‖Φ‖.

D’après l’étape 1, si A∈ A alors Φ(1A) = Φ(1A 1X) = 1A ϕ, d’où∫
A

|ϕ| dµ = ‖1A ϕ‖1 = ‖Φ(1A)‖1 ≤ ‖Φ‖ ‖1A‖1 = ‖Φ‖µ(A).

En particulier, pour A :={|ϕ| > ‖Φ‖} on a∫
A

(|ϕ| − ‖Φ‖)︸ ︷︷ ︸
>0

dµ ≤ 0,

donc µ(A) = 0 i.e. |ϕ| ≤ ‖Φ‖ µ-p.p., ce qui établit le résultat.

étape 3 : ∀ f ∈ L1
R(µ), Φ(f) = ϕf .

D’après l’étape 1, pour toute partie A ∈ A on a Φ(1A) = ϕ 1A. L’égalité est vérifiée par toute

fonction étagée intégrable par linéarité. La densité des fonctions étagées intégrables dans l’espace

L1
R(µ) (cf. proposition 9.4), combinée avec la continuité de Φ, entraı̂ne l’égalité pour toute fonction

de L1
R(µ). ♦

9.6 Propriétés hilbertiennes de L2
K(µ)

Le but de cette section n’est pas de développer la théorie complète des espaces
de Hilbert mais essentiellement de parvenir au théorème de représentation des
formes linéaires continues sur L2 qui nous servira en particulier dans la démonstra-
tion du théorème de Radon-Nikodym à la section suivante.

9.6.1 L’espace de Hilbert L2
K(µ)

L’application définie sur L2
K(µ)× L2

K(µ) par

(f, g)2 :=

∫
X
f g dµ

est une forme sesquilinéaire, i.e. elle vérifie les propriétés suivantes :
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(i) ∀ f1, f2, g∈ L2
K(µ), ∀λ∈ K, (λ f1 + f2, g)2 = λ (f1, g)2 + (f2, g)2 ,

(ii) ∀ f, g∈ L2
K(µ), (f, g)2 = (g, f)2 ,

(iii) ∀ f ∈ L2
K(µ), (f, f)2 ≥ 0 et (f, f)2 = 0⇔ f = 0.

L’application ‖f‖2 :=
√

(f, f)2 définit une norme sur L2
K(µ), appelée norme

hilbertienne. D’après le théorème de Riesz-Fisher, l’espace L2
K(µ) muni de cette

norme forme un K-e.v.n. complet, c’est donc un espace de Hilbert.

Remarque : Comme nous l’avons indiqué en préambule, nous n’allons pas étudier
les espaces de Hilbert de manière générale mais en donner quelques propriétés
fondamentales dans le cadre L2

K(µ). Toutefois, ce cadre apparemment particulier
n’est pas une réelle restriction car on peut montrer que tout espace de Hilbert est
isométriquement isomorphe à un espace du type `2K(I). En outre I est un ensemble
dénombrable lorsque l’espace de Hilbert est séparable.

9.6.2 Théorème de projection

Théorème 9.7 (Projection orthogonale). Soit F un s.e.v. fermé de L2
K(µ). Alors

toute fonction g de L2
K(µ) peut se décomposer de manière unique sous la forme

g = f + h où f ∈ F et (ϕ, h)2 = 0 ∀ϕ∈ F ; (9.12)

autrement dit, L2
K(µ) se décompose en somme directe sous la forme

L2
K(µ) = F ⊕ F⊥ où F⊥ :={u∈ L2

K(µ) : ∀ϕ∈ F, (ϕ, u)2 = 0}. (9.13)

La fonction f est appelée la projection orthogonale de g sur F . Elle est aussi
caractérisée par l’égalité

‖g − f‖2 = min
ϕ∈F
‖g − ϕ‖2. (9.14)

La démonstration de ce théorème repose notamment sur l’identité classique
suivante :

Lemme 9.5 (Identité du parallélogramme). Pour toutes fonctions f, g∈ L2
K(µ)

‖f + g‖22 + ‖f − g‖22 = 2
(
‖f‖22 + ‖g‖22

)
. (9.15)

DÉMONSTRATION : Il suffit de remarquer que

‖f + g‖22 = ‖f‖22 + ‖g‖22 + 2<(f g). ♦

DÉMONSTRATION DU THÉORÈME 9.7 : Soit d := inf
ϕ∈F
‖g − ϕ‖2 ∈ R+. Il existe

une suite asymptotiquement minimisante (ϕn)n≥0 i.e. telle que d=limn ‖g−ϕn‖2.
Montrons que cette suite est de Cauchy dans L2

K(µ). D’après l’identité (9.15),∥∥∥∥ϕm + ϕn
2

− g
∥∥∥∥2
2

+

∥∥∥∥ϕm − ϕn2

∥∥∥∥2
2

= 2

∥∥∥∥ϕm − g2

∥∥∥∥2
2

+ 2

∥∥∥∥ϕn − g2

∥∥∥∥2
2
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d’où, puisque
ϕm + ϕn

2
∈ F ,

‖ϕm − ϕn‖22 ≤ 2
(
‖ϕm − g‖22 + ‖ϕn − g‖22 − 2 d2

)
.

La propriété de Cauchy découle alors de la définition de la suite (ϕn)n≥0.
Le s.e.v.F étant fermé, (F, ‖ . ‖2) est donc complet et la suite (ϕn)n≥0 converge

donc vers une fonction f ∈ F . Il est immédiat par construction que f vérifie
l’égalité (9.14).

Montrons à présent que f vérifie l’égalité (9.12). Soit h :=g−f et ϕ∈ F . Pour
tout t > 0, f + t ϕ∈ F donc

‖h‖22 = ‖g−f‖22 ≤ ‖g−(f+t ϕ)‖22 = ‖h−t ϕ‖22 = ‖h‖22+t2 ‖ϕ‖22−2 t<(h, ϕ)2

d’où 0 ≤ t ‖ϕ‖22−2<(h, ϕ)2 . En faisant tendre t vers 0, il vient<(h, ϕ)2 ≤ 0 pour
toute ϕ∈ F . En particulier, <(h, ϕ)2 = −<(h,−ϕ)2 ≥ 0 d’où <(h, ϕ)2 = 0.

Lorsque K = R, on obtient directement (9.12). Si K = C, la sesquilinéarité de
(·, ·)2 entraı̂ne =(h, ϕ)2 = < (−i (h, ϕ)2) = <(h, i ϕ)2 = 0 d’où (9.12).

Il reste à montrer l’unicité du couple (f, h). Supposons que l’identité (9.12) ait
lieu avec un autre couple (f ′, h′). On a f ′ − f = h − h′ alors, puisque f ′, f ∈ F ,
(f ′ − f, f ′)2 = (f ′ − f, f)2 = 0 = (f ′ − f, f ′ − f)2 donc f ′ = f et h′ = h. ♦

Terminons cette section par le théorème de représentation des formes linéaires
continues sur L2

K(µ).

9.6.3 Représentation d’une forme linéaire continue

Théorème 9.8 (Lemme de Riesz-Fisher). Soit Φ : L2
K(µ) → K une forme linéaire

continue. Alors il existe une unique fonction g∈ L2
K(µ) telle que

∀ f ∈ L2
K(µ), Φ(f) =

∫
X
f g dµ. (9.16)

DÉMONSTRATION : F :=Φ−1{0} est un s.e.v. fermé de L2
K(µ) car Φ est continue.

Si Φ = 0 alors la fonction nulle convient. Sinon, il existe d’après la décomposition
(9.13) du théorème 9.7, h∈ F⊥ \ {0}. On pose alors

g :=
Φ(h)

‖h‖22
h∈ F⊥.

Soit f ∈ L2
K(µ). Comme Φ(g) 6= 0, on peut poser λ :=

Φ(f)

Φ(g)
∈ K. On a alors

Φ(f−λ g) = 0 d’où f − λ g ∈ F et par suite (f−λ g, g)2 = 0 car g ∈ F⊥. On

obtient donc λ =
(f, g)2
‖g‖22

et partant Φ(f) =
Φ(g)

‖g‖22
(f, g)2 = (f, g)2 . ♦
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9.7 ♣ Théorèmes de densité dans les LpK(µ), p<+∞, (II)

Avant d’entrer dans le vif du sujet, le lemme préliminaire suivant propose une
méthode d’approximation d’une fonction indicatrice d’ouvert par des fonctions lip-
schitziennes dans un espace métrique. Cette méthode s’appuie sur la notion de dis-
tance à un ensemble développée à la section 3.6 dans la première partie et se révèle
un outil indispensable dans les théorèmes de densité.

Lemme 9.6. Pour tout ouvert O ∈ O(X)\ {X} et pour tout k ∈ N∗, on définit
la fonction ϕk sur X par ϕk(x) := min (kd(x, cO), 1). La fonction ϕk est k-
lipschitzienne et vérifie

0 ≤ ϕk ≤ ϕk+1 ≤ 1O et lim
k

↑
ϕk = 1O.

DÉMONSTRATION : La fonction u 7→ min(ku, 1) est k-lipschitzienne de R+ dans
[0, 1] et ne s’annule qu’en 0. Si u 6=0, lim

k

↑
min(ku, 1)=1. La fonction ϕk est donc

k×1=k-lipschitzienne par composition, et lim
k

↑
ϕk=1{x:d(x, cO)>0}=1O. ♦

9.7.1 Densité des fonctions lipschitziennes dans LpK(µ)

Le théorème principal ci-après fait intervenir l’espace

Lipb(X,K) := {f : X −→ K, f lipschitzienne bornée}, où K=R ou C.

Théorème 9.9. Soit (X, d) un espace métrique et µ une mesure sur (X,B(X)),
supposée extérieurement régulière au sens où

∀A∈B(X), µ(A) :=inf
{
µ(O), A ⊂ O, O ouvert

}
.

Alors, pour tout p∈ [1,+∞[,

Lipb(X,K) ∩L p
K(µ) est ‖ · ‖p-dense dans L p

K(µ).

DÉMONSTRATION : Rappelons d’abord que

1A∈ L p
K(µ) ⇐⇒ µ(A)<+∞ ⇐⇒ 1A∈ L 1

K(µ).

Les fonctions étagées µ-intégrables étant denses dans tous les L p
K(µ) pour tout

p∈ [1,+∞[, d’après la proposition 9.4, il suffit d’approcher de telles fonctions dans
L p

K(µ). Enfin, toute fonction étagée intégrable se décomposant en une combinaison
linéaires d’au plus quatre fonctions étagées intégrables positives, il suffit d’établir
le résultat dans ce dernier cadre.
Étape 1 : Soient f := 1A ∈ L p(µ) et ε > 0 ; µ(A)<+∞ donc, par hypothèse, il
existe Oε ∈ O(X) tel que A⊂ Oε et µ(Oε\A)≤

(
ε
2

)p. Les fonctions ϕn, n≥ 1,
relatives à Oε construites au lemme 9.6 vérifient :

|1Oε − ϕn|p≤1Oε ∈L 1(µ) et |1Oε − ϕn|p −→
n→+∞

0.
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Donc, par convergence dominée, il existe nε≥1 tel que ‖1Oε −ϕnε‖p≤ ε
2 . Finale-

ment

‖ϕnε − 1A‖p ≤ ‖ϕnε − 1Oε‖p + ‖1Oε − 1A‖p ≤
ε

2
+ µ(Oε\A)

1
p ≤ ε.

Étape 2 : Soit f :=
∑

1≤i≤N
λi1Ai une fonction étagée positive de L p

R+
(µ). On peut

supposer les λi tous non nuls et partant tous les µ(Ai), i=1,· · ·, N finis. L’étape 1
fournit alors des fonctions f εi ∈ Lipb(X, [0, 1]) ∩L 1

R+
(µ) tq ‖1Ai − f εi ‖p ≤ ε

Nλi
.

D’où il vient ‖f −
∑

1≤i≤N
λif

ε
i ‖p ≤ ε ; or

∑
1≤i≤N

λif
ε
i est à la fois clairement lip-

schitzienne et dans L p
R+

(µ) comme combinaison linéaire positive de fonctions lip-
schitziennes de L p

R+
(µ). ♦

Remarque : On peut a fortiori remplacer Lipb(X,K) par l’ensemble

Cb(X,K) :=
{
f : X → K, lipschitzienne bornée

}
.

En combinant le résultat ci-dessus avec le théorème 6.9(b) sur la régularité
extérieure des mesures, on en déduit plusieurs résultats sur les mesures σ-finies le
long d’une suite croissante d’ouverts épuisant X .

Corollaire 9.4. Soit µ une mesure σ-finie vérifiant : il existe une suite croissante
d’ouverts (En)n≥1 telle que

∀n≥1, µ(En)<+∞ et X =
⋃
n≥1

↑
En. (9.17)

Alors, pour tout p∈ [1,+∞[, Lipb(X,K) ∩L p
K(µ) est ‖ . ‖p-dense dans L p

K(µ).

Application 9.5. (a) L’exemple le plus important est sans nul doute la mesure de
Lebesgue λd sur (Rd,B(Rd)) (on considère les hypercubes En := ]− n, n[d).

(b) Plus généralement, la démonstration du théorème 6.10 (consacré à la régularité
des mesures de Borel) montre que toute mesure de Borel sur un espace métrique
(X, d) localement compact, séparable, vérifie la condition (9.17) de σ-finitude le
long d’une suite d’ouverts.

Corollaire 9.5. Soient µ et µ′ deux mesures vérifiant la condition (9.17) de σ-
finitude le long d’une suite d’ouverts. Alors

∀ f ∈Lipb(X,R) ∩L 1
R(µ) ∩L 1

R(µ
′),

∫
X
fdµ =

∫
X
fdµ′ =⇒ µ = µ′.

DÉMONSTRATION : Soit O ∈ O(X) et n ≥ 1. Les fonctions ϕk, k ≥ 1, rela-
tives à l’ouvert O ∩ En introduites dans le lemme 9.6 sont bien dans les espace
L 1

R(µ) et L 1
R(µ

′). Donc, par densité et par continuité “à gauche” des mesures,
µ et µ′ coı̈ncident sur O(X). D’après le corollaire 6.2, elles sont donc égales car
σ-finies. ♦
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9.7.2 Densité des fonctions lipschitziennes à support compact

Nous allons maintenant affiner les résultats précédents dans le cas où l’espace
X est localement compact et séparable. En effet, il est alors possible, si µ est une
mesure de Borel, de se restreindre aux fonctions lipschitziennes à support compact.

Théorème 9.10. Soient (X, d) un espace métrique localement compact séparable
et µ une mesure de Borel. On pose

LipK(X,K) :=
{
f : X → K, lipschitzienne à support compact

}
.

Alors, pour tout p∈ [1,+∞[, LipK(X,K) est ‖ . ‖p-dense dans LpK(µ).

DÉMONSTRATION : Si f ∈ LipK(X,K), f est en particulier continue à support
compact donc ∫

X
|f |p dµ ≤ ‖f‖p∞ µ(supp(f)) < +∞,

d’où LipK(X,K)⊂ L p
K(µ).

Il reste maintenant à approcher les fonctions lipschitziennes bornées de L p
K(µ).

On introduit à cette fin (cf. démonstration du théorème 6.10) une suite de com-
pacts (Ln)n≥1 vérifiant X =

⋃
n≥1 Ln et Ln ⊂ L̊n+1. On considère ensuite les

ϕn,k(x) :=min(kd(x, c(L̊n)), 1) ; l’entier n étant fixé, ϕn,k ↑ 1L̊n
pour k → +∞.

Or µ(L̊n) < +∞ car µ est une mesure de Borel donc 1L̊n
∈ L p(µ) et ϕn,k →

1L̊n
dans L p(µ). Il existe donc, pour tout n ∈ N, ϕ̃n ∈ LipK(X,K) telle que

‖1L̊n
− ϕ̃n‖p≤ 1

n . Or, pour toute f ∈ Lipb(X,K) ∩L p
K(µ),

‖f − fϕ̃n‖p ≤ ‖f − f1L̊n
‖p + ‖f1L̊n

− fϕ̃n‖p

≤
(∫

cL̊n

|f |pdµ
) 1

p

︸ ︷︷ ︸
→0 quand n→+∞

+‖f‖∞ ‖1L̊n
− ϕ̃n‖p︸ ︷︷ ︸

≤1/n

.

On conclut en notant que fϕ̃n∈ LipK(X,K) puisque (ϕ̃n)| cLn
=0. ♦

Application 9.6. L’application essentielle est évidemment fournie par les espaces
Rd, d ≥ 1, (équipés d’une norme quelconque d’e.v.n. et) munis de la mesure de
Lebesgue λd voire, plus généralement, d’une mesure de Borel.

9.7.3 Théorème de Lusin

Si µ est une mesure de Borel régulière sur un espace métrique (X, d), on peut
établir un raffinement du théorème 9.9 sous la forme du théorème de Lusin :

Théorème 9.11 (Lusin). Soit µ une mesure de Borel régulière sur un espace métri-
que (X, d) et p ∈ [1,+∞[ . Alors, pour toute f ∈ L p

K(µ) et pour tout ε > 0, il
existe ϕε∈L p

K(µ) ∩ C (X,K) telle que

‖ϕε‖sup ≤ ‖f‖∞ , µ
(
{f 6= ϕε}

)
≤ ε et ‖f − ϕε‖p ≤ ε. (9.18)
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En outre, si f est positive, on peut choisir ϕε positive également.

La démonstration de ce théorème s’appuie sur un lemme de séparation clas-
sique qui s’établit de faÁon élémentaire en topologie métrique à l’aide des fonc-
tions “distance à un ensemble” x 7→ d(x,A).

Lemme 9.7. (Urysohn) Soit O un ouvert et K un compact contenu dans O. La
fonction ρK,O définie par

ρK,O(x) :=
d(x, cO)

d(x, cO) + d(x,K)

est définie et continue sur tout X . Elle vérifie en outre 1K ≤ ρK,O ≤ 1O.

DÉMONSTRATION : Remarquons d’abord que la fonction x 7→ d(x, cO) atteint
son minimum sur le compact K en un point x∞∈ K. Cette distance est forcément
non nulle sinon x∞ serait dans l’adhérence du fermé cO i.e. dans cO lui-même. Or,
K⊂ O par hypothèse. D’autre part, pour toute partie A non vide de X , la fonction
x 7→ d(x,A) := infa∈A d(x, a) est 1-lipschitzienne. Enfin, pour toutes parties non
vides A et B de X , pour tout x∈ X ,

d(A,B) := inf
a∈A, b∈B

d(a, b)≤ d(x,A) + d(x,B).

La fonction ρK,O est donc continue comme quotient de deux fonctions continues
dont le dénominateur ne s’annule pas. ♦

Remarque : La fonction ρK,O est lipschitzienne de rapport (majoré par)
1

d(cO,K)
.

DÉMONSTRATION DU THÉORÈME DE LUSIN : On procède en plusieurs étapes.
Étape 1 Fonctions indicatrices de L p

R(µ) :
Soit A∈B(X) et f :=1A. f ∈L p(µ)⇔ µ(A)<+∞.
– Soit µ(A)=0 et l’on pose simplement ϕε :=0.
– Soit µ(A) 6= 0. La mesure µ étant régulière, pour tout ε > 0, il existe un

compactKε⊂ A⊂ Oε tels que µ(Oε\Kε)≤εp, i.e. ‖1Oε−1Kε‖p≤ε. On pose alors
ϕε :=ρKε,Oε . Commeϕε≤1Oε ,ϕε∈ L p

R(µ) ; d’autre part, |ϕε−1A|≤|1Oε−1Kε |,
d’où ‖ϕε − 1A‖p≤ε.

D’autre part {f 6= ϕε} ⊂ Oε \ Kε donc µ({f 6= ϕε}) ≤ µ(Oε \ Kε) ≤ εp.
Quitte à remplacer ε par ε∧ 1, on peut toujours supposer que ε ≤ 1 et, partant, que
εp≤ε. Enfin ‖ϕε‖sup ≤ 1 = ‖1A‖∞ = ‖f‖∞ .

Étape 2 Fonctions de L p
R(µ) à valeurs dans ]0, 1] :

Soit f :X → ]0, 1] une fonction de L p
R(µ) strictement positive avec ‖f‖∞ =1.

Une variante immédiate du lemme fondamental d’approximation (théorème 5.1)
montre que la suite (fn)n≥1 définie pour tout n≥1, par

fn :=

n2n−1∑
k=0

k

2n
1{ k

2n
<f≤ k+1

2n
} + n1{f>n} =

2n−1∑
k=0

k

2n
1{ k

2n
<f≤ k+1

2n
}
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converge vers f quand n→ +∞. Par suite, si l’on pose f0 := 0 et, pour tout n ≥ 1,

ϕn :=2n(fn − fn−1), il vient immédiatement f =
+∞∑
n=1

ϕn
2n

.

D’autre part, on vérifie aisément que ϕn ne peut prendre que les valeurs 0 et 1
car, sur {fn−1=

k
2n−1 }={ k

2n−1 <f≤ k+1
2n−1 }, la fonction fn ne peut prendre que les

valeurs 2k
2n et 2k+1

2n . En conséquence, si l’on pose

An :={ϕn=1}=
2n−1−1⋃
k=0

{
2k + 1

2n
< f ≤ 2(k + 1)

2n

}
,

ϕn := 1An et f :=
+∞∑
n=1

2−n1An . Comme f est dans L p
R(µ) et 1An ≤ 2nf , ϕn est

aussi dans L p
R(µ).

Par conséquent, d’après l’étape 1, ε > 0 étant fixé, il existe pour tout n ≥ 1,
ϕn,ε∈L p

R(µ) ∩ C (X, [0, 1]) tel que

‖ϕn,ε − ϕn‖p ≤
ε

2n
, µ({ϕn,ε 6=ϕn})≤

ε

2n
et ‖ϕn,ε‖sup ≤ ‖ϕn‖∞ ≤ 1.

Il est immédiat que ϕε :=
+∞∑
n=1

ϕn,ε
2n

vérifie à la fois

‖ϕε − f‖p ≤ ε, µ({ϕε 6=f}) ≤
+∞∑
n=1

ε

2n
= ε et ‖ϕε‖sup ≤

+∞∑
n=1

1

2n
=1=‖f‖∞ .

Enfin, la convergence de la série définissant ϕε étant normale et les ϕn,ε étant
continues, il en est de mÍme de ϕε.

Étape 3 Fonctions de L p
R(µ), positives et essentiellement bornées :

Soient f ∈L p
R(µ), positive, de norme L

∞
(µ) finie, non nulle et δ ∈]0, ‖f‖∞ [,

fixé. On pose fδ :=
f+δ

‖f‖∞+δ . Comme f est positive, fδ l’est strictement et, en outre,
‖fδ‖∞ = 1. Un réel ε > 0 étant fixé, il existe, d’après l’étape 2, une fonction
ϕδ,ε∈ C (X, [0, 1]) telle que

‖ϕδ,ε − fδ‖p ≤ ε′, µ({ϕδ,ε 6=fδ}) ≤ ε′ et ‖ϕδ,ε‖sup ≤ 1.

où ε′ := min
{
ε, ε

‖f‖∞+δ

}
. On pose ϕ̃ε :=(‖f‖∞+δ)ϕδ,ε−δ, et ϕε :=max(ϕ̃ε, 0).

On vérifie que
— {ϕε 6=f} ⊂ {ϕ̃ε 6=f} = {ϕδ,ε 6=fδ} car f est positive,
— ‖ϕε‖sup ≤ ‖ϕ̃ε‖sup ≤ ‖f‖∞ car δ∈]0, ‖f‖∞ [ et
— ‖ϕε − f‖p = ‖max(ϕ̃ε, 0)−max(f, 0)‖p ≤ ‖ϕ̃ε−f‖p ≤ ε car la fonction

x 7→ max(x, 0) est 1-lipschitzienne.
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Étape 4 Fonctions de L p
R(µ) essentiellement bornées de signe quelconque :

Remarquons d’abord que le résultat de l’étape 2 s’étend à une fonction f µ-p.p.
positive (évident au vu des conditions (9.18)). Si f est µ-essentiellement bornée et
positive, il existe donc, pour tout ε>0, une fonction ϕ̃ε continue et positive vérifiant
les conditions (9.18) pour la fonction f + ‖f‖∞ . On pose alors ϕε := ϕ̃ε − ‖f‖∞ .
Le seul point à vérifier dans (9.18) est l’inégalité sur les normes ‖ . ‖sup et ‖ . ‖∞
respectivement de ϕε et f . Or,

−‖f‖∞ ≤ ϕ̃ε − ‖f‖∞ ≤ ‖(f + ‖f‖∞)‖∞ − ‖f‖∞ ≤ ‖f‖∞

donc |ϕ̃ε − ‖f‖sup | ≤ ‖f‖sup i.e. ‖ϕε‖sup ≤ ‖f‖∞ .

Étape 5 Fonctions de L p
R(µ) :

Si f ∈L p
R(µ), on peut considérer f (A) := f1{|f |≤A} et considérer Aε tel que

‖f−f (Aε)‖p≤ ε/2, puis on applique l’étape 4 à f (Aε) et ε/2 après avoir noté que
{f 6= f (Aε)}={|f |>Aε}.

Étape 6 Fonctions de L p
C(µ) :

Soit f ∈L p
C(µ). On pose g :=

f

|f |
1{f 6=0} de façon que f = |f | g. La fonction

g se décompose en g :=g1+ig2.
Nous allons d’abord résoudre le problème pour g. D’après l’étape 4, il existe,

pour tout ε > 0, des fonctions continues γ̃1,ε et γ̃2,ε relatives à g1 et g2 vérifiant
(9.18) avec ε/2. On pose alors

γi,ε :=
γ̃i,ε

max(γ̃21,ε+γ̃
2
2,ε, 1)

, i = 1, 2.

Comme g21+g
2
2 = 1, il est immédiat que, pour i=1, 2,

{γ1,ε 6=g1} ∪ {γ2,ε 6=g2} ⊂ {γ̃1,ε 6=g1} ∪ {γ̃2,ε 6=g2}

On définit alors la fonction γε=γ1,ε + iγ2,ε. Étant donné que, pour tous z, z′∈C,
|z′|=1, on a ∣∣∣∣ z′ − z

max{|z|2, 1}

∣∣∣∣ ≤ |z′ − z|,
on obtient donc la majoration ‖g − γε‖p ≤ ‖g − (γ̃1,ε + iγ̃2,ε)‖p ≤ 2 ε/2 = ε.
L’inégalité en norme L

∞
(µ) est évidente.

On pose alors, ε> 0 étant fixé, ε′ := min
(
1,

ε

2(1 + ‖f‖p)

)
. Il existe ψε′ une

fonction continue vérifiant (9.18) pour |f | et ε′. On vérifie finalement sans difficulté
que la fonction ϕε :=ψε′ γε′ vérifie le bouquet de conditions (9.18). ♦

Exercice : Reprendre le cas complexe en utilisant la représentation trigonométrique
mesurable de toute fonction complexe f en f(x) = ρ(x)e2iπθ(x) où ρ et θ sont des
fonctions mesurables à valeurs respectivement dans R+ et ]0, 1].
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9.8 Exercices

(X,A , µ) désigne un espace mesuré.

9.1 Soit Kd le K-e.v. canonique de dimension d∈ N∗.

a) Soient p, q ∈ [1,+∞], p ≤ q. Déterminer les constantes optimales a, b telles
que a ‖ · ‖p ≤ ‖ · ‖q ≤ b ‖ · ‖p.
b) Montrer directement que lim

p→+∞
‖ · ‖p = ‖ · ‖∞ .

c) Soit p ∈ ]1,+∞[. Montrer que

∀x 6= y ∈ Kd, ‖x‖p = ‖y‖p = 1 ⇒ ‖x+y‖p < 2.

Le résultat subsiste-t-il pour p=1 ou p=+∞?

9.2 a) Soient des fonctions f, g : X → R+ mesurables positives telles que fg≥1.

Montrer que
∫
X
f dµ

∫
X
g dµ ≥ µ(X)2.

b) Que peut-on dire de la mesure µ s’il existe f : X → R∗
+ telle que f et 1/f soient

µ-intégrables?

9.3 Soient p, q ∈ [1,+∞], p ≤ q.

a) Soit (X,A , µ) un espace mesuré de masse finie. Montrer que l’injection ca-
nonique i : LqK(µ) ↪→ LpK(µ) est une application linéaire continue et calculer sa
norme. Pour quelles fonctions est-elle atteinte?

b) Montrer que l’injection canonique i : `pK(N) ↪→ `qK(N) est une application
linéaire continue, et calculer sa norme.

9.4 On considère les deux énoncés suivants :
(i) Pour tous p, q ∈ [1,+∞[, p 6= q, L p

K(µ) 6=L q
K(µ),

(ii) Il existe une suite (An)n≥0 d’éléments deux à deux disjoints de A vérifiant
0 < µ(An) < +∞.

a) Montrer que (i) implique (ii).

b) Soient p, q ∈ [1,+∞[, p 6= q et (an)n≥0 une suite de R∗
+. Montrer qu’il existe

une suite (bn)n≥0 de R+ telle que, parmi les sommes
∑
n≥0

bpnan et
∑
n≥0

bqnan, l’une

est finie et l’autre infinie.

c) Déduire du b) que (ii) implique (i).

9.5 Soient p, q ∈ [1,+∞], p 6= q. Déterminer une suite de CK(R,R) qui soit bornée
dans L p

R(µ) mais pas dans L q
R(µ).

9.6 Soient p, q∈ [1,+∞] et (fn)n≥0 une suite deLpK(µ)∩L
q
K(µ) qui converge vers 0

dans LpK(µ) et qui est de Cauchy dans LqK(µ). Montrer que (fn)n≥0 converge vers 0
dans LqK(µ).
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9.7 On considère p ∈ ]1,+∞[ et (fn)n≥0 une suite positive deLpR+
(µ) qui converge

vers f dans LpR+
(µ). Montrer que, pour tout r ∈ [1, p], la suite (f rn)n≥0 converge

vers f r dans Lp/rR+
(µ).

9.8 Soient p ∈ [1,+∞[ et (fn)n≥0 une suite de L p
K(µ) qui converge µ-p.p. vers

une fonction f de de L p
K(µ). Montrer l’équivalence suivante :

lim
n
‖fn − f‖p = 0 ⇔ lim

n
‖fn‖p = ‖f‖p.

9.9 On considère (X,A , µ) un espace mesuré de masse finie, p ∈ ]1,+∞], et
(fn)n≥0 une suite bornée de L p

K(µ) qui converge µ-p.p. vers une fonction f .

a) Montrer que f ∈L p
K(µ).

b) Montrer que (fn)n≥0 converge vers f dans L r
K(µ) pour tout r ∈ [1, p[.

c) Le résultat du b) subsiste-t-il si µ(X)=+∞?

9.10 On considère (X,A , µ) un espace mesuré de masse finie, r, s ∈ [1,+∞[, une
fonction g : R→ R continue et Φ l’application définie sur LrR(µ) par Φ(f) := g◦f .

a) On suppose que g vérifie la condition suivante :

∃ c>0, ∀ y ∈ R, |g(y)| ≤ c
(
|y|r/s+1

)
. (∗)

Montrer que Φ est une application continue de LrR(µ) dans LsR(µ).

b) On se place sur l’espace mesuré ([0, 1],B([0, 1]), λ) et on suppose que g ne
vérifie pas la condition (∗). Montrer qu’il existe une fonction f ∈L r

R(λ) telle que
g ◦ f /∈L s

R(λ).

9.11 Montrer que la convergence λ-p.p. n’est pas métrisable.

9.12 On considère p∈ [1,+∞] et la famille des translations τa, a∈ R, définies sur
LpK(R) par τa(f) :=f(·+a).
a) Montrer que pour tout a∈R, τh est une isométrie de LpK(λ).

b) Soit f ∈LpK(λ), p<+∞. Montrer que

lim
a→0
‖τa(f)− f‖p = 0 et lim

a→+∞
‖τa(f)− f‖p = 2

1
p ‖f‖p.

c) Le résultat du b) s’étend-il au cas p=+∞?

9.13 Soit p ∈ [1,+∞]. Pour tout N ∈ N, on définit l’application sN sur l’espace
`pK(N) par sN ((an)n≥0) := (an+N )n≥0 (sN est appelé opérateur de décalage ou
shift).

a) Montrer que pour toutN ∈N, sN est une application linéaire continue sur `pK(N),
et calculer sa norme.

b) Soit a := (an)n≥0 ∈ `pK(N), p∈ [1,+∞[. Calculer lim
N
‖sN (a)‖p. Que vaut cette

limite si p = +∞?
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9.14 Soit f : X → R une fonction mesurable et non µ-p.p. nulle ; soient θ définie

sur R∗
+ par θ(p) :=

∫
X
|f |p dµ et I :=

{
p ∈R∗

+ : θ(p)< +∞
}

.

a) Montrer que I est un intervalle et donner un exemple pour lequel I est un sin-
gleton.
b) Montrer que ln θ est convexe sur I et θ continue sur I .
c) Montrer que, pour tous p, q∈ I et r ∈ [p, q], θ(r)1/r ≤ max

{
θ(p)1/p, θ(q)1/q

}
.

9.15 On considère (X,A , µ) un espace probabilisé (µ(X) = 1). Soit f : X → R

une fonction mesurable telle que θ(q0) :=
∫
X
|f |q0 dµ ∈]0,+∞[ pour un q0∈ R∗

+.

a) Montrer que, pour tout p∈]0,+∞], θ(p)
1
p ≥ exp

(∫
X
ln |f | dµ

)
(conventions :

exp(−∞) := 0 et θ(+∞)+∞ = ‖f‖∞).
b) Montrer que lim

p→0+
θ(p) = µ({f 6=0}).

c) Montrer que lim
p→0+

∫
X

1

p
(|f |p−1)dµ =

∫
X
ln |f |dµ ∈ [−∞,+∞[.

d) En déduire que lim
p→0+

θ(p)
1
p = exp

(∫
X
ln |f | dµ

)
.

9.16 Inégalité de Hardy
Soit p ∈ ]1,+∞[. À toute fonction f ∈L p

R(R+), on associe la fonction F définie

sur R∗
+ par F (x) :=

1

x

∫ x

0
f(t) dt.

a) Justifier la définition de F et montrer que toute fonction f ∈CK(R∗
+,R+) vérifie

le cas d’égalité dans∫ +∞

0
F (x)p dx ≤ p

p−1

∫ +∞

0
f(x)F (x)p−1 dx, (H+)

et l’inégalité de Hardy :

‖F‖p ≤
p

p−1
‖f‖p. (H)

b) Montrer que l’inégalité de Hardy est vérifiée par toute fonction f ∈ L p
R(R+).

c) Montrer que toute fonction positive f ∈L p
R+

(R+) vérifie l’inégalité (H+).
d) Montrer que la fonction g vérifie l’égalité dans l’inégalité de Hardy si et seule-
ment si g=0 λ-p.p..

e) Montrer que la constante
p

p−1
est optimale dans l’inégalité de Hardy.

f) Étudier les cas p = 1 et p = +∞.
g) Soit r ∈ ]−∞, p− 1[. Montrer que toute fonction f ∈CK(R∗

+,R+) vérifie∫ +∞

0
F (x)p xrdx =

p

p−r−1

∫ +∞

0
f(x)F (x)p−1 xrdx.



Exercices 197

En déduire que toute fonction f : R+ → R+ Lebesgue-mesurable positive vérifie
l’inégalité ∫ +∞

0
F (x)p xr dx ≤

( p

p−r−1

)p ∫ +∞

0
f(x)p xr dx.

9.17 Inégalité de Weyl

Soient f ∈ L 1
R(R+) et, pour c ∈ R fixé, F la fonction définie sur R+ par F (x) :=∫ x

0
f(t) dt+ c.

a) On suppose, dans cette question, que f ∈L 2
R(R+) et (x 7→ xF (x))∈L 2

R(R+).
Montrer que F ∈L 2

R(R+) et que∫ +∞

0
F 2(x) dx = −2

∫ +∞

0
xF (x) f(x) dx.

b) Montrer que toute fonction f ∈L 1
R(R+) vérifie l’inégalité de Weyl(∫ +∞

0
F 2(x) dx

)2

≤ 4

∫ +∞

0
x2 F 2(x) dx

∫ +∞

0
f2(x) dx. (W)

c) Sous les hypothèses du a), montrer que l’inégalité (W) est une égalité si et seule-
ment si il existe une constante b∈R telle que F (x)=c e−bx

2
.

9.18 Soient p, q > 1 tels que
1

p
+

1

q
=1.

a) Établir l’inégalité de Young

∀ a, b ≥ 0, a b ≤ ap

p
+
bq

q

et montrer qu’il y a égalité si et seulement si ap=bq.
b) Soient h∈L 1

R+
(µ) et f, g 2 fonctions mesurables positives telles que fp, gq≤h

µ-p.p.. Montrer l’inégalité∫
X
(h− fg) dµ ≥

(∫
X
(h− fp) dµ

)1/p(∫
X
(h− gq) dµ

)1/q
et qu’il y a égalité si et seulement si fp=gq µ-p.p..

9.19 a) Soit p∈ [1,+∞[. Montrer que `pR(N) est séparable.
b) Montrer que `

∞
R (N) n’est pas séparable.

9.20 Soient X un espace métrique localement compact séparable, µ une mesure de
Borel sur B(X) (i.e. finie sur les compacts) et p∈]1,+∞[.
a) Montrer qu’il existe une base dénombrable d’ouverts de X d’adhérence com-
pacte U := {Un}n≥0 stable par intersection finie.
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On noteD le K-e.v. engendré par la famille de fonctions indicatrices {1Un}n≥0.
b) Montrer que, pour tout Ω∈O(X) de mesure finie, 1Ω∈D où D désigne l’adhé-
rence de D dans LpK(µ).
c) Montrer que, plus généralement, pour tout A∈B(X) de mesure finie, 1A∈D.
d) En déduire que D est dense dans LpK(µ) puis que LpK(µ) est séparable.

9.21 Montrer que l’espace métrique (A /R, d) de l’exercice 6.18 est complet.

9.22 On se place sur (R,B(R), λ). Pour toute fonction f ∈ L 1
R(λ) ou simplement

borélienne positive et pour tout h > 0, on pose

Mh(f)(x) :=
1

2h

∫ x+h

x−h
f(t) dt.

a) Montrer que, pour toute f ∈ L 1
R(λ), ‖Mh(f)‖1 ≤ ‖f‖1 .

b) Soit f ∈ L1
R(λ). Montrer que Mh(f) tend vers f dans L1

R(λ) lorsque le pa-
ramètre h tend vers 0.

9.23 Espace de Marcinkiewicz
Soit (X,A , µ) un espace mesuré et soit p > 1. On dit qu’une fonction mesurable f
appartient l’espace de Marcinkiewicz ou L p

faible(µ) s’il existe une constante c > 0
telle que, pour tout t > 0, on ait µ

(
{|f | > t}

)
≤ c/tp.

a) Soient f ∈ L p
faible(µ), A ∈ A et t > 0. Soient les parties An := A∩ {|f | > tn}

et Bn := An \An+1, n ∈ N. Montrer les inégalités∫
A
|f | dµ ≤

∑
n≥0

t (n+ 1)µ(Bn) =
∑
n≥0

t µ(An) ≤ t µ(A) + C t1−p,

où C > 0 est une constante réelle.
b) En déduire que f ∈ L p

faible(µ) si et seulement si il existe une constante c > 0 telle

que, pour toute partie A ∈ A , on ait
∫
A
|f | dµ ≤ c µ(A)1−1/p.

c) On suppose que µ(X) < +∞. Montrer que si f ∈ L p
faible(µ) alors pour tout

q ∈ [1, p [, f ∈ L q(µ).
d) Donner un exemple d’espace mesuré pour lequel L p

faible(µ) 6= L p(µ).

9.24 Inégalité de Minkowski inverse
Soit (X,A , µ) un espace mesuré tel que µ(X)> 0. Dans cet exercice, la notation
f−1 désigne la fonction inverse 1/f de f . Soit p ≥ 1 et f, g ∈ L p

R+
(µ). On suppose

que f et g sont µ-p.p. non nulles.
a) Montrer à l’aide de la question b) que, pour tous a, b ≥ 0 tels que

√
a+
√
b = 1,

‖(f + g)−1‖p
p
≤ ‖(f + g)−1‖p−1

p

(
a‖f−1‖p + b‖g−1‖p

)
.

b) Vérifier que si ‖(f + g)−1‖p = +∞, alors ‖f−1‖p = ‖g−1‖p = +∞.
c) En déduire l’inégalité de Minkowski inverse :

1

‖f−1‖p
+

1

‖g−1‖p
≤ 1

‖(f + g)−1‖p
.



Chapitre 10

Théorèmes de représentation
et applications

10.1 ♣ Théorème de représentation de Riesz

La présentation de la théorie de l’intégrale de Lebesgue et de la construction
de la mesure de Lebesgue développée jusqu’à maintenant n’est pas la seule pos-
sible. Cette présentation – dite par la mesure abstraite – si elle illustre paradoxa-
lement le caractère concret de la notion de mesure semble créer une sorte de fossé
entre intégrale de Lebesgue et intégrale de Riemann, la première, plus puissante, se
construisant sans référence à la seconde. Cette situation est relativement singulière
en Mathématiques où, le plus souvent, l’amélioration d’un outil ou d’une théorie
se fait par approfondissement de résultats ou de notions existantes, plutôt que par
bifurcation. En fait, il existe une présentation – dite approche fonctionnelle – per-
mettant de faire apparaı̂tre l’intégrale de Lebesgue comme une simple extension de
l’intégrale de Riemann des fonctions continues à support compact à de plus vastes
classes de fonctions. Cette approche est essentiellement constituée par le théorème
de représentation de Riesz.

10.1.1 Cas des formes linéaires positives

Théorème 10.1 (Théorème de représentation de Riesz). Soient (X, d) un espace
métrique localement compact séparable et Φ une forme linéaire positive sur l’es-
pace vectoriel CK(X,R) des fonctions continues à support compact définies surX .
Alors, il existe une unique mesure µ définie sur la tribu borélienne B(X) telle que

∀ f ∈ CK(X,R), Φ(f) =

∫
X
f dµ. (10.1)

En outre, µ est une mesure de Borel caractérisée par

∀Ω∈ O(X), µ(Ω) = sup
{
Φ(f), f ∈ CK(X, [0, 1]) et f ≤ 1Ω

}
, (10.2)
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ou

∀K compact, µ(K) = inf
{
Φ(f), f ∈ CK(X,R) et 1K ≤ f

}
. (10.3)

Remarques : • En fait, l’hypothèse de locale compacité de X est suffisante pour
obtenir l’existence d’une mesure µ vérifiant (10.1), (10.2) et (10.3). En revanche,
l’unicité de la mesure nécessite impérieusement l’hypothèse de séparabilité comme
le montre le contre-exemple ci-après.
• On a vu (cf. compléments topologiques, paragraphe 6.6.3) que dans un espace
métrique localement compact, il y a équivalence entre séparabilité et σ-compacité.

Exemple de non-unicité sur un espace métrique non séparable : Soit X := R
muni de la distance ultramétrique du : du(x, y) := 0 si x = y et d(x, y) := 1
si x 6= y. (R, du) est localement compact car les singletons sont à la fois ouverts
et compacts. En revanche, (R, du) n’est pas séparable car toute partie de (R, du)
est fermée. Seul R lui-même est donc dense dans (R, du) et donc aucune partie
dénombrable ne peut l’être. D’autre part Bdu(R) = O((R, du)) = P(R). Les
compacts de (R, du) sont les parties finies donc CK((R, du),R) est constitué par
les fonctions nulles sauf en un nombre fini de points.

Soient µ et ν les mesures définies par

∀A∈P(R), µ(A) := card (A ∩ N) et ν(A) := µ(A) +m(A \ N),

où m est la mesure définie sur (R,P(R)) par m(A) := 0 si A est dénombrable
et m(A) := +∞ sinon. Les mesures µ et ν coı̈ncident notamment sur les parties
finies de R, i.e. les compacts de (R, du), mais µ(R \ N) = 0 6= ν(R \ N) = +∞
donc µ 6= ν et ν ne vérifie pas (10.2). Cependant,

∀ f ∈ CK(X,R), Φ(f) :=

∫
R
f dµ =

∫
R
f dν =

∑
n∈N

f(n).

La démonstration du Théorème de représentation de Riesz repose en partie sur
la notion de mesure extérieure développée lors de l’étape 3 du théorème de Ca-
rathéodory (cf. section 6.5). Le résultat utile est réénoncé dans la proposition 10.1
ci-après. Un autre ingrédient important est un lemme d’Urysohn, lemme classique
de séparation des fermés par des fonctions continues. Ce lemme s’appuie lui-même
sur les propriétés des fonctions distance à un ensemble introduites à la section 3.6.

Proposition 10.1. Soient X un ensemble non vide et µ∗ une mesure extérieure
sur X ( 1). Alors l’ensemble des parties A de X telles que

∀B∈P(X), µ∗(A ∩B) + µ∗(cA ∩B) ≤ µ∗(B). (10.4)

constitue une tribu sur laquelle la restriction de µ∗ définit une mesure (l’inégalité
ci-dessus se muant en égalité sur cette tribu).

1. µ∗ est une application de P(X) dans R+ croissante et σ-sous-additive, telle que µ∗(Ø) = 0.
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Lemme 10.1 (Urysohn). Soit (X, d) un espace métrique localement compact.

(a) Soient F et F ′ deux fermés disjoints de X. Alors il existe U et V deux ouverts
disjoints de X tels que F ⊂ U et F ′ ⊂ V . En outre, si F ou F ′ est compact, on
peut choisir U et V de façon que U et V soient disjoints.

(b) Soient K un compact de X et Ω un ouvert de X contenant K. Alors il existe
ϕ ∈ CK(X, [0, 1]) telle que 1K ≤ ϕ ≺ 1Ω, où ϕ ≺ 1Ω signifie ϕ ≤ 1Ω et
suppϕ ⊂ Ω.

(c) Soient K un compact de X et (Ωk)1≤k≤n une famille d’ouverts de X telle que
K ⊂

⋃n
k=1Ωk. Il existe une famille (ϕk)1≤k≤n de CK(X, [0, 1]) telle que

∀ k∈ {1, . . . , n}, ϕk ≺ 1Ωk
, et 1K ≤

n∑
k=1

ϕk ≤ 1.

DÉMONSTRATION : (a) Les ouverts U := {x ∈ X : d(x, F ′) > d(x, F )} et
V := {x∈ X : d(x, F )>d(x, F ′)} conviennent.

Si, e.g., F est compact, la fonction continue x 7→ d(x, F ′) atteint son minimum
ε0, nécessairement strictement positif car F ∩ F ′ = Ø. On considère alors les
ouverts U := {x∈ X : d(x, F ′)> ε0

3 } et V := {x∈ X : d(x, F ′)< ε0
3 }.

(b) Comme X est localement compact, tout point x∈ X admet un voisinage com-
pact Kx. La partie K étant compacte, il existe n points x1, . . . , xn dans K tels que
K ⊂ ∪1≤i≤nK̊xi . Soient U et V les ouverts associés au compact K et au fermé
cΩ. Il est clair que O := U ∩

(
∪1≤i≤nK̊xi

)
vérifie O ∈ O(X), O est compact

comme fermé dans le compact ∪1≤i≤nKxi et contenu dans U donc dans Ω. Vu que
K ⊂ O, d(x,K) + d(x,cO) > 0 pour tout x∈ X et l’on peut donc poser

∀x∈ X, ϕ(x) :=
d(x,cO)

d(x,K) + d(x,cO)
. (10.5)

La fonction ϕ vérifie ϕ ≺ 1Ω car suppϕ = O ⊂ Ω, et ϕ ≡ 1 sur K.
(c) Soient x∈ K et k ∈ {1 . . . , n} tels que x∈ Ωk. X étant localement compact,
il existe un voisinage ouvert Ux d’adhérence compacte vérifiant Ux ⊂ Ωk . K
étant compact, il existe m points x1, . . . , xm de K tels que K ⊂

⋃m
i=1 Uxi . Pour

chaque k ∈ {1, . . . , n}, on définit Kk, comme la réunion des Uxj inclus dans Ωk.
D’après le point (a), il existe pour tout k ∈ {1, . . . , n} un ouvert Ok d’adhérence
compacte tel que Kk ⊂ Ok ⊂ Ok ⊂ Ωk. Comme K ⊂

⋃n
k=1Kk ⊂

⋃n
k=1Ok,

il vient d(x,K) +
∑n

i=1 d(x,
cOi) > 0. On peut donc définir les fonctions ϕk ∈

CK(X, [0, 1]) par

ϕk(x) :=
d(x,cOk)

d(x,K) +
∑n

`=1 d(x,
cO`)

, 1 ≤ k ≤ n.

Les ϕk vérifient clairement ϕk ≺ 1Ωk
car suppOk ⊂ Ωk, et

∑n
k=1 ϕk ≡ 1 sur

K. ♦
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DÉMONSTRATION DU THÉORÈME DE RIESZ : Pour tout Ω ∈ O(X), on définit
µ∗(Ω) par la relation suivante – légèrement différente de (10.2) –

µ∗(Ω) := sup {Φ(f), f ∈ CK(X, [0, 1]) et f ≺ 1Ω}, (10.6)

puis,

∀E∈P(X), µ∗(E) = inf {µ∗(Ω), E ⊂ Ω, Ω∈ O(X)}. (10.7)

étape 1 µ∗ est une mesure extérieure :

Il est immédiat par construction que µ∗(Ø) = 0 et que µ∗ est croissante pour
l’inclusion. Reste à établir la σ-sous-additivité de µ∗. Commençons par les familles
finies d’ouverts.

∀ (Ωk)1≤k≤n∈ O(X)n, µ∗

(
n⋃
k=1

Ωk

)
≤

n∑
k=1

µ∗(Ωk). (10.8)

En fait, il suffit de montrer (10.8) pour n = 2, le cas général découlant d’une
récurrence immédiate sur n. Soit f ∈ CK(X, [0, 1]) telle que f ≺ 1Ω1∪Ω2 , on
note K := supp f ⊂ Ω1 ∪ Ω2. On considère, comme dans le lemme 10.1(c), les
fonctions ϕk∈ CK(X, [0, 1]) telles que ϕk ≺ 1Ωk

, k = 1, 2, et 1K ≤ ϕ1+ϕ2 ≤ 1.

Soit f ∈ CK(X, [0, 1]) vérifiant f ≺ 1Ω1∪Ω2 . De f = f1K ≤ ϕ1f + ϕ2f , on
déduit immédiatement

Φ(f) = Φ(ϕ1f) + Φ(ϕ2f) ≤ µ∗(Ω1) + µ∗(Ω2).

L’inégalité (10.8) en découle aussitôt.

Soit à présent une suite (En)n≥1 de parties quelconques de X ; si µ∗(Ek) =
+∞ pour un certain k ≥ 1, alors

µ∗(
⋃
n≥1

En) ≤
∑
n≥1

µ∗(En) = +∞.

Soit ε > 0. Pour tout n ≥ 1, il existe un ouvert deX tel que En ⊂ Ωn et µ∗(Ωn) ≤
µ∗(En) + ε/2n. On pose Ω :=

⋃
n≥1Ωn ∈ O(X) ; soit f ∈ CK(X, [0, 1]) telle

que f ≺ 1Ω. supp f étant compact, il existe nε ≥ 1 tel que K ⊂
⋃nε
k=1Ωk, d’où,

d’après (10.8),

Φ(f) ≤ µ∗
(

nε⋃
k=1

Ωk

)
≤

nε∑
k=1

µ∗(Ωk) ≤
n∑
k=1

(µ∗(Ek) +
ε

2k
) ≤

∑
n≥1

µ∗(En) + ε.

D’où, finalement,

µ∗(
⋃
n≥1

En) ≤ µ∗(Ω) ≤
∑
n≥1

µ∗(En) + ε,
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pour tout ε > 0. Ceci montre que µ∗ est bien une mesure extérieure.

étape 2 La restriction µ de µ∗ à B(X) est une mesure :

Au vu de la proposition 10.1, le problème se ramène à montrer que l’inégalité
(10.4) est vérifiée pour tout A ∈ O(X).

– Si µ(B)=+∞, l’inégalité (10.4) est évidente.

– Si B ∈ O(X) et µ(B)<+∞. Pour tout ε > 0, il existe f ∈ CK(X, [0, 1])
telle que f ≺ 1A∩B et µ∗(A ∩ B) ≤ Φ(f) + ε. Or supp f et cA sont deux fermés
disjoints, donc d’après le lemme 10.1 (a), il existe deux ouverts U et V disjoints
tels que supp f ⊂ U et cA ⊂ V . Soit g ∈ CK(X, [0, 1]) telle que g ≺ 1V ∩B et
µ∗(V ∩B) ≤ Φ(g) + ε, alors

µ∗(A ∩B) + µ∗(cA ∩B) ≤ µ∗(A ∩B) + µ∗(V ∩B)≤ Φ(f) + Φ(g) + 2 ε

= Φ(f + g) + 2 ε.

Or, f + g ≺ 1B car f + g≤1A∩B + 1V ∩B=1(A∪V )∩B≤1B et

supp (f + g) ⊂ supp(f) ∪ supp(g) ⊂ (A ∩B) ∪ (V ∩B) ⊂ B.

Par conséquent, Φ(f + g) ≤ µ∗(B) et

µ∗(A ∩B) + µ∗(cA ∩B) ≤ µ∗(B) + 2 ε,

pour tout ε > 0, ce qui donne l’inégalité (10.4).

– Si B ∈ P(X) avec µ∗(B) < +∞, il existe, ε > 0 étant fixé, Ω∈ O(X) tel
que B ⊂ Ω et µ∗(Ω) ≤ µ∗(B) + ε. Il vient, d’après le cas précédent,

µ∗(A ∩B) + µ∗(cA ∩B) ≤ µ∗(A ∩ Ω) + µ∗(cA ∩ Ω) ≤ µ∗(Ω) ≤ µ∗(B) + ε,

pour tout ε > 0. D’où l’inégalité (10.4), cette fois en toute généralité. En conclusion
µ :=(µ∗)|B(X) est une mesure sur (X,B(X)) vérifiant notamment (10.6).

étape 3 La mesure µ est finie sur les compacts :

Soit K un compact. Comme X est localement compact, il existe Ω ∈ O(X)
d’adhérence compacte telle que K ⊂ Ω. D’après le lemme 10.1 (b), il existe ϕ∈
CK(X,R) telle que 1K ≤ ϕ ≺ 1Ω. Par suite, si f ∈ CK(X, [0, 1]) et f ≺ 1K̊ , alors
f ≤ 1K̊ ≤ 1K ≤ ϕ. La définition 10.6 de µ (et µ∗) sur O(X) et la croissance de
la forme linéaire Φ entraı̂nent

µ(K̊) = sup {Φ(f), f ∈ CK(X, [0, 1]), f ≺ 1K̊} ≤ Φ(ϕ) < +∞.

Ceci est en particulier vérifié par le compact Ω, or Ω ⊂ Ω̊ donc

µ(K) ≤ µ(Ω) ≤ µ(Ω̊) < +∞.
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étape 4 Pour tout Ω∈ O(X) d’adhérence Ω compacte, il existe une suite croissante
(ϕn)n≥1 de CK(X, [0, 1]) telle que 0 ≤ ϕn ↑ 1Ω et lim

n

↑
Φ(ϕn) ≥ µ(Ω) :

On pose, pour tout n≥1,Kn := {x∈ X : d(x,cΩ) ≥ 1/n}.Kn est inclus dans
Ω, on considère donc la fonction ϕn de CK(X, [0, 1]) associée au couple (Kn,Ω) et
fournie par le lemme 10.1(b). Comme Ω =

⋃↑
n≥1Kn, on a clairement suppϕn ⊂

Ω pour tout n≥1 et 0 ≤ ϕn ↑ 1Ω quand n tend vers +∞.
Il reste à présent à étudier la suite (Φ(ϕn))n≥1. Ω étant compact, µ(Ω) est fini ;

pour tout ε > 0, il existe donc f ∈ CK(X, [0, 1]) telle que f ≺ 1Ω et µ(Ω) ≤
Φ(f) + ε.

Définissons θn := min {f, ϕn}, n ≥ 1. Les fonctions θn sont dans CK(X, [0, 1])
et, pour tout x∈ Kn, ϕn(x) = 1 et θn(x) = f(x), d’où

supp (f − θn) ⊂ Ω ∩ Ω \Kn = Ω \ K̊n ⊂ Ω \Kn−1.

car Kn−1 ⊂ K̊n. Les fonctions θn vérifient donc f − θn ≺ 1Ω\Kn−1
, et, par

conséquent,

Φ(f) = Φ(θn) + Φ(f − θn) ≤ Φ(ϕn) + µ(Ω \Kn−1).

Or lim
n
µ(Ω \ Kn−1) = 0 car Kn ⊂ Kn+1,

⋃
nKn = Ω et µ(Ω) < +∞. Donc

pour tout ε > 0,
µ(Ω)− ε ≤ Φ(f) ≤ lim

n

↑
Φ(ϕn),

ce qui donne le résultat recherché.

étape 5 Démonstration de la propriété de représentation (10.1) :

Commençons par montrer que Φ(f) ≤
∫
X
f dµ pour f ∈ CK(X,R+). Quitte à

remplacer f par f
1+‖f‖sup

, on peut supposer que f(X) ⊂ [0, 1[. Soit n ≥ 1 ; on
pose, pour tout k∈{0, . . . , n− 1},

Ek :=

{
k

n
≤ f < k + 1

n

}
∩ K où K := supp f.

Les Ek ∈ B(X) car f est continue, donc borélienne, et Ek est de mesure finie car
Ek ⊂ K. Il existe donc Ωk∈ O(X) tel queEk ⊂ Ωk et µ(Ωk) ≤ µ(Ek)+µ(K)/2.
De plus, comme

K =
n−1⋃
k=0

Ek ⊂
n−1⋃
k=0

Ωk,

le lemme 10.1(c) fournit des fonctions ϕk∈ CK(X, [0, 1]), 0≤k≤n−1, telles que

ϕk ≺ 1Ωk
et 1K ≤

n−1∑
k=0

ϕk. En conséquence, f =

n−1∑
k=0

ϕk f et

∀ k∈ {0, . . . , n− 1}, ϕk f ≺ 1Ωk
et ϕk f ≤ ϕk

k + 1

n
.
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D’où Φ(f) =
n−1∑
k=0

Φ(ϕkf) ≤
n−1∑
k=0

Φ(ϕk)
k + 1

n
≤

n−1∑
k=0

µ(Ωk)
k + 1

n
,

≤
n−1∑
k=0

µ(Ek)
k + 1

n
+
µ(K)

n
.

D’autre part, les Ek étant deux à deux disjoints, il vient∫
X
f dµ =

n−1∑
k=0

∫
Ek

f dµ ≥
n−1∑
k=0

µ(Ek)
k

n
=

n−1∑
k=0

µ(Ek)
k + 1

n
− µ(K)

n
.

On en déduit Φ(f) ≤
∫
X
f dµ+ 2µ(K)/n pour n ≥ 1, donc Φ(f) ≤

∫
X
f dµ.

Soit à présent f ∈ CK(X,R) de signe quelconque. Il existe Ω∈ O(X) tel que Ω
compact et K := supp f ⊂ Ω. Considérons la suite (ϕn)n≥1 de l’étape 4 attachée
à Ω. Pour n ≥ 1, 1K ≤ ϕn car K ⊂ Kn, donc il existe une constante c > 0 telle
que f + c ϕn ≥ 0 et, d’après ce qui précède

Φ(f) + cΦ(ϕn) ≤
∫
X
f dµ+ c

∫
X
ϕn dµ.

Or, d’après l’étape 4 et le théorème de Beppo Levi,

lim
n

↑
Φ(ϕn) ≥ lim

n

↑
∫
X
ϕn dµ = µ(Ω),

donc Φ(f) ≤
∫
X
f dµ. En changeant f en −f on obtient l’égalité (10.1).

étape 6 La propriété (10.1) entraı̂ne la caractérisation (10.3) ; unicité de µ :
Soit ν une mesure définie sur B(X) vérifiant (10.1). Soient K un compact et

f ∈ CK(X,R) vérifiant 1K ≤ f ≤ 1. Alors on a

ν(K) =

∫
X

1K dν ≤
∫
X
f dν = Φ(f),

donc ν(K) ≤ inf
{
Φ(f) : 1K ≤ f ≤ 1

}
. En particulier, ν est une mesure de

Borel (i.e. finie sur les compacts).
Passons à l’inégalité contraire. Soient Ω ∈ O(X) d’adhérence compacte et

K ⊂ Ω. On pose Ωn :=
{
x∈ X : d(x,K) < 1/n

}
∩Ω, n≥1. Les Ωn décroissent

pour l’inclusion, leur intersection est égalée à K et ν(Ωn) ≤ ν(Ω) < +∞, d’où
lim
n

↓ν(Ωn \K) = 0. Considérons les fonctions ϕn du lemme 10.1(b) associées aux

couples (Ωn,K). Pour tout n ≥ 1, suppϕn ⊂ Ωn ⊂ Ωn−1 et 1k ≤ ϕn ≤ 1Ωn . On
a donc Φ(ϕn) ≤ ν(Ωn) ≤ ν(K) + ν(Ωn \K), d’où, pour n ≥ 1,

ν(K) ≥ Φ(ϕn)− ν(Ωn \K),

≥ inf
{
Φ(ϕ) ϕ ∈ CK(X, [0, 1]) et 1K ≤ f

}
− ν(Ωn \K).
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En conséquence la mesure ν vérifie nécessairement la relation (10.3). C’est en
particulier le cas de la mesure µ :=(µ∗)|B(X) construite dans les étapes antérieures.
D’autre part, si ν désigne maintenant une autre mesure ayant la propriété de repré-
sentation (10.1), µ et ν coı̈ncident nécessairement sur les compacts par (10.3) donc
elles sont égales d’après le théorème 6.12(b) puisque X est localement compact
séparable.

étape 7 équivalence des définitions (10.2) et (10.6) :
Il est clair que pour tout Ω∈ O(X),

µ(Ω) := sup
{
Φ(f), f ∈ CK(X, [0, 1]) f ≺ 1Ω

}
≤ sup

{
Φ(f), f ∈ CK(X, [0, 1]), f≤1Ω

}
.

Réciproquement, si f ∈ CK(X, [0, 1]) et f ≤ 1Ω alors, d’après l’étape 5,

Φ(f) =

∫
X
f dµ ≤

∫
X

1Ω dµ = µ(Ω),

donc, en passant au sup, sup {Φ(f), f ∈ CK(X, [0, 1]) et f ≤1Ω} ≤ µ(Ω), d’où
l’égalité. ♦

Comme indiqué dans le chapeau de ce chapitre, on pourrait, à partir de ce
théorème – présenté de façon légèrement différente – reconstruire l’ensemble de
la théorie de la mesure et de l’intégration au sens de Lebesgue sur un espace lo-
calement compact et séparable. Nous nous contenterons de montrer qu’il fournit
une construction alternative de la mesure de Lebesgue à partir de l’intégrale de
Riemann.

Application à une (nouvelle) construction de la mesure de Lebesgue.
On considère sur CK(R,R), l’application Φ définie par

Φ(f) :=

∫ +∞

−∞
f(x) dx

où
∫ +∞

−∞
. . . dx désigne l’intégrale (faussement généralisée) au sens de Riemann

telle qu’elle est esquissée dans le chapitre 1. L’application Φ est clairement une
application linéaire positive ; il existe donc une unique mesure de Borel µ sur
(R,B(R)) vérifiant les conditions (10.1), (10.2) et (10.3).

Il est immédiat par un changement de variable élémentaire que, pour toute fonc-
tion f ∈ CK(R,R) et pour tout a ∈ R, Φ(f) = Φ(f ◦ τa). L’unicité de la mesure
dans le théorème de représentation entraı̂ne l’invariance de µ par translation.

D’autre part, on considère, pour tout n≥ 2, les fonctions continues à support
compact

fn(x) :=
[
min

(
nx, 1, n(1− x)

)]+ où u+ := max(u, 0).
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Celles-ci vérifient 0≤fn≤1]0,1[ et Φ(fn) = 1− 1/n→ 1 quand n tend vers +∞.
On déduit immédiatement de la caractérisation (10.2) que µ(]0, 1[)≥1.

De même, on montre que µ([0, 1]) ≤ 1 en s’appuyant sur la caractérisation
(10.3) et sur les fonctions

gn(x) :=
[
min

(
n(x+ 1/n), 1, n(1− x+ 1/n)

)]+
, n ≥ 2,

qui majorent 1[0,1].
En conséquence, µ([0, 1]) = 1. C’est donc bien la mesure de Lebesgue sur R

(cf. théorème 6.1) qui est ainsi construite par le théorème de représentation de
Riesz : en d’autres termes µ=λ.

10.1.2 Mesures de Radon

Définition 10.1. Soit X un espace métrique localement compact. On appelle me-
sure de Radon sur X toute forme linéaire continue sur (CK(X,K), ‖ . ‖sup).

Cette définition n’est pas la plus générale possible puisqu’elle induit la fini-
tude d’une telle mesure dès que X est métrique localement compact séparable (cf.
théorème 10.2). Nous reviendrons brièvement sur ce point en fin de section.

Le théorème de représentation de Riesz s’étend aux mesures de Radon réelles
ou complexes de la manière suivante :

Théorème 10.2. (a) Soient X un espace métrique localement compact et Φ une
forme linéaire continue sur CK(X,R). Alors, il existe deux mesures finies µ+ et µ−

telles que

∀ f ∈ CK(X,R), Φ(f) =

∫
X
f dµ+ −

∫
X
f dµ−. (10.9)

(b) Soit Φ une forme linéaire continue sur CK(X,C). Alors, il existe quatre mesures
finies µ±r et µ±i telles que

∀ f ∈ CK(X,C), Φ(f) =

∫
X
f dµ+r −

∫
X
f dµ−r + i

∫
X
f dµ+i − i

∫
X
f dµ−i .

(10.10)
Remarque : Dans le cas réel, on peut utiliser la notation

Φ(f) =

∫
X
f dµ avec la “mesure signée” µ := µ+ − µ−.

Dans le cas complexe,

Φ(f) =

∫
X
f dµ avec la “mesure complexe” µ := µr + i µi.

DÉMONSTRATION DU THÉORÈME 10.2 : (b) Supposons acquis le cas réel (a). Soit
Φ une forme linéaire continue sur CK(X,C). Les applications Φr et Φi définies sur
CK(X,R) par Φr(f) := <(Φ(f)) et Φi(f) := =(Φ(f)) sont clairement des formes
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linéaires sur CK(X,R). Alors d’après le cas (a), il existe quatre mesures de Borel
µ±r et µ±i telles que, pour toute fonction g ∈ CK(X,R),

Φr(g) =

∫
X
g dµ+r −

∫
X
g dµ−r et Φi(g) =

∫
X
g dµ+i −

∫
X
g dµ−i .

Soit f := u+i v ∈ CK(X,C). Par linéarité de Φ, on a

Φ(f) = Φ(u) + iΦ(v) = Φr(u) + iΦi(u) + i
(
Φr(v) + iΦi(v)

)
= Φr(u) + iΦr(v) + i

(
Φi(u) + iΦi(v)

)
=

∫
X
(u+i v) dµ+r −

∫
X
(u+i v) dµ−r + i

∫
X
(u+i v) dµ+i − i

∫
X
(u+i v) dµ−i ,

c’est-à-dire la décomposition (10.10).
(a) Le cas réel est une conséquence du théorème 10.1 de représentation des formes
linéaires positives et du théorème 10.3 de décomposition des formes linéaires réelles
continues sur un e.v.n. établi ci-dessous. Plus précisément, on applique ce théorème
à Φ et (CK(X,R), ‖ . ‖sup) pour produire deux formes linéaires positives Φ± défi-
nies par (10.12) et vérifiant (10.11). On obtient ainsi, via la remarque suivant le
théorème de représentation de Riesz (théorème 10.1), deux mesures de Borel µ±

représentant respectivement Φ± et vérifiant la propriété de régularité (10.2). En
appliquant celle-ci à l’ouvert X , il vient alors d’après la définition de Φ±

µ±(X) ≤ sup
{
Φ±(ϕ), ϕ∈ CK(X, [0, 1]), 0 ≤ ϕ ≤ 1Kn

}
≤ |||Φ±||| < +∞. ♦

Théorème 10.3. Soit Y un ensemble non vide. On considère un R-sous-espace
vectoriel E de F (Y,R), supposé muni d’une norme ‖ · ‖. On note E+ le cône des
fonctions positives appartenant à E. On suppose que E vérifie

(i) E est stable par valeur absolue :

∀ f ∈ E, |f | ∈ E+ et ‖ |f | ‖ = ‖f‖ ;

(ii) la norme ‖ · ‖ est croissante :

∀ f, g ∈ E+, f ≤ g ⇒ ‖f‖ ≤ ‖g‖.

Soit Φ une forme linéaire (réelle) continue sur E. Alors Φ se décompose sous
la forme

Φ = Φ+ − Φ− (10.11)

où Φ+ et Φ− sont des formes linéaires continues, positives, définies pour toute
fonction positive f de E, par{

Φ+(f) := sup
{
Φ(ϕ) : ϕ ∈ E+ et ϕ ≤ f

}
Φ−(f) := − inf

{
Φ(ϕ) : ϕ ∈ E+ et ϕ ≤ f

}
.

(10.12)
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Les formes linéaires Φ+ et Φ− sont appelées respectivement partie positive et partie
négative de Φ, et sont caractérisées par{

Φ+(f) := min
{
Φ1(f) : Φ1 et Φ1−Φ linéaires positives sur E

}
Φ−(f) := max

{
Φ2(f) : Φ2 et Φ2+Φ linéaires positives sur E

}
.

(10.13)

Remarque : Les espaces normés
(
CK(X,R), ‖ · ‖sup

)
,
(
LpR(µ), ‖ · ‖p

)
, p∈ [1,+∞[,

vérifient les hypothèses du théorème 10.3.

DÉMONSTRATION DU THÉORÈME 10.3 :
Soit Φ+ l’application définie sur E+ := {f ∈E : f≥0} par (10.12).

étape 1 Φ+ est positive et finie sur E+ :
Soit f ∈ E+. Comme 0∈ E+, Φ+(f) ≥ 0. Soit maintenant ϕ ∈ E+ telle que

0 ≤ ϕ ≤ f . Par continuité de la fonction Φ et par croissance de la norme, on a
Φ(ϕ) ≤ ‖Φ‖ ‖ϕ‖ ≤ ‖Φ‖ ‖f‖, d’où en passant au sup

0 ≤ Φ+(f) ≤ ‖Φ‖ ‖f‖ < +∞. (10.14)

étape 2 Φ+ est additive sur E+ :
Soient f1, f2 ∈ E+ et ϕ ∈ E+ telle que ϕ ≤ f1+f2. On décompose ϕ en

ϕ = min(f1, ϕ)+max(ϕ−f1, 0) où min(f1, ϕ) ≤ f1 et max(ϕ−f1, 0) ≤ f2.

Or min(f1, ϕ)=
1
2(f1+ϕ−|f1−ϕ|) ∈ E+ et max(ϕ−f1, 0)=ϕ−min(f1, ϕ) ∈

E+. Il vient alors, par définition de Φ+, Φ(ϕ) ≤ Φ+(f1) + Φ+(f2), d’où, finale-
ment,

Φ+(f1 + f2) = sup
0≤ϕ≤f1+f2

Φ(ϕ) ≤ Φ+(f1) + Φ+(f2).

Passons à l’inégalité contraire. Soit ε>0. D’après la définition de Φ+, il existe
ϕ1, ϕ2 ∈ E+ telles que 0 ≤ ϕi ≤ fi et Φ+(fi) ≤ Φ(ϕi) + ε pour i=1, 2. Comme
0 ≤ ϕ1+ϕ2 ≤ f1+f2, il vient

∀ ε > 0, Φ+(f1+f2) ≥ Φ(ϕ1+ϕ2) = Φ(ϕ1)+Φ(ϕ2) ≥ Φ+(f1)+Φ+(f2)−2 ε,

et partant, Φ+(f1+f2) ≥ Φ+(f1) + Φ+(f2).

étape 3 Définition et additivité de Φ+ sur E :
Soit f ∈ E. Il est immédiat que f± := 1

2(|f | ± f) = max(±f, 0) ∈ E+. On
pose donc Φ+(f) := Φ+(f+)− Φ+(f−).

Soient f, g∈ E. On décompose classiquement f + g en

f + g = (f + g)+ − (f + g)− = f+ − f− + g+ − g−,
d’où (f + g)+ + f+ + g− = (f + g)− + f+ + g+.

L’additivité de Φ+ sur E+ entraı̂ne alors

Φ+((f + g)+) + Φ+(f−) + Φ+(g−) = Φ+((f + g)−) + Φ+(f+) + Φ+(f−),



210 10. Théorèmes de représentation et applications

soit, finalement, en repartant dans l’autre sens, Φ+(f+g) = Φ+(f) + Φ+(g).

étape 4 Φ+ est continue sur E :
Soit f ∈ E. La positivité de Φ+ entraı̂ne Φ+(|f |±f) ≥ 0, d’où, par additivité

de Φ+, Φ+(|f |) ≥ ±Φ+(f) i.e. |Φ+(f)| ≤ Φ+(|f |). D’autre part, (−f)± = f∓

donc Φ+(−f) = −Φ+(f). Soient à présent f1, f2 ∈ E. L’additivité de Φ+ et la
majoration (10.14) de l’étape 1 impliquent alors

|Φ+(f1)− Φ+(f2)| = |Φ+(f1−f2)| ≤ Φ+(|f1−f2|)≤ ‖Φ‖ ‖ |f1−f2| ‖
= ‖Φ‖ ‖f1−f2‖,

d’où la continuité de Φ+. étape 5 Φ+ est une forme linéaire sur E :
Soit f ∈ E. L’additivité de Φ+ et l’égalité Φ+(−f) = −Φ+(f) entraı̂nent

Φ+(nf) = nΦ+(f) pour tout n ∈ Z. Soit r := p
q ∈ Q avec p, q ∈ Z et q 6= 0. Il

vient
Φ+(qrf) = qΦ+(rf) = Φ+(pf) = pΦ+(f),

d’où Φ+(rf) = rΦ+(f). La continuité de Φ+ sur E et la densité de Q dans R en-
traı̂nent alors que pour tout λ ∈ R, Φ+(λf) = λΦ+(f). Compte tenu de l’additivité
de l’étape 4, Φ+ est donc une forme linéaire sur E.

étape 6 Vérification des relations (10.12) et (10.13) :
La forme linéaire Φ+ étant définie par (10.12), on définit Φ− par (10.11) i.e.,

∀ f ∈ E, Φ−(f) = Φ+(f)− Φ(f)

= sup {Φ(ψ−f), ψ ∈ E+, ψ ≤ f}
= sup {−Φ(ϕ), ϕ ∈ E+, ϕ ≤ f} (poser ϕ := f−ψ)
= −inf {Φ(ϕ), ϕ ∈ E+, ϕ ≤ f},

d’où (10.12) pour Φ−.

Soient Φ1 et Φ2 deux formes linéaires positives sur E telles que Φ = Φ1 −Φ2.
Soient f ∈ E et ϕ ∈ E telles que 0 ≤ ϕ ≤ f . Par positivité de Φ1 et Φ2, on
a Φ1(f) ≥ Φ1(ϕ) = Φ(ϕ) + Φ2(ϕ) ≥ Φ(ϕ), d’où en passant au sup, Φ1(f) ≥
Φ+(f). On en déduit que Φ2(f) = Φ(f) − Φ1(f) ≤ Φ(f) − Φ+(f) = Φ−(f),
d’où (10.13). ♦

Remarque : L’énoncé donné ici n’est pas le plus général possible lorsque X est
σ-compact. On peut munir l’espace CK(X,R) de la topologie de la convergence
uniforme dans un compact fixe i.e. fn → f s’il existe un compact K de X tel
que {fn 6= 0} ⊂ K pour tout n ≥ 1 et fn|K → f|K uniformément. Il ne s’agit
plus d’une topologie d’e.v.n. et le théorème (10.3) ne s’applique plus. Néanmoins,
il s’applique toujours sur chacun des s.e.v. CKn(X,R) (la trace de la topologie
ci-dessus est celle de la convergence uniforme) où Kn est une suite de compacts
“épuisant” X (et vérifiant Kn ⊂ K̊n+1). Si l’on appelle maintenant mesure de
Radon toute forme linéaire Φ sur CK(X,R) continue pour la topologie ci-dessus, on
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peut donc la représenter localement sur chaque CKn(X,R), n ≥ 1, puis “recoller”
les représentations ainsi obtenues en s’appuyant sur l’unicité de la représentation.
On obtient ainsi une représentation de la forme (10.9) pour Φ par deux mesures de
Borel µ±. Il s’agit de la forme la plus générale du théorème de représentation de
Riesz. Le cas complexe s’étend de même.

10.2 Théorème de Radon-Nikodym

On a vu au chapitre 8 que si f : (X,A ) → R+ est une fonction mesurable,
alors l’application ν : A → R+ définie par

∀A ∈ A , ν(A) :=

∫
A
f dµ

est une mesure, finie si et seulement si f ∈ L 1
R+

(µ). f est appelée la densité ou

dérivée de Radon-Nikodym de ν par rapport à µ. On la note souvent f :=
dν

dµ
.

Il est immédiat que ν ainsi définie vérifie la propriété suivante, dite d’absolue
continuité et notée ν � µ :

∀A ∈ A , µ(A) = 0 ⇒ ν(A) = 0. (10.15)

La mesure ν est souvent notée f.µ.

Le théorème de Radon-Nikodym a pour objet d’établir une réciproque à cette
construction : si ν � µ, ν a-t-elle nécessairement une densité par rapport à µ? En
toute généralité la réponse est négative comme l’illustre le contre-exemple suivant.

Contre-exemple : On considère l’espace mesurable ([0, 1],B([0, 1])) respective-
ment muni de la mesure de comptage m et de la mesure de Lebesgue λ. Il est
immédiat que, si m(A)=0, A=Ø et partant λ(A)=0. En conséquence λ� m.

Supposons maintenant l’existence d’une fonction borélienne f : R → R+

vérifiant

∀A ∈ B(R), λ(A) =

∫
A
fdm.

Comme λ([0, 1]) = 1, f ∈ L 1
R+

(m). Par suite (cf. exemple 2. à la suite du corol-
laire 7.2), l’ensembleD :={f >0} est au plus infini dénombrable. cD est donc bien
un borélien de mesure de Lebesgue λ(cD)=1 ; or il est clair que 1cD=0 f.dm-p.p.

ce qui entraı̂ne que
∫

cD
fdm=0.

Cet exemple montre qu’il nous faut imposer des restrictions sur la mesure de
référence µ. Avant de démontrer le théorème dans les deux sections qui suivent,
nous allons établir une caractérisation équivalente de l’absolue continuité.

Proposition 10.2. Soient µ et ν deux mesures sur l’espace mesurable (X,A ).
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(a) Si µ et ν vérifient

∀ ε > 0, ∃ η > 0 tel que ∀A∈ A , µ(A) < η ⇒ ν(A) < ε, (10.16)

alors ν � µ.
(b) Réciproquement, si ν est une mesure finie et si ν � µ, alors la condition (10.16)
est vérifiée.

DÉMONSTRATION : (a) Si la condition (10.16) est réalisée, il est immédiat que
ν � µ. En effet, si µ(A) = 0, µ(A) < ηε donc ν(A) < ε pour tout ε > 0 i.e.
ν(A)=0.
(b) Pour la réciproque on raisonne par contraposée. Si la condition (10.16) n’est
pas vérifiée, il existe ε0 > 0 tel que, pour tout n ≥ 1, il existe An ∈ A vérifiant
µ(An)<

1
n2 et ν(An)≥ ε0. On pose alors A :=

⋂
n≥1

↓ ⋃
k≥n

Ak. Pour tout n≥ 1, on

a µ
( ⋃
k≥n

Ak

)
≤
∑
k≥n

1

k2
. Or

∑
k≥n

1

k2
tend vers 0 quand n → +∞, donc µ(A) = 0

car µ(
⋃
n≥0

An) < +∞. D’autre part, ν(
⋃
k≥n

Ak) ≥ ν(An)≥ε0. La mesure ν étant

finie, ν(A) ≥ ε0, ce qui entraı̂ne que ν 6� µ. ♦

10.2.1 Le cas d’une mesure de référence µ finie

Théorème 10.4 (Radon-Nikodym). Soient µ et ν deux mesures finies sur un espace
mesurable (X,A ). Il y a équivalence entre

(i) ∀A∈A µ(A) = 0 =⇒ ν(A) = 0,

(ii) ∃ f ∈L 1
R+

(µ) telle que ∀A∈ A , ν(A) =

∫
A
f dµ.

En outre, la fonction f est unique (dans L1
R+

(µ) i.e. à une égalité µ-p.p. près).

DÉMONSTRATION : Seul le sens direct nécessite une démonstration.
étape 1 ν ≤ µ :

On suppose dans cette étape que ν≤µ (au sens ν(A)≤µ(A) pour tout A∈ A

ou encore
∫
X
gdν≤

∫
X
g dµ pour toute fonction mesurable positive g). Il est alors

clair que µ et ν vérifient la condition (i) ! On considère l’application linéaire

Φ : L2
R(µ) −→ R

f 7−→
∫
X
fdν.

L’application Φ est clairement continue puisque, pour toute fonction g dans L2
R(µ),∣∣∣∣∫

X
g dν

∣∣∣∣ = ∣∣∣∣∫
X
g 1d ν

∣∣∣∣ ≤ (∫
X
g2 dν

) 1
2

ν(X)
1
2 .
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D’après le théorème 9.8 de représentation du dual de L2
R(µ), il existe une fonction

f ∈L2
R(µ) telle que

∀ g∈ L2
R(µ),

∫
X
g dν=

∫
X
gf dµ.

Comme la mesure µ est finie, 1 ∈ L2
R(µ), donc f ∈ L1

R(µ). On peut évidemment
assimiler f à l’un de ses représentants dans L 1

R (µ). Plus généralement, comme
L ∞

R (µ) ⊂ L 2
R(µ), il est immédiat que

∀A∈A , ν(A) =

∫
A
f dµ.

Montrons enfin que f est µ-p.p. à valeurs dans l’intervalle [0, 1]. Supposons
que µ({f < 0}) > 0 ; il existe alors un entier n0 ≥ 1 tel que µ({f ≤ − 1

n0
}) > 0

puisque {f <0} =
⋃
n≥1

↑{f ≤ − 1
n}. D’où

0 ≤ ν
(
{f≤ − 1

n0
}
)
=

∫
{f≤− 1

n0
}
f dµ ≤ − 1

n0
µ
(
{f≤ − 1

n0
}
)
< 0.

La contradiction entraı̂ne donc que µ({f < 0}) = 0 et, quitte à remplacer f
par f1{f≥0}, on peut supposer f positive. De la même façon on peut montrer que
µ({f >1})=0 (sinon ν({f≥1+ 1

n0
}) ≥ (1+ 1

n0
)µ({f≥1+ 1

n0
}) pour un n0≥1,

etc).

étape 2 Cas général :

D’après l’étape 1 appliquée aux deux mesures finies µ et µ+ν, il existe une
fonction f ∈L 1(µ+ν) telle que

∀A ∈ A , ν(A) =

∫
A
fd(µ+ν) et0 ≤ f ≤ 1 µ-p.p.

D’où l’on déduit immédiatement l’égalité entre mesures finies

(1− f).ν = f.µ.

On poseN := {f = 1} ; µ(N) =

∫
N
f dµ =

∫
N
(1− f)dν = 0 donc, d’après l’hy-

pothèse (i), ν(N) = 0. Partant, si A∈ A

ν(A) = ν(A ∩N)︸ ︷︷ ︸
=0

+

∫
cN

1A
1− f︸ ︷︷ ︸
>0

(1− f)dν

=

∫
cN

1A
1− f

f dµ =

∫
A
1cN

f

1− f
dµ
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et comme
∫

cN

f

1− f
dµ = ν(X)<+∞, 1cN

f

1− f
∈ L 1

R+
(µ).

étape 3 Unicité :

Si f et f̃ vérifient (ii) alors

ν({f >f̃}) =
∫
{f>f̃}

f dµ =

∫
{f>f̃}

f̃ dµ

donc
∫
{f>f̃}

(f − f̃)dµ = 0, par suite µ({f > f̃}) = 0, et on a µ({f 6= f̃}) = 0

par symétrie. ♦

Remarque : On a en fait établi dans la démonstration ci-dessus le résultat plus
général suivant :

Si µ et ν sont deux mesures finies sur l’espace mesurable (X,A ), alors il existe
f ∈ L 1

R+
(µ) et N ∈ A , µ-négligeable, tels que

∀A∈A , ν(A) = ν(A ∩N) +

∫
A
f dµ. (10.17)

En outre, si f̃ et Ñ vérifient (10.17) alors

f = f̃ µ-p.p. et 1N = 1Ñ µ-p.p. (i.e. µ(N∆Ñ) = 0).

10.2.2 Extension au cadre σ-fini

L’énoncé du théorème 10.4 s’étend au cas où les deux mesures µ et ν sont σ-
finies, l’intégrabilité de la dérivée de Radon-Nikodym dν

dµ ne pouvant évidemment
être conservée dans ce cadre étendu. Plus précisément, il vient

Théorème 10.5 (Radon-Nikodym). Soient µ et ν deux mesures σ-finies sur un es-
pace mesurable (X,A ). Il y a équivalence entre

(i) ∀A∈A , µ(A) = 0 ⇒ ν(A) = 0,

(ii) ∃ f : (X,A )→ R+ mesurable telle que , ∀A∈A , ν(A) =

∫
A
f dµ.

En outre, la fonction f est unique (à une égalité µ-p.p. près).

DÉMONSTRATION : Il s’agit pour l’essentiel de se ramener au cadre fini. Les me-
sures µ et ν étant σ-finies, il existe deux partitions A -mesurables de X , (Fn)n≥0

et (Gn)n≥0, vérifiant, pour tout n≥ 0, µ(Fn)+ν(Gn)<+∞. Il est immédiat que
les Ek,` := Fk ∩ G`, k, `≥ 0, forment une partition A -mesurable de X vérifiant
µ(Ek,`)≤µ(Fk)<+∞ et ν(Ek,`)≤ν(G`)<+∞. N× N étant équipotent à N, on
peut supposer ces ensembles indexés par N. On les notera donc (En)n≥0.

On pose alors, pour tout n ≥ 0, µn := µ(· ∩ En) et νn := ν(· ∩ En).
D’après le théorème 10.4, il existe donc une suite de fonctions (fn)n≥0 vérifiant
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fn ∈ L 1
R+

(µn) et νn = fn.µn = (fn1En).µ. On définit alors f :=
∑
n≥0

fn 1En .

D’après le théorème de Beppo Levi pour les séries (cf. chapitre 7), il est immédiat
que pour tout A∈A ,∫

A
f dµ=

∫
X

1A
∑
n≥0

1En fn dµ =
∑
n≥0

∫
X

1A fn dµn

=
∑
n≥0

ν(A ∩ En) = ν(A).

Par suite ν=f.µ. L’unicité se traite comme dans le cas fini. ♦

10.3 Dualité Lp-Lq

Il est immédiat via l’inégalité de Hölder que pour toute fonction g ∈ LqK(µ),
l’application f 7→

∫
X f g dµ est bien définie, linéaire et continue de norme

(inférieure ou égale à) ‖g‖q. Le but du théorème de dualité ci-dessous est de mon-
trer que si 1≤ p <+∞, on obtient ainsi toutes les formes linéaires continues sur
LpK(µ).

10.3.1 Formes linéaires réelles positives

Théorème 10.6. Soient (X,A , µ) un espace mesuré σ-fini, p ∈ [1,+∞[ et q son
exposant conjugué ; soit Φ : LpR(µ) → R une forme linéaire, continue et positive
au sens où, pour tout f ∈ LpR+

(µ), Φ(f) ≥ 0. Alors, il existe un unique élément
g∈LqR(µ) tel que

∀ f ∈ LpR(µ), Φ(f) =

∫
X
fg dµ.

En outre, ‖g‖q = ‖Φ‖ où ‖Φ‖ désigne la norme d’opérateur de Φ.

DÉMONSTRATION : On note tout d’abord que, pour tout A∈ A , 1A∈ L p
R(µ) si et

seulement si µ(A) < +∞ puisque ‖1A‖p=µ(A)1/p.
Soit (En)n≥1 une suite croissante d’éléments de A vérifiant X =

⋃
n≥1

↑
En et

µ(En)<+∞ pour tout n≥1. On pose F1 :=E1 et Fn :=En\En−1, n≥2.

étape 1 Construction de g :
Pour tout n≥ 1 et pour tout A ∈ A , on pose νn(A) := Φ(1A∩Fn). Montrons

que νn est une mesure finie, absolument continue par rapport à µ.
– νn(A)≥0 car Φ est positive et νn(X)=µ(Fn)<+∞.
– νn(Ø)=Φ(0)=0.
– Soit (Ak)k≥1 une suite d’éléments de A deux à deux disjoints. Il est immédiat

que 1(∪k≥1Ak)∩Fn
=lim

k

k∑
`=1

1A`∩Fn . En outre, la convergence a lieu dans LpR(µ).
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En effet, d’après le théorème de convergence dominée, une série de fonctions po-
sitives dont la limite est dans LpR(µ) converge vers cette limite dans LpR(µ). La
continuité de Φ entraı̂ne alors que

νn

( ⋃
k≥1

Ak

)
=Φ(1(∪k≥1Ak)∩Fn

) = Φ

(
lim
k

k∑
`=1

1A`∩Fn

)

= lim
k

Φ

(
k∑
`=1

1A`∩Fn

)

=

+∞∑
k=1

Φ(1A`∩Fn) =
∑
k≥1

νn(Ak).

– La forme linéaire Φ est continue donc, dès que µ(A)=0,

νn(A) = Φ(1A∩Fn) ≤ ‖Φ‖ ‖1A∩Fn‖p = ‖Φ‖µ(A ∩ Fn)
1
p ≤ ‖Φ‖µ(A)

1
p = 0.

Le théorème de Radon-Nikodym 10.4 entraı̂ne alors l’existence, pour n ≥ 1,

d’une fonction gn∈ L 1
R (µ) vérifiant, pour toutA∈ A , νn(A) =

∫
A
g dµ. De plus,

comme νn(A) = νn(A ∩ Fn) par définition de νn, il est immédiat que, quitte à
remplacer gn par gn1Fn , on peut supposer gn nulle en dehors de Fn.

étape 2 Propriété de représentation :

Les Fn étant deux à deux disjoints, on peut poser g :=
∑
n≥1

gn. Soit f ∈ LpR+
(µ) ;

la série à terme positifs
∑
n≥1

f1Fn converge vers f car X =
⋃
n≥1 Fn (union dis-

jointe). Il en est de même des puissances p-ème et, partant, il y a convergence dans
LpR(µ) par convergence dominée. En s’appuyant successivement sur la continuité
de Φ et le théorème de Beppo Levi pour les séries de fonctions positives, il vient

Φ(f) =
∑
n≥1

Φ(f1Fn) =
∑
n≥1

∫
X
fgn dµ =

∫
X
fg dµ.

La propriété de représentation s’étend aux fonctions réelles de LpR(µ) par linéa-
rité à partir de la décomposition classique f=f+−f−.
étape 3 g∈ LqR(µ) et ‖Φ‖ = ‖g‖q :

Supposons d’abord p > 1. On pose fm,n := sgn(g)gq−11En∩{g≤m} pour tout
(m,n)∈ N2. Par construction, fm,n∈ L p

R(µ). D’après la propriété de représenta-
tion établie à l’étape précédente, il vient, en notant que p(q − 1)=q,

Φ(fm,n) =

∫
X
fn,m g dµ =

∫
En

|g|q 1{g≤m} dµ

≤ ‖Φ‖‖fm,n‖p = ‖Φ‖
(∫

En

|g|q 1{g≤m} dµ

)1/p

< +∞.
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D’où l’on déduit que, pour tout (m,n)∈ N2,(∫
En

|g|q 1{g≤m} dµ

)1−1/p

≤ ‖Φ‖.

On passe alors successivement à la limite, en m, puis en n, à l’aide du théorème de
Beppo Levi, pour obtenir que ‖g‖q ≤ ‖Φ‖.

Il est clair par l’inégalité de Hölder, que pour f ∈ LpR(µ), |Φ(f)| ≤ ‖g‖q‖f‖p
et, partant, ‖Φ‖ ≤ ‖g‖q. D’où l’égalité.

Si p = 1, on reprend la démonstration du cas précédent en posant p′ := r
r−1 ,

r > 1 et q := r et l’on constate que ‖g‖r ≤ ‖Φ‖ pour tout r > 1. La proposi-
tion 9.6 (b) entraı̂ne alors que ‖g‖∞ ≤ ‖Φ‖ < +∞. L’autre inégalité découle de
l’inégalité de Hölder.

étape 4 Unicité :
Soit g′ une autre fonction de LqR(µ) assurant la propriété de représentation de

la forme linéaire Φ. Pour tout A∈ A , νn(A) = Φ(1A∩Fn) =

∫
A
g′1Fn dµ, donc

l’unicité dans le théorème de Radon-Nikodym assure que, pour tout entier n≥ 1,
g′ 1Fn = g 1Fn µ-p.p., i.e. g = g′ µ-p.p. ♦

10.3.2 Formes linéaires réelles ou complexes

On étend sans véritable difficulté le théorème 10.6 de représentation des formes
linéaires continues positives aux formes linéaires continues réelles ou complexes, à
l’aide du théorème 10.3 de décomposition abstrait établi à la section 10.1 lors de la
démonstration du théorème de Riesz. On obtient ainsi le théorème de dualité Lp-Lq

ci-après.

Théorème 10.7. Soient (X,A , µ) un espace mesuré σ-fini, p ∈ [1,+∞[ et q son
exposant conjugué. Alors, le dual topologique de LpK(µ), i.e. l’ensemble des formes
linéaires continues de LpK(µ) dans K = R ou C, est isométriquement isomorphe à
LqK(µ).

DÉMONSTRATION : Soit Φ : LpR(µ) → K une forme linéaire continue. Il suffit de
montrer qu’il existe un unique élément g∈LqR(µ) tel que

∀ f ∈ LpR(µ), Φ(f) =

∫
X
fg dµ et ‖g‖q = ‖Φ‖.

étape 1 Existence :
La représentation de Φ par une fonction g ∈ LqR(µ) est une conséquence di-

recte du théorème 10.6 précédent et du théorème 10.3 de décomposition des formes
linéaires continues réelles. D’autre part, l’inégalité de Hölder entraı̂ne

‖Φ‖ := sup
‖f‖p=1

∣∣∣∣∫
X
fg dµ

∣∣∣∣ ≤ ‖f‖p ‖g‖q = ‖g‖q.
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De plus, la fonction fg := 1{g 6=0}
g
|g| |g|

q−1 vérifie |fg|p= |g|q∈L 1
R (µ) et, partant,

‖g‖qq =
∫
X
fgg dµ ≤ ‖Φ‖ ‖fg‖p = ‖Φ‖ ‖g‖

q
p
q ,

d’où ‖g‖q≤‖Φ‖. Donc ‖Φ‖=‖g‖q.

étape 2 Unicité :

Soient g′∈LqR(µ) représentant la forme Φ et f := 1{g′ 6=g}
g′−g
|g′−g| |g

′−g|q−1. Les
définitions de g′ et g entraı̂nent alors

0 =

∫
X
f(g′−g)dµ =

∫
X
|g′−g|qdµ,

d’où g′=g. ♦

Remarques : • En fait, le théorème de dualité reste valable pour 1<p<+∞même
si l’espace mesuré n’est pas σ-fini. Cette extension fait l’objet de l’exercice 10.8
ci-après.
• En revanche, la propriété de représentation tombe en défaut pour p=1 lorsque

l’espace n’est pas σ-fini (cf. exercice 10.6).
• Le cas p=+∞ est le plus défavorable. En effet, dès que la tribu A contient

une suite (An)n≥1 d’éléments deux à deux disjoints vérifiant 0 < µ(An) < +∞,
il existe des formes linéaires continues positives sur L

∞
K (µ) n’admettant aucune

représentation par une fonction intégrable. Dans le cadre abstrait, ce résultat s’ap-
puie sur le théorème de Hahn-Banach (cf. exercice 10.14).

Ainsi, la propriété de représentation tombe en défaut sur `
∞
K (N,m) (m mesure

de comptage) ou sur L
∞
K (Rd, λd).

10.4 Interpolation sur les espaces Lp

Cette section a pour objet les opérateurs qui agissent sur les espaces Lp. On a
le résultat suivant.

Théorème 10.8 (Marcinkiewicz). Soient (X,A , µ) et (Y,B, ν) deux espaces me-
surés σ-finis et soit T un opérateur (éventuellement non linéaire) de L1

C(X,µ) dans
l’espace des fonctions complexes mesurables sur (Y,B, ν) vérifiant

∃ k ∈ R+, ∀ f, g ∈ L1
C(X,µ), |T (f + g)| ≤ k

(
|T (f)|+ |T (g)|

)
. (10.18)

On suppose qu’il existe p1, p2, q1, q2 ∈ [1,+∞] avec

p1 6= p2, q1 6= q2, pi ≤ qi pour i = 1, 2, (10.19)

et M1,M2 ∈ R+ tels que, pour i = 1, 2,

∀ f ∈ Lp1C (µ) ∩ Lp2C (µ), ‖T (f)‖Lqi (ν) ≤Mi ‖f‖Lpi (µ). (10.20)
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Alors, pour tout θ ∈ ]0, 1[, il existe une constante C ∈ R+ ne dépendant que de
θ, p1, p2, q1, q2, telle que

∀ f ∈ Lp1C (µ) ∩ Lp2C (µ), ‖T (f)‖Lq(ν) ≤ CM θ
1 M

1−θ
2 ‖f‖Lp(µ), (10.21)

où les nombres p et q sont définis par

1

p
=

θ

p1
+

(1− θ)
p2

et
1

q
=

θ

q1
+

(1− θ)
q2

. (10.22)

Remarque : Lorsque T est un opérateur linéaire, on peut prendreC = 1 dans l’esti-
mation (10.21), pour tous p1, p2, q1, q2 ∈ [1,+∞] et pour tout θ ∈ [0, 1]. Le résultat
est connu sous le nom de théorème de Riesz-Thorin. La démonstration nécessite
des outils d’analyse complexe (principe du maximum et théorème de Phragmén-
Lindelöf) qui sortent du cadre de cet ouvrage.

DÉMONSTRATION : On s’appuie sur la démarche adoptée par Zygmund dans [15]
(Chap. XII), fondée sur la dualité Lp-Lq.
étape 1 Une estimation via les fonctions µ({|f | > t}) (cf. exercice 9.23) :

Soit f ∈ Lp1C (µ)∩Lp2C (µ), alors f ∈ LpC(µ) car p ∈ [p1, p2] (cf. exercice 9.14).
La fonction f peut se décomposer, pour u ∈ R+ fixé, sous la forme

f = f1 + f2 où f1 := 1{|f |≤z} f + 1{|f |>u} e
i arg f u,

de sorte que
|f1| = min (|f |, u) et |f | = |f1|+ |f2|.

On suppose que q1, q2 < +∞. Le cas contraire sera étudié lors de la dernière étape.
Sans restriction aucune, on peut aussi supposer que p2 < p1. Soient θ ∈ ]0, 1[ et les
nombres p, q définis par (10.22). La condition (10.18) donne pour tout t ∈ R+,

{|T (f)| > 2k s} ⊂ {|T (f1)| > s} ∪ {|T (f2)| > s},

qui combinée avec (10.20) implique

ν
{
|T (f)| > 2k s}

)
≤ ν

{
|T (f1)| > s}

)
+ ν
{
|T (f2)| > s}

)
≤ s−q1 ‖T (f1)‖q1Lq1 (ν) + s−q2 ‖T (f2)‖q2Lq2 (ν)

≤M q1
1 s−q1 ‖f1‖q1Lp1 (µ) +M q2

2 s−q2 ‖f1‖q2Lp2 (µ).

(10.23)

D’après l’identité (cf. exercice 11.4)∫
Y
|g|q dν = q

∫ +∞

0
tq−1 ν({|g| ≥ t}) dt

appliquée à la fonction g = |T (f)| et via le changement de variable t = 2k s, il
vient

‖T (f)‖qLq(ν) = q (2k)q
∫ +∞

0
sq−1ν({|T (f)| > 2k s}) ds. (10.24)
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La même identité appliquée à f1 et f2 donne

‖T (f)‖qLq(ν)

≤ q(2k)qM q1
1

∫ +∞

0
sq−q1−1 ‖f1‖q1Lp1 (µ) ds

+ q(2k)qM q2
2

∫ +∞

0
sq−q2−1 ‖f1‖q2Lp2 (µ) ds

= q(2k)qM q1
1 p

q1
p1
1

∫ +∞

0
sq−q1−1

(∫ +∞

0
tp1−1µ

(
{|f1| > t}

)
dt

) q1
p1

ds

+ q(2k)qM q2
2 p

q2
p2
2

∫ +∞

0
sq−q2−1

(∫ +∞

0
tp2−1µ

(
{|f2| > t}

)
dt

) q2
p2

ds.

Or, par définition de f1 et f2, on a

µ
(
{|f1| > t}

)
≤ 1[0,u](t)µ

(
{|f | > t}

)
et µ

(
{|f2| > t}

)
= µ

(
{|f | > t+ u}

)
.

On obtient donc l’estimation

‖T (f)‖qLq(ν)

≤ q(2k)qM q1
1 p

q1
p1
1

∫ +∞

0
sq−q1−1

(∫ u

0
tp1−1µ

(
{|f | > t}

)
dt

) q1
p1

ds

+ q(2k)qM q2
2 p

q2
p2
2

∫ +∞

0
sq−q2−1

(∫ +∞

u
(t− u)p2−1µ

(
{|f | > t}

)
dt

) q2
p2

ds.

(10.25)
étape 2 Une inégalité obtenue par dualité Lp-Lq :

Notons tout d’abord que, dans un espace mesuré (X,A , µ) σ-fini, l’égalité du
théorème 10.6 de dualité pour r ∈ ]1,+∞[ et r′ := r/(r − 1),

‖f‖Lr(µ) = sup

{∫
X
f ϕ dµ : ϕ ≥ 0,

∫
X
ϕr

′
dµ = 1

}
(10.26)

s’étend à toute fonction f mesurable positive (non nulle), élément ou non de Lr(µ).
La minoration de ‖f‖Lr(µ) dans (10.26) est une conséquence immédiate de l’inéga-
lité de Hölder. Pour montrer l’inégalité inverse, on considère une suite croissante
d’ensembles mesurables En, n ∈ N, de mesure finie et la suite de fonctions ϕn
définies par

ϕn :=
f r−1 1En

‖f 1En‖r−1
Lr(µ)

pour tout n ≥ 0,

vérifiant
‖ϕn‖Lr′ (µ) = 1 et {|f | ≤ n} ⊂ En ↗ X.
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Le théorème de convergence monotone entraı̂ne alors, lorsque n→ +∞,∫
X
f ϕn dµ =

1

‖f 1En‖r−1
Lr(µ)

∫
X
f r 1En dµ = ‖f 1En‖Lr(µ) → ‖f‖Lr(µ) ≤ +∞.

Soient α ∈ R∗, a, γ ∈ ]0,+∞[, r ∈ ]1,+∞[, et g : R+×R+ → R+, h : R+ →
R+ deux fonctions Lebesgue-mesurables positives vérifiant

0 ≤ g(s, t) ≤

{
1[0,a tγ ](s)h(t) si α > 0

1[a tγ ,+∞[(s)h(t) si α < 0.

D’après l’égalité de dualité (10.26) appliquée à la mesure µ(ds) := sα−1ds, on a∫ +∞

0

(∫ +∞

0
g(s, t) dt

)r
sα−1ds

= sup

{[∫ +∞

0

(∫ +∞

0
g(s, t) dt

)
ϕ(s) sα−1ds

]r
: ϕ ≥ 0,

∫ +∞

0
ϕr

′
(s) sα−1ds = 1

}
.

Alors en appliquant le théorème de Fubini-Tonelli, on a∫ +∞

0

(∫ +∞

0
g(s, t) dt

)
ϕ(s) sα−1ds =

∫ +∞

0

(∫ +∞

0
g(s, t)ϕ(s) sα−1ds

)
dt

≤
∫ +∞

0

(∫ +∞

0
gr(s, t) sα−1ds

)1/r

dt,

où l’on a utilisé à la seconde ligne l’inégalité de Hölder et
∫ +∞

0
ϕr

′
(s)sα−1ds= 1.

D’où, par l’hypothèse sur la fonction g et un simple calcul d’intégrales (en distin-
guant les cas α > 0 et α < 0), il vient[∫ +∞

0

(∫ +∞

0
g(s, t) dt

)
ϕ(s) sα−1ds

]r
≤ aαγ

|α|

(∫ +∞

0
h(t) tαγ/r dt

)r
.

Finalement, on obtient l’inégalité∫ +∞

0

(∫ +∞

0
g(s, t) dt

)r
sα−1ds ≤ aα

|α|

(∫ +∞

0
h(t) tαγ/r dt

)r
. (10.27)

L’inégalité reste vraie lorsque r = 1 par simple application du théorème de Fubini-
Tonelli.
étape 3 Estimation dans le cas q1, q2 < +∞ :

On suppose par exemple que q2 < q1 ce qui implique q2 < q < q1 d’après la
définition (10.22) de q1 et q2. L’autre cas se traite de façon très similaire en prenant
alors γ < 0. En injectant dans l’estimation (10.25) l’inégalité (10.27) avec

α := q − qi, r = ri :=
qi
pi
,

u = u(s) :=
(s
a

)1/γ
, h(t) := tpi−1 µ

(
{|f | > t}

)
,

(10.28)
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(a, γ > 0), il vient

‖T (f)‖qLq(ν)

≤ q (2k)qM q1
1 pr11

aq−q1

q1 − q

(∫ +∞

0
tp1−1+(q−q1)γ/r1µ

(
{|f | > t}

)
dt

)r1
+ q (2k)qM q2

2 pr22
aq−q2

q − q2

(∫ +∞

0
tp2−1+(q−q2)γ/r2µ

(
{|f | > t}

)
dt

)r2
.

En choisissant dans l’inégalité précédente

γ := r1
p1 − p
q1 − q

=
p

q

1/p1 − 1/p2
1/q1 − 1/q2

= r2
p2 − p
q2 − q

(d’après (10.22)), (10.29)

on déduit de la formule (10.24) appliquée à f et p,

‖T (f)‖qLq(ν)

≤ q(2k)q
[
(p1/p)

r1

q1 − q
M q1

1 a
q−q1‖f‖pr1Lp(µ) +

(p2/p)
r2

q − q2
M q2

2 a
q−q2 ‖f‖pr2Lp(µ)

]
.

Finalement, en choisissant

a :=M
q1/(q1−q2)
1 M

q2/(q2−q1)
2 ‖f‖p(r2−r1)/(q2−q1)Lp(µ) (10.30)

et en utilisant les définitions (10.22) de p et q, on obtient l’estimation (10.21) avec
la constante C donnée par

Cq = q (2k)q
[
(p1/p)

r1

q1 − q
+

(p2/p)
r2

q − q2

]
. (10.31)

étape 4 Estimation dans le cas q1 = +∞ ou q2 = +∞ :
On suppose par exemple que q1 = +∞. La difficulté dans ce cas vient du fait

que l’on ne peut pas majorer ν
(
{|T (f1)| > s}

)
par ‖T (f1)‖L∞(ν). En rappelant

que |f1| = max(|f |, u), on doit donc trouver un u = u(s) de sorte que

ν
(
{|T (f1)| > s}

)
= 0

et qu’ainsi l’estimation (10.23) de départ soit vérifiée sans le terme avec f1. À cette
fin, on va distinguer deux sous-cas p1 = +∞ et p1 < +∞.

Si p1 = +∞, on définit u = u(s) par u(s) := s/M1 de sorte que

‖T (f1)‖L∞(ν) ≤M1 ‖f1‖L∞(ν) ≤M1 u(s) = s.

Ainsi ν
(
{|T (f1)| > s}

)
= 0. On peut donc reprendre l’étape 3 avec a := M1 et

γ := 0, pour obtenir l’estimation (10.21) avec la constante C donnée par

Cq = q (2k)q
(p2/p)

r2

q − q2
,
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où par rapport à (10.31) le terme avec p1 a disparu.
Si à présent p1 < +∞, on doit à nouveau déterminer un u = u(s) de sorte

que ν
(
{|T (f1)| > s}

)
= 0. En extrapolant les valeurs u et a de (10.28) et (10.30)

lorsque q1 → +∞, on définit

u = u(s) :=
(s
a

)p1/(p1−p)
et a := βM1 ‖f‖p/p1Lp(µ), (10.32)

où β > 0 sera déterminé ultérieurement. Comme par hypothèse

‖T (f1)‖L∞(ν) ≤M1 ‖f1‖Lp1 (ν) =M1

(
p1

∫ +∞

0
tp1−1 µ

(
{|f1| > t}

)
dt

)1/p1

,

pour obtenir ‖T (f1)‖L∞(ν) ≤ s il suffit que

p1M
p1
1

∫ +∞

0
tp1−1 µ

(
{|f1| > t}

)
dt ≤ sp1 = ap1 zp1−p.

Or, du fait que |f1| = min(|f |, u) et p < p1, on a∫ +∞

0
tp1−1µ

(
{|f1| > t}

)
dt

≤
∫ u

0

(u
t

)p1−p
tp1−1µ

(
{|f1| > t}

)
dt =

1

p
‖f‖pLp(µ)u

p1−p,

de sorte que ‖T (f1)‖L∞(ν) ≤ s lorsque

p1
p
Mp1

1 ‖f‖
p
Lp(µ) u

p1−p ≤ ap1 up1−p = βp1 Mp1
1 ‖f‖

p
Lp(µ) u

p1−p.

On obtient donc l’égalité ν
(
{|T (f1)| > s}

)
= 0 dès que la constante β > 0 de

(10.32) vérifie l’inégalité βp1 ≥ p1/p.

10.5 Exercices

(X,A , µ) désigne, sauf mention contraire, un espace mesuré σ-fini i.e.

X=
⋃
n≥1

↑
En où En∈A et µ(En)<+∞

et p et q désignent deux nombres conjugués de [1,+∞], i.e. tels que 1
p+

1
q =1.

10.1 Soient g∈LqK(µ) et Φ l’application définie sur LpK(µ) par Φ(f) :=
∫
X
fg dµ.

Calculer directement ‖Φ‖ et déterminer les fonctions f telles que |Φ(f)|=‖Φ‖.

10.2 Soit (an)n≥0 une suite de K telle que, pour toute suite (bn)n≥0 ∈ `qK(N), la
série

∑
n≥0 anbn soit convergente dans K. Montrer que (an)n≥0∈`pK(N).
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10.3 Soient p∈ [1,+∞[ et f : X → K une fonction mesurable.

a) On suppose que f /∈LpK(µ). Montrer qu’il existe une suite (An)n≥1 d’éléments
de A telle que, pour tout n≥1, an := ‖f1An‖p vérifie n ≤ an < +∞.

b) On suppose que, pour toute g∈LqK(µ), fg∈L1
K(µ). Montrer que f ∈LpK(µ).

10.4 On va établir le résultat de l’exercice 10.3 par une méthode plus savante. Soient
p ∈ [1,+∞[, f : X → K une fonction mesurable telle pour toute g ∈ LqK(µ),

fg∈L1
K(µ). On considère l’application définie sur LqK(µ) par Φ(g) :=

∫
X
fg dµ.

a) Soit h : X → K une fonction mesurable telle pour toute fonction g ∈ LqK(µ),
hg∈L1

K(µ) et Φ(g)=0. Montrer que h=0 µ-p.p..

b) On considère, pour tout n ∈ N∗, An := En ∩ {|f | ≤ n} et Φn l’application
définie sur LqK(µ) par Φn(g) := Φ(g 1An). Montrer que (Φn)n≥1 est une suite de
formes linéaires continues sur LqK(µ) qui converge simplement vers Φ. En déduire
que supn ‖Φn‖<+∞ et que Φ est une forme linéaire continue sur LqK(µ).

c) Montrer que f ∈LpK(µ).

10.5 Reprendre l’exercice 10.3 lorsque p=+∞.

10.6 Soit X := {a, b} et soit µ la mesure définie sur P(X) par µ({a}) := 1,
µ({b}) := +∞ (donc µ(X) = +∞). Caractériser L

∞
K (µ) et le dual de L1

K(µ).
Conclure.

10.7 En considérant la forme linéaire Φ définie sur CK(R,K) par Φ(ϕ) := ϕ(0),
montrer que le dual de L

∞
K (R) contient strictement L1

K(R).

10.8 On considère (X,A , µ) un espace mesuré quelconque et Φ une forme linéaire
continue sur LpK(µ), 1<p<+∞.

a) Montrer que, pour tout A ∈ A , de mesure finie, il existe une unique fonction
gA ∈ L

q
K(µ), nulle sur cA, telle que

∀ f ∈LpK(µ), Φ(f1A) =
∫
X
fgAdµ et ‖gA‖q ≤ ‖Φ‖.

b) Soient A,B ∈ A tels que A⊂B. Montrer que

gA = gB1A et
∫
B\A
|gB |

qdµ =

∫
X
|gB |

qdµ−
∫
X
|gA |

qdµ.

c) Montrer qu’il existe une suite croissante (Xn)n≥1 d’éléments de A de mesure
finie telle que lim

n
‖gXn

‖q = sup{‖gA‖q, µ(A) < +∞} et, qu’en outre, la suite

(gXn
)n≥1 converge dans LqK(µ) vers une fonction g.

d) Montrer que, pour tout f ∈LpK(µ), Φ(f)=
∫
X
fgdµ.

10.9 Séparabilité de Lp, p < +∞
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Soit X un espace métrique localement compact et séparable, X =
⋃
n≥1

↑
Xn où

(Xn)n≥0 est une suite croissante d’ouverts d’adhérence compacte.

a) Montrer l’existence d’une base dénombrable d’ouverts U := {Un}n≥0 conte-
nant X , les Xn et stable par intersection finie.

Soient µ une mesure de Borel sur B(X), 1≤p<+∞ et D le Q-e.v. engendré
par la famille de fonctions indicatrices {1Un}n≥0.

b) Soit g ∈ LqR(µ) telle que
∫
X
fg dµ = 0 pour tout f ∈ D∩LpR(µ). Montrer que

g=0.

c) Montrer que D est dense dans LpR(µ).

d) En déduire que LpR(µ) est séparable.

10.10 Convergence faible dans Lp, p > 1

Soient p ∈ ]1,+∞], q son exposant conjugué et (X,A , µ) un espace mesuré tel
que LqK(µ) soit séparable ; soit (fn)n≥1 une suite bornée de LpK(µ) bornée, i.e. la
suite (‖fn‖p)n≥1 est bornée.

a) Soit D une partie dénombrable dense de LqK(µ). Montrer qu’il existe une sous-

suite (fϕ(n))n≥1 telle que pour tout h∈D, lim
n

∫
X
fϕ(n)h dµ existe dans K.

b) Montrer que pour tout g∈LqK(µ), Φ(g) := lim
n

∫
X
fϕ(n) g dµ existe dans K.

c) En déduire qu’il existe f ∈LpK(µ) vérifiant la convergence faible dans LpK(µ) de
la suite (fϕ(n))n≥1 vers f au sens où :

∀ g∈LqK(µ), lim
n

∫
X
fϕ(n) g dµ =

∫
X
fg dµ.

d) Le résultat précédent subsiste-t-il si p=1?

10.11 Théorème de Vitali-Saks

Une famille (νi)i∈I de mesures sur A est dite absolument équicontinue par rapport
à la mesure µ si{

∀ ε>0, ∃Aε∈A , µ(Aε)<+∞ et ∀ i∈I, νi(cAε)<ε,
∀ ε>0, ∃ δ>0, ∀A∈A , µ(A)<δ =⇒ ∀ i∈I, νi(A)<ε.

On suppose que A =σ(C ) où C est un π-système, i.e. X ∈C et C est stable par
intersection finie. On se propose de montrer le théorème de Vitali-Saks :

Soit (νn)n≥1 une suite de mesures finies sur A , absolument équicontinue par
rapport à µ et telle que pour tout C ∈C , limn νn(C) existe dans R+. Alors, pour
toutA∈A , ν(A) := limn νn(A) existe dans R+ et ν définit une mesure absolument
continue par rapport à µ.
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a) Soit B := {A∈A : ν(A) := limn νn(A) existe dans R+}. Montrer que B est
stable par différence propre.
b) Soient (Bk)k≥1 une suite d’éléments deux à deux disjoints de B et B leur
réunion. Montrer que lim

n
νn(B) =

∑
k≥1

lim
n
νn(Bk).

c) En déduire que B est un λ-système puis que B=A .
d) Montrer que l’application ν est une mesure sur A , absolument continue par
rapport à la mesure µ.

10.12 Convergence faible dans L1

On suppose que A =σ(C ) où C est un π-système dénombrable.
a) Montrer que c’est le cas lorsque X est un espace métrique séparable muni de sa
tribu borélienne.

Soit (fn)n≥1 une suite de L1
R(µ) bornée (i.e. la suite (‖fn‖1)n≥1 est bornée) et

équiintégrable (i.e. la suite des mesures (|fn|.µ)n≥1 est absolument équicontinue).
b) Montrer qu’il existe une sous-suite (fϕ(n))n≥1 telle que les deux suites de me-
sures définies par ν±n := f±n .µ vérifient : pour tout C ∈ C , lim

n
ν±ϕ(n)(C) existent

dans R.

c) Montrer qu’il existe f ∈L1
R(µ) vérifiant ∀A∈A , lim

n

∫
A
fϕ(n)dµ=

∫
A
f dµ.

d) En déduire la convergence faible dans L1
R(µ) de fϕ(n) vers f :

∀ g ∈ L∞
R (µ), lim

n

∫
X
fϕ(n) g dµ =

∫
X
fg dµ.

e) Une suite (fn)n≥1 qui converge faiblement au sens de d) (mais pour la suite
elle-même) converge-t-elle nécessairement µ-p.p. ou en norme ‖ · ‖1 vers f ?

10.13 On considère une fonction θ∈C (R+,R+) telle que
θ([0, 1[) ⊂ [0, 1[ et θ(]1,+∞[) ⊂ ]1,+∞[

ou
θ([0, 1[) ⊂ ]1,+∞[ et θ(]1,+∞[) ⊂ [0, 1[ ;

et E le R-e.v. engendré par la famille
{
θ(pq ·)

n
}
n∈N, p,q∈N∗

.

a) Soit Φ une forme linéaire continue sur C ([0, 1],R). D’après le théorème de
représentation de Riesz (cf. théorème 10.2), on a

∀ f ∈ C ([0, 1],R), Φ(f) =

∫
[0,1]

f dµ+ −
∫
[0,1]

f dµ−

où µ± sont des mesures de Borel sur [0, 1]. On suppose que Φ|E=0. Montrer que

∀n∈N, ∀ p, q ∈ N∗,

∫
[0,1]

e
−nθ( p

q
x)n
µ+(dx) =

∫
[0,1]

e
−nθ( p

q
x)n
µ−(dx).
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b) En déduire que, pour tout r∈Q ∩ [0, 1], µ+([0, r])=µ−([0, r]), et que µ+=µ−.

c) Montrer que E est dense dans
(
C ([0, 1],R), ‖ · ‖sup

)
.

d) En déduire en particulier que, pour tout a > 0, les R-e.v. engendrés par les
familles {x 7→ xna}n∈N et {x 7→ anx}n∈N sont denses dans

(
C ([0, 1],R), ‖ · ‖sup

)
.

10.14 Dual de L∞

Soit (X,A , µ) un espace mesuré quelconque. On suppose qu’il existe une suite
(An)n≥1 d’éléments deux à deux disjoints de A tels que 0< µ(An)<+∞. Soit
A := ∪n≥1An et M le K-e.v. engendré par la famille {1A} ∪ {1An}n≥1.

a) Soit fn := 1An/µ(An), n≥ 1. Montrer qu’il existe une sous-suite (fϕ(n))n≥1

telle que, pour toute fonction g∈M , Φ(g) := lim
n

∫
X
fϕ(n) g dµ existe dans K.

b) On suppose que le dual de L∞
K (µ) s’identifie à L1

K(µ). Déduire du a) l’existence

d’une fonction f ∈L1
K(µ) telle que, pour toute fonction g∈M , Φ(g) =

∫
X
fg dµ.

c) Montrer que
∫
A
f dµ = 1 et, pour tout k≥1,

∫
Ak

f dµ = 0.

d) En déduire une contradiction puis conclure quant au dual de L∞
K (µ).

10.15 Soient X un espace métrique et µ une mesure σ-finie sur B(X) telle que,
pour tout ouvert non vide Ω de X , µ(Ω)>0. Montrer que le dual de L∞

K (µ) s’iden-
tifie à L1

K(µ) si et seulement si X est fini.

10.16 Soit Td := Rd/(2π)dZd le tore de dimension d ≥ 1, identifié au cube
[−π, π[d. Pour p ∈ [1,+∞[, on note parLp(Td) l’espace des fonctions f boréliennes
complexes et périodiques de période [−π, π[d, telles que

‖f‖Lp(Td) :=

(
1

(2π)d

∫
[−π,π]d

|f(x)|pdx

)1/p

< +∞.

On désigne les coefficients de Fourier de f ∈ L1(Td) par

f̂(n) :=
1

(2π)d

∫
[−π,π]d

f(x) e−i (n|x)dx, n ∈ Zd,

où (n|x) désigne le produit scalaire de n par x ∈ Rd.

a) Montrer que

∀ f ∈ Lp(Td), ‖f̂‖`∞(Zd) ≤ ‖f‖L1(Td).

b) Montrer l’inégalité de Bessel :

∀ f ∈ L2(Td), ‖f̂‖`2(Zd) ≤ ‖f‖L2(Td).



228 10. Théorèmes de représentation et applications

c) En déduire que, pour chaque p ∈ [1, 2], il existe une constante Cp ∈ R+ telle
que

∀ f ∈ Lp(Td), ‖f̂‖`q(Zd) ≤ Cp ‖f‖Lp(Td) où q :=
p

p− 1
.

d) Montrer que pour chaque p ∈ [1, 2], il existe une constante Dp ∈ R+ telle que

∀ c = (cn)n∈Zd ∈ `p(Td), ‖f‖Lq(Zd) ≤ Dp ‖c‖`p(Td)

où f :=
∑
n∈Zd

cn e
in·x ∈ L2(Td).

10.17 a) Soient (an)n∈N∗ une suite positive, décroissante, tendant vers 0. On pose

pour n ≥ 1, An :=

n∑
k=1

ak. Montrer que

∀n ≥ 1, ∀ p > n, ∀x ∈ ]0, π],

∣∣∣∣∣
p∑

k=n+1

cos (kx)

∣∣∣∣∣ ≤ 1

sin(x/2)
≤ π

x
.

En déduire que la fonction f(x) :=
+∞∑
n=1

an cos (nx) est bien définie sur ]0, π] et

vérifie ∀n ≥ 1, ∀x ∈ ]0, π], |f(x)| ≤ An +
π an
x

.

b) Soit p ∈ ]2,+∞[. Montrer qu’il existe une constante c > 0 telle que∫ π

0
|f(x)|p dx ≤ c

+∞∑
n=1

Apn n
−2.

On suppose désormais que
+∞∑
n=1

apn n
p−2 < +∞ .

c) Soient a la fonction définie sur R+ par a(x) := an si x ∈ [n− 1, n[, n ≥ 1, et A

définie par A(x) :=
∫ x

0
a(t)dt si x ∈ R+.

Montrer, à l’aide de l’exercice 9.16 g), que∫ +∞

0
a(x)xp−2 dx < +∞ et

∫ +∞

0
A(x)p x−2 dx < +∞.

En déduire que f ∈ Lp
(
[−π, π]

)
.

d) On considère pour n ≥ 1, bn := n−1/q ln1/2(n + 1) où q := p
p−1 . Montrer que

f̂ /∈ `q(Z). Que peut-on en conclure par rapport à l’exercice 10.16?



Chapitre 11

Mesure produit. Théorèmes de Fubini

L’objet de ce chapitre est de donner un sens à la notion de “mesure de surface” sur
un espace produit X×Y à partir de “mesures de longueur” définies sur X et Y .
L’intégration par rapport à cette mesure de surface – ou mesure produit – sur X×Y
fournira le cadre naturel et rigoureux pour introduire la notion d’intégrale multiple.
Les règles de manipulation et de calcul de telles intégrales sont régies par les deux
théorèmes de Fubini.

11.1 Tribu produit

11.1.1 Définition, premières propriétés

Définition 11.1. Soient (X,A ) et (Y,B) deux espaces mesurables. On appelle
tribu produit de A et B, la tribu notée A ⊗B définie par

A ⊗B := σ
(
{A×B, A∈ A , B∈ B}

)
.

La tribu A ⊗B est donc engendrée par les rectangles “à côtés mesurables”.

Notation : Dans la suite de ce chapitre, la notation A ×B désignera l’ensemble
{A×B : A∈ A , B∈B}, i.e. l’ensemble des rectangles à côtés mesurables. Ainsi,
A ⊗B=σ(A ×B).

Remarque : Il est utile de remarquer pour la suite qu’un rectangle à côtés mesu-
rables A×B s’écrit sous la forme A×B=(A×Y ) ∩ (X×B).

La proposition ci-dessous permet de caractériser la tribu produit A ⊗B com-
me la plus petite tribu rendant les projections canoniques πX et πY de X×Y sur X
et Y mesurables.
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Proposition 11.1. Soient πX : X×Y → X et πY : X×Y → Y les projections
canoniques sur X et Y définies par πX ((x, y)) :=x et πY ((x, y)) := y respective-
ment.

(a) πX et πY sont respectivement (A ,A ⊗B) et (B,A ⊗B)-mesurables.

(b) Si une tribu T sur X×Y rend πX et πY respectivement (T ,A ) et (T ,B)-
mesurables alors A ⊗B⊂ T .

DÉMONSTRATION : (a) Par définition de la mesurabilité (cf. chapitre 5) la projec-
tion πX est mesurable de (X×Y,A ⊗B) dans (X,A ) si et seulement si pour tout
A∈A , π−1

X
(A)∈A ⊗B. Or, si A∈ A , π−1

X
(A) = A×Y ∈A ×B⊂ A ⊗B.

(b) Si πX et πY sont respectivement (T ,A ) et (T ,B)-mesurables alors, pour
tous A∈ A et B∈ B, A×B=(A×Y )∩ (X×B)=π−1

X
(A)∩π−1

Y
(B)∈ T ; donc

A ×B⊂ T et, partant, A ⊗B=σ (A ×B)⊂ T . ♦

La proposition suivante montre que la mesurabilité des applications à valeurs
dans (X×Y,A ⊗B) se ramène à celle de leurs composantes.

Proposition 11.2. La fonction f : (Z,C ) −→ (X×Y,A ⊗B)
z 7−→ f(z) :=(fX (z), fY (z))

est

(C ,A ⊗ B)-mesurable si et seulement si fX et fY sont respectivement (C ,A )
et (C ,B)-mesurables.

DÉMONSTRATION : (⇒) Si f est mesurable etA∈A , f−1
X

(A) :=f−1(A×Y )∈ C .
(⇐) Si fX et fY sont mesurables et A∈ A , B∈ B, A×B=(A×Y ) ∩ (X×B).
Donc, d’après les formules de Hausdorff, f−1(A×B) = f−1

X
(A) ∩ f−1

Y
(B)∈ C .

Par suite, comme σ(A ×B) = A ⊗ B, f est (C ,A ⊗ B)-mesurable d’après la
proposition 5.1. ♦

Extension : L’extension des définitions et résultats précédents à d espaces mesu-
rables (X1,A1), . . . , (Xd,Ad) est immédiate en posant

A1 ⊗ · · · ⊗Ad := σ
(
{A1 × . . .×Ad, Ai∈ Ai, 1≤ i≤d}

)
.

Se pose alors la question de l’associativité de “l’opération” ⊗ sur les tribus.
Elle est résolue par la proposition suivante

Proposition 11.3. Soient (X1,A1), (X2,A2), (X3,A3) trois espaces mesurables.

(A1 ⊗A2)⊗A3 = A1 ⊗ (A2 ⊗A3) = A1 ⊗A2 ⊗A3.

DÉMONSTRATION : établissons que (A1⊗A2)⊗A3 = A1⊗A2⊗A3 par exemple.
Il est immédiat que l’ensemble A1 × A2 × A3 des “parallélépipèdes” à côtés

mesurables est contenu dans (A1 ⊗A2)⊗A3. Par conséquent,

A1 ⊗A2 ⊗A3 ⊂ (A1 ⊗A2)⊗A3.
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Réciproquement, soit A3∈ A3, fixé, et

TA3 =
{
B∈ A1 ⊗A2 : B ×A3∈ A1 ⊗A2 ⊗A3

}
.

TA3 est une tribu car
– Ø×A3 = Ø∈ A1 ⊗A2 ⊗A3 donc Ø∈ TA3 ,
– siB∈ TA3 , cB×A3 = X1×X2×A3∩ c(B×A3)∈ A1⊗A2⊗A3 puisque

A1 ⊗A2 ⊗A3 est une tribu. Donc cB∈ TA3 ,
– et, enfin, pour toute suite (Bn)n≥1 d’éléments de TA3 ,( ⋃

n≥1

Bn

)
×A3 =

⋃
n≥1

(Bn ×A3) ∈ A1 ⊗A2 ⊗A3.

D’autre part, TA3 contient évidemment les rectangles “à côtés mesurables”
A1×A2, A1∈ A1,A2∈ A2, donc TA3 contient A1⊗A2. Partant, TA3 = A1⊗A2

pour tout A3∈ A3, i.e. (A1 ⊗A2)×A3 ⊂ A1 ⊗A2 ⊗A3. On en conclut aussitôt
l’inclusion annoncée : (A1 ⊗A2)⊗A3 ⊂ A1 ⊗A2 ⊗A3. ♦

11.1.2 Le cas des tribus boréliennes

Lorsque X et Y sont des espaces métriques (ou topologiques), on peut donc,
tout aussi naturellement, munir le produit X×Y soit de la tribu B(X) ⊗B(Y ),
produit des tribus boréliennes de X et Y , soit de la tribu borélienne B(X×Y )
associée à la topologie produit sur X×Y ( 1).

évidemment la question des relations existant entre ces deux tribus se pose
aussitôt de façon cruciale ! Elle est résolue par la proposition ci-dessous.

Proposition 11.4. Soient X et Y deux espaces métriques topologiques.

(a) B(X)⊗B(Y )⊂ B(X×Y ),

(b) Si X et Y sont à base dénombrable d’ouverts ( 2), alors :

B(X)⊗B(Y ) = B(X×Y ).

DÉMONSTRATION : (a) La projection πX : X×Y → X est continue par défini-
tion de la topologie produit ; idem pour πY . Les projections πX et πY sont donc
B(X×Y ) = σ(O(X×Y ))-mesurables. La proposition11.1(b) entraı̂ne alors que
B(X)⊗B(Y )⊂ B(X×Y ).

(b) Désignons par U :={Un, n≥1} et V :={Vn, n≥1} les bases dénombrables
d’ouverts respectives de X et Y . L’ensemble U ×V := {Um×Vn, m, n≥ 1} des
rectangles associés à U et V est alors une base dénombrable d’ouverts de l’espace
produit X×Y (cf. compléments topologiques, section 3.4). Tout ouvert de X×Y

1. Topologie relative, par exemple,à la distance d((x, y), (x′, y′)) :=dX (x, x′) + dY (y, y′).
2. Voir la section 3.4 pour la définition. On y établit également qu’un espace métrique (X, dX )

est à base dénombrable d’ouverts si et seulement si il contient une suite dense (xn)n∈N.
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étant union dénombrable d’éléments de U ×V , il est clair que O(X×Y ) est inclus
dans σ(U ×V ) et partant

B(X×Y )=σ(O(X×Y ))⊂ σ(U ×V )⊂ σ(B(X)×B(Y ))=B(X)⊗B(Y )

puisque U ⊂ B(X) et V ⊂ B(Y ). ♦

Remarques : • B(X) ⊗B(Y ) est la plus petite tribu sur X×Y rendant les pro-
jections canoniques πX et πY mesurables, alors que B(X×Y ) est la tribu des
boréliens relatifs à la plus petite topologie – au sens comportant le moins d’ouverts
– rendant ces mêmes projections continues.
• L’extension au produit de plus de deux espaces est immédiate (par récurrence ou
directement).

Application 11.1. (K=R ou C)
(a) Produits d’espaces Rd : On a les relations essentielles suivantes

B(R2) = B(R)⊗B(R) et B(Rd) = B(R)⊗ · · ·⊗B(R)︸ ︷︷ ︸
d termes

= B(R)⊗d

puisque R a pour base dénombrable d’ouverts U ={]α, β[, α<β, α, β∈ Q}.
(a′) Produits d’espaces métriques : Dans le cadre des espaces métriques, la propo-
sition 11.4 s’énonce généralement sous la forme plus commode : si (X, d) et (Y, δ)
sont des espaces métriques séparables, alors B(X×Y )=B(X)⊗B(Y ). Ainsi

B(Rd+d
′
)=B(Rd)⊗B(Rd

′
) et B(Cd+d

′
)=B(Cd)⊗B(Cd

′
).

mais aussi B(R
d
)=B(R)⊗d, etc.

(b) B(K)⊗2-mesurabilité de la somme et du produit : La fonction
+ : K× K→ K

(x, y) 7→ x+ y
est continue de K×K dans K donc (B(K×K),B(K))-

mesurable. Comme B(K×K) = B(K)⊗B(K), on en déduit la mesurabilité an-
noncée ; idem pour le produit.

(c) Mesurabilité de la somme et du produit de fonctions mesurables : Si f et g :
(X,A )→ K sont mesurables alors f + g et fg le sont également.

En effet, d’après la proposition 11.2, (f, g) : (X,A )→ (K×K,B(K)⊗B(K))
est mesurable et, au vu de l’application (b) ci-dessus, l’addition est mesurable de
(K×K,B(K)⊗B(K)) dans (K,B(K)). On conclut par composition des applications
mesurables ; idem pour le produit.

(d) Extension : Plus généralement si Φ : K×K → K est continue (ou même seule-
ment borélienne) alors Φ(f, g) est mesurable dès que f, g : (X,A )→ K le sont.

Remarque : Il est souvent techniquement plus facile d’établir la mesurabilité de Φ
pour les tribus

(
B(K×K),B(K)

)
que pour les tribus

(
B(K)⊗B(K),B(K)

)
bien

qu’en fin de compte ce soit la même chose.
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11.1.3 Section d’un élément de la tribu produit

La question étudiée dans ce paragraphe est la suivante : si C ∈ A ⊗ B, que
peut-on dire de la mesurabilité de ses sections définies par :{

Cx :={y∈Y : (x, y)∈C}
Cy :={x∈X : (x, y)∈C}

?

Proposition 11.5. Pour tout x∈X , Cx∈B et pour tout y∈Y , Cy∈A .

DÉMONSTRATION : Soient x ∈X , fixé et Tx := {C ∈ A ⊗ B : Cx ∈ B}. Tx

est une sous-tribu de A ⊗B car (Ø)x=Ø, (
⋃
nC

n)x =
⋃
nC

n
x et (cC)x= cCx.

D’autre part, si C=A×B est un rectangle à côtés mesurables, Cx=B∈B si x∈A
et Cx=Ø∈B si x /∈A, donc A ×B⊂Tx et partant Tx=A ⊗B. ♦

Corollaire 11.1. Soit f : (X × Y,A ⊗ B) → R,R ou C, mesurable. Pour tout
x∈X , la section de f d’abscisse x définie par fx(y) :=f(x, y) est B-mesurable ;
de même, pour tout y∈Y , la section fy d’ordonnée y est A -mesurable.

DÉMONSTRATION : Si f := 1C , C ∈ A ⊗ B, le résultat découle de la propo-

sition 11.5 puisque fx = 1Cx . Si f :=

n∑
i=1

λi1Ci est étagée, on note que sa sec-

tion fx =

n∑
i=1

λi1(Ci)x est évidemment B-mesurable. On conclut en approchant

à l’aide du lemme fondamental d’approximation (théorème 5.1) toute fonction
A ⊗ B-mesurable f par des fonctions étagées fn. Il est en effet immédiat que
(lim
n
fn)x = lim

n
(fn)x. ♦

11.2 Mesure produit de mesures σ-finies

11.2.1 Construction et caractérisation

Définition 11.2. Une mesure µ sur un espace mesurable (X,A ) est σ-finie s’il
existe une suite croissante (En)n≥1 d’éléments de A vérifiant

X =
⋃
n≥1

↑
En et µ(En) < +∞ pour tout n ≥ 1.

Par extension, l’espace (X,A , µ) est dit lui-même σ-fini.

Théorème 11.1 (Mesure produit). Soient (X,A , µ) et (Y,B, ν) deux espaces me-
surés σ-finis.

(a) Il existe une unique mesure m sur (X × Y,A ⊗B) vérifiant

∀A∈A , ∀B∈ B, m(A×B) = µ(A) ν(B). (11.1)
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Cette mesure est σ-finie. On la note généralement µ⊗ ν (au lieu de m).

(b) Pour tout C∈A ⊗B, m(C) =

∫
X
ν(Cx)µ(dx) =

∫
Y
µ(Cy) ν(dy).

DÉMONSTRATION : (a) Unicité : Soientm etm′ deux mesures sur l’espace produit
(X × Y,A ⊗B) vérifiant la propriété (11.1). Les mesures µ et ν étant σ-finies, il
existe deux suites croissantes (An)n≥1 et (Bn)n≥1 telles que An ∈A et Bn ∈B,
µ(An)<+∞, ν(Bn)<+∞ et X =

⋃
nAn, Y =

⋃
nBn. On pose alors pour tout

n≥1, En :=An ×Bn∈A ×B. La suite (En)n≥1 est croissante, X× Y =
⋃
nEn

et, pour tout n≥1, m(En)=m
′(En)<+∞.

D’autre part, A ×B contient X×Y et est stable par intersection finie puisque
(A×B) ∩ (A′×B′) = (A ∩ A′)× (B ∩ B′) donc, d’après le corollaire 6.2 de
caractérisation des mesures σ-finies, la coı̈ncidence de m et m′ sur A×B entraı̂ne
m=m′.

Construction : voir le point (b).

(b) On montre dans un premier temps que la relation m(C) :=

∫
X
ν(Cx)µ(dx)

définit bien une mesure (σ-finie) sur la tribu A ⊗B.
étape 1 Consistance de la définition :
D’après la proposition 11.5 ci-avant, Cx∈B, donc ν(Cx) existe pour tout x∈X .

– Supposons d’abord ν finie ; alors

Λ :=
{
C∈A ⊗B : x 7→ ν(Cx) A -mesurable

}
est clairement un λ-système. Λ contient le π-système A ×B ; en effet, comme
(A×B)x=B si x∈A et (A×B)x=Ø sinon, il vient ν ((A×B)x)=1A(x) ν(B).
Le corollaire 6.1 entraı̂ne alors Λ=A ⊗B.

– Dans le cas général, on remplace ν par νn :=ν(. ∩ Bn) puis on utilise le fait
que ν(Cx)=lim

n

↑
ν(Cx ∩Bn).

La quantité
∫
X
ν(Cx)µ(dx) a donc bien un sens puisque x 7→ ν(Cx) est tou-

jours A -mesurable positive.
étape 2 m est une mesure sur A ⊗B :

m(Ø) =

∫
X
ν(Øx)µ(dx)=

∫
X
ν(Ø)µ(dx)=0. D’autre part, si (Cn)n≥1 désigne

une suite d’éléments deux à deux disjoints de A ⊗B, il est immédiat que les sec-
tions (Cn)x, n ≥ 1, sont deux à deux disjointes et que (∪nCn)x = ∪n(Cn)x. La
σ-additivité de ν et le théorème de Beppo Levi pour les séries à termes positifs
entraı̂nent alors

m(∪nCn) =
∫
X
ν ((∪nCn)x) µ(dx) =

∫
X
ν (∪n(Cn)x) µ(dx)

=
∑
n≥1

∫
X
ν ((Cn)x) µ(dx) =

∑
n≥1

m(Cn).
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étape 3 Caractérisation et interversion :
Soit C = A×B ∈A ×B. On a vu que Cx =B si x ∈A, Cx = Ø si x /∈A d’où
ν(Cx)=1A(x) ν(B), partant, si ν(B) < +∞,

m(C)=

∫
X
ν(Cx)µ(dx)=ν(B)

∫
X

1A(x)µ(dx)=µ(A) ν(B).

Si ν(B) = +∞, l’égalité est évidente (avec la convention habituelle). En inter-
vertissant les rôles de µ et ν, on vérifie que la mesure m′ définie par m′(C) :=∫
Y
µ(Cy) ν(dy) coı̈ncide avec m sur A ⊗ B d’où, via l’unicité établie en (a),

m′=m, ce qui achève la démonstration. ♦

Remarques sur la σ-finitude : • Si µ ou ν n’est pas σ-finie, le théorème tombe
généralement en défaut, même lorsque l’on peut définir à la fois m et m′. Ainsi,
soit X=Y =R. On munit X de la tribu borélienne et de la mesure de Lebesgue λ
(σ-finie) et Y de la tribu P(Y ) de toutes ses parties et de la mesure de comptage
ν(B) :=card(B). On considère la diagonale de R2 : ∆:={(x, x), x∈R}. ∆ est un
fermé de R2, en conséquence, ∆∈B(R2)=B(R) ⊗B(R)⊂ B(R) ⊗P(R) (on
peut aussi vérifier directement à titre d’exercice que ∆∈ B(R) ⊗B(R) en notant
que ∆:={πX =πY }). Il est immédiat que ∆x={x} et ∆y={y}.

D’où : m(∆) =

∫
R
ν(∆x)λ(dx) =

∫
R
1λ(dx) = +∞,

alors que : m′(∆) =

∫
R
λ(∆y) ν(dy) =

∫
R
0 ν(dy) = 0.

• Il reste que, dans certains cas, la mesure produit peut exister en dehors du cadre
σ-fini. Ainsi, considèrons deux espaces mesurables quelconques (X,P(X)) et
(Y,P(Y )) munis chacun de leur mesure de comptage respective mX et mY . Il
est clair que l’unique mesure m sur (X×, Y,P(X × Y )) vérifiant en particulier
m({x} × {y}) = mX({x})mY ({y}) = 12 = 1 est la mesure de comptage sur
X × Y qui affecte une masse 1 à tous les couples (x, y) !

évidemment, le théorème 11.1 établi ci-dessus s’étend directement à un produit
µ1 ⊗ · · · ⊗ µd de d de mesures σ-finies sur des espaces mesurables (Xi,Ai), 1≤
i≤d. En particulier, la mesure µ1⊗ . . .⊗µd est entièrement caractérisée par le fait
que

µ1 ⊗ . . .⊗ µd(A1 × . . .×Ad) = µ1(A1) . . . µd(Ad), Ai∈ Ai, 1≤ i≤d.

Proposition 11.6. L’opération ⊗ sur les mesures σ-finies est associative au sens
où

(µ1 ⊗ µ2)⊗ µ3 = µ1 ⊗ (µ2 ⊗ µ3) = µ1 ⊗ µ2 ⊗ µ3. (11.2)

DÉMONSTRATION : En effet ces trois mesures sont définies sur la tribu produit
A1 ⊗ A2 ⊗ A3 d’après la proposition 11.3. En outre, elles coı̈ncident clairement
sur les parallélépipèdes à côtés mesurables A1 ×A2 ×A3 où toutes trois valent
µ1(A1)µ2(A2)µ3(A3). Elles sont donc égales. ♦
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Application 11.2. Soit µ une mesure σ-finie sur (X,A ) et f : (X,A ) → R+.
Alors ∫

X
f dµ =

∫ +∞

0
µ({f >t})dt.

En effet, posons C :={(t, x)∈R+×X : f(x) > t}. Il est clair que

C =
⋃
r∈Q∗

+

[0, r[︸︷︷︸
∈B(R+)

×{f ≥ r}︸ ︷︷ ︸
∈A

∈ B(R+)⊗A .

D’autre part, Ct :={x∈X : f(x)>t} et Cx :={t∈ R+ : f(x)>t}. L’identité (b)
du théorème de la mesure produit appliqué à λ⊗µ (λ désigne ici la mesure de
Lebesgue sur R+) entraı̂ne, d’une part,

λ⊗ µ(C)=
∫
X

(∫
R+

1{f(x)>t}λ(dt)

)
µ(dx)=

∫
X

(∫ f(x)

0
dt

)
µ(dx)=

∫
X
f(x)µ(dx)

et, d’autre part,

λ⊗ µ(C) =
∫

R+

(∫
X

1{f(x)>t}µ(dx)

)
λ(dt) =

∫ +∞

0
µ({f > t})dt. ♦

11.2.2 Construction de la mesure de Lebesgue λd, d ≥ 2

Soit d≥ 2. Désignons par λd la mesure produit λ1 ⊗ · · · ⊗ λ1︸ ︷︷ ︸
d fois

de la mesure de

Lebesgue λ1 sur (R,B(R)) par elle-même. Rappelons une fois encore que λd ainsi
définie est bien une mesure sur (Rd,B(Rd)) car B(Rd)=B(R)⊗d.

Pour établir que λd est effectivement la mesure de Lebesgue, on s’appuie sur
un lemme de changement de variable élémentaire.

Lemme 11.1. Soit f : (R,B(R)) → R+ une fonction borélienne. Alors, pour tout
a∈ R, ∫

R
f(u− a)λ1(du)=

∫
R
f(u)λ1(du).

DÉMONSTRATION : Pour tout borélien A et tout réel a l’invariance par transla-

tion λ1(A+a)=λ1(A) s’écrit
∫

R
1A(u)λ1(du) =

∫
R
1A(u− a)λ1(du). L’identité

s’étend par linéarité aux fonctions étagées puis, via le lemme fondamental d’ap-
proximation, aux fonctions mesurables positives. ♦

Proposition 11.7. La mesure produit λd := λ⊗d1 est la mesure de Lebesgue sur
(Rd,B(Rd)).
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DÉMONSTRATION : Il nous faut simplement vérifier les hypothèses (i)-(ii) du
théorème d’existence et de caractérisation de la mesure de Lebesgue (théorème
6.1). D’après la proposition 11.6, les mesures λd vérifient la relation de récurrence
λd = λ1⊗λd−1, d≥ 2. On raisonne alors par récurrence sur d, supposant la mesure
de Lebesgue λ1 construite.
Supposons donc que λd−1 est bien la mesure de Lebesgue sur (Rd−1,B(Rd−1))
i.e. λd−1([0, 1]

d−1) = 1 et λd−1 est invariante par translation. Il vient alors :
– λd([0, 1]d) = λ1([0, 1])λd−1([0, 1]

d−1) = 12 = 1.
– Soient a := (a1, a2, . . . , ad) ∈ Rd et C ∈ B(Rd) = B(R) ⊗ B(Rd−1) ; on

vérifie que, pour tout x1∈ R, (a+C)x1 = (a2, . . . , ad)+Cx1−a1 donc

λd(a+ C) =

∫
R
λd−1((a2, . . . , ad) + Cx1−a1)λ1(dx1) (mesure produit),

=

∫
R
λd−1(Cx1−a1)λ1(dx1) (λd−1 est invariante par translation),

=

∫
R
λd−1(Cx1)λ1(dx1) via le lemme ci-dessus,

= λd(C).

D’où le résultat. ♦

11.3 Théorèmes de Fubini

Il y a, selon la terminologie usuelle deux théorèmes de Fubini : l’un pour les
fonctions positives, l’autre pour les fonctions intégrables. Dans les applications, il
est généralement nécessaire de s’appuyer sur le premier pour vérifier les hypothèses
du second.

Théorème 11.2 (Fubini-Tonelli). Soient f : (X×Y,A ⊗B) → R+ une fonction
mesurable, µ et ν deux mesures σ-finies, respectivement sur (X,A ) et (Y,B).

(a) Les fonctions partout définies x 7→
∫
Y
f(x, y) ν(dy) et y 7→

∫
X
f(x, y)µ(dx)

sont respectivement A et B-mesurables.

(b)

∫
X×Y
fdµ⊗ν =

∫
X

(∫
Y
f(x, y) ν(dy)

)
µ(dx) =

∫
Y

(∫
X
f(x, y)µ(dx)

)
ν(dy).

(Ces égalités ont lieu dans R+.)

DÉMONSTRATION : (a) D’après le corollaire 11.1 ci-avant, la section de f d’abs-
cisse x, fx(y) := f(x, y), est B-mesurable (positive). Par suite, pour tout x ∈X ,∫
Y
f(x, y) ν(dy) existe. Si f := 1C , C ∈ A ⊗B, on a vu dans l’étape 1 de la

démonstration du théorème 11.1(b) que x 7→ ν(Cx) =

∫
Y

1C(x, y) ν(dy) est A -

mesurable.
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Si f est étagée positive (donc finie) le résultat découle de la linéarité de l’inté-
grale et de la stabilité de la mesurabilité par somme de fonctions mesurables (fi-
nies). On conclut en approchant toute fonction A ⊗B-mesurable positive par une
suite croissante de fonctions étagées positives via le lemme fondamental d’approxi-
mation et le théorème de Beppo Levi.

(b) D’après le point (a), les intégrales considérées ont un sens ; en outre, si f :=1C ,
C∈ A ⊗B, l’identité annoncée s’écrit

µ⊗ ν(C) =
∫
X
ν(Cx)µ(dx) =

∫
Y
µ(Cy) ν(dy).

Ceci a été établi dans le théorème 11.1. On conclut alors comme en (a) via le
procédé d’approximation standard . ♦

Application 11.3. Soient f ∈ L 1
R (λ,R+) et F (x) :=

∫
[0,x]

f(t) dt. Alors, pour tout a>0,

∫
R+

F (ax)− F (x)

x
dx = ln a

∫
R+

f(x) dx.

DÉMONSTRATION : étape 1 : Commençons par un résultat préliminaire – cas particulier du théorème
de changement de variables qui sera établi au chapitre 12 –

∀α > 0, ∀A∈ B(R), λ(αA) = αλ(A).

Il est en effet facile de vérifier que l’application définie sur B(R) par µ(A) := α−1λ(αA) est une
mesure sur B(R), invariante par translation et que µ([0, 1]) = 1. Donc par unicité de la mesure de
Lebesgue, µ = λ. Soit A un borélien de R. On en déduit ensuite que, pour toute fonction étagée
positive, puis, via le théorème 7.1, pour toute fonction borélienne positive g∫

A

g(αx) dx =
1

α

∫
αA

g(x) dx.

étape 2 : Revenons au problème. On se ramène au cas où f est positive grâce à la décomposition
canonique f = f+ − f−. On applique alors le théorème de Fubini-Tonelli (théorème 11.2) à la
fonction Φ définie sur l’espace produit ([1, a]× R+,B([1, a])⊗ B(R+)) par Φ(t, x) := f(tx). La
fonction Φ est la composée de la fonction continue – donc B([1, a]×R+)-mesurable – (t, x) 7→
tx par la fonction borélienne f . Comme B([1, a]×R+) = B([1, a])⊗B(R+), la fonction Φ est
B([1, a])⊗B(R+)-mesurable. Il vient alors∫

R+

(∫
[1,a]

f(tx) dt

)
dx =

∫
[1,a]

(∫
R+

f(tx) dx

)
dt.

D’après le résultat préliminaire,∫
R+

(∫
[1,a]

f(tx) dt

)
dx =

∫
R+

1

x

(∫
[x,ax]

f(t) dt

)
dx =

∫
R+

F (ax)− F (x)

x
dx.

D’autre part, par le même argument∫
[1,a]

(∫
R+

f(tx) dx

)
dt =

∫
[1,a]

(∫
R+

f(x) dx

)
1

t
dt = ln a

∫
R+

f(x) dx,

d’où l’égalité cherchée. ♦
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Théorème 11.3 (Fubini-Lebesgue). On considère à nouveau les espaces mesurés
du théorème 11.2. Soit f ∈L 1

K(µ⊗ ν) (K=R ou C). Alors :

(a)

{
µ(dx)-p.p. y 7→ f(x, y)∈ L 1

K(ν),
ν(dy)-p.p. x 7→ f(x, y)∈ L 1

K(µ).

(b) x 7→
∫
Y
f(x, y)ν(dy)∈L 1

K(µ) et y 7→
∫
X
f(x, y)µ(dx)∈L 1

K(ν), ces fonctions

étant définies respectivement µ-p.p. et ν-p.p.

(c)

∫
X×Y

fdµ⊗ν =

∫
X

(∫
Y
f(x, y) ν(dy)

)
µ(dx)

=

∫
Y

(∫
X
f(x, y)µ(dx)

)
ν(dy).

DÉMONSTRATION : Cas réel : (a) Si K = R, on applique le théorème de Fubini-
Tonelli aux fonctions f+ et f−. Or, d’après le corollaire 7.2, si g ∈ L 1

R+
(m), m

mesure positive quelconque, alors {g = +∞} est mesurable de m-mesure nulle.
Ainsi, pour le point (a),∫

X

(∫
Y
f±(x, y) ν(dy)

)
µ(dx) =

∫
X×Y

f± d(µ⊗ ν)

≤
∫
X×Y
|f | d(µ⊗ ν) < +∞

(11.3)

donc
{
x∈X :

∫
Y
f±(x, y) ν(dy) = +∞

}
est A -mesurable de µ-mesure nulle.

(b) Ce point découle immédiatement de l’inégalité (11.3) car, pour tout x∈ X ,∣∣∣∣∫
Y
f(x, y) ν(dy)

∣∣∣∣≤ ∫
Y
|f(x, y)| ν(dy)

≤
∫
Y
f+(x, y) ν(dy) +

∫
Y
f−(x, y) ν(dy)∈ L 1

R+
(µ(dx)).

La fonction x 7→
∫
Y
f(x, y) ν(dy) est donc µ-intégrable. On procède de façon ana-

logue pour les affirmations symétriques.
(c) Ce point s’établit en faisant la différence terme à terme dans l’identité (11.3).

Cas complexe : Si K=C, on se ramène au cas réel par les méthodes habituelles
en considérant <(f) et =(f). ♦

Remarque : L’hypothèse d’intégrabilité de la fonction f dans le théorème de
Fubini-Lebesgue est cruciale. En effet, on peut avoir l’intégrabilité des fonctions
“intermédiaires” de l’assertion (b) du théorème 11.3 sans que l’égalité (c) soit
vérifiée pour autant. A fortiori aucune forme de “réciproque” n’est non plus va-
lable : on peut avoir intégrabilité des diverses fonctions “intermédiaires” de l’as-
sertion (b) du théorème 11.3 et l’égalité (c) sans que la fonction f soit pour autant
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intégrable par rapport à la mesure produit. Ces situations sont illustrées par les
contre-exemples ci-après.

Contre-exemples : 1. Soit f la fonction définie sur l’espace produit R+× [0, 1]
par f(x, y) := 2 e−2xy − e−xy. La fonction f est continue de R+× [0, 1] dans R,
donc borélienne, donc B(R+)⊗B([0, 1])-mesurable. D’autre part, pour tout y > 0
(donc a fortiori dy-p.p. sur [0, 1]),∫

R+

f(x, y) dx =

[
−e

−2xy

y
+
e−xy

y

]x=+∞

x=0

= 0

et pour tout x > 0 (donc dx-p.p. sur R+),∫
[0,1]

f(x, y) dy =

[
−e

−2xy

x
+
e−xy

x

]y=1

y=0

=
e−x − e−2x

x
.

Cette dernière fonction, convenablement prolongée en 0, est continue, strictement
positive et intégrable sur R+. Finalement,

∫
[0,1]

(∫
R+

f(x, y) dx

)
dy = 0∫

R+

(∫
[0,1]

f(x, y) dy

)
dx =

∫ +∞

0

(
e−x − e−2x

x

)
= ln 2,

d’après l’application 11.3.
2. Soit la fonction f définie sur le pavé [−1, 1]2 par f(x, y) := xy/(x2 + y2)2 si
(x, y) 6= (0, 0) et f(0, 0) = 0. Cette fonction est continue sur [−1, 1]2\{(0, 0)} qui
est un borélien, donc est borélienne sur [−1, 1]2 et donc B([−1, 1])⊗2-mesurable.
On vérifie sans peine que pour tout x ∈ [−1, 1], la fonction

(
y 7→ f(x, y)

)
est

intégrable par rapport à la mesure de Lebesgue sur [−1, 1], d’intégrale nulle. De
même, pour tout y ∈ [−1, 1], la fonction

(
x 7→ f(x, y)

)
est intégrable par rapport

à la mesure de Lebesgue sur [−1, 1] d’intégrale nulle. En conséquence, les deux
intégrales “doubles” de l’assertion (c) du théorème 11.3 existent et sont égales
parce que nulles. Cependant, il est immédiat, via le théorème de Fubini-Tonelli 11.2,
que ∫

[−1,1]2
|f(x, y)| dx dy = +∞.

Ainsi, la fonction f n’est pas intégrable par rapport à la mesure de Lebesgue-
produit sur ([−1, 1]2,B([−1, 1])⊗2).

Conventions courantes d’écriture : • Pour éviter l’introduction excessive de pa-
renthèses, on acolle parfois la mesure au signe d’intégrale. Ainsi, de préférence à
l’écriture originelle des théorèmes 11.2(b) ou 11.3(c), on écrira plutôt :∫
X×Y
µ⊗ ν(dx, dy)f(x, y)=

∫
X
µ(dx)

∫
Y
ν(dy)f(x, y)=

∫
Y
ν(dy)

∫
X
µ(dx)f(x, y).
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Enfin, lorsque la positivité ou l’intégrabilité de f est acquise, on trouvera sou-

vent la notation
∫
X

∫
Y
µ(dx) ν(dy) f(x, y) . Ceci est particulièrement courant en

présence d’intégrales multiples. D’autre part, on s’abstiendra d’introduire des sym-
boles d’intégrales multiples (doubles, triples, n-uples) pour intégrer par rapport à
une mesure produit.
• La mesure de Lebesgue λd sur Rd étant (cf. l’application de la section 11.2)
le produit de la mesure de Lebesgue sur R par elle-même, on note souvent cette
mesure dx1. . .dxd et les intégrales associées∫

Rd

f(x)λd(dx) =

∫
Rd

f(x1, . . . , xd) dx1 . . . dxd =

∫
Rd

dx1 . . . dxd f(x1, . . . , xd),

voire, plus simplement, ∫
Rd

f(x)λd(dx) =

∫
Rd

f(x) dx.

Application 11.4. Formule d’intégration par parties sur (R,B(R), λ) :
Soient f et g deux fonctions localement intégrables sur R, i.e. intégrables sur tout
intervalle borné de R, alors les fonctions définies – avec les conventions habituelles
(cf. application 8.5) – par

∀x∈ R, F (x) :=

∫ x

0
f(t) dt et G(x) :=

∫ x

0
g(t) dt,

vérifient la formule d’intégration par parties généralisée :∫ x

0
f(t)G(t) dt = F (x)G(x)−

∫ x

0
F (t) g(t) dt.

DÉMONSTRATION : Pour simplifier nous allons traiter le cas x≥0 où∫ x

0
ϕ(t) dt :=

∫
[0,x]

ϕ(t) dt.

La preuve consiste à appliquer le théorème de Fubini-Lebesgue à la fonction

Φ(t, s) := 1{0≤s≤t≤x}(t, s) f(t) g(s)

définie sur l’espace produit
(
[0, x]2,B([0, x])⊗2

)
. Φ est mesurable par rapport à la

tribu produit B([0, x])⊗2 car f et g sont mesurables par rapport à la tribu B([0, x])
et l’ensemble {(s, t) ∈ [0, x]2 : 0 ≤ s ≤ t ≤ x} est un fermé de [0, x]2 donc un
élément de B([0, x]2) = B([0, x])⊗B([0, x]).

En outre, Φ est intégrable sur [0, x]2. En effet, |Φ(t, s)| ≤ |f(t)| |g(s)| et le
théorème de Fubini-Tonelli (théorème 11.2) montre que∫
[0,x]2
|Φ(t, s)| dt ≤

∫
[0,x]2
|f(t)| |g(s)| dt ds =

∫
[0,x]
|f(t)| dt×

∫
[0,x]
|g(s)| ds < +∞.
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La fonction Φ étant dt⊗ds-intégrable, il est possible d’appliquer le théorème de
Fubini-Lebesgue (théorème 11.3) qui conduit à l’identité∫

[0,x]

(∫
[0,x]

Φ(t, s) ds

)
dt =

∫
[0,x]

(∫
[0,x]

Φ(t, s) dt

)
ds. (11.4)

Or, l’intégrale de gauche dans (11.4) est égale à∫
[0,x]

(∫
[0,x]

Φ(t, s) ds

)
dt=

∫
[0,x]

f(t)

(∫
[0,x]

1[0,t] g(s) ds

)
dt,

=

∫
[0,x]

f(t)

(∫
[0,t]

g(s) ds

)
dt,

=

∫
[0,x]

f(t)G(t) dt.

En notant que {(s, t)∈ [0, x]2 : 0≤ s≤ t≤x} = {(s, t)∈ [0, x]2 : 0≤ s≤ x, s≤
t≤ x}, on vérifie que l’intégrale de droite de (11.4) vaut∫

[0,x]

(∫
[0,x]

Φ(t, s) dt

)
ds=

∫
[0,x]

g(s)

(∫
[0,x]

1[s,x](t) f(t) dt

)
ds,

=

∫
[0,x]

g(s)

(∫
[0,x]

1]s,x](t) f(t) dt

)
ds.

La seconde égalité s’appuie sur le fait que la mesure de Lebesgue ne charge pas les
points. Enfin, comme pour tout s∈ [0, x], 1]s,x] = 1[0,x] − 1[0,s], cette intégrale est
aussi égale à∫
[0,x]
g(s)ds

(∫
[0,x]

(
1− 1[0,s](t)

)
f(t) dt

)
= F (x)G(x)−

∫
[0,x]
g(s) ds

(∫
[0,s]
f(t) dt

)

d’où la formule d’intégration par parties. ♦

Application 11.5. Séries doubles :

Soit (ap,q)p,q∈N une suite indexé par N2. Par définition – mais ceci n’est qu’un
cas particulier de la théorie des familles sommables – on dira que la série double
de terme général ap,q est absolument convergente si l’application (p, q) 7→ ap,q est
intégrable par rapport à la mesure de décomptem2 sur N2. Dans ce cas on pose ( 3),∑

p,q∈N

ap,q :=

∫
N2

ap,q dm2(p, q).

3. Cette définition coı̈ncide avec les définitions élémentaires.
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Or, comme cela a été établi dans le seconde remarque qui suit le théorème 11.1,
la mesure de comptage m2 s’écrit m2 = m1 ⊗ m1 où m1 désigne la mesure de
comptage sur N. En outre, on a vu (cf. chapitre 7 au fil des remarques) qu’une série
de terme général an est absolument convergente si et seulement si la suite (an)n∈N

est m1-intégrable et qu’alors
∑
n∈N

an =

∫
N
an dm1(n).

Comme le mesure m1 est σ-finie puisque N est dénombrable, les deux théo-
rèmes de Fubini s’appliquent dans ce cadre et fournissent un procédé efficace de
sommation des séries doubles :∑

p,q∈N

|ap,q| =
∑
p∈N

(∑
q∈N

|ap,q|
)
=
∑
q∈N

(∑
p∈N

|ap,q|
)
≤ +∞,

et, si
∑
p,q∈N

|ap,q| < +∞, alors

∑
p,q∈N

ap,q =
∑
p∈N

(∑
q∈N

ap,q

)
=
∑
q∈N

(∑
p∈N

ap,q

)
.

11.4 ♣ Produit infini de mesures de probabilité

Théorème 11.4 (Ionescu-Tulcea-Kolmogorov)). On considère une suite d’espaces
de probabilité (Xn,An, µn), n ∈ N∗ (i.e. µn(Xn)=1) et l’on se place sur l’espace
produit

X :=
∏
n≥1

Xn =
{
(xn)n∈N∗ , xn∈ Xn, n∈ N∗}.

On munit X de l’algèbre de Boole

C :=
{
A×

∏
k≥n+1

Xk , A1∈ A ⊗ · · · ⊗An, n∈ N∗
}
.

et l’on pose pour tout n∈ N∗ et pour tout A∈ A1 ⊗ · · · ⊗An,

ν
(
A×

∏
k≥n+1

Xk

)
= (µ1 ⊗ · · · ⊗ µn)(A). (11.5)

Ceci définit une mesure de probabilité sur l’algèbre de Boole C qui se prolonge de
façon unique en une mesure de probabilité sur la tribu engendrée

A = ⊗
n∈N

An := σ(C ).

Ce théorème n’est en fait qu’un cas particulier du théorème général de Ionescu-
Tulcea (e.g. [26], chapitre V-I) dont l’objet est la construction d’une chaı̂ne de Mar-
kov sur son espace canonique.
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DÉMONSTRATION : étape 1 : Dans un premier temps on vérifie que la défini-
tion 11.5 est cohérente. En effet, pour tout n∈ N∗ et pour tout A∈ A1⊗ · · · ⊗An,

ν
(
A×Xn+1 ×

∏
k≥n+2

Xk

)
= (µ1 ⊗ · · · ⊗ µn+1)(A×Xn+1)

= (µ1 ⊗ · · · ⊗ µn)(A)µn+1(Xn+1)

= (µ1 ⊗ · · · ⊗ µn)(A) = ν
(
A×

∏
k≥n+1

Xk

)
.

étape 2 : Le fait que ν définisse une mesure sur l’algèbre C est immédiat, puisque
l’on peut toujours supposer que deux éléments C et C ′ de C sont de la forme
A×Xn+1 ×Xn+2 × · · · , A∈ A1 ⊗ · · · ⊗An pour un n suffisamment grand.

étape 3 : Le seul point délicat est donc l’obtention de la propriété de Carathéodory.
À cette fin, on introduit des mesures de probabilité auxiliaires sur C . En l’occur-
rence, on définit, pour tout p ∈ N∗, pour tout (x1, . . . , xp) ∈ X1 × · · · × Xp la
mesure de probabilité ν(x1,...,xp) par :

pour tout n∈ N∗ et pour tout A∈ A1 ⊗ · · · ⊗An,

ν(x1,...,xp)
(
A×

∏
k≥n+1

Xk

)
=

∫
Xp+1×···×Xn

1A(x1, . . . , xn)µp+1(dxp+1) · · ·µn(dxn).

On convient en outre que νØ := ν lorsque p = 0. Les probabilités ν(x1,...,xp)

vérifient les deux propriétés essentielles suivantes :

– si p≥n, ν(x1,...,xp)
(
A×

∏
k≥n+1

Xk

)
= 1A(x1, . . . , xn),

– pour tout p∈ N et tout (x1, . . . , xp)∈ X1 × · · · ×Xp,

∀C∈ C , ν(x1,...,xp)(C) =

∫
Xp+1

ν(x1,...,xp,xp+1)(C)µp+1(dxp+1). (11.6)

Cette dernière égalité est une conséquence immédiate du théorème de Fubini-Tonelli.

Soit (Cn)n≥0 une suite d’éléments de C décroissante pour l’inclusion. La suite
(ν(Cn))n∈N∗ est décroissante positive donc converge vers `≥ 0. Supposons `> 0.
D’après l’identité (11.6)

ν(Cn) =

∫
X1

ν(x1)(Cn)µ1(dx1).

Mais, si, pour tout x1 ∈ X1, ν(x1)(Cn) ↓ 0, alors le théorème de convergence
dominée entraı̂ne ν(Cn)=0. Il existe donc x1 tel que inf

n∈N
ν(x1)(Cn)>0.

De la même façon, ν(x1)(Cn) =
∫
X2

ν(x1,x2)(Cn)µ2(dx2), donc il existe x2∈

X2 tel que inf
n∈N

ν(x1,x2)(Cn)> 0. On construit ainsi de proche en proche une suite
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(xp)p∈N∗ telle que

∀ p∈ N∗, inf
n∈N∗

ν(x1,...,xp)(Cn) > 0.

Soit alors, n∈ N fixé etCn=A`n×X`n+1×X`n+2×. . . , A`n ∈ A1⊗· · ·⊗A`n .
Dès que p≥`n,

1A`n
(x1, . . . , x`n) = ν(x1,...,xp)(Cn) > 0

i.e. (x1, . . . , x`n) ∈ A`n . En conséquence, (xp)p∈N ∈ Cn pour tout n ∈ N ce qui
entraı̂ne que

⋂
n∈N

Cn 6= Ø. ♦

11.5 Exercices

(X,A , µ) désigne un espace mesuré σ-fini, i.e.

X=
⋃
n≥1

↑
En où En∈A et µ(En)<+∞.

11.1 On considère les deux espaces mesurés (R,B(R), λ) et (R,P(R), µ) où µ est
la mesure définie sur P(R) par µ(A) := 0 si A est dénombrable et µ(A) := +∞
sinon. SoientK un compact de R non dénombrable et de mesure de Lebesgue nulle
(par exemple l’ensemble de Cantor au chap. 13, etC :=

{
(x, y)∈R2 : x−y∈K

}
).

a) Montrer que C∈B(R)⊗P(R).

b) Calculer
∫

R
λ(dx)

∫
R

1C(x, y)µ(dy) ,
∫

R
µ(dy)

∫
R

1C(x, y)λ(dx) et conclure.

11.2 Soit f la fonction définie sur R par f(x) :=
∑
n≥1

d

dx

( x

n2 + x2

)
.

a) Montrer que l’intégrale
∫ +∞

0
f(x) dx est semi-convergente et calculer sa valeur.

b) Calculer la série
∑
n≥1

∫ +∞

0

d

dx

( x

n2 + x2

)
et comparer au résultat du a).

11.3 Soit f définie sur [0, 1]2 par f(x, y) :=
x2−y2

(x2+y2)2
et f(0, 0) := 0.

a) Calculer
∫ 1

0
dx

∫ 1

0
f(x, y) dy et

∫ 1

0
dy

∫ 1

0
f(x, y) dx .

b) En déduire que f /∈ L 1
R([0, 1]

2).

11.4 Soient f ∈ L 1
R+

(µ) et g : R+ → R une fonction croissante, de classe C 1

sur R+, nulle en 0. Montrer que
∫
X
g ◦ f dµ =

∫ +∞

0
g′(t)µ({f≥ t}) dt.
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11.5 Soient µ et ν deux mesures σ-finies définies sur la tribu borélienne deX := R.

a) Montrer que l’ensemble D := {x ∈ R : µ({x})>0} est dénombrable.

b) Montrer que µ⊗ ν(∆) =
∑
x∈R

µ({x}) ν({x}) où ∆ est la diagonale de R2.

11.6 Soit f : R→ R+ une fonction borélienne positive.

a) Montrer que l’ensemble Af := {(x, y) ∈ R2 : 0 ≤ y ≤ f(x)} est un borélien
de R2 et calculer λ2(Af ).

b) Même question pour le graphe de f défini par Gf :=
{
(x, f(x)), x∈R

}
.

c) En déduire que λ
(
{x ∈ R : f(x) = y}

)
= 0 λ(dy)-p.p.

11.7 Soit (R,A , µ) un espace probabilisé (µ(R)=1) ; soient f et g deux fonctions
de L 1

R+
(µ) vérifiant fg∈L 1

R+
(µ) et f, g monotones de même sens. Montrer que∫

R
fg dµ ≥

∫
R
fdµ

∫
R
g dµ.

11.8 Théorème de Schwarz

Soient Ω un ouvert de R2 et f : Ω → R une fonction continue ayant des dérivées

partielles
∂2f

∂x∂y
et

∂2f

∂y∂x
continues sur Ω. Montrer qu’elles sont égales dans Ω.

11.9 Soient a, b ∈ R, a < b et f ∈L 1
R([a, b]

2).

a) Montrer que I :=

∫ b

a
dx

∫ x

a
f(x, y) dy =

∫ b

a
dy

∫ b

y
f(x, y) dx.

b) Si f(x, y)=f(y, x) λ2-p.p., montrer que I =
1

2

∫
[a,b]2

f(x, y) dx dy.

11.10 Problème de Bâle 7

a) Calculer de deux façons différentes l’intégrale
∫

R2
+

dx dy

(1 + y) (1 + x2y)
.

En déduire la valeur de
∫ +∞

0

lnx

x2 − 1
dx.

b) Déduire du a) et d’un développement en série l’égalité
+∞∑
n=0

1

(2n+ 1)2
=
π2

8
,

puis en séparant les termes pairs et impairs retrouver la formule
+∞∑
n=1

1

n2
=
π2

6
.

11.11 a) Calculer
∫ π

0

ln(1 + cosx)

cosx
dx à l’aide de (x, y) 7→ 1

1 + y cosx
.

b) Montrer que ∀ y ∈ R+ ,

∫ π
2

0

cos2(x)

1 + y cos2(x)
dx =

π

2

1

1 + y +
√
y + 1

.
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c) En déduire la valeur de
∫ π

2

0
ln
(
1 + cos2(x)

)
dx.

11.12 Soient f, g les fonctions définies sur R+ par f(t) :=
∫ +∞

0

sinx

x
e−tx dx et

g(t) :=

∫ +∞

0

sin2 x

x2
e−tx dx pour t ∈ R+.

a) Montrer que f est continue sur R∗
+ et g sur R+.

b) Calculer f(t) pour tout t>0, en partant de l’égalité
sinx

x
=

∫ 1

0
cos(xy) dy.

c) Calculer g(t) pour tout t>0, en partant de l’égalité
sin2 x

x2
=

∫ 1

0

sin(2xy)

x
dy.

d) En déduire la valeur de g(0).

11.13 On rappelle que pour tout f ∈L 1
R(R), la transformée de Fourier de f est la

fonction définie sur R par f̂(t) :=
∫ +∞

−∞
f(x) e−itx dx pour t ∈ R.

a) Calculer, pour a>0, la transformée de Fourier de la fonction x 7→ e−a|x|.

b) Soient a>0 et fa la fonction définie sur R par fa(t) :=
∫ +∞

−∞

e−itx

1+x2
e−a|x| dx.

Montrer que fa(t)=

∫ +∞

−∞

a

a2 + (y + t)2
e−a|y| dy.

c) En déduire la transformée de Fourier de la fonction
(
x 7→ 1

1 + x2

)
.

11.14 Inégalité de Hardy

a) Soient (X,A , µ) et (Y,B, ν) deux espaces mesurés σ-finis et p ∈ [1,+∞[ ;

soient ϕ ∈ L 1
R(µ ⊗ ν) et F définie par F (x) :=

∫
Y
ϕ(x, y)ν(dy) µ(dx)-p.p..

Montrer que F vérifie l’inégalité ‖F‖
Lp(µ)

≤
∫
Y
‖ϕ(·, y)‖

Lp(µ)
ν(dy) .

b) En déduire que pour toute fonction f ∈L p
R(λ), la fonction F définie sur R∗

+ par

F (x) :=
1

x

∫ x

0
f(t) dt vérifie l’inégalité de Hardy ‖F‖p ≤

p

p−1
‖f‖p .

11.15 Inégalité de Hardy-Littlewood-Pòlya

Soit ϕ une fonction décroissante sur R+ telle que lim
x→+∞

ϕ(x)=0.

a) Soient f une fonction borélienne positive sur R+ et F la fonction définie sur R+

par F (x) :=
∫ x

0
f(t)dt. Montrer la formule d’intégration par parties

∫
R+

fϕ dλ =

∫
R+

F d(−ϕ),
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où d(−ϕ) désigne la mesure de Stieltjes sur B(R+) associée à la fonction crois-
sante −ϕ (cf. paragraphe 6.5.2).
b) Soient p, q, a, b∈R vérifiant p>1, 1

p +
1
q =1, p a+1>0 et q b+1>0. Déduire

du a) l’inégalité de Hardy-Littlewood-Pòlya (HLP)∫ +∞

0
xa+bϕ(x) dx

≤ (pa+ 1)
1
p (qb+ 1)

1
q

a+ b+ 1

(∫ +∞

0
xpaϕ(x) dx

)1
p
(∫ +∞

0
xqbϕ(x) dx

)1
q

.

c) On suppose que toutes les intégrales sont finies et p a 6=q b. Montrer que l’inéga-
lité (HLP) est une égalité si et seulement si il existe c, x ∈ R+ tels que ϕ ≡ c sur
]0, x[ et ϕ ≡ 0 sur ]x,+∞[.

11.16 Inégalité de Pòlya-Szegö
Soit ϕ une fonction croissante sur [0, 1].
a) On suppose dans cette question que ϕ n’est pas constante sur [0, 1]. Soient f
une fonction borélienne positive sur [0, 1] et F la fonction définie sur [0, 1] par

F (x) :=

∫ x

0
f(t)dt. Montrer la formule d’intégration par parties

∫ 1

0
f ϕ dλ =

∫ 1

0

(
cϕF (1)− F

)
dϕ, cϕ :=

ϕ(1)

ϕ(1)− ϕ(0)
,

où dϕ désigne la mesure de Stieltjes sur B([0, 1]) associée à la fonction crois-
sante ϕ (cf. section 6.5.2).
b) Soient p, q, a, b∈R vérifiant p> 1, 1

p +
1
q =1, p a+1> 0, q b+1> 0. Montrer

l’inégalité de Pòlya-Szegö (PS)∫ 1

0
xa+bϕ(x) dx ≥ (pa+ 1)

1
p (qb+ 1)

1
q

a+ b+ 1

(∫ 1

0
xpaϕ(x) dx

)1
p
(∫ 1

0
xqbϕ(x) dx

)1
q

.

c) On suppose que p a 6= q b. Montrer que l’inégalité (PS) est une égalité si et
seulement si ϕ est constante sur ]0, 1[.

11.17 On se place sur l’espace mesuré ([0, 1],B([0, 1]), λ) où λ désigne la mesure
de Lebesgue.

a) Soient f ∈ L 2
R(λ) et f̃ la fonction définie sur [0, 1] par f̃(t) :=

∫
[0,t]

f dλ ,

t ∈ [0, 1]. Montrer que f̃ est continue sur [0, 1] et que l’application f 7→ f̃ de
(L2

R(λ), ‖ · ‖2) dans (CR([0, 1]), ‖ · ‖∞) est continue.

b) Soient f ∈ L 2
R(λ) et µ une mesure finie sur B([0, 1]). Montrer que f̃ ∈ L 1

R(µ)
et qu’il existe une fonction P(µ) décroissante sur [0, 1], que l’on déterminera, telle

que
∫
[0,1]

f̃ dµ =

∫
[0,1]

f P(µ) dλ .
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c) Soient µ et ν deux mesures finies sur B([0, 1]). Montrer que∫
[0,1]

P(µ)P(ν) dλ =

∫
[0,1]2

inf (s, t) d(µ⊗ν)(s, t).

11.18 Transformée de Mellin

Soit f ∈L 1
C(R+, λ). On définit la transformée de Fourier en cosinus de la fonc-

tion f par

F (f)(y) :=
√

2
π

∫ +∞

0
f(x) cos(xy) dx pour y ∈ R+.

Soit g : R+ → C borélienne telle que, pour tout s ∈ ]0, 1[,
(
y 7→ g(y) ys−1

)
soit

intégrable sur R+ (ou éventuellement y possède une intégrale semi-convergente).
On définit la transformée de Mellin de g par

M(g)(s) :=

∫ +∞

0
g(y) ys−1 dy pour s ∈ ]0, 1[ ,

et la fonction Γ :=M(y 7→ e−y). On considère s ∈ ]0, 1[.
a) Soit P := {z ∈C : <(z)≥ 0}. Montrer que z 7→ zsM(y 7→ e−zy) est continue
sur P \ {0} (zs := es ln z où ln est la détermination principale du logarithme),
holomorphe sur l’intérieur de P. En déduire qu’elle est constante égale à Γ(s) sur P.

b) Soit f ∈L 1
C(R+, λ) avec (y 7→ f(x)x−s),

(
y 7→ F (f)(y) ys−1

)
∈ L 1

C(R+, λ).

Montrer que M
(
F (f)

)
(s) = lim

a→+∞

∫ +∞

0
f(x)x−sM(1[0,ax] cos) dx.

c) En déduire l’identité M
(
F (f)

)
(s) =

√
2

π
cos
(π
2
s
)
M(f)(1−s).

d) On considère la fonction f(x) := e−x et on rappelle que (F ◦ F )(f) = f (cf.
exercice 8.17 b)). Montrer la formule des compléments

∀ s ∈ ]0, 1[ Γ(s) Γ(1−s) = π

sin(πs)
.

11.19 Inégalité de Schur et inégalité de Hilbert

On considère une fonction K : R∗
+×R∗

+ → R∗
+ borélienne, homogène de degré

−1, i.e., pour tous t, x, y ∈ R∗
+, K(tx, ty) = t−1K(x, y), et telle que la fonction(

t 7→ K(1, t) + K(t, 1)
)

soit bornée sur R∗
+. Soient p, q > 1 tels que 1

p+
1
q = 1,

f ∈L p
R+

(R∗
+, λ) et g∈L q

R+
(R∗

+, λ).

a) Montrer que∫
R∗
+×R∗

+

f(x) g(y)K(x, y) dx dy =

∫ +∞

0
K(1, t)

(∫ +∞

0
f(x) g(tx) dx

)
dt.
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b) En déduire l’inégalité de Schur∫
R∗
+×R∗

+

f(x)g(y)K(x, y) dx dy ≤ I(q) ‖f‖p ‖g‖q, (S)

où I(q) :=

∫ +∞

0
t
− 1

qK(1, t) dt < +∞.

c) Soientϕ, ψ∈L 1
R+

(R∗
+, λ) vérifiant : pour presque tout t∈R∗

+, il existe α(t)∈R+

tel que ψ(tx)=α(t)ϕ(x) dx-p.p. sur R∗
+. Montrer que ϕ=0 λ-p.p. sur R∗

+.

d) Déduire que (S) est une inégalité stricte si f et g ne sont pas nulles p.p. sur R∗
+.

e) Montrer que la constante I(p) dans (S) est optimale.

f) Soient (an)n≥1∈`pR+
et (bn)n≥1∈`qR+

. Déduire des formules des exercices 11.18
d) et 12.7 b) l’inégalité de Hilbert

∑
m,n≥1

ambn
m+n

≤ π

sin(π/p)

(∑
m≥1

apm

)1
p
(∑
n≥1

bqn

)1
q
.

11.20 Soit pour a, b ∈ R+, a < b, et n ∈ N∗, In :=

∫ +∞

0

(e−ax − e−bx
x

)n
dx.

a) Montrer l’égalité In =

∫
[a,b]n

dt1 · · · dtn
t1 + · · ·+ tn

.

b) En déduire les valeurs de I2 et I3.

11.21 Soit I :=

∫ +∞

0

arctan2 x

x2
dx.

a) Montrer que I =

∫ +∞

0
arctan2(1/x) dx < +∞.

b) En déduire que I =

∫ +∞

0

ln(x2 + 1)

x2 + 1
dx.

c) Montrer que ∀x > 0,
arctan2 x

x2
=

(∫ 1

0

dy

1 + x2y2

)(∫ 1

0

dz

1 + x2z2

)
.

d) En déduire que I =

∫ 1

0

∫ 1

0

(∫ +∞

0

dx

(1 + x2y2) (1 + x2z2)

)
dy dz.

e) Montrer que

∀x ∈ R+, ∀ y 6= z ∈ ]0, 1], 1

(1 + x2y2) (1 + x2z2)

=
1

y2 − z2

(
y2

1 + x2y2
− z2

1 + x2z2

)
.

f) Retrouver la valeur de I en écrivant arctanx = x

∫ 1

0

dt

(tx)2+1
puis en appli-

quant le théorème de Fubini-Tonelli.
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11.22 Soient (X,A , µ) un espace mesuré fini (i.e. µ(X) < +∞) et (fn)n≥1 une
suite de fonctions µ-intégrables positives telle que la suite

(
µ({fn > t})

)
n≥1

soit
décroissante pour tout t ≥ 0.

a) Montrer que {(x, t)∈ X × R+ : f1(x) > t}∈ A ⊗B(R+) où B(R+) est la
tribu des boréliens de R+.

b) En déduire que la fonction
(
t 7→ µ({f1 > t})

)
est borélienne et que∫ +∞

0
µ({f1 > t}) dt =

∫
X

f1 dµ.

c) Montrer que les fonctions gn définies pour tout n ≥ 1 par gn := max
1≤k≤n

fk sont

mesurables et que, pour tout t ≥ 0, µ({gn > t}) ≤ nµ({f1 > t}).

d) Montrer que
1

n

∫
X

gn dµ ≤
∫ +∞

0
min

(
µ(X)/n, µ({f1 > t})

)
dt.

e) En déduire que lim
n

1

n

∫
X

gn dµ = 0.

11.23 Caractérisation de la mesure de Lebesgue

Soit µ une mesure borélienne sur Rd. On suppose qu’il existe une constante cd
telle que pour toute boule B(x, r) de centre x ∈ Rd et de rayon r > 0, on ait
µ(B(x, r)) = cd r

d.

a) Montrer que pour toute fonction ϕ ∈ CK(Rd;R+), on a∫
Rd

ϕ(x)λd(dx) =
vd
cd

∫
Rd

ϕ(y)µ(dy),

où vd := λd(B(0, 1)) désigne la mesure de Lebesgue de la boule unité de Rd.

b) En déduire que µ =
cd
vd
λd.





Chapitre 12

Mesure image.
Changement de variables

L’objet principal de ce chapitre est d’établir le théorème de changement de variables
général dans les intégrales multiples définies sur (Rd,B(Rd), λ). L’importance pra-
tique de ce théorème est immense : il est en effet, avec le théorème de Fubini, à la
base de tous les calculs explicites d’intégrales multiples.

Cependant, dans un premier temps, nous allons développer la notion de mesure
image que l’on peut assimiler à une forme de changement de variables abstrait. En
effet, cette notion permet de transporter une mesure d’un espace mesurable (X,A )
sur un espace mesurable (Y,B) via une application mesurable h de (X,A ) dans
(Y,B). Cette notion se révélera fondamentale en Probabilités puisqu’elle est à la
base même de la notion de loi d’une variable aléatoire.

12.1 Mesure image

Définition 12.1. Soient (X,A ) et (Y,B) deux espaces mesurables et une fonction
mesurable h : (X,A )→ (Y,B). Si µ est une mesure sur (X,A ), l’application ν
définie sur B par

ν : B −→ R+

B 7−→ ν(B) := µ
(
h−1(B)

)
est une mesure sur (Y,B) de même masse que µ.

Par définition, ν est la mesure image de µ par h. On la note h(µ) ou µh – voire
µ◦h−1 – selon les cas.

Cette définition nécessite une démonstration afin d’établir que la mesure image
est bien une mesure.

DÉMONSTRATION : ν(Ø)=µ(h−1(Ø))=µ(Ø)=0. Soit (Bn)n≥1 une suite de par-
ties de B deux à deux disjointes. D’après les formules de Hausdorff, dès que i 6=j,
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h−1(Bi)∩h−1(Bj)=h
−1(Bi∩Bj)=h−1(Ø)=Ø, h−1

( ⋃
n≥1

Bn

)
=
⋃
n≥1

h−1(Bn).

D’où
ν
( ⋃
n≥1

Bn

)
= µ

(
h−1

( ⋃
n≥1

Bn

))
= µ

( ⋃
n≥1

h−1(Bn)
)

=
∑
n≥1

(
µ(h−1(Bn)

)
=
∑
n≥1

ν(Bn).

ν est donc bien une mesure de masse totale ν(Y ) = µ
(
h−1(Y )

)
= µ(X). ♦

Remarques : • La mesure ν peut être définie sur une tribu a priori plus grande
que B, en l’espèce la tribu image de A par h. Cette tribu, introduite au chapitre 4
(section 4.2.2), est définie par {B⊂ Y : h−1(B)∈A }. C’est la plus grande tribu
sur Y rendant la fonction h mesurable comme fonction définie sur (X,A ).

• La notion de mesure-image est essentielle en Probabilités puisqu’elle est à la base
de la notion de loi d’une variable aléatoire.

Théorème 12.1 (Théorème de transfert). Soit µh la mesure image de µ par h et
f : (Y,B)→ K une fonction mesurable. Alors f est µh-intégrable si et seulement
si f ◦h est µ-intégrable (i.e. f ∈ L 1

K(µh) ⇒ f ◦ h ∈ L 1
K(µ)) et, dans ce cas,∫

Y
f dµh =

∫
X
f ◦ h dµ.

L’égalité ci-dessus a toujours lieu si f est positive (à valeurs dans R+).

DÉMONSTRATION : Supposons que f=1B , B∈ B. Dans ce cas∫
Y
f dµh = µh(B) = µ

(
h−1(B)

)
=

∫
X

1h−1(B)dµ.

Or 1h−1(B)=1B◦h puisque x∈ h−1(B) si et seulement si h(x)∈ B, d’où∫
Y
fdµh =

∫
X

1B ◦ h dµ =

∫
X
f ◦ h dµ.

L’égalité s’étend par linéarité aux fonctions étagées positives puis, via le lemme
fondamental d’approximation et le théorème de Beppo Levi, aux fonctions mesu-
rables positives (on remarque que si 0 ≤ fn ↑ f alors 0 ≤ fn ◦ h ↑ f ◦ h).
L’extension aux fonctions mesurables réelles et complexes µh-intégrables se fait
via les décompositions ad hoc. ♦

Application 12.1. Soit h : (X,A ) → (X,A ). Si µ est invariante par h, i.e. µh =
µ, alors

∀ f ∈ L 1
K(µ),

∫
X
f dµ =

∫
X
f ◦ h dµ.

Ceci constitue une première formule de changement de variables.
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Exemple : Par définition de la mesure de Lebesgue λd sur (Rd,B(Rd)), celle-ci
est invariante par les translations τa : x 7→ x−a, a ∈ Rd, puisque, pour tout
B∈ B(Rd), λd(a+B)=λd(B) i.e. λd(τ−1

a (B)) = λd(B). Par suite

∀ a∈ Rd, ∀ f ∈ L 1
K(λd),

∫
Rd

f(x± a) dx =

∫
Rd

f(x) dx.

En fait, cet exemple est un cas particulier d’un résultat plus général détaillé dans la
proposition ci-après.

Proposition 12.1. Soient A∈ GL(d,R) et b∈ Rd. Alors

∀ f ∈L 1
K(λd),

∫
Rd

f(Ax+ b) dx =
1

| detA|

∫
Rd

f(x) dx. (12.1)

L’égalité s’étend aux fonctions mesurables positives.

La formule (12.1) est une formule de changement de variables affine. Ceci est
évident lorsqu’on la met sous la forme∫

Rd

f(x) dx =

∫
Rd

f(Au+ b) | detA| du. (12.2)

D’autre part, la proposition 12.1 se reformule en termes de mesure image de la
façon suivante :

Corollaire 12.1. SoientA∈ GL(d,R) et b∈ Rd. L’image de la mesure de Lebesgue
sur Rd par l’application (x 7→ Ax+ b) est la mesure | detA|−1.λd.

DÉMONSTRATION : L’exemple ci-dessus appliqué à la fonction
(
x 7→ f(Ax)

)
et

à a :=A−1(b) entraı̂ne que∫
Rd

f(Ax+ b) dx =

∫
Rd

f
(
A(x+A−1b)

)
dx =

∫
Rd

f(Ax) dx.

On peut donc supposer que b=0.
On s’est ainsi ramené à montrer que la mesure image de λd par A n’est autre

que | detA|−1.λd. Soit ν :=A(λd) cette mesure image.
On constate d’abord que ν est invariante par les translations puisque, pour tout

a∈ Rd et tout B∈ B(Rd),

ν(a+B) = λd(A
−1(a+B)) = λd(A

−1(a) +A−1(B)) = λd(A
−1(B)) = ν(B).

D’autre part ν
(
[0, 1]d

)
6=0 puisque l’on a à la fois ν(Rd)=λd(Rd)=+∞ et

ν(Rd)≤
∑
n∈Zd

ν
(
n+[0, 1]d

)
=
∑
n∈Zd

ν
(
[0, 1]d

)
.
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Enfin, ν
(
[0, 1]d

)
< +∞ puisque ν

(
[0, 1]d

)
=λd

(
A−1([0, 1]d)

)
et A−1([0, 1]d) est

compact. Ce dernier point découle de la continuité de l’application linéaireA−1 sur
l’e.v. de dimension finie Rd.

On pose ν ′ :=ν/ν
(
[0, 1]d

)
. La mesure ν ′ est alors invariante par translation et

ν ′([0, 1]d) = 1 donc, d’après le théorème de caractérisation de la mesure de Le-
besgue (théorème 6.1), ν ′=λd. En d’autres termes, il existe une constante c∈ R∗

+

telle que ν = cλd. Il reste donc à déterminer c en calculant le rapport ν(B)/λd(B)
pour un borélien B de mesure de Lebesgue non nulle convenablement choisi. Cette
détermination se fait par étapes, selon la nature de la matrice A.

– A est orthogonale : Si A ∈ O(d,R) :=
{
A ∈ GL(d,R) : tAA= Id

}
, il est

clair que A−1({x : txx≤1})={x : txx≤1} donc ( 1)

ν
(
{x : txx ≤ 1}

)
= λd

(
{x : txx ≤ 1}

)
> 0.

Par suite, dans ce cas, c = 1 = | detA|−1.

– A est symétrique positive : Si A ∈ S +(d,R) ∩ GL(d,R), i.e. symétrique
définie positive, A est diagonalisable dans le groupe orthogonal, i.e. A = PD(tP )
où P ∈ O(d,R) et D= diag (α1,. . ., αd), αi ∈ R∗

+. Soit B :=PD([0, 1]d) ( 2). Le
cas précédent et les relations A−1 =PD−1 tP et tPP = Id entraı̂nent, d’une part,
que

ν(B) = λd
(
A−1(B)

)
= λd

(
P ([0, 1]d)

)
= λd

(
(tP )−1([0, 1]d)

)
= 1.

D’autre part, comme D([0, 1]d)=

d∏
i=1

[0, αi],

λd(B) = λd

(
P
( d∏
i=1

[0, αi]
))

= λd

(
d∏
i=1

[0, αi]

)
=

d∏
i=1

αi = detA.

D’où l’on tire c = (detA)−1 = | detA|−1.

– Cas général : On effectue la décomposition polaire de A∈ GL(d,R), c’est-
à-dire A = PS où P ∈ O(d,R) et S ∈ S +(d,R) (on prend S :=

√
tAA et

P :=AS−1) et on applique les résultats précédents :

ν(B) = λd
(
A−1(B)

)
= λd

(
S−1(P−1(B))

)
= (detS)−1λd

(
P−1(B)

)
= (detS)−1λd(B) ,

donc ν(B) = | detA|−1λd(B) car detA = (detP ) (detS) et detP = ±1. ♦

1. λd({x : txx≤1})≥λd([0, 1/
√
d]d)≥d−d/2>0.

2. B est borélien car PD est linéaire bijective sur Rd et B :=((PD)−1)−1([0, 1]d).
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12.2 Théorème général de changement de variables

Le problème posé est de calculer l’intégrale∫
D
f(x1,. . ., xd)λd(dx)

où λd est la mesure de Lebesgue sur Rd, D un ouvert de Rd et f : Rd → K une
fonction borélienne (positive ou intégrable). Outre le théorème de Fubini qui a fait
l’objet du chapitre 11, l’autre outil essentiel pour calculer explicitement – lorsque
c’est possible – de telles intégrales multiples est le théorème de changement de
variables. Celui-ci permet de transporter le domaine d’intégration D sur un autre
ouvert ∆ homéomorphe à D (en fait difféomorphe).

Rappels et notations : • Si D est un ouvert de Rd,

B(D)=
{
B∈ B(Rd) : B⊂ D

}
car D est borélien en tant qu’ouvert (cf. proposition 4.5). Par définition on notera
λD := 1D.λd la restriction à D de la mesure de Lebesgue λd sur (Rd, B(Rd)),
appelée mesure de Lebesgue sur D.
• Soit ϕ : ∆ → D une application différentiable d’un ouvert ∆ de Rd à valeurs
dans D. En tout point u ∈ ∆, la dérivée ϕ′(u) est une application linéaire de Rd

dans Rd. On appelle Jacobien de ϕ au point u la quantité Jϕ(u) :=detϕ′(u).
• Par définition une application ϕ : ∆ → D est un C 1-difféomorphisme si ϕ est
bijective, de classe C 1 sur ∆ (i.e. continûment différentiable) et si ϕ−1 est de classe
C 1 sur D.

Rappelons qu’une application est continûment différentiable sur un ouvert de
Rd si et seulement si toutes ses dérivées partielles existent et sont continues en tout
point de cet ouvert.

On montre en calcul différentiel les résultats importants suivants (cf. [28]) :

Théorème 12.2 (Inversion locale). Soient ∆ un ouvert de Rd et ϕ : ∆ → Rd

une application de classe C 1 sur ∆. Si x est un élément de ∆ tel que ϕ′(x) soit
inversible, alors il existe un voisinage ouvert Vx de x dans ∆ tel que ϕ|Vx soit un
difféomorphisme de Vx sur son image (ouverte) ϕ(Vx).

Théorème 12.3. Soit ∆ un ouvert de Rd. La fonction ϕ : ∆ → Rd est un C 1-
difféomorphisme sur son image D :=ϕ(∆) si et seulement si elle vérifie

(i) ϕ est injective sur ∆,
(ii) ϕ est de classe C 1 sur ∆, i.e. les dérivées partielles de ϕ existent et sont

continues sur ∆,
(iii) ϕ′(u) est inversible en tout point u de ∆ (i.e. ϕ′(u)∈ GL(d,R), ou encore

Jϕ(u) = detϕ′(u) 6= 0, u∈ ∆).

D est alors un ouvert de Rd et, pour tout x∈ D, (ϕ−1)′(x)=
(
ϕ′(ϕ−1(x))

)−1.
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Nous sommes maintenant en mesure d’énoncer le théorème de changement de
variables.

Théorème 12.4 (Changement de variables). Soit ϕ un C 1-difféomorphisme entre
deux ouverts ∆ etD de Rd. Les trois assertions équivalentes suivantes sont vérifiées :

(a) λD = ϕ(|Jϕ|.λ∆) i.e. λD est la mesure image par ϕ de |Jϕ|.λ∆ (mesure de
densité |Jϕ| par rapport à λ∆).

(b) Pour toute fonction borélienne f : D → R+,∫
D
f(x) dx =

∫
∆
f(ϕ(u)) |Jϕ|(u) du ≤ +∞.

(c) Pour toute fonction borélienne f : D → K (K=R ou C), f est λD-intégrable
sur D si et seulement si (f ◦ϕ)|Jϕ| est λ∆-intégrable sur ∆ et, dans ce cas,∫

D
f(x) dx =

∫
∆
f(ϕ(u)) | Jϕ|(u) du. (12.3)

L’équivalence entre (a) et (c) découle immédiatement du théorème 12.1. En
revanche, établir l’une quelconque des assertions du théorème est difficile et repose
pour l’essentiel sur un découpage ad hoc de ∆ en hypercubes suffisamment pe-
tits et sur la formule des accroissements finis pour remplacer localement ϕ par sa
différentielle.

La formule de changement de variables proprement dite est l’assertion (c). On
s’attachera dans les applications à ne pas oublier de démontrer que le changement
de variables ϕ est bien un difféomorphisme ce qui suppose de vérifier très soi-
gneusement les hypothèses du théorème 12.3 ci-avant, notamment l’injectivité. En
pratique, ce point est intimement lié à la détermination du domaine ouvert ∆.
ATTENTION! le fait que ϕ∈C 1(∆) et Jϕ(u) 6=0 en tout point u∈∆ n’implique
pas que ϕ soit un difféomorphisme ( 3).

Très souvent, les intégrales multiples auxquelles on est confronté, notamment
en Mécanique (moments d’inertie, etc), sont définies sur des ensembles compacts,
ou simplement fermés. Pour appliquer le théorème de changement de variables, il
faut alors vérifier au préalable que ce fermé F est l’adhérence d’un ouvert D et
que λd(F\D)=0. Sauf situation canularesque, il en sera toujours ainsi en pratique,
même s’il est évidemment faux en toute généralité que les fermés ont des frontières
de mesure de Lebesgue nulle.

Signalons pour finir que, en pratique, on utilise souvent conjointement le théorè-
me de Fubini et le théorème de changement de variables. Ceci est illustré par plu-
sieurs des applications qui suivent la démonstration.

3. Considérer par exemple la fonction ϕ(u) := u2 définie de R∗ dans R∗
+. Voir également la

remarque qui fait suite à l’application 12.2 pour un exemple en dimension supérieure.
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En guise de préliminaire à la démonstration rigoureuse du théorème nous allons
– exceptionnellement – en proposer une approche heuristique. Notre but est d’une
part de faire ressortir le caractère géométrique de ce théorème et d’autre part de
mettre en évidence que les deux outils essentiels sont la formule de changement de
variable affine établie au corollaire 12.1 et le théorème des accroissements finis.

APPROCHE HEURISTIQUE : On recouvre de façon minimale l’ouvert ∆ par une
réunion de “petits” hypercubes “semi-ouverts” Ci, deux à deux disjoints et de me-
sure de Lebesgue fixée, arbitrairement petite. On note ui le centre de chaque Ci.
Comme ϕ est bijective et régulière D = ϕ(∆) s’écrit à son tour comme réunion
disjointe des ϕ(Ci). Les ϕ(Ci) restent des mesure petite et se “concentrent autour”
de ϕ(ui). Il vient alors, pour toute fonction f borélienne positive ou bornée définie
sur D, ∫

D
f(x) dx =

∑
i

∫
ϕ(Ci)

f(x) dx

≈
∑
i

∫
ϕ(Ci)

f(ϕ(ui)) dx

≈
∑
i

f(ϕ(ui))λd(ϕ(Ci)).

Le théorème des accroissements finis appliqué à ϕ entre un point quelconque u de
Ci et ui montre que

ϕ(Ci) ≈ {ϕ(ui) + ϕ′(ui)(u− ui), u∈ Ci}.

On en déduit que∫
D
f(x) dx ≈

∑
i

f(ϕ(ui))λd
(
{ϕ(ui) + ϕ′(ui)(u− ui), u∈ Ci}

)
=

∑
i

f(ϕ(ui))λd
(
ϕ′(ui)({u− ui, u∈ Ci})

)
,

car la mesure de Lebesgue est invariante par translation. Par commodité, notons
temporairement Ci − ui := {u − ui, u ∈ Ci}. Comme ϕ′(ui) est inversible, on
peut poser, Ai = (ϕ′(ui))

−1. Il vient

λd
(
ϕ′(ui)(Ci − ui)

)
= λd(A

−1
i (Ci − ui))

= Ai(λd) (Ci − ui)

par définition de la mesure-image de λd par Ai. Le corollaire 12.1 entraı̂ne alors
que

Ai(λd) (Ci − ui) = | detAi|−1 λd(Ci − ui) = | detϕ′(ui)|λd(Ci),
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puisque Ai = (ϕ′(ui))
−1 (la seconde égalité utilise à nouveau que invariance de la

mesure de Lebesgue sur Rd par translation). Il vient alors via la continuité de ϕ′∫
D
f(x) dx ≈

∑
i

f(ϕ(ui)) |detϕ′(ui)| |λd(Ci)

≈
∑
i

∫
Ci

f(ϕ(u)) |detϕ′(u)|λd(du)

≈
∫
∆
(f ◦ ϕ)(u)| Jϕ(u)| du.

D’où le résultat . . .ou presque. La démonstration ci-dessous consiste pour l’es-
sentiel à mettre en forme rigoureusement le cheminement que nous venons de
décrire.

DÉMONSTRATION DU THÉORÈME 12.4 (a) : Quelques notations propres à la
démonstration pour débuter : pour tout x ∈ Rd, on notera ‖x‖ := max1≤i≤d |xi|
(norme “max”). Qa,δ := {u∈ Rd : ‖u−a‖ ≤ δ} désignera l’hypercube associé de
centre a∈ Rd et de côté de longueur 2δ>0. Enfin, siA⊂ Rd, on notera ∂A :=A\Å
la frontière de A.

L’application ϕ−1 étant en particulier borélienne, on peut définir la mesure
image ϕ−1(λD). Il est clair que si l’on établit que ϕ−1(λD) = |Jϕ|.λ∆, l’asser-
tion (a) en découlera en prenant l’image par ϕ de l’égalité. En effet, on vérifie sans
peine que ϕ(ϕ−1(λD))= (ϕ◦ϕ−1)(λD)=λD. Or, si A∈ B(∆), ϕ−1(λD)(A)=
λD((ϕ

−1)−1(A)) = λD(ϕ(A)). Finalement, on se ramène à montrer que, si l’on
pose µ :=ϕ−1(λD),

∀A ∈ B(∆), µ(A) = λD(ϕ(A)) =

∫
A
|Jϕ(u)| du.

Étape 1 Pour tout u0 ∈∆ et tout ε> 0, il existe δ > 0 tel que, pour tout hypercube

Qa,η vérifiant u0∈ Qa,η⊂ ∆ et η<δ,
∣∣∣∣ µ(Qa,η)λ∆(Qa,η)

− |Jϕ(u0)|
∣∣∣∣ < ε :

– Supposons d’abord que u0=0∈∆, ϕ(0)=0 et ϕ′(0)=Id. Soit ε′>0 tel que
(1+ε′)d<1+ε ; d’après le théorème des accroissements finis appliqué à ϕ et ϕ−1

en 0, il existe δ>0 tel que ‖ϕ(u)−u‖≤ ε′/2 ‖u‖ et ‖ϕ−1(u)−u‖≤ ε′/2 ‖u‖ dès
que ‖u‖≤δ (en effet ϕ′(0)=(ϕ−1)′(0)=Id).

Soit Qa,η un hypercube vérifiant : 0 ∈ Qa,η ⊂ ∆ et η < δ. Il vient, pour tout
u∈Qa,η,

‖ϕ(u)−a‖ ≤ ‖ϕ(u)− u‖+ ‖u− a‖ ≤ ε′/2 ‖u‖+ ‖u− a‖
≤ (1 + ε′/2) ‖u− a‖︸ ︷︷ ︸

≤η

+ε′/2 ‖a‖︸︷︷︸
≤η

≤ (1 + ε′)η.
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Par suite ϕ(Qa,η) ⊂ Qa,(1+ε′)η ; de même, comme η
1+ε′ < η < δ, il vient

ϕ−1(Qa, η
1+ε′

) ⊂ Qa,η, soit encore Qa, η
1+ε′
⊂ ϕ(Qa,η). Or, λd(Qa,η)=(2η)d, d’où

1−ε< 1

1+ε
<

1

(1+ε′)d
=
λd(Qa, η

1+ε′
)

λd(Qa,η)
≤ λd(ϕ(Qa,η))

λd(Qa,η)

≤
λd(Qa,(1+ε′)η)

λd(Qa,η)
=(1+ε′)d<1+ε.

Soit, finalement :
∣∣∣∣ µ(Qa,η)λ∆(Qa,η)

− 1

∣∣∣∣ < ε.

– Dans le cas général, on pose ψ(u) :=ϕ′(u0)
−1 (ϕ(u+u0)−ϕ(u0)). ψ est un

C 1-difféomorphisme de ∆′ :=−u0+∆ surD′ :=ϕ′(u0)
−1(−ϕ(u0)+D). SoitQa,η

un hypercube de ∆ contenant u0 ; d’après le théorème de changement de variables
linéaire (proposition 12.1) appliquée à A :=ϕ′(u0) :

µ(Qa,η)

λ∆(Qa,η)
=
λd (ϕ

′(u0)ψ(−u0+Qa,η)+ϕ(u0))
λ∆(Qa,η)

= |Jϕ(u0)|
λd(ψ(−u0+Qa,η))
λd(−u0+Qa,η)

.

On déduit du cas précédent l’existence d’un réel δ>0 tel que,

∀ η∈]0, δ[,
∣∣∣∣λd(ψ(−u0 +Qa,η))

λd(−u0 +Qa,η)
− 1

∣∣∣∣ < ε

|Jϕ(u0)|
.

Partant, ∣∣∣∣ µ(Qa,η)λ∆(Qa,η)
− |Jϕ(u0)|

∣∣∣∣ < ε.

Étape 2 Pour tout hypercube Qa,η de ∆, µ(Qa,η) ≤
∫
Qa,η

|Jϕ(u)| du :

Posons m(Qa,η) := µ(Qa,η) −
∫
Qa,η

|Jϕ(u)| du. Supposons qu’il existe un hyper-

cube Q(0) ⊂ ∆ tel que m(Q(0)) > 0. Cet hypercube Q(0) se décompose en 2d

hypercubes de volumes identiques et de côté moitié de celui de Q(0). On note
Q

(0)
k , 1≤k≤2d, ces hypercubes.

m(Q(0)) = µ

 2d⋃
k=1

Q
(0)
k

− ∫
Q(0)

|Jϕ(u)| du

≤
2d∑
k=1

(
µ(Q

(0)
k )−

∫
Q

(0)
k

|Jϕ(u)| du

)
=

2d∑
k=1

m(Q
(0)
k )

car µ est sous-additive et λd(Q
(0)
k ∩Q

(0)
` )=0 dès que k 6=` (la mesure de Lebesgue

sur Rd ne charge pas les hyperplans de Rd). Par suite, il existe k ∈ {1,. . ., 2d} tel
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que m(Q
(0)
k ) ≥ m(Q(0))

2d
. Soit Q(1) un tel hypercube. On peut ainsi construire de

proche en proche une suite décroissante d’hypercubes (Q(n))n≥0, telle que

m(Q(n+1)) ≥ m(Q(n))

2d
et λd(Q(n+1)) =

λd(Q
(n))

2d
. (12.4)

En particulier, λd(Q(n)) =
λd(Q

(0))

2dn
tend vers 0 quand n tend vers +∞. Par

suite,
⋂
n≥0

↓
Q(n)={u∞} d’après la propriété des fermés emboı̂tés. L’étape 1 entraı̂ne

aussitôt que lim
n

µ(Q(n))

λd(Q(n))
= |Jϕ(u∞)|. D’autre part, Jϕ étant continue en u∞ , on

vérifie sans difficulté que

lim
n

1

λd(Q(n))

∫
Q(n)

|Jϕ(u)| du = |Jϕ(u∞)|.

D’où, par définition de m, lim
n

m(Q(n))

λd(Q(n))
= 0. Or, ceci est contradictoire avec la

définition des Q(n) car, d’après (12.4),

m(Q(n+1))

λd(Q(n+1))
≥ m(Q(n))

λd(Q(n))
,

i.e. la suite

(
m(Q(n))

λd(Q(n))

)
est croissante de premier terme

m(Q(0))

λd(Q(0))
> 0. Finale-

ment, m(Q)≤0 pour tout hypercube Q de ∆.
Étape 3 µ ne charge pas la frontière des hypercubes :
La frontière ∂Qa,δ est constituée de 2d “hypercarrés” de la forme

Ci,εi := {u∈ Rd : ui=ai+εiδ, maxj 6=i |uj − aj | ≤ δ}

où i∈{1,· · · ,d} et εi∈{±1}.
Soit Ci,εi un tel “hypercarré”. Pour tout n≥1,

Ci,εi ⊂ Pni,εi := {u∈Rd : |uj − aj |≤δ, j 6= i et |ui−(ai+εiδ)|≤
1

2n
}.

Pni,εi est un hyperpavé contenu dans au plus ([δn]+1)d−1 hypercubes ([ · ] désigne
la partie entière) de volumes respectifs 1

nd . Il vient, via l’étape 2,

µ(Ci,εi) ≤ µ(Pni,εi) ≤ ([δn]+1)d−1 sup
u∈P1

|Jϕ(u)|
1

nd
= O

(
1

n

)

donc µ(Ci,εi)=0 et partant µ(
◦
Qa,δ)=µ(Qa,δ).
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Étape 4 Pour tout hypercube Q de ∆, µ(Q)=

∫
Q
|Jϕ(u)| du :

On suppose l’existence d’un hypercube Q(0) tel que m(Q(0))<0 et l’on reprend la

construction de l’étape 2. Comme
◦
Q

(0)

k ∩
◦
Q

(0)

` = Ø si k 6= `, l’étape 3 montre que,

cette fois, m(Q(0)) ≥
2d∑
k=1

m(
◦
Q

(0)

k ) =
2d∑
k=1

m(Q(0)

k ).

D’où l’existence de Q(1) ⊂ Q(0) vérifiant m(Q(1))≤ m(Q(0))

2d
et λd(Q(1)) =

λd(Q
(0))

2d
à la fois. On conclut comme dans l’étape 2.

Étape 5 Pour tout ouvert O de ∆, µ(O)=

∫
O
|Jϕ(u)| du :

Soit (Q(n)
k )k∈N un pavage de Rd par des hypercubes de côtés 1/2n : en d’autres

termes, Rd=
⋃
k∈N

Q
(n)
k ,

◦
Q

(n)
k ∩

◦
Q

(n)
` =Ø si k 6=`. On suppose en outre que

Q
(n)
k =

⋃
Q

(n+1)
` ⊂Q(n)

k

Q
(n+1)
` , n≥0.

On pose alors An :=
⋃

Q
(n+1)
` ⊂O

Q
(n+1)
` . Par construction on dispose de An⊂ An+1

et O=
⋃
n≥0

↑
An. D’après les étapes 3 et 4, il est clair que µ(An)=

∫
An

|Jϕ(u)| du

pour tout n≥0 et, partant, µ(O)=

∫
O
|Jϕ(u)| du. On conclut via le corollaire 6.2

sur la caractérisation d’une mesure avec C := O(∆) et les Ep :=] − p, p[d ∩∆
pour p ≥ 1. ♦

Application 12.2. Passage en coordonnées polaires sur R2 :

Passer en coordonnées polaires consiste à considérer le difféomorphisme

ϕ : R∗
+× ]− π, π[ −→ R2 \ (R−×{0})

(r, θ) 7−→ ϕ(r, θ) :=(r cos θ, r sin θ).
(12.5)

La fonction ϕ est bien un difféomorphisme puisque, d’une part, ϕ est bijective de
réciproque donnée par

ϕ−1(x1, x2) =
(√

x21+x
2
2 , Arg (x1+ix2)

)
,
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où Arg (z) désigne l’argument principal (dans [−π, π[) de z∈ C∗( 4). D’autre part,
ϕ est continûment différentiable,

ϕ′(r, θ) =

[
cos θ −r sin θ
sin θ r cos θ

]
et Jϕ(r, θ) = r cos2 θ + r sin2 θ = r 6= 0.

Par suite, comme λ2(R+×{0})=0, il vient pour toute f ∈L 1
K(R

2),∫
R2

f(x) dx =

∫
R2\(R−×{0})

f(x) dx =

∫ r=+∞

r=0

∫ θ=π

θ=−π
f(r cos θ, r sin θ) r dr dθ,

le second membre s’intégrant dans un ordre indifférent d’après le théorème de
Fubini-Lebesgue.

Remarque : Si l’on étend l’application définie par la formule (12.5) en une appli-
cation ϕ de R∗

+ × R dans R2 \ {(0, 0)}, on constate que ϕ est de classe C 1 avec
Jϕ(r, θ) = r 6= 0. Cependant, ϕ n’est pas bijective. Ceci montre l’importance des
hypothèses dans le théorème 12.3.

Application 12.3. (a) Calcul de
∫ +∞

0
e−x

2
dx :

On duplique l’intégrale sous la forme∫ +∞

0
e−x

2
dx =

(∫ +∞

0
e−x

2
dx×

∫ +∞

0
e−y

2
dy

)1/2

=

(∫
R2
+

e−(x2+y2)dxdy

)1/2

via le théorème de Fubini-Tonelli.

D’autre part, il vient par passage en coordonnées polaires,∫
R2
+

e−(x2+y2)dxdy =

∫ π
2

0

∫ +∞

0
e−r

2
r dr dθ =

π

2

∫ +∞

0
e−r

2
r dr

=
π

2

[
−e

−r2

2

]+∞

0

=
π

4
.

D’où, finalement,
∫ +∞

0
e−x

2
dx=

√
π

2
.

(a′) Généralisation : Pour tout α∈C∗, <(α)> 0,
∫ +∞

0

e−αx2

dx =

√
π

4α
, où

√
· désigne la

détermination principale de la racine carrée, i.e.
√
z :=

√
|z| ei Arg(z)/2 avec Arg(z) ∈ [−π, π[.

Soit f(α) :=

∫ +∞

0

e−αx2

dx, α ∈ C∗ et <(α) > 0. La fonction f est bien définie car x 7→

e−αx2

∈ L 1
C(R+). En suivant la même démarche que pour le calcul de f(1) ci-dessus, il vient

4. Il est nécessaire d’enlever la demi-droite R−×{0} car l’application de passage en coordonnées
polaires ϕ−1 : R2\{0} → R∗

+×[−π, π[ n’est pas continue.
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successivement, via le théorème 11.3 (Fubini-Lebesgue) et la formule de changement de variables en
coordonnées polaires,

f(α)2 =

∫
R2
+

e−α(x2+y2) dxdy =

∫ π/2

0

dθ

∫ +∞

0

e−αr2 r dr =
π

4α
=
f(1)2

α
.

Le problème est à présent d’identifier f(α) à la bonne détermination de la racine carrée. On a√
αf(α) = ±f(1). Si l’on montre que f est continue sur l’ouvert connexe Ω := {z∈ C : <(z) >

0}, alors α 7→
√
αf(α) est constante sur Ω et

√
αf(α) =

√
1 f(1) = f(1), d’où l’égalité cherchée.

Montrons que f est continue sur Ω. Soit a > 0 ; la fonction α 7→ e−αx2

est continue sur l’ouvert

Ωa := {z∈C : <(z)≥a} pour tout x∈R+, la fonction x 7→ e−αx2

est intégrable sur R+ pour tout

α∈ Ωa. Enfin, la majoration : pour tout (α, x)∈ Ωa×R+, |e−αx2

|≤ e−ax2

∈L 1
R+

(R+), fournit la

condition de domination. Donc, d’après le théorème 8.5 de continuité sous le signe intégrale, f est

continue sur Ωa pour tout a>0 et, par conséquent, sur Ω.

(b) Volume de la boule euclidienne unité de Rd :
La boule euclidienne unité de Rd est définie par Bd :={x∈Rd : x21+· · ·+x2d≤1}
et son volume vd est donc défini par vd :=λd(Bd).

Pour calculer vd on établit une relation de récurrence. On suppose d≥2.

vd =

∫
Rd

dx1 · · · dxd 1{x21+···+x2d≤1}

=

∫
R2

dxd dxd−1

[∫
Rd−2

dx1 · · · dxd−2 1{x21+···+x2d−2≤1−(x2d−1+x
2
d)}

]
1{x2d−1+x

2
d≤1}.

Calculons l’intégrale entre crochets (qui est une fonction de (xd−1, xd)).

– Si x2d−1 + x2d=1,∫
Rd

dx1· · ·dxd−21{x21+···+x2d−2≤1−(x2d−1+x
2
d)}

=λd−2({0Rd−2})=0.

– Si x2d−1 + x2d< 1 (fixés), on pose xi :=ui

√
1− (x2d−1 + x2d), 1≤ i≤ d−2.

Ceci définit clairement une application linéaire bijective Ad−2 de Rd−2 dans Rd−2

vérifiant détAd−2=
(
1−(x2d−1 + x2d)

) d
2
−1.

D’après la proposition 12.1 et la formule (12.1) appliquées avec la fonction f
définie par f(x1, . . . , xd−2) :=1{x21+...+x2d−2≤1−(x2d−1+x

2
d)}

, il vient

vd =

∫
R2

dxd dxd−1

[∫
Bd−2

du1 · · · dud−2

(
1− (x2d−1 + x2d)

) d
2
−1

]
1{x2d−1+x

2
d≤1}

=

∫
{x2d−1+x

2
d≤1}

dxd dxd−1

(
1− (x2d−1 + x2d)

) d
2
−1 × vd−2 (convention v0=1),

= vd−2 ×
∫ π

−π

∫ +∞

0

(
1− r2

) d
2
−1

1{0≤r≤1}r dr dθ (coordonnées polaires),

= vd−2 × 2π ×
∫ 1

0

(
1− r2

) d
2
−1

r dr

= vd−2 ×
2π

d
×
[
−(1− r2)

d
2

]1
0
= vd−2

2π

d
.
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D’autre part, il est immédiat que v1 =

∫
R
1{|x1|≤1} dx1 = 2 . Il vient donc finale-

ment

– si d est pair : vd =
π

d
2

(d2)!
,

– si d est impair : vd =
2dπ

d−1
2 (d−1

2 )!

d!
.

(c) Volume de D :=ϕ(∆), ϕ difféomorphisme :

Soient donc ∆ et D deux ouverts de Rd, d≥1, et ϕ : ∆→ D un difféomorphisme
de ∆ sur D. Par définition

Vol(D) =

∫
1D(x1,. . ., xd) dx1. . .dxd =

∫
1ϕ(∆)(x1,. . ., xd) dx1. . .dxd.

On considère le changement de variables x :=ϕ(u). Il vient

Vol(D) =

∫
1ϕ(∆)(ϕ(u))|Jϕ(u)| du1 · · · dud,

=

∫
1∆(u)|Jϕ(u)| du1 · · · dud car ϕ(u) ∈ ϕ(∆)⇔ u∈∆

i.e. Vol(ϕ(∆)) =

∫
∆
|Jϕ(u)| du1 · · · dud.

(d) Premier théorème de Guldin :

On se place sur R3. On note λ3 la mesure de Lebesgue sur R3 et λ2 la mesure de
Lebesgue sur le plan P := {(u, v, 0), u, v ∈R}. Soit S un borélien de l’ensemble
{(u, v, 0), u > 0} de surface non nulle et finie au sens où 0 < λ2(S) < +∞.
On considère V le borélien de R3 obtenu par la rotation de S autour de l’axe des
coordonnées v. Soit G = (uG, vG, 0) ∈ P le centre d’inertie de la plaque définie
par S, supposée homogène. Le point G est défini par la valeur moyenne

(uG, vG, 0) =
1

λ2(S)

∫
S
(u, v, 0) du dv.

Le volume de V est alors donné par la formule de Guldin

λ3(V ) = 2π uG λ2(S) < +∞.

Autrement dit, le volume de V est le produit de l’aire de S par la longueur de la
circonférence décrite par G.

Soit ϕ : R3 → R3 la fonction de passage en coordonnées cylindriques définie
par ϕ(θ, u, v) :=(u cos θ, u sin θ, v). La fonction ϕ est un C 1-difféomorphisme de
]− π, π[×R∗

+ × R sur R3 \ {(x, 0, z), x≤0} et Jϕ(θ, u, v) = u>0. Par définition,
V = ϕ(]−π, π]×S) et ϕ({π}×S) ⊂ R×{0}×R est de mesure nulle car la mesure
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de Lebesgue ne charge pas les hyperplans. Il vient alors, d’après l’application (c)
ci-avant

λ3(V ) = λ3(ϕ(]− π, π[×S)) =
∫
]−π,π[×S
|Jϕ(θ, u, v)| dθ du dv =

∫
]−π,π[×S

u dθ du dv.

Le théorème de Fubini-Tonelli (théorème 11.2) entraı̂ne enfin

λ3(V ) =

∫
]−π,π[

dθ

(∫
S
u du dv

)
= 2π

∫
S
u du dv = 2π uG λ2(S),

ce qui établit l’égalité désirée.

Remarques : • La formule de changement de variable “élémentaire” dans les
intégrales de Riemann sur un intervalle compact (cf. théorème 1.2) apparaı̂t es-
sentiellement comme un cas particulier du théorème général ci-avant : le fait que,
dans le cadre élémentaire, ϕ ne soit pas nécessairement un C 1-difféomorphisme
est démenti en pratique. En revanche, l’extension de la formule à des fonctions f
non nécessairement continues est très utile dans les applications.

Afin de lever toute ambiguı̈té, assurons-nous cependant de la compatibilité
des deux théorèmes, notamment lorsque le changement de variable intervertit les
bornes. Soient f : [a, b]→ R (continue) et ϕ : [β, α]→ [a, b] un difféomorphisme
de classe C 1 vérifiant ϕ(α) = a et ϕ(β) = b. La fonction ϕ est nécessairement mo-
notone comme bijection continue, donc décroissante. Par suite Jϕ(u) = ϕ′(u) ≤ 0.
D’autre part, on vérifie que∫ b

a
f(x) dx =

∫ β

α
f(ϕ(u))ϕ′(u) du = −

∫ β

α
f(ϕ(u)) |ϕ′(u)| du

=

∫ α

β
f(ϕ(u)) |ϕ′(u)| du.

• Le théorème 12.4 contient évidemement la proposition 12.1. En effet, par la for-
mule de changement de variables avec le difféomorphisme affine ϕ(u) := Au + b
(ϕ′ ≡ A et detA 6=0 !), on obtient∫

Rd

f(x) dx =

∫
Rd

f(Au+ b)| detA| du,

qui correspond bien à la formule (12.1).

12.3 ♣ Application : le degré topologique de Brouwer

On a vu avec l’exemple du changement de variables en coordonnées polaires, que le fait que
le Jacobien d’une application ne s’annule pas n’entraı̂ne pas l’injectivité de celle-ci. Toutefois, dans
cet exemple, on obtient un difféomorphisme en enlevant une demi-droite (ensemble de mesure de
Lebesgue nulle). On peut se demander plus généralement quelles sont les implications entre la bijec-
tivité de l’application et la non-nullité de son Jacobien. La notion de degré topologique que l’on va
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définir à présent permet de répondre à cette question. Le but n’est pas de développer ici la théorie
du degré qui est par ailleurs un outil fondamental de l’Analyse, mais de le traiter dans le cadre du
changement de variables. Pour un exposé complet du degré topologique ainsi que de ses applications
en Analyse, on pourra consulter [29].

Dans cette section, | · | désignera toujours la norme euclidienne sur Rd. La mesure de Lebesgue
λd(dx) sera notée simplement dx et, si O est un ouvert de Rd,

C n
K (O,R) := {ϕ∈C n(O,Rd) : suppϕ compact inclus dans O}, n∈N∗.

Dans toute la suite, sauf mention contraire, Ω est un ouvert non vide borné de Rd et f ∈
C (Ω,Rd) ∩ C 1(Ω,Rd). On suppose que 0 /∈ f(∂Ω) et on note εf := dist(0, f(∂Ω)) > 0. On a
la proposition-définition suivante :

Proposition 12.2. On définit pour toute fonction ϕ∈CK(]0, εf [,R),

dΩ(f, ϕ) :=

∫
Ω

ϕ(|f(x)|) Jf (x) dx.

Alors,

dΩ(f, ϕ) = dΩ(f)

∫
Rd

ϕ(|x|) dx (12.6)

où le nombre dΩ(f) ne dépend pas de ϕ et est appelé le degré topologique de l’application f par
rapport à l’ouvert Ω.

Pour démontrer cette proposition on a besoin du résultat suivant qui est un cas particulier de la
formule de Stokes.

Lemme 12.1. Soit ψ ∈ C 1
K(Ω,R). Alors,∫

Ω

∂ψ

∂xi
(x) dx = 0, 1≤ i ≤n. (12.7)

DÉMONSTRATION : La fonction
∂ψ

∂xi
est clairement intégrable sur Rd, donc d’après le théorème de

Fubini :∫
Ω

∂ψ

∂xi
(x) dx =

∫
Rd

∂ψ

∂xi
(x) dx =

∫
Rd−1

(∫
R

∂ψ

∂xi
(x) dxi

)
dx1 · · · dxi−1dxi+1 · · · dxd

=

∫
Rd−1

[ψ(x)]xi=+∞
xi=−∞ dx1 · · · dxi−1dxi+1 · · · dxd = 0. ♦

DÉMONSTRATION DE LA PROPOSITION 12.2 : On se limite pour des raisons techniques au cas
d = 2 ; la démonstration générale est détaillée dans [29] et s’appuie sur des manipulations d’algèbre
multilinéaire qui s’éloignent de notre propos.

Il suffit en fait de montrer l’implication∫
R2

ϕ(|x|) dx = 0 =⇒ dΩ(f, ϕ) = 0,

qui entraı̂ne, pour toutes fonctions ϕi∈CK(]0, εf [,R), i=1, 2, telles que
∫

R2

ϕi(|x|) dx 6=0,

dΩ(f, ϕ1)∫
R2

ϕ1(|x|) dx
=

dΩ(f, ϕ2)∫
R2

ϕ2(|x|) dx
= constante.

Soit donc ϕ ∈ CK(R∗
+,R) telle que suppϕ ⊂ [a, b] ⊂ ]0, εf [, 0 < a < b et

∫
R2

ϕ(|x|) dx = 0.

L’idée est d’écrire, pour f ∈ C 2(Ω,R2), la fonction (ϕ◦ |f |) Jf comme une somme de dérivées
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partielles de fonctions de C 2
K (Ω,R) puis d’appliquer le lemme 12.1. On procède en quatre étapes.

Dans l’étape 3, on suppose que f ∈ C 2(Ω,R2) et l’étape 4 est consacrée à l’extension au cas f ∈
C 1(Ω,R2).

Étape 1 supp (ϕ◦|f |) est un compact inclus dans Ω :

L’uniforme continuité de f sur Ω entraı̂ne l’existence de δ > 0 tel que pour tout x ∈ Ω avec
dist (x, ∂Ω)<δ, on ait dist (f(x), f(∂Ω))<εf −b. Alors par l’inégalité triangulaire (cf. section 3.6),

|f(x)| ≥ dist (0, f(∂Ω))− dist (f(x), f(∂Ω)) > εf − (εf − b) = b,

d’où ϕ(|f(x)|) = 0 et supp (ϕ◦|f |) ⊂ {x∈Ω : dist (x, ∂Ω)≥δ}.

Étape 2 ϕ◦| · | = divΨ :=
∂Ψ1

∂x1
+
∂Ψ2

∂x2
où Ψ∈C 1(R2,R2) :

D’après le changement de variables en coordonnées polaires, on a∫
R2

ϕ(|x|) dx = 2π

∫ b

a

ϕ(r) rdr = 0.

Partant, la fonction θ définie par

θ(r) :=
1

r2

∫ r

0

uϕ(u) du

est une fonction de classe C 1 sur R+, à support compact dans [a, b]. θ est en outre solution de
l’équation différentielle sur R+ :

r θ′(r) + 2 θ(r) = ϕ(r).

On considère alors la fonction définie sur R2 par Ψ(y) := θ(|y|) y. Ψ est de classe C 1 sur R2 et
vérifie les égalités

∂Ψi

∂yi
(y) =

y2i
|y| θ

′(|y|) + θ(|y|), i = 1, 2,

d’où divΨ(y) =
∂Ψ1

∂y1
(y) +

∂Ψ2

∂y2
(y) = |y| θ′(|y|) + 2 θ(|y|) = ϕ(|y|).

Étape 3 dΩ(f, ϕ)=0 si f ∈C 2(Ω,R)2 :

L’égalité des dérivées croisées pour une fonction de classe C 2 entraı̂ne

∂

∂x1

(
∂f2
∂x2

(Ψ1◦f)−
∂f1
∂x2

(Ψ2◦f)
)
− ∂

∂x2

(
∂f2
∂x1

(Ψ1◦f)−
∂f1
∂x1

(Ψ2◦f)
)

=

(
∂Ψ1

∂y1
◦f +

∂Ψ2

∂y2
◦f
)
Jf = (ϕ◦|f |) Jf .

De plus, la fonction définie par

Φ :=

(
∂f2
∂x2

(Ψ1◦f)−
∂f1
∂x2

(Ψ2◦f) ,
∂f1
∂x1

(Ψ2◦f)−
∂f2
∂x1

(Ψ1◦f)
)

appartient à C 1
K(Ω,R2) puisque Ψ◦f = (θ ◦ |f |) f ∈ C 1

K(Ω,R2) d’après les étapes 1 et 2. D’où
(ϕ◦|f |) Jf =divΦ où Φ∈C 1

K(R2,R2), et donc d’après le lemme 12.1,

dΩ(f, ϕ) =

∫
Ω

ϕ(|f(x)|) Jf (x) dx =

∫
Ω

divΦ(x) dx = 0.

Étape 4 dΩ(f, ϕ)=0 si f ∈C 1(Ω,R)2 :
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D’après l’étape 1, il existe un ouvert ω de R2 tel que supp (ϕ◦|f |)⊂ω⊂ω⊂Ω. La régularisation
par convolution (cf. théorème 14.8, section 14.5), permet alors d’approcher f par une suite de fonc-
tions (fk)k≥1 de C 2

K (R2,R2) de sorte que

∀ k≥1, supp (ϕ◦|fk|) ⊂ ω et ‖fk − f‖L∞
(ω) + ‖Dfk −Df‖L∞

(ω) −→
k→+∞

0.

D’après l’étape 3, on a dΩ(fk, ϕ)=0 et, comme la suite (ϕ◦|fk|) Jfk converge uniformément vers
(ϕ◦|f |) Jf sur ω, on obtient donc dΩ(f, ϕ)=0 en faisant tendre k vers +∞. ♦

Sous certaines hypothèses, on peut exprimer simplement le degré topologique de l’application
en fonction de son Jacobien.

Proposition 12.3. (a) On suppose que Jf garde un signe constant sur Ω, ou bien que la fonction
1{0<|f |<εf}Jf est intégrable sur Ω. Alors

dΩ(f) =
1

εdfvd

∫
Ω

1{0<|f |<εf}(x) Jf (x) dx (12.8)

où vd est le volume de la boule unité de Rd.

(b) Si 0 /∈f(Ω), alors dΩ(f)=0.

(c) Soit S := {x ∈ Ω : Jf (x) = 0}. Si 0 /∈f(S), alors f−1({0}) est fini et

dΩ(f) =
∑

x∈f−1({0})

sgn (Jf (x)) (convention
∑
Ø

= 0), (12.9)

où sgn (t) désigne le signe du réel t 6=0.

Remarque : Une conséquence immédiate de (c) est que, si Jf ne s’annule pas et garde un signe
constant sur Ω, alors

|dΩ(f)| =
1

εdfvd

∫
Ω

1{0<|f |<εf}(x) |Jf (x)| dx = card f−1({0}),

autrement dit f s’annule exactement |dΩ(f)| fois sur Ω.

DÉMONSTRATION DE LA PROPOSITION 12.3 : (a) On suppose par exemple que Jf ≥ 0 sur Ω. On
considère une suite (ϕk)k≥0 de CK(]0, εf [,R+) telle que 0≤ ϕk ≤ 1 et ϕk ↑ 1 sur ]0, εf [. Alors,
0 ≤ (ϕk◦|f |) Jf ↑ 1{0<|f |<εf} Jf sur Ω, et d’après le théorème de Beppo Levi,

dΩ(f, ϕk) =

∫
Ω

ϕk(|f(x)|) Jf (x) dx −→
k→+∞

∫
Ω

1{0<|f |<εf}(x) Jf (x) dx

et
∫

Rd

ϕk(|x|) dx −→
k→+∞

∫
Rd

1{0<|x|<εf} dx = λd({0< |x|<εf}) = εdf vd.

La formule (12.6) entraı̂ne donc (12.8). Si 1{0<|f |<εf}Jf est intégrable, la relation (12.8) s’obtient
comme précédemment en remplaçant le théorème de Beppo Levi par le théorème de convergence
dominée.

(b) Si 0 /∈ f(Ω) alors, par hypothèse, 0 /∈ f(Ω) compact et 0 < δ := dist(0, f(Ω)) ≤ εf . Soit
ϕ∈CK(]0, δ[,R+) non nulle. Alors, comme |f |≥δ sur Ω, on a d’après l’égalité (12.6),

dΩ(f, ϕ) =

∫
Ω

ϕ(|f(x)|) Jf (x) dx = 0 = dΩ(f)

∫
Rd

ϕ(|x|) dx,

d’où dΩ(f)=0 puisque
∫

Rd

ϕ(|x|) dx > 0 (ϕ est non nulle et positive).
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(c) Si f−1({0}) = Ø alors (b) implique le résultat. Sinon, on considère x ∈ Ω tel que f(x) = 0.
Comme Jf (x) 6=0 et que f est de classe C 1, le théorème d’inversion locale (cf. théorème 12.2) en-
traı̂ne l’existence d’une boule ouverteBx⊂Ω de centre x telle que f|Bx soit un C 1-difféomorphisme
sur son image. En particulier, Bx ∩ f−1({0})= {x}. Donc f−1({0}) est constitué de points isolés
dans Ω compact, et est par conséquent fini. On pose f−1({0}) := {x1, . . . , xp} et on définit l’ouvert
ω :=

⋃p
i=1 ωi où :

– ωi est une boule ouverte de centre xi telle que ωi⊂Ω,

– ωi ∩ ωj = Ø si i 6=j,
– f|ωi

est un C 1-difféomorphisme de ωi sur son image,

– f(∂ωi) ∩ f(ωi)=Ø.

Pour tout i ∈ {1, . . . , p}, f(ωi) contient une boule ouverte de centre 0 et de rayon εi > 0. On note

δ := min{εf , ε1, . . . , εp} et on considère ϕ∈C 1
K(]0, δ[,R) telle que

∫
Rd

ϕ(|x|) dx = 1.

Pour montrer la relation (12.9), on procède en trois étapes.

Étape 1
∫
ωi

ϕ(|f(x)|) Jf (x) dx = sgn (Jf (xi)) :

Soit i∈{1, . . . , p}. Le théorème du changement de variables appliqué à f|ωi
donne∫

ωi

ϕ(|f(x)|) Jf (x) dx = sgn (Jf (xi))
∫
f(ωi)

ϕ(|y|) dy.

Or, si y /∈f(ωi), |y|≥εi ≥ δ et, partant, ϕ(|y|)=0. D’où∫
ωi

ϕ(|f(x)|) Jf (x) dx = sgn (Jf (xi))
∫

Rd

ϕ(|y|) dy = sgn (Jf (xi)).

Étape 2
∫
Ω\ω

ϕ(|f(x)|) Jf (x) dx = 0 :

Comme les ωi sont deux à deux disjointes et incluses dans Ω, on a

f(∂(Ω\ω)) = f(∂Ω) ∪ f(∂ω1) ∪ · · · ∪ f(∂ωp)

d’où δ≤dist (0, f(∂(Ω\ω))) car f(∂ωi)⊂{y : |y|≥εi}. Donc d’après la définition (12.6) du degré
topologique, ∫

Ω\ω
ϕ(|f(x)|) Jf (x) dx = dΩ\ω(f).

Or, dΩ\ω(f)=0 d’après (b) car 0 /∈f(Ω\ω).
Étape 3 Vérification de la relation (12.9) :

Comme la mesure de Lebesgue ne charge pas les sphères de Rd, on a∫
ωi

ϕ(|f(x)|) Jf (x) dx =

∫
ωi

ϕ(|f(x)|) Jf (x) dx.

De plus, ω est la réunion disjointe des ωi, d’où

dΩ(f) =

∫
Ω\ω

ϕ(|f(x)|) Jf (x) dx+

p∑
i=1

∫
ωi

ϕ(|f(x)|) Jf (x) dx

=

p∑
i=1

sgn (Jf (xi)) d’après les étapes 1 et 2. ♦

Nous sommes à présent en mesure d’établir un lien entre la non-nullité du Jacobien d’une appli-
cation et l’injectivité de celle-ci.
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Corollaire 12.2. (a) Soit f ∈ C (Ω,Rd) ∩ C 1(Ω,Rd) telle que Jf ne s’annule pas et garde un
signe constant sur Ω. Alors la fonction y 7→ card (f−1({y})) est constante et finie dans chaque
composante connexe de l’ouvert Rd \ f(∂Ω).
(b) On suppose, en outre, que f(Ω) est inclus dans une composante connexe Λ de Rd \ f(∂Ω) et
qu’il existe y0∈Λ tel que f−1({y0}) soit un singleton. Alors, f est un C 1-difféomorphisme de Ω sur
Λ.

DÉMONSTRATION : (a) On définit pour chaque y ∈ Rd \ f(∂Ω), εf−y := dist (0, f(∂Ω)−y). Il
est clair que la fonction y 7→ εf−y est continue et strictement positive sur l’ouvert Rd \ f(∂Ω). Soit
y0 ∈ Rd \ f(∂Ω) ; alors il existe un voisinage compact V0 de y0 et ε0 > 0 tel que pour tout y ∈ V0,

εf−y≥ε0. Soit ϕ0∈C 1
K(]0, ε0[,R) telle que

∫
Rd

ϕ0(|x|) dx = 1.

Pour tout y∈V0, supp (ϕ0◦|f−y|) est inclus dans un compact fixé K0 ⊂Ω (cf. l’étape 1 de la
démonstration de la proposition 12.2). Alors d’après la relation (12.6),

dΩ(f−y) =
∫
K0

ϕ0(|f(x)−y|) Jf (x) dx.

La fonction (x, y) 7→ ϕ0(|f(x)−y|) Jf (x) est continue et bornée sur le compact K0×V0, donc
d’après le théorème de continuité sous le signe intégral, la fonction dΩ(f −·) est continue en y0.
D’après la formule (12.9) (de la proposition 12.3) et le fait que |dΩ(f−y)|=card (f−1({y}))<+∞
pour tout y∈Rd \ f(∂Ω). On en déduit que la fonction, à valeurs entières, y 7→ card (f−1({y})) est
continue, donc constante, sur chaque composante connexe de Rd \ f(∂Ω).
(b) D’après (a), on a pour tout y∈Λ, card (f−1({y}))= card (f−1({y0}))=1 et f(Ω)⊂Λ. Donc
f est une bijection de Ω sur Λ et par suite, un C 1-difféomorphisme car Jf ne s’annule pas sur Ω. ♦

Terminons ce paragraphe consacré au degré topologique de Brouwer par deux applications di-
rectement liées au changement de variables.

Application 12.4. Soit f ∈C (Ω,Rd) ∩ C 1(Ω,Rd) telle que

min
x∈∂Ω

|f(x)| = 1 et ∀x∈Ω, 0<Jf (x)≤1.

(a) Si λd(Ω)<λd(Bd) où Bd désigne la boule unité de Rd, alors pour tout x∈Ω, |f(x)|≥1.

(b) Si λd(Ω) = λd(Bd) et s’il existe x0 ∈ Ω tel que |f(x0)| < 1, alors la fonction f est un C 1-
difféomorphisme de Ω sur Bd et Jf ≡1 sur Ω.

DÉMONSTRATION : Étant donné que dist (0, f(∂Ω)) = 1 et 0<Jf ≤ 1 sur Ω, les formules (12.8)
et (12.9) de la proposition 12.3 donnent

dΩ(f) = card (f−1({0})) = 1

λd(Bd)

∫
Ω

1{0<|f |<1}(x) Jf (x) dx ≤ λd(Ω)

λd(Bd)
.

(a) Si λd(Ω)<λd(Bd) alors

card (f−1({0})) = 0 =
1

λd(Bd)

∫
Ω

1{0<|f |<1}(x) Jf (x) dx,

donc, puisque Jf > 0 sur Ω, λd({0< |f |<1}) = 0, i.e. f =0 ou |f | ≥ 1, λd-p.p. sur Ω. Comme f
est continue sur Ω et ne s’annule pas sur ∂Ω, on en déduit que |f |≥1 sur Ω.

(b) Supposons à présent que λd(Ω)=λd(Bd) et qu’il existe x0 ∈Ω tel que |f(x0)|< 1. Comme f
n’est pas identiquement nulle sur Ω, on peut même supposer que 0< |f(x0)|< 1. Alors l’ensemble

{0< |f |<1} est un ouvert non vide de Ω et donc
∫
Ω

1{0<|f |<1}(x) Jf (x) dx>0, ce qui entraı̂ne

1 ≤ card (f−1({0})) = 1

λd(Bd)

∫
Ω

1{0<|f |<1}(x) Jf (x) dx ≤ λd(Ω)

λd(Bd)
= 1.
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Comme 0≤1{0<|f |<1} Jf ≤1, on en déduit que 1{0<|f |<1} Jf =1 λd-p.p. sur Ω puis, par continuité
de Jf , que Jf ≡1 sur Ω et 0< |f |<1 λd-p.p. sur Ω. Alors, par continuité de f , il vient f(Ω) ⊂ Bd.
Comme f(Ω) est un ouvert (c’est une conséquence du théorème d’inversion locale 12.2 du fait que

Jf ne s’annule pas), on a également f(Ω) ⊂
◦

Bd = Bd. Or, Bd est un ouvert connexe inclus dans
Rd \ f(∂Ω) et 0∈Bd avec card (f−1({0})) = 1. Donc d’après le résultat (b) du corollaire 12.2, f
est un C 1-difféomorphisme de Ω sur Bd. ♦

Application 12.5. Soit Ω un ouvert non vide, borné, connexe de Rd tel que Rd \ Ω soit connexe et
◦

Ω= Ω. Soit f ∈ C (Ω,Rd) ∩ C 1(Ω,Rd) telle que f(∂Ω) ⊂ ∂Ω et Jf 6= 0 sur Ω . On suppose, en
outre, qu’il existe y0 ∈Rd tel que f−1({y0}) soit un singleton. Alors f est un C 1-difféomorphisme
de Ω sur Ω.

DÉMONSTRATION : On a f(∂Ω) ⊂ ∂Ω et Jf ne s’annule pas tout en gardant, par continuité, un

signe constant dans l’ouvert connexe Ω. Alors, d’après le résultat (b) du corollaire 12.2, la fonction

y → card (f−1({y})) est constante sur les composantes connexes de Rd\∂Ω qui sont, par hypothèse,

Ω et Rd \ Ω. Comme f(Ω) est borné et Rd \ Ω est non borné, on a f(Ω) 6= Rd \ Ω et donc, pour

tout y∈Rd \ Ω, card (f−1({y}))=0. D’où f(Ω)⊂ Ω et, partant, f(Ω)⊂Ω car f(Ω) est ouvert et
◦

Ω=Ω. Le point y0 de l’hypothèse appartient donc à Ω, d’où pour tout y ∈ Ω, card (f−1({y})) =

card (f−1({y0})) = 1. Donc f est une bijection de Ω sur Ω et par suite un C 1-difféomorphisme

de Ω sur Ω. ♦

12.4 Exercices

∆ et D désignent deux ouverts de Rd, d≥1, muni de la mesure de Lebesgue λd.

12.1 Soit ϕ une application continue de ∆ dans Rd qui soit un homéomorphisme
de ∆ sur D.
a) Montrer que ϕ(∂∆)⊂∂D.
b) Montrer que si ∆ est borné alors ϕ(∂∆)=∂D.

12.2 Soit ϕ un C 1-difféomorphisme de ∆ sur D de Jacobien Jϕ.
a) Montrer que Jϕ est intégrable sur ∆ si et seulement si λd(D)<+∞.
b) Montrer que Jϕ est borné sur ∆ si et seulement si il existe c > 0 tel que, pour
tout ouvert Ω ⊂ ∆, λd(ϕ(Ω)) ≤ c λd(Ω).

12.3 Problème de Bâle 8, tiré de l’article ( 5)

a) Montrer que
∫
[0,1]2

dx dy

1− x y
=
∑
n≥1

1

n2
.

b) Par le changement de variables (x, y) = (cos θ − t, cos θ + t), montrer que∫
[0,1]2

dx dy

1− x y
= 4

∫ π
2

0

(∫ min(cos θ,1−cos θ)

0

dt

t2 + sin2 θ

)
sin θ dθ.

5. T.M. Apostol : “A proof that Euler missed. Evaluating ζ(2) the easy way”, Math. Intelligencer
5 (1983), 59-60.
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c) En déduire la formule
∑
n≥1

1

n2
=
π2

6
.

12.4 Soient a, b ∈ R et la fonction ϕa,b : R2 → R2 définie par

ϕa,b(u, v) := (u+ a sin v, v + b sinu) pour (u, v) ∈ R2.

a) Donner une condition nécessaire et suffisante sur a, b pour que ϕa,b soit un C 1-
difféomorphisme de R2 sur son image.
b) Montrer que, sous cette condition, ϕa,b(R2)=R2.
c) Soit Ω un ouvert de R2. Calculer lim

|(a,b)|→0
λ2
(
ϕa,b(Ω)

)
.

12.5 Soient ∆ := ]0, 1[2×]−π, π[ et ϕ : R3 → R3 la fonction définie par

ϕ(u, v, w) := (u, uv cosw, v sinw) pour (u, v, w) ∈ R3.

a) Montrer que ϕ est un C 1-difféomorphisme de ∆ sur son image.
b) Calculer λ3

(
ϕ(∆)

)
.

12.6 a) Déterminer les ouverts connexes maximaux ∆ et D de (R∗
+)

2 tels que l’ap-
plication ϕ définie sur R2 par ϕ(u, v) := (u2+v2, 2uv) définisse un C 1-difféomor-
phisme de ∆ sur D.

b) En déduire la valeur de
∫

R2
+

|u4−v4|e−(u+v)2 du dv.

12.7 Formule des compléments généralisée

Soient les intégrales définies pour a, b > 0 par

Γ(a) :=

∫ +∞

0
ta−1 e−t dt et B(a, b) :=

∫ 1

0
ta−1(1− t)b−1 dt.

a) Montrer que Γ(a) Γ(b) = 4

∫
R2
+

e−(u2+v2) u2a−1 v2b−1 du dv.

b) En déduire la formule des compléments généralisée

B(a, b) =
Γ(a) Γ(b)

Γ(a+b)
.

12.8 À l’aide du changement de variables (x, y, z) =
(√
vw,
√
uw,
√
uv
)

, calcu-
ler la mesure de Lebesgue des domaines suivants :
a)
{
(u, v, w)∈R3 : u, v, w > 0 et uv, uw, vw< 1

}
,

b)
{
(u, v, w)∈R3 : u, v, w > 0 et uv + uw + vw < 1

}
.

12.9 Généralisation de l’application 12.3.

Soit A ∈ Rd×d, d ∈ N∗, une matrice réelle (d× d) symétrique et positive, i.e. pour
tout x ∈ Rd, Ax · x ≥ 0 , où · désigne le produit scalaire dans Rd.
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a) Montrer que

IA :=

∫
Rd

exp (−Ax · x) dx =
πd/2√
detA

∈ [0,+∞].

b) Donner une condition nécessaire et suffisante pour que IA < +∞.
c) Montrer que si A est définie positive et z ∈ C avec <(z) > 0, alors

IA(z) :=

∫
Rd

exp (−z Ax · x) dx =

(√
π√
z

)d
1√
detA

.

12.10 Soient f une fonction de classe C 2 sur R∗
+ convexe (i.e. f ′′ ≥ 0) et I la

fonction définie sur Rd, pour d≥3, par

I(y) :=

∫
Rd

f ′′(|x−y|)
|x−y|

dx

|x|d−2
,

où | · | désigne ici la norme euclidienne sur Rd.
a) Montrer, en justifiant l’existence des limites, que ` := lim

t→0+
f(t)>−∞ et que

`′ := lim
t→+∞

f ′(t)>−∞.

b) Soit ρ≥0. Calculer
∫ +∞

0

(
f ′(r+ρ)−f ′(|r−ρ|)

)
dr en fonction de `, `′ et f(ρ).

c) Montrer que I(y) ne dépend que de |y|.
d) En déduire la valeur de I(y).

12.11 On munit l’espace vectoriel Rd de la norme ‖x‖ := max
1≤i≤d

|xi| et on désigne

par Qa,r la boule de centre a et de rayon r pour cette norme. Soient ∆ un ouvert
borné de Rd et ϕ∈C 1(∆,Rd).
a) Montrer que, pour tout ouvert Ω de ∆, ϕ(Ω) est un borélien de Rd.
b) SoitA∈Md(R) telle que det(A)=0. Montrer l’existence d’une constante cA>0
telle que, pour tout compact K de Rd et tout r>0, on ait

λd(AK+Q0,r) ≤ cA (diam(K)+δ)d−1 δ.

c) Soit u0∈∆. Déduire de l’étape 1 de la démonstration du théorème 12.4 et du a)
que

∀ ε > 0, ∃ δ > 0, ∀ r ∈ ]0, δ[, u0 ∈ Qa,r =⇒ λd(ϕ(Qa,r))

λd(Qa,r)
≤ |Jϕ(u0)|+ ε.

d) En reprenant les étapes 2, 3, 5 de la démonstration du théorème 12.4 à partir
du c), montrer que

∀Ω ∈ O(∆), λd
(
ϕ(Ω)

)
≤
∫
Ω
|Jϕ(u)| du.
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e) Montrer que l’inégalité du d) est aussi vérifiée par tout compact de ∆.

12.12 Soient ∆ et D deux ouverts de Rd avec D borné et ϕ une bijection de ∆ sur
D de classe C 1 tel que ϕ−1 soit borélienne (on ne fait aucune hypothèse sur le
Jacobien de ϕ). Montrer l’équivalence

ϕ−1(λD) = Jϕ.λ∆ ⇔ λd(ϕ(∆)) =

∫
∆
|Jϕ(u)| du.

12.13 Théorème de Sard :

Soient f ∈C 1(∆,Rd) et S :=
{
x∈∆ : Jf (x)=0

}
. Alors f(S) est un borélien

de Rd de mesure de Lebesgue nulle.
Montrer ce résultat à l’aide de l’inégalité d)-e) de l’exercice 12.11.

12.14 Soient Bd la boule euclidienne unité de Rd et f ∈ C 1(Bd,Rd). Montrer, à
l’aide du degré topologique, que, pour tout réel a de valeur absolue suffisamment
petite, la fonction a f possède un unique point fixe dans Bd.

12.15 Soit I :=

∫ +∞

0

ln2(x+ 1)

x2
dx .

a) Montrer que pout tout x ≥ 0,
ln2(x+ 1)

x2
=

∫
[0,1]2

ds dt

(1 + s x) (1 + t x)
.

b) Calculer pour (s, t) ∈ [0, 1]2, s 6= t,
∫ +∞

0

dx

(1 + s x) (1 + t x)
.

c) Montrer que

I =

∫
[0,1]2

ln t− ln s

t− s
ds dt = 2

∫
{0≤s<t≤1}

ln t− ln s

t− s
ds dt.

d) Montrer que l’application ϕ : (u, v) 7→
( u v

1− u
,

v

1− u

)
est un C 1-difféo-

morphisme de
{
0 < v < 1− u < 1

}
sur

{
0 < s < t < 1

}
.

e) En déduire, à l’aide du changement de variables ϕ, que I = 2

∫ 1

0

lnu

u− 1
du.

12.16 a) Calculer
∫ +∞

0
x e−x

4
dx sachant que

∫ +∞

0
e−x

2
dx =

√
π

2
.

b) Calculer la valeur de l’intégrale I :=

∫
R2
+

x y

x2 + y2
e−(x4+y4) dx dy.

c) Montrer que
∫ +∞

0
e−x

4
dx ≥

√
2 I .

12.17 Soit λ la mesure de Lebesgue sur R2. On définit, pour tout α > 0, l’ensemble
Bα :=

{
x, y > 0 : xα + yα < 1

}
.

a) Calculer la limite lim
α→+∞

λ(Bα).
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b) Écrire λ(Bα) sous la forme d’une intégrale simple.

c) En déduire la valeur de la limite lim
α→+∞

1

α

∫ π

0
(sin θ)2/α−1 dθ.

12.18 a) Calculer I := lim
R→+∞

∫
{x2+y2<R2}

∣∣∣∣ sin (x2 + y2)

x2 + y2

∣∣∣∣ dx dy.

b) Avec
∫ +∞

0

sin t

t
dt =

π

2
, calculer J := lim

R→+∞

∫
{x2+y2<R2}

sin (x2 + y2)

x2 + y2
dx dy.

12.19 Calculer les intégrales suivantes :

a) Ia :=

∫
R2

dx dy

(1 + x2 + y2)a
pour a ∈ R.

b) I :=

∫
R2

x2 e−(x2+y2)

x2 + y2
dx dy .

12.20 Problème de Bâle 9, tiré de l’article ( 6)

a) Montrer que I :=

∫ 1

0

∫ 1

0

dx dy

1− x2y2
=

+∞∑
n=0

1

(2n+ 1)2
.

b) Montrer que l’application ϕ : (u, v) 7→ (x, y) :=

(
u

√
1 + v2

1 + u2
, v

√
1 + u2

1 + v2

)
est un difféomorphisme de classe C 1 de l’ouvert ∆ :=

{
u, v > 0 : u v < 1

}
sur

l’ouvert D := ]0, 1[2, dont le jacobien est Jϕ(u, v) =
1− x2y2

(1 + u2) (1 + v2)
.

c) En déduire que I =
π2

8
.

6. F. Beukers, E. Calabi & J. A. C. Kolk, “Sums of generalized harmonic series and volumes”,
Nieuw Arch. Wisk. (4) 11 (1993), no. 3, 217-224.





Chapitre 13

Mesure complétée, tribu de Lebesgue,
ensemble de Cantor

13.1 Complétion d’une mesure

Soit (X,A , µ) un espace mesuré et R muni de sa tribu borélienne. Par défini-
tion, une fonction f : X → R est (A ,B(R))- mesurable si f−1(B(R)) ⊂ A .
Ainsi, plus la tribu A compte d’éléments, plus nombreuses seront les fonctions
mesurables.

D’autre part, parmi les parties deX n’appartenant éventuellement pas à A , cer-
tains ensembles apparaissent comme des anomalies du point de vue de l’intégration
par rapport à une mesure µ sur (X,A ). Il s’agit des partiesN deX contenues dans
un ensemble A ∈ A de mesure µ(A) = 0. De telles parties, bien qu’intuitivement
“µ-négligeables” ne sont pas a priori toutes dans la tribu A (des exemples de tels
ensembles sont donnés à la section 13.3).

Une question naturelle se pose alors : peut-on élargir A en une tribu A conte-
nant ces ensembles µ-négligeables de façon que la mesure µ se prolonge en une
mesure µ sur A ? Ainsi, on augmenterait la quantité de fonctions mesurables sans
changer en profondeur la nature de l’espace mesuré initial.

Il existe évidemment une plus petite tribu contenant A et ces ensembles µ-
négligeables, mais rien n’assure priori que la structure de cette tribu est simple et
que µ s’y prolonge canoniquement. Le but de cette section est d’établir que c’est
cependant ce qui se passe.

Définition 13.1. Soit (X,A , µ) un espace mesuré.

(a) Une partie N de X est négligeable(ou µ- négligeable) s’il existe A ∈ A
vérifiant N ⊂ A et µ(A) = 0. On définit

Nµ := {N ⊂ X : N µ-négligeable}
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l’ensemble des parties µ-négligeables.

(b) Un espace mesuré est complet si Nµ ⊂ A (attention aux confusions induites
par cette terminologie !).

Lorsque l’espace (X,A , µ) n’est pas complet, on peut donc le compléter ca-
noniquement. C’est l’objet du théorème suivant.

Théorème 13.1. (a) La tribu engendrée par A ∪Nµ, notée A est de la forme

A := {A ∪N : A∈A , N ∈Nµ}.

(b) Pour toutA∈A et pour toutN ∈Nµ, on pose µ(A∪N) := µ(A). La définition
de µ est cohérente et définit une mesure sur la tribu A coı̈ncidant avec µ sur A .
En outre, l’espace mesuré (X,A , µ) est complet et µ|Nµ

≡ 0.

DÉMONSTRATION : On procède en quatre étapes. Les deux premières consistent à
montrer que A := {A ∪ N ; A∈A , N ∈Nµ} est une tribu, alors nécessairement
engendrée par A et Nµ. Les deux suivantes sont consacrées à établir que µ est bien
une mesure complète sur (X,A ) ayant les propriétés attendues.

Étape 1 Encadrement des éléments de A par des éléments de A :

On caractérise les éléments de A par

A∈ A ⇐⇒ ∃A0, A1∈A , A0 ⊂ A ⊂ A1 et µ(A1\A0) = 0. (13.1)

(⇒) Soit A ∈ A ; par définition A s’écrit A = A′ ∪ N , A′ ∈ A , N ∈Nµ. Soit
C ∈A tel que N ⊂ C et µ(C) = 0. On pose A0 := A′ et A1 := A′ ∪ C ∈A . Il
est clair que A1\A0 ⊂ C donc µ(A1\A0) = 0.

(⇐) On pose N := A\A0. Comme N ⊂ A1\A0∈A et µ(A1\A0) = 0, N ∈Nµ.
D’où A = A0 ∪N ∈ A .

Étape 2 A est une tribu contenant A et Nµ :

A ∪Nµ ⊂ A : Soit A∈A , Ø∈Nµ donc A = A ∪ Ø∈A . Par conséquent
A ⊂ A ; en particulier, Ø∈ A . Partant si N ∈Nµ, N = Ø ∪N ∈ A .

A est une tribu : Soit A∈ A , d’après la première étape, il existe A0, A1 ∈A
tels que A0 ⊂ A ⊂ A1 et µ(A1\A0) = 0. Or,

cA1 ⊂ cA ⊂ cA0, cA1,cA0∈A et cA0\cA1 = A1\A0

d’où cA∈ A .
Soit (An)n≥1une suite d’éléments de A . Par définitionAn = A′

n∪Nn,A′
n∈A

et Nn ∈ Nµ. Par suite, il existe, pour tout n ≥ 1, Cn ∈ A tel que Nn ⊂ Cn et
µ(Cn) = 0. D’où ⋃

n≥1

Nn ⊂
⋃
n≥1

Cn
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et partant

µ
( ⋃
n≥1

Cn

)
≤
∑
n≥1

µ(Cn) = 0,

par σ-sous-additivité de µ. Finalement,⋃
n≥1

An =
( ⋃
n≥1

A′
n

)
︸ ︷︷ ︸

∈A

⋃( ⋃
n≥1

Nn

)
︸ ︷︷ ︸

∈Nµ

∈ A .

On a en outre établi au passage que Nµ est stable par réunion dénombrable.

Étape 3 µ est une mesure sur A et µ|A = µ :

– Cohérence de la définition : Soit A∈ A auquel on associe A0, A1 ∈A comme
dans l’étape 1. Si A=A′∪N , A′∈A et N ∈Nµ, il existe C∈A tel que µ(C) = 0
et A0 ⊂ A′ ∪ C et A′ ⊂ A1. D’où il vient

µ(A0) ≤ µ(A′ ∪ C) ≤ µ(A′) + 0 ≤ µ(A1) = µ(A0)

donc A 7→ µ(A) := µ(A′) est bien définie comme application sur A puisque sa
valeur ne dépend pas de la “décomposition” de A en A = A′ ∪N , ni d’ailleurs de
A0 ou de A1 puisque µ(A′) = µ(A0) = µ(A1).

– µ est une mesure prolongeant µ : Soit A∈A ; A = A ∪ Ø donc µ(A) = µ(A).
En particulier, µ(Ø) = 0.

Si N ∈Nµ, N = Ø ∪N donc µ(N)=0.
Soit (An)n≥1 une suite d’éléments de A deux à deux disjoints. Par définition,

pour tout n ≥ 1, An = A′
n ∪ Nn, An ∈ A , Nn ∈ Nµ. Or, d’après l’étape 2,

N :=
⋃
n≥1Nn∈Nµ. La cohérence de la définition de µ entraı̂ne alors

µ
( ⋃
n≥1

An

)
= µ

( ⋃
n≥1

A′
n ∪

⋃
n≥1

Nn

)
= µ

( ⋃
n≥1

A′
n

)
=
∑
n≥1

µ(A′
n) =

∑
n≥1

µ(An).

Donc (X,A , µ) est bien un espace mesuré.

Étape 4 (X,A , µ) est complet :

Il s’agit de montrer que Nµ ⊂ A . Soit N ∈Nµ. Par définition de Nµ, il existe
B ∈ A tel que N ⊂ B et µ(B) = 0. Or, B s’écrit B = B′ ∪ N ′ avec B′ ∈A ,
N ′∈Nµ. En outre, µ(B) = µ(B′), d’où µ(B′) = 0. Par suite N ⊂ B′ ∪N ′∈Nµ

donc N ∈Nµ⊂A . ♦

Remarque : Au vu de l’étape 3, on constate que le prolongement µ est défini de
façon équivalente par

µ(A) := sup
{
µ(B) : B∈A , B⊂A

}
ou inf

{
µ(B) : B∈A , B⊃A

}
.
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Définition 13.2. La tribu A est appelée la tribu complétée de A relativement à µ
et µ est appelée la mesure complétée de µ. En cas d’ambiguı̈té sur la mesure de
référence, on notera A µ au lieu de A .

Il est souvent commode – mais rarement indispensable – de supposer que l’es-
pace mesuré (X,A , µ) sur lequel on se place est complet. On prendra cependant
garde aux erreurs que l’on peut commettre autour de la notion d’espace mesuré
complet, notamment en présence d’espaces produits. La section 13.4 est d’ailleurs
consacrée aux liens entre produit de mesures et complétion.

13.2 Tribu de Lebesgue

Définition 13.3. On appelle tribu de Lebesgue la tribu L (R) := B(R) complétée
de la la tribu borélienne sur R par la mesure de Lebesgue. On notera λ la mesure
de Lebesgue complétée.

Le fait de compléter la tribu borélienne B(R) l’élargit considérablement com-
me le montre le résultat suivant.

Théorème 13.2. (a) B(R) est équipotent à R.

(b) L (R) est équipotent à P(R) mais L (R) 6= P(R) (L (R) est donc un sous-
ensemble strict de P(R)).

Nous admettrons l’assertion (a) du théorème qui repose sur une méthode de
récurrence transfinie (voir [6], exercice 2.6.11 p.286). Concernant le point (b), l’as-
sertion L (R) 6= P(R) repose explicitement sur l’axiome du choix rappelé ci-
dessous.

Axiome 13.1. (Axiome du choix) Soient X et Y deux ensembles non vides et une
application F : X → P(Y )\{Ø}. Il existe une application f : X → Y telle que
pour tout x∈X , f(x)∈F (x).

En termes moins formalisés, cela signifie que l’on peut, pour chaque x ∈ X ,
“choisir” un “représentant” f(x) dans la partie F (x).

Remarque : Bien que d’apparence anodine, l’axiome du choix a des conséquences
fondamentales en Analyse, notamment à travers l’une de ses formulations équiva-
lentes, le lemme de Zorn (cf. l’appendice de [12], p.377). C’est bien un axiome au
sens où, dès que Y est non dénombrable, il est impossible de le démontrer dans le
cadre de la théorie des ensembles.

DÉMONSTRATION DE L’ASSERTION (b) DU THÉORÈME : L (R) 6= P(R) :

Le problème est ici d’exhiber une partie E de R qui soit non seulement non
borélienne, mais également non contenue dans L (R). On introduit à cette fin la
relation d’équivalence R définie sur [−1, 1] par xR y si et seulement si x − y ∈
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Q. On note ẋ la classe de x modulo R et [−1, 1]/Q l’ensemble quotient de cette
relation d’équivalence. Les classes d’équivalence ẋ sont des sous-ensembles de
[−1, 1] donc [−1, 1]/Q est inclus dans P([−1, 1]). En appliquant l’axiome du choix
à l’injection canonique

F : [−1, 1]/Q ↪→ P([−1, 1])\{Ø}
ẋ 7−→ ẋ,

on fabrique une application f : [−1, 1]/Q → [−1, 1] vérifiant : pour toute classe
ẋ∈ [−1, 1]/Q, f(ẋ)∈ ẋ. On pose alors

A := {f(ẋ), x∈ [−1, 1]}, r+A := {r+a, a ∈ A} et L :=
⋃

r∈[−2,2]∩Q

(r+A).

Nous allons montrer que A /∈ L (R).
Soient r, s∈Q. Les translatés deA vérifient (r+A)∩(s+A) = Ø dès que r 6=s ;

en effet, si z est dans l’intersection, il s’écrit simultanément z = r+f(ẋ) = s+f(ẏ)
d’où f(ẋ)−f(ẏ) = s− r∈Q. Par conséquent, ẋ = ẏ, d’où f(ẋ) = f(ẏ) et partant
r = s.

Soit x∈ [−1, 1] et a := f(ẋ)∈ [−1, 1]. Par construction r :=x−a∈Q∩ [−2, 2].
En conséquence, x = r+a∈ r+A si bien que [−1, 1] ⊂ L. D’autre part, A étant
inclus dans [−1, 1], L est inclus dans [−1, 1] + [−2, 2] = [−3, 3].

Supposons maintenant que A ∈L (R). A s’écrit alors A = B ∪ N avec B ∈
B(R) etN ∈Nλ. Pour tout r∈Q, on observe que r+A = (r+B)∪(r+N)∈L (R) :
en effet r+B ∈B(R) ; d’autre part, N étant λ-négligeable, il existe C ∈B(R) tel
que N ⊂ C et λ(C)=0, or r+N⊂ r+C et λ(r+C)=λ(C)=0 d’où r+N ∈Nλ.
En outre, λ(r+A) = λ(r+B) = λ(B) = λ(A).

Par suite, [−2, 2] ∩ Q étant dénombrable et les parties r+A, r ∈ [−2, 2] ∩ Q,
étant deux à deux disjointes, il vient simultanément

λ(L) =
∑

r∈[−2,2]∩Q

λ(r+A) =
∑

r∈[−2,2]∩Q

λ(A) =

{
0 si λ(A) = 0

+∞ si λ(A) > 0

et 2 = λ([−1, 1]) ≤ λ(L) ≤ λ([−3, 3]) = 6.

Ceci est contradictoire. En conclusion, A /∈ L (R) et, a fortiori, A /∈ B(R).

Montrons maintenant que L (R) et P(R) sont équipotents :

L’idée est la suivante : exhiber un borélien A de mesure de Lebesgue nulle
et équipotent à R. En effet, on aura alors d’une part P(R) équipotent à P(A)
et d’autre part P(A) ⊂ Nλ ⊂ L (R) ⊂ P(R), d’où L (R) équipotent à P(R).
Reste donc à construireA. Les possibilités sont nombreuses, mais, notamment pour
des raisons historiques, on construit généralement l’ensemble de Cantor K. Cette
construction est détaillée dans la section suivante. ♦
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13.3 Ensemble de Cantor, fonction de Lebesgue, applica-
tions

La construction de l’ensemble de Cantor est récursive et obéit au principe sui-
vant : on pose

A1 :=

[
0,

1

3

]
∪
[
2

3
, 1

]
et An+1 :=

An
3
∪ 2 +An

3
, n ≥ 1. (13.2)

On vérifie immédiatement par récurrence que, ainsi défini, An est la réunion de 2n

intervalles fermés, deux à deux disjoints, de longueur 3−n ayant pour extrémités
les 2n+1 points de la forme

n∑
k=1

xk
3k

+
εn
3n

avec xk∈{0, 2} et εn ∈ {0, 1}.

En outre, tous ces points restent des extrémités d’intervalles de tous les Am pour
m ≥ n (car 1

3n = 2
3n+1 + 1

3n+1 ). On a donc simultanément

An+1 ⊂ An et ∂An ⊂ ∂An+1.

L’ensemble de Cantor est alors défini par

K :=
⋂
n≥1

↓
An. (13.3)

L’ensemble de Cantor K est donc fermé comme intersection de fermés. Il vérifie
λ(K) = lim

n

↓
λ(An) = 0 car λ(An) = (2/3)n. D’autre part, pour tous n, p≥1,

∂An =

{
n∑
k=1

xk
3k

+
εn
3n
, xk∈{0, 2}, εn∈{0, 1}

}
⊂ ∂An+p ⊂ An+p,

donc ∂An ⊂ K =
⋂
p≥0

↓
An+p. K étant fermé, on en déduit aussitôt que

K̃ :=

{
+∞∑
k=1

xk
3k
, xk∈{0, 2}

}
⊂
⋃
n≥1

↑∂An ⊂ K.

Montrons que K̃ est équipotent à {0, 2}N∗
i.e. que la paramétrisation ci-dessus

est injective. En effet, si
+∞∑
k=1

xk
3k

=
+∞∑
k=1

yk
3k

, xk, yk ∈ {0, 2}, alors (xn)n≥1 =

(yn)n≥1. Dans le cas contraire k0 := min{k : xk 6= yk} serait fini. Or, quitte à
intervertir les deux suites, on peut supposer xk0 = 0 et yk0 = 2, d’où

0 =

+∞∑
k=1

yk − xk
3k

=
+∞∑
k=k0

yk − xk
3k

≥ 2

3k0
−

+∞∑
k=k0+1

2

3k
=

1

3k0
ce qui est absurde.
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Finalement, [0, 1]⊃K⊃K̃, K̃ est équipotent à {0, 2}N et donc à {0, 1}N. Or, on a
vu (théorème 2.2) que {0, 1}N est équipotent à [0, 1] et à R, donc il en est de même
de K. ♦

Proposition 13.1. L’ensemble de Cantor vérifie (entre autres propriétés)

K =

{
+∞∑
n=1

xn
3n
, xn∈{0, 2}

}
, cardK = card R, λ(K) = 0, K compact et K̊ = Ø.

En particulier K = ∂K.

DÉMONSTRATION : Comme λ(K) = 0, K ne peut contenir d’intervalle ouvert
non vide donc K̊ = Ø. Le seul point restant à démontrer est K = K̃. Soit x∈K.
Comme x ∈ An pour tout n ≥ 1, x est donc distant d’au plus 3−n de l’extrémité

gauche d’un intervalle de An, de la forme x(n) :=

n∑
k=1

x
(n)
k

3k
, x(n)k ∈{0, 2}. Il vient

alors

− 1

3n+1
=
(
x− 1

3n+1

)
− x ≤ x(n+1) − x(n) ≤ x+

(
− x+

1

3n
)
=

1

3n
.

Or, si k0 := min
{
k : x

(n+1)
k 6= x

(n)
k

}
≤ n, il vient également

∣∣x(n+1) − x(n)
∣∣ ≥ 2

3k0
− 2

3n+1
−

n∑
k=k0+1

2

3k
=

1

3k0
+

1

3n+1
>

1

3n
.

Par suite, k étant fixé, la suite n 7→ x
(n)
k est constante, i.e. x(n) =

n∑
k=1

x(∞)

k

3k
. Il

s’ensuit que x = lim
n
x(n) =

∑
k≥1

x(∞)

k

3k
∈K̃. ♦

Remarque : L’écriture
∑
n≥1

xn
3n

, xn∈{0, 2}, définit évidemment certains éléments

de K à travers leur développement impropre. Ainsi, 1 =
∑
n≥1

2

3n
.

Proposition 13.2. (Construction de la fonction de Lebesgue) Il existe une fonction
f continue croissante sur [0, 1] telle que f(0) = 0, f(1) = 1 et f ′ = 0 λ-presque
partout dans [0, 1]. En particulier, on a∫ 1

0
f ′(x) dx = 0 < f(1)− f(0) = 1.
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DÉMONSTRATION : On va construire la fonction f par approximation en reprenant
les étapes (et les notations) de la construction de l’ensemble de Cantor. Soit (fn)n≥1

la suite de fonction définies sur [0, 1] par

∀n≥1, ∀x∈ [0, 1], fn(x) := (3/2)n
∫ x

0
1An(t) dt. (13.4)

Il est clair que fn(0) = 0 et fn(1) = 1 puisque λ(An)= (2/3)n. De même, la
fonction fn est continue et croissante sur [0, 1]. Par ailleurs, si I désigne l’un des 2n

intervalles compacts dontAn est la réunion, on a, par définition deAn, λ(I) = 3−n

et λ(I ∩An+1) = 2/3λ(I), d’où

(3/2)n
∫
I
1An(t) dt = (3/2)n+1

∫
I
1An+1(t) dt = 2−n.

En outre, d’après la définition 13.4, la fonction fn est constante sur chacun des
(2n−1) intervalles ouverts composant cAn ; il en est de même de la fonction fn+1

puisque cAn ⊂ cAn+1. L’égalité précédente entraı̂ne alors que

∀x∈ cAn, fn(x) =
∑

I⊂An∩[0,x]

(3/2)n
∫
I
1An(t) dt

=
∑

I⊂An∩[0,x]

(3/2)n+1

∫
I
1An+1(t) dt = fn+1(x),

où I est l’un des 2n intervalles composant An. En particulier, pour un tel inter-
valle I , on a l’égalité fn+1(min I) = fn(min I), d’où

∀x∈ I, |fn+1(x)− fn(x)|

≤
∣∣fn+1(x)− fn+1(min I)

∣∣+ ∣∣fn(x)− fn(min I)
∣∣

≤ (3/2)n+1

∫
I
1An+1(t)dt+ (3/2)n

∫
I
1An(t) dt = 2−n+1.

Il s’ensuit que |fn+1(x)−fn(x)| ≤ 2−n+1 pour tout x∈ [0, 1]. La suite de fonctions
continues croissantes (fn)n≥1 converge donc uniformément vers une fonction f
nécessairement continue et croissante.

D’autre part, d’après (13.3), sur chacun des intervalles (ouverts) dont cAn est la
réunion, fm+1=fm pour m≥n puisque cAn ⊂ cAm. Donc, f=fn sur cAn ; or, de
par sa définition même, la fonction fn est constante sur chacun de ces intervalles
ouverts. En particulier f y est dérivable de dérivée nulle. Finalement, f est dérivable
de dérivée nulle sur

⋃
n≥1

cAn = cK ; donc f ′=0 λ-p.p. puisque λ(K) = 0. ♦

On prendra garde une fois encore à la terminologie qui fait de la fonction de
Lebesgue un objet essentiellement lié à l’ensemble de Cantor (et non à la mesure
de Lebesgue).



13.3. Ensemble de Cantor, fonction de Lebesgue, applications 287

A3

f1

f2

f3

A2

A1

1/3 2/3 10

1/2

1

FIGURE 13.1 – Trois premières approximations de la fonction de Lebesgue :
l’escalier du diable
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Terminons par deux applications, fondées sur l’ensemble de Cantor. L’une précise
la démonstration du théorème 13.2(b) dans laquelle était exhibée une partie non
Lebesgue-mesurable comme exemple de partie non borélienne. L’autre exhibe une
fonction intégrable non borélienne.

Exemple de partie Lebesgue-mesurable non borélienne : Soit ϕ la fonction
définie par

ϕ : [0, 1] −→ [0, 1]

1 7−→ 1

x =

+∞∑
n=1

xn
2n
7−→ ϕ(x) :=

+∞∑
n=1

2xn
3n

où
+∞∑
n=1

xn
2n

désigne le développement dyadique propre de x. La fonction ϕ est stric-

tement croissante. En effet, soient x, y∈ [0, 1[, x<y, et n0 := {n≥ 1 : xn 6= yn}.
On a

0 < y − x ≤ yn0 − xn0

2n0
+
∑
n>n0

1

2n
=
yn0 − xn0

2n0
+

1

2n0

d’où yn0−xn0 =1 et par suite,

ϕ(y)− ϕ(x) = 2

3n0
+
∑
n>n0

2 (yn − xn)
3n

≥ 2

3n0
−
∑
n>n0

2

3n
=

1

3n0
> 0.

La fonction ϕ est donc une bijection de [0, 1] sur son image qui est clairement
incluse dans l’ensemble de Cantor K d’après la proposition 13.1.

Soit A la partie non Lebesgue-mesurable de [−1, 1] définie dans la démonstra-
tion du théorème 13.2. On pose A′ = {x+1

2 , x ∈ A} ⊂ [0, 1] qui est aussi non
Lebesgue-mesurable car x 7→ x+1

2 est un homéomorphisme. D’une part, ϕ(A′)∈
L (R) car ϕ(A′) ⊂K est Lebesgue-négligeable. D’autre part, ϕ(A′) /∈B(R) car
ϕ−1(ϕ(A′)) =A′ /∈B([0, 1]) alors que ϕ est croissante donc borélienne (cf. exer-
cice 5.6). La partie ϕ(A′) est donc Lebesgue-mesurable sans être borélienne.

Exemple de fonctions Riemann-intégrables non boréliennes : Toute fonction
indicatrice d’une partie C de l’ensemble de Cantor K est Riemann-intégrable sur
[0, 1] d’intégrale nulle. En effet, la fonction 1C vérifie 0 ≤ 1C ≤ 1K ≤ 1An où An
est défini par l’égalité (13.2). Or, la fonction 1An est en escalier et∫ 1

0
1An =

(
2

3

)n
→ 0.

Cependant, elle n’est borélienne que si C est lui-même borélien. Ainsi, au vu de
l’exemple précédent, la fonction 1ϕ(A′) est donc Riemann-intégrable sur [0, 1] sans
être borélienne.
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En fait, il existe une infinité de telles fonctions car, d’après le théorème 13.2 et
l’équipotence de K et R,

card B(K) ≤ card B(R) < card P(K) = card P(R).

13.4 ♣ Produit de mesures complètes. Complétion d’un
produit

Le résultat le plus important de cette section est négatif : en général, un produit
d’espaces complets n’est pas complet.

Proposition 13.3. Soient (X,A , µ) et (Y,B, ν) deux espaces mesurés σ- finis et
complets (i.e. Nµ ⊂ A et Nν ⊂ B).

(a) (P(X)×Nν) ∪ (Nµ×P(Y )) ⊂ Nµ⊗ν .

(b) En conséquence, dès que (A 6= P(X) et Nν 6= {Ø}) ou (Nµ 6= {Ø} et B 6=
P(Y )), l’espace (X×Y,A ⊗B, µ⊗ ν) n’est pas complet.

En particulier, ceci a lieu même si les espaces initiaux sont complets.

DÉMONSTRATION : (a) Soient A∈P(X) et B ∈Nν . Le rectangle A×B vérifie
A×B ⊂ X×B ∈A ⊗B et µ⊗ν(X×B) = µ(X) ν(B) = 0 (ceci découle de la
convention habituelle).

(b) Il suffit de montrer que si A∈P(X)\A et B∈Nν\{Ø} alors A×B /∈ A ⊗B.
Or, dans le cas contraire, y∈B étant fixé, le théorème de section (cf. 11.5) entraı̂ne
que A = (A×B)y appartient à A . ♦

Exemple (important) : Comme L (R) 6= P(R) et Nλ 6= {Ø}, il est immédiat que
l’espace

(
R2,L (R)⊗2, λ

⊗2
)

n’est pas complet. Plus généralement, par le même

type d’argument, l’espace
(
Rd,L (R)⊗d, λ

⊗d
)

n’est pas complet.

Le théorème suivant permet d’élucider les liens précis existant entre produit et
complétion d’espaces mesurés.

Théorème 13.3. Soient (X,A , µ) et (Y,B, ν) deux espaces mesurés σ- finis. Alors

A µ⊗Bν
µ⊗ν

= A ⊗B
µ⊗ν

, Nµ⊗ν = Nµ⊗ν et µ⊗ ν = µ⊗ ν.

DÉMONSTRATION : Étape 1 Comparaison tribus, ensembles négligeables :

(⊃) Il est immédiat que A ⊗B ⊂ A µ⊗Bν ⊂ A µ⊗Bν
µ⊗ν

. D’autre part, soit
C ∈A ⊗B avec µ⊗ν(C)= 0. (µ ⊗ ν)|A ⊗B = µ⊗ν puisque ces deux mesures
σ- finies coı̈ncident sur l’ensemble A ×B des rectangles à côtés mesurables ; donc
µ⊗ ν(C) = 0. Ce qui montre que Nµ⊗ν ⊂ Nµ⊗ν ainsi que l’inclusion annoncée.



290 13. Mesure complétée, tribu de Lebesgue, ensemble de Cantor

(⊂) Soient A ∪M ∈ A µ et B ∪N ∈ A ν (avec des notations évidentes).

(A∪M)×(B∪N) = A×B︸ ︷︷ ︸
∈A ×B

∪
(
(A×N) ∪ (M×B) ∪ (M×N)︸ ︷︷ ︸

∈Nµ⊗ν d’après la proposition 13.3 (a)

)
⊂ A ⊗B

µ⊗ν
.

(13.5)
Donc A µ ⊗Bν ⊂ A ⊗B

µ⊗ν
. Il reste à établir que Nµ⊗ν ⊂ Nµ⊗ν pour

obtenir l’inclusion recherchée. Soit C ∈ A µ ⊗Bν avec µ⊗ν(C) = 0. Comme
C ∈ A ⊗B

µ⊗ν
, la caractérisation d’un ensemble négligeable (13.1) sur l’espace

produit entraı̂ne l’existence de C0 et C1 dans A ⊗B vérifiant C0 ⊂ C ⊂ C1 et
µ⊗ ν(C1\C0)=0. Par suite µ⊗ ν(C1\C0) = 0 ; mais µ⊗ ν(C0) ≤ µ⊗ ν(C)=0
donc

µ⊗ ν(C1) = µ⊗ ν(C1) = µ⊗ ν(C0) = 0

et, comme C ⊂ C1, C est donc µ⊗ ν- négligeable. Ce qu’il fallait démontrer.
Étape 2 Comparaison des mesures :

De la relation (A ∪ M) × (B ∪ N) = (A×B) ∪ L, L ∈ Nµ⊗ν , obtenue
en (13.5), on déduit que les deux mesures σ-finies µ ⊗ ν et µ ⊗ ν coı̈ncident sur
A µ×Bν et partant sur A µ⊗Bν . Ces deux mesures ont donc même complétée sur

A µ⊗Bν
µ⊗ν

. ♦

Application 13.1. Pour tous p, q∈N∗, L (Rp)⊗L (Rq)
λp⊗λq

= L (Rp+q).

DÉMONSTRATION : Au vu du théorème 13.3 et des identités établies antérieu-
rement B(Rp+q) = B(Rp)⊗B(Rq), λp⊗λq = λp+q, il vient

L (Rp)⊗L (Rq)
λp⊗λq

= B(Rp)⊗B(Rq)
λp⊗λq

= B(Rp+q)
λp+q

= L (Rp+q). ♦

13.5 ♣ Complétion et fonctions mesurables

Dans la suite K désigne indifféremment le corps des réels ou des complexes.
Il est clair qu’une fonction f : (X,A ) → (K,B(K)) mesurable est (A ,B(K))-
mesurable puisque A ⊂ A . La proposition suivante fournit une sorte de récipro-
que.

Proposition 13.4. Soit f : (X, A , µ)→ (K,B(K)) une fonction mesurable. Alors
il existe une fonction f̃ : (X,A )→ (K,B(K)), mesurable, telle que f= f̃ µ-p.p.,
i.e. telle que µ({f 6= f̃})=0, ou encore {f 6= f̃}∈Nµ.

En outre, si la fonction f est réelle positive, on peut choisir f̃ de façon que
0 ≤ f̃ ≤ f .

DÉMONSTRATION : On suit la procédure d’approximation habituelle.
– Si f := 1A, A∈ A , on pose f̃ := 1A′ où A = A′ ∪N avec A′∈A , N ∈Nµ.

Si f est étagée, on procède de même pour chacune des indicatrices. On vérifie que
f̃ ≤ f .
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– Si f est réelle positive, il existe une suite croissante de fonctions étagées
(fn)n≥1 convergeant vers f . Pour tout n≥1, il existe donc f̃n étagée, A - mesurable,
telle que µ({fn 6= f̃n}) = 0 et f̃n ≤ fn ≤ f . On pose alors f̃ := lim

n
f̃n. La fonc-

tion f̃ est clairement A - mesurable positive et majorée par f . Enfin {f 6= f̃} est
de µ-mesure nulle puisque {f 6= f̃} ⊂

⋃
n≥1{fn 6= gn}.

– Dans le cas réel, la fonction f̃ se décompose en f̃ := g̃+− g̃− où les fonctions
g̃± sont associées à f± comme dans le cas positif. Si f est à valeurs complexes, on
la décompose en parties réelle et imaginaire. ♦

Définition 13.4. Toute fonction f : (Rd,L (Rd)) → (K,B(K)) mesurable est dite
Lebesgue-mesurable.

Il est clair que toute fonction borélienne f : (Rd,B(Rd)) → (K,B(K)) est
Lebesgue-mesurable. Plus généralement, la proposition 13.4 caractérise les fonc-
tions Lebesgue-mesurables puisqu’une fonction f : Rd → K est Lebesgue-mesu-
rable si et seulement si elle est λd-p.p. égale à une fonction borélienne.

Remarque : Une autre définition naturelle d’une fonction Lebesgue-mesurable eût
pu être de munir simultanément l’espace de départ et l’espace d’arrivée de la tribu
de Lebesgue. L’objectif d’augmenter le nombre de fonctions mesurables serait alors
perdu. Quoi qu’il en soit, on manquerait cruellement de critères de mesurabilité !
Un tel choix serait donc irréaliste.

En contrepartie, la définition ci-dessus de la Lebesgue-mesurabilité a des in-
convénients majeurs : ainsi la composée g ◦ f de deux fonctions Lebesgue-mesura-
bles, lorsqu’elle est algébriquement possible, n’est en général pas Lebesgue-mesu-
rable, sauf si f est en fait borélienne (pour un contre-exemple cf. exercice 12 p. 165
de [7]).

Nous allons maintenant revenir aux espaces produits, avec pour finalité d’é-
noncer une généralisation (mineure) du théorème de Fubini. Nous allons faire l’hy-
pothèse que chacun des espaces initiaux est (σ- fini) complet ce qui, au vu du
théorème 13.3, n’est pas une vraie restriction (quitte à remplacer A par A et µ
par µ, etc).

Proposition 13.5. Soient (X,A , µ) et (Y,B, ν) deux espaces mesurés σ- finis et
complets et une fonction h : (X×Y,A ⊗B, µ⊗ν) → (R,B(R)) nulle µ⊗ν-p.p.
Alors, pour µ- presque tout x∈X , la section hx : y 7→ h(x, y) est B- mesurable
et nulle ν(dy)-p.p. et pour ν- presque tout y ∈ Y , la section hy : x 7→ h(x, y) est
A - mesurable et nulle µ(dx)-p.p.

DÉMONSTRATION : Soit N := {h 6= 0} ; µ⊗ν(N) = 0 par hypothèse, donc
il existe C ∈ A ⊗B tel que N ⊂ C et µ⊗ν(C) = 0. D’après le théorème de
construction de la mesure produit (théorème 11.1), Cx := {y∈Y : (x, y)∈C}∈B
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pour tout x∈X , x 7→ ν(Cx) est A - mesurable et∫
X
ν(Cx)µ(dx) = µ⊗ν(C) = 0.

Donc, pour µ-presque tout x ∈ X , ν(Cx) = 0. Or, {y : h(x, y) 6=0} ⊂ Cx donc,
µ(dx)-p.p., {hx 6=0}∈Nν ⊂ B car la tribu B est complète. ♦

On en déduit immédiatement l’extension du théorème de Fubini aux fonctions
qui sont A ⊗B- mesurables.

Théorème 13.4 (Fubini). Soient (X,A , µ) et (Y,B, ν) deux espaces mesurés σ-
finis complets et f :

(
X × Y,A ⊗B

)
→
(
R,B(R)

)
ou
(
R+,B(R+)

)
, une fonc-

tion mesurable.

(a) Si f ≥ 0, alors µ(dx)-p.p. la section fx : y 7→ f(x, y) est B- mesurable et
ν(dy)-p.p. la section fy : x 7→ f(x, y) est A - mesurable. En outre, les fonctions

ϕ(x) :=

∫
Y
fx(y) ν(dy) et ψ(y) :=

∫
X
fy(x)µ(dx)

sont respectivement µ(dx) et ν(dy)-p.p. définies et A - et B- mesurables. Enfin∫
X
ϕdµ =

∫
Y
ψ dν =

∫
X×Y

f dµ⊗ν. (13.6)

(b) Si f ∈ L 1(X×Y, µ⊗ν), fx ∈ L 1(Y,B, ν) µ(dx)-p.p., fy ∈ L 1(X,A , µ)
ν(dy)-p.p. et les fonctions ϕ et ψ sont dans L 1(X,A , µ) et L 1(X,B, ν) respec-
tivement. Enfin, la relation (13.6) est vérifiée.

DÉMONSTRATION : (a) D’après la proposition 13.4 et la remarque qui la suit, il
existe une fonction A ⊗B- mesurable g telle que 0≤g ≤f et f = g µ⊗ν-p.p. Le
théorème de Fubini-Tonelli classique s’applique à g et, d’après la proposition 13.5
appliquée à h := (f−g) 1{g<+∞}, il vient : pour µ- presque tout x∈X , fx = gx
ν-p.p. et pour ν- presque tout y∈Y , fy = gy µ-p.p. Donc la relation (13.6), vraie
avec g, est vraie avec f , les fonctions intermédiaires relatives à g et f coı̈ncidant
p.p. relativement aux mesures ad hoc.

(b) se déduit du point (a) comme dans le théorème originel. ♦



Quatrième partie

Convolution. Transformées de
Fourier et de Laplace





Chapitre 14

Convolution et applications

La convolution est une nouvelle opération sur les fonctions “raisonnablement”
intégrables. Elle joue un rôle fondamental dans les problèmes d’approximation
régularisante, c’est-à-dire lorsque l’on souhaite approcher une fonction par des
fonctions plus régulières qu’elle.

Notations : (a) Pour toutes parties A et B de Rd, on pose

A+B :={a+b, a∈A, b∈B}, A−B :={a−b, a∈A, b∈B} et a+B :={a}+B.

(b) Le symbole | · | désignera une norme sur Rd. Lorsqu’un résultat nécessite le
caractère euclidien de la norme, cela sera clairement précisé.

Rappels : (a) Une fonction g : Rd → K est à support compact si elle est nulle en
dehors d’un compact ou si, ce qui revient au même, son support supp(f) :={f 6=0}
est compact dans Rd.

(b) Soit CK(Rd,K) l’ensemble des fonctions continues à support compact de
Rd dans K. On fera largement usage du résultat de densité suivant :

∀ p∈ [1,+∞[, CK(Rd,K) est dense dans (LpK(λd), ‖ · ‖p).

Ce théorème a été établi au chapitre 7 dans sa version uni-dimensionnelle et dans
la section 9.7 (théorème 9.10) dans le cas général.

14.1 Opérateurs de translation sur les fonctions

Définition 14.1. Pour tout a ∈ Rd et pour toute fonction f : (Rd,B(Rd)) → K
borélienne, la a-translatée de f est définie par

τaf : Rd −→ K
x 7−→ (τaf)(x) := f(x−a). (14.1)



296 14. Convolution et applications

Remarques : • Un autre opérateur de translation, défini lui de Rd dans lui-même
par τa(x)=x−a et également noté τa, a été introduit à la section 6.1. On prendra
garde que (τaf)(x) = f(x− a) 6= f(x)− a = τa(f(x)).

En revanche, on a bien τaf = f ◦ τa. Cette confusion de notation, troublante
pour le non initié, est cependant canonique.
• La fonction τaf = f ◦ τa est donc borélienne comme composée d’une fonction
borélienne et d’une fonction continue.

Théorème 14.1. (a) Soit a∈Rd. Si deux fonctions boréliennes f et g vérifient f = g
λd-p.p., alors τaf = τag λd-p.p.. On peut donc définir, l’application “quotient”
τa sur l’espace LpK(λd) par la formule (14.1) pour tout p ∈ [1,+∞]. En outre, τa
est une isométrie (linéaire) de LpK(λd) dans lui-même.
(b) Pour tout p∈ [1,+∞[ et pour toute f ∈LpK(λd), lim

a→0
‖τaf − f‖p = 0.

DÉMONSTRATION : (a) On vérifie immédiatement que{
x∈Rd : τaf(x) 6= τag(x)

}
=
{
x∈Rd : f(x−a) 6= g(x−a)

}
= a+ {f 6= g}.

L’invariance de la mesure de Lebesgue par translation entraı̂ne donc que

λd
(
{τaf 6=τag}

)
= λd

(
{f 6=g}

)
= 0.

On peut donc définir τa sur LpK(λd) puisque la classe de τaf modulo l’égalité
λd-p.p. ne dépend que de celle de f . Enfin, si 1≤p<+∞,

‖τaf‖pp =
∫

Rd

|f ◦ τa(x)|pλd(x) =
∫

Rd

|f |pλd(dx) = ‖f‖pp.

Le cas p=+∞ se traite en notant simplement que

∀u∈R, {|τaf |>u} = a+ {|f |>u}.

L’invariance de la mesure de Lebesgue par translation entraı̂ne alors que

‖f‖∞ = supess (|f |) = inf{M>0 : λd(|f |>M) = 0} = supess |τaf | = ‖τaf‖∞ .

(b) Supposons d’abord que f ∈CK(Rd,K). La fonction f est donc uniformément
continue d’où, pour tout ε>0, il existe α>0 tel que

|a| ≤ α ⇒ ∀x∈Rd, |f(x− a)− f(x)| ≤ ε.

Par suite, dès que |a|≤α,

‖τaf − f‖pp =
∫

Rd

|f(x− a)− f(x)|pλd(dx) =
∫
(a+{f 6=0})∪{f 6=0}
|f(x−a)− f(x)|pλd(dx)

≤ (λd(f 6=0) + λd(a+{f 6=0})) εp

≤ 2λd

(
{f 6=0}

)
εp.



14.2. Convolution sur Rd 297

Or, λd
(
{f 6=0}

)
est fini car {f 6=0} est compact. En conséquence

|a|≤α =⇒ ‖τaf − f‖p ≤
(
2λd({f 6=0})

) 1
p
ε.

Supposons maintenant f ∈ L p
K(λd). L’ensemble CK(Rd,K) est ‖ · ‖p-dense

dans L p
K(λd) donc il existe une suite (fn)n∈N de fonctions continues à support

compact telle que ‖fn − f‖p → 0 quand n→ +∞. Or

‖τaf − f‖p ≤ ‖τaf − τafn‖p + ‖τafn − fn‖p + ‖fn − f‖p
≤ 2 ‖fn − f‖p + ‖τafn − fn‖p d’après le point (a).

Soit ε>0 ; il existe nε≥1 tel que ‖fnε−f‖p ≤ ε/4 et, d’autre part, il existe αε>0
tel que ‖τafnε − fnε‖p ≤ ε/2 pour tout |a|≤αε. D’où, finalement

‖τaf − f‖p ≤ ε dès que |a| ≤ αε. ♦

De l’égalité

‖τaf − τbf‖p = ‖τb(τa−bf − f)‖p = ‖τa−bf − f‖p,

on déduit immédiatement le corollaire suivant.

Corollaire 14.1. Si p∈ [1,+∞[ et f ∈LpK(λd), a 7→ τaf est uniformément continue
de Rd dans LpK(λd).

Remarques : • Si p=+∞, l’assertion (b) est fausse car CK(Rd,K)
‖·‖∞ 6=L∞

K (λd).

• Ce théorème s’appuie fortement sur l’invariance de la mesure de Lebesgue par
translation. Ainsi, le résultat tombe en défaut avec µ = δ0 : τaf converge vers f
dans LpK(µ) si et seulement si f est continue en 0 !

14.2 Convolution sur Rd

14.2.1 Le cas positif

Définition 14.2. Soient f, g : (Rd,B(Rd)) → R+ deux fonctions boréliennes
positives. La convolée de f et g, notée f ∗ g, est définie par :

∀x∈Rd, (f ∗ g)(x) :=
∫

Rd

f(x−y) g(y)λd(dy). (14.2)

Proposition 14.1. (a) La fonction f ∗ g est bien définie. C’est une fonction boré-
lienne positive de Rd dans R+ vérifiant :∫

Rd

f ∗ g dλd =
(∫

Rd

f dλd

)(∫
Rd

g dλd

)
.
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(b) La convolution entre fonctions boréliennes positives est

– commutative : f ∗ g=g ∗ f ,

– associative : (f ∗ g) ∗ h=f ∗ (g ∗ h).

(c) Enfin, {f ∗ g 6=0} ⊂ {f 6=0}+ {g 6=0}.

DÉMONSTRATION : (a) Les fonctions (u, v) 7→ f(u) et (u, v) 7→ g(v) sont clai-
rement (B(Rd)⊗B(Rd),B(R+))-mesurables donc, d’après la proposition 5.5,
la fonction (u, v) 7→ f(u) g(v) l’est aussi. D’autre part, la fonction (x, y) 7→
(x − y, y) est continue de Rd×Rd dans Rd×Rd donc (B(Rd×Rd),B(Rd×Rd))-
mesurable. Or, B(Rd×Rd) = B(Rd)⊗B(Rd) d’après l’application 11.1, d’où, par
composition,

(
Rd×Rd,B(Rd)⊗B(Rd)

)
−→

(
R+,B(R+)

)
(x, y) 7−→ f(x−y) g(y)

est mesurable. D’après le théorème de Fubini-Tonelli (théorème 11.2 de la sec-
tion 11.3) appliqué à la mesure produit λd⊗λd, il vient :

– d’une part :
(
x 7→

∫
Rd

f(x−y) g(y)λd(dy)
)

est partout définie, B(Rd)-mesurable

et,

– d’autre part :

∫
Rd

(∫
Rd

f(x−y) g(y)λd(dy)
)
λd(dx) =

∫
Rd

(∫
Rd

f(x−y) g(y)λd(dx)
)
λd(dy)

=

∫
Rd

g(y)

(∫
Rd

f(x−y)λd(dx)
)
λd(dy)

=

∫
Rd

g(y)

(∫
Rd

f dλd

)
λd(dy)

=

(∫
Rd

f dλd

)(∫
Rd

g dλd

)
.

(b) Commutativité : Le réel x étant fixé, on procède au changement de variables
affine y :=ϕ(u)=x−u. Il vient

(f ∗ g)(x) =
∫

Rd

f(x−y) g(y)λd(dy) =
∫

Rd

f(u) g(x−u)λd(du) = g ∗ f(x).
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Associativité :

f ∗ (g ∗ h)(x) =
∫

Rd

f(x−y) g ∗ h(y)λd(dy)

=

∫
Rd

f(x−y)
(∫

Rd

g(y − u)h(u)λd(du)
)
λd(dy)

=

∫
Rd

(∫
Rd

f(x−y) g(y−u)λd(dy)
)
h(u)λd(du) (Fubini-Tonelli)

=

∫
Rd

(∫
Rd

f(x−u−z) g(z)λd(dz)
)
h(u)λd(du) (poser y :=u+z)

=

∫
Rd

(f ∗ g)(x−u)h(u)λd(du) = (f ∗ g) ∗ h(x).

(c) Si x /∈{f 6=0} + {g 6=0}, alors, pour tout y ∈Rd, g(y)= 0 ou f(x−y)= 0 et
partant g(y)f(x−y)=0. D’où (f ∗ g)(x) = 0. ♦

Remarque : Nous verrons plus loin (cf. corollaire 14.3 et application 14.1 à la
section 14.3) que la régularité de f ∗ g peut être affinée.

Exemples : 1. f ∗ 0 = 0.

2. f ∗ 1(x)=1 ∗ f(x) =
∫

Rd

1(x−y)f(y)λd(dy) =
∫

Rd

f dλd.

3. Dimension 1 : On veut calculer 1[0,1] ∗ 1[0,1](x).

– Si x /∈ [0, 1] + [0, 1]=[0, 2], 1[0,1] ∗ 1[0,1](x) = 0,

– Si x∈ [0, 2],

(
1[0,1] ∗ 1[0,1]

)
(x) =

∫ 1

0
1[0,1](x− y)λ1(dy) =

∫ 1

0
1[x−1,x](y)λ1(dy)

= x ∧ 1− (x− 1) ∨ 0.

14.2.2 Cadre général

Soient f et g deux fonctions boréliennes de Rd dans K (K= R ou C). La pro-
position 14.1 (a), trivialement adaptée au cadre complexe, montre que la fonction
(x, y) 7→ f(x−y) g(y) est borélienne de Rd × Rd dans K. En outre, par définition
de la convolution des fonctions positives, pour tout x∈Rd,(

y 7→ f(x−y) g(y)
)
∈ L 1

K(λd) ⇔ (|f | ∗ |g|)(x) < +∞.

On peut alors définir la quantité (f ∗ g)(x) :=
∫

Rd

f(x−y) g(y)λd(dy).

Définition 14.3. La quantité (f ∗ g)(x) est appelée la convolée de f et g en x.
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Proposition 14.2. La convolution vérifie les propriétés élémentaires suivantes :

(a) (f ∗ g)(x) = (g ∗ f)(x) dès que l’une des deux quantités existe et

|f ∗ g|(x) ≤ (|f | ∗ |g|)(x).

(b) Si |f | ∗ |g|<+∞ partout, alors la fonction partout définie x 7→ (f ∗ g)(x) est
borélienne de Rd dans R.

(c) {f ∗ g 6=0}⊂ {f 6=0}+ {g 6=0}.

(d) Si f1 = f2 et g1 = g2 λd-p.p. f1 ∗ g1 et f2 ∗ g2 existent simultanément et sont
alors égales.

DÉMONSTRATION : (a) La commutativité est évidente par changement de va-

riables affine. L’inégalité découle de l’inégalité triangulaire
∣∣∣∣∫

Rd

h dµ

∣∣∣∣ ≤ ∫
Rd

|h| dµ.

(b) Traitons le cas réel à titre d’exemple : on décompose les fonctions f et g en
f :=f+ − f− et g :=g+ − g−. Il est immédiat via la croissance de l’intégrale que
f± ∗ g±≤|f | ∗ |g|<+∞ d’où, par linéarité cette fois,

f ∗ g = f+ ∗ g+ + f− ∗ g− − f+ ∗ g− − f− ∗ g+.

La mesurabilité découle de la proposition 14.1 (a).

(c) {f ∗ g 6=0}={|f ∗ g| 6=0}⊂ {|f | ∗ |g| 6=0}⊂ {|f | 6=0}+ {|g| 6=0}.
(d) Si f1=f2 et g1=g2 λd-p.p. alors |f1|= |f2| et |g1|= |g2| λd-p.p. donc f1 ∗ g1
et f2 ∗ g2 existent simultanément et sont alors égales. Soit x∈Rd fixé.

{y∈Rd : f1(x−y) g1(y) 6=f2(x−y) g2(y)}⊂ (x− {f1 6=f2}) ∪ {g1 6=g2}.

Or λd ((x− {f1 6=f2}) ∪ {g1 6=g2})≤λd({f1 6=f2}) + λd({g1 6=g2})=0. ♦

ATTENTION ! La loi ∗ n’est pas associative dans ce cadre très général.

Contre-exemple : Considérons les fonctions

f := 1R+ , g := 1[−1,0] − 1[0,1] et h := 1.

Il vient |f | ∗ |g|(x) ≤ 1 ∗ |g|(x)=
∫
|g|dλd=2, puis

(f ∗ g)(x) =
∫

1R+(x−y) g(y)dy =

∫ x

−∞
g(y)dy =


0 si x /∈ [−1, 1]
x+ 1 si x∈ [−1, 0]
1− x si x∈ [0, 1]

.

D’où : (f ∗ g) ∗ h(x) =
∫

R
f ∗ g dλd = 1 (cf. exemple 2. ci-avant) d’une part,

et f ∗ (g ∗ h)(x) = f ∗ (u 7→
∫
Rg dλd)(x) = (f ∗ 0)(x) = 0 d’autre part.
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14.3 Conditions d’existence et propriétés

Nous allons passer en revue quelques conditions naturelles assurant l’existence
de la convolée f ∗ g en tout point de Rd ou λ-p.p..

Définition 14.4. On désigne par L 1
loc,K(λd) l’ensemble des fonctions boréliennes

localement intégrables i.e. les fonctions boréliennes f : Rd → K telles que

∀K ⊂ Rd, K compact,
∫
K
|f |dλd < +∞.

L’espace (L 1
loc,K(λd),+, .) est clairement un K-e.v. stable par min et par max

(finis). D’autre part

∀ p∈ [1,+∞], L p
K(λd) ⊂ L 1

loc,K(λd)

puisque
∫
K
|f |dλd ≤ ‖f‖pλd(K)1/q < +∞ (où 1

p+
1
q =1) d’après l’inégalité de

Hölder (si p=1, on pose λd(K)1/∞=λd(K)0=‖1K‖∞ =1).

Proposition 14.3. Soient f ∈L 1
loc,K et g ∈L ∞

K (λd), g à support compact. Alors
(f ∗ g)(x) est définie en tout point x∈Rd. En outre, l’application (f, g) 7→ f ∗ g
est bilinéaire.

DÉMONSTRATION : Il vient

(|f | ∗ |g|)(x) =

∫
Rd

|f(x− y)| |g(y)|λd(dy)

≤
∫
{g 6=0}

‖g‖∞ |f(x−y)|λd(dy)

≤ ‖g‖∞
∫
x−{g 6=0}

|f(y)|λd(dy) < +∞,

car
(
x− {g 6= 0}

)
est borné dans Rd par hypothèse.

La bilinéarité découle immédiatement de la linéarité de l’intégrale (on notera au
passage que l’ensemble des fonctions λd-essentiellement bornées à support com-
pact à valeurs dans K est bien un K-e.v.). ♦

Théorème 14.2 (Convolution Lp-Lq).

Soient f ∈ L p
K(λd) et g ∈ L q

K(λd), où
1

p
+

1

q
= 1 , p, q ∈ [1,+∞].

(a) (f ∗ g)(x) est définie en tout point x de Rd. En outre, f ∗ g est uniformément
continue et bornée par ‖f‖p‖g‖q. Enfin, l’application (f, g) 7→ f ∗g est bilinéaire.

(b) Si, en outre, 1 < p, q < +∞, lim
‖x‖→+∞

(f ∗ g)(x) = 0.
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DÉMONSTRATION : (a) On établit à l’aide de l’inégalité de Hölder et du change-
ment de variables y=ϕ(u) :=x−u que

|f | ∗ |g|(x) =

∫
Rd

|f(x−y)||g(y)|λd(dy)

≤
(∫

Rd

|f(x−y)|pλd(dy)
) 1

p

‖g‖q = ‖f‖p‖g‖q.

Comme p ou q sont finis, on peut supposer p fini. Or

f ∗ g(x+ a)− (f ∗ g)(x) =
∫

Rd

(f(x+a−y)− f(x−y)) g(y)λd(dy)

=

∫
Rd

(τ−af − f)(x−y) g(y)λd(dy)

= (τ−af − f) ∗ g(x).

D’où |f ∗ g(x+a)− (f ∗ g)(x)| ≤ |τ−af − f | ∗ |g|(x)

≤ ‖τ−af − f‖p‖g‖q.

Le second membre de l’inégalité ne dépend plus de x et, d’après le théorè-
me 14.1 (b), lim

a→0
‖τ−af − f‖p=0.

La bilinéarité découle trivialement de la linéarité de l’intégrale.

(b) Étape 1 f continue à support compact :

Supposons d’abord que f ∈CK(Rd,K). On pose K :={f 6=0}. K est compact
et

|(f ∗ g)(x)| ≤
∫

Rd

|f(x−y)||g(y)|λd(dy) =
∫
x−K
|f(x−y)||g(y)|λd(dy)

≤ λd(x−K)
1
p

(∫
Rd

|f(x− y) g(y)|qλd(dy)
) 1

q

d’après l’inégalité de Hölder. On vérifie immédiatement que ∀x∈Rd, |f(x−y)|q|g(y)|q ≤ ‖f‖q∞ |g|
q(y)∈L 1

R+
(λd),

∀ y∈Rd, lim
|x|→+∞

|f(x−y) g(y)|q = 0.

Le théorème de convergence dominée entraı̂ne alors que

lim
‖x‖→+∞

∫
Rd

|f(x−y) g(y)|qλd(dy) = 0.

D’où le résultat, puisque λd(x−K)=λd(K) pour tout x∈Rd.
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Étape 2 Cas général, f ∈L p
K(λd) :

L’exposant p étant fini, il existe une suite (fn)n≥1 de fonctions de CK(Rd,R)
vérifiant ‖fn − f‖p → 0 quand n→ +∞. Or,

∀x∈Rd, |(f ∗ g)(x)− fn ∗ g(x)|= |(f − fn) ∗ g|(x),

≤ ‖f − fn‖p‖g‖q,

d’où ‖f ∗ g − fn ∗ g‖∞ ≤ ‖f − fn‖p‖g‖q.

Finalement,

∀x∈Rd, |(f ∗ g)(x)| ≤ |fn ∗ g(x)|+ ‖fn − f‖p‖g‖q.

On choisit alors comme d’habitude nε∈ N tel que ‖fn − f‖p‖g‖q≤ ε
2 , puis Aε tel

que |x|≥Aε entraı̂ne |fnε ∗ g(x)|≤ ε
2 . ♦

Remarque : • Grâce à la proposition 14.2 (d), on aurait pu énoncer le théorème
avec les espaces LpK(λd) et LqK(λd) au lieu de L p

K(λd) et L q
K(λd).

•On observe déjà ici le caractère “régularisant” de l’opération de convolution ; ceci
sera également illustré par le corollaire 14.3 ci-après et l’application qui le suit.

Corollaire 14.2. Si f, g ∈ CK(Rd,K), alors, d’après la proposition 14.2 (c) et le
point (a) du théorème 14.2 ci-dessus, f ∗ g∈CK(Rd,K).

Corollaire 14.3. Si f et g sont boréliennes positives, alors f ∗ g est semi-continue
inférieurement au sens où ( 1)

∀ a∈R, {f ∗ g ≤ a} est fermé.

DÉMONSTRATION : Pour tout n≥1, on pose Kn := [−n, n]d, fn :=(f ∧ n)1Kn et
gn :=(g ∧ n)1Kn . Les fonctions fn et gn sont boréliennes positives et forment des
suites croissant respectivement vers f et g. Pour tout x∈Rd, la suite de fonctions
y 7→ fn(x−y) gn(y) croı̂t vers la fonction y 7→ f(x−y) g(y). Donc, d’après le
théorème de Beppo Levi,

∀x∈Rd, fn∗gn(x) :=
∫

Rd

fn(x−y) gn(y)λd(dy) ↑ (f ∗g)(x) quand n→ +∞.

Or, d’après le théorème 14.2 (a), les fonctions fn ∗ gn sont continues puisque
fn, gn∈L 2

K(λd). Par suite {fn ∗ gn≤a} est fermé d’où, finalement,

{f ∗ g ≤ a} =
⋂
n≥1

↓{fn ∗ gn ≤ a} est fermé. ♦

1. ou encore xn → x⇒ lim
n
f ∗ g(xn) ≥ (f ∗ g)(x).
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Application 14.1. Théorème de Steinhaus :

Si A est un borélien de Rd de mesure (de Lebesgue) positive, alors

A−A := {a− a′, a, a′ ∈ A}

est un voisinage de 0 dans R.

DÉMONSTRATION : D’après le corollaire 14.3 la fonction ϕA :=1A ∗1−A est s.c.i.
(à valeurs dans R+), donc {ϕA 6=0}={ϕA>0} est un ouvert ; cet ouvert contient
0 car

ϕA(0) =

∫
R

1−A(−y) 1A(y)λd(dy) = λd(A)> 0.

D’autre part, la proposition 14.2 (c) entraı̂ne que

{ϕA 6= 0} ⊂ {1A 6= 0}+ {1−A 6= 0} = A+ (−A) = A−A.

D’où le résultat annoncé. ♦

Théorème 14.3 (L’algèbre (L1
K(λd),+, ·, ∗) ). (a) Soient f, g ∈L 1

K(λd). Alors, la
fonction (f ∗ g)(x) est définie pour λd-presque tout x∈Rd et f ∗ g∈L1

K(λd) avec

‖f ∗ g‖1 ≤ ‖f‖1‖g‖1 et
∫

Rd

f ∗ g dλd =
∫

Rd

f dλd ×
∫

Rd

g dλd.

(b) Le K-e.v. (L1
K(λd),+, .), muni en outre de l’opération ∗, est une K-algèbre

commutative (i.e. ∗ est commutative, associative et ∗ est distributive par rapport
à +) ne possédant pas d’unité.

DÉMONSTRATION : Au vu de la proposition 14.2 (d) ci-avant, on peut raisonner
sur des représentants, éléments de L 1

K(λd), encore notés f et g.
(a) Les fonctions f et g étant dans L 1

K(λd), il vient d’après la proposition 14.1 (a)∫
Rd

|f | ∗ |g|(x)λd(dx)=‖f‖1‖g‖1 < +∞.

Par suite, |f | ∗ |g|(x)<+∞ λd(dx)-p.p.. On définit alors

(f ∗ g)(x) :=


∫

Rd

f(x− y) g(y)λd(dy) si |f | ∗ |g|(x)<+∞

0 si |f | ∗ |g|(x)=+∞.

Ainsi définie, f ∗ g est borélienne par une adaptation triviale de la proposition 14.2
(b), et intégrable puisque

‖f ∗ g‖1 ≤ ‖|f | ∗ |g|‖1 ≤ ‖f‖1‖g‖1.

(b) La distributivité est évidente et la commutativité découle de la proposition
14.2 (a).
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– Associativité : Soient f, g, h∈L 1
K(λd). D’après la proposition 14.1 (b) (cas po-

sitif), il vient

(|f | ∗ |g|) ∗ |h|(x) := |f | ∗ (|g| ∗ |h|)(x) < +∞ λd(dx)-p.p.. (14.3)

Pour tout x vérifiant (14.3), il est immédiat d’après le théorème de Fubini-Tonelli
que l’application (y, z) 7−→ f(x−y) g(y−z)h(z) est λd⊗λd-intégrable. On conclut
via le théorème de Fubini-Lebesgue en reprenant les calculs formels, maintenant
justifiés, de la proposition 14.1 (b).
– Absence d’unité : Supposons l’existence d’une telle unité u∈L1

K(λd) (identifiée
à l’un de ses représentants dans L 1

K(λd)). La fonction u vérifie donc en particu-
lier, pour tout ρ ∈ R∗

+, e−ρ|·|
2 ∗ u = e−ρ|·|

2
λd-p.p. où | . | désigne ici la norme

euclidienne canonique sur Rd. Or, d’après le théorème 14.2 (a) appliqué aux expo-
sants conjugués p=1 et q=+∞, la fonction e−ρ|·|

2 ∗ u est continue, donc, e−ρ|·|
2

l’étant aussi, celles-ci coı̈ncident sur tout Rd ( 2). En particulier, il vient en x= 0,∫
Rd

e−ρ|y|
2
u(y)λd(dy)=1. Or, par convergence dominée,

lim
ρ→+∞

∫
Rd

e−ρ|y|
2
u(y)λd(dy) = 0.

D’où la contradiction. ♦

Remarque : Plus généralement, l’associativité de la convolution est valable en tout
point x vérifiant |f | ∗ |g| ∗ |h|(x) < +∞. Évidemment cette condition n’est pas
remplie par le contre-exemple à l’associativité proposé en sous-section 14.2.2.

Le théorème 14.3 (a) est en fait le cas particulier du :

Théorème 14.4. Si f ∈L p
K(λd), (1≤ p≤ +∞) et g ∈L 1

K(λd), alors (f ∗ g)(x)
existe pour λd-presque tout x et f ∗ g∈L p

K(λd). Plus précisément,

‖f ∗ g‖p ≤ ‖f‖p‖g‖1.

DÉMONSTRATION : On applique l’inégalité de Hölder avec la mesure µ définie par
µ(dy) := |g(y)|λd(dy). Il vient∫

Rd

|f(x−y)||g(y)|λd(dy) ≤
(∫

Rd

|g(y)|λd(dy)
)1

q
(∫

Rd

|f(x−y)|p|g(y)|λd(dy)
)1

p

où q désigne l’exposant conjugué de p. En élevant à la puissance p (supposée finie)
et en intégrant cette inégalité par rapport à la mesure λd(dx), il vient

‖|f | ∗ |g|‖pp ≤ ‖g‖
p
q

1 ‖|f |
p ∗ |g|‖1 = ‖g‖

p
q

1 ‖f‖
p
p ‖g‖1 = ‖f‖pp ‖g‖

p
1 < +∞.

Lorsque p=+∞, le résultat est évident. ♦

2. Soit D∈B(Rd) ; si λd(
cD)=0, alors D est dense dans Rd. En effet si D 6=Rd alors c̊D= cD

est un ouvert non vide contenu dans cD. Ceci est impossible car la mesure de Lebesgue sur Rd charge
tous les ouverts non vides.
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14.4 Approximation de l’unité

Pour pallier l’absence d’élément neutre pour la convolution sur L1
K(λd), on

introduit des unités approchées i.e. des suites de fonctions (αn)n≥1 se comportant
asymptotiquement comme une unité. En d’autres termes, on souhaite que

αn ∗ f “ ≈ ” f quand n→ +∞ (en un sens à préciser).

Définition 14.5. Une suite (αn)n≥1 d’éléments de L1
K(λd) est une approximation

de l’unité si elle vérifie

(i) pour tout n ≥ 1,
∫

Rd

αn dλd = 1,

(ii) sup
n≥1

∫
Rd

|αn| dλd < +∞,

(iii) pour tout ε > 0, lim
n→+∞

∫
{|x|≥ε}

|αn| dλd = 0.

On notera que la condition (ii) apparaı̂t comme une conséquence directe de (i)
lorsque les fonctions αn sont positives.

Plutôt que des suites, on considère aussi souvent des familles (αt)t∈R∗
+

d’ap-
proximations de l’unité indexées par R∗

+. On adapte de façon évidente le point (iii)
de la définition en faisant tendre t tend vers 0 au lieu de n vers +∞.

Construction générique : La construction la plus courante d’une telle suite se fait

à partir d’un élément quelconque α ∈ L 1
K(λd) d’intégrale

∫
Rd

αdλd=1.

On définit alors simplement les αn par :

αn(x) := nd α(nx), n≥1.

En effet, le changement de variables linéaire x = u/n entraı̂ne :

∀n ≥ 1,


∫

Rd

αn dλd =
1

nd

∫
Rd

αn(u/n)λd(du) =

∫
Rd

αdλd = 1,∫
Rd

|αn| dλd =
∫

Rd

|α| dλd.

Enfin, pour tout ε > 0, le même changement de variables, associé au théorème de
convergence dominé, montre que∫

{|x|≥ε}
|αn(x)|λd(dx) =

∫
{|u|≥nε}

|α(u)|λd(du) −→
n→+∞

0.

Exemples : Pour des raisons historiques ou liées au domaine d’application (Ana-
lyse, Analyse appliquée, Probabilités, etc.), on privilégie souvent les familles d’ap-
proximations suivantes (où | · | désigne la norme euclidienne canonique sur Rd) :
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Noyau de Laplace sur R :

∀ t > 0, αt(x) :=
1

2t
e−

|x|
t (issu de α1(x) :=

1

2
e−|x|).

Noyau de Cauchy sur R :

∀ t > 0, αt(x) :=
t

π (t2 + x2)
(issu de α1(x) :=

1

π (1 + x2)
).

Noyau de Gauss sur Rd :

∀ t > 0, αt(x) :=
1

(
√
4π t)d

e−
|x|2

4t2 (issu de α1(x) :=
1

(
√
4π)d

e−
|x|2
4 ).

(on rappelle – cf. exemple 2, section 12.2 – que
∫ +∞

−∞
e−x

2
dx =

√
π).

Noyau à support compact sur R : À toute fonction α ∈ CK(Rd,R) vérifiant∫
Rd

αdλd=1, on peut associer le noyau :

∀ t > 0, αt(x) :=
1

td
α
(x
t

)
.

Théorème 14.5 (Convergence Lp). Soit (αn)n≥1 une suite d’approximations de
l’unité. Soient p ∈ [1,+∞[ et f ∈ LpK(λd). Alors :

∀n ≥ 1, f ∗ αn∈LpK(λd) et f ∗ αn
‖·‖p−→

n→+∞
f.

DÉMONSTRATION : Pour tout n≥1, αn∈L1
K(λd), donc, d’après le théorème 14.4,

f ∗ αn est λd-p.p. définie et appartient à LpK(λd). Comme
∫

Rd

αn(y)λd(dy)=1, il

vient, là où f ∗ αn(x) existe,

(f ∗ αn)(x)− f(x) =
∫

Rd

(
f(x−y)− f(x)

)
αn(y)λd(dy),

d’où, en reprenant la démarche du théorème 14.4,

|f ∗ αn(x)− f(x)|p ≤ ‖αn‖
p
q

1 ×
∫

Rd

|f(x−y)− f(x)|p|αn(y)|λd(dy),∫
Rd

|f ∗ αn(x)− f(x)|pλd(dx)≤ ‖αn‖
p
q

1 × . . .∫
Rd

∫
Rd

|f(x−y)− f(x)|p|αn(y)|λd(dy)λd(dx).
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La constanteM :=supn≥1 ‖αn‖1 étant finie par hypothèse, le théorème de Fubini-
Tonelli entraı̂ne alors

‖f ∗ αn − f‖p ≤M
∫

Rd

‖τyf − f‖pp |αn(y)|λd(dy).

On se ramène donc à étudier le membre de droite de l’inégalité. Soit ε>0.∫
Rd

‖τyf − f‖pp |αn(y)|λd(dy)≤
∫
{|y|≥ε}

(‖τyf‖p + ‖f‖p)p |αn(y)|λd(dy)

+ sup
|y|<ε
‖τyf − f‖pp

∫
{|y|<ε}

|αn(y)|λd(dy),

≤ 2p‖f‖pp
∫
{|y|≥ε}
|αn(y)|λd(dy) +M sup

|y|≤ε
‖τyf − f‖pp.

Par suite, la condition (iii) de la définition des αn entraı̂ne

∀ ε > 0, lim
n

∫
Rd

‖τyf − f‖pp |αn(y)|λd(dy) ≤M sup
|y|≤ε
‖τyf − f‖pp.

Or, lim
ε→0

sup
|y|≤ε
‖τyf − f‖p=0 d’après le théorème 14.1 (b). D’où le résultat. ♦

Nous allons maintenant établir des résultats d’approximation ponctuelle lors-
que la fonction f possède, au moins localement, des propriétés de régularité.

Définition 14.6. Soit f : Rd → K et B une partie quelconque de Rd. On dira que
f est B-uniformément continue si

∀ ε>0, ∃ η>0, ∀x∈B, ∀ y∈Rd, |x−y| ≤ η ⇒ |f(x)− f(y)| ≤ ε.

De façon plus concise ceci s’exprime en : lim
η→0

sup
x∈B, |h|≤η

|f(x+h)− f(x)|=0.

Si f est B-uniformément continue, alors f est en particulier continue en tout
point de B et f|B est uniformément continue. En revanche, la réciproque est en
général fausse (prendre f :=1Q et B :=Q).

Exemples : 1. f est Rd-uniformément continue si et seulement si f est uniformément
continue.
2. f est {x0}-uniformément continue si et seulement si f est continue en x0.
3. Extension du théorème de Heine : Si f est continue en tout point d’un compact
K⊂ Rd, alors f est K-uniformément continue.

En effet, dans le cas contraire, il existe ε0>0 et deux suites (xn)n≥1 et (hn)n≥1

respectivement à valeurs dans K et Rd vérifiant

|hn|≤1/n et |f(xn + hn)− f(xn)|>ε0.

Par compacité de K, on extrait de (xn)n≥1 une suite (xϕ(n))n≥1 convergeant vers
x∈ K. Or, la fonction f étant continue en x, les suites (f(xϕ(n) + hϕ(n)))n≥1 et
(f(xϕ(n)))n≥1 convergent toutes deux vers f(x). D’où la contradiction.
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Théorème 14.6 (Convergence ponctuelle). Soient (αn)n≥1 une suite d’approxima-
tions de l’unité et f ∈ L ∞

K (λd). Alors

(a) Pour n≥1, f ∗αn est uniformément continue sur Rd et bornée par ‖f‖∞‖αn‖1.

(b) Si f est B-uniformément continue (B ⊂ Rd), alors

lim
n→+∞

(
sup
x∈B

∣∣f ∗ αn(x)− f(x)∣∣) = 0.

DÉMONSTRATION : L’assertion (a) découle du théorème 14.2 (a).
(b) Notons d’abord qu’il est loisible de choisir un représentant dans la classe de
f simultanément B-uniformément continu et borné par ‖f‖∞ en remplaçant si
nécessaire f par (−‖f‖∞) ∨ (f ∧ ‖f‖∞). On le note toujours f par commodité.
En effet la fonction y 7→ (−‖f‖∞) ∨ (y ∧ ‖f‖∞) est clairement lipschitzienne de
rapport 1. Soit M :=supn ‖αn‖1. Il vient, pour tout x∈Rd et tout n≥1,

|f ∗ αn(x)− f(x)| ≤
∫

Rd

|f(x−y)− f(x)||αn(y)|λd(dy),

≤M sup
|y|≤η

|f(x−y)− f(x)|+ 2‖f‖∞
∫
{|y|>η}
|αn(y)|λd(dy).

D’où lim
n

sup
x∈B
|f ∗ αn(x)− f(x)| ≤M × sup

x∈B, |y|≤η
|f(x−y)− f(x)| −→

η→0
0. ♦

En combinant les exemples ci-avant et le théorème 14.6, on obtient immédiate-
ment les résultats suivants.

Corollaire 14.4. Soit f ∈ L ∞
K (λd). Alors :

(a) Si f est continue en x0∈Rd, alors lim
n→+∞

(f ∗ αn)(x0) = f(x0).

(b) Si f est uniformément continue sur Rd, alors lim
n→+∞

‖f ∗ αn − f‖∞ = 0.

(c) Si f est continue en tout point d’un compact K, alors

lim
n→+∞

(
sup
x∈K

∣∣(f ∗ αn)(x)− f(x)∣∣) = 0.

14.5 Régularisation par convolution

Nous avons montré à la section 14.3 l’existence en tout point de Rd de la convo-
lution f ∗ ϕ dès que f est localement intégrable et ϕ essentiellement bornée à
support compact. Dans cette section, nous allons établir qu’en outre f ∗ ϕ conser-
ve la régularité de ϕ. En combinant ce résultat avec ceux de la section 14.3, nous en
déduirons de puissants théorèmes d’approximation par des fonctions très régulières.

Définition 14.7. (a) Pour tout n∈N ∪ {∞}, on pose

C n
K (Rd,K) := {f : Rd → K à support compact et de classe C n}.
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(b) Pour tout d-uplet d’entiers p :=(p1,. . ., pd)∈Nd, on note ‖p‖ :=
d∑
i=1

pi.

(c) On appellera opérateur différentiel d’ordre p∈N∗, toute application Dp définie
sur C n

K (Rd,K) par

Dp(f) :=
∑

p:‖p‖≤p

λp
∂p1+···+pd

∂xp11 · · · ∂x
pd
d

f, λp∈K.

Rappel : Une fonction f est de classe C n sur Rd si et seulement si toutes ses
dérivées partielles d’ordre p, ‖p‖≤n, sont continues sur Rd.

Théorème 14.7. Soient ϕ∈C n
K (Rd,K), n∈N ∪ {∞} et f ∈L 1

loc,K(λd). Alors la
fonction f ∗ϕ est définie en tout point de Rd d’après la proposition 14.3. En outre,
f ∗ ϕ∈C n(Rd,K) et si D désigne un opérateur différentiel d’ordre p≤n,

D(f ∗ ϕ) = f ∗D(ϕ).

DÉMONSTRATION : On se ramène, via une récurrence immédiate sur n, à montrer

l’assertion (b) pour les opérateurs élémentaires
∂

∂xi
, 1≤ i≤d.

Comme supp(ϕ) :={ϕ 6=0} est compact, Kϕ := supp(ϕ) + B(0, 1) l’est aussi
(ceci découle de la propriété de Bolzano-Weierstrass). Soit alors ei le ième vecteur
de la base canonique de Rd et h∈ [−1, 1]\{0}.

f ∗ ϕ(x+hei)− f ∗ ϕ(x)
h

=

∫
Rd

f(y)
ϕ(x+hei−y)− ϕ(x−y)

h
λd(dy).

Si h∈ [−1, 1] et u+hei∈supp(ϕ), alors, nécessairement,

u ∈ supp(ϕ)+(−h)ei ⊂ supp(ϕ)+B(0; 1).

Par suite, x∈Rd étant fixé, l’inégalité des accroissements finis entraı̂ne

∀ y∈Rd,

∣∣∣∣f(y)ϕ(x−y+hei)− ϕ(x−y)h

∣∣∣∣ ≤ |f(y)| ∥∥∥∥ ∂ϕ∂xi
∥∥∥∥

∞

1Kϕ(x−y).

La fonction (de y) à droite de l’inégalité est intégrable puisque, f étant localement

intégrable,
∫
x−Kϕ

|f(y)|λd(dy)<+∞.

D’autre part, pour tout y∈Rd,

lim
h→0

f(y)
ϕ(x−y+hei)− ϕ(x−y)

h
= f(y)

∂ϕ

∂xi
(x−y).

On conclut par le théorème de convergence dominée. ♦

Le résultat ci-dessus n’épuise pas les possibilités d’énoncés. Ainsi, on établit
sans peine à partir de l’application 8.6.2 de la section 8.3, la variante ci-dessous :
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Proposition 14.4. Si f ∈L 1
K(λd) et si ϕ est une fonction appartenant à

C n
b (R

d,K) :=
{
f : Rd→K de classe C n, bornée, à dérivées partielles bornées

}
,

n∈ N ∪ {∞}, alors les conclusions du théorème 14.7 restent valables.

Si l’on souhaite combiner les résultats de régularité ci-avant avec ceux obte-
nus sur les approximations de l’unité, le cas n = ∞ paraı̂t évidemment le plus
intéressant . . .sous réserve que l’ensemble C∞

K (Rd,K) ne soit pas réduit à la fonc-
tion nulle ! C’est bien le cas puisque la fonction

ϕ : x 7−→

{
exp

(
1

|x|2−1

)
si |x| < 1

0 si |x| ≥ 1
est dans C∞

K (Rd, [0, 1]), (14.4)

où | · | désigne la norme euclidienne. Ceci se déduit immédiatement du fait que la
fonction

u 7−→
{

exp
(
− 1
u

)
si u > 0

0 si u ≤ 0
est dans C∞

K (R, [0, 1]).

Définition 14.8. Une suite (αn)n≥1 est dite régularisante si

(i) la suite (αn)n≥1 est une approximation de l’unité,

(ii) pour tout n≥1, αn∈C∞
K (Rd,K).

Exemple fondamental : Soit αn(x) = ndα(nx), α∈C∞
K (Rd,K),

∫
Rd

αdλd = 1.

On peut par exemple poser α :=
ϕ∫

Rdϕdλd
où ϕ∈C∞

K (Rd,R) est définie par (14.4).

Plus généralement, toute fonctionϕ∈C∞
K (Rd,R) d’intégrale

∫
Rd

ϕdλd 6=0 convient.

En combinant les résultats de la section 14.4 et du théorème 14.7 ci-dessus, on
déduit plusieurs résultats réunis dans le théorème suivant :

Théorème 14.8 (Densité). (a) C∞
K (Rd,K) est ‖ · ‖sup-dense dans CK(Rd,K).

(b) Pour tout p∈ [1,+∞[, C∞
K (Rd,K) est ‖ · ‖p-dense dans LpK(λd).

(c) L’espace C∞
b (Rd,K) est ‖ · ‖sup-dense dans CU, b(Rd,K) l’ensemble des fonc-

tions uniformément continues, bornées, à valeurs dans K.

(d) C∞
b (Rd,K) est dense dans Cb(Rd,K) pour la convergence uniforme sur les

compacts : pour toute fonction f continue bornée, il existe une suite (fn)n≥1 de
fonctions de C

∞
b (Rd,K), telle que, pour tout compact ,K⊂ Rd,

lim
n→+∞

(
sup
x∈K
|fn(x)− f(x)|

)
= 0.
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DÉMONSTRATION : On considère une suite régularisante (αn)n≥1. Dans tous les
cas, f ∈L 1

loc,K(λd), assurant ainsi l’existence des convolées f ∗ αn.

(a) f, αn∈CK(Rd,K) donc f ∗ αn∈CK(Rd,K) ; d’autre part f ∗ αn∈C∞(Rd,K)
d’après la proposition 14.7. Donc f ∗ αn∈C∞

K (Rd,K). Enfin, le théorème 14.6 (b)

entraı̂ne, f étant uniformément continue, que f ∗ αn
U t

−→ f .

(b) Soit f ∈ LpK(λd) et fm définie pour tout m ≥ 1 par fm(x) := f1{|x|≤m}. Il est

clair que ‖f − fm‖pp =
∫
{|x|>m}

|f(x)|pdx tend vers 0 lorsque m tend vers l’infini

par convergence dominée. D’autre part, à m fixé, αn ∗ fm converge pour la norme
‖ . ‖p vers fmlorsque n tend vers l’infini. La densité annoncée en découle.

(c) f ∗αn est uniformément continue, bornée d’après le théorème 14.2 (a), et dans
C∞(Rd,K) d’après la théorème 14.7.

(d) Soit n∈N∗ et f̃n la fonction définie par

f̃n(x) :=

{
f(x) si |x| ≤ n
f
(
n x
|x|

)
si |x| ≥ n.

La fonction f̃n est uniformément continue et bornée sur Rd. En effet, la fonction
x 7→

(
n
|x| ∧ 1

)
est 1-lipschitzienne de Rd dans B(0, n) et f|B(0,n) est uniformément

continue (et bornée). D’après le point (c), il existe donc fn∈ C∞
K (Rd,K) telle que

‖f̃n − fn‖sup ≤ 1
n . On vérifie sans peine que fn converge uniformément sur les

compacts de Rd vers f . ♦

D’autres usages des propriétés régularisantes de la convolution sont possibles.
À titre d’exemple, voici une version “lisse” du lemme d’Urysohn de séparation des
fermés sur Rd.

Théorème 14.9 (Lebesgue-Urysohn). Soit K un compact de Rd et ω un ouvert de
Rd avec K⊂ ω. Il existe f ∈C∞

K (Rd, [0, 1]) telle que

f ≡ 1 sur K et f ≡ 0 sur cω.

DÉMONSTRATION : La fonction x 7→ d(x,c ω) est continue, elle atteint donc son
minimum ρ > 0 sur le compact K. On définit alors, pour tout η > 0, le compact
Kη := {u ∈ Rd : d(u,K) ≤ η} de façon que Kη ⊂ ω dès que η < ρ. Soit alors
αρ∈C∞

K (Rd,R) telle que supp(αρ)⊂ B(0, ρ3) et ‖αρ‖1=1. On construit une telle
fonction en posant simplement

αρ(x) :=
ϕ(3ρx)∫

Rd ϕ(
3
ρx)λd(dx)

où la fonction ϕ est donnée par (14.4).
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Soit alors la fonction f définie

f := 1K ρ
3

∗ αρ∈C∞
b (Rd,R) ∩L

1

R(λd) où 1K ρ
3

∈L ∞
R (λd) ∩L

1

R(λd).

Notons d’abord que la fonction f est positive et que d’après le théorème 14.2 (a),
‖f‖sup≤‖1K ρ

3

‖∞‖αρ‖1≤1×1=1. Donc f est à valeurs dans [0, 1].

D’autre part {f 6=0} ⊂ K ρ
3
+B(0, ρ3) ⊂ K 2ρ

3
⊂ ω. Par suite f ∈C∞

K (Rd, [0, 1])

et f≡0 sur cω. Enfin,

1K ρ
3

∗ αρ(x) :=
∫

Rd

1K ρ
3

(x−y)αρ(y)λd(dy) =
∫
x−K ρ

3

αρ(y)λd(dy).

Sur cette écriture, on constate que, si x∈K,B(0; ρ3)⊂ x−K ρ
3

; en effet, si |u|≤ ρ
3 ,

u = x−(x−u)︸ ︷︷ ︸
∈K ρ

3

. Par suite, 1K ρ
3

∗ αρ≡1 sur K. ♦

14.6 Autres convolutions

14.6.1 . . . de fonctions

On peut définir une opération ayant des propriétés similaires à la convolution
sur Rd entre des fonctions définies sur d’autres espaces.

Ainsi, sur KZ :=
{
(un)n∈Z, un∈K

}
, on peut poser (formellement)

∀n∈Z, (u ∗ v)n :=
∑
k∈Z

un−k vk.

L’existence effective de la suite convolée u ∗ v sera notamment assurée lorsque
(un)n∈Z et -(vn)n∈Z sont dans

`1K(Z) :=
{
(un)n∈Z∈KZ :

∑
n∈Z

|un|<+∞
}
.

De même si l’on considère le “tore”
(
[0, 2π[,B([0, 2π[), λ|[0,2π[/(2π)

)
, toute

fonction (borélienne) f : [0, 2π[→ K se prolonge naturellement par périodicité en
une fonction, toujours notée f , définie par

∀x ∈ R, f(x) := f
(
x− 2π

[ x
2π

])
(où [·] désigne la partie entière).

On peut alors définir la convolution par

(f ∗ g)(x) :=
∫ 2π

0
f(x−y) g(y) dy

2π
.
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Cette quantité existe par exemple dès que f, g ∈ L1
K(1[0,2π[.λ1/2π). L’adaptation

à ce cadre périodique de l’ensemble des résultats obtenus sur Rd est immédiate en
introduisant

C#2π(R,K) :=
{
f : R→ K continue, 2π-périodique

}
muni de la norme ‖f‖

#2π
:= sup

x∈[0,2π[
|f(x)|.

En outre, tous ces cadres admettent des extensions multi-dimensionnelles.

Plus généralement, l’existence d’une convolution ayant des propriétés analo-
gues à celle définie sur Rd est liée à la présence d’une structure de groupe abélien
sur l’ensemble étudié et à l’invariance de la mesure considérée par les translations
relatives à cette addition. Une théorie globale regroupant toutes ces situations a été
développée : la convolution sur les groupes abéliens (localement) compacts munis
de leur mesure de Haar.

14.6.2 Convolution de mesures positives σ-finies

On peut également définir dans ce même cadre une notion abstraite de convolu-
tion entre mesures positives σ-finies définies sur les boréliens d’un groupe abélien
localement compact. Pour simplifier plaçons-nous sur Rd. Soient µ et ν deux me-
sures sur (Rd,B(Rd)). On définit la convolée µ ∗ ν de µ par ν comme la mesure
image de la mesure-produit µ ⊗ ν par l’application addition (x, y) 7→ x + y. Le
théorème 12.1 (théorème de transfert de la mesure-image) montre alors que µ + ν
est caractérisée par∫

Rd

f(z)µ ∗ ν(dz) =
∫

Rd×Rd

f(x+ y)µ⊗ ν(dx, dy)

le long des fonctions boréliennes bornées ou positives f de Rd dans R. On écrit
généralement plus simplement (grâce au théorème de Fubini)∫

Rd

f(z)µ ∗ ν(dz) =
∫

Rd×Rd

f(x+ y)µ(dx)ν(dy).

On vérifie qu’une telle opération entres mesures σ-finie est commutative, associa-
tive et possède la masse de Dirac en 0, δ0, comme élément neutre.

Le lien avec la notion de convolution de fonctions est des plus naturel : si µ et ν
ont respectivement f et g pour densité par rapport à la mesure de Lebesgue λd sur
(Rd,B(Rd)), alors µ∗ν a une densité par rapport à λd donnée par f ∗g. L’exercice
14.15 ci-après reprend ces affirmations de façon plus précise.

Cette notion est essentielle en Probabilités puisque la convolée des lois de deux
vecteurs aléatoires indépendants n’est autre que la loi de leur somme.
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14.7 Exercices

L’espace mesuré est (Rd,B(Rd), λd) où d≥1.

14.1 Soient a, b∈ R, a<b, χ := 1[a,b] et, pour n≥1, χn := χ∗ · · · ∗χ (n fois).

a) Représenter le graphe de χ2 et montrer que, pour tout n≥2, χn ∈ C n−2
K (R).

b) Calculer ‖χn‖1 pour n≥ 1. Calculer ‖χ2‖sup et montrer que, pour tout n≥ 3,
‖χn‖sup<‖χn‖1.

c) Soit la fonction ϕ :=
∑
n≥2

χn. Donner une condition nécessaire et suffisante pour

que ϕ ∈ L 1
R(λ). Montrer que, sous cette condition, ϕ∈C0(R) et vérifie l’équation

fonctionnelle ϕ = χ ∗ ϕ+ χ2 . La fonction ϕ est-elle dérivable sur R?

14.2 En considérant la convolution par la fonction 1[0,1], montrer que L1
R(R) n’a

pas d’élément neutre pour l’opération ∗.

14.3 Soit f ∈L 1
K(λd). La transformée de Fourier de f est définie sur Rd par

f̂(t) :=

∫
Rd

f(x) e−i(t·x) dx,

où · désigne le produit scalaire sur Rd.

a) Montrer que f̂ ∈C0(Rd).

b) Soient f, g∈L 1
K(λd). Montrer que f̂ ∗g= f̂ ĝ.

c) En déduire que L1
K(λ) n’a pas d’élément neutre pour l’opération ∗.

14.4 Inégalité de Young pour la convolution

Soient p, q, r ∈ [1,+∞] tels que 1
p +

1
q =1+ 1

r , f ∈ L p
K(λd) et g ∈ L q

K(λd). Mon-
trer que f ∗ g est définie λd-p.p. et vérifie l’inégalité de Young pour la convolution

f ∗ g ∈ L r
K(λd) et ‖f ∗ g‖r ≤ ‖f‖p ‖g‖q.

14.5 Soient f ∈ L1
K(λd) et g ∈ LpK(λd), 1 ≤ p ≤ +∞. Montrer que, pour tout

a ∈ K tel que |a| < ‖f‖−1
1 , l’équation h − af ∗ h = g possède une unique

solution dans LpK(λd).

14.6 Soient p ∈ [1,+∞[, f ∈ L p
K(λd) et (αn)n≥0 une approximation positive de

l’unité. Montrer que lim
n
‖αn∗f−f‖p = 0 en appliquant l’inégalité de Jensen avec

la mesure de probabilité αn(x)(dx) (cf. exercice 7.10).

14.7 Soient f ∈ L 1
K(λd) et g ∈ L ∞

K (λd) telles que lim
|x|→+∞

g(x) = 0 . Montrer

que f ∗ g ∈ C0(Rd). Le résultat subsiste-t-il si l’on omet le contrôle de g à l’infini ?

14.8 Soit (Bn)n≥0 une suite de boules ouvertes de Rd centrées à l’origine et de
rayon rn > 0 tel que limn rn = 0 ; soient f ∈ L 1

K(λd) et (fn)n≥0 la suite des
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moyennes de f sur les boules Bn, définies sur Rd par

fn(x) :=
1

λd(Bn)

∫
x+Bn

f(y)λd(dy).

Montrer qu’il existe une sous-suite (fϕ(n))n≥0 qui converge λd-p.p. vers f .

14.9 Soit f ∈L 1
K(λd) nulle hors d’un compact, telle que pour toute ϕ∈C

∞
K (Rd),∫

Rd

f(x)∆ϕ(x) dx = 0, où ∆ désigne le laplacien dans Rd.

a) Soit α∈C
∞
K (Rd). Montrer que α∗f ∈C

∞
K (Rd) et que, pour toute ϕ∈C

∞
K (Rd),∫

Rd

(α∗f)(x)∆ϕ(x) dx = 0.

b) En déduire que α∗f=0 puis que f=0 λd-p.p..

14.10 Cet exercice nécessite la notion de support essentiel d’une fonction mesu-
rable étudiée dans l’exercice 6.14.
a) Soient f, g∈L 1

K(λd) et les ensembles A := Sµf ∪ {f =0}, B := Sµg ∪ {g=0}
et F := Sµf +S

µ
g . Montrer que λd(cA) = λd(

cB) = 0 et que, pour tout x ∈ cF ,{
y∈Rd : f(x−y) g(y) 6= 0

}
⊂ (x− cA) ∪ cB.

b) En déduire que Sµf∗g ⊂ S
µ
f + Sµg .

14.11 Soit f ∈L 1
C(R

d), d≥ 1. On définit la transformée de Fourier de la fonction
f par

f̂(t) :=

∫ +∞

−∞
f(x) e−i(t·x) dx, t∈Rd,

où · désigne le produit scalaire sur Rd. On considère, pour tout n∈N∗, la fonction
an définie par an(x) := (2π)−d e−

1
n
(|x1|+···+|xd|), x ∈ Rd.

a) Calculer la fonction αn := ân et montrer que c’est un noyau de convolution sur
Rd (cf. section 14.4).
b) Soit f ∈L 1

C(R
d) telle que f̂ ∈L 1

C(R
d). Montrer que, pour tout x∈Rd,

(αn∗f)(x) =
∫ +∞

−∞
an(t) f̂(t) e

i(x·t) dt.

c) En déduire la formule d’inversion de Fourier

(2π)d f(x) =

∫ +∞

−∞
f̂(t) ei(x·t) dt =

ˆ̂
f(−x) λd(dx)-p.p..

14.12 a) Soient g, h ∈L 1
C(R) telles que ĝ ∈L 1

C(R) et ‖ĥ‖∞ < 1. Résoudre dans
L 1

C(R) l’équation f = g + h ∗ f .
b) Soient a, b deux réels tels que a> b> 0 et g, h les fonctions définies sur R par
g(x) := e−a|x| et h(x) := (a− b) 1R+(x) e

−ax, x ∈ R. Résoudre, à l’aide d’une
équation différentielle, l’équation f = g + h ∗ f .
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c) En déduire la transformée de Fourier de la fonction x 7→ 1

(a− ix) (b+ ix)
.

14.13 Soit µ la mesure définie sur B(R∗
+) par µ(dx) := x−1 dx. On définit le

produit de convolution sur R∗
+ de deux fonctions mesurables f, g : R∗

+ → K, par

f ?g(x) :=

∫
R∗
+

f(xy−1) g(y)µ(dy),

lorsque cette intégrale a un sens.
a) Soient f, g : R∗

+ → R+ deux fonctions boréliennes. Montrer que f?g définit une
fonction borélienne de R∗

+ dans R+ et que∫
R∗
+

f ?g dµ =

∫
R∗
+

fdµ

∫
R∗
+

gdµ.

b) Soient f, g∈L 1
K(µ). Montrer que

f ? g∈L 1
K(µ) et ‖f ? g‖L1(µ) ≤ ‖f‖L1(µ)‖g‖L1(µ).

c) Soient p∈ [1,+∞] et (f, g)∈L p
K(µ)×L 1

K(µ). Montrer que
f ?g∈L p

K(µ) et ‖f ?g‖Lp(µ) ≤ ‖f‖Lp(µ)‖g‖L1(µ).

14.14 Inégalité de Hardy à poids

On considère la mesure µ définie sur B(R∗
+) par µ(dx) := x−1 dx et ? la convo-

lution associée ; soient α ∈ R \ {1}, p ∈ [1,+∞[ et f : R∗
+ → K une fonction

borélienne vérifiant idαf ∈L p
K(µ), où id désigne l’identité sur R∗

+.

a) Montrer que la fonction F (x) :=


1

x

∫ x

0
f(t) dt si α<1

1

x

∫ +∞

x
f(t) dt si α>1

est bien définie

pour tout x>0 et qu’il existe gα∈L p
R(µ) telle que idαF = (idαf)?gα.

b) En déduire l’inégalité de Hardy à poids :∫ +∞

0
xpα−1|F (x)|p dx ≤ 1

|α−1|p
∫ +∞

0
xpα−1|f(x)|p dx (Hp)

et montrer que cette inégalité étend l’inégalité de Hardy de l’exercice 9.16.
c) Montrer que la constante 1

|α−1|p dans l’inégalité (Hp) est optimale.

d) Montrer qu’il n’y a pas d’inégalité analogue à (Hp) lorsque α=1.

14.15 Soient µ et ν deux mesures finies définies sur (Rd,B(Rd)). On note µ∗ν la
mesure borélienne image de la mesure produit µ⊗ν par la fonction (u, v) 7→ u+v.
a) Soit f une fonction borélienne bornée sur Rd. Montrer que∫

Rd

f d(µ∗ν) =
∫

Rd×Rd

f(u+v)µ(du) ν(dv).
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b) Montrer que la loi ∗ ainsi définie est commutative, associative et possède la
mesure de Dirac en 0 comme élément neutre.

c) Soient f, g∈L 1
R+

(λd) et µ, ν les mesures de densités respectives f, g par rapport
à λd, i.e. µ := f.λd, µ := g.λd. Montrer que µ∗ν= (f ∗g).λd.

d) Soient g ∈L 1
R+

(λd) et µ := g.λd. Montrer qu’il existe h ∈L 1
R+

(λd) tel que
d(µ∗ν)=h.dλd.

e) Montrer que suppµ∗ν ⊂ suppµ+supp ν (la notion de support d’une mesure
est définie à l’exercice 6.15).



Chapitre 15

Transformées de Fourier et de Laplace

La transformée de Fourier est un outil fondamental dans de nombreux domaines des
mathématiques, tant pures qu’appliquées. Selon les domaines sa définition varie à la
marge selon que l’on privilégie tel ou tel aspect ou champ d’application, notamment
par l’introduction d’un facteur 2π dans l’argument de l’exponentielle complexe,
voire une normalisation de la mesure dont on considère la transformation par un
facteur (2π)−

d
2 . Notre choix s’est arrêté sur la convention la plus en cours en théorie

des Probabilités.
Nous étudierons également mais de manière plus rapide, en lien avec la trans-

formée de Fourier, la transformée de Laplace à la fin de ce chapitre.

Notations complémentaires : • Dans ce chapitre la notation | · | désignera exclu-
sivement la norme euclidienne canonique sur Rd. Le produit scalaire canonique de
deux vecteurs x = (x1, . . . , xd) et x′ = (x′1, . . . , x

′
d)∈ Rd sera, lui, noté

(x|x′) :=
d∑
i=1

xi x
′
i.

• Le conjugué du nombre complexe z sera noté z̄ et son module |z|.

• On note Ǐd la symétrie centrale Ǐd : x 7→ x̌ := −x et, pour toute fonction f
définie sur Rd, f̌ := f ◦ Ǐd. Ainsi f̌(x) = f(−x) pour tout x ∈ Rd. On utilisera
sans restriction que Ǐd ◦ Ǐd = Id (Ǐd est involutive).

Rappel : Soit CK(Rd,K) l’ensemble des fonctions continues à support compact de
Rd dans K. On fera largement usage du résultat de densité suivant :

∀ p∈ [1,+∞[, CK(Rd,K) est dense dans (LpK(λd), ‖ · ‖p).

Ce théorème a été établi au chapitre 7 dans sa version uni-dimensionnelle et dans
la section 9.7 (théorème 9.10) dans le cas général.
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15.1 Définition et premières propriétés

Définition 15.1. (a) Soit µ une mesure (positive) finie sur Rd. La transformée de
Fourier de µ est une fonction µ̂ définie en tout point ξ de Rd par

µ̂(ξ) =

∫
Rd

ei(ξ|x)µ(dx) (15.1)

(b) Soit f ∈ L 1
C(λd). La transformée de Fourier de f est une fonction f̂ définie en

tout point ξ de Rd par

f̂(ξ) =

∫
Rd

ei(ξ|x)f(x)λd(dx). (15.2)

L’existence des transformées de Fourier de µ et de f découle immédiatement
du fait que, pour tout ξ∈ Rd, |ei(ξ|.)| = 1. En effet, 1∈ L 1(µ) puisque la mesure
µ est finie et ∫

Rd

|ei(ξ|.)|f(x)|λd(dx) < +∞,

puisque |f | est λd-intégrable par hypothèse.

Notons qu’à toute fonction f positive λd-intégrable définie sur (Rd,B(Rd)),
on peut associer la mesure finie µf (dx) = f(x)λd(dx). On vérifie que les deux
définitions de la transformée de Fourier sont consistentes puisque

f̂(ξ) := f̂.λd(ξ) =

∫
Rd

ei(ξ|x)f(x)λd(dx). (15.3)

Les propriétés suivantes sont évidentes :

P1 Pour tout ξ∈ Rd,

µ̂(−ξ) = µ̂(ξ) =

∫
Rd

ei(ξ|x)µ̌(dx) = ̂̌µ(ξ),
où µ̌ désigne l’image de µ par la symétrie centrale Ǐd : x 7→ x̌ := −x. Ceci se
reformule en ̂̌µ = µ̂ = ˇ̂µ.

En particulier, si µ est symétrique, µ̂ est à valeurs réelles.

P′1 Pour tout ξ∈ Rd,

f̂(−ξ) = ̂̄f(ξ) = ∫
Rd

ei(ξ|x)f(−x)λd(dx) = ̂̌f(ξ)
i.e. ̂̌f = ̂̄f =

ˇ̂
f.
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En particulier, si f est à valeurs réelles, f̂(−ξ) = f̂(ξ) ; si en outre f est paire, alors
f̂ est à valeurs réelles.

P2 Pour toutes mesures finies µ, µ′ sur (Rd,B(Rd)) et tout ρ ≥ 0, ρ̂µ+µ′ =
ρ µ̂+ µ̂′ et ρ̂ µ = ρ µ̂.

P′2 La transformée de Fourier est une application C-linéaire sur L 1
C(λd) et R-

linéaire sur L 1
R(λd).

Proposition 15.1. (a) Les transformées de Fourier µ̂ et f̂ sont des fonctions uni-
formément continues et bornées. Plus précisément

‖µ̂‖sup ≤ µ(Rd),

‖f̂‖sup ≤ ‖f‖1 ,

|µ̂(ξ)− µ̂(ξ′)| ≤
∫

Rd

min
(
2, |ξ − ξ′| |x|

)
µ(dx),

|f̂(ξ)− f̂(ξ′)| ≤
∫

Rd

min
(
2, |ξ − ξ′| |x|

)
|f(x)|λd(dx).

(b) Théorème de Riemann-Lebesgue : Pour toute fonction f ∈ L 1
C(λd),

lim
|ξ|→+∞

∣∣f̂(ξ)∣∣ = 0.

En particulier, f̂ ∈ C0(R
d,C) = {g∈ C (Rd,C) : lim

|x|→+∞
g(x) = 0}.

DÉMONSTRATION : (a) Pour tout ξ∈ Rd,

µ̂(ξ)− µ̂(ξ′) =
∫

Rd

(ei(ξ|x) − ei(ξ′|x))µ(dx).

Or, pour tout u, v ∈ R, |eiu − eiv| ≤ |u − v| d’une part d’après l’inégalité des
accroissements finis et |eiu − eiv| ≤ 2 d’autre part via l’inégalité triangulaire. Par
conséquent

|µ̂(ξ)− µ̂(ξ′)| ≤
∫

Rd

min
(
2, |(ξ − ξ′|x)|

)
µ(dx)

≤
∫

Rd

min
(
2, |ξ − ξ′||x|

)
µ(dx)

grâce à l’inégalité de Cauchy-Schwarz.
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(b) Sachant que eiπ = −1, il vient

f̂(ξ) =

∫
Rd

ei(ξ|x)f(x)λd(dx)

= −
∫

Rd

ei
(
ξ|x+π ξ/|ξ|2

)
f(x)λd(dx)

= −
∫

Rd

ei(ξ|y)f
(
y − π ξ/|ξ|2

)
λd(dy)

via le changement de variable affine x = y − π ξ/|ξ|2. D’où

f̂(ξ) =
f̂(ξ) + f̂(ξ)

2

=
1

2

∫
Rd

ei(ξ|x)
(
f(x)− f(x− π ξ/|ξ|2)

)
λd(dx)

et partant ∣∣f̂(ξ)∣∣ ≤ 1

2

∫
Rd

∣∣f(x)− f(x− π ξ/|ξ|2)∣∣λd(dx)
=

1

2

∥∥f − τπ ξ/|ξ|2f∥∥
1
−→

|ξ|→+∞
0,

d’après le théorème 14.1 (b). ♦

Remarque : Le théorème de Riemann-Lebesgue (assertion (b)) n’est pas vérifié
par les transformées de Fourier de mesures finies en général. Ainsi la transformée
de Fourier de la masse de Dirac en a∈ Rd

δ̂a(ξ) =

∫
Rd

ei(ξ|x)δa(dx) = ei(ξ|a), ξ∈ Rd,

est une fonction de module 1.

Corollaire 15.1. La transformée de Fourier de fonctions intégrables est une appli-
cation C-linéaire continue de

(
L 1

C(λd), ‖ · ‖1
)

dans
(
C0(Rd,C), ‖ · ‖sup

)
.

On peut aller beaucoup plus loin dans l’analyse de la régularité de la trans-
formée de Fourier.

Proposition 15.2. (a) Si
∫

Rd

|x|µ(dx) < +∞, alors µ̂∈ C 1(Rd) et

∂µ̂

∂ξk
(ξ) = i

∫
Rd

xke
i(ξ|x)µ(dx). (15.4)

(b) Si la fonction x 7→ |x||f(x)|∈ L 1
R(λd) alors f̂ ∈ C 1(Rd) et

∂f̂

∂ξk
(ξ) = i

∫
Rd

xke
i(ξ|x)f(x)λd(dx). (15.5)
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DÉMONSTRATION : Ces affirmations sont des applications immédiates des théo-
rèmes de dérivation et de continuité des intégrales dépendant d’un paramètre. ♦

Corollaire 15.2. (a) Si la mesure finie µ admet des moments polynômiaux à tous

les ordres (i.e.
∫

Rd

|x|nµ(dx) < +∞ pour tout n∈ N), alors µ̂∈ C
∞
(Rd).

(b) Si, pour tout n∈ N,
∫

Rd

|x|n|f(x)|λd(dx) < +∞, alors f̂ ∈ C
∞
(Rd).

Proposition 15.3. Si f est continûment différentiable sur R, lim
|x|→+∞

f(x) = 0 et

f ∈ L 1(λd),
∂f

∂xk
∈ L 1(λd), k = 1, . . . , d, alors

∀ ξ∈ Rd,
∫

R
ei(ξ|x)

∂f

∂xk
(x)dxk = −i ξkf̂(ξ).

D’où, en particulier,

f̂(ξ) = o

(
1

|ξ|

)
lorsque |ξ| → +∞.

Remarque : Lorsque d = 1, l’hypothèse lim
|x|→+∞

f(x) = 0 est redondante car

∀x, y∈ Rd, |f(x)− f(y)| ≤
∣∣∣∣∫ y

x
|f ′(u)|du

∣∣∣∣ .
Comme f ′ est intégrable, x 7→

∫ x

0
|f ′(u)|du converge vers une limite finie lorsque

x → +∞ ou x → −∞. On en déduit immédiatement que f vérifie le critère de
Cauchy (fonctionnel) en ±∞. Donc f admet des limites finies en ±∞, limites qui
sont toutes deux nulles eu égard à l’intégrabilité de f .

DÉMONSTRATION : Par définition de la transformée de Fourier, on a pour tout
k = 1, . . . , d,

∂̂f

∂xk
(ξ) =

∫
Rd

ei(ξ|x)
∂f

∂xk
(x)λd(dx).

On fait disparaı̂tre la dérivée partielle de f via une intégration par parties en la
variable xk∫

R
ei(ξ|x)

∂f

∂xk
(x)dxk =

[
f(x) ei(ξ|x)

]xk=+∞

xk=−∞
− i ξkf̂(ξ)

= −i ξk
∫

R
ei(ξ|x)f(x)dxk.
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En intégrant cette égalité par rapport aux variables x1, x2, . . . , xk−1, xk+1, . . . , xd,
il vient

∂̂f

∂xk
(ξ) = −i ξkf̂(ξ).

On procède ainsi pour chacune des d variables, d’où il ressort que, pour tout rśel
ξ∈ Rd,

max
(
|ξ1|, . . . , |ξd|

) ∣∣f̂(ξ)∣∣ ≤ max

(∣∣∣∣∣ ∂̂f∂x1 (ξ)
∣∣∣∣∣ , . . . ,

∣∣∣∣∣ ∂̂f∂xd (ξ)
∣∣∣∣∣
)
. (15.6)

On se ramène à la norme euclidienne, en notant que |ξ| ≤
√
dmax

(
|ξ1|, . . . , |ξd|

)
et l’on conclut via le théorème de Riemann-Lebesgue (Proposition 15.1(b)). ♦

Corollaire 15.3. Soit f ∈ C n(Rd), n ≥ 1. Si, pour toute paire de multi-indices
α := (α1, . . . , αd) ∈ Nd, |α| := α1 + · · · + αd ≤ n et β := (β1, . . . , βd) ∈ Nd,
|β| ≤ n− 1,

∂α1+···+αdf

∂xα1
1 · · · ∂x

αd
d

∈ L 1(λd) et lim
|x|→+∞

∂β1+···+βdf

∂xβ11 · · · ∂x
βd
d

(x) = 0,

alors |f̂(ξ)| = o
(
1/|ξ|n

)
.

DÉMONSTRATION : On procède par récurrence rétrograde. On initialise le proces-
sus en appliquant la proposition 15.3 ci-dessus aux dérivées partielles d’ordre n−1.
Puis l’on remonte de proche en proche en s’appuyant sur l’inégalité (15.6) établie
dans la démonstration de la proposition 15.3 ci-avant. ♦

Au vu des résultats qui précèdent on constate une forme de dualité entre régula-
rité et comportement à l’infini d’une fonction et de sa transformé de Fourier. D’où
l’idée d’introduire un ensemble qui possèderait les deux types de propriétés et qui
de facto serait globalement stable par la transformée de Fourier.

Définition 15.2. On pose

S :=

{
f ∈ C

∞
(Rd,R) : ∀n∈ Nd, ∀m∈ N,

∂n1+···+ndf

∂xn1
1 · · · ∂x

nd
d

(ξ) = O
(
1/|ξ|m

)}
l’ensemble des fonctions régulières à décroissance rapide (parfois appelé espace de
Schwartz en référence au mathématicien français Laurent Schwartz).

En outre, on définit SC comme l’ensemble des fonctions à valeurs complexes
dont parties réelles et imaginaires sont éléments de S .

Corollaire 15.4. Si f ∈ S , alors f̂ ∈ S .



15.1. Définition et premières propriétés 325

DÉMONSTRATION : Soit m ∈ N∗. Par hypothèse, il existe une constante réelle
C > 0, telle que, pour tout x∈ Rd,

|x|m|f(x)| ≤ C

(|x|2 + 1)d
.

Or |x| ≥ |xk| pour tout k = 1, . . . , d, donc

(1 + |x|2)d ≥
∏

1≤k≤d
(1 + x2k).

Il s’ensuit d’après le théorème de Fubini-Tonnelli que∫
Rd

|x|m|f(x)|λd(dx) ≤ C
d∏

k=1

∫
R

dxk
1 + x2k

= Cπd < +∞,

donc f̂ ∈ C
∞
(Rd) d’après le Corollaire 15.2. D’autre part, comme f vérifie les

hypothèses du Corollaire 15.3 à tout ordre n, il vient :∣∣f̂(ξ)∣∣ = O

(
1

|ξ|n

)
.

Enfin, comme
∂f̂

∂ξk
(ξ) = i x̂kf(x)(ξ)

et que x 7→ xkf(x) est clairement dans S si f l’est, il apparaı̂t que

∂f̂

∂ξk
= O

(
1

|ξ|n

)
pour tout n∈ N∗. On conclut via une récurrence immédiate. ♦

Parmi toutes les fonctions de S il en est une qui possède des propriétés d’in-
variance plus spécifiques dont nous ferons un usage crucial dans la suite. Ceci est
illustré par l’exemple suivant.

Exemple : On définit sur Rd la fonction

ϕd(x) := e−|x|2 .

Il est clair que ϕd∈ S et que, par conséquent, ϕ̂d∈ S . En fait on peut calculer ex-
plicitement la transformée de Fourier de cette fonction. Dans un premier temps on
se ramène à la dimension 1 en notant que, grâce au théorème de Fubini-Lebesgue,

ϕ̂d(ξ) =

∫
Rd

ei(ξ|x)e−|x|2λd(dx) =

∫
Rd

d∏
k=1

eiξkxke−x
2
k dx1 · · · dxd

=

d∏
k=1

(∫
R
eiξkxke−x

2
kdxk

)
=

d∏
k=1

ϕ̂1(ξk).
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Or, d’après la Proposition 15.2(b), pour tout ξ∈ R,

(ϕ̂1)
′(ξ) = i

∫
R
eiuξ u e−u

2
du.

D’où, par intégration par parties,∫
R
eiξu u e−u

2
du =

[
eiuξ

(
−1

2
e−u

2

)]u=+∞

u=−∞
+ i ξ/2

∫
R
eiuξe−u

2
du

= i ξ/2 ϕ̂1(ξ).

Par conséquent ϕ̂1 vérifie l’équation différentielle ordinaire

(ϕ̂1)
′(ξ) + ξ/2 ϕ̂1(ξ) = 0.

Cette équation différentielle admet une solution explicite donnée par

ϕ̂1(ξ) = ϕ̂1(0) e
− ξ2

4 .

D’autre part ϕ̂1(0) =

∫
R
e−x

2
dx =

√
π (cf. 11). D’où finalement

∀ ξ∈ Rd, ϕ̂d(ξ) = π
d
2 e−

|ξ|2
4 . (15.7)

Proposition 15.4. (a) Soient µ et ν deux mesures positives finies. Alors

µ̂ ∗ ν = µ̂ ν̂.

(b) Soient f et g deux fonctions de L 1
C(λd). Alors

f̂ ∗ g = f̂ ĝ.

DÉMONSTRATION : (a) Par définition de µ ∗ ν, mesure image de µ ⊗ ν par l’ap-
plication (x, y) 7→ x + y, et grâce au théorème de Fubini-Lebesgue, on obtient
successivement

µ̂ ∗ ν(ξ) =

∫
Rd

ei(ξ|z)(µ ∗ ν)(dz) =
∫

Rd×Rd

ei(ξ|x)ei(ξ|y)(µ⊗ ν)(dx, dy)

=

∫
Rd

[∫
Rd

ei(ξ|x)µ(dx)

]
ei(ξ|y)ν(dy) =

∫
Rd

µ̂(ξ) ei(ξ|y)ν(dy)

= µ̂(ξ) ν̂(ξ).

(b) Ceci découle du point (a) lorsque f et g sont positives. On passe au cas général
en s’appuyant sur la bilinéarité du produit de convolution et du produit de deux
nombres complexes. On peut également procéder directement en imitant la preuve
du point (a). ♦
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15.2 Injectivité et formule d’inversion

Le résultat principal de ce paragraphe est d’établir l’injectivité de la transformée
de Fourier. Cette propriété permettra, notamment en Probabilités, de caractériser la
loi d’un vecteur aléatoire à valeurs dans Rd à l’aide d’une seule fonction.

Théorème 15.1 (Injectivité de la transformée de Fourier).
(a) L’application

(
µ 7→ µ̂

)
est injective sur l’ensemble M+

f des mesures positives
finies sur (Rd,B(Rd)).

(b) L’application
(
f 7→ f̂

)
est injective surL1(Rd,B(Rd), λd). En d’autres termes,

pour toutes fonctions f, g∈ L 1(λd),

f̂ = ĝ ⇒ f = g λd-p.p.

Ce théorème repose sur une identité essentielle qui sera établie dans le lemme
15.2 ci-après qui lui-même nécessite un petit lemme préparatoire.

Lemme 15.1. (a) Soient f ∈ L 1
C(λd) et θ > 0. Alors la fonction fθ(x) := f(x/θ)

vérifie
f̂θ(ξ) = θdf̂(θξ).

(b) On considère pour tout σ > 0, la fonction gσ définie par

gσ(x) :=
1

(2π)
d
2σd

e−
|x|2

2σ2 , λ∈ R.

La fonction gσ est une densité de probabilité (appelée densité gaussienne centrée
de variance σ2) et, pour tout ξ∈ Rd,

ĝσ(ξ) = e−
σ2

2
|ξ|2 . (15.8)

DÉMONSTRATION : (a) Le changement de variables homothétique x := θy en-
traı̂ne

f̂θ(ξ) =

∫
Rd

ei(ξ|x)f(x/θ)λd(dx) =

∫
Rd

ei(ξ|θy)f(y)θdλd(dy) = θdf̂(θξ).

(b) Ce point découle du point (a) appliqué avec θ =
√
2σ et de l’identité (15.7). ♦

Lemme 15.2. Soit µ une mesure positive finie. Pour tout σ > 0, on définit la convo-
lution de la fonction gσ et de la mesure µ ( 1) par

∀ ξ∈ Rd, (gσ ∗ µ)(ξ) :=
∫

Rd

gσ(ξ − x)µ(dx).

1. La fonction gσ ∗ µ ainsi définie n’est autre que la densité de la mesure absolument continue
(gσ.λd) ∗ µ par rapport à la mesure de Lebesgue.
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Alors, pour tout ξ∈ Rd,

(gσ ∗ µ)(ξ) = (2π)−d
∫

Rd

µ̂(y)e−i(ξ|y)e−
σ2

2
|y|2λd(dy). (15.9)

L’identité (15.9) reste vraie si l’on remplace formellement la mesure finie µ et sa
transformée de Fourier µ̂ par une fonction f ∈ L 1

C(λd) et sa transformée de Fou-
rier f̂ .

DÉMONSTRATION : On part du constat que, pour tout ξ∈ Rd,

ĝ 1
σ
(ξ) = e−

|ξ|2

2σ2 .

Par suite, on a

gσ ∗ µ(ξ) =

∫
Rd

e−
|ξ−x|2

2σ2
µ(dx)

(2π)
d
2σd

=

∫
Rd

ĝ 1
σ
(ξ − x) µ(dx)

(2π)
d
2σd

=

∫
Rd

∫
Rd

ei(ξ−x|y)e−σ
2 |y|2

2 σd
dy

(2π)
d
2

µ(dx)

(2π)
d
2σd

=

∫
Rd

[∫
Rd

e−i(x|y)µ(dx)

]
ei(ξ|y)e−σ

2 |y|2
2

dy

(2π)d
.

La dernière égalité découle du théorème de Fubini-Lebesgue qu’il est loisible d’ap-
pliquer puisque la fonction

(x, y) 7→
∣∣∣ ei(ξ−x|y)e−σ2 |y|2

2

∣∣∣ = e−σ
2 |y|2

2

est clairement µ(dx)⊗ λd(dy)-intégrable. Finalement, on obtient

gσ ∗ µ(ξ) =

∫
Rd

µ̂(−y) ei(ξ|y)e−σ2 |y|2
2

dy

(2π)d

=

∫
Rd

µ̂(y) e−i(ξ|y)e−σ
2 |y|2

2
dy

(2π)d

car la mesure de Lebesgue est invariante par symétrie centrale. La démonstration
dans le cas d’une fonction intégrable est identique. ♦

DÉMONSTRATION DU THÉORÈME 15.1 : (a) Si µ̂ = ν̂, il découle de la for-
mule (15.9) du lemme 15.2 que, pour toutσ > 0,

gσ ∗ µ = gσ ∗ ν.

Nous allons établir que, pour toute fonction h : Rd → R lipschitzienne bornée,∫
Rd

hdµ = lim
σ→0

∫
Rd

h(x)(gσ ∗ µ)(x)λd(dx). (15.10)
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Comme

|h(x)gσ(x− y)| ≤ ‖h‖sup gσ(x− y) et (x, y) 7→ gσ(x− y)∈ L 1(λd ⊗ µ),

on peut appliquer le théorème de Fubini-Lebesgue, d’où il ressort que∫
Rd

h(x)(gσ ∗ µ)(x)λd(dx) =
∫

Rd

(∫
Rd

gσ(x− y)h(x)λd(dx)
)
µ(dy).

Par le changement de variable affine x := y + z, il vient∫
Rd

h(x)(gσ ∗ µ)(x)λd(dx) =
∫

Rd

(∫
Rd

gσ(z)h(y + z)λd(dz)

)
µ(dy).

D’autre part, gσ étant une densité de probabilité,∫
Rd

h dµ =

∫
Rd

(∫
Rd

hdµ

)
gσ(z)λd(dz),

d’où∣∣∣∣∫
Rd

h(x)(gσ ∗ µ)(x)λd(dx)−
∫

Rd

hdµ

∣∣∣∣
=

∣∣∣∣∫
Rd

∫
Rd

gσ(z)(h(y + z)− h(y))λd(dz)µ(dy)
∣∣∣∣

≤ [h]Lip µ(R
d)

∫
Rd

|z| gσ(z)λd(dz)

= [h]Lip µ(R
d)

∫
Rd

σ|z| e−
|z|2
2

(2π)
d
2 σd

σdλd(dz)

= σ [h]Lip µ(R
d)

∫
Rd

|z| e
− |z|2

2

(2π)
d
2

λd(dz) −→
σ→0

0.

Via la convergence (15.10), on déduit que l’égalité µ̂ = ν̂ entraı̂ne∫
Rd

h dµ =

∫
Rd

h dν

pour toute fonction lipschitzienne bornée. Soit alors F un fermé de Rd et hp définie
par hp(x) := (1 − p d(x, F ))+ . Les fonctions hp sont lipschitziennes bornées et
décroissent vers 1F , donc par convergence dominée, on déduit que µ(F ) = ν(F ).
Les mesures finies µ et ν coı̈ncident donc sur le π-système des fermés, générateur
des boréliens de Rd. Par conséquent µ = ν.

(b) La démarche adoptée dans le point (a) se transpose de façon immédiate en
remplaçant formellement µ(dx) par f(x)λd(dx), puis par la mesure positive finie
|f(x)|λd(dx). On obtient alors que, pour tout fermé F de Rd,∫

F
f(x)λd(dx) =

∫
F
g(x)λd(dx).
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Or, on vérifie aisément (à l’aide du théorème de convergence dominée) que

Λ :=

{
A∈ B(Rd),

∫
A
f(x)λd(dx) =

∫
A
g(x)λd(dx)

}
est un λ-système sur Rd. Il contient le π-système des fermés de Rd, générateur
des boréliens donc Λ = B(Rd). On en conclut que f = g λd-p.p. en considérant
successivement les boréliens {f > g} et {g > f} et en utilisant que si

∫
Rd hdλd =

0 et h est borélienne positive alors h = 0 λd-p.p. ♦

On déduit de ce théorème le corollaire immédiat suivant.

Corollaire 15.5. (a) Une mesure finie µ est symétrique si et seulement si sa trans-
formée de Fourier µ̂ est à valeurs réelles.

(b) Une fonction à valeurs réelles f est “λd(dx)-p.p.” paire (f(x) = f(−x)
λd(dx)-p.p.) si et seulement si f̂ est à valeurs réelles (on peut supprimer le λd(dx)-
p.p. si f est a priori continue).

Le théorème d’inversion (globale) de la transformée de Fourier s’appuie sur les
mêmes ingrédients.

Théorème 15.2 (Inversion de Fourier).
(a) Soit µ une mesure positive finie telle que µ̂∈ L 1(λd). Alors µ est absolument
continue par rapport à la mesure de Lebesgue et admet une densité (positive) ϕ,
uniformément continue et bornée sur Rd, donnée en tout point x par

ϕ(x) := (2π)−d
∫

Rd

µ̂(ξ)e−i(x|ξ) λd(dξ) = (2π)−d ̂̂µ(−x).
(b) Si f et f̂ sont dans L 1

C(λd), alors

f(x) = (2π)−d
∫

Rd

f̂(ξ)e−i(x|ξ) λd(dξ) = (2π)−d
̂̂
f(−x) λd(dx)-p.p. (15.11)

En particulier, ceci entraı̂ne que l’égalité (15.11) est vérifiée ponctuellement en
tout réel x en lequel la fonction f est continue à droite ou à gauche.

Remarque : On déduit du point (b) que si f a une transformée de Fourier intégra-
ble, alors f est λd-p.p. égale à une fonction continue bornée tendant vers 0 à l’infini
(propriétés vérifiées par toute transformée de Fourier de fonction intégrable).

DÉMONSTRATION : (a) Comme µ̂ ∈ L 1(λd), le théorème de convergence do-
minée permet de passer à la limite lorsque σ → 0 dans l’identité (15.9) du lemme
15.2 de façon à obtenir

lim
σ→0

gσ ∗ µ(x) = (2π)−d
∫

Rd

µ̂(ξ) e−i(x|ξ) λd(dξ), (15.12)
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en utilisant que ∣∣∣∣ µ̂(ξ)e−i(x|ξ)e−σ2

2
|ξ|2
∣∣∣∣ ≤ |µ̂(ξ)| ∈ L 1

(
λd(dξ)

)
.

Notonsϕ la fonction en la variable x∈ Rd définie par l’égalité (15.12). Tout d’abord
il est clair que ϕ(x) = (2π)−d ̂̂µ(−x). La fonction ϕ est donc bornée et (uni-
formément) continue en tant que transformée de Fourier d’une fonction intégrable
(la fonction (2π)−d ˇ̂µ). Enfin ϕ est à valeurs réelles car

ϕ(x) = (2π)−d
∫

Rd

µ̂(ξ) e−i(x|ξ) λd(dξ) = (2π)−d
∫

Rd

µ̂(−ξ) ei(x|ξ) λd(dξ)

= (2π)−d
∫

Rd

µ̂(ξ′) e−i(x|ξ
′) λd(dξ

′) (ξ = −ξ′)

= ϕ(x).

D’autre part, par application du théorème de convergence dominée, on déduit que
pour toute fonction h continue à support compact

lim
σ→0

∫
Rd

h(x)(gσ ∗ µ)(x)λd(dx) =

∫
Rd

h(x) lim
σ→0

(gσ ∗ µ)(x)λd(dx)

=

∫
Rd

h(x)ϕ(x)λd(dx).

Combinant ceci avec la convergence (15.10) obtenue lors de la démonstration du
théorème 15.1 (injectivité) on obtient que pour toute fonction h : Rd → R lipschit-
zienne à support compact ∫

Rd

h dµ =

∫
Rd

hϕdλd, (15.13)

soit encore ∫
Rd

hdµ+

∫
Rd

hϕ− · dλd =
∫

Rd

hϕ+ · dλd (15.14)

où ϕ± = max(±ϕ, 0) désignent respectivement les parties positive et négative
de la fonction ϕ (ce sont toutes deux, par construction, des fonctions continues
positives, bornées par ‖ϕ‖sup).

Nous allons établir que ϕ− = 0 et que µ = ϕ · λd. Chacun des deux membres
de l’équation (15.14) définit une forme linéaire positive (en la variable h) sur(
CK(Rd,R), ‖·‖sup

)
. Ces deux formes linéaires coı̈ncident donc sur le sous-espace

Lip
K
(Rd,R) qui est dense dans

(
CK(Rd,R), ‖ · ‖sup

)
d’après le théorème 9.10,

elles sont donc en fait identiques. D’après le théorème de Riesz (théorème 10.1) la
mesure de représentation d’une forme linéaire positive continue est unique donc

µ+ ϕ− .λd = ϕ+ .λd.
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En particulier, sachant ϕ− × ϕ+ ≡ 0, il vient

1{ϕ−>0}.µ = −ϕ− .λd

ce qui entraı̂ne à son tour que la mesure ϕ− .λd est à la fois positive et négative
donc identiquement nulle ; soit encore que ϕ− = 0 λd-p.p. La fonction ϕ− étant
continue, elle est donc identiquement nulle.

Enfin, comme les fonctions (2π)−d ̂̂f(−.) et f sont égales sur une partie partout
dense de R, il existe pour chaque x ∈ R, une suite xn convergeant vers x, soit
par valeurs strictement supérieures, soit par valeurs strictement inférieures, selon
les besoins, où les deux fonctions coı̈ncident. La première fonction étant continue
(partout) et la seconde l’étant (à droite ou à gauche) en x, elles sont égales en x. Le
même raisonnement s’applique pour les limites à droite et à gauche. ♦

Exemple : Soit f(x) := 1/(1 + x2). Pour tout ξ∈ Rd,

f̂(ξ) = π e−|ξ|.

Pour établir cette formule, on prend le problème à l’envers : on part de la trans-
formée de Fourier de l’exponentielle symétrisée qui, elle, se calcule aisément :∫

R
eiξxe−|x| dx =

∫ 0

−∞
e(iξ+1)xdx+

∫ +∞

0
e(iξ−1)x dx

=
1

iξ + 1
− 1

iξ − 1
=

−2
−x2 − 1

=
2

x2 + 1
.

La fonction x 7→ 2/(x2 + 1) est intégrable donc par la formule d’inversion, on
trouve que

e−|x| =
1

2π

∫
R
e−ixξ

2

1 + ξ2
dξ

=
1

2π

∫
R
eixξ

2

1 + ξ2
dξ.

D’où le résultat annoncé.

Le corollaire suivant se déduit immédiatement du théorème précédent, du Co-
rollaire 15.4 (et de la propriété P’1 ̂̌f =

ˇ̂
f ).

Corollaire 15.6. Pour toute fonction f ∈ S , f̂ ∈ S et̂̂
f = (2π)df̌ .

En particulier si l’on désigne par F l’opérateur de transformée de Fourier f 7→ f̂ ,
il vient F (S ) = S et, sur S ,

F−1 = (2π)−dF̌ où F̌ (f) := F (f̌).
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Il existe également un résultat local d’inversion de la transformée de Fourier,
énoncé ici pour les fonctions de la variable réelle. On note f(x+) et f(x−) les
limites à droite et à gauche de la fonction f lorsqu’elles existent.

Théorème 15.3. Soient f ∈ L 1(λd) et x∈ R. Si la fonction f admet une limite à
droite et à gauche en x, notées respectivement f(x+) et f(x−) et si la fonction

t 7−→ f(x+ t) + f(x− t)− (f(x+) + f(x−))

t
(15.15)

est intégrable au voisinage de 0, alors

f(x+) + f(x−)

2
=

1

2π
lim

M→+∞

∫ M

−M
f̂(ξ)e−ixξ dξ. (15.16)

Remarque : Ce résultat est à rapprocher de son analogue plus classique sur les
séries de Fourier.

Remarque : La condition (15.15) est notamment vérifiée si f est localement lip-
schitzienne (voire höldérienne) à droite et à gauche de x. En outre, aucune hy-
pothèse d’intégrabilité n’est requise sur f̂ .

Lemme 15.3. Soit F ∈ L 1
(
R+,B(R+), λ

)
à valeurs dans R une fonction vérifiant

x 7−→ F (x)− F (0+)
x

1]0,η](x)∈ L 1
(
R+,B(R+), λ

)
pour un réel η > 0. Alors

lim
M→+∞

∫ +∞

0
F (x)

sin(Mx)

x
dx =

π

2
F (0+).

DÉMONSTRATION : On sait (cf. par exemple Application 1.6, 1) que∫ +∞

0

sin(Mx)

x
dx =

∫ +∞

0

sin(y)

y
dy =

π

2
,

donc∫ +∞

0
F (x)

sin(Mx)

x
dx− π

2
F (0+) =

∫ +∞

0

F (x)− F (0+)
x

sin(Mx)dx

Soit alors ε > 0 et a∈ ]0, η].∣∣∣∣∫ +∞

0
F (x)

sin(Mx)

x
dx− π

2
F (0+)

∣∣∣∣ ≤ ∫ a

0

|F (x)− F (0+)|
x

dx

+
∣∣∣=m(Ĝa(M)

)∣∣∣
+|F (0+)|

∣∣∣∣∫ +∞

Ma

sin y

y
dy

∣∣∣∣
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où Ga(x) := F (x)/x 1]a,+∞](x) pour x ∈ R+. Les fonctions Ga sont dans
L 1(λ) pour tout a > 0 car |Ga(x)| ≤ 1

a |F (x)| et F ∈ L 1(λ) par hypothèse. On
choisit alors a = aε de façon que∫ aε

0

|F (x)− F (0+)|
x

dx ≤ ε/3

par continuité de l’intégrale de la borne supérieure d’une fonction intégrable. Puis
l’on choisit Mε suffisamment grand pour que l’on ait, pour tout M ≥ Mε, d’une
part |Ĝaε(M)| ≤ ε/3 (ceci est loisible au vu du théorème de Riemann-Lebesgue
(proposition 15.1(b)) et, d’autre part,

|F (0+)|
∣∣∣∣∫ +∞

Maε

sin y

y
dy

∣∣∣∣ ≤ ε/3
(
compte tenu de la (semi-)convergence de l’intégrale

∫ +∞

0

sin y

y
dy
)
. En combi-

nant ces trois inégalités, on conclut que pour tout M ≥Mε,∣∣∣∣∫ +∞

0
F (x)

sin(Mx)

x
dx− π

2
F (0+)

∣∣∣∣ ≤ ε. ♦

DÉMONSTRATION DU THÉORÈME 15.3 : Pour tout M > 0,∫ M

−M
e−ixξ f̂(ξ) dξ =

∫ M

−M

∫
R
e−ixξeiξuf(u) du dξ

=

∫
R

ei(u−x)M − e−i(u−x)M

i(u− x)
f(u)du

d’après le théorème de Fubini-Lebesgue. D’où∫ M

−M
e−ixξ f̂(ξ)dξ = 2

∫
R

sin((u− x)M)

u− x
f(u)du

= 2

∫ x

−∞

sin((u− x)M)

u− x
f(u)du

+2

∫ +∞

x

sin((u− x)M)

u− x
f(u) du

= 2

∫ +∞

0

sin(Mv)

v
f(x− v)dv

+2

∫ +∞

0

sin(Mv)

v
f(u)dv

= 4

∫ +∞

0

sin(Mv)

v

(
f(x+ v) + f(x− v)

2

)
dv.

On applique alors le lemme précédent à F (v) :=
f(x+ v) + f(x− v)

2
. ♦
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15.3 Transformée de Fourier-Plancherel

Le but de ce paragraphe est de “prolonger” la transformée de Fourier des fonc-
tions intégrables à l’espace L 2

C(λd) des fonctions de carré intégrable. Le terme
“prolonger” est abusif puisque L 1

C(λd) n’est pas inclus dans L 2
C(λd).

Lemme 15.4. Soient f, g ∈ L 1
C(λd). Alors f̂ , ĝ ∈ C0(Rd,C) et∫

Rd

f̂ g dλd =

∫
Rd

f ĝ dλd.

DÉMONSTRATION : D’après le théorème de Fubini (qu’il est clairement loisible
d’appliquer)∫

Rd

[∫
Rd

ei(ξ|x)f(x)dx

]
g(ξ) dξ =

∫
Rd

[∫
Rd

ei(x|ξ)g(ξ) dξ

]
f(x) dx,

i.e. ∫
Rd

f̂(ξ)g(ξ) dξ =

∫
Rd

f(ξ)ĝ(ξ) dξ. ♦

Soient ϕ, ψ ∈ SC. D’après la propriété P’1, le lemme précédent et le Corol-
laire 15.6 on a ∫

Rd

ϕ̂
̂̌
ψ dλd =

∫
Rd

ϕ
̂̌̂
ψ dλd = (2π)d

∫
Rd

ϕψ dλd.

Comme SC est dense dans L2
C(R

d, λd), puisqu’il contient l’espace C∞
K
(Rd,C)

d’après le théorème 14.8 (b), et ϕ 7→ ϕ̂ est une isométrie (linéaire) de SC dans
L2

C(R
d, λd), cette application se prolonge donc en une isométrie Φ de L2

C(R
d, λd)

dans lui-même.

Définition 15.3. L’isométrie Φ est appelée transformée de Fourier-Plancherel.

Théorème 15.4 (Plancherel).
La transformée de Fourier-Plancherel vérifie les propriétés suivantes :

(a) Φ ◦ Φ = (2π)d Ǐd.

(b) Pour tous f, g ∈ L 2
C(λd),∫

Rd

Φ(f) Φ(g) dλd = (2π)d
∫

Rd

f ḡ dλd.

(c) Φ|L1
C(R

d,λd)∩L2
C(R

d,λd)
et F coı̈ncident surL1

C(R
d, λd)∩L2

C(R
d, λd). En d’autres

termes , si f ∈ L1
C(R

d, λd) ∩ L2
C(R

d, λd), alors

f̂ = Φ(f) λd-p.p.
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DÉMONSTRATION : (a) Les deux applications coı̈ncident sur SC qui est dense
dans L2

C(R
d, λd).

(b) L’identité est une conséquence évidente de la polarisation de la norme ‖ · ‖2 sur
L2

C(λd).

(c) Soit f ∈ L1(Rd, λd)∩L2(Rd, λd) et soit (ρn)n≥1 une suite régularisante construi-
te à partir d’une fonction α∈ C∞

K
(Rd,R) au sens de la définition 14.8. Nous allons

montrer que fn = ρn∗
(
f 1[−n,n]d

)
, n ≥ 1, est une suite de fonctions C∞ à support

compact convergeant vers f dans L1 et dans L2.
Les fonctions fn sont à support compact car chacune est la convolée de deux

fonctions à support compact. Leur différentiabilité C∞ est une conséquence immé-
diate du théorème 14.8.

D’après le théorème 14.5, ρn ∗ f
L1 &L2

−→ f lorsque n → ∞. D’autre part,
d’après le théorème 14.4, on a pour p∈ {1, 2},∥∥fn − ρn ∗ f∥∥

p
=
∥∥ρn ∗ (f 1c[−n,n]d

)∥∥
p
≤
∥∥ρn∥∥

1

∥∥f 1c[−n,n]d
∥∥

p
.

Or ‖ρn‖1 = 1 et on conclut par convergence dominée.
Comme Φ et F coı̈ncident sur SC, le résultat découle de la continuité respec-

tive de F et Φ pour les convergences dans L1 et L2. ♦

Proposition 15.5. Pour tous f, g ∈ L2
C(λd)

Φ(f) ∗ Φ(g) = (2π)d f̂ g.

DÉMONSTRATION : Si f, g ∈ S , f̂ , ĝ∈ S et la relation

Φ(f) ∗ Φ(g) = f̂ ∗ ĝ = (2π)d f̂ g

est vraie car

̂̂
f ∗ ĝ =

̂̂
f ̂̂g = (2π)2df̌ ǧ = (2π)2d ˇ(fg) = (2π)d

̂̂
fg.

La ‖ · ‖2-densité de S dans L1
C(λd)∩L2

C(λd) et la L2-continuité de la transformée
de Plancherel donnent la formule annoncée dans son cadre général. ♦

NOTATION : On note souvent f̂ la transformée de Plancherel d’une fonction de
L2

C(λd) au détriment de la notation Φ.

Remarque : On peut donner une expression asymptotique semi-explicite de la
transformée de Plancherel en notant que pour toute f ∈ L2

C(λd), la suite f 1[−n,n]d ,
n ≥ 1, est constituée d’éléments de L1

C(λd) ∩ L2
C(λd) et converge dans L2 vers f .

Par suite
Φ(f)(ξ) = L2- lim

n

∫
[−n,n]d

ei(ξ|x)f(x)λd(dx).
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15.4 Transformée de Laplace

Dans cette partie nous allons étudier la transformée de Laplace, de manière
plus succincte que la transformée de Fourier, en faisant un minimum appel aux
résultats d’analyse complexe (le théorème de Cauchy notamment) et en restant plus
dans l’esprit de l’intégrale de Lebesgue. Nous mettrons l’accent sur les applications
au niveau des exercices 15.28 à 15.40 qui sont assez développés et s’apparentent
d’ailleurs plutôt à des problèmes. Pour un traité consacré spécifiquement à la trans-
formée de Laplace, nous renvoyons à l’ouvrage [13] qui nous paraı̂t très complet.

15.4.1 Définitions et premiers exemples

Définition 15.4. (a) Soit f : R+ → C une fonction localement intégrable sur R+,
i.e. intégrable sur tout intervalle borné de R+. La transformée de Laplace notée
L (f) de la fonction f est définie par L (f)(z) :=

∫ +∞

0
f(t) e−z t dt

pour z ∈ DL (f) :=
{
ζ ∈ C : t 7→ f(t) e−ζ t ∈ L 1(R+)

}
.

(15.17)

L’ensemble DL (f) est appelé le domaine de la transformée de Laplace L (f).

(b) Soit µ une mesure borélienne positive sur R+. De façon similaire à (15.17), la
transformée de Laplace de µ est définie par L (µ)(z) :=

∫ +∞

0
e−z t dµ(t)

pour z ∈ DL (µ) :=
{
ζ ∈ C : t 7→ f(t) e−ζ t ∈ L 1(R+, µ)

}
.

(15.18)

(c) Soit f : R → C une fonction localement intégrable sur R. La transformée de
Laplace bilatérale notée Lb(f) de la fonction f est définie par Lb(f)(z) :=

∫ +∞

−∞
f(t) e−z t dt

pour z ∈ DLb(f) :=
{
ζ ∈ C : f(t) e−ζ t ∈ L 1(R)

}
.

(15.19)

Remarque : Soit z0 = x0 + iy0 ∈ DL (f). Alors pour tout z = x+ iy ∈ C tel que
x ≥ x0, |f(t) e−z t| = |f(t)| e−x t ≤ |f(t)| e−x0 t est intégrable sur R+. On en
déduit que le nombre réel xf défini par

xf := inf
{
x ∈ R : t 7→ f(t) e−x t ∈ L 1(R+)

}
, (15.20)

(qui appartient ou non à DL (f)) vérifie

DL (f) =
{
x+ iy : x ∈ (xf ,+∞[ et y ∈ R

}
. (15.21)
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NOTATION : Dans la suite, on désignera une fonction f par sa valeur f(t). Ainsi, par
un abus de notation pratique, la transformée de Laplace de f sera notée L (f(t))
au lieu de L(f), le domaine Df(t) au lieu de Df et le nombre xf(t) au lieu de xf .

Exemples : 1. La fonction f : t 7→ et
2

n’a pas de transformée de Laplace car
d’après (15.17) DL (f) = Ø.

2. Soit n ∈ N. En intégrant n fois par parties on a xtn = 0 et

L (tn)(z) =
n!

zn+1
pour tout z ∈ DL (tn) =

{
ζ ∈ C : <(ζ) > 0

}
.

La transformée de Laplace L (tn) peut s’étendre à C∗.

3. Soit a ∈ C. Alors xeat = <(a) et

L (eat)(z) =
1

z − a
pour tout z ∈ DL (eat) =

{
ζ ∈ C : <(ζ) > <(a)

}
.

La transformée de Laplace L (eat) peut s’étendre à C \ {a}.
4. Formules d’Euler. Partant des identités

∀ t ∈ R, sin(t) =
1

2i
(eit − e−it) et cos(t) =

1

2
(eit + e−it),

on déduit les transformées de Laplace des fonctions sin et cos
L (sin)(z) =

1

z2 + 1

L (cos)(z) =
z

z2 + 1

pour z ∈ Dsin = Dcos =
{
ζ ∈ C : <(ζ) > 0

}
.

15.4.2 Propriétés de la transformée de Laplace

Proposition 15.6. Soient f, g deux fonctions localement intégrables sur R+. Alors
on a les propriétés suivantes :
(a) L (f) est une fonction holomorphe dans l’intérieur D̊L (f) de DL (f), et

∀n ∈ N,
(
L (f)

)(n)
= L

(
(− t)nf(t)

)
dans D̊L (f). (15.22)

(b) Si DL (f) 6= Ø alors lim
<(z)→+∞

L (f)(z) = 0 .

(c) Pour tout a ∈ R, on a

∀ z ∈ DL (f), e−az L (f)(z) = L
(
f(t− a) 1[a,+∞[(t)

)
(z).

(d) Par restriction à R+ la convolée f ∗ g est définie par

(f ∗ g)(t) :=
∫ t

0
f(t− s) g(s) ds pour t ∈ R+, (15.23)

et on a
L (f ∗ g) = L (f)×L (g) dans DL (f) ∩DL (g). (15.24)
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DÉMONSTRATION : Les propriétés (a) et (c) découlent du théorème de dérivation
sous le signe intégrale. L’implication (b) découle du théorème de convergence do-
minée, car d’après (15.21) il existe x0 > xf tel que pour tout z, <(z) ≥ x0, on a la
condition de domination

∀ t ∈ R+,
∣∣f(t) e−zt∣∣ ≤ |f(t)| e−x0t ∈ L 1(R+).

Enfin, la propriété (d) se déduit du théorème de Fubini comme pour la transformée
de Fourier (cf. Proposition 15.4). ♦

Exemple : D’après (15.22) on a L (t)(z) = −L (1)′(z) = z−2. On obtient donc
via la définition (15.23), que pour tout z ∈ C tel que <(z) > 1,

L
(
et − t− 1

)
(z) = L

(
t ∗ et

)
(z) = L (t)(z)L (et)(z) =

1

z2 (z − 1)
.

Contrairement à la transformée de Fourier, le fait d’intégrer sur R+ impose de
tenir compte des conditions limites en 0 lorsque que l’on calcule la transformée
de Laplace des dérivées successives d’une fonction. On dispose ainsi de la for-
mule d’intégration par parties suivante, très utile pour la résolution des équations
différentielles linéaires à l’aide de la transformée de Laplace.

Proposition 15.7. Soient n ∈ N∗ et f : R→ C une fonction n fois dérivable sur R,
tels que f (n) soit localement intégrable sur R+. On suppose que

∆n
f :=

n⋂
k=0

D̊
L
(
f (k)
) 6= Ø.

Alors la transformée de Laplace de f (n) se déduit de celle de f par la formule

∀ z ∈ ∆n
f , L

(
f (n)

)
(z) = zn L (f)(z)−

n−1∑
k=0

zn−1−k f (k)(0). (15.25)

DÉMONSTRATION : On procède par récurrence. Supposons que la formule (15.22)
soit vérifiée par f (n). En intégrant par parties on obtient pour z ∈ ∆n+1

f ,

L
(
f (n+1)

)
(z) =

[
f (n)(t) e−zt

]+∞
0

+ zL
(
f (n)

)
(z).

Comme

∀ t ∈ R+,
∂

∂t

(
f (n)(t) e−zt

)
= f (n+1)(t) e−zt − z f (n)(t) e−zt =: hn(t)

est intégrable sur R+ (z ∈ ∆n+1
f ), le critère de Cauchy appliqué en +∞ à la fonc-

tion
(
gn : t 7→ f (n)(t) e−zt

)
, i.e.

∀ s ≤ t ∈ R+, |gn(t)− gn(s)| =
∣∣∣∣ ∫ t

s
g′n(u) du

∣∣∣∣ ≤ ∫ +∞

s
|hn(u)| du −→

s→∞
0,
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est vérifié, ce qui combiné avec l’intégrabilité de la fonction gn sur R+, implique

lim
t→+∞

f (n)(t) e−zt = 0.

D’où par l’hypothèse de récurrence à l’ordre n, il vient

L
(
f (n+1)

)
(z) = zL

(
f (n)

)
(z)− f (n)(0)

= zn+1 L (f)(z)−
n−1∑
k=0

z1+n−1−k f (k)(0)− f (n)(0)

= zn+1 L (f)(z)−
(n+1)−1∑
k=0

z(n+1)−1−k f (k)(0),

qui est la formule (15.22) à l’ordre n+ 1. ♦

Les exemples ci-dessous illustrent la résolution des équations différentielles
linéaires par la transformée de Laplace.

Exemples : On admet pour le moment l’injectivité de la transformée de Laplace
qui sera obtenue par le corollaire 15.7 ci-après.

1. Soit f : R+ → R la solution du problème de Cauchy{
f ′′(t) + f(t) = e−t, t ∈ R+

f(0) = α, f ′(0) = β.

La formule (15.22) implique que pour <(z) assez grande,

z2 L (f)(z)− α z − β + L (f)(z) = L (e−t)(z) =
1

z + 1
.

D’où, en décomposant en éléments simples, il vient

L (f)(z)=
1

(z + 1) (z2 + 1)
+

α z

z2 + 1
+

β

z2 + 1
.

=
1

2

1

z + 1
+

1

2i− 2

1

z − i
− 1

2i+ 2

1

z − i
+

α z

z2 + 1
+

β

z2 + 1
.

On en déduit, à partir de la transformée de Laplace de l’exponentielle et de l’injec-
tivité de la transformée de Laplace, que

f(t)=
1

2
e−t +

1

2i− 2
eit − 1

2i+ 2
e−it +

iα+ β

2i
eit +

iα− β
2i

e−it

=
1

2
e−t +

(
α− 1

2

)
cos t+

(
β +

1

2

)
sin t.

On peut aussi traiter des équations différentielles linéaires à coefficients non
constants.
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2. Soit f : R+ → R la solution du problème de Cauchy{
f ′′(t) + t f ′(t)− 2 f(t) = 4, t ∈ R+

f(0) = −1, f ′(0) = 0.

Puisque d’après les formules (15.22) et (15.25) avec n = 1, on a

L
(
tf ′(t)

)
(z) = −

(
L (f ′)

)′
(z) = −

(
zL (f)(z)

)′
,

la transformée de Laplace F de f est solution de l’équation différentielle

z2 F (z) + z −
(
z F ′(z) + F (z)

)
− 2F (z) =

4

z

i.e. F ′(z) +
(3
z
− z
)
F (z) = − 4

z2
+ 1.

Cette équation linéaire du premier ordre s’intègre, pour z = x > 0, en

F (x) =
2

x3
− 1

x
+

c

x3
ex

2/2 = L (t2 − 1)(x) +
c

x3
ex

2/2.

En supposant que DL (f) 6= Ø, on a nécessairement c = 0 d’après le point (b) de
la proposition 15.6. Donc la solution de l’équation différentielle est f(t) = t2− 1
par injectivité de la transformée de Laplace.

On conclut cette section par un résultat asymptotique liant une fonction et sa
transformée de Laplace.

Proposition 15.8. Soit f : R+ → C une fonction localement intégrable sur R+

possédant une limite finie ` ∈ C en +∞. Si le domaine de la transformée de Fourier
de f est non vide alors

lim
x→0+

xL (f)(x) = ` = lim
t→+∞

f(t). (15.26)

DÉMONSTRATION : Comme f est localement intégrable sur R+ et bornée au voi-
sinage de +∞, on a xf ≤ 0. Soit a ∈ R∗

+. Alors d’après l’inégalité triangulaire, on
obtient pour tout x ∈ R∗

+,

∣∣xL (f)(x)− `
∣∣ ≤ x ∫ a

0
|f(t)− `| e−xt dt+ sup

t≥a
|f(t)− `|

∫ +∞

a
x e−xt dt

≤ x
∫ a

0
|f(t)− `| dt︸ ︷︷ ︸
<+∞

+sup
t≥a
|f(t)− `|.

L’avant dernier terme est un O(x) pour a > 0 fixé, alors que le dernier terme
est arbitrairement petit, uniformément par rapport à x, pour a assez grand, d’où le
résultat. ♦
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15.4.3 Inversion de Laplace

On dispose d’un résultat d’inversion analogue à celui du théorème d’inversion de
Fourier et qui d’ailleurs s’en déduit.

Théorème 15.5 (Inversion de Laplace). Soit f une fonction localement intégrable
sur R+ valant 0 dans R∗

−, de transformée de Laplace F . Soit x > xf (cf. (15.20))
tel que

(
y 7→ F (x+2iπy)

)
soit intégrable sur R. Alors on a la formule d’inversion

de Bromwich-Mellin

L −1(F )(t) := f(t) =
1

2iπ

∫
{<(z)=x}

F (z) ezt dz λ-p.p. t ∈ R+, (15.27)

et en tout point t ∈ R où f est continue.

DÉMONSTRATION : La fonction
(
y 7→ F (x+2iπy) = ̂f(t)e−xt(y)

)
est intégrable

sur R par hypothèse. Le théorème d’inversion de Fourier (cf. Théorème 15.2) ap-
pliqué à la fonction

(
t 7→ f(t) e−x t

)
entraı̂ne alors, en posant z = x+ 2iπy,

f(t) =

∫
R
F (x+2iπy) e(x+2iπy) t dy =

1

2iπ

∫
{<(z)=x}

F (z) ezt dz λ-p.p. t ∈ R+,

et en tout point t ∈ R+ où f est continue. ♦

Corollaire 15.7 (Injectivité de la transformée de Laplace). Soit f une fonction lo-
calement intégrable sur R+, étendue par la valeur 0 sur R∗

−. Si L (f) = 0 sur un
segment de C de longueur > 0, alors f = 0 λ-p.p. dans R+.

DÉMONSTRATION : On se ramène au cas où le segment noté [a, b] est inclus dans R
(le cas usuel en pratique). La transformée de Laplace de f est holomorphe sur
l’intérieur de son domaine D̊L (f).

Soit c ∈ ]a, b[. Alors, d’après le théorème d’analyticité de Cauchy (cf. [12,
Chap. 10]), la fonction L (f) est développable en série entière dans un disque ou-
vert D(c, r) de centre c et de rayon r > 0 assez petit. Comme par hypothèse L (f)
est nulle sur [a, b], il vient

∀x ∈ ]c− r, c+ r[, 0 =
+∞∑
n=0

f (n)(c)

n!
(x− c)n,

d’où en calculant par cette série les dérivées successives de L (f) au point c, on a

c ∈ A :=
{
z ∈ D̊L (f) : ∀n ∈ N, L (f)(n)(z) = 0

}
.

Donc A est une partie non vide (c ∈ A), fermée (par continuité des dérivées suc-
cessives de L (f)) et ouverte (par le développement en série de L (f) au voisinage
de chaque point de D̊L (f)) du demi-plan ouvert D̊L (f) de C. Comme le demi-plan
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ouvert D̊L (f) est connexe, on en déduit que A = D̊L (f), et par suite L (f) = 0

dans D̊L (f). On conclut en appliquant le Théorème 15.5 d’inversion. ♦

Un autre résultat important relatif à l’inversion de Laplace est le théorème de
Bernstein-Widder dont la démonstration, tirée de l’article ( 2), fait l’objet de l’exer-
cice 15.39.

Théorème 15.6 (Bernstein-Widder). Soit f : R+ → R une fonction complètement
monotone, i.e. vérifiant

f ∈ C 0(R+) ∩ C
∞
(R∗

+) et ∀x ∈ R∗
+, (−1)n f (n)(x) ≥ 0. (15.28)

Alors f est la transformée de Laplace d’une mesure de Stieljes (cf. & 6.5.2) s’écrivant
comme la dérivée d’une fonction α : R+ → R croissante, bornée et nulle dans R∗

−
telle que

lim
t→+∞

α(t) = f(0),

où, par convention, la transformée de Laplace de dα, qui étend la formule (15.22)
pour n = 1, est définie par ( 3)

L (dα)(z) := zL (α)(z)− α(0−) pour z ∈ D̊L (α). (15.29)

15.4.4 Exemples issus des probabilités

1. Loi gamma. La densité fa,b sur R+ de la loi de probabilité γ(a, b) pour a, b > 0,
est définie par

fa,b(t) :=
1

ba Γ(a)
ta−1 e−t/b, t > 0, où Γ(a) :=

∫ +∞

0
xa−1 e−x dx.

Alors la transformée de Laplace de fa,b est donnée par

∀ z ∈ C, <(z) > −1/b, L (fa,b)(z) =
1

(b z + 1)a
.

Soit x > −1/b. Par le changement de variable s = (x+ 1/b) t on obtient

L (fa,b)(x) =
1

ba Γ(a)

∫ +∞

0
ta−1 e−(x+1/b) t dt

=
(x+ 1/b)−a

ba Γ(a)

∫ +∞

0
sa−1 e−s ds

=
1

(b x+ 1)a Γ(a)

∫ +∞

0
ta−1 e−(x+1/b) t dt =

1

(b x+ 1)a
.

2. H. Pollard, “The Bernstein-Widder theorem on completely monotonic functions”, Duke
Math. J., 11 (1944), 427-430.

3. Avec cette convention, la dérivée de la fonction de Heaviside 1R+ , qui coı̈ncide avec la mesure
de Dirac δ0 en 0 (cf. (6.1)), vérifie L (d 1R+) = L (δ0) = 1 car 1R+(0

−) = 0, de sorte que δ0 est
l’élément neutre de la convolution (15.23) dans R+.
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On conclut par un argument d’analyticité (cf. la preuve du Corollaire 15.7).

2. Loi gaussienne. La densité gm,σ sur R de la loi de probabilité gaussienne N (m,σ)
pour m ∈ R, σ > 0, est définie par

gm,σ(t) :=
1√
2π σ

e−(t−m)2/(2σ2), t ∈ R.

Alors la transformée de Laplace bilatérale (15.19) de gm,σ est donnée par

∀ z ∈ C, Lb(gm,σ)(z) = e−mz eσ
2z2/2.

Soit x ∈ R. En mettant en forme l’argument de l’exponentielle, on obtient

L (gm,σ)(x) =
1√
2π σ

∫
R
e−xt−(t−m)2/(2σ2) dt

=
1√
2π σ

e−mx eσ
2x2/2

∫
R
e−(t+σ2x−m)2/(2σ2) dt

(s = t+ σ2x−m) = e−mx eσ
2x2/2 1√

2π σ

∫
R
e−s

2/(2σ2) ds

= e−mx eσ
2x2/2.

On conclut à nouveau par un argument d’analyticité.

15.5 Exercices

15.1 Soit f ∈ L 1(Rd), f > 0 λd(x)-p.p.. On a ∀ ξ∈ Rd \ {0}, |f̂(ξ)| < f̂(0).

15.2 Soit µ une mesure positive finie sur (R,B(R)). Montrer l’équivalence entre

(i) ∃ ξ∈ R∗, µ̂(ξ) = µ(R), (ii) ∃ ξ∈ R∗, µ
(c{

(2π/ξ)Z
})

= 0.

Voir également l’exercice 15.18 pour un développement plus approfondi.

15.3 Soit E un borélien de Rd de mesure de Lebesgue finie tel que

∀n∈ N∗,

∫
E
eix/n dx = 0.

Montrer que E est de mesure nulle.

15.4 Montrer qu’il existe une unique fonction f ∈ L 1(R) deux fois dérivable sur
R telle que

f ′′(x)− f(x) =
(
x2 − 3/4

)
e−x

2
, x∈ R.

Déterminer f en prenant la transformée de Fourier de l’équation différentielle.
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15.5 Soit f : R→ R définie par f(x) =
1

x2 log(|x|)
1{|·|>2}(x), x ∈ R.

a) Montrer que
∫

R
|x|f(x)dx = +∞.

b) Montrer que la transformée de Fourier de f est dérivable en 0.

15.6 Donner un exemple d’une fonction de L 2(Rd) \L 1(Rd) dont la transformée
de Fourier-Plancherel appartient à L 1(Rd).

15.7 Soit fa, a > 0, la fonction définie par fa(t) :=
a

π(t2 + a2)
. Montrer que pour

tous a, b > 0, fa ∗ fb = fa+b.

15.8 On considère les limites lorsqu’elles existent

f(x) := lim
n→+∞

∫ n

−n

sin t

t
eixt dt, x∈ R.

a) Montrer que f est bien définie sur R, que f = f(0) 1]−1,1[ dans R \ {±1} et que
f(±1) = f(0)/2.

b) À l’aide du théorème de Plancherel montrer que f = π 1]−1,1[ λ-p.p. dans R. En
déduire la valeur de f en chaque point de R.

15.9 On définit les intégrales

In :=

∫
R

sinn t

tn
dt, n∈ N, n ≥ 2.

a) Montrer que 0 < In ≤ I2 = π. On pourra considérer la transformée de Fourier
de fn :=

(
1[−1/2,1/2]∗

)n au sens du produit de convolution.

b) Montrer que pour tous n, p, q∈ N∗ tels que n = p+ q, I2n ≤ I2p I2q.

15.10 Soit f ∈ C 1
K(R). Montrer, par le théorème de Plancherel, que f̂ et la fonction(

t 7→ t f̂(t)
)

sont dans L 2(R), puis que f̂ ∈ L 1(R). En déduire que f est la
transformée de Fourier d’une fonction de L 1(R).

15.11 a) Montrer que f ∈ L 1(Rd) ssi f = g h λ-p.p. avec g, h ∈ L 2(Rd).

b) En déduire que ϕ est la transformée de Fourier d’une fonction de L 1(Rd) si et
seulement si ϕ = φ ∗ ψ p.p. avec φ, ψ∈ L 2(Rd).

c) Montrer que l’ensemble des fonctions f ∈ L 1(Rd) telles que f̂ est à support
compact est dense dans L 1(Rd).

15.12 ( 4) Soient ϕ la fonction définie par ϕ(x) := e−|x|2/2, x∈ Rd, φ une fonction
paire de C

∞

K
(Rd), et f := ϕ ∗ (φ̂)2.

a) Calculer f̂ explicitement à l’aide de ϕ et φ.

4. Exercice aimablement communiqué par notre collègue D. Guibourg à l’INSA de Rennes.
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b) En déduire l’existence d’une fonction strictement positive sur Rd dont la trans-
formée de Fourier est dans C

∞
K (Rd).

15.13 Soit f ∈ CK (R,R). Montrer que sa transformée de Fourier f̂ se prolonge
naturellement en une fonction entière sur C. En déduire que f et f̂ ne peuvent être
simultanément à support compact que si f est identiquement nulle.

15.14 a) Montrer que dansL2
C([−1, 1], λ), muni de la norme hilbertienneL2 usuelle,

la famille
(
einπ (·)/

√
2
)
n∈Z est orthonormale.

b) Montrer, à l’aide par exemple du théorème de Stone-Weierstrass, que c’est en
fait une base orthonormée hilbertienne de L2

C([−1, 1], λ).
c) Soit f ∈ L 1(R, λ). Montrer que, si supp(f) ⊂ [−1, 1] et f̂(nπ) = 0 pour tout
n∈ Z, alors f = 0 λ-p.p. .

d) Montrer un résultat analogue pour la transformée de Fourier d’une mesure posi-
tive finie sur (R,B(R), λ) portée par [−1, 1].
e) Étendre les résultats précédents à un cadre multi-dimensionnel (fonctions et me-
sures sur Rd).

15.15 ( 5) Soit ϕ : R→ R définie par ϕ(t) := (1− |t|) 1{|·|≤1}(t), t ∈ R.

a) Montrer que la transformée de Fourier de ϕ est donnée par

∀ ξ∈ R∗, ϕ̂(ξ) =
2 (1− cos ξ)

ξ2
et ϕ̂(0) = 1.

b) En déduire que la formule µ(dξ) =
1− cos ξ

πξ2
dξ définit – avec la convention

d’usage – une mesure de probabilité dont on déterminera la transformée de Fourier.

c) On définit maintenant une mesure ν sur (R,B(R)) par
ν
(
c({0} ∪ {(2n− 1)π, n∈ Z})

)
= 0,

ν({0}) = 1

2
, ν

(
{nπ}

)
=

2

n2π2
, n∈ Z, n impair.

Calculer la transformée de Fourier de ν̂ sous forme d’une série.

d) Calculer la transformée de Fourier de t 7→ ν̂(t) 1{|t|≤1}. En déduire que µ̂ et ν̂
coı̈ncident sur [−1, 1] (on pourra s’appuyer sur le résultat de l’exercice 15.14).

15.16 Formule sommatoire de Poisson

Soit f ∈ L 1(R) vérifiant pour une constante C ≥ 1, les inégalités

∀x∈ R, x2 |f(x)| ≤ C, ∀x, y ∈ R, |x−y| ≤ 1, |f(x)−f(y)| ≤ C |x− y|
1 + x2 + y2

.

5. D’après la section 8.2 de l’ouvrage Counterexamples in Probability, J. Stoyanov, Wiley series
in Probability and Mathematical Statistics, Wiley and Sons, Chichester, 1987, 313p.
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a) Montrer que la fonction F définie pour tout x∈ R par

F (x) :=
∑
k∈Z

f(x+ 2πk),

est continue et 2π-périodique sur R.
b) Calculer les coefficients de Fourier F , définis par

cn :=
1

2π

∫ π

−π
F (x) e−inx dx, n∈ Z. (15.30)

c) En déduire la formule sommatoire de Poisson,∑
n∈Z

f̂(n) = 2π
∑
k∈Z

f(2πk).

d) Problème de Bâle 10
Appliquer le résultat de la question c) avec f(x) := e−a|x|, x ∈ R et <(a) > 0.
En déduire les formules sommatoires

∀ a ∈ C, <(a) > 0,

+∞∑
n=1

1

a2 + n2
=

π

2a

(
coth(πa)− 1

πa

)
et

+∞∑
n=1

1

n2
=
π2

6
.

e) Montrer que ∀α ∈ R \ Z, π cotan(πα) =
1

α
+

+∞∑
n=1

2α

α2 − n2
.

15.17 Points fixes de la convolution
a) Déterminer les éléments f de L 1(R, λ) tels que f ∗ f = f .
b) Résoudre l’équation f ∗ f = f lorsque f ∈ Φ

(
L 1(R, λ) ∩L 2(R, λ)

)
.

15.18 On considère une mesure (positive) finie µ sur (R,B(R)) et sa transformée
de Fourier µ̂, fonction de R dans C définie pour tout u∈ R par

µ̂(u) :=

∫
R
eiux µ(dx).

a) On suppose qu’il existe u0∈ R∗ tel que µ̂(u0) = µ(R). Montrer que∫
R

(
1− cos(u0x)

)
µ(dx) =

∫
R
sin(u0x)µ(dx) = 0.

En déduire d’une part l’existence d’un ensemble dénombrable D que l’on détermi-
nera, tel que µ(R \D) = 0 et, d’autre part, que µ̂ est une fonction périodique.
b) Montrer que la fonction µ̂ est continue. En déduire que si µ 6= µ(R) δ0, µ̂ admet
une plus petite période T > 0.
c) On suppose maintenant qu’il existe u0 ∈ R∗ tel que |µ̂(u0)| = µ(R). Montrer
l’existence d’un ensemble dénombrable D à déterminer tel que µ(R \D) = 0.
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d) Soitf ∈ L 1
R+
(λ) (λ mesure de Lebesgue sur R) telle que

∫
R
f dλ 6= 0. Montrer

que

∀u ∈ R∗,

∣∣∣∣∫
R
eiux f(x)λ(dx)

∣∣∣∣ < ∫
R
f dλ.

15.19 Inégalité de Berry-Esseen et théorème de Paul Lévy.
Soit µ une mesure positive finie sur (R,B(R)).
a) Montrer que pour tout ε > 0,

µ
(
{|x| ≥ 2/ε}

)
≤ 1

ε

∫
[−ε,ε]

[
µ(R)−<

(
µ̂(ξ)

)]
dξ.

b) On considère maintenant une suite (µn)n≥1 de mesures positives finies sur

(R,B(R)) vérifiant µ̂n
S−→ χ. Montrer que

lim
n
µn
(
{|x| ≥ 2/ε}

)
≤ 2 sup

|ξ|≤ε

∣∣χ(ξ)− χ(0)∣∣,
puis en déduire que, si χ est continue en 0, la suite (µn)n≥1 est tendue, i.e.

lim
A→+∞

(
lim
n
µn
(
|x| ≥ A

))
= 0.

On admettra dans la suite de l’exercice le théorème de Prohorov : si (µn)n≥1 est
une suite tendue, alors elle est séquentiellement relativement compacte pour la
topologie de la convergence faible (dite aussi “étroite”).
En d’autres termes, de toute suite extraite (µϕ(n))n≥1 de (µn)n≥1, on peut extraire
une sous-suite νn = µϕ◦ψ(n), n ≥ 1, convergeant faiblement vers une mesure
positive finie ν dans le sens

∀ f ∈ Cb(R,R), lim
n→+∞

∫
R
f dνn =

∫
R
f dν.

c) Montrer que, si χ est continue en 0, χ est la transformée de Fourier d’une mesure
positive finie.

15.20 Non-surjectivité de la transformée de Fourier, tirée de ( 6)
Soient ρ∈ C∞(R) à support inclus dans ] − 1

2 ,
1
2 [ avec ρ(0) = 2π et g la fonction

définie pour x∈ R par

g(x) :=
∑
n∈Z

cn ρ(x+ n) où cn =
sign(n)

2i ln |n|
1{|n|≥2}.

a) Montrer que g∈ C∞(R,R) et lim
|x|→+∞

g(x) = 0.

6. Exemple I.26 de l’ouvrage Counterexamples in Analysis de B.R. Gelbaum et M.H. Olmsted,
Holden-Day Inc., 1964.
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b) On suppose qu’il existe f ∈ L 1(R) telle que g = f̂ . Montrer que la série

F (x) :=
∑
k∈Z

f(x+ 2πk)

est définie dx-p.p., que F (x+2π) = F (x) dx-p.p. sur R et que F ∈ L 1([−π, π]).
c) Calculer les coefficients de Fourier de F (cf. les formules de l’exercice 8.31) et,
pour tout n∈ N∗,

bn :=
1

π

∫ π

−π
F (x) sin(nx) dx et

n∑
k=1

bk
k
.

d) Déduire des questions précédentes, de la majoration de l’exercice 8.30 b) et du
théorème de convergence dominée une contradiction. Conclure quant à l’image de
L 1(R) par la transformée de Fourier.

15.21 Inégalité de Hausdorff-Young

a) Montrer que pour chaque p ∈ [1, 2], il existe une constante Cp ∈ R+ telle que

∀ f ∈ L1
C(R

d) ∩ L2
C(R

d), ‖f̂‖q ≤ Cp ‖f‖p où q :=
p

p− 1
.

b) Une inégalité tirée de ( 7). Soient z ∈ C avec <(z) > 0, fz la fonction définie sur
Rd par fz(x) := e−z|x|

2
, x ∈ Rd, et p, q ∈ [1,+∞]. Montrer, à l’aide de la formule

(15.7) et de la valeur de l’intégrale de Fresnel (cf. exercice 8.29), que

‖f̂z‖q
‖fz‖p

=
(
4

1
q p

1
p q

− 1
q π

1+ 1
q
− 1

p |z|
2
q
−1(<(z)) 1

p
− 1

q

) d
2

(convention : (+∞)
1

+∞ = 1).

c) En déduire que la transformée de Fourier sur S (Rd) s’étend en une application
linéaire continue de LpC(R

d) dans LqC(R
d) si et seulement si 1 ≤ p ≤ 2 et q = p

p−1 .

15.22 Formule de Shannon

a) Soit f ∈ L 1
C(R) continue telle que supp f̂ ⊂ [−π, π] et

∑
n∈Z

|f(n)| < +∞.

Montrer que ∀x ∈ R, f(x) =
1

2π

∫ π

−π

∑
n∈Z

cn e
i(n−x)ξ dξ , où les cn sont les

coefficients de Fourier (15.30) de f̂ .

b) En déduire la formule de Shannon ∀x ∈ R, f(x) =
∑
n∈Z

f(n)
sin
(
π(n− x)

)
π(n− x)

.

15.23 Une formule d’inversion ( 8)

7. D. Serre, Interpolation d’opérateurs ; applications, Le journal de maths des élèves de l’ENS de
Lyon, Vol. 1, No. 4 (1998), 174-181.

8. En collaboration avec L. Hervé professeur à l’INSA Rennes.
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a) Montrer l’extension du lemme 15.4 à L2
C(R

d) :

∀ f, g ∈ L2
C(R

d),

∫
Rd

Φ(f)(x) g(x)λd(dx) =

∫
Rd

f(x) Φ(g)(x)λd(dx).

b) Soient f ∈ L1
C(R

d) et g ∈ L2
C(R

d) telles que f̂ = Φ(g) λd(dx)-p.p.. Montrer
que

∀ϕ ∈ SC,

∫
Rd

f(x) ϕ̂(x)λd(dx) =

∫
Rd

g(x) ϕ̂(x)λd(dx).

En déduire, à l’aide de l’exercice 8.33, que f = g λd(dx)-p.p..

c) Soit f ∈ L2
C(R

d) telle que Φ(f) ∈ L1
C(R

d). Montrer que

∀ϕ ∈ SC,

∫
Rd

Φ̂(f)(−x) ϕ̄(x)λd(dx) = (2π)d
∫

Rd

f(x) ϕ̄(x)λd(dx).

En déduire la formule d’inversion f(x) = (2π)−d Φ̂(f)(−x) λd(dx)-p.p.

15.24 Une formule intégrale-série vérifiée par la fonction sinus cardinal

Soient a, α > 0 tels que aα < 1. Soit ϕ : R→ C une fonction C1 par morceaux et
continue en 0 telle que ϕ = 0 dans R\ [−a

2 ,
a
2 , ]. Soient ψ la fonction 2π-périodique

définie par ψ(t) := 1/αϕ
(
t/(2πα)

)
pour t ∈ [−π, π], et f : R → C la fonction

définie par f(x) := ϕ̂(2παx) pour x ∈ R.

a) Montrer que pour tout n ∈ Z, cn(ψ) :=
1

2π

∫ π

−π
ψ(t)e−int dt = f(n).

b) Montrer que
∑
n∈Z

f(n) =
1

α
ϕ(0).

c) Montrer que
∑
n∈Z

|f(n)|2 = 1

α

∫
R
|ϕ(t)|2 dt =

∫
R
|f(x)|2 dx.

d) On considère le cas où a = 1, α := 1/π et ϕ := 1[−1/2,1/2].

i) Montrer que
∫

R

sin2 x

x2
dx =

∫
R

sinx

x
dx.

ii) En déduire que

∑
n∈Z

sinn

n
=
∑
n∈Z

sin2 n

n2
=

∫
R

sinx

x
dx =

∫
R

sin2 x

x2
dx = π.

15.25 Généralisation de la formule intégrale-série de l’exercice 15.24

Soit ϕ : R→ R+ une fonction Lebesgue mesurable continue en chaque point de Z,
vérifiant l’estimation

∃α > 1, ∃C > 0, ∀ t ∈ R, 0 ≤ ϕ(t) ≤ C

(1 + |t|)α
,
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telle que φ := ϕ, ϕ ∗ ϕ vérifie

∃ a > 0,
(
t 7→ φ(t)− φ(0)

t

)
∈ L 1([−a, a]),

et telle que la fonction 1-périodique F définie par

F (t) :=
∑
k∈Z

ϕ(t+ 2πk) pour t ∈ R,

soit C1 par morceaux sur R. On suppose en outre que la fonction f : R→ R définie
par f(x) := 1/2π ϕ̂(x/(2π)) pour x ∈ R, vérifie∑

n∈Z

|f(n)| < +∞ et
∫

R
f(x) dx est convergente.

a) Retrouver avec ces conditions la formule sommatoire de Poisson (exercice 15.16) :∑
n∈Z

f(n) =
∑
n∈Z

ϕ(2πn).

b) Montrer que∫
R
f(x) dx = lim

n→+∞

∫ n

−n
ϕ̂(x) dx = lim

n→+∞

∫
R
ϕ(t)

sin(2πnt)

πt
dt = ϕ(0).

c) Montrer l’équivalence entre les deux assertions suivantes :

i)
∑
n∈Z

f(n) =
∑
n∈Z

f2(n) =

∫
R
f(x) dx =

∫
R
f2(x) dx,

ii)ϕ(0) = 1
2π (ϕ ∗ ϕ)(0), ∀n ∈ Z∗, ϕ(2πn) = 0, ϕ(2πn− ·)ϕ(·) = 0 λ-p.p.

d) Retrouver le résultat d) ii) de l’exercice 15.16. avec ϕ := π 1[−1,1].

e) Montrer que si ϕ vérifie i) ou, de manière équivalente, ii) et si ϕ > 0 λ-p.p.
dans [−π, π], alors ϕ = 0 λ-p.p. dans R \ [−π, π], i.e. ϕ est à support compact.

15.26 Inégalité de Heisenberg

On définit les trois opérateurs C-linéaires A,B,C : S (R) → S (R) (espace de
Schwartz) suivants :

A(f) := if ′, B(f)(x) := xf(x), x ∈ R, C(f) := f pour f ∈ S (R),

a) Montrer que A ◦B −B ◦A = i C, et que A,B sont symétriques, i.e.

∀ f, g ∈ S (R),
〈
A(f), g

〉
=
〈
f,A(g)

〉
et
〈
B(f), g

〉
=
〈
f,B(g)

〉
où 〈f, g 〉 :=

∫
R
f(x) g(x) dx.
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b) En déduire l’inégalité ∀ f ∈ S (R), ‖f‖22 ≤ 2 ‖xf(x)‖2 ‖f ′‖2 .

c) Montrer l’inégalité de Heisenberg

∀ f ∈ S (R), ‖f‖22 ≤
√

2

π
‖xf(x)‖2 ‖xf̂(x)‖2,

impliquant qu’une fonction de S (R) et sa transformée de Fourier ne peuvent pas
avoir simultanément leur support concentré à l’origine.

Cette inégalité illustre le principe d’indétermination de Heisenberg stipulant
l’existence d’une limite fondamentale de la précision à laquelle il est possible de
connaı̂tre simultanément deux propriétés physiques, par exemple la position d’une
particule et sa quantité de mouvement.

15.27 Soit f ∈ L 1
C(R) ∩L 2

C(R) une fonction continue en 0 et telle que le support
de f̂ soit inclus dans [−a, a] pour un certain réel a > 0.

a) Montrer que

|f(0)| ≤
√
a I

π
‖f‖2 où I :=

∫
R

sin2 x

x2
dx.

b) Montrer qu’il y a égalité dans l’inégalité de la question a) si et seulement si il
existe α ∈ R+ tel que

|f(x)| = α

∣∣∣∣ sin(a x)x

∣∣∣∣ λ(dx)-p.p. x ∈ R.

c) En déduire que I = π.

15.28 Équations différentielles à coefficients constants par transformée de Laplace

Soit un polynôme réel de degré n ∈ N∗, et soit D l’opérateur différentiel associé :

P (X) := Xn +
n−1∑
k=0

akX
k et D(x) := x(n) +

n−1∑
k=0

ak x
(k).

Pour chaque fonction f ∈ C 0(R+) nulle dans R∗
−, soit x ∈ C n(R) la solution du

problème de Cauchy

D(x) = 0 dans R+ et x(0) = · · · = x(n−2)(0) = 0, x(n−1)(0) = α ∈ R. (C)

a) On suppose pour le moment qu’il existe a ≥ max0≤k≤n |ak| et b > 0 tels que
pour tout k = 0, . . . , n et pour tout t ∈ R+, |f(t)|+ |x(k)(t)| ≤ b eat. Montrer que

∀ z ∈ C, <(z) > a,

{
L (x(k))(z) = zk L (x)(z) si k = 0, . . . , n− 1

L (x(n))(z) = zn L (x)(z)− α.

On suppose désormais que P a n racines distinctes α1, . . . , αn ∈ C.
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b) Montrer que la solution xg du problème (C) avec second membre f = 0, est
donnée par

∀ t ∈ R, xg(t) = α

n∑
j=1

βj e
αj t où

1

P (X)
=

n∑
j=1

βj
X − αj

.

c) Montrer que la solution y du problème (C) avec α = 0 et second membre f est
donnée par

∀ t ∈ R, y(t) =

∫ t

0
f(t− s)

( n∑
j=1

βj e
αj s
)
ds.

d) En déduire l’expression de la solution générale de (C) et montrer a posteriori
que l’hypothèse initiale sur les x(k) est vérifiée.

e) Résoudre le problème (C) pour toute fonction f ∈ C 0(R+) nulle dans R∗
−.

15.29 Une famille d’équations différentielles linéaires à coefficients non constants

Soient a ∈ R. Soit x une solution du problème de “type” Cauchy (car il y a une
singularité en 0),

t x′′(t) + a x′(t) + t x(t) = 0, t ≥ 0, x(0) = 0, x′(0) = 0 (Ca),

dont la fonction nulle est clairement solution.
a) On suppose que x possède une transformée de Laplace avec un domaine non
vide. Montrer que

∀ z ∈ DL (x), (z2 + 1)L (x)′(z) + (2− a) zL (x)(z) = 0.

En déduire une expression simple de L (x).

b) Cas a ≥ 2.
i) En déduire que si une solution non nulle x ∈ C 2(R+) de (Ca) existe avec
a ≥ 2, alors le domaine de L (x) est vide.

ii) Pour a = 2, déterminer à l’aide d’un développement en série entière, une
base de solutions dans R∗

+ de l’équation différentielle associée à (C2), puis
conclure par rapport à i).

c) On suppose que a := − 2.
i) À partir de l’égalité

1

(z2 + 1)2
=

1

2

d

dz

( z

z2 + 1

)
+

1

2

1

z2 + 1
,

déterminer, en prenant la transformée de Laplace inverse de l’égalité de ii),
une solution ϕ−2 simple du problème (C−2).

ii) En déduire que l’ensemble des solutions du problème (C−2) possédant une
transformée de Laplace avec un domaine non vide, est la droite vectorielle
engendrée par ϕ−2 .



354 15. Transformées de Fourier et de Laplace

iii) Montrer, en utilisant la méthode de la variation de la constante, que l’en-
semble des solutions du problème (C−2) est aussi la droite vectorielle en-
gendrée par ϕ−2 .

d) On suppose que a = 1.
i) Déterminer l’unique solution ϕ1 de l’équation différentielle associée au

problème (C1) dans R∗
+, développable en série entière dans R et telle que

ϕ1(0) = 1.
ii) Montrer que la fonction

ψ1(t) := ϕ1(t)

∫ t

1

ds

sϕ2
1
(s)

pour t ∈ R∗
+,

est une solution de l’équation différentielle associée à (C1) dans R∗
+. En

déduire que la fonction nulle est l’unique solution du problème (C1).
iii) En déduire qu’il n’existe pas de fonction f ∈ C (R)∩C 2(R+) dont la trans-

formée de Laplace a un domaine non vide, et qui vérifie l’égalité f ∗f = sin
dans R+ (au sens de la convolution dans dans R+, cf. Proposition 15.6 (c)).

15.30 Équation des ondes

a) Soit f ∈ L 1(R), nulle dans R∗
−, et soit a ∈ R+. Montrer que

∀ z ∈ C, <(z) ≥ 0, L (f)(z) =

∫
[a,+∞[

f(t− a x) e−z t dt.

b) Déterminer, à l’aide de la transformée de Fourier en t, les fonctions u ∈ C 2(R)
vérifiant la condition : pour tout a > 0, il existe ha ∈ L 1(R) telle que

∀x ∈ [−a, a], ∀ t ∈ R, |u(t, x)|+
∣∣∣∣ ∂u∂x(t, x)

∣∣∣∣+ ∣∣∣∣ ∂2u∂x2
(t, x)

∣∣∣∣ ≤ ha(t),
et solutions de l’équation des ondes pour c > 0,

∂2u

∂t2
− c2 ∂

2u

∂x2
= 0 dans R× R.

c) Soit f, g ∈ C 2(R+)∩L 1(R+), nulles dans R∗
−, et soient α, β ∈ R. Déterminer,

à l’aide de la transformée de Laplace en t, la fonction sous-linéaire u ∈ C 2(R2
+)

solution de l’équation des ondes avec conditions aux limites

∂2u

∂t2
− c2 ∂

2u

∂x2
= 0 dans R+ × R+ et


u(0, x) = α x ≥ 0,
∂u

∂t
(0, x) = β x ≥ 0,

u(t, 0) = f(t) t ≥ 0,
u(t,+∞) = g(t) t ≥ 0.

15.31 Équation aux différences finies

Soient n ∈ N∗ et le polynôme réel P (X) := Xn +
n−1∑
k=0

akX
k , a0, . . . an ∈ R.



Exercices 355

On considère une fonction f localement intégrable sur R+, possédant une trans-
formée de Laplace de domaine non vide et solution de l’équation aux différences
finies

f(t+n)+

n−1∑
k=0

ak f(t+k) = 1 p.p. t ∈ R+, f = 0 λ(dt)-p.p. dans ]−∞, n]. (D)

a) Montrer que

∀ k = 0, . . . , n, ∀ z ∈ DL (f), L
(
f(·+ k)

)
(z) = ek zL (f)(z).

On suppose désormais que P a n racines distinctes α1, . . . , αn ∈ C, et on pose
α := max

j=1,...,n
|αj |.

b) Montrer qu’avec
1

P (X)
=

n∑
j=1

βj
X − αj

, on a

∀ z ∈ DL (f), <(z) > lnα, L(f)(z) =
n∑
j=1

βj e
−z

z (1− αj e−z)
.

c) Montrer que

∀α ∈ C,
+∞∑
k=1

αk−1 1[k,∞[ =
+∞∑
k=1

(
αk − 1

α− 1

)
1[k,k+1[ λ(dt)-p.p. sur R+.

d) En déduire qu’il existe une unique solution de (D) donnée λ(dt)-p.p. sur R+ par

f(t) =

n∑
j=1

βj hαj (t) où hα(t) :=


α[t] − 1

α− 1
si α 6= 1

[t] si α = 1.

15.32 Une caractérisation de la partie entière [·]
a) Montrer que ∀ z ∈ C, <(z) > 0, L ([t])(z) =

1

z(ez − 1)
.

b) Soit f : R+ → C une fonction localement intégrable sur R+, dont la transformée
de Laplace a un domaine non vide et qui vérifie f(t + 1) − f(t) = 1 λ(dt)-p.p.
t ∈ R+, avec f(t) = 0 λ(dt)-p.p. t ∈ [0, 1]. Montrer que f coı̈ncide λ(dt)-p.p.
avec la partie entière dans R+.

15.33 Encore la partie entière
Soit f : R+ → C une fonction localement intégrable sur R+ dont la transformée de
Laplace a un domaine non vide.

a) Montrer que L
(∫ t

0
f(s) ds

)
=

1

z
L (f)(z) pour z ∈ DL (f).
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b) Montrer que ∀ t ∈ R+,

∫ t

0
[s] ds =

1

2
[t] (2t− [t]− 1).

c) On suppose que f est solution de f(t+ 2)− 2 f(t+ 1) + f(t) = 1 λ(dt)-p.p.
t ∈ R+, avec f(t) = 0 λ(dt)-p.p. t ∈ [0, 2]. Montrer que

∀z ∈ DL (f), <(z) > 0, L (f)(z) = − d

dz

( 1

z(ez − 1)

)
− 1

z2(ez − 1)
− 1

z(ez − 1)
.

En déduire de l’exercice 15.32 a) et des questions précédentes que f(t) =
[t] [t−1]

2
λ(dt)-p.p. t ∈ R+.

15.34 Suites récurrentes linéaires sur deux termes
Soient a, b, γ ∈ C, b 6= 0, et α, β les racines dans C de l’équation x2−a x−b = 0.
On considère la suite (un)n∈N définie par la récurrence

un+2 = a un+1 + b un + γn, n ∈ N, avec u0, u1 donnés dans C,

et on définit la fonction f : R+ → C par f(t) := u[t], t ∈ R+.
a) Soient σ, τ, ν ∈ C deux à deux distincts. Montrer, à l’aide du théorème de
convergence dominée combiné avec l’inégalité des accroissements finis, que pour
tout z ∈ C tel que <(z) > max

(
ln |σ|, ln |τ |, ln |υ|

)
(convention : 00 = 1),

L (σ[t])(z) =
ez − 1

z (ez − σ)
,

L
(σ[t] − τ [t]

σ − τ

)
(z) =

ez − 1

z (ez − σ) (ez − τ)

L
(
[t]σ[t]−1

)
(z) = lim

ε→0
L
((σ + ε)[t] − σ[t]

ε

)
(z) =

ez − 1

z (ez − σ)2
,

L
( σ[t]

(σ − τ) (σ − υ)
+

τ [t]

(τ − σ) (τ − υ)
+

υ[t]

(υ − σ) (υ − τ)

)
(z)

=
ez − 1

z (ez − σ) (ez − τ) (ez − υ)

L
( [t]σ[t]−1

σ − τ
+
τ [t] − σ[t]

(σ − τ)2
)
(z) =

ez − 1

z (ez − σ)2 (ez − τ)
,

L
( [t] ([t]− 1)σ[t]−2

2

)
(z) = lim

ε→0
l
((σ + ε)[t] + (σ − ε)[t] − 2σ[t]

2 ε2

)
(z)

=
ez − 1

z (ez − σ)3
.

b) Montrer que pour tout z ∈ C tel que <(z) > max
(
ln |α|, ln |β|, ln |γ|

)
,

L
(
f(t+ 1)

)
(z) = ezL (f)(z) + u0

(1− ez
z

)
L
(
f(t+ 2)

)
(z) = e2zL (f)(z) + u0

(ez − e2z
z

)
+ u1

(1− ez
z

)
.
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En déduire que

L (f)(z) =
ez − 1

z (ez − α) (ez − β)

(
u1 − a u0 + u0 e

z +
1

ez − γ

)
.

c) On suppose que α, β, γ sont deux à deux distincts. Montrer que

∀n ∈ N, un =
u1 − a u0
α− β

(αn − βn) + u0
α− β

(αn+1 − βn+1)

+
αn

(α− β) (α− γ)
+

βn

(β − α) (β − γ)
+

γn

(γ − α) (γ − β)
.

d) On suppose que α = β 6= γ. Montrer que

∀n ∈ N, un = u0 α
n + (u1 − a u0 + αu0)nα

n−1 +
nαn−1

α− γ
+
γn − αn

(γ − α)2
.

e) On suppose que α = γ 6= β. Montrer que

∀n ∈ N, un =
(u1 − a u0 + αu0

α− β

)
αn +

(u1 − a u0 + β u0
β − α

)
βn

+
nαn−1

α− β
+
βn − αn

(β − α)2
.

f) On suppose que α = β = γ. Montrer que

∀n ∈ N, un = u0 α
n + (u1 − a u0 + αu0)nα

n−1 +
n (n− 1)

2
αn−2.

15.35 Transformée de Weierstrass
On définit la transformée de Weierstrass d’une fonction f : R→ C par

W (f)(x) := (f ∗G)(x), x ∈ R, où G(y) :=
1√
4π

e−
y2

4 , y ∈ R,

lorsque que
(
y 7→ f(x− y)G(y)

)
∈ L 1(R).

a) Calculer la transformée de Weierstrass de la fonction
(
y 7→ e−ay

2)
pour a ap-

partenant à un intervalle de R à déterminer.
b) Montrer que pour tout p ∈ [1,+∞], ∀ f ∈ Lp(R),

∥∥W (f)‖p ≤ ‖f‖p.
c) Montrer que

W (f)(x) =
√
4πG(x)Lb(Gf)(−x/2),

où Lb est la transformée de Laplace bilatérale de f (cf. définition 15.4 (c)), lorsque
l’une des deux expressions existent.
d) Si S(x) =

∑
n≥0 an x

n est une série entière de rayon de convergence infini
et si D est l’opérateur dérivée, on note S(D) :=

∑
n≥0 anD

n où Dn est est
l’opérateur dérivée n-ième. Soit f une fonction de C

∞
(R) dont la série de Taylor

en 0 converge dans R.
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i) Montrer que ∀x, y ∈ R, f(x− y) =
(
e−yD(f)

)
(x).

ii) Montrer, par récurrence sur n ∈ N, que
∫ +∞

−∞
y2nG(y) dy =

(2n)!

n!
.

iii) En déduire que W (f) = eD
2
(f) dans R.

15.36 Transformée de Gauss-Weierstrass et équation de la chaleur

On définit pour t > 0, la transformée de Gauss-Weierstrass Wt de f : R→ C par

Wt(f)(x) := (f ∗Gt)(x), x ∈ R, où Gt(y) :=
1√
4πt

e−
y2

4t , y ∈ R,

et la fonction (t, y) 7→ Gt(y) est appelée le noyau de la chaleur.

a) Montrer que Wt(f)(x) = W
(
f(·
√
t)
)(
x/
√
t
)
, lorsque l’expression est définie.

b) Soit f ∈ C
∞
(R) dont la série de Taylor en 0 converge dans R. Montrer, en utili-

sant l’exercice 15.35 d) iii), que ∀ t > 0, Wt(f) = etD
2
(f) dans R.

c) Montrer la propriété de semi-groupe

∀ p ∈ [1,+∞[ , ∀ s, t > 0, Ws ◦Wt = Ws+t dans L p(R).

d) Montrer, en utilisant l’inégalité y 1{y>δ} ≥ δ 1{y>δ} , que

∀ t, δ > 0, ‖Gt‖Lq({|y|>δ}) ≤


( 4t
qδ

) 1
q
Gt(δ) si q ∈ [1,+∞[

Gt(δ) si q = +∞.

En déduire que pour toute ϕ ∈ L p(R) ∩ C 0(R)
(
⊃ C

∞
K (R)

)
, p ∈ [1,+∞], on a

∀x ∈ R, lim
t→0+

Wt(ϕ)(x) = lim
t→0+

(ϕ ∗Gt)(x) = ϕ(x).

Autrement dit, la famille (Gt)t>0 converge au sens des distributions, lorsque t tend
vers 0, vers δ0 la mesure de Dirac en 0, qui est l’élément neutre pour la convolution.

e) Soit une fonction f ∈ C
∞
(R) dont la série de Taylor en 0 converge dans R.

Montrer, en utilisant les notations de l’exercice 15.35, que( ∂
∂t
−D2

)(
Wt(f)

)
= 0 dans R∗

+ × R.

Donc la fonction Wt(f) est solution de l’équation de la chaleur unidimensionnelle,
avec la condition initiale W0+(f) = f , si de plus f ∈ L p(R), p ∈ [1,+∞] par d).

15.37 Problème du toboggan d’Abel, tiré de l’article ( 9).

9. Y. C. de Verdière, J. P. Truc, “Du problème du toboggan d’Abel au problème inverse semi-
classique”, Hal-00400153, 2009, 18 p.
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Soit A l’opérateur intégral, appelé la transformée intégrale d’Abel, défini pour
u : R→ R localement intégrable sur R+, par

A (u)(t) :=

∫ t

0

u(s)√
t− s

dy pour t ∈ R+. (15.31)

a) Calculer la transformée de Laplace de la fonction a(t) := 1R+(t)/
√
t.

b) Calculer la transformée de Laplace de A (u) et celle de A
(
A (u)

)
sur R∗

+.

c) En déduire que ∀x ∈ R+, A
(
A (u)

)
(x) = π

∫ x

0
u(t) dt.

Soit c ∈ R∗
− et soit f : [c, 0] → R+ une fonction de classe C 1 telle que f(0) = 0.

Une particule pesante se déplace sans frottement sur le graphe de f , matérialisé par
un toboggan, et est soumise à un potentiel gravitationnel V . Elle est repérée par son
abscisse curviligne x(t), t ≥ 0, le long de ce graphe, et est lâchée à l’abscisse x=c
avec une vitesse initial nulle. D’après le principe fondamental de la dynamique
(ici la masse est prise égale à 2 par souci de simplification), x est la solution du
problème de Cauchy 

2
d2x

dt2
(t) = −V ′(x(t)) si t ≥ 0,

V (x(0)) = E,
dx

dt
(0) = 0,

où V ∈ C1
(
[c, 0];R+

)
vérifie V ′ < 0, V (0) = 0, et E ≥ 0 représente l’énergie

totale de la particule. On désigne par τ(E) le temps d’arrivée de la particule au bas
du toboggan repéré par l’abscisse curviligne x(τ(E)) = 0.

On va démontrer le
Théorème d’Abel : La fonction τ détermine de façon unique le potentiel V .
Autrement dit, le temps d’arrivée de la trajectoire détermine la forme du toboggan
donnée par son abscisse curviligne x.
d) En utilisant la conservation de l’énergie totale, montrer que

∀E ≥ 0, τ(E) =

∫ 0

c

dx√
E − V (x)

.

e) En notant W := V −1, montrer que τ = −A (W ′).

f) En déduire que W = − 1

π
A (τ).

15.38 Point fixe de l’opérateur d’Abel
Soit A l’opérateur d’Abel défini par (15.31). Soit pour a ∈ R et k ∈ R∗, l’équation
f = a+ kA (f) dans R+, où f : R+ → R est localement intégrable sur R+.
a) Montrer, à l’aide de la question 15.35 c), que si f est solution de l’équation,

alors ∀x ∈ R∗
+, f ′(x) =

a k√
x
+ π k2 f(x) et f(0) = a.
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b) En déduire que ∀x ∈ R+, f(x) = a eπk
2x + a kA

(
eπk

2t
)
(x).

c) Montrer que, réciproquement, la fonction f obtenue à la question b) est solution
de l’équation f = a+ k A(f) dans R+.

15.39 Démonstration du théorème 15.6 (Bernstein-Widder)

Soit f une fonction f : R+ → R une fonction complètement monotone au sens de
la définition (15.28).
a) Montrer par récurrence l’existence pour tout n ∈ N de

`n := lim
x→∞

[
(−1)n

n!
xn f (n)(x)

]
∈ R+,

en dérivant la fonction Fn définie par

Fn(x) :=
n∑
k=0

(−1)k

k!
xk f (k)(x) pour x ∈ R∗

+.

b) Soit n ∈ N∗.
i) Montrer par récurrence à l’aide de a), que

∀x ∈ R∗
+, f(x)−Mn =

(−1)n

(n− 1)!

∫ +∞

0
un−1f (n)(u+ x) du.

ii) Montrer en prenant x = 1/k, k ∈ N∗, dans i), et en utilisant le théorème
de Beppo Levi par rapport à k, que

f(0)−Mn =
(−1)n

(n− 1)!

∫ +∞

0
un−1f (n)(u) du.

iii) Montrer en prenant x = k, k ∈ N∗, dans i), et en utilisant le théorème de
convergence dominée par rapport à k avec ii), que ` := lim

x→∞
f(x) =Mn.

c) Soit n ∈ N∗, n ≥ 2. Montrer que

max
x∈[0,1]

∣∣ e−nx − (1− x)n−1
∣∣ ≤ 1

n− 1
,

en étudiant la fonction gn(x) := e−nx − (1− x)n−1 pour x ∈ ]0, 1[.
d) Soit x ∈ R∗

+.
i) Montrer que

f(x)− ` = (−1)n

(n− 1)!

∫ +∞

x

(
1− x

u

)n−1
un−1f (n)(u) du.

ii) Montrer, à l’aide de i), b) ii) et de c), que

f(x)− ` = lim
n→+∞

[
(−1)n

(n− 1)!

∫ +∞

x
e−nx/u un−1f (n)(u) du

]
.
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iii) Montrer par une majoration et à l’aide de b) ii) et b) iii), que

lim
n→+∞

[
(−1)n

(n− 1)!

∫ x

0
e−nx/u un−1f (n)(u) du

]
= 0.

iv) En déduire que

f(x)− ` = lim
n→+∞

[
(−1)n

(n− 1)!

∫ +∞

0
e−nx/u un−1f (n)(u) du

]
.

e) Soit n ∈ N∗.
i) Montrer, à l’aide du changement de variable u → n/u, que la fonction

(discontinue en 0) αn définie par

αn(t) :=

 `+
(−1)n

n!

∫ t

0

(n
u

)n+1
f (n)

(n
u

)
du si t ∈ R∗

+

0 si t ∈ R−,

est continue à droite en 0, positive, croissante et lim
t→+∞

αn(t) = f(0).

ii) Montrer, à l’aide de d) iv), que

∀x ∈ R∗
+, f(x) = lim

n→∞
xL (αn)(x). (15.32)

À ce point de l’exercice, on admettra le :
Théorème de sélection de Helly : Toute suite uniformément bornée de fonctions
définies sur un intervalle de R à variations uniformément bornées, possède une
sous-suite qui converge simplement dans cet intervalle vers une fonction bornée à
variation bornée.
Il implique en particulier le passage à la limite sous l’intégrale de Stieltjes. Ainsi,
à une sous-suite près, la suite de fonctions décroissantes (αn)n≥1 converge simple-
ment vers une fonction positive décroissante α dans R∗

+. On déduit de la définition
de αn, de la limite (15.32) et de la convention (15.29), l’expression

∀x ∈ R∗
+, f(x) = lim

n→∞

(
L (dαn)(x) + αn(0

−)
)
= L (dα)(x).

Ceci conclut la démonstration du théorème de Bernstein-Widder.

15.40 L’intégrale fractionnaire de Riemann-Liouville

Soient α ∈ R∗
+, et a, b ∈ R tels que a < b. Pour toute fonction f : [a, b] → C

borélienne sur [a, b], on définit l’intégrale de Riemann-Liouville I α(f) de f en un
point x ∈ [a, b], par

I α(f)(x) :=
1

Γ(α)

∫ x

a
f(t) (x− t)α−1 dt

lorsque f est positive ou
(
t 7→ f(t) (x− t)α−1

)
est intégrable sur [a, x].
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a) Soit p ∈ [1,+∞[. Montrer, à l’aide de l’inégalité de Jensen (cf. exercice 7.10) et
du théorème de Fubini-Tonelli, que pour tout α ∈ R∗

+, I α est un opérateur linéaire
continu de

(
Lp([a, b]), ‖ · ‖p

)
sur lui-même, vérifiant

∀ f ∈ Lp([a, b]),
∥∥I α(f)

∥∥
p
≤ (b− a)α

αΓ(α)
‖f‖p.

b) Soit p ∈ [1,+∞[.
i) Soit ραy pour α > 0 et y ∈ [a, b[, définie par ραy (x) := (x− y)α/(αΓ(α))

pour x ∈ [y, b]. Montrer que pour tout y ∈ [a, b[,
∀x ∈ ]y, b], lim

α→0+
ραy (x) = 1,

∀α ∈ ]0, 1], ‖ραa‖L∞ ([a,b]) ≤
1

2
max(1, b− a).

ii) Soit ϕ ∈ C 0([a, b]). Montrer que pour tous x ∈ [a, b] et y ∈ [a, x[,∣∣(I α(ϕ)− ϕ
)
(x)
∣∣ ≤ ρα(b) max

t∈[y,x]
|ϕ(t)− ϕ(x)|

+2 ‖ϕ‖sup
∣∣ραa (x)− ραy (x)∣∣+ |ϕ(x)| ∣∣ραa (x)− 1

∣∣
et |I α(ϕ)(x)| ≤ ‖ϕ‖sup ραa (x).
En déduire que lim

α→0+

∥∥I α(ϕ)− ϕ
∥∥
p
= 0.

iii) Montrer que ∀ f ∈ L p([a, b]), lim
α→0+

∥∥I α(f)− f
∥∥
p
= 0.

c) Soient α ∈ R∗
+ et f ∈ C 0([a, b]). Montrer que

(
I α+1(f)

)′
= I α(f).

d) Montrer que pour tous α, β ∈ R∗
+, I α ◦I β = I α+β dans L 1([a, b]).

e) Dans cette question a = 0. Soient α ∈ ]0, 1[ et f ∈ L 1(R+). Montrer que

∀x ∈ R∗
+, x1 L

(
I 1−α(f)

)
(x) = xα L (f)(x).

Interprétation : Si α ∈ ]0, 1[ et f ∈ C 0(R+) ∩L 1(R+), alors d’après la Proposi-
tion 15.7 on a

∀x ∈ R+, L
(
I 1−α(f)

)′
(x) = xL

(
I 1−α(f)

)
(x)−I 1−α(f)(0)

= x1 L
(
I 1−α(f)

)
(x),

D’où
∀x ∈ R+, L

(
I 1−α(f)

)′
(x) = xα L (f)(x).

Donc la dérivée classique de la fonction I 1−α(f) peut être considérée comme la
dérivée fractionnaire d’ordre α de la fonction f .
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QCM et problèmes d’examens





Chapitre 16

Questionnaires à choix multiples

Avertissement

Les questionnaires à choix multiples (QCM) qui suivent sont, pour la plupart d’entre
eux, tirés de sujets d’examens du cours de tronc commun 3ème année intitulé : Ana-
lyse pour l’ingénieur, dispensé à l’INSA de Rennes depuis 2010. Les réponses sont
données dans le chapitre 19.

Dans les énoncés de ces QCM, les espaces LpC(Rd, λd) sont notés Lp(Rd) et la
transformée de Fourier est notée F est définie par

∀ f ∈ L1(Rd), F (f)(ξ) :=

∫
Rd

e−2iπ(x|ξ) dx

avec le facteur −2π par rapport à la définition du chapitre 15. Ainsi, la transformée
de Fourier dans L2(Rd), notée aussi F , vérifie

∀ f, g ∈ L2(Rd), (F ◦F )(f)(x) = f(−x), F (f) ∗F (g) = F (fg),

avec la formule de Plancherel

∀ f, g ∈ L2(Rd),
∫

Rd

F (f)F (g) dx =

∫
Rd

fḡ dx,

sans le facteur (2π)d présent au chapitre 15.
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16.1 QCM 1

1. On a

e−x
2

√
x
∈ L1(R+)

x

x2 + 1
∈ L1(R)

sinx

x
∈ L1(R)

e−x
2

√
x
∈ L2(R+)

x

x2 + 1
∈ L2(R)

sinx

x
∈ L2(R)

2. On a

lim
n→+∞

∫ 1

0
n2 x e−nx dx = 0 lim

n→+∞

∫ 1

0

(
1 + x

2

)n
dx = 0

lim
n→+∞

∫ +∞

0

e−nx√
x
dx = 0 lim

n→+∞

∫ +∞

−∞
e−(x+n)2 dx = 0

3. L’intégrale double
∫

R2
+

e−
1
2
(x2+y2) dx dy est égale à

π
π√
2

π

2

π

2
√
2

π

4

π

4
√
2

4. La transformée de Fourier de la fonction
(
x 7→

{
x2 e−x si x ≥ 0

0 si x < 0

)
en ξ ∈

R, est égale à

1

(1 + 2iπ ξ)2
2

(1 + 2iπ ξ)2
1

(1 + 2iπ ξ)3
2

(1 + 2iπ ξ)3

5. À l’aide de F
(
e−2π|x|), le calcul de

∫
R

dξ

(1 + ξ2)2
donne

1

2
1 2

π

2
π 2π

6. À l’aide de F
(
1[− 1

2π
, 1
2π

]

)
, le calcul de

∫
R

(
sin ξ

ξ

)2

dξ donne

1

2
1 2

π

2
π 2π

7. Soit f(x) := e−πx
2
, x ∈ R. La transformée de Fourier de f ∗ f en ξ ∈ R, est

égale à

e−πξ
2

2 e−πξ
2

e−2πξ2 2

1 + ξ2
1

(1 + ξ2)2
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16.2 QCM 2

1. On a

arctan
√
x

x
∈ L1(R+)

1√
x4 + x

∈ L1(R+)
cosx

x
∈ L1(R)

arctan
√
x

x
∈ L2(R+)

1√
x4 + x

∈ L2(R+)
cosx

x
∈ L2(R)

2. L’intégrale double
∫

R

∫
R
e−(x2+2xy+3y2) dx dy est égale à

π
π√
2

π

3

π

2
√
3

π

4

π

4
√
2

3. L’intégrale double
∫ +∞

0

∫ +∞

0
e−x(1+y

2) dx dy est égale à

π
π

2

√
π

2

∫ +∞

0
e−t

2
dt 2

(∫ +∞

0
e−t

2
dt

)2 √
π

∫ +∞

0

e−x√
x
dx

4. La transformée de Fourier F (f) de la fonction f(x) := x e−πx
2
, est égale à

f − f if − if 2f − 2f

5. La transformée de Fourier F (f) de la fonction f :
(
x 7→ − 4π2x2 1[− 1

2
, 1
2 ]
(x)
)

en ξ = 1, est égale à

− π 0 1 2 π 2π

6. Soit la fonction f :

(
x 7→

{
x2 e−x si x ≥ 0

0 si x < 0

)
. Alors l’intégrale

∫ +∞

0
f2(x) dx

est égale à

2

π

∫
R

dξ

(1 + ξ2)2
2

π

∫
R

dξ

(1 + ξ2)3
2

π

∫
R

dξ

(1 + ξ2)4

2

π

∫
R

dξ

(1 + ξ2)5
2

π

∫
R

dξ

(1 + ξ2)6
2

π

∫
R

dξ

(1 + ξ2)8

7. Soit la fonction fa(x) :=
1

x2 + a2
, pour x ∈ R et a > 0. La convolée f1 ∗ f1

coı̈ncide, à une constante multiplicative près, avec

f1 f2 (f1)
2 (f2)

2
(
F (f1)

)2 (
F (f2)

)2
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16.3 QCM 3

1. On a

1

x
sin

(
1

x

)
∈ L1(R+)

1√
x3 + x

∈ L1(R+)
sin2 x

x
∈ L1(R)

1

x2
sin

(
1

x2

)
∈ L1(R+)

1√
x3 + x

∈ L2(R+)
sin2 x

x
∈ L2(R)

2. L’intégrale
∫

R

∫
R
(x2 + y2) e−(x2+y2) dx dy est égale à

1
1√
2

1

2

π

2

π√
2

π

3. Soient I := lim
n→+∞

∫ +∞

−∞

dx

1 + (x+ n)2
et J := lim

n→+∞

∫ +∞

0

dx

1 + (x+ n)2
.

Alors

I = +∞ I = π I = 0 J = 0 J =
π

2
J = π

4. La transformée de Fourier F (f) de la fonction f(x) := x2 e−πx
2
, est

= 1+f réelle = if > 1+f > −f < −f

5. Soit f :

(
x 7→

{
x si x ∈ [−1

2 ,
1
2 ]

0 sinon

)
. L’intégrale

∫
R
4π f2(x) dx est égale à

∫
R

(
sin t

t

)2

dt

∫
R

(
1− cos t

t2

)2

dt

∫
R

(
t cos t− sin t

t

)2

dt∫
R

(
t cos t− sin t

t2

)2

dt

∫
R

(
1− cos t+ t sin t

t2

)2

dt

6. Soit fa :

(
x 7→

{
e−ax si x ≥ 0
0 si x < 0

)
, a > 0. Partant de la transformée de

Fourier de fa ∗ fa, l’intégrale
∫ +∞

−∞

dt

(a2 + 4π2 t2)2
est égale à

∫ +∞

−∞
e−2ax dx

∫ +∞

−∞
x2 e−2ax dx

∫ +∞

−∞
x4 e−2ax dx∫ +∞

0
e−2ax dx

∫ +∞

0
x2 e−2ax dx

∫ +∞

0
x4 e−2ax dx

7. Partant de
∫

R
e−x

2
dx =

√
π , l’intégrale

∫
R

1− e−x2

x2
dx est égale à

1
1√
2

√
π

2

√
π

√
2π 2

√
π
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16.4 QCM 4

1. On a

1− e−
√
x

x
∈ L1([0, 1])

1√
x2 + x

∈ L1(R+)
sinx√
x2 + 1

∈ L1(R)

1− e−
√
x

x
∈ L2([0, 1[)

1√
x2 + x

∈ L2(R+)
sinx√
x2 + 1

∈ L2(R)

2. Soit f(t) :=
∫ +∞

0

e−t (1+x)

1 + x
dx , t > 0. Alors f ′(1) est égale à

− e2 − e − 1

e
0

1

e
e e2

3. L’intégrale double
∫

R

∫
R
e−
√
x2+y2 dx dy est égale à

1√
2

1 2
π√
2

π 2π

4. La transformée de Fourier F (f) de la fonction f(x) := x e−πx
2
, vérifie

F (f)(0) = 0 F (f)(0) =
√
π F (f) = −f

F (f) = f F (f) = − if F (f) = if

5. L’intégrale
∫ +∞

−∞

∣∣∣∣ ∫ +∞

0
e−2πx (x+iy)dx

∣∣∣∣2 dy est égale à

1

4

1

2
1

√
π

4

√
π

2

√
π

6. Soit f(x) :=
sin(πx)

πx
, x 6= 0. Alors, F désignant la transformée de Fourier

dans L2(R), f ∗ f est égale à

f2 f F (f)
(
F (f)

)2
F (f2) F (f) ∗ F (f)

7. L’intégrale
∫ +∞

0

∫ +∞

0

e−(x+y) − e−2(x+y)

x+ y
dx dy est égale à

1

2

ln 2

2
ln 2 1 2 ln 2 1 + ln 2
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16.5 QCM 5

1. On a
1√

x| lnx|
∈ L1(]0, 1[)

1√
x lnx

∈ L1(]0, 1[)

1√
x| lnx|

∈ L2(]0, 1[)
1√
x lnx

∈ L2([2,+∞[)

1√
lnx
(
1 + x

√
lnx
) ∈ L1(]1,+∞[)

1√
lnx
(
1 + x

√
lnx
) ∈ L2(]1,+∞[)

2. Soit f(t) :=
∫ +∞

0

e−t
2 (x2+i)

x2 + i
dx , t > 0. Alors f ′(

√
π) est égale à

− 2
√
π − 2 −

√
π − 1 1

√
π 2

3. L’intégrale double
∫

R

∫
R

dx dy

(1 + x2 + y2)2
est égale à

1√
2

1 2
π√
2

π 2π

4. La transformée de Fourier F (f) de la fonction f(x) := (4π2x2 − π) e−πx
2
,

vérifie
F (f) = −if F (f) = −2f F (f) = −f

F (f) = f F (f) = 2f F (f) = if

5. L’intégrale
∫ +∞

−∞

sin(ax) sin(bx)

x2
dx , pour a, b > 0, est égale à

π(a+ b) 2π(a+ b) πmin(a, b)

2πmin(a, b) πmax(a, b) 2πmax(a, b)

6. Soit f ∈ L1(R). Alors (f ∗ f)(x) = xf(x) pour (presque tout) x ∈ R, si f(x)
est égale à

e−|x| 1R+(x) e
−x − 1R+(x) e

−x

1R−(x) e
x − 1R−(x) e

x 1R+(x) e
−2x

7. En posant g(y) := ln
(
1+2y+2

√
y2 + y

)
, y ≥ 0, l’intégrale

∫ +∞

0

ln(1 + a+ ax2)

1 + x2
dx ,

pour a ≥ 0, est égale à

1

2
g(a) g(a) 2 g(a)

π

2
g(a) π g(a) 2π g(a)



16.6. QCM 6 371

16.6 QCM 6

1. On a∫ 1

0

√
x ln

(
e

2
x − e

1
x
)
dx = +∞ lim

a→+∞

∫ a

1

sinx√
x− sinx

dx = +∞∫ 1

0
x ln2

(
e

2
x − e

1
x
)
dx = +∞ lim

a→+∞

∫ a

1

sinx
√
x− sin2 x

dx = +∞

lim
a→+∞

∫ a

e

lnx sinx

x (lnx+ sinx)
dx = +∞ lim

a→+∞

∫ a

e

lnx sinx

x (lnx− sinx)
dx = +∞

2. Soit ϕ ∈ S (R). Alors lim
n→+∞

∫
R

sin(nπx)

x
ϕ(x) dx est égale à

0

∫
R
ϕ(x) dx π

∫
R
ϕ(x) dx ϕ(0) π ϕ(0)

3. L’intégrale double
∫

R

∫
R

[
+∞∑
n=1

(x2 + y2)n−1

1 + (n+ 1)2(x2 + y2)2n

]
dx dy est égale à

1
π

2
2 π

π2

2
+∞

4. L’équation suivante a au moins une solution réelle non nulle dans L1(R)

f∗f = 1+f f∗f = f f∗f = ixf f∗f = e−πx
2

f∗f = −e−πx2

5. L’intégrale
∫ +∞

−∞

dx

(a+ ix)(b+ ix)
, pour a, b > 0, est égale à

0
π

a+ b

2π

a+ b

π

2
(a+ b) π(a+ b) 2π(a+ b)

6. Soit F : R → R. Alors pour toute fonction paire f ∈ L1(R), F
(
F (f)

)
∈

F
(
L1(R)

)
lorsque F est égale à

1[1,+∞[(x) ex x ex cosx sinx
1

1 + x2

7. En utilisant le théorème de Fubini l’intégrale
∫ π

0

arctan(a sinx)

sinx
dx , pour

a ∈ R, est égale à

πa
πa√
a2 + 1

π sin a π arctan a π sinh a π argsinh a





Chapitre 17

Quelques problèmes

Avertissement

Les problèmes qui suivent ont fait l’objet de sujets d’examens du cours d’inté-
gration de licence de mathématiques des Universités Paris-Est Créteil (UPEC) et
Pierre & Marie Curie (UPMC). Ils sont donc normalement accessibles à un étudiant
sans indications préalables autres que celles parfois proposées dans les énoncés
eux-mêmes. Leur seconde caractéristique est d’être généralement transversaux, d’où
leur regroupement en fin d’ouvrage : les répartir au fil des chapitres aurait nécessité
un saucissonnage préjudiciable à leur cohérence.

17.1 Problème 1

Soit f :R+ → R, borélienne. On suppose que f ∈ L 1
R(R+,B(R+), λ) (i.e. que∫

R+

|f(x)|dx<+∞). Pour tout t∈ R+, on pose :

Lf (t) :=

∫ +∞

0
e−txf(x)dx.

1.a. Vérifier que la fonction t 7→ Lf (t) est bien définie en tout point t∈ R+ et que

Lf (0) =

∫ +∞

0
f(x)dx.

1.b. Montrer que Lf est continue sur R+.

1.c. Montrer que lim
t→+∞

Lf (t) = 0.

2. On définit la fonction g sur R+ par g(x) :=xf(x). On suppose que g∈ L 1
R(λ).

2.a. Montrer que Lf est dérivable sur R+ de dérivée continue donnée par

∀ t∈ R+ (Lf )′(t) = −Lg(t).
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2.b. En déduire que
∫ +∞

0
Lg(t)dt =

∫ +∞

0
f(x)dx.

2.c. Montrer que si
∫ +∞

0

|f(x)|
x

dx < +∞, alors
∫ +∞

0
Lf (t)dt =

∫ +∞

0

f(x)

x
dx.

3.a. Pour tout n≥1 on définit fn(x) := sin(x)1[0,n](x). Montrer que

∀ t∈ R+ Lfn(t) =
1− e−nt(cos(n) + t sin(n))

1 + t2
.

[Indication : remarquer que Lfn(t) = =m
(∫ n

0
ex(i−t)dx

)
où i∈ C et i2 = −1.]

3.b. Établir rapidement que, pour tout x ∈ R, ex ≥ 1 + x. En déduire que

∀n ∈ N, ∀ t ∈ R+,
∣∣e−nt(cos(n) + t sin(n))

∣∣ ≤ e−(n−1)t ≤ 1.

3.c. Établir la majoration : ∀ t ∈ R+, |Lfn(t)| ≤ 2

1 + t2
.

3.d. Montrer que lim
n→+∞

∫ +∞

0
Lfn(t)dt =

∫ +∞

0

dt

1 + t2
=
π

2
.

3.e. Montrer à l’aide de la question 2.c. que∫ +∞

0
Lfn(t)dt =

∫ n

0

sin(x)

x
dx.

et en conclure que lim
n→+∞

∫ n

0

sin(x)

x
dx =

π

2
.

4. On suppose dans cette question que f est positive et que Lf est dérivable en 0.

4.a. Montrer que la fonction définie sur R∗
+ par ϕ(u) :=

1− e−u

u
est décroissante.

4.b. Montrer que la suite de fonctions ϕn définies par

∀n ≥ 1, ∀x ∈ R+ ϕn(x) := n(1− e−
x
n )

est croissante positive.

4.c. Montrer que
∫ +∞

0
xf(x)dx = −(Lf )′(0).

17.2 Problème 2

1. Montrer à l’aide du théorème de Fubini et d’un changement de variables que

I :=

∫ +∞

0
e−

x2

2 dx =

√
π

2
(introduire I2).
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2. On pose pour tout n∈ N et pour tout x∈ R,

fn(x) :=

(
1 +

x2

n

)−n+1
2

et an :=

∫
R
fn(x)dx.

2.a. Montrer que, pour tout u∈ R+ et tout p∈ N, (1 + u)p ≥ 1 + pu.

2.b. En déduire que : ∀x∈ R, fn(x) ≤
2

1 + x2
.

2.c. Calculer lim
n
an.

3. Montrer qu’il existe une fonction intégrable f : R → R que l’on déterminera
telle que

lim
n

∫
R

∣∣∣∣fn(x)an
− f(x)

∣∣∣∣ dx = 0.

4. Montrer que, pour tout λ≥1/2, lim
n

∫
R
eλx

2
fn(x)dx = +∞.

17.3 Problème 3

On se place sur un espace mesurable (X,A , µ) vérifiant µ(X) = 1 (i.e. un
espace de probabilités).

On rappelle qu’une fonction dérivable ϕ : I → R (I intervalle de R) est
convexe si l’une des deux conditions équivalentes suivantes est vérifiée :

(i) ∀ θ ∈ [0, 1], ∀u, v∈ I, ϕ(θu+ (1− θ)v) ≤ θϕ(u) + (1− θ)ϕ(v),
(ii) ∀u, v∈ I, ϕ(u) ≥ ϕ(v) + ϕ′(v)(u− v).

1.a. Soient f : X → I et ϕ : I → R deux vérifiant respectivement ϕ est convexe et
f, ϕ(f)∈ L 1

R(µ). Établir l’inégalité dite de Jensen :

ϕ

(∫
X
fdµ

)
≤
∫
X
ϕ(f)dµ

(on pourra utiliser (ii) avec v :=
∫
X
fdµ et des valeurs de u convenablement choi-

sies).

1.b. Montrer que ϕ(x) := xα, définie sur I := R+, est convexe si et seulement si
α≥ 1.

2. On considère une fonction positive g∈ L 1
R+

(λ).

2.a. Montrer à l’aide de l’inégalité de Jensen que si p≥2 et g∈ L p
R+

(µ), alors

g∈ L
p

p−1

R+
(µ) et

(∫
X
g

p
p−1 dµ

)p−1

≤
∫
X
gp dµ.

2.b. Retrouver le résultat obtenu en 2.a. directement à l’aide de l’inégalité de Hölder.
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2.c. En conclure que si f et g sont positives et dans L p
R+

(µ) (toujours avec p≥2),
alors (∫

X
fg dµ

)p
≤
∫
X
fp dµ×

∫
X
gp dµ.

3. On considère maintenant une fonction ψ : R+ → R+ continue, croissante, telle
que ψ(0) = 0 et ψ(1)>0 et vérifiant en outre

∀x, y ≥ 0, ψ(xy) ≤ ψ(x)ψ(y) et ψ◦√ est convexe sur R+.

3.a. Montrer que pour tout réel x≥1, ψ(x) ≥ x2ψ(1).
3.b. Soit f : (X,A , µ)→ R+. Montrer que si ψ(f)∈ L 1

R+
(µ) alors f ∈ L 2

R+
(µ).

3.c. Montrer que pour toutes fonctions boréliennes positives f et g vérifiant ψ(f)
et ψ(g)∈ L 1

R+
(µ), on a

ψ

(∫
X
fg dµ

)
≤ ψ(‖f‖2)ψ(‖g‖2).

En déduire que

ψ

(∫
X
fg dµ

)
≤
∫
X
ψ(f) dµ

∫
X
ψ(g) dµ.

3.d. Montrer que le résultat ci-dessus admet l’inégalité établie en 2.c. comme cas
particulier.

17.4 Problème 4

Dans tout ce problème on se place sur l’espace mesurable (R∗
+,B(R∗

+)) muni
de la mesure de Lebesgue λ (la notation R∗

+ désigne ici l’ensemble des réels stricte-
ment positifs). On notera indifféremment

∫
f dλ ou

∫
f(x) dx pour désigner l’intégrale

d’une fonction f par rapport à la mesure de Lebesgue (lorsque celle-ci a un sens).

1.a. Montrer que l’application de (R∗
+)

2 dans lui-même (u, v) 7→ (uv , v) est borélien-
ne.

1.b. Montrer que si f et g sont deux applications boréliennes de R∗
+ dans R, alors

(u, v) 7→ f(u/v) g(v)

est mesurable de ((R∗
+)

2,B(R∗
+)

⊗2) dans (R,B(R)).

2.a. Soient f, g : R∗
+ → R+ deux fonctions boréliennes positives. Montrer que∫

R∗
+×R∗

+

f(u/v)g(v)
du dv

v
=

∫
R∗
+

f(x)dx

∫
R∗
+

g(x)dx.



17.4. Problème 4 377

2.b. En déduire que si f, g : R∗
+ → R sont intégrables sur R∗

+ par rapport à la mesure

de Lebesgue, on peut définir λ(du)-p.p. sur R∗
+ l’intégrale

∫
R∗
+

f(u/v)g(v)
dv

v
. On

notera cette intégrale f � g(u) là où elle existe (on prolonge f � g à toute la droite
réelle en posant f � g(u) = 0 en les points u∈ R∗

+ où l’intégrale n’est pas définie).
Justifier le fait que la fonction f � g ainsi définie est borélienne.
2.c. Montrer que si f, g ∈ L 1(R∗

+, λ), alors f � g = g � f .

AVERTISSEMENT : Dans toute la suite f � g(u) désignera l’intégrale définie en
2.b. lorsqu’elle existe.

3.a. Montrer que si f est continue et nulle en dehors d’un intervalle compact [a, b]
contenu dans R∗

+ et si g est intégrable sur tout intervalle compact de R∗
+, alors f�g

existe et est continue sur R∗
+.

3.b. Soient f : R∗
+ → R une fonction borélienne vérifiant

∫
R∗
+

|f(x)|dx
x

< +∞

et (fn)n≥0 une suite de fonctions continues à support compact (dans R∗
+) vérifiant∫

R∗
+

|f(x)− fn(x)|
dx

x
→ 0 quand n→ +∞ (il n’est pas demandé d’établir l’exis-

tence d’une telle suite). Soit g une fonction borélienne, bornée par un réelM . Mon-
trer que, pour tout x∈ R∗

+, f � g(x) est défini et que

|f � g(x)− fn � g(x)| ≤M
∫

R∗
+

|f(y)− fn(y)|
dy

y
.

En déduire que fn � g converge uniformément vers f � g, puis que f � g est
continue.

4.a. On pose g := 1[a,b] où 0 < a < b. Montrer que, pour toute f ∈ L 1(R∗
+, λ),

f � g existe et est continue sur R∗
+ (on pourra exprimer f � g comme une intégrale

dépendant de ses bornes).
4.b. Déduire de ce qui précède qu’il n’existe pas de fonction e∈ L 1(R∗

+, λ) telle
que, pour toute g∈ L 1(R∗

+, λ), e� g = g λ-p.p..

5. Soit f : R∗
+ → R+ une fonction borélienne. On suppose que f vérifie la condition

(C) ∃α > 0 tel que
∫

R∗
+

f(x)eαxdx < +∞.

On pose alors, pour tout t≥ 0, Lf (t) :=
∫

R∗
+

f(x)xtdx.

5.a. Montrer que Lf (t) < +∞ pour tout t∈ R+ (on pourra établir par exemple que
pour tout u∈ R+, un ≤ n! eu).
5.b. Montrer que, dès que deux fonctions boréliennes positives f et g vérifient la
condition (C), Lf�g = LfLg.
5.c. Donner une exemple de fonction borélienne positive f ne vérifiant pas (C) et
pour laquelle Lf (t) est cependant fini pour tout t≥0.
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17.5 Problème 5

On se place sur un espace mesuré abstrait (X,A , µ) vérifiant µ(X) < +∞. Le
but du problème est d’établir, dans ce cadre, des conditions plus faibles que celles
du théorème de convergence dominée pour passer de la convergence µ-p.p. à la
convergence dans L1(µ).

Une suite (fn)n≥1 de fonctions A -mesurables de X dans R est dite équiintégrable
si

lim
c→+∞

sup
n≥1

∫
{|fn|≥c}

|fn| dµ = 0.

QUESTION PRÉLIMINAIRE : Soit g∈ L 1
R+

(µ). On pose, pour tout A∈ A ,

µg(A) :=

∫
A
gdµ.

Montrer que µg est une mesure finie sur (X,A ).

1. On suppose dans cette question que la suite (fn)n≥1 est équiintégrable.

1.a. Montrer que, pour tout n≥1, pour tout A∈ A et tout réel c>0,∫
A
|fn|dµ ≤

∫
{|fn|≥c}

|fn|dµ+ cµ(A).

1.b. En déduire que sup
n≥1
‖fn‖1 < +∞.

1.c. Déduire également de la question 1.a. que, pour tout ε> 0, il existe ηε> 0 tel
que, pour toute suite (An)n≥1 d’éléments de A ,

sup
n≥1

µ(An) ≤ ηε =⇒ sup
n≥1

∫
An

|fn|dµ ≤ ε.

2. On suppose danc cette question que la suite de fonctions (fn)n≥1 est équi-
intégrable et converge µ-p.p. vers une fonction f .

2.a. Montrer que f ∈ L 1
R(µ) et ‖f‖1 ≤ sup

n≥1
‖fn‖1 .

2.b. Montrer que, pour tout A∈ A ,
∫
A
|f |dµ ≤ sup

n≥1

∫
A
|fn|dµ.

2.c. Pour tout n≥1, on pose Ac,n :={|f − fn| ≥ c}. Montrer que

sup
n≥1

µ(Ac,n) ≤ 2
supn≥1 ‖fn‖1

c
.

2.d. Montrer que, pour tout n≥1 et pour tout réel c>0,∫
|f − fn|dµ ≤

∫
min(|f − fn|, c)dµ+ 2 sup

n≥1

∫
Ac,n

|fn|dµ.
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2.e. Déduire de ce qui précède que
∫
|f − fn|dµ tend vers 0 quand n→ +∞.

3.a. Montrer que s’il existe une fonction positive g ∈ L 1
R(µ) telle que, pour tout

n≥1, |fn| ≤ g µ-p.p., alors la suite (fn)n≥1 est équiintégrable.

3.b. En déduire que la suite constante fn :=f ∈ L 1
R(µ) est équiintégrable.

4. Montrer que si deux suites de fonctions (fn)n≥1 et (gn)n≥1 sont équiintégrables,
il en est de même de leur somme (fn + gn)n≥1. On établira à titre préliminaire
l’inégalité∫

{|fn+gn|≥ε}
|fn + gn|dµ ≤

∫
{|fn|≥ε/2}

|fn|dµ+

∫
{|gn|≥ε/2}

|gn|dµ

+

∫
{|fn|≥ε/2}

|gn|dµ+

∫
{|gn|≥ε/2}

|fn|dµ

et l’on s’appuiera sur la question 1.c.

5. On suppose dans cette question que fn converge vers f dans L1(µ).

5.a. Montrer que sup
n≥1
‖fn‖1 < +∞.

5.b. Montrer que, pour tous réel ε> 0, il existe un entier nε≥ 1 tel que, pour tout
réel c>0,

sup
n∈N

∫
{|fn−f |≥c}

|fn−f |dµ ≤ max

(
ε,

∫
{|f1−f |≥c}

|f1−f |dµ, . . . ,
∫
{|fnε−f |≥c}

|fnε−f |dµ

)
.

5.c. En déduire que la suite (fn − f)n≥1 est équiintégrable, puis, à partir de la
question 4., que la suite (fn)n≥1 elle-même est équiintégrable.

6. On se place dans cette seule question sur (R+,B(R+), λ). Montre que la fonc-

tion f(x) := 1/
√
x vérifie lim

c→+∞

∫
{|f |≥c}

f(x) dx = 0 alors que f n’est pas même

intégrable.

17.6 Problème 6

On pose, pour tout t∈ R∗
+, Γ(t) :=

∫ +∞

0
xt−1e−x dx.

PARTIE A : 1.a. Montrer que la fonction Γ(t) est bien définie en tout point t de R∗
+,

à valeurs dans R+.

1.b. Montrer que, pour tout t > 0, Γ(t + 1) = tΓ(t) et en déduire que Γ(n) =
(n− 1)! pour tout n∈ N∗.

2.a. Montrer que Γ(12) =
√
2

∫ +∞

0
e−

u2

2 du.
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2.b. Montrer que que
∫ +∞

0
e−

u2

2 du =

√
π

2
(on pourra, en élevant l’expression au

carré, transformer artificiellement l’intégrale simple ci-dessus en intégrale double,
puis mettre en œuvre un changement de variables ad hoc, le tout soigneusement
justifié).

3.a. Montrer, en considérant notamment le changement de variable élémentaire
x = ϕ(u) := u√

t
−
√
t, que

Γ(t+ 1) = tt
√
t e−t

∫ +∞

−
√
t

(
1 +

v√
t

)t
e−v

√
t dv.

3.b. En déduire que, pour toute suite de réels tn tendant vers +∞,

lim
n

(
e

tn

)tn Γ(tn + 1)√
tn

≥
∫

R
e−

u2

2 du =
√
2π.

(On pourra calculer, pour tout v∈ R, lim
t→+∞

t ln(1 +
v√
t
)− v

√
t.)

4.a. Montrer que
∫ 0

−
√
t

(
1 +

v√
t

)t
e−v

√
t dv =

∫ √
t

0

(
1− w√

t

)t
ew

√
t dw.

4.b. Montrer que pour tout x∈]− 1, 0], ln(1 + x) ≤ x− x2

2 .

4.c. En déduire que pour tout w, t∈ R+,
(
1− w√

t

)t
ew

√
t1

[0,
√
t]
(w) ≤ e−

w2

2 .

4.d. En conclure que lim
t→+∞

∫ 0

−
√
t

(
1 +

v√
t

)t
e−v

√
t dv =

√
π

2
.

5.a. Étudier les variations de la fonction x 7→ ln(1 + x)− x+
x2

2(1 + x)
sur R+.

5.b. En déduire que, pour tout u∈ R+ et pour tout t≥1,(
1 +

u√
t

)t
e−u

√
t ≤ e−

u2

2(1+u) .

5.c. En conclure que lim
t→+∞

∫ +∞

0

(
1 +

u√
t

)t
e−u

√
t du =

√
π

2
.

6. Établir la formule de Stirling étendue : Γ(t+ 1)
t→+∞∼

(
t

e

)t√
2πt.

PARTIE B : 1.a. Montrer que, pour tous s, t > 0,

Γ(s)Γ(t) =

∫
R2
+

xs−1yt−1e−(x+y) dx dy.
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1.b. On pose, pour tous u, v∈ R, ϕ(u, v) := (u(1 − v), uv). Montrer que ϕ est un
C 1-difféomorphisme d’un pavé ouvert de R2 que l’on précisera sur (R∗

+)
2.

1.c. Montrer que , pour tous s, t > 0,

Γ(s)Γ(t) = Γ(s+ t)

∫ 1

0
(1− v)s−1vt−1 dv.

2. Montrer que
∫ 1

0

dv√
v(1− v)

= π.

Remarque : On pourra éventuellement consulter les indications associées à l’exer-
cice 8.18.

17.7 Problème 7

Les trois parties du problème sont indépendantes.

PARTIE A : Soit f la fonction définie par

f(t) :=

∫
R2

e−t (x
4+y4)

1 + x4 + y4
dx dy, t ≥ 0.

1. Montrer que f(0) ≤
∫

R2

2

2 + (x2 + y2)2
dx dy et calculer cette dernière intégrale

à l’aide d’un changement de variables classique.

2. Montrer que f est continue sur R+ et lim
t→+∞

f(t) = 0 (Indication : remarquer

que f(0) < +∞).

3. Montrer que f est dérivable sur R∗
+ et que f est solution de l’équation différen-

tielle f ′(t) = f(t)− I2√
t

où I :=

∫
R
e−u

4
du.

4. En déduire que pour tout t ∈ R+, f(t) = 2 I2
∫ +∞

√
t

et−u
2
du (montrer que la

dernière fonction est une solution particulière de l’équation différentielle de 3. et
utiliser la limite obtenue à la question 2.).

PARTIE B : On considère l’espace mesuré
(
[0, 1],B([0, 1]), λ

)
où λ est la mesure

de Lebesgue. On se propose de montrer l’implication

∀A ∈ B([0, 1]),

∫
A

λ(dx)

x
< +∞ =⇒ lim

ε→0

λ(A ∩ [0, ε])

ε
= 0.

1. SoitA ∈ B([0, 1]) tel que
∫
A

λ(dx)

x
< +∞. Montrer que lim

ε→0

∫
A∩[0,ε]

λ(dx)

x
=

0 (utiliser la caractérisation séquentielle de la limite).
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2. Montrer que (λ(A ∩ [0, ε]))2 ≤
∫
A∩[0,ε]

λ(dx)

x

∫
A∩[0,ε]

xλ(dx).

3. En déduire l’implication cherchée.

4. Facultatif : Montrer que la réciproque est fausse à l’aide de l’ensemble A défini
par A :=

⋃
k≥2

[ 1k ,
1
k + ak] où ak := 1

k ln(k) −
1

(k+1) ln(k+1) . (Indication : majorer

λ(A ∩ [0, 1n ]) à l’aide d’une série et minorer
∫
A∩[ 1

n
,1]

λ(dx)

x
à l’aide d’une somme

puis conclure en notant que ak ∼ 1
k2 ln(k)

).

PARTIE C : On se place sur un espace mesuré (X,A , µ). Soit Φ : R+ → R une
fonction continue et strictement croissante telle que

∃ a, b > 0, ∀ t ∈ R+, a t ≤ Φ(t) ≤ b t.

Soient (fn)n≥1 et f des fonctions positives de L 2
R+

(X,µ) telles que

lim
n→+∞

∫
X
(Φ(fn)− Φ(f)) (fn − f) dµ = 0.

1. Montrer que l’on peut extraire de chaque sous-suite de (fn)n≥1 une sous-suite
(fkn)n≥1 telle que (Φ(fkn)−Φ(f)) (fkn−f) converge vers 0 µ-p.p. et soit dominée
µ-p.p. par une fonction fixe de L 1

R+
(µ).

2. Montrer qu’il existe g ∈ L 2
R+

(µ) et h ∈ L 1
R+

(µ) telles que (fkn)
2 ≤ g fkn + h

µ-p.p. puis que fkn est dominée µ-p.p. par une fonction fixe de L 2
R+

(µ).

3. Montrer que fkn converge vers f µ-p.p. (montrer que fkn(x) possède f(x)
comme unique valeur d’adhérence µ(dx)-p.p., à l’aide de 1., de la continuité et
de la stricte croissance de Φ).

4. En déduire que fkn converge vers f dans L2
R+

(µ) (appliquer le théorème de
convergence dominée) ainsi que toute la suite fn.

17.8 Problème 8

La lettre λ désigne la mesure de Lebesgue sur l’intervalle unité [0, 1]. On se
donne une fonction f0 : [0, 1] → R fixée et un paramètre α∈ R+. On associe, dès
que cela a un sens, à une fonction borélienne f : [0, 1]→ R, la fonction Φ(f) par

Φ(f)(x) := α

∫ x

0

f(t)√
x− t

dt+ f0(x), x∈ [0, 1].

PARTIE A : 1. Montrer que si la fonction f est bornée ou positive, alors la fonction
Φ(f)(x) est bien définie en tout point x∈ [0, 1].
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2. Montrer que, si la fonction f est positive, alors∫ 1

0

(∫ x

0

f(t)√
x− t

dt

)
dx = 2

∫ 1

0

√
1− t f(t) dt.

3.a. Montrer que si la fonction f est dans L 1([0, 1], λ), alors Φ(f)(x) est défini
pour λ-presque tout x ∈ [0, 1]. Montrer que tout prolongement de Φ(f) à l’inter-
valle [0, 1] est dans L 1([0, 1], λ). En déduire que, si f0 est dans L 1([0, 1], λ), Φ
définit une transformation de L1([0, 1], λ) à valeurs dans L1([0, 1], λ).

3.b. Montrer que, pour toutes f, g∈ L 1([0, 1], λ),

‖Φ(f)− Φ(g)‖1 ≤ 2α‖f − g‖1 .

En déduire que si, α∈]0, 1/2[, il une fonction f1∈ L 1([0, 1], λ) telle que Φ(f1) =
f1 λ-p.p. (on pourra temporairement considérer l’espace L1([0, 1], λ)). Montrer
que si Φ(f̃1) = f̃1 λ-p.p., (f̃1∈ L 1([0, 1], λ), alors f1 = f̃1 λ-p.p..

4.a. Un réel x∈ [0, 1] étant fixé, vérifier que la formule

νx(A) :=

∫
A∩[0,x]

dt√
x− t

, A∈ B([0, 1]),

définit bien une mesure positive finie sur l’espace ([0, 1],B([0, 1])). Exprimer la
masse totale de νx en fonction de x.

4.b. Montrer que si µ désigne une mesure positive finie sur un espace (X,A ), alors,
pour toute fonction mesurable positive f définie sur X∫

X
f dµ ≤

√
µ(X)

∫
X
f2dµ.

En déduire que L 2(X,A , µ) ⊂ L 1(X,A , µ).
4.c. Montrer que, pour toute fonction mesurable positive f définie sur [0, 1] et pour
tout x∈ [0, 1], (∫ x

0

f(t)√
x− t

dt

)2

≤ 2
√
x

∫ x

0

f2(t)√
x− t

dt.

4.d. En déduire que, si f0 ∈ L2([0, 1], λ), la transformation Φ envoie L2([0, 1], λ)
dans lui-même et vérifie pour la norme ‖ . ‖2 une inégalité analogue à celle établie
en 3.b.

5. Que peut-on dire alors du point fixe f1 de Φ en termes d’intégrabilité ?

PARTIE B : On suppose dans tout ce qui suit que f0 ≡ 0 et α = 1.

1.a. Montrer que Φ est linéaire de L1([0, 1], λ) dans L1([0, 1], λ)et que sa norme
vérifie ‖|Φ‖| ≤ 2 où, par définition, |||Φ||| := sup {‖Φ(f)‖1 , ‖f‖1 ≤ 1}.
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1.b. On pose, pour tout n ≥ 1, fn := n1
[0,1/n]

. Montrer que ‖fn‖1 = 1 et que

‖Φ(fn)‖1 est égal à
4

3
n
(
1− (1− 1/n)

3
2
)
. En déduire que |||Φ||| = 2.

2.a. Soit f ∈ L 1([0, 1], λ). Montrer que, pour tout x∈ [0, 1],

Φ(f)(x) =
√
x

∫ 1

0

f(xu)√
1− u

du.

2.b. En déduire que, si la fonction f est bornée et continue en 0, alors

lim
x→0

Φ(f)(x)√
x

= 2f(0).

2.c. Déduire également de la question 2.a que, si f est décroissante positive,

lim
x→0

Φ(f)(x)√
x

= 2f(0+).

2.d. Que subsiste-t-il du résultat de la question 2.c. si la fonction f est seulement
positive et admet une limite (à droite) en zéro?

3. On suppose que f est bornée sur l’intervalle [0, 1] et dérivable en 0.
3.a. Montrer l’existence d’un réel c > 0 tel que, pour tout t∈ [0, 1],

|f(t)− f(0)| ≤ ct.

3.b. On note Ψ(f) la fonction définie par Ψ(f)(x) :=
Φ(f)(x)√

x
si x ∈]0, 1] et

Ψ(f)(0) := 2f(0). Montrer que Ψ(f) est dérivable en 0 et que

Ψ(f)′(0) =
4

3
f ′(0).

3.c. En déduire un développement asymptotique de Φ(f) au voisinage de 0.

17.9 Problème 9

On se place sur (R,B(R)). Pour toute mesure finie µ sur (R,B(R)), on définit
la fonction µ̂ en tout point u∈ R par

µ̂(u) =

∫
R
eiuxµ(dx).

La fonction µ̂ est appelée transformée de Fourier de µ. Le but du problème est
d’étudier quelques propriétés de l’application µ 7→ µ̂.

PARTIE A : 1.a. Justifier l’existence de la fonction µ̂ en tout point de R et montrer
que µ̂ est continue partout, à valeurs dans C.
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1.b. Montrer que si
∫

R
|x|µ(dx) < +∞, alors µ̂ est continûment dérivable sur R et

donner une expression de sa dérivée.

1.c. En déduire par récurrence que si
∫

R
|x|nµ(dx) < +∞ pour un entier n ≥ 1,

alors µ est n fois continuement dérivable et proposer une expression simple de ses
dérivées successives.
1.d. Montrer que si la mesure µ est invariante par symétrie centrale i.e. par l’appli-
cation x 7→ −x, alors µ̂ est paire et ne prend que des valeurs réelles.

2.a. Montrer que, pour tous u, v∈ R,

|µ̂(u)− µ̂(v)| ≤
∫

R
min(2, |u− v||x|)µ(dx).

2.b. En déduire que l’application µ̂ est en fait uniformément continue sur R.

PARTIE B : On suppose dans cette seule partie que µ(dx) = f(x)λ(dx) où λ
désigne la mesure de Lebesgue sur R et f ∈ L 1

R+
(R, λ). En d’autres termes µ est

la mesure de densité f par rapport à la mesure de Lebesgue.
1.a. On suppose que f est en escalier. Montrer que lim

|u|→+∞
µ̂(u) = 0.

1.b. Montrer que, dès que f ∈ L 1
R+

(R, λ), lim
|u|→+∞

µ̂(u) = 0 (on pourra s’appuyer

sur un théorème de densité approprié).

2. On considère la fonction f définie sur R par f(x) := e−x
2/2.

2.a. Calculer µ̂(0) par la méthode de votre choix.
2.b. Établir à l’aide d’une intégration par parties une relation simple entre la fonc-
tion µ̂ et sa dérivée µ̂′. En déduire que µ̂(u) =

√
2π e−u

2/2 pour tout u∈ R.

PARTIE C : 1.a. Montrer à l’aide du théorème de Fubini et d’un changement de
variable élémentaire que, pour tout u∈ R et tout ε > 0,∫

R
e−

(x−u)2

2ε µ(dx) =

∫
R
e−iuvµ̂(v)e−ε

v2

2

√
ε dv√
2π

.

1.b. Soient µ et ν deux mesures finies sur (R,B(R)). En déduire que si µ̂ = ν̂,
alors pour toute fonction ϕ : R→ R à support compact et tout ε > 0,∫

R
ϕ(u)

(∫
R
e−

(x−u)2

2ε µ(dx)

)
du =

∫
R
ϕ(u)

(∫
R
e−

(x−u)2

2ε ν(dx)

)
du ∈ R

2. En déduire à l’aide du théorème de Fubini (approprié) et d’un changement de
variable élémentaire que∫

R

∫
R
ϕ(x− v)e−

v2

2ε
dv√
2πε

µ(dx) =

∫
R

∫
R
ϕ(x− v)e−

v2

2ε
dv√
2πε

ν(dx)
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3.a. On suppose en outre que la fonction ϕ est lipschitzienne. Montrer que

lim
ε→0

∫
R
|ϕ(x− v)− ϕ(x)|e−

v2

2ε
dv√
2πε

= 0.

3.b. En déduire que, pour toute fonction ϕ lipschitzienne à support compact et pour
tout x∈ R, ∫

R
ϕ(x− v)e−

v2

2ε
dv√
2πε

ε→0−→ ϕ(x).

4. En conclure à l’aide de la question 2. que µ = ν.

17.10 Problème 10

Soit (X,A , µ) et (Y,B, ν) deux espaces mesurés σ-finis et p ∈ [1,+∞[ (on
notera q son exposant conjugué). Soit ϕ : X × Y → R+ une fonction A ⊗ B-
mesurable, positive et µ⊗ ν-intégrable.

1. On pose pour tout x∈ X ,

Φ(x) =

∫
Y

ϕ(x, y) ν(dy).

Justifier (sans calculs) le fait que Φ ainsi définie est une fonction A -mesurable,
µ-p.p. à valeurs dans R+.

2. Soit (An)n≥1une suite d’éléments de la tribu A , croissante pour l’inclusion et
vérifiant ∪n≥1An = X et µ(An) < +∞ pour tout n ≥ 1.

2.a. Montrer que pour tout n ≥ 1,∫
X

1{Φ≤n}∩An
(x)(Φ(x))p µ(dx)

=

∫
X×Y

1{Φ≤n}∩An
(x)(Φ(x))p−1ϕ(x, y)µ⊗ν(dx, dy).

2.b. Montrer que pour tout n ≥ 1,∫
X

1{Φ≤n}∩An
(x)(Φ(x))p µ(dx)

≤
(∫

X

1{Φ≤n}∩An
(x)(Φ(x))p µ(dx)

)1/q ∫
Y

(∫
X

(ϕ(x, y))p µ(dx)

)1/p
ν(dy).

2.c. En déduire que pour tout n ≥ 1,

‖1{Φ≤n}∩An
Φ‖Lp(µ) ≤

∫
Y

‖ϕy‖Lp(µ)ν(dy).
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où ϕy(x) := ϕ(x, y) désigne la “section de ϕ au-dessus de y”.

2.d. Établir l’inégalité

‖Φ‖Lp(µ) ≤
∫

Y

‖ϕy‖Lp(µ)ν(dy).

2.e. Justifier pourquoi on a introduit les An ∩ {Φ ≤ n} à la question 2.a..

2.f. Montrer que si ϕ∈ L p(µ⊗ν) et si ν est une mesure finie, alors∫
Y

‖ϕy‖Lp(µ)ν(dy) < +∞.

La question suivante peut être traitée à partir du résultat de la seule question 2.d..

3. Soit f ∈ L p
R+

(R+,B(R+), λ) où λ désigne la mesure de Lebesgue. Pour tout
A > 0, on pose ϕ(x, y) := f(xy)1[0,A](x)1[0,1](y), µ = λ, ν = λ|[0,1].

3.a. Montrer que ϕ est positive et λ⊗ λ|[0,1]-intégrable, puis calculer Φ(x) en tout
point x∈ R et ‖ϕy‖Lp(λ) en tout point y∈]0, 1].
3.c. En déduire l’inégalité de Hardy : pour tout p∈]1,+∞[ et pour toute fonction
f ∈ L p(R+,B(R+), λ),

‖F‖p ≤
p

p− 1
‖f‖p où F (x) :=

1

x

∫ x

0
f(u)du, x∈ R∗

+.

17.11 Problème 11

Dans ce problème, on se place sur l’espace semi-normé L p
R(R+,B(R+), λ) où

p ≥ 1 désigne un paramètre réel fixé et λ la mesure de Lebesgue sur R+. On notera
‖ . ‖p la semi-norme usuelle sur cet espace.

1. Montrer que si f ∈ L p
R(R+,B(R+), λ), alors la fonction u 7→ f(u)/u est

intégrable sur tout intervalle de la forme [a,+∞[, a > 0.
Dans la suite on considèrera la fonction F définie sur R+ par

F (0) = 0 et F (x) :=

∫ +∞

x

f(u)

u
du, x > 0.

[La valeur de F en 0 est donnée par pure commodité et n’intervient pas dans la
suite.]

2. On suppose dans toute cette question que la fonction f est continue nulle en
dehors d’un intervalle compact [a, b] contenu dans ]0,+∞[.

2.a. Montrer que la fonction F est continûment dérivable sur R∗
+, constante au

voisinage de 0 et nulle au voisinage de +∞.
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2.b. En déduire à l’aide d’une intégration par parties que∫
R+

(F (x))pdx = p

∫
R+

(F (x))p−1f(x)dx.

3. On suppose encore dans toute cette question que f est continue nulle en dehors
d’un intervalle compact [a, b] contenu dans ]0,+∞[.

3.a. On suppose en outre que la fonction f est positive. Montrer qu’il existe une
constante Cp (indépendante de f !) que l’on déterminera telle que

‖F‖p ≤ Cp‖f‖p .

(On pourra appliquer l’inégalité de Hölder au second membre de l’identité obtenue
dans la question 2.b. et vérifier que F ∈ L p

R(R+,B(R+), λ)).

3.b. Montrer que l’inégalité précédente reste valide même si f n’est pas positive.

4. Soit f ∈ L p
R(R+,B(R+), λ). On admettra l’existence d’une suite (fn)n≥1 de

fonctions continues, chacune nulle en dehors d’un intervalle compact In contenu
dans ]0,+∞[, telle que ‖f − fn‖p tende vers 0 lorsque n→ +∞.

4.a. Montrer à l’aide d’un théorème du cours l’existence d’une suite, que par abus
de notation on notera encore (fn)n≥1, vérifiant, outre les propriétés ci-dessus, fn(x)
converge λ(dx)-p.p. vers f(x).

C’est cette suite qui est utilisée dans la suite.

4.b. Montrer que, pour tout x∈ R∗
+,

|F (x)| ≤ lim inf
n

∫ +∞

x

|fn(u)|
u

du.

4.c. En conclure que F ∈ L p
R(R+,B(R+), λ) et que

‖F‖p ≤ Cp‖f‖p .

5. Soit ρ > 1/p, on pose fρ(x) := x−ρ1{x≥1}. Calculer le rapport

‖F‖p/‖f‖p .

Qu’en déduit-on?
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Chapitre 18

Solutions des exercices

Exercices du chapitre 1
1.1 b) Se ramener, par approximation uniforme, au cas où g est continûment dérivable sur
un intervalle compact et donc lipschitzienne.
1.2 a) Commencer par supposer f en escalier puis utiliser la définition de l’intégrabilité au
sens de Riemann.
b) On obtient α = −1 et β =

1

2π
.

c) Calculer la somme avec eikx.

d) D’après a) on a lim
n

∫ π

δ

(
αx+ β x2

) ( n∑
k=1

cos(nx)
)
dx = − 1

2

∫ π

δ

(
αx+ β x2

)
dx ,

et on a l’estimation

∣∣∣∣∣
∫ δ

0

(
αx+ β x2

) ( sin ((n+1/2)x
)

sin(x/2)
− 1
)
dx

∣∣∣∣∣ = O(δ)→ 0.

1.3 ϕn(x) :=

{
f(x) si x = k/n! pour k∈{0, . . . , n!}
0 sinon, vérifie ‖f − ϕn‖sup≤

1

n
.

1.4 Raisonner par l’absurde et construire une suite (In)n≥1 de segments emboı̂tés tels que
sup
x∈In

f(x)≤1/n.

1.5 ln(un) =
1

n

n∑
k=1

ln
(
1 +

k

n

)
−→

n→+∞

∫ 1

0

ln(1 + x) dx = 2 ln 2− 1.

1.6 Soit Sn la somme de Riemann de f sur [0, 1] associée à la subdivision (k/n)1≤k≤n.
Alors on a

Sn + Tn =
2

n

[n/2]∑
k=1

f
(2k
n

)
−→

n→+∞

∫ 1

0

f(x) dx,

à l’aide de la subdivision (2k/n)1≤k≤[n/2] de pas n/2, sur [0, 1]. Donc Tn → 0.
1.7 a) Remarquer que, si f est croissante et xk := a+ k/n (b− a), 1≤k≤n−2 , alors

b− a
n

f(xk) ≤
∫ xk+1

xk

f(x) dx ≤ b− a
n

f(xk+1).

b) On prend la valeur en 1 de
n−1∑
k=0

Xk =
Xn − 1

X − 1
=

n−1∏
k=1

e
ikπ
n

(
e−

ikπ
n X − e ikπ

n

)
.

c) On applique la limite de a) avec la fonction ln(sin) sur ]0, π[ et monotone sur chacun
des intervalles ]0, π2 ] et [π2 , π[, puis on prend le logarithme de l’égalité du b).
1.8 Montrer que la fonction H − (F ◦ G), où F,G,H sont respectivement les primitives
nulles en 0 de f, g, fg, est décroissante sur [0, 1].

1.9 On a pour tous p, q ∈ N∗, q > p, N1(fq − fp) ≤
q∑

n=p+1

1

n2
−→
p→∞

0.
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Les suites (fn)n∈N∗ et (f ′n)n∈N∗ convergent normalement donc uniformément vers f et f ′

respectivement, sur tout intervalle [0, a] avec a ∈ [0, 1[. On a f ′(x) = 1/(1 − x) d’où
f(x) = − ln(1 − x) pour x ∈ [0, a]. Par conséquent, si (fn)n∈N∗ converge vers g dans(
C ([0, 1],R), N1

)
, il vient

∀ a ∈ [0, 1[

∫ a

0

∣∣g(x) + ln(1− x)
∣∣ dx = lim

n→+∞

∫ a

0

∣∣g(x)− fn(x)∣∣ dx
≤ lim

n→+∞
N1(g − fn) = 0.

Donc g(x) = − ln(1− x) pour x ∈ [0, 1[, en contradiction avec la continuité de g en 1.

1.10 a) Il y a convergence uniforme sur [0, a] pour a ∈]0, 1], car on a pour n assez grand,
max
[0,1]

fn = fn(a)→ 0.

Elle n’est pas uniforme pas sur [0, 1] car max
[0,1]

fn = fn
(
1/
√
n 2n

)
=
√
2n−2/n→ +∞.

b) On a
∫ 1

0

fn(x) dx =
ln(n2n + 1)

2n
−→

n→+∞

ln 2

2
.

1.11 a) On utilise le développement en série entière de e−x ln x qui converge uniformément
sur [0, 1], ce qui permet d’intervertir la série et l’intégrale sur [0, 1].

b) Le développement en série entière de
1

x− 1
sur [0, a] converge uniformément sur [0, a],

ce qui donne∫ a

0

lnx

x− 1
dx = − ln a

+∞∑
n=0

an+1

n+ 1
+

+∞∑
n=0

an+1

(n+ 1)2

= − ln a ln(1− a) +
+∞∑
n=0

an+1

(n+ 1)2
−→
a→1

+∞∑
n=1

1

n2
,

à nouveau par convergence uniforme de la série.

1.12 a) On développe ex en série entière et utiliser le binôme de Newton. Les coefficients
du développement en série de fn sont{

1

k!

(
1− n (n− 1) · (n− k + 1)

nk

)
≥ 0 si k ≤ n

0 si k > n.

b) D’après a) on obtient pour a > 0 fixé,

∀n ≥ a,


0 ≤

∫ n

0

fn(x) e
−2x dx =

∫ a

0

fn(x) e
−2x dx+

∫ n

a

fn(x) e
−2x dx

≤ a fn(a) +
∫ +∞

a

e−x dx = a fn(a) + e−a −→
n→+∞

e−a,

qui est arbitrairement petit a > 0 assez grand. Donc lim
n

∫ n

0

(
1+

x

n

)n
e−2x dx = 1.

1.13 Pour la dérivabilité en 0, effectuer une intégration par parties en introduisant la fonc-
tion

(
t 7→ 1/t2 sin(1/t)

)
sur des intervalles [ε, 1], ε>0.

1.14 Pour le prolongement par continuité en 1, estimer la différence
1

ln t
− 1

t−1
.

1.15 a) En dérivant la différence des deux expressions de f , on trouve 0.
b) Comme f(0) =

π

4
et lim

+∞
f = 0, on en déduit que I2 =

π

4
.
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c) On considèrer la suite (gn)n≥1 définie par gn(x) :=
∫ n

−n

e−x2(1+t2)

1 + t2
dt.

La suite gn converge uniformément sur R+ et la suite g′n converge uniformément sur tout
compact de R+ car on a pour tout a > 0,

∀x ∈ [0, a],

∣∣∣∣ ∫ +∞

n

g′n(x) dx

∣∣∣∣ = 2x e−x2

∫ +∞

n

e−x2t2dt ≤ 2

∫ +∞

an

e−t2dt.

On peut donc dériver g sous le signe intégrale.

d) On a pour x > 0, g′(x) = −2 I e−x2

, g(x) = −2 I
∫ x

0

e−t2 et g(0) =
π

2
= 2 I2.

1.16 a) La première égalité s’obtient en intégrant par parties In par rapport à la fonction(
x 7→ x/

√
1− x2

)
qui est une dérivée simple. La seconde égalité s’obtient facilement par

récurrence en utilisant la première. Pour l’équivalent, par décroissance de la suite In on a
In In+1 ≤ I2n ≤ In−1 In et on conclut avec la seconde égalité.
b) On fait une récurrence et on utilise la première égalité de a). Alors d’après la formule de
Taylor-Lagrange en 0 et l’équivalent du a), on obtient

∀n ∈ N, ∀x ∈ [0, 1[,

∣∣∣∣∣ 1√
1− x

−
n∑

k=0

xn

(2n+ 1) I2n+1

∣∣∣∣∣ ≤ xn+2 (1− x)−n− 3
2

(2n+ 3) I2n+3
.

c) Pour x ∈ [0, 1[, la série du b) converge uniformément sur [0, x]. On peut donc intervertir
cette série et l’intégrale sur [0, x], ce qui donne le développement en série entière de arcsin.
d) Pour a ∈ [0, 1[, on a par convergence uniforme sur [0, a] de la série,∫ a

0

arcsin (x)√
1− x2

dx =

+∞∑
n=0

1

(2n+ 1)2
1

I2n+1

∫ a

0

x2n+1

√
1− x2

dx︸ ︷︷ ︸
≤1

.

Lorsque a → 1−, l’intégrale de gauche tend vers
∫ 1

0

arcsin (x)√
1− x2

dx =
1

2

[
arcsin2(x)

]1
0

,

et par convergence uniforme sur [0, 1] la série de droite converge vers
+∞∑
n=0

1

(2n+ 1)2
.

1.17 a) On intègre deux fois par parties I2n par rapport à 1 puis par rapport à θ.
b) On divise l’égalité du a) par n2 I2n et 1.16 a) donne 2n I2n = (2n− 1) I2n−2.

c) On obtient Jn ≤
π2

4
(I2n − I2n+2).

d) De l’équivalent de 1.16 a) et de la question c), on déduit que
Jn
I2n
→ 0. Une sommation

télescopique des égalités de b) implique alors
+∞∑
n=1

1

n2
=

2 J0
I0

=
π2

6
.

1.18 a) La dérivée de la fonction est nulle sur ]0, 1[ et sa limite en 0+ est 0.

b) On intègre la développement en série
ln(1− t)

t
= −

+∞∑
n=1

tn−1

t
(qui converge norma-

lement donc uniformément) sur [0, x] et [1− x, 1] pour x ∈ ]0, 1[.
c) On prend x = 1/2 dans la formule de b).

Exercices du chapitre 2
2.3 a) Faire une récurrence sur n.
b) Remarquer que cardA =

∑
x∈X

1A(x).



394 18. Solutions des exercices

2.5 Si
(
n 7→ xn := 0, d1nd

2
n . . .

)
est une bijection de N∗ sur [0, 1[, considérer un réel

x := 0, d1d2 . . . tel que, pour tout n≥1, dn /∈{dnn, 9}.
2.6 Considérer l’ensemble des parties finies de N.

2.7 Montrer que A peut s’écrire comme une réunion d’ensembles finis indexés par l’en-
semble dénombrable Z[X].

2.8 Considérer les ensembles
{
x∈]−k, k[: |f(x+)−f(x−)|≥1/n

}
pour k, n ∈ N∗.

2.9 Partitionner Ω en classes d’équivalence modulo la relation d’équivalence ∼ définie sur
Ω par : x ∼ y si x et y appartiennent à un même intervalle inclus dans Ω.

Exercices du chapitre 3

3.1 a) Effectuer la division euclidienne de n par p fixé et montrer que lim
n

an
n
≤ ap

p
.

3.2 S’inspirer de l’exercice 3.1.

3.3 Adapter l’exercice 3.2.

Exercices du chapitre 4
4.3 Caractériser Bn et montrer que { 12} n’appartient pas à l’union des Bn.

4.4 Montrer que {A∈P(X) : A×B∈C⊗D} est une tribu.

4.5 b) Utiliser la stabilité par intersection dénombrable et remarquer que, pour tout A∈A ,
A=

⋃
x∈A ẋ.

c) Supposer A dénombrable et montrer qu’alors, l’application Φ : P(I)→ A définie par
Φ(J) :=

⋃
j∈J ẋj où X =

⋃
i∈I ẋi , est une bijection.

Exercices du chapitre 5
5.3 b) Considérer dans le premier cas f−1({y,−y}) et dans le second cas f−1({y}), y∈R.

5.4 b) Considérer une approximation de g par une suite de fonctions étagées (sn)n≥0 ;
écrire sn := tn◦f et définir h sur l’ensemble de convergence de la suite (tn)n≥0.

5.5 b) Utiliser la caractérisation b) de l’exercice 5.4.

5.6 a) Utiliser la définition 1.4.

5.7 Montrer que, pour tout z∈C \ R−, z = eiθ|z| avec θ = 2 arctan
( =(z)
<(z) + |z|

)
.

5.8 Considérer l’application distance d’un point à un ensemble.

5.9 a) Considérer A := lim
n
f−1
n (Ω).

b) Considérer la réunion des ouverts Ωk :=
{
x∈Ω : d(x,cΩ)>1/k

}
, k∈N∗.

Exercices du chapitre 6
6.4 a) Considérer les ensembles {|f |≤n}, n∈N.

6.5 a) Calculer µ([x, y[) pour x≤y.
b) Utiliser la continuité à gauche et à droite de la mesure µ.
c) D est dénombrable.

6.6 b) Pour la stabilité par complémentaire, utiliser a).

6.8 a) Considérer une réunion d’intervalles ouverts centrés aux points rationnels.

6.9 Considérer l’ensemble des x ∈ [0, 1[ dont le développement dyadique a tous ses co-
efficients d’indice pair nuls et l’ensemble des x ∈ [0, 1[ dont le développement a tous ses
coefficients d’indice impair nuls.
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6.10 Écrire l’uniforme continuité de f sur un cube fermé de Rd et considérer un pavage de
ce cube en cubes de côtés assez petits.

6.11 b) Adapter la démonstration de la proposition 6.5, section 6.6.

6.12 a) Appliquer le critère de Cauchy.
b) Montrer que, pour tout k∈N∗, C ⊂ lim

n

↑
Ak

n.

c) Considérer l’ensemble Aε :=
⋂

k≥1A
k
nk,ε

.

6.13 a) Appliquer le théorème d’Egoroff de l’exercice 6.12.
b) Construire une sous-suite (fnk

)k≥1 telle que, pour tout k≥ 1, µ({|fnk
−f |> 1

k})<
1
k2

et considérer l’ensemble A := lim
k

{
|fnk
−f |≤ 1

k

}
.

6.14 a) Pour établir l’égalité, montrer que si f est µ-p.p. nulle sur un ouvert Ω alors f est
partout nulle sur Ω.
b) Soit (Un)n≥0 une base dénombrable d’ouverts de X ; écrire cSµ

f =
⋃

x∈cSµ
f
Unx

où,

pour chaque x∈ cSµ
f , il existe Fnx

∈S µ
f et nx≥0 tels que x∈Unx

et Unx
⊂ cFnx

.
c) Appliquer b).

6.15 a) Considérer ceux des éléments d’une base dénombrable d’ouverts qui sont dans Oµ

et utiliser la σ-sous-additivité de la mesure µ.

c) Utiliser que,
∫
A

f dµ = 0 si et seulement si f = 0 µ-p.p. surA (i.e. µ({f 6=0}∩A) = 0).

6.16 b) Soit (An)n≥1 une famille dénombrable de P(X). Considérer, pour δ > 0, un

recouvrement (Bn
k )k≥1 de Rε(A) tel que

∑
k≥1

(diamBn
k )

α − δ

2n
< µε

α(An).

c) Noter que µα≤µε
α.

6.17 a) Considérer un pavage de Q en petits hypercubes de diamètre ≤ε.
c) Utiliser l’exercice 6.16 d).
d) Utiliser a) et montrer qu’il existe une constante bd>0 telle que µd(Q)≥ bd λd(Q).

6.18 b) Montrer que, pour tousA,A′, B,B′ ∈ A ,A∆B ⊂ (A∆A′)∪(B∆B′)∪(A′∆B′).
c) Montrer que, pour tous A,B,C ∈ A , A∆B ⊂ (A∆C) ∪ (B∆C), et que pour tous
x, y∈R+, arctan(x+y) ≤ arctan(x)+arctan(y).
d) Soit (Ȧn)n≥0 une suite de A /R qui converge vers Ȧ. Montrer que l’on a, pour tout
n≥0, ν(An)≤ν(A)+ν(An∆A), et passer à la limite supérieure ; raisonner de même avec
la limite inférieure.

6.19 a) Exprimer |A| en fonction A+ := A ∩ R+ et A− := (−A) ∩ R+.
b) Utiliser une caractérisation de λ et remarquer que A− = −(A ∩ R−).

6.20 a) Commencer par montrer que

µ(A ∩B)− µ(A)µ(B) =

∫
X

(1A − µ(A))(1B − µ(B)) dµ.

b) Pour la seconde, utiliser l’égalité µ(B) = µ(A ∪B) + µ(A ∩B)− µ(A).
c) Utiliser l’inégalité min(a, b) ≤

√
ab si a, b ∈ R+.

6.21 b) Montrer que l’application λ′ définie sur B(R) par λ′(B) := µ′(eB), est invariante
par translation et coı̈ncide avec la mesure de Lebesgue λ.
c) Utiliser la représentation du b).

6.22 a) Établir par récurrence l’additivité de µ pour n éléments de A deux à deux disjoints
puis conclure via la condition (iii).
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b) Utiliser que toute suite croissante majorée de réels converge vers sa borne supérieure
pour remplacer “limn” par “supn”.

6.23 a) Utiliser la proposition 6.3.

b) Utiliser le lemme fondamental d’approximation par des fonctions étagées.

Exercices du chapitre 7
7.1 b) Écrire cF comme une réunion dénombrable d’intervalles ouverts I et montrer, par
l’absurde, que µ(f−1(I))=0.

7.2 Considérer la fonction f :=
∑
n≥0

an1En
pour la condition nécessaire et la suite d’en-

sembles En := {f≥ 1
n} pour la condition suffisante.

7.4 a) Montrer que la partie entière [|f |] de |f | vérifie [|f |] =
∑
n≥1

n 1{n≤|f |<n+1}.

c) Montrer que, pour tous p≥n≥1,
n∑

k=1

uk − nup+1 ≤ vp.

7.5 a) Appliquer le théorème de Beppo Levi à la suite de fonctions (|f | 1An)n≥0 où les An

sont définis par An := {2−n≤|f |≤2n}.
7.6 Appliquer le résultat de l’exercice 7.5.

7.7 b) Appliquer a) à la suite de fonctions (fn)n≥0 définies sur N par fp(q) := ap,q avec
la mesure de comptage.

7.8 b) Considérer la suite de fonctions définies sur N par fn(k) :=
1

k + 1
1{k≥n}.

7.9 b) Soit x /∈D :=
⋃

n≥1 σn ; montrer que, pour tout n≥1, il existe k tel que, pour tout h
assez petit, Ih(x)⊂Ikn , et montrer que, pour tout h>0 et pour tout n assez grand, il existe
k tel que x∈Ikn⊂Ih(x).
c) Appliquer le théorème de Beppo Levi et le théorème 1.4, chapitre 1, sur les sommes de
Riemann aux suites (ϕn)n≥1 et (ψn)n≥1, puis conclure avec a).

7.10 b) Montrer que x0 :=

∫
X

fdµ ∈ I .

7.11 Appliquer à la fonction f/g l’inégalité de Jensen avec la mesure g dµ et la fonction
convexe (x 7→ x lnx).

7.12 Poser x := n t et appliquer le théorème de Beppo Levi avec la suite (gn)n≥1 définie

par gn(x) :=
√

n

n+ x
1[0,n](x), x ∈ R+.

7.13 a) Montrer que inf
t∈]0,1[

(
a

t
+

b

1− t

)
= (
√
a+
√
b)2.

b) Appliquer a) avec a :=

(
‖f‖1

(‖f‖
1
+ ‖g‖

1
)

)2

.

7.14 On a I0 = 0, et si a > 0 on a lim
x→+∞

[
(1 + x)a − xa

]2
= +∞ , d’où Ia = +∞.

D’autre part, si a < 0 on obtient les équivalents suivants :[
(1 + x)a − xa

]2 ∼
x→0+

x2a[
(1 + x)a − xa

]2
= x2a

[
1− (1 + 1/x)a

]2 ∼
x→+∞

a2 x2a−2 où 2a− 2 < −2.
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La convergence des intégrales de type Riemann permet de conclure que Ia < +∞ si et
seulement si 2a > −1.

Exercices du chapitre 8
8.1 L’inégalité du lemme de Fatou donne 0 ≤ min

(
µ(A), µ(cA)

)
.

8.2 b) Considérer la suite de fonctions définies sur R par fn(x) := 1
ne

− x
n 1[n,+∞[(x).

8.3 a) Appliquer le lemme de Fatou à la suite définie µ-p.p. par gn := fn+f−|fn−f |.
b) Considérer la suite de fonctions définies sur N par fn := 1{n}−1{n+1}.

8.4 a) Appliquer le lemme de Fatou à la suite de terme général gn := |fn|+|f |−|fn−f |.
8.5 a) Appliquer le théorème 8.4 (b).

b) L’intégrale est égale à
∫

R+

dx

ex + 1
> 0 et la somme est égale à 0. Donc l’hypothèse

de a) n’est pas vérifiée.

8.6 a) Appliquer le théorème 8.4 (b) avec pour µ la mesure de comptage.

b) Part simplification télescopique la première somme est égale
∑
p≥0

1

(p+ 1)(p+ 2)
> 0

et la seconde est égale à 0. Donc l’hypothèse de a) n’est pas vérifiée.

8.7 a) Développer en série
1

1−e−x
pour x > 0.

8.8 b) Séparer en intégrale sur [0, 1] et sur [1,+∞[, faire le changement de variable y=1/x
dans la seconde intégrale puis appliquer a).

8.9 Appliquer le théorème de convergence dominée ou le théorème de Beppo Levi selon la
monotonie de f .

8.10 a) On a pour tout x /∈ πN, lim
n→+∞

e−n sin2(x) = 0 et λ1(πN) = 0. On conclut avec

le théorème de convergence dominée.

b) Avec la translation x → x − π, il vient In(0) = In(0) +

∫ 0

−π

e−n sin2(x) dx. Comme

In(0) et la dernière intégrale sont > 0, on en déduit que In(0) = +∞.

8.11 Pour la première égalité, effectuer le changement de variable x= n (1−t) et utiliser

l’égalité
∫ 1

0

(
(1−tn+1) ln(1−t)

)′
dt = 0. Pour la seconde, adapter l’application 7.1.

8.12 b) Estimer lim
n

∫ 1

a

nxn f(x) dx pour a proche de 1.

c) Soit la suite un :=

∫ 1

0

xn |f(x)| dx. Montrer que la suite (un)n≥0 est décroissante et

vérifie
∑
n≥0

un<+∞, puis en déduire lim
n
nun.

8.13 a) On a bn = lim
k→+∞

1

π

∫ π

−π

fk(x) sin(nx) dx =
1

π

∫ π

−π

f(x) sin(nx) dx.

b) Par périodicité et parité on se ramène à x∈ [0, π]. Si nx ≤ π, alors la valeur absolue de
la somme est majorée par nx ≤ π car | sinu| ≤ |u| pour u∈ R. Sinon, on considère le plus
petit p∈ {1, . . . , n− 1} tel que px ≤ π, et on fait la décomposition

n∑
k=1

sin(kx)

k
=

p∑
k=1

sin(kx)

k
+

n∑
k=p+1

sin(kx)

k
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La première somme est majorée par π en valeur absolue d’après ce qui précède. Pour

la seconde, on effectue une transformation d’Abel avec Sk(x) :=

k∑
j=p+1

sin(jx) pour

x ∈ [0, π] et k ≥ p+ 1, qui vérifie |Sk(x)| ≤ 1/ sin(x/2) ≤ π/x.

On obtient alors

∣∣∣∣∣∣
n∑

k=p+1

sin(kx)

k

∣∣∣∣∣∣ ≤ |Sn(x)|
n+ 1

+

n∑
k=p+1

|Sk(x)|
k(k + 1)

≤ π

(p+ 1)x
≤ 1,

d’où la majoration voulue.
c) Appliquer, à l’aide de la majoration du b), le théorème de convergence dominée à

1

π

∫ π

−π

f(x)

(
n∑

k=1

sin(kx)

k

)
dx =

n∑
k=1

bk
k

.

d) Par le critère d’Abel la série converge simplement sur R. D’après c) elle ne peut conver-

ger dans L 1([−π, π]) car la série
+∞∑
n=2

1

n lnn
est divergente.

8.14 a) Montrer que, pour tout intervalle borné I de R, cette relation est vérifiée et que
l’ensemble des boréliens de I la vérifiant est une tribu sur I .
c) Calculer, à l’aide du a), les limites

lim
n

∫
E∩{g≥0}

cos(nx)dx, lim
n

∫
E∩{g≤0}

cos(nx)dx, lim
n

∫
E

cos(2nx)dx.

8.16 a) Calculer la limite de f ′ en 0+ à l’aide d’un théorème de convergence.
b) Effectuer le changement de variable u=chx dans l’expression de f ′(t).

8.17 a) Utiliser l’égalité
∫ +∞

−∞
e−x2

dx=
√
π.

b) i) Faire une intégration par parties dans l’expression de g′n et effectuer le changement de
variable u= tx dans celle de f̂ ′.
b) ii) Faire une intégration par parties dans l’expression de (f̂)′′ et effectuer le changement
de variable u= tx dans celle de f̂ .
b) iii) Utiliser l’expression de f̂ comme une intégrale en u.

8.18 c) Effectuer le changement de variable y := t+
√
t x.

d) Pour l’inégalité, appliquer la formule de Taylor-Lagrange à l’ordre 3 en 0 à la fonction
ln(1 + ·).
e) Appliquer le théorème de convergence dominée dans l’intégrale du c) en distinguant, à
l’aide du d), les intervalles R+ et R−.

8.19 b) Adapter l’application 8.6 d).
c) Se ramener à t=0, établir 2 (1−n|ϕ|) 1{n|ϕ|≤1} ≤ |nϕ+1|+ |nϕ− 1| − 2n|ϕ|, puis
appliquer le théorème de convergence dominée au membre de gauche.

8.20 b) Si A∈A , i∈I et c>0, alors
∫
A

|fi| dµ ≤
∫
{|fi|≥c}

|fi| dµ+ c µ(A).

c) Appliquer par exemple b).
d) Montrer, à l’aide de a) et c), que la suite (fn−f)n≥1 est équiintégrable en probabilité

et utiliser la majoration
∫
X

|fn−f | dµ ≤
∫
X

|fn−f | ∧ cdµ+

∫
{|fn−f |≥c}

|fn−f | dµ.

8.21 a) Utiliser les résultats de l’exercice 7.5.
b) Appliquer a) à un nombre fini de fn et à f .
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c) Remarquer que la suite (fn−f)n≥1 est aussi équiintégrable et appliquer le théorème
d’Egoroff (cf. exercice 6.12) à la suite (fn−f)n≥1 dans Aε.
d) Considérer la suite définie sur [0, 1] par fn(x) := sin(nx).
8.22 b) Utiliser l’exercice 6.13 b) et le théorème de convergence dominée.
c) iv) Utiliser l’exercice 6.13 b) et la question b).
8.23 a) Montrer que {|f |>2} ⊂ {|f−1An

|>1} et appliquer l’inégalité de Markov.

b) Montrer que lim
n

∫
X

| 1An−f2| dµ = 0.

c) Considérer lim
n

c(An∆A) et montrer que son complémentaire est de mesure nulle.

8.24 a) Utiliser l’exercice 8.23 c).
b) Appliquer le théorème de convergence dominée.
8.25 a) Appliquer le lemme de Fatou avec la suite n

(
f(·+ 1

n ) + f(·− 1
n )− 2f

)
, puis

l’invariance de la mesure de Lebesgue par translation.
b) Appliquer le théorème de convergence dominée pour montrer que la limite du a) est 0.
8.27 a) Appliquer le théorème de convergence dominée avec la majoration | sinx| ≤ |x|
pour x ∈ [0, 1].
a) Appliquer le théorème de convergence dominée en utilisant ln(1 + xn) ≤ ln(2xn)
pour x ∈ [1,+∞].
c) Appliquer le théorème de convergence dominée sur les intervalles ]0, 1] et [1,+∞[.
8.28 b) Appliquer le théorème de continuité sous le signe intégral.
b) Appliquer le théorème de dérivation sous le signe intégral “local” (en un point donné).
8.29 a) Appliquer le théorème de continuité sous l’intégrale, le théorème de dérivation sous
l’intégrale et le théorème de convergence dominée.
b) Faire un calcul direct (assez long) en posant z = a + ib, ou appliquer le théorème des
résidus à l’aide du contour formé par le segment [−R,R] et le demi-cercle de centre 0 et de
rayon R� 1. On peut aussi remarquer que l’identité est vérifiée pour z ∈ R∗

+ et appliquer
le théorème du prolongement analytique.

c) D’après l’exercice 1.15
∫ +∞

−∞
e−t2x2

dx =

√
π

t
pour t > 0, d’où f ′(t) = −2

√
π e−z t2 .

d) La convergence et la valeur de l’intégrale sont données par

f(0)− lim
t→+∞

f(t) = −
∫ +∞

0

f ′(t)dt =
√
π

∫ +∞

−∞
e−z t2dt.

8.30 a) Appliquer une transformation d’Abel.
b) D’après le critère d’Abel, la majoration de l’exercice 8.13 b) et la décroissance vers 0 de
la suite (bn)n≥1 impliquent la convergence uniforme de la série sur [0, π].
c) On découpe l’intégrale sur [0, δ] et [δ, π]. Sur [δ, π] la convergence uniforme du a) permet
d’intervertir la série et l’intégrale, d’où

2

∫ π

δ

f(x) sin(nx) dx = 2 bn

∫ π

δ

sin2(nx) dx+
∑
k 6=n

bk

(
sin(k + n)δ

k + n
− sin(k − n)δ

k − n

)
qui tend vers πbn lorsque δ → 0, par continuité en 0 de la série donnée par b).
d) En utilisant les questions a), b), c) et l’intégrabilité de f , appliquer le théorème de

convergence dominée à
2

π

∫ π

0

f(x)

(
n∑

k=1

sin(kx)

k

)
dx =

n∑
k=1

bk
k

.

e) Appliquer la contraposée de d) sachant que la série
+∞∑
n=2

1

n lnn
est divergente.
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f) Si f existe alors
n∑

k=1

1

k ln k
=

1

π

∫ π

0

f(x)

(
n∑

k=1

sin(kx)

k

)
dx possède une limite par

le théorème de convergence dominée, ce qui conduit à une contradiction.

8.31 a) Soit bn := an−an+1, n ∈ N. La suite (bn)n∈N est positive, décroissante et la série
de terme général bn est convergente, d’où la suite (nbn)n∈N converge vers 0 et

n∑
k=1

k (bk−1 − bk) = a0 − an − nbn −→
n→+∞

a0.

b) Changer le produit des cosinus en somme des cosinus dans (1−cosx)Fn(x). Appliquer

le théorème de Beppo Levi à (fn)n≥1 en notant que
1

π

∫ π

0

Fn(x) dx = 1 et en utilisant a).

c) On a pour tous n, k ≥ 1,

2

π

∫ π

0

Fn(x) cos(kx)dx =

{
0 si k > n,

1− k/n si k ≤ n,
2

π

∫ π

0

fn(x) cos(kx)dx =

{
0 si k > n,

ak + (n− k)an+1 − (n+ 1− k)an si k ≤ n,
1

π

∫ π

0

fn(x)dx =a0 + nan+1 − (n+ 1)an.

Conclure en notant que fn est une combinaison linéaire de 1, cos(x), . . . , cos(nx).

d) En utilisant
∣∣∣ n∑
k=0

cos(kx)
∣∣∣ ≤ 1

| sin(x/2)|
,
∣∣∣ n∑
k=0

k cos(kx)
∣∣∣ ≤ n

| sin(x/2)|
et lim

n→+∞
nan = 0, le critère d’Abel appliquée à l’expression du c) entraı̂ne que

∀x ∈ ]0, π], lim
n→+∞

fn(x) =

+∞∑
k=0

ak cos(kx),

limite qui coı̈ncide dx-p.p. sur [0, π] avec la limite f de la suite (fn)n≥1 dans L 1([0, π]).
e) Appliquer d) avec la suite (an)n∈N définie par a0 := 4/ ln 2, a1 := 2/ ln 2 et an :=
1/ lnn si n ≥ 2, en notant que la fonction 1/ ln est convexe sur ]1,+∞[.

8.32 a) Appliquer le lemme de Fatou aux suites fn et gn − fn.

b) f = 0 et
∫

R
fn(x) dx = π. Le lemme de Pratt ne s’applique pas car 1R /∈ L 1(R).

8.33 a) Considérer T ∈ C∞
c (Rd) telle que T (t) = t pour t ∈ [−1, 1] et une suite (ψn) de

C∞
c (Rd) qui converge vers f/|f | 1{f 6=0} dans L 1(Ω) et λd(dx)-p.p. sur Ω. Montrer que

ϕn := T (ψn) convient.

b) Appliquer le théorème de convergence dominée dans
∫
Ω

f(x)ϕn(x)λd(dx).

8.34 a) On applique le théorème de Dirichlet dans R2 qui donne le développement en

série demandé avec les coefficients de Fourier αn =

∫
[0,1]2

e−2iπ (y·n)

a(y)
dy pour n ∈ Z2.

D’après l’identité de Parseval appliquée à la fonction matricielle (hessienne) Z2-périodique
∇2(1/a), il existe c > 0 telle que

∑
n∈Z2

|n|4 |αn|2 ≤ c ‖∇2(1/a)‖2L2([0,1]4 < +∞.

L’inégalité de Cauchy-Schwarz implique alors∑
n∈Z2\{0R2}

|αn| ≤
( ∑

n∈Z2\{0R2}

1

|n|4
)1/2( ∑

n∈Z2\{0R2}

|n|4|αn|2
)1/2

< +∞.
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b) Par unicité de la solution X(·, x) du système différentiel, il suffit de dériver et d’utiliser
la formule de la dérivée de la fonction réciproque de Fx.
c) Remplacer dans l’expression intégrale de Fx, la fonction a−1(s ξ+x) par son développe-
ment en série de Fourier de la question a), puis intervertir l’intégrale sur [0, t] et la série de
Fourier. en utilisant le théorème de convergence dominée et le fait que (αn)n∈Z2 ∈ `1(Z2).
d) On a pour tout x ∈ R2 et pour tout n ∈ Z2 tel que ξ · n 6= 0,

0 ←−
t→+∞

∣∣∣∣∣αn e
2iπ (x·n) eiπ t (ξ·n) sin

(
π t (ξ · n)

)
π t (ξ · n)

∣∣∣∣∣ ≤ |αn| ∈ `1(Z2).

Donc d’après le théorème de convergence dominée pour les séries (cf. exercice 8.5 a)) on a

lim
t→+∞

( ∑
n∈Z2 : ξ·n 6=0

αn e
2iπ (x·n) eiπ t (ξ·n) sin

(
π t (ξ · n)

)
π t (ξ · n)

)
= 0.

L’expression de Fx(t) de la question c) donne immédiatement lim+∞ Fx(t)/t. D’après la
question a) on a aussi lim+∞ Fx(t)/t ≥ min[0,1]2(1/a) > 0. Finalement, la croissance

stricte de la fonction Fx implique que ∀x ∈ R2, lim
+∞

F−1
x (t)

t
= lim

+∞

s

Fx(s)
.

e) L’incommensurabilité de ξ se lit : ξ · n = 0⇔ n = 0R2 . D’où la limite de d) se réduit
à α−1

0 ξ = a ξ.

8.35 a) Par convergence normale (0 ≤ r < 1) des séries on peut dériver deux fois sous le

signe somme, ce qui donne f ′′r (x) := 2<

[
+∞∑
n=1

rn e2int

]
=

2r
(
cos(2t)− r

)
1 + r2 − 2r cos(2t)

.

On vérifie que cette expression est aussi la dérivée de la fonction en arctan sur R.
b) On intègre deux fois l’expression du a) remarquant que f ′r(0) = fr(0) = 0.
c) On fait tendre r vers 1 dans l’expression de b) et on applique le théorème de convergence
dominée de Lebesgue (arctan est bornée).

d) On a
+∞∑
n=0

1

(2n+ 1)2
= f1

(π
2

)
=

∫ π
2

0

(π
2
− t
)
dt =

π2

8
.

On conclut en séparant les termes pairs et impairs dans
+∞∑
n=1

1

n2
.

8.36 a) On intègre sur [θ, π2 − θ] la dérivée C ′
n(t) =

cos
(
(2n+ 1) t

)
− cos(t)

sin(t)
.

b) Une intégration par parties donne
∫ π

2

0

θ
(
Cn(

π
2−θ)−Cn(θ)

)
dθ =

n∑
k=1

(1− (−1)k))2

4 k3
.

c) La majoration se déduit de l’inégalité
1

sin(t)
≤ π

2 t
qui s’intègre en ln(t).

d) D’après le lemme de Riemann-Lebesgue, la suite de fonctions intégrandes en θ converge
vers 0 pour tout θ ∈ [δ, π2 ]. De plus, elle est bornée par une constante sur [δ, π2 ] car la fonc-
tion 1/ sin est continue sur [δ, π2 ]. Donc, le théorème de convergence dominée de Lebesgue
s’applique sur [δ, π2 ].
d) On déduit de a) et c), d) que

lim
n→+∞

∫ π
2

0

θ
(
Cn(

π
2 − θ)− Cn(θ)

)
dθ = −

∫ π
2

0

θ

([
ln
(
sin(t)

)]t=π
2 −θ

t=θ

)
,

qui combinée avec b) permet de conclure à la formule intégrale de ζ(3).
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8.38 a) Développer en série ln(1 + x) sur [0, 1] et appliquer le théorème de convergence

dominée à l’aide de la majoration ∀x ∈ [0, 1],

∣∣∣∣∣
n∑

k=1

(−1)k−1x
k

k

∣∣∣∣∣ ≤ 2 ln(1 + x).

b) On applique le théorème de continuité sous l’intégrale à l’aide de la majoration

∀x ∈ [0, 1[ , sup
t∈R

∣∣∣ ln(1− 2x cos t+ x2)

x

∣∣∣ ≤ 2max
±

∣∣∣ ln(1± x)
x

∣∣∣ ∈ L 1
(
[0, 1]

)
.

c) Par le théorème de dérivabilité sous l’intégrale f ′(t) = 2

[
arctan

(x− cos t

sin t

)]x=1

x=0

.

d) D’après a) on a f(π/2) = I/2 et f(π) = 2 I et d’après c) on a f(t) = c+ π t− t2

2
,

d’où c = 2 I − π2

2
=
I

2
− 3π2

8
. On en déduit donc que I =

π2

12
=

1

2

+∞∑
n=1

1

n2
.

Exercices du chapitre 9
9.1 a) Appliquer l’inégalité de Hölder.
b) Remarquer que si ‖x‖p=1 alors ‖x‖∞≤1 et, pour tout i∈{1, . . . , d}, |xi|q≤|xi|p.
c) Appliquer le cas d’égalité de l’inégalité de Minkowski.

9.3 a) Appliquer l’inégalité de Hölder et son cas d’égalité.
b) Utiliser la seconde inégalité de l’exercice 9.1 a).

9.4 a) Soit f ∈L p
K (µ)∆L q

K (µ). Soit Bn :=
{
2n ≤ |f | < 2n+1

}
pour n ∈ Z. Montrer

qu’il existe une infinité d’ensembles Bn tels que 0 < µ(Bn) < +∞.

b) Considérer bn :=


( n∑

k=0

ak

)−1/p

si
+∞∑
n=0

an=+∞

( +∞∑
k=n

ak

)−1/q

si
+∞∑
n=0

an<+∞.

c) Considérer f :=
∑
n≥0

bn1An
où la suite (bn)n≥0 vérifie b) avec an := µ(An).

9.7 Montrer que ∀ r > 1, ∀x, y ≥ 0, |xr − yr| ≤ r |x − y| (x + y)r−1 et utiliser
l’inégalité de Hölder avec r.

9.8 Appliquer le lemme de Fatou à la suite gn := 2p(|fn|p+|f |p)− |fn−f |p.

9.9 a) Appliquer le lemme de Fatou si p<+∞.
b) On pourra appliquer, soit le théorème d’Egoroff à la suite (fn)n≥0 (ex. 6.12) et l’inégalité
de Hölder avec la fonction indicatrice d’un ensemble de mesure petite, soit s’appuyer sur
l’exercice 8.20 sur l’équiintégrabilité probabiliste.

9.10 a) Adapter la démonstration de l’application 9.2.
b) Montrer qu’il existe une suite (yn)n≥1 de R∗ telle que lim

n
|yn|=+∞ et, pour tout n≥1,

|g(yn)|>n|yn|
r
s , puis considérer la fonction f :=

∑
n≥N

yn1In où les In sont des intervalles

deux à deux disjoints de [0, 1] de longueur (ns+1|yn|r)−1.

9.11 Raisonner par l’absurde ; considérer une suite de fonctions (fn)n≥0 sur [0, 1] qui
converge vers 0 dans L 1

K ([0, 1]) mais qui ne converge simplement en aucun point de [0, 1]
(cf. l’exemple qui suit le théorème 9.3) et montrer qu’alors, l’ensemble {fn, n≥0} ∪ {0}
est un compact pour l’éventuelle métrique de la convergence λ-p.p., puis conclure.

9.12 a) Utiliser l’invariance de la mesure de Lebesgue par translation.
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b) Commencer par le cas où f ∈CK(R,K) puis utiliser la densité de CK(R,K) dans Lp
K(λ).

c) Considérer f := 1R+
si a→ 0 et f := 1R si a→ +∞.

9.14 a) Montrer que, pour tous p, q∈I , p≤q, et tout r∈ [p, q], |f |r≤|f |p+|f |q ; considérer
la fonction f définie sur R par f(x) := (x(lnx)2)−1

(
1[0,1/2](x) + 1[2,+∞[(x)

)
.

b) Soient p, q ∈ I, p < q et tp + (1− t)q ∈ ]p, q[ où t ∈ ]0, 1[, utiliser l’inégalité de
Hölder avec l’exposant 1

t ; pour la continuité de θ aux bornes de I , utiliser la caractérisation
séquentielle de la continuité avec des suites monotones et appliquer les théorèmes de
convergence sur les ensembles {|f |≤1} et {|f |>1}.
9.15 a) Appliquer l’inégalité de Jensen (cf. exercice 7.10) avec la fonction −ln.
b) Appliquer le théorème de convergence dominée en notant que si 0<p≤q, |f |p≤|f |q+1.
c) Utiliser la caractérisation séquentielle de la limite avec des suites décroissant vers 0,
puis appliquer le théorème de Beppo Levi sur l’ensemble {|f | ≤ 1} et le théorème de
convergence dominée sur l’ensemble {|f |>1}.
d) Utiliser le résultat du a) et si µ({f=0})=0, appliquer la limite du c).

9.16 a) Intégrer F p par parties et appliquer l’inégalité de Hölder dans (H+).
b) Approcher |f | à l’aide du théorème 9.4 de densité par une suite (ϕn)n≥0 de CK(R∗

+,R+)
et passer à la limite dans l’inégalité (H) vérifiée par ϕn, en utilisant le lemme de Fatou.
c) Considérer une suite (ϕn)n≥0 de CK(R∗

+,R+) ((Φn)n≥0 est la suite associée) conver-
geant vers f dans L p

R (R+) et dominée par une fonction g ∈L p
R+

(R+) (G est la fonction
associée) ; montrer, en appliquant le lemme de Fatou à la suite (Φn)n≥0 dans (H), que
F ∈L p

R+
(R+) (et donc G), puis passer à la limite dans l’inégalité (H+) vérifiée par ϕn, en

appliquant le théorème de convergence dominée aux suites (Φn)n≥0 et (ϕnΦ
p−1
n )n≥0.

d) Montrer que si g vérifie l’égalité, alors la fonction f := |g| également, puis montrer
que les fonctions f et F p−1 vérifient le cas d’égalité dans l’inégalité de Hölder appliquée
à (H+) ; montrer enfin que f est λ-p.p. égale à la solution d’une équation différentielle
élémentaire.
e) Considérer les fonctions fa(x) := x−

1
p 1[1,a](x).

g) Pour l’égalité faire une intégration par parties. Appliquer l’inégalité de Hölder dans
le second membre pour obtenir l’inégalité cherchée. Si la fonction

(
x 7→ xrf(x)p

)
est

intégrable sur R+, considérer pour 0 < a < b < +∞, une suite (fn)n∈N dans CK(]a, b[,R+)
qui converge λ(dx)-p.p. sur [a, b] et dans L p([a, b]) vers f . Appliquer le lemme de Fatou
dans l’inégalité vérifiée par fn, puis faire a → 0 et b → +∞ à l’aide du théorème de
Beppo-Levi.

9.17 a) Commencer par supposer f continue ; montrer qu’alors lim
x→+∞

xF 2(x) = 0 et

faire une intégration par parties. Pour passer au cas général, utiliser un argument de densité
comme dans l’exercice 9.16 c).
c) Appliquer le cas d’égalité de l’inégalité de Cauchy-Schwarz.

9.18 b) Appliquer l’inégalité de Young avec f, g, intégrer, puis utiliser la concavité de la
fonction ln.

9.19 a) Considérer les suites de rationnels nulles à partir d’un certain rang.
b) Montrer que les boules ouvertes de rayon 1 centrées sur un élément de {0, 1}N sont deux
à deux disjointes.

9.20 a)X=
⋃
n≥0

↑
Xn où (Xn)n≥0 est une suite croissante d’ouverts d’adhérence compacte ;

si V := {Vn}n≥0 est une base dénombrable d’ouverts, considérer les intersections finies
des parties Vm ∩Xn pour m,n ∈ N.



404 18. Solutions des exercices

b) Commencer par le cas d’une réunion finie d’éléments de U en utilisant l’identité a) de
l’exercice 2.3, puis écrire Ω comme la limite croissante de telles réunions et appliquer le
théorème de convergence dominée.
c) Utiliser la régularité extérieure de µ (cf. théorème 6.10) et appliquer b).
d) Utiliser la densité des fonctions étagées de Lp

K(µ) et appliquer c).

9.21 Utiliser l’exercice 8.23.

9.22 a) Montrer d’abord que si f est positive alors ‖Mh(f)‖1 = ‖f‖1 .
b) Montrer le résultat lorsque f ∈ CK(R) en appliquant le théorème de convergence do-
minée puis, dans le cas général, utiliser la densité de CK(R) dans L1

R(λ) et a).

9.23 a) Utiliser une transformation d’Abel pour l’égalité.
b) Pour la condition nécessaire appliquer a) avec t = µ(A)−p. Pour la condition suffisante
considérer A := {|f | > t}.
c) Appliquer à |f |q le caractérisation d) de l’exercice 7.4.
d) (x 7→ x−1/p) ∈ L p

faible \L p dans [0, 1] muni de la mesure de Lebesgue.

9.24 a) S’inspirer de l’exercice 7.13 a) et de l’usage de l’inégalité de Hölder dans la
démonstration de l’inégalité de Minkowski.

Exercices du chapitre 10
10.1 Appliquer le cas d’égalité de l’inégalité de Hölder.

10.2 Raisonner par l’absurde :

– si p < +∞, considérer bn := |an|p−1cn

(
n∑

k=0

|ak|p
)−1

où cn vérifie an = an|cn,

– si p = +∞, considérer une sous-suite (aϕ(n))n≥1 telle que, pour tout n ≥ 1, |aϕ(n)|≥n
et la suite définie par bϕ(n) :=

cϕ(n)

n |aϕ(n)|
et bn := 0 sinon.

10.3 a) Considérer An := En ∩ {|f |≤n} et appliquer le théorème de Beppo Levi.

b) Raisonner par l’absurde et considérer la fonction g := h|f |p−1
∑
n≥1

1

napn
1An où An, an

sont définis en a) et f= |f |h.

10.4 a) Considérer pour chaque n∈N∗, gn := k1Bn
où h= |h|k et Bn := En ∩ {|h|≤n}.

b) Appliquer le théorème de Banach-Steinhaus : : si (Tn)n≥1 est une suite d’applications
linéaires continues d’un espace de Banach E dans un e.v.n. F telle que pour tout x ∈E,
supn ‖Tn(x)‖<+∞, alors supn ‖Tn‖<+∞ (cf. [22]).
c) Appliquer le théorème sur la dualité Lp-Lq et conclure à l’aide du a).

10.5 Supposer que f /∈ L∞

K (µ) puis considérer, en en justifiant l’existence, la fonction

définie par g := h
∑
n≥1

1

n2µ(An)
1An

où An := {|f |≥n} et f= |f |h.

10.7 Appliquer à Φ le théorème de Hahn-Banach : : toute forme linéaire continue sur un
s.e.v F d’un K-e.v. E se prolonge sur E en une forme linéaire continue de même norme
(cf. [22]).

10.8 a) Appliquer le théorème de dualité Lp-Lq à la forme linéaire Φ(· 1A) définie par
restriction sur Lp

K(µ|A).
b) Utiliser l’unicité de g

A
.

c) Considérer une suite (An)n≥1 telle que limn ‖gAn
‖q=supµ(A)<+∞ ‖gA

‖q , et montrer,
à l’aide du b), que la suite (g

Xn
)n≥1, où Xn :=

⋃n
k=1Ak, est de Cauchy dans Lq

K(µ).
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d) Considérer, pour chaque n≥ 1, Yn := Xn ∪ {|f | ≥ 1/n}, et passer à la limite dans la
représentation intégrale de Φ(f1Yn

) en montrant, à l’aide du b) et de la définition de Xn,

que lim
n

∫
Yn\Xn

fg
Yn
dµ=0.

10.9 a) Commencer par considérer les intersections finies des Xn avec les éléments d’une
base dénombrable d’ouverts contenant X .
b) Montrer que, pour tout n≥0, les mesures à densité 1Ung

±.µ coı̈ncident sur le π-système
U tel que B(X)=σ(U ), puis appliquer le corollaire 6.2, section 6.2.
c) Montrer que E := D ∩ Lp

R(µ) est un R-s.e.v. de Lp
R(µ) ; raisonner alors par l’absurde et

considérer, pour f0 ∈Lp
R(µ)\E, la forme linéaire Φ0 définie sur R f0⊕E par Φ0(f0) :=

1 et Φ0|E := 0, puis appliquer successivement à Φ0 le théorème de Hahn-Banach (cf.
exercice 10.7), le théorème de dualité et b).

10.10 a) Remarquer que, pour chaque h∈D, la suite de terme général
∫
X

fϕ(n) h dµ est

bornée et lui appliquer le procédé d’extraction diagonale (cf. [23] p. 11), en utilisant la
dénombrabilité de D, pour obtenir une sous-suite convergente commune à tous les h∈D.

b) Montrer que, pour chaque g ∈ Lq
K(µ), la suite de terme général

∫
X

fϕ(n) g dµ est de

Cauchy en utilisant la densité de D et le résultat du a).
c) Montrer que l’application Φ définie au b) est une forme linéaire continue sur Lq

K(µ).
d) Considérer la suite définie sur R par fn := n1[0, 1

n ] et calculer, pour toute fonction

g∈CK(R,K), lim
n

∫
R
fn(x)g(x) dx.

10.11 b) Montrer en utilisant le lemme de Fatou pour la mesure de comptage que l’on a
lim
n
νn(B) ≥

∑
k≥1

lim
n
νn(Bk), puis que

∀ ε > 0, ∀n, k ≥ 1, νn(B) ≤
k∑

j=1

νn(Bj) + νn

(
Aε ∩

⋂
j>k

Bj

)
+ νn(

cAε ∩B),

et remarquer que lim
k
µ
(
Aε ∩

⋂
j>k

Bj

)
= 0.

c) Appliquer le théorème 6.2.

10.12 a) Soit U := {Un}n≥0 une base dénombrable d’ouverts de X avec U0 := X ;
considérer la partie C composée par les intersections finies d’éléments de U .
b) Remarquer que, pour chaque C ∈C , les suites (ν±n (C))n≥1 sont bornées et leur appli-
quer le procédé d’extraction diagonale en utilisant la dénombrabilité de C .
c) Appliquer le théorème de Vitali-Saks (exercice 10.11) aux suites de mesures (ν±ϕ(n))n≥1,
puis le théorème de Radon-Nikodym à leur limite.
e) Considérer la suite définie sur [0, 1] par fn(x) := sin(nx).

10.13 a) Développer en série l’exponentielle.
b) Faire tendre n vers +∞ dans l’égalité du a).
c) Appliquer le théorème de Hahn-Banach à une forme linéaire nulle sur E.

10.14 a) Appliquer le procédé d’extraction diagonale en utilisant la dénombrabilité de la
famille {1A} ∪ {1An

}n≥1.
b) Appliquer le théorème de Hahn-Banach à la forme linéaire Φ définie sur M .

d) Calculer lim
n

∫
X

n∑
k=1

f 1Ak
dµ à l’aide du théorème de convergence dominée.
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10.15 SiX est infini, montrer que, pour tout ouvert infini Ω deX , il existe une boule fermée
Bf de rayon>0 telle queBf ⊂Ω et Ω\Bf infini ; en déduire qu’il existe une suite (Bk)k≥1

de boules ouvertes non vides et deux à deux disjointes, puis appliquer l’exercice 10.14 avec
la suite (Bk ∩ Enk

)k≥1 où (nk)k≥1 est une suite convenable d’entiers.
10.16 b) En utilisant l’orthogonalité montrer que l’on a pour tout N ∈ N,∥∥ f(x)− ∑

|n|∞≤N

f̂(n) ein·x
∥∥2
L2(Td)

= ‖f‖2L2(Td) −
∑

|n|∞≤N

|f̂(n)|2,

où |n|∞ := max1≤k≤d |nk.
c) En tenant compte des questions a) et b), appliquer le théorème 10.8 de Marcinkiewicz
avec les espaces Lpi(Td) et `qi(Zd), et les exposants p1 = q1 = 2, p2 = 1 et q2 = +∞.
On obtient ainsi l’estimation pour f ∈ L1(Td) ∩ L2(Td). Pour f ∈ Lp(Td) considérer une
suite (fn)n∈N de L1(Td)∩L2(Td) qui converge vers f dans Lp(Td) et appliquer le lemme
de Fatou à la suite

(
f̂n
)
n∈N

dans `p
′
(Zd).

d) Appliquer le théorème 10.8 de Marcinkiewicz avec les espaces `pi(Zd) et Lqi(Td), et
les exposants p1 = q1 = 2, p2 = 1 et q2 = +∞.
10.17 a) Pour montrer la 1ère inégalité multiplier par sin(x/2). Pour la 2ème inégalité
effectuer une transformation d’Abel de

∑+∞
k=n+1 ak cos(kx) et utiliser la 1ère inégalité.

b) Écrire l’intégrale sur [0, π] comme une série d’intégrales sur [ π
n+1 ,

π
n ], et montrer que

pour n ≥ 1, |f(x)| ≤ 3An si x ∈ [ π
n+1 ,

π
n ].

c) Remarquer que∫ +∞

0

a(x)xp−2dx < +∞ ⇔
+∞∑
n=1

apn n
p−2 < +∞,∫ +∞

0

A(x)p x−2dx < +∞ ⇔
+∞∑
n=1

Ap
n n

−2 < +∞,

et que la dernière condition implique f ∈ Lp
(
[−π, π]

)
d’après b).

d) On a f ∈ Lp(T1) et f̂ /∈ `q(Z). Donc l’estimation de l’exercice 10.16 c) est fausse en
général si p > 2.

Exercices du chapitre 11
11.1 a) Montrer que C est un fermé de R2.

11.2 a) ∀ a > 0, arctan(a) ≤
∫ a

0

f(x) dx =

+∞∑
n=1

a

a2 + n2
≤ π

2
et
∫ +∞

0

f(x) dx =
π

2
.

b) ∀n ≥ 1,

∫ +∞

0

d

dx

( x

n2 + x2

)
= 0. Donc le théorème de Fubini ne s’applique pas.

11.4 On applique Fubini-Tonelli en partant de g
(
f(x)

)
=

∫ +∞

0

g′(t) 1{t≤f(x)} dt.

11.5 a) Considérer les ensembles Dk
n := {x∈Xn : µ({x})> 1

k}, n, k∈N∗.
11.6 a) Montrer que la fonction (x, y) 7→ f(x)−y est borélienne.
c) Appliquer le théorème de Fubini-Tonelli à l’expression intégrale de λ2(Gf ).
11.7 Considérer la fonction (x, y) 7→ (f(x)− f(y)) (g(x)− g(y)).
11.8 Appliquer le théorème de Fubini à ces dérivées sur tout pavé compact inclus dans Ω.
11.10 a) Par le théorème de Fubini-Tonelli on a

2

∫ +∞

0

lnx

x2 − 1
dx =

∫
R2
+

dx dy

(1 + y) (1 + x2y)
=
π

2

∫ +∞

0

dy
√
y (y + 1)

=
π2

2
.
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b) On a
∫ +∞

0

lnx

x2 − 1
dx = 2

∫ 1

0

lnx

x2 − 1
dx et on développe

1

1− x2
en série sur [0, 1[.

11.11 a) Appliquer le théorème de Fubini sur le produit [0, π]× [0, 1].
b) Faire le changement de variables s = tanx dans la première intégrale, puis appliquer
le théorème de Fubini sur le produit [0, π] × [0, 1] et faire le changement de variables
t =
√
y + 1.

c) On obtient
∫ π

2

0

ln
(
1 + cos2(x)

)
dx = π ln

(√2 + 1

2

)
.

11.13 b) Utiliser le résultat du a) dans la définition de fa(t) et appliquer le théorème de
Fubini.
c) Effectuer le changement de variable a z = y + t dans la seconde expression de fa(t)
et faire tendre a vers 0.

11.14 a) Appliquer le théorème de Fubini dans
∫
X

Fngndµ où Fn := |F |1{ 1
n≤|F |≤n} et

majorer l’intégrale obtenue à l’aide de l’inégalité de Hölder, pour une fonction gn∈ L q
R (µ)

convenable.
b) Appliquer l’inégalité du a) à la fonction ϕa(x, y) := 1[0,a](x)f(x y) , a > 0.
11.15 a) Commencer par f := 1A, A∈B(R), et appliquer le théorème de Fubini-Tonelli.
Étendre le résultat à toute fonction étagée par linéarité et à toute fonction borélienne par
convergence monotone.
b) Utiliser a) avec la fonction f(x) := xa+b et appliquer l’inégalité de Hölder avec la
mesure d(−ϕ), puis utiliser à nouveau a).
c) Appliquer le cas d’égalité de l’inégalité de Hölder et en déduire qu’il existe x∈R tel que
d(−ϕ)(R+\{x})=0.
11.16 a) Procéder comme dans l’exercice 11.15 a).
b) Utiliser a) avec la fonction f(x) := xa+b et appliquer l’inégalité de l’exercice 9.18 b).
c) Appliquer le cas d’égalité de l’exercice 9.18 b) et en déduire d(ϕ)(]0, 1[)=0.
11.17 a) Appliquer l’inégalité de Cauchy-Schwarz.
b) Appliquer le théorème de Fubini.

c) Commencer par calculer P̃(µ) à l’aide du théorème de Fubini, puis utiliser b).
11.18 a) Montrer que, pour tout z ∈ R∗

+, zsM(y 7→ e−zy) = Γ(s) et en déduire, par un
argument d’analyticité, que l’égalité est aussi vérifiée pour <(z)>0. Pour la continuité en
un point z∈ R∗, faire une intégration par parties sur [1,+∞[.
b) Appliquer le théorème de Fubini sur R+×[0, a] et poser u=xy.
c) Montrer à l’aide d’une intégration par parties sur [1, ax] (si ax≤1) que la fonction

(
x 7→

M(1[0,ax] cos)
)

est une fonction bornée sur R+, indépendamment de a, puis appliquer le
théorème de convergence dominée dans b). Calculer la fonctionM(cos) avec l’égalité du a)
pour z=±i.
d) Appliquer c) avec M(F (f))(s) et M(F ◦F (f))(1−s).
11.19 a) Appliquer le théorème de Fubini-Tonelli et poser y= tx.
b) Appliquer l’inégalité de Hölder dans l’égalité du a).
c) Montrer que les fonctions F (x) :=

∫ x

0
ϕ(u)du etG(x) :=

∫ x

0
ϕ(u)du vérifient la même

propriété. Montrer que si F n’est pas nulle sur R∗
+ alors F > 0 sur R∗

+ puis que, pour tous
x, y∈R∗

+, F (1)F (xy)=F (x)F (y). En déduire, en considérant la fonction x 7→ lnF (ex),
qu’il existe β∈R∗

+ et γ∈R tels que, pour tout x∈R∗
+, F (x)=βxγ . Conclure.

d) Appliquer le cas d’égalité de l’inégalité de Hölder et utiliser d) avec ϕ=fp et ψ=gq .
e) Considérer, pour a≥1, les fonctions fa(x)=1[1,a](x)x

1
p et ga(x)=1[1,a](x)x

1
q .
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f) Appliquer (S) avec les fonctions f :=
∑

n≥0 am+11[m,m+1[ et g :=
∑

n≥0 bn+11[n,n+1[.

11.20 a) Écrire e−ax − e−bx = x

∫ b

a

e−txdt et appliquer deux fois le théorème de Fubini.

11.21 a) Faire le changement de variable y = 1/x.
b) Montrer, à l’aide d’intégrations par parties, que∫

(arctan (1/x))2 dx = x (arctan (1/x))2 + ln(x2+1) arctan (1/x) +
∫

ln(x2+1)

x2+1
dx.

11.22 a) Utiliser l’inégalité triangulaire.
b) Utiliser l’égalité 12

An
= 1An

.
11.23 a) Appliquer le théorème de Fubini-Tonelli pour obtenir l’égalité

1

cd rd

∫
Rd

ϕ(x)µ(B(x, r))λd(dx) =
vd
cd

∫
Rd

(
1

λd(B(y, r))

∫
B(y,r)

ϕ(x)λd(dx)

)
µ(dy),

puis faire tendre r vers 0 à l’aide du théorème de convergence dominée.
b) Appliquer l’unicité du théorème de représentation de Riesz.

Exercices du chapitre 12
12.1 a) Montrer que ϕ(∂∆) ∩ ϕ(∆)=Ø par l’absurde, avec la continuité de ϕ−1 sur D.
b) Partir de ∂D=∂(ϕ(∆)) et montrer que ϕ(∆) ⊂ ϕ(∆) par un argument de compacité.
12.3 a) Développer en série (1 − x y)−1 et intervertir la série et l’intégrale en utilisant le
théorème de Beppo Levi.
b) Montrer que la fonction ϕ : (θ, t) 7→ (cos θ − t, cos θ + t) est un C 1-difféomorphisme
de l’ouvert ∆ :=

{
(θ, t)∈R2 : 0<θ<π/2 et |t|<min (cos θ, 1−cos θ)

}
sur D :=]0, 1[2,

de Jacobien Jϕ(θ, t) = 2 sin θ. Appliquer le théorème du changement de variables avec ϕ
puis le théorème de Fubini-Tonelli.
c) Séparer l’intégrale en θ sur [0, π/3] et [π/3, π/2]. Dans la seconde intégrale utiliser que
arctan(cotan θ) = π/2− θ.
12.4 b) Montrer que ϕa,b(R2) est ouvert et fermé dans R2.
12.7 a) Poser u=

√
t dans Γ(a) et appliquer le théorème de Fubini-Tonelli.

b) Passer en coordonnées polaires.
12.9 a) Utiliser la réduction deA dans une base orthonormale de vecteurs propres, rappelée
dans démonstration du corollaire 12.1, i.e. A = P D tP où P = (tP )−1 est une matrice or-
thogonale etD = diag (α1, . . . , αd) est la matrice diagonale des valeurs propres deA, puis
effectuer le changement de variables linéaire orthogonal x = tPy. On a par le théorème de

Fubini-Tonelli IA :=

∫
Rd

e−(α1 y2
1+···+αd y2

d) dy =

d∏
i=1

(∫
R
e−αi y

2
i

)
=

πd/2

√
detA

.

b) IA <∞ ssi pour tout i = 1, . . . , d, αi > 0 ssi A est définie positive.
c) Procéder comme dans a) en appliquant le théorème de Fubini-Lebesgue et en utilisant
l’application 12.3 (a′).
12.10 c) Effectuer un changement de variables linéaire orthogonal.
d) Effectuer le changement de variables en coordonnées sphériques

x1 = r sin θ1
x2 = r cos θ1 sin θ2
...

xd−1 = r cos θ1 · · · cos θd−2 sin θd−1

xd = r cos θ1 · · · cos θd−2 cos θd−1
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dans l’intégrale I(z) où z := (0, . . . , 0, |y|, 0, 0), et montrer, par récurrence sur d, que son
Jacobien vérifie |Jd| = rd−1(cos θ1)

d−2 · · · (cos θd−3)
2 cos θd−2.

12.11 a) Écrire Ω comme une limite croissante de compacts de ∆.
b) Par un changement de variables affine, se ramener au cas où 0∈K etAK est inclus dans
un hypercarré de {xd=0} de côté ≤ diam(AK), puis en déduire que AK+Q0,r est inclus

dans le pavé
d−1∏
i=1

[−diam(AK)−δ, diam(AK) + δ]× [−δ, δ].

c) Si Jϕ(u0) 6= 0, appliquer directement l’étape 1. Si Jϕ(u0) = 0, montrer, à l’aide de la
formule de Taylor, que ϕ(Qa,r) ⊂ ϕ(u0)+ϕ′(u0)Qa−u0,r+Q0,rε′ , puis utiliser a).
e) Montrer que tout compact de ∆ s’écrit comme une limite décroissante d’ouverts de ∆
et appliquer le théorème de convergence dominée dans l’inégalité du d).

12.12 Soient Ω un ouvert de ∆ et (Kn)n≥0 une suite croissante de compacts d’union Ω.
Montrer que λd(ϕ(Ω)) ≥ λd(ϕ(∆))−λd(ϕ(∆ \Kn)) et utiliser l’exercice 12.11 d).

12.13 Montrer que S s’écrit comme une suite croissante de compacts de ∆ et appliquer le
théorème de convergence monotone dans l’inégalité de l’exercice 12.11 e).

12.14 Montrer que pour |a| assez petit, dBd
(Id − af) ∈ ]0, 2[ et appliquer la proposi-

tion 12.3 c).

12.15 a) Écrire
ln(x+1)

x
=

∫ 1

0

dt

t x+ 1
et appliquer le théorème de Fubini-Tonelli.

b) On fait la décomposition
1

(1 + s x) (1 + t x)
=

1

s− t

( s

1 + s x
− t

1 + t x

)
.

c) On intègre l’égalité de a) sur R+, on applique Fubini-Tonelli sur R+ × [0, 1] et on
utilise b).

12.16 b) Avec le changement de variables (r, θ) 7→
(
r
√
cos θ, r

√
sin θ

)
, I =

√
π (π − 1)

8
.

c) Remarquer que
xy

x2 + y2
≤ 1

2
et appliquer Fubini.

12.17 a) Montrer que lim
α→+∞

(xα + yα)
1
α = max (x, y) et en déduire que 1Bα converge

simplement vers 1]0,1[2 lorsque α → +∞. La limite est égale à 1 d’après le théorème de
convergence dominée.
b) Effectuer le changement de variables (r, θ) 7→

(
r (cos θ)2/α, r (sin θ)2/α

)
.

12.18 a) Effectuer le changement de variables (x, y) =
√
r (cos θ, sin θ) puis utiliser que

la fonction sinus cardinal n’est pas intégrable sur R+ (cf. exercice 7.15).
b) Procéder comme dans a) et utiliser la semi-convergence de l’intégrale de sinus cardinal.
On obtient J = π2/2.

12.19 a) On a Ia =
π

1− a
si a > 1 et Ia = +∞ si a ≤ 1.

b) Par symétrie on a I =
1

2

∫
R2

(x2 + y2) e−(x2+y2)

x2 + y2
dx dy =

π

2
.

12.20 a) On fait un développement en série de
1

1− x2y2
et on utilise le théorème de

Fubini-Tonelli pour l’inversion intégrale-série.

b) En notant que 0 < xy = u v < 1, on a ϕ−1 : (x, y) 7→

x
√

1− y2

1− x2
, y

√
1− x2

1− y2

 .

Le calcul de Jϕ est un peu long mais sans difficulté.
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c) Par le théorème de changement de variables combiné avec Fubini-Tonelli, I est égal à∫
∆

du dv

(1 + u2) (1 + v2)
=

∫ +∞

0

du

(1 + u2)

(∫ 1
u

0

dv

(1 + v2)

)
=

[
−1

2
arctan2

( 1
u

)]+∞

0

.

Exercices du chapitre 14
14.1 b) Faire une récurrence sur n.
c) Soit ϕn :=

∑n
k=2 χk. Montrer que, pour tout n≥3, ϕn=χ∗ ϕn−1+χ2.

14.3 a) Montrer que ∀ ξ ∈ Rd\{0}, f̂(t) :=
1

2

∫
Rd

[
f(x)− f

(
x+πξ/|ξ|2

)]
e−i(ξ·x)dx,

et utiliser la continuité de l’opérateur de translation dans L1
R(λd) (cf. théorème 14.1).

b) Appliquer le théorème de Fubini.
c) Si h est un élément neutre pour ∗, appliquer b) avec h et f(x) := e−(|x1|+···+|xd|).

14.4 Partir de |f(x−y) g(y)| = (|f(x−y)|p|g(y)|q)
1
r (|f(x−y)|p)

1
p−

1
r (|g(y)|q)

1
q−

1
r et

appliquer l’inégalité de Hölder.

14.5 Appliquer le théorème du point fixe : : toute application k-contractante d’un espace
métrique complet dans lui-même possède un unique point fixe (cf. [18]).

14.8 Montrer que fn=αn∗f où (αn)n≥0 est une approximation (non régulière) de l’unité.

14.9 Utiliser l’égalité div (ϕ∇ϕ) = ϕ∆ϕ+|∇ϕ|2 , et la formule d’intégration par parties
du lemme 12.1 avec ϕ := α∗f .

14.10 b) Utiliser l’exercice 6.14 b).

14.11 b) Appliquer le théorème de Fubini.

c) Montrer, à partir du b), que, pour tout x∈Rd, αn∗f(x) → (2π)−d ˆ̂
f(−x), et montrer,

à l’aide du théorème 9.3, qu’il existe une sous-suite (kn)n≥0 telle que αkn ∗f(x) → f(x)
λd(dx)-p.p..

14.12 a) Utiliser l’exercice 14.3 b) et la formule d’inversion de l’exercice 14.11 c).

14.13 a) Appliquer le théorème de Fubini-Tonelli à (x, y) 7→ f(xy−1)g(y).
c) S’inspirer de l’exercice 14.4.

14.14 a) Considérer gα := idβ 1I avec I := ]0, 1] ou I := ]0,+∞] selon la position de α
par rapport à 1.
b) Appliquer l’inégalité de convolution de l’exercice 14.13.
c) Considérer les fonctions fa(x) := x−α1[1,a](x).

d) Considérer la fonction f(x) := x (lnx)−1− 1
p 1[2,a](x) pour a assez grand.

14.15 d) Utiliser l’invariance par translation de λd.
e) S’inspirer de l’exercice 14.10.

Exercices du chapitre 15
15.1 Appliquer le cas d’égalité dans l’inégalité triangulaire pour les intégrales.

15.2 a) Pour ξ ∈ R, µ(R)− µ̂(ξ) =
∫

R

(
1− cos(ξx)

)
µ(dξ)− i

∫
R
sin(ξx)µ(dξ) = 0

si et seulement si cos(ξx) = 1 µ(dξ)-p.p. si et seulement si x∈ 2π
ξ Z µ(dξ)-p.p..

15.3 Par continuité de 1̂E en 0, on obtient 1̂E(0) = λ(E) = 0.

15.4 On a f̂(t) =
√
π/4 e−t2/4, d’où f(x) = 1/4 e−x2

. L’intégrabilité assure l’unicité.

15.5 La transformée de Fourier s’écrit
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f̂(ξ) =

∫
|x|≥2

eixξ

x2 log(|x|)
dx = 2

∫
x≥2

cos(xξ)

x2 log(x)
dx.

On vérifie alors que pour tout ξ∈]0, 1/2[,
f(0)− f(ξ)

ξ
= 2

∫ +∞

2

1− cos(xξ)

ξ x2 log(x)
dx = 2

∫ +∞

2ξ

1− cos(y)

(log y − log ξ) y2
dy

(la dernière expression découle du changement de variable x = y/ξ). On note enfin que

∀ y ≥ 2ξ,
1− cos(y)

y2(log y − log ξ)
≤ 1− cos(y)

y2(log 2− log ξ)
,

puis on conclut par convergence dominée car
(
y 7→ 1−cos(y)

ln 2 y2

)
∈ L1(]0,+∞[).

15.6 On considère la fonction f := 1̂B , où B est la boule unité de Rd. Comme 1B ne peut
coı̈ncider presque partout avec une fonction continue, la fonction f n’est pas dans L 1(Rd)
en vertu du théorème d’inversion. En revanche, on a Φ(f) = 1B∈ L 1(Rd).

15.7 On applique la multiplicativité de la transformée de Fourier pour la convolution en
remarquant que fa(t) = 1

2π ê
−a|x|(t).

15.8 a) On découpe l’intégrale sur les intervalles [a, n], [−n,−a] et [−a, a], 0 < a ≤ n, on
écrit sin t sous forme d’exponentielle, et on fait les changement de variables s = (1± x) t
dans les intégrales sur [a, n] et [−n,−a]. On fait alors tendre n vers l’infini puis a vers 0.
b) Soit χ := 1

2 1[−1,1]. La suite Φ
(
1[−n,n] χ̂

)
converge dans L 2(R) vers Φ(χ̂) = 2π χ =

π 1[−1,1], et donc presque partout dans R à une sous-suite près, d’où l’égalité cherchée.

15.9 a) Le calcul de la transformée de Fourier de 1[−1/2,1/2] donne In = 1
2

∫
R f̂n(t) dt.

On a In = 1
2

∫
R f̂n−1(t) f̂1(t) dt, d’où par Plancherel In = π

∫
R fn−1(x) f1(x) dx. Une

récurrence donne 0 ≤ fn ≤ 1, ce qui permet de conclure.
b) Comme précédemment on a In = π

∫
R fp(x) fq(x) dx et I2p = π

∫
R(fp(x))

2 dx. On
conclut avec l’inégalité de Cauchy-Schwarz.

15.10 On a
∣∣tf̂(t)∣∣ = ∣∣f̂ ′(t)∣∣ = ∣∣Φ(f ′)(t)∣∣ ∈ L 2(R). Par l’inégalité de Cauchy-Schwarz

appliquée à 1/t et t f̂(t), on obtient que f̂ ∈ L 1(R). Le théorème d’inversion permet de
conclure.

15.11 a) On choisit g := 1{f 6=0} f/
√
|f | et h :=

√
|f |.

b) On applique a) avec ϕ = f̂ , φ := (2π)−
d
2 Φ(g) et ψ = (2π)−

d
2 Φ(h).

c) f = g h∈ L 1(Rd) est la limite dans L 1(Rd) de Fn := (2π)d Φ−1(φn) Φ
−1(ψn), où

les suites φn, ψn ∈ C∞
K (Rd) convergent dans L 2(Rd) vers (2π)−

d
2 Φ(g), (2π)−

d
2 Φ(h)

respectivement. On a alors F̂n = (2π)d Φ
(
Φ−1(φn) Φ

−1(ψn)
)
= φn ∗ ψn∈ C∞

K (Rd).

15.12 a) On a f̂ = ϕ̂
̂̂
φ ∗ φ = (2π)3d/2 ϕ (φ ∗ φ)∈ C∞

K (Rd).

15.13 Il faut vérifier que si f est continue à support dans un intervalle compact I , la fonction
f̂ définie sur C par f̂(z) :=

∫
R e

ixzf(x) dx est holomorphe. Ceci se vérifie directement par
le théorème de dérivation sous le signe intégral (ponctuel) étendu au cas complexe, en effet,
pour tous z, h∈ C, |h| ≤ 1,

|f(x)ei(z+h)x − f(x)eizx| ≤ |hx|e|x|(|z|+|h|)|f(x)| ≤ |f(x)||x|e|x|(|z|+1) ∈ L1(R)

(car f est à support dans I), ce qui assure la condition de domination. La fonction f̂ est
donc holomorphe sur tout C. Elle est alors soit constante, soit lim

|z|→+∞
|f̂(z)| = +∞. Donc,

si f̂ |R est à support compact sur R, f̂ est identiquement nulle.
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15.14 b) La fonction x 7→ eiπx sépare les points de [−1, 1] et ne s’annule jamais, donc,
d’après le théorm̀e de Stone-Weierstrass (cf. [18], Corollaire 12.5, p.139), l’algèbre stable
par conjugaison engendrée par cette fonction, i.e. l’ensemble des polynômes trigonomé-
triques de la forme

∑k=n
k=−n cke

ikπ., ck ∈ C, n∈ N, est dense dans l’ensemble des fonctions
continues 2-périodiques à valeurs complexes pour la norme uniforme, lui-même classique-
ment dense dans L2

C([−1, 1], λ) pour la norme hilbertienne usuelle.

c) On a f̂(nπ) =

∫
R
einπxf(x) dx =

∫ 1

−1

einπxf(x) dx = 〈f |e−inπ.〉L2
C([−1,1],λ). D’où,

(einπ·)n∈Z étant une base (orthonormée) hilbertienne, f ≡ 0 dans L2
C([−1, 1]).

d) Si µ̂(nπ) = 0 pour tout n ∈ Z, on montre que
∫
f dµ = 0 pour tout polynôme trigo-

nométrique puis on conclut comme à la question b).
15.15 a) Par une double intégration par parties, on trouve

ϕ̂(ξ) = 2

∫ 1

0

(1− t) cos(tξ) dt = 2

ξ

∫ 1

0

sin(tξ) dt =
2

ξ2
(1− cos ξ).

b) La fonction ϕ̂ est positive et clairement dans L1(R) donc ̂̂ϕ = 2πϕ̌ = 2πϕ par parité,
d’où µ(dξ) = ϕ̂

2π dξest une mesure de probabilité sur R et µ̂ = ϕ.
c) En appariant les entiers impairs opposés 2n+ 1 et −(2n+ 1), n ≥ 0, on trouve

ν̂(ξ) =
1

2
+

4

π2

∑
n≥0

cos((2n+ 1)ξ)

(2n+ 1)2
.

d) Pour montrer que µ̂ et ν̂ coı̈ncident sur [−1, 1] on évalue les transformées de Fourier de
µ̂ 1[−1,1] et ν̂ 1[−1,1] en les points nπ (en fait les coefficients de Fourier) puis on s’appuie
sur l’exercice 14. Dans les deux cas, le calcul est essentiellement immédiat au vue des
questions précédentes.
15.16 a) La série est normalement convergente d’après la seconde inégalité vérifiée par f .
Donc la continuité de F se déduit de celle de f qui est localement Lipschitzienne.
b) En intervertissant l’intégrale et la somme on obtient cn = 1

2π f̂(n).
c) L’hypothèse de type Lipschitz sur f implique que∫ 1

−1

∣∣∣∣ F (x)− F (0)x

∣∣∣∣ dx ≤∑
k∈Z

∫ 1

−1

∣∣∣∣ f(x+ 2πk)− f(2πk)
x

∣∣∣∣ dx ≤∑
k∈Z

2C

(2kπ)2 + 1

Donc, d’après le théorème de Dirichlet pour les séries de Fourier (cf. [31]), F coı̈ncide avec
sa série de Fourier en 0, ce qui, compte tenu de b), donne la formule annoncée.

d) La série de gauche se déduit de f̂(n) =
2a

a2 + n2
. La série de terme général f(2πk),

k ∈ Z, se dédouble et donne une série géométrique de raison e−2πa. On fait tendre a > 0

vers 0 dans l’égalité obtenue, en utilisant l’équivalent
(
coth(x)− 1

x

)
∼
0

x3

3
.

e) On considère a = ε+ i α , où ε > 0 et α ∈ R \Z, dans la première formule de d) et on
fait tendre ε vers 0+ en utilisant le théorème de convergence dominée pour les séries.

15.17 a) f̂ ∗ f = (f̂ ) 2, donc l’équation se lit en Fourier (f̂ ) 2 = f̂ , i.e. f̂ est à valeurs dans
{0, 1}. Par continuité de f̂ , celle-ci est donc la fonction nulle ou la fonction 1. Or, d’après
le théorème de Riemann-Lebesgue, lim|ξ|→+∞ f̂(ξ) = 0, donc f est identiquement nulle.
b) On utilise l’identité de convolution relative à la transformée de Fourier-Plancherel afin de
montrer que f = 1

2πΦ(ϕ) où ϕ2 = ϕ et ϕ∈ L1(R) ∩ L2(R). D’où ϕ = 1A, λ(A) < +∞.
15.18 a) Décomposer eiux en parties réelle et imaginaire. Remarquer que 1 − cos est une
fonction positive, nulle surD = 2π

u0
Z = 2π

|u0|Z. La fonction µ̂ s’écrit alors (théorème 8.4(b)
dit de convergence dominée pour les séries de fonctions)
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µ̂(u) =

∫
D

eiux µ(dx) =
∑
k∈Z

µ
(
{2kπ/|u0|}

)
e2ikπu/|u0|.

Elle est donc clairement périodique de période (non nécessairement minimale) |u0|.
b) La continuité de µ̂ s’établit en s’inspirant de l’Application 8.5(b). L’ensemble des périodes
de µ – en incluant 0 et les périodes négatives – forme un sous-groupe additif de R. Un tel
sous-groupe (cf. [18]) est soit dense, soit de la forme TZ où T est la plus petite période
(strictement positive) de µ̂. S’il est dense, on montre que µ̂(u) = µ̂(0) = µ(R), donc tout
u > 0 est période. En particulier 1 et l’irrationnel

√
2 le sont. Donc µ est portée par 2πZ et

2π√
2
Z donc par leur intersection i.e. {0}. Donc µ = µ(R)δ0.

c) On établit l’existence d’un réel α tel que e−iαµ̂(u0) = µ(R) et on montre de façon
analogue que D = α+2π

u0
Z. D’où µ̂(u) = eiαu/u0

∑
k∈Z

µ
(
{(α+ 2kπ)/u0}

)
e2ikπu/u0 .

d) On applique ce qui précède à la mesure positive finie µ(dx) = f(x)λ(dx). Celle-ci ne
peut clairement pas être portée par un ensemble dénombrable D car, nécessairement,

µ(D) =

∫
D

f(x)λ(dx) =

∫
R
(1Df)(x)λ(dx) = 0.

En effet 1Df est λ-p.p. nulle donc il en est de même de son intégrale. Or ceci est impossible
car µ(R) =

∫
R f dλ 6= 0 par hypothèse.

15.19 a) En utilisant le théorème de Fubini-Tonelli, il vient pour tout ε > 0∫ ε

−ε

(
µ(R)−<e

(
µ̂(ξ)

))
dξ =

∫
R
µ(dx)

∫ ε

−ε

dξ
(
1− cos(ξx)

)
=

∫
R
µ(dx)

[
ξ − sin(ξx)

x

]ξ=ε

ξ=−ε

= 2ε

∫
R

(
1− sin(xε)

xε

)
µ(dx)

≥ 2ε

∫
{|x|≥2/ε}

(
1−

∣∣∣ sin(xε)
xε

∣∣∣)µ(dx) ≥ 2ε

∫
{|x|≥2/ε}

(
1− 1

|xε|

)
µ(dx)

≥ εµ
(
|x| ≥ 2/ε

)
.

b) Par convergence dominée lim
n

∫ ε

−ε

(
µ̂n(0)− µ̂n(ξ)

)
dξ =

∫ ε

−ε

(
χ(0)−χ(ξ)

)
dξ. D’où la

conclusion en combinant avec a).
c) On extrait µϕ(n) convergeant vers µ. Comme x 7→ eixξ est continue bornée pour tout
ξ∈ R, il est clair que µ̂ϕ(n) converge simplement vers µ̂ ; donc µ̂ = χ.
15.20 a) Les supports des fonctions ρ(· − n), n∈ Z, sont deux à deux disjoints. Donc en
chaque x∈ R, la somme qui définit g(x) se réduit à un terme unique et g hérite donc de la
régularité de ρ. De même, pour tout |x| ≥ p∈ N∗, |g(x)| ≤ 1

2 ln p , d’où la limite annoncée.

b)

∫ π

−π

|F (x)| dx ≤
∫

R
|f(x)| dx.

c) Le coefficient de Fourier d’ordre n∈ Z de F est
1

2π

∫ π

−π

F (x) e−inx dx =
1

2π
f̂(−n) = 1

2π

∑
k∈Z

ck ρ(k − n) = cn.

Donc b1 = 0 et si n ≥ 2,

bn =
1

lnn
et

n∑
k=2

bk
k

=

n∑
k=2

1

k ln k
=

1

π

∫ π

−π

(
n∑

k=2

sin(kx)

k

)
F (x) dx.

Notons que la somme partielle dans la dernière intégrale converge pour tout x∈ [−π, π] en
vertu du critère d’Abel.
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d) Par la majoration de l’exercice 8.30 b) et l’intégrabilité de F , le théorème de convergence
dominée s’applique à la dernière intégrale du c). On en déduit que le série de terme général
1/(n lnn) est convergente, ce qui fournit la contradiction.

Donc g∈ C∞
0 (R,R) \ Φ

(
L 1(R)

)
et par conséquent Φ

(
L 1(R)

)
 C0(R,R).

15.21 a) En tenant compte du théorème de Plancherel et de la continuité de la transformée
de Fourier dans L1(Rd), appliquer le théorème 10.8 de Marcinkiewicz avec les espaces
Lpi(Rd) et Lqi(Rd) et les exposants p1 = q1 = 2, p2 = 1 et q2 = +∞.
b) D’après la formule (15.7) et la valeur de l’intégrale de Fresnel de l’exercice 8.29, on
obtient f̂z(ξ) = (π/z)d/2 e−|ξ|2/(4z), pour ξ ∈ Rd.
c) Comme fz ∈ S (Rd), si le résultat de continuité est vrai alors le rapport ‖f̂z‖q/‖fz‖p est
borné uniformément par rapport à z. En prenant z ∈ R∗

+, z → +∞, on a nécessairement
1/p+ 1/q = 1. Puis en faisant =(z)→ +∞, il vient p ≤ 2.

15.22 a) Appliquer la formule d’inversion au point x en utilisant la continuité de f .
b) Noter que cn = f(n) par la formule d’inversion, puis intervertir l’intégrale et la série
sachant que

∑
n∈Z

|f(n)| < +∞.

15.23 a) Appliquer le lemme 15.4 dans SC puis utiliser la densité de SC dans L2
C(R

d).
b) Appliquer successivement le lemme 15.4 et a), puis conclure en appliquant l’exer-
cice 8.33 à la fonction f − g ∈ L1

loc(R
d).

c) Appliquer successivement le lemme 15.4 et le théorème 15.4, puis de nouveau conclure
avec l’exercice 8.33.

15.24 b) Appliquer le théorème de Dirichlet à ψ.
c) Appliquer l’identité de Parseval à ψ puis le théorème de Plancherel à ϕ.

d) i) Intégrer par parties.
ii) Montrer que f(x) = sinx/x, puis utiliser les égalités des questions b) et c).

15.25 b) Utiliser le théorème de Fubini-Lebesgue dans
∫ n

−n
ϕ̂ pour la 2ème inégalité, puis

utiliser le lemme de Borel-Lebesgue avec
(
t 7→ ϕ(t)

t

)
dans {|t| ≥ a} et

(
t 7→ ϕ(t)−ϕ(0)

t

)
dans [−a, a] combiné avec le résultat de la question d) de l’exercice 15.16, pour la troisième
égalité.
c) Appliquer la formule de Poisson avec les deux paires (ϕ, f) et ( 1

2πϕ ∗ ϕ, f
2).

d) Appliquer la dernière condition de ii).

15.26 a) La symétrie de l’opérateur A se déduite d’une intégration par parties.
b) Montrer à l’aide la question a) que

∀ f ∈ S (R), ‖f‖22 = i
〈
A(f), B(f̄)

〉
− i
〈
B(f), A(f̄)

〉
,

puis appliquer aux deux termes de droite l’inégalité de Cauchy-Schwarz.
c) Déduire de la proposition 15.3 et du théorème de Plancherel que ‖xf̂(x)‖2 =

√
2π ‖f ′‖2.

15.27 a) En appliquant successivement le théorème d’inversion à f (noter que f̂ ∈ L 1(R)
par la condition de support) en 0, le lemme 15.4, l’inégalité de Cauchy-Schwarz (i.e. Hölder
pour p = 2) puis le théorème de Plancherel, on obtient

|f(0)| = 1

2π

∣∣∣∣ ∫
R

1[−a,a](t) f̂(t) dt

∣∣∣∣ = 1

2π

∣∣∣∣ ∫
R

1̂[−a,a](t) f(t) dt

∣∣∣∣
≤ 1

2π

∥∥1̂[−a,a]

∥∥
2
‖f̂‖2 =

√
a I

π
‖f‖2.

.

b) Le cas d’égalité dans l’inégalité de Hölder (cf. théorème 9.1 (b)) implique l’existence de
α ∈ R+ telle que |f | = α

∣∣1̂[−a,a]

∣∣ λ(dx)-p.p. sur R.
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c) D’après b) pour α = 1 et le théorème de Plancherel, on a

2 a =
∣∣ 1̂[−a,a]

∣∣(0) = √a I
π

∥∥1̂[−a,a]

∥∥
2
=

2 a I

π
.

15.28 a) Effectuer n des intégrations par parties.
b) D’après a) on a L (xg)(z) = α/P (z) et L (eαjt)(z) = 1/(z − αj). On conclut avec
le théorème d’inversion de Laplace.
c) Soit h est la combinaison linéaire des exponentielles.
D’après la décomposition en éléments simples de 1/P , on pour tout z ∈ C, <(z) > a,
P (z)L (h)(z) = 1 , d’où P (z)L (h ∗ f)(z) = P (z)L (h)(z)L (f)(z) = L (f)(z).
Or, d’après a) on a aussi P (z)L (y)(z) = L (D(y))(z) = L (f)(z).
Donc par inversion de Laplace il vient y = h ∗ f = f ∗ h qui est l’expression cherchée.
d) Par linéarité on obtient x = xg + y.
e) On peut vérifier par le calcul que l’expression du d) est solution du problème (C) pour
toute fonction f ∈ C (R+) nulle dans R∗

−.
15.29 a) Prendre la transformée de Fourier de (Ca) et utiliser les propriétés de la trans-
formée avec la dérivation. Une solution générale de l’équation différentielle dans R+ est
donnée par L (x)(z) = λ (z2 + 1)

a
2−1 pour z ∈ R+, où λ ∈ R∗. Par injectivité de la

transformée de Laplace, cette expression s’étend au domaine de L (x), d’où le résultat.
b) Cas a ≥ 2.
i) Si a ≥ 2, alors on ne peut avoir lim

z→+∞
F (z) = 0. Donc F n’est pas la transformée de

Laplace à domaine non vide d’une solution non nulle du problème (Ca).
ii) Pour a = 2, une base de solutions dans R∗

+ est donnée par (sin t/t, cos t/t). Aucune de
ces deux fonctions ne vérifie la condition initiale x(0) = 0 de (C2).
c) Cas a = −2.
i) Les solutions du problème (C−2) ayant une transformé de Laplace avec un domaine non
vide est la droite vectorielle engendrée par la fonction ϕ−2(t) :=

1
2 (sin t− t cos t) pour

t ∈ R+, obtenue en prenant la transformée inverse de l’égalité proposée et en utilisant
l’expression de L (x) de a) pour a = − 2.
ii) L’ensemble des solutions de l’équation différentielle linéaire du deuxième ordre as-
sociée au problème (C−2) dans R∗

+, est un espace vectoriel de dimension 2 dont une base
est (ϕ−2 , ψ−2) où la fonction ψ−2 est donnée par la méthode de variation de la constante :

ψ−2
(t) := ϕ−2

(t)

∫ t

1

s2

ϕ2
−2
(s)

ds pour t ∈ R∗
+.

On vérifie que ψ−2
∈ C 2(R∗

−) en étudiant ψ−2
en chaque point tn ∈ [nπ, nπ + π

2 [,
n ∈ N∗, points fixe de la fonction tan, en lesquels s’annule ϕ−2 . De plus, compte tenu de
ϕ−2 ∼

t→0
t3/6 , on obtient lim

t→0
ψ(t) = −2 6= 0. Donc ψ−2 n’est pas une solution du

problème (C−2). Par conséquent, l’ensemble des solutions du problème (C−2) est aussi la
droite vectorielle engendrée par ϕ−2

.
d) Cas a = 1.

i) On obtient ϕ
1
(t) =

+∞∑
n=0

(−1)n

22n (n!)2
t2n.

ii) La fonction ψ1 se déduit de ϕ1 à l’aide de la méthode de variation de la constante par
la formule proposée. On a ψ

1
∈ C 2(R+) en vérifiant que d’une part, la limite de ϕ

1
en 0

est 0, et que d’autre part, qu’en chaque racine (éventuelle) τ > 0 de ϕ
1
, les limites de ψ

1

et ψ′
1

en τ existent dans R. Pour cela, on effectue des développements asymptotiques des
deux expressions intégrales au voisinage de τ .
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De plus, on a lim
t→0

ψ1(t) = +∞. Donc ψ1 n’est pas une solution de (C1).

Supposons, par l’absurde, qu’il existe une solution f ∈ C 2(R+) du problème (C1).
Sachant que (ϕ1 , ψ1) est une base de solutions de l’équation différentielle associée à (C1)
dans R∗

+, il existe λ, µ ∈ R telles que f = λϕ
1
+ µψ

1
dans R∗

−. Comme f et ϕ
1

sont
continues en 0 alors que ψ

1
n’y a pas de limite, on a µ = 0. D’où 0 = f(0) = λψ

1
(0) = λ,

i.e. f est la fonction nulle.
iii) Si une telle fonction f existe, alors on a

∀ z ∈ D̊L (f), L (f ∗ f)(z) =
(
L (f)

)2
(z) =

1

z2 + 1
= L (sin)(z).

D’où par injectivité de la transformée de Laplace et par le théorème des valeurs intermé-
diaires, on obtient (au signe près) ∀ z ∈ D̊L (f), L (f)(z) = (z2 + 1)−

1
2 .

Il vient donc ∀ z ∈ D̊L (f), (z2 + 1)L (f)′(z) + zL (f)(z) = 0.
En prenant la transformée de Laplace de cette égalité (en remontant les calculs fait en a)),
on obtient finalement que f est solution du problème (C1), ce qui contredit ii) car f ne peut
être la fonction nulle.
15.30 b) Prendre la transformée de Fourier de l’équation des ondes et en utilisant le théorème
de dérivation sous l’intégrale par rapport au paramètre x, montrer que pour z ∈ C, <(z) ≥
0, la fonction U(s, x) := û(·, x)(s) est solution de l’équation différentielle linéaire du

2ème ordre
∂2U

∂x2
(s, x)− c2 U(s, x) = 0 pour (s, x) ∈ R× R.

En déduire qu’il existe deux fonctions f, g ∈ C 2(R) telles que
∀ (t, x) ∈ R× R, u(t, x) = f(t− x/c) + g(t+ x/c).

c) Prendre la transformée de Fourier de l’équation des ondes et en utilisant le théorème de
dérivation sous l’intégrale par rapport au paramètre x, montrer que pour z ∈ C, <(z) > 0,
U(z, x) := L

(
u(·, x)

)
(z) vérifie l’équation différentielle linéaire du 2ème ordre

∂2U

∂x2
(z, x)− z2/c2 U(z, x) = − (α z + β)/c2 pour (x, z) ∈ R+ ×

{
z ∈ C : <(z) > 0

}
.

Compte tenu des conditions aux limites vérifiées par u et en utilisant la question a), montrer
alors qu’il existe λ(z), µ(z) ∈ C tels que
∀ (x, z) ∈ R+ ×

{
z ∈ C : <(z) > 0

}
, U(z, x) = L (g)(z) + λ(z) ez x/c + µ(z) e−z x/c.

En déduire que pour tout t ∈ R+, g(t) = α+ β t et

∀ (t, x) ∈ R+ × R+, u(t, x) =

{
α+ β t+ f(t− x/c) si t ≥ x/c

α+ β t si t < x/c.

15.31 a) On effectue le changement de variables s = t+ k.
b) En prenant la transformée de Laplace de l’équation (D) et en utilisant a), on obtient
P (ez)L (f)(z) = 1/z. On conclut avec la décomposition en éléments simples de 1/P .
c) Comparer les deux fonctions aux points t ∈ [p, p+ 1[ avec p ∈ N∗ fixé.
d) Pour chaque j = 1, . . . , n, on utilise le développement en série

e−z

z (1− αj e−z)
=

+∞∑
k=1

αk−1
j

e−kz

z
=

+∞∑
k=1

αk−1
j

∫
R+

1[k,+∞[ e
−tz dt,

puis l’interversion série-intégrale, licite par le théorème de convergence dominée grâce à
la condition <(z) > lnα. On conclut en utilisant l’égalité de c) et finalement le théorème
d’inversion de Laplace.

15.32 a) Utiliser le développement en série [t] =

+∞∑
n=0

n 1[n,n+1[(t) pour t ∈ R+.



Solutions des exercices 417

b) On a L (f)(z) = L ([t])(z) et on conclut par l’injectivité de la transformée de Laplace.

15.33 a) Appliquer le théorème de Fubini-Lebesgue.

b)

∫ t

0

[s] ds =

∫ [t]

1

[s] ds+

∫ t

[t]

[s] ds =

[t]−1∑
n=1

n+ [t] (t− [t]) =
[t] ([t]−1)

2
+ [t] (t− [t]).

c) On a L (f)(z) =
1

z(ez − 1)2
=

ez

z(ez − 1)2
− 1

z(ez − 1)
qui donne bien l’égalité.

Il vient L (f)(z) = L
(
t [t]−

∫ t

0

[s] ds−[t]
)

qui permet de conclure avec [t]−1 = [t−1].

15.34 a) Pour la 1ère égalité utiliser la théorème de convergence dominée avec le développe-

ment en série σ[t] =

+∞∑
n=0

σn 1[n,n+1[(t) pour t ∈ R+.

Pour la 2ème égalité décomposer en éléments simples 1
(X−σ) (X−τ) et appliquer la 1ère

égalité.
Pour la 3ème égalité utiliser la 2ème égalité avec τ = σ + ε où

0 < ε ≤ ε0
{
< e<(z) − |σ| si |σ| ≥ 1
= 1− |σ| si |σ| < 1,

(18.1)

et déduire de l’inégalité des accroissements finis la majoration : pour tout t ≥ 1,∣∣∣∣ (σ + ε)[t] − σ[t]

ε
e−zt

∣∣∣∣ ≤ t (|σ|+ ε0)
t−1 e−<(z) t ∈ L 1(R+),

puis conclure avec le théorème de convergence dominée.
Pour la 5ème égalité décomposer en éléments simples 1

(X−σ) (X−τ) (X−υ) et appliquer la
1ère égalité.
Pour la 6ème égalité décomposer en éléments simples 1

(X−σ)2 (X−τ) et utiliser les 1ère et
3ème égalités.
Pour la 7ème égalité utiliser la 5ème égalité avec τ = σ+ε et υ = σ−ε où ε vérifie (18.1),
déduire de l’inégalité des accroissements finis à l’ordre 2 la majoration : pour tout t ≥ 2,∣∣∣∣ (σ + ε)[t] + (σ − ε)[t] − 2σ[t]

ε2
e−zt

∣∣∣∣ ≤ t (t− 1) (|σ|+ ε0)
t−1 e−<(z) t ∈ L 1(R+),

puis conclure à nouveau avec le théorème de convergence dominée.
b) En faisant le changement de variable s = t+ 1, on obtient

L
(
f(t+ 1)

)
(z) = ez L (f)(z)− u0 ez

∫ 1

0

e−zs ds.

On procède de même pour L
(
f(t+ 2)

)
(z) avec le changement de variable s = t+ 2.

c) On prend la transformée de Laplace de l’équation vérifiée par f , i.e.
f(t+ 2) = a f(t+ 1) + b f(t) + γ[t] pour t ∈ R+, et on applique b).
Pour les questions d) à f) on prend la transformation de Laplace inverse de l’expression
de L (f) dans c) en utilisant les différentes égalités de a). On en déduit f(t) pour λ(dt)
presque tout t ∈ R+, puis un pour tout n ∈ N.

15.35 a) On a W (e−ay2

)(x) = (1 + 4a)−
1
2 e−

a
1+4ax2

pour x ∈ R, définie uniquement
pour a > −1/4.
b) On applique l’inégalité de Jensen avec la fonction convexe

(
t ∈ R+ 7→ tp

)
et la mesure

de probabilité G(y) dy, puis le théorème de Fubini-Tonelli.
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c) On écrit dans l’intégrale du membre de droite e−
y2

4 + xy
2 = e

x2

4 e−
(x−y)2

4 et on fait le
changement de variable y → x− y.

d) i)
(
e−yD(f)

)
(x) =

+∞∑
n=0

(−1)n

n!
yn f (n)(x) =

+∞∑
n=0

(
f(x− ·)

)(n)
(0)

n!
yn.

ii) On intègre par parties par rapport à y G(y) = − 2G′(y).
iii) Dans W (f)(x) on remplace f(x− y) par l’expression de i), et on fait une interversion
intégrale-série (licite car e|y|G(y) ∈ L 1(R)), puis on utilise ii) (les intégrales “impaires”
sont nulles), d’où W (f)(x) =

∑
n≥0

1
n!

(
D2n(f)

)
(x).

15.36 a) On fait le changement de variable z =
√
t y dans l’intégrale de droite.

b) À l’aide de a) on se ramène à W et on applique le résultat de l’exercice 15.35 d) iii)
avec la fonction f(·

√
t), puis on conclut en notant que

(
f(·
√
t)
)(2n)

= tn f (2n)(·
√
t).

c) D’après b) on a pour ϕ ∈ C
∞

K (R),

(Ws ◦Wt)(ϕ) = Ws

(
etD(ϕ)

)
= esD

(
etD(ϕ)

)
= e(s+t)D(ϕ) = Ws+t(ϕ).

L’avant-dernière égalité se déduit du théorème de Fubini-Lebesgue pour les séries doubles
et de la formule du binôme de Newton :

∀ p ∈ N,
∑

m+n=p

sm tn

m!n!
=

p∑
n=0

sp−n tn

(p− n)!n!
=

1

p!
(s+ t)p.

Alternativement, on peut faire le changement de variable u = y+ z dans l’intégrale double
Ws

(
Wt(ϕ)

)
(x) en (y, z) ∈ R×R, et appliquer le théorème de Fubini-Lebesgue pour obtenir

une intégrale avec la fonction f(x− u)Gs+t(u).
On conclut en utilisant la densité de C

∞

K (R) dans
(
Lp(R), ‖ · ‖p

)
pour 1 ≤ p < +∞

(cf. théorème 14.8), et l’estimation Lp de l’exercice 15.35 b) combinée avec l’égalité de a).
d) L’inégalité est claire pour q = +∞. Si q ∈ [1,+∞[ , on a pour δ > 0 fixé,

‖Gt‖Lq({|y|>δ}) ≤
1√
4πt

(
2

δ

∫ +∞

δ

y e−
qy2

4t dy

) 1
q

=
( 4t
qδ

) 1
q

Gt(δ) −→
t→0+

0.

Soient p ∈ [1,+∞[ , x ∈ R et t, δ > 0. On a par l’inégalité de Hölder avec q := p
p−1 ,∣∣(ϕ ∗Gt)(x)− ϕ(x)

∣∣ ≤ ∫ +∞

−∞

∣∣ϕ(x− y)− ϕ(x)∣∣Gt(y) dy

≤
∫ δ

−δ

∣∣ϕ(x− y)− ϕ(x)∣∣Gt(y) dy +

∫
{|y|>δ}

∣∣ϕ(x− y)− ϕ(x)∣∣Gt(y) dy

≤ max
y∈[−δ,δ]

∣∣ϕ(x− y)− ϕ(x)∣∣+ ‖ϕ‖Lp(R) ‖Gt‖Lq({|y|>δ}) + |ϕ(x)| ‖Gt‖L1({|y|>δ}).

Le premier terme de la ligne précédente est arbitrairement petit pour δ assez petit, par conti-
nuité de ϕ en x. D’après l’estimation de Gt précédente, les deux derniers termes tendent
vers 0 lorsque t→ 0+ à δ > 0 fixé.

Si p = +∞, on applique le théorème 14.6 avec la famille d’approximations de l’unité
(cf. définition 14.5) (Gt)t>0 lorsque t→ 0+.
e) D’après l’égalité de b) on a ∂t

(
Wt(f)

)
= D2

(
etD

2

(f)
)
= D2

(
Wt(f)

)
dans R∗

+ × R.

15.37 a) En faisant le changement de variable s =
√
t et en utilisant la formule de

l’intégrale gaussienne, on obtient L (a)(x) =
√
π/x pour tout x > 0.

b) En prenant la transformée de Laplace du produit de convolution A (u) = a ∗ u et de
v := A (A u) = a ∗ (a ∗ u) , on obtient L (v) = L (a)2 L (u).
c) D’après a) et b) on a
∀x > 0, L (v)(x) = π/xL (u)(x) = πL (1R+

)(x)L (u)(x) = L (1R+
∗ u)(x).
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On conclut avec l’inversion de Laplace et la continuité des fonctions v et 1R+∗ u dans R+.
d) Remarquer que x′ > 0.
e) Effectuer le changement de variable x =W (y) dans l’intégrale de d) puis V (c) = E.
f) Composer par A l’égalité de e) puis utiliser c).

15.38 a) Remarquer que f est continue sur R+, composer l’équation par A ce qui donne

pour tout x ∈ R+, f(x) = a+ 2 a k
√
x+ π k2

∫ x

0

f(t) dt, puis enfin dériver.

b) Résoudre l’équation différentielle d’ordre 1 avec la méthode de la variation de la constante
et retrouver l’expression de A (eπk

2t).
c) Remplacer l’expression de f dans a+kA (f) et utiliser à nouveau la question 15.35 c)
avec la fonction

(
t 7→ eπk

2t
)
.

15.39 a) On a Fn(x) ≥ 0 et F ′
n(x) =

(−1)n

n!
xn f (n+1)(x) ≤ 0 , d’où l’existence de

lim
x→∞

Fn(x). En supposant alors par récurrence l’existence des `k pour k = 0, . . . , n − 1,
on en déduit celle de `n.
b) i) Pour passer de n à n + 1 on fait une intégration par parties de l’expression intégrale
de f(x)−Mn.

ii) On a ∀ k ∈ N∗, ∀u ∈ R∗
+, 0 ≤ (−1)n f (n)

(
u+

1

k

)
≤ (−1)n f (n)

(
u+

1

k + 1

)
, ce

qui permet d’appliquer le théorème de convergence monotone.
iii) ∀ k ∈ N∗, ∀u ∈ R∗

+, 0 ≤ (−1)n un−1f (n)(u+ k) ≤ (−1)n un−1f (n)(u) =: f0(u),
et f0 est intégrable sur R∗

+ d’après l’égalité de ii).

c) Si g′n(x) = 0 pour x ∈ ]0, 1[, alors |gn(x)| =
∣∣ 1/(n−1) e−nx (nx−1)

∣∣ ≤ 1/(n−1).

d) i) Effectuer le changement de variable u+ x→ u dans l’intégrale de b) i).
ii) À l’aide de c) et de b) ii), on obtient

lim
n→+∞

[
(−1)n

(n− 1)!

∫ +∞

x

(
e−nx/u − (1− x/u)n−1

)
un−1f (n)(u) du

]
= 0.

iii) Par b) ii) et b) iii) on a pour tout n ∈ N∗,

0 ≤ (−1)n

(n− 1)!

∫ x

0

e−nx/u un−1f (n)(u) du

≤ (−1)n

(n− 1)!
e−n

∫ x

0

un−1f (n)(u) du ≤ e−n (f(0)− `).

iv) Le résultat s’obtient en sommant les limites de ii) et iii).

e) i) La fonction αn s’écrit ∀ t ∈ R∗
+, αn(t) = ` +

(−1)n

(n− 1)!

∫ +∞

n/t

un−1f (n)(u) du,

et est donc positive et croissante. Par l’intégrabilité de f0(u) = (−1)n un−1f (n)(u)
conséquence de b) ii) et b) iii), on a lim

t→0
αn(t) = `, d’où αn est continue en 0. De même,

on a lim
t→+∞

αn(t) = `+ f(0)− ` = f(0).

ii) Soit x ∈ R∗
+. Partant de l’expression de i) et en utilisant le théorème de Fubini, on a

pour tout n ∈ N∗,
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xL (αn)(x) = `+
(−1)n

(n− 1)!

∫ +∞

0

e−x t

(∫ +∞

n/t

un−1f (n)(u) du

)
dt

= `+
(−1)n

(n− 1)!

∫ +∞

0

un−1f (n)(u)

(
x

∫ +∞

n/u

e−x t dt

)
du

= `+
(−1)n

(n− 1)!

∫ +∞

0

e−nx/u un−1f (n)(u) du,

d’où par la formule de d) iv), on déduit lim
n
xL (αn)(x) = `+ f(x)− ` = f(x).

15.40 a) En appliquant l’inégalité de Jensen avec α (x − a)−α(x − t)α−1 dt qui est une
mesure de probabilité sur [a, x], on a∣∣I α(f)(x)

∣∣p ≤ (x− a)αp−α

αp Γ(α)p

∫ x

a

α |f(t)|p (x− t)α−1 dt,

d’où par le théorème de Fubini-Tonelli, il vient∥∥I α(f)
∥∥p ≤ (b− a)αp−α

αp Γ(α)p

∫ b

a

|f(t)|p
[∫ b

t

α(x− t)α−1dx

]
dt ≤ (b− a)αp

αp Γ(α)p

∫ b

a

|f(t)|p dt.

b) i) Par continuité de la fonction Γ sur R∗
+, on a αΓ(α) = Γ(α+1) −→

α→0+
Γ(1) = 1

et (x − y)α −→
α→0+

1 , d’où la limite de ραy sur ]y, b]. Avec Γ(α+1) ≥ Γ(2) = 2 et en

distinguant les cas b − a ≤ 1 et b − a ≥ 1, on obtient la majoration de ραa sur [a, b] pour
α ∈ ]0, 1].

ii)
(
I α(ϕ)− ϕ

)
(x) =

1

Γ(α)

∫ x

a

(
ϕ(t)− ϕ(x)

)
(x− t)α−1 dt+ ϕ(x)

(
ραa (x)− 1

)
,

qui implique la première inégalité en séparant l’intégrale sur [x, y] et [a, y], puis en majorant

par ‖ϕ‖sup. De plus, on a |I α(ϕ)(x)| ≤ ‖ϕ‖sup
Γ(α)

∫ x

a

(x− t)α−1 dt = ‖ϕ‖sup ραa (x). Ces

deux inégalités combinées avec celles de i) vérifiées par ραa et la continuité de ϕ, permettent
d’appliquer le théorème de convergence dominée à |I α(ϕ)− ϕ|p.
iii) On utilise la densité de C 0([a, b]) dans

(
Lp([a, b]), ‖ · ‖p

)
(cf. théorème 9.10) et les

deux inégalités de ii).
c) Comme f est continue sur [a, b] et

(
(t, x) 7→ |t − x|α

)
est continue sur [a, b]2, on a

d’après le théorème de continuité sous l’intégrale (cf. théorème 8.5)

∀x ∈ [a, b],
(
I α+1(f)

)′
(x) =

α

Γ(α+1)

∫ x

a

f(t) (x− t)α−1 dt = I α(f)(x).

d) Soient f ∈ L 1([a, b]) et x ∈ [a, b]. Dans l’expression de I α
(
I β(f)

)
(x) on applique

le théorème de Fubini, ce qui conduit à l’intégrale de la fonction intégrale

s ∈ [a, x] 7−→ 1

Γ(α) Γ(β)

∫ a

s

(x− t)α−1(t− s)β−1 dt ,

dans laquelle on effectue le changement de variable affine t = s+(x− s)u où u ∈ [0, 1].
D’où par la formule des compléments (cf. exercice 12.7 b)) cette fonction est égale à

s ∈ [a, x] 7−→ (x− s)α+β−1

Γ(α) Γ(β)

∫ 1

0

(1− u)α−1 uβ−1 du =
(x− s)α+β−1

Γ(α+β)
.

e) Soit x ∈ R∗
+. Dans l’expression de L

(
I 1−α(f)

)
(x) on applique le théorème de Fubini.

On a pour s ∈ [0, t], la seconde intégrale
∫ +∞

s

(t− s)1−α e−xt dt =
t=u+s

e−xs Γ(1− α).



Chapitre 19

Réponses aux QCM

QCM 1

1. 3 bonnes réponses :
e−x2

√
x
∈ L1(R+),

x

x2 + 1
∈ L2(R),

sinx

x
∈ L2(R).

2. 2 bonnes réponses, conséquences du théorème de convergence dominée :

lim
n→+∞

∫ 1

0

(
1 + x

2

)n

dx = lim
n→+∞

∫ +∞

0

e−nx

√
x
dx = 0.

3. Par un changement de variables en coordonnées polaires on a∫
R2
+

e−
1
2 (x2+y2) dx dy =

π

2

∫ +∞

0

e−
r2

2 r dr =
π

2
.

4. En intégrant deux fois par parties, on a f̂(ξ) =
2

(1 + 2iπ ξ)3
.

5. Par le calcul on a
∫

R

dξ

(1 + ξ2)2
=
π

2
.

6. Par le calcul on a
∫

R

(
sin ξ

ξ

)2

dξ = π .

7. Soit f(x) := e−πx2

. On a F (f)(ξ) = f(ξ), d’où

F (f ∗ f)(ξ) =
(
F (f)(ξ)

)2
= e−2πξ2 .

QCM 2

1. Une bonne réponse :
1√

x4 + x
∈ L1(R+) .

2. La réponse est
π√
2

.

3. 2 bonnes réponses :
π

2
= 2

(∫ +∞

0

e−t2dt

)2

.

4. La réponse est F (f) = − if en utilisant la relation entre la dérivée et la transformée de
Fourier.
5. La réponse est 2.

6. La réponse est
2

π

∫
R

dξ

(1 + ξ2)3
.

7. La réponse est f2.
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QCM 3

1. 2 bonnes réponses : x 7→ 1√
x3 + x

∈ L1(R+) et
sin2 x

x
∈ L2(R) .

2. La réponse est π en faisant un changement de variables en coordonnées polaires.
3. 2 bonnes réponses : I = π en utilisant le principe de la bosse glissante, et J = 0 par le
théorème de convergence dominée.
4. 2 bonnes réponses : F (f) est réelle et F (f) > −f en utilisant la relation entre la
dérivée et la transformée de Fourier.

5. La réponse est
∫

R

(t cos t− sin t)2

t4
dt par le théorème de Plancherel.

6. La réponse est
∫ +∞

0

x2 e−2ax dx .

7. La réponse est 2
√
π.

QCM 4

1. 2 bonnes réponses :
1− e−

√
x

x
∈ L1([0, 1]) et

sinx√
x2 + 1

∈ L2(R).

2. La réponse est − 1

e
.

3. La réponse est 2π en passant en coordonnées polaires.
4. 2 bonnes réponses : F (f)(0) = 0 et F (f) = − if .
5. On reconnaı̂t dans le module la transformée de Fourier de x 7→ 1R+e

−2πx2

d’où, par le
théorème de Plancherel,∫ +∞

−∞

∣∣∣∣ ∫ +∞

−∞
e−2πx (x+iy) dx

∣∣∣∣2 dy =

∫ +∞

0

e−4πx2

dx =
1

4
.

6. On a f = F
(
1[−1/2,1/2]

)
, d’où f ∗ f = f .

7. On part de
e−(x+y) − e−2(x+y)

x+ y
=

∫ 2

1

e−z(x+y) dz,

puis on obtient, en appliquant le théorème de Fubini-Tonelli, la valeur
1

2
.

QCM 5

1. 2 bonnes réponses :
1√

x| lnx|
∈ L1(]0, 1[) et

1√
x lnx

∈ L2([2,+∞[) .

2. En dérivant sous l’intégrale avec
∫ +∞

0

e−t2x2

dx =

√
π

t
, on a f ′(

√
π) =

√
π.

3. En passant en coordonnées polaires on obtient π.
4. Une seule bonne réponse f̂ = −f , en utilisant les relations entre dérivée et transformée
de Fourier et le fait que e−πx2

est un point fixe de la transformée de Fourier F .

5. En appliquant le théorème de Plancherel avec F
(
1[−a,a]

)
(x) =

sin(2πax)

πx
, on obtient

πmin(a, b).
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6. Trois bonnes réponses f(x) = 1R+(x) e
−x, f(x) = −1R−(x) e

x et f(x) = 1R+(x) e
−2x,

en prenant la transformée de Fourier de l’égalité (f ∗ f)(x) = xf(x).
7. Par le théorème de Fubini-Tonelli on a∫ +∞

0

ln(1 + a+ ax2)

1 + x2
dx =

∫ +∞

0

dx

∫ a

0

dy

1 + y + yx2
=
π

2

∫ a

0

dy√
y2 + y

=
π

2
g(a).

QCM 6

1. 3 bonnes réponses :
∫ 1

0

x ln2
(
e

2
x − e 1

x

)
dx = +∞ , lim

a→+∞

∫ a

1

sinx√
x− sinx

dx = +∞

et lim
a→+∞

∫ a

e

lnx sinx

x (lnx− sinx)
dx = +∞.

Pour la dernière intégrale on utilise le développement

lnx sinx

x (lnx− sinx)
=

sinx

x
+

sin2 x

x lnx
+O

(
1

x ln2(x)

)
=

1

2x lnx
+

sinx

x
− cos(2x)

2x lnx
+O

(
1

x ln2(x)

)
.

2. La limite est π ϕ(0) en notant que
sin(2nπξ)

πξ
= F (1[−n,n])(ξ) , où x = 2πξ, et en

utilisant l’identité∫
R

F (1[−n,n])(ξ)ϕ(ξ) dξ =

∫ n

−n

F (ϕ)(ξ) dξ −→
n→+∞

(F ◦F )(ϕ)(0) = ϕ(0)

par le théorème d’inversion.
3. En utilisant le théorème de Fubini et en passant en coordonnées polaires, on obtient

π

2
.

4. Une seule bonne réponse : f ∗ f = e−πx2

en prenant la transformée de Fourier de
l’égalité et du fait que la transformée de Fourier d’une fonction de L1(R) est continue et
tend vers 0 à l’infini.
5. Du fait que F

(
1R+

e−ax
)
(ξ) =

1

a+ 2iπξ
et F

(
1R−e

bx
)
(ξ) =

1

b− 2iπξ
, le

théorème de Plancherel donne 0.
6. 2 bonnes réponses x ex et sinx du fait que F (f) est continue et tend vers 0 à l’infini.
Pour x ex, la fonction définie par la série convergente dans L1(R)

g :=

+∞∑
n=0

f (n+1)∗

n!
, où f (n)∗ := f ∗ · · · ∗ f︸ ︷︷ ︸

n fois

,

vérifie l’égalité F (f) eF(f) = F (g) du fait de la multiplicativité de la transformée de
Fourier dans L1(R) par rapport à la convolution.
7. Via le théorème Fubini-Tonelli et le changement de variables t = tanx, on obtient∫ π

0

arctan(a sinx)

sinx
dx = 2

∫ a

0

dy

∫ π
2

0

dx

1 + y2 sin2 x
= π

∫ a

0

dy√
y2 + 1

= π argsinh a.
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Chasles (relation de), 24
classe monotone (théorème de), 85
classe monotone fonctionnelle (théorème de),

115
coefficients de Fourier complexes, 344
coefficients de Fourier dans Rd, 227
coefficients de Fourier réels, 159
compactifié d’Alexandroff, 128
complètement monotone (fonction), 340
complet (espace mesuré), 278
constante d’Apéry ζ(3), 161
constante d’Euler-Mascheroni, 154
continuité (par rapport à la mesure), 134
continuité sous le signe intégrale (Lebesgue),

144
continuité sous le signe intégrale (Riemann),

29
continuité uniforme, 306
convention, 119
convergence Lp-dominée, 174
convergence au sens des distributions, 356
convergence dominée (théorème de), 140
convergence en mesure, 112
convergence faible dans L1, 226
convergence faible dans Lp, 225
convergence uniforme, 24
convexe (fonction), 135
convolée, 295
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convolution, 149
convolution (élémentaire), 146
convolution sur Rd, 295
coordonnées polaires, 263

décomposition polaire (matrice), 256
définie positive (matrice), 256, 406
dénombrable (ensemble), 39
dérivée de Radon-Nikodym, 152
dérivée fractionnaire, 360
dérivabilité sous le signe somme (Riemann),

30
degré topologique de Brouwer, 267
densité, 152
diagonalisation (matrice symétrique réelle),

256
dimension de Hausdorff, 113
Dirac (mesure de), 79
distance à un ensemble, 52
distance ultramétrique, 200
distorsion, 158
droite achevée, 45
dual de L∞, 227
dual topologique, 217
dualité Lp-Lq (théorème de), 217

Egoroff (théorème d’), 112
ensemble de Cantor, 282
ensemble négligeable, 111
entropie (inégalité d’), 136
équation aux différences finies, 352
équation de la chaleur (solution de l’), 356
équation des ondes, 351
equicontinuité absolue, 225
équiintégrabilité, 156
équiintégrabilité probabiliste, 156
equipotents (ensembles), 37
espace L p, 163
espace L p faible, 198
espace σ-compact, 108
espace Lp, 171
espace de Hilbert, 185
espace de Marcinkiewicz, 198
espace métrique, 50
espace mesurable, 63
espace polonais, 73, 109
espace séparable, 50
etagée (fonction), 74
Euler-Mascheroni (constante d’), 154

Fatou (lemme de), 137
Fejér (noyau de), 159
fermé (ensemble), 49
fini (ensemble), 38
flot d’un système différentiel, 160
fonction Γ, 155
fonction étagée, 74
fonction à support compact, 293
fonction borélienne, 69
fonction complètement monotone, 340
fonction de Heaviside, 340
fonction de Lebesgue, 283
fonction en escalier, 21
fonction image directe, 61
fonction image réciproque, 61
fonction indicatrice, 69
fonction indicatrice des rationnels, 25
fonction Lebesgue-mesurable, 288
fonction localement intégrable, 298
fonction mesurable, 69
fonction réglée, 24
fonction Riemann intégrable, 22
forme sesquilinéaire, 185
formes linéaires (représentation des), 187
formule d’inversion de Bromwich-Mellin, 339
formule d’inversion de Fourier, 314, 328
formule d’inversion de Laplace, 339
formule de Poincaré, 43
formule de Shannon, 347
formule de Stirling, 155
formule des compléments, 249
formule des compléments généralisée, 273,

419
formule intégrale-série du sinus cardinal, 347
formule sommatoire de Poisson, 344, 348
Fourier (coefficients complexes de), 344
Fourier (coefficients dans Rd de), 227
Fourier (coefficients réels de), 159
Fourier (formule d’inversion de), 314
Fourier (transformée de), 146, 345
Fourier-Plancherel (transformée de), 333
Fresnel (intégrale de), 158, 347
Fubini-Lebesgue (théorème de), 238
Fubini-Tonelli (théorème de), 237

Gauss (intégrale de), 33
Gauss (noyau de), 305
Gauss-Weierstrass (transformée de), 355
Guldin (premier théorème de), 265
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Hahn-Banach (théorème de), 402
Hardy (inégalité de), 247
Hardy (inégalité à poids), 315
Hardy (inégalité de), 196
Hardy-Littlewood-Pòlya (inégalité de), 247
Hausdorff (dimension de), 113
Hausdorff (formules de), 61
Hausdorff (mesure de), 113
Hausdorff-Young (inégalité de), 346
Heaviside (fonction de), 340
Heine (théorème de), 306
Heisenberg (inégalité de), 349
Helly (théorème de sélection de), 358
Hilbert (espace de), 185
Hilbert (inégalité de), 250
hilbertienne (norme), 185
Hölder (inégalité de), 165

inégalité d’entropie, 136
inégalité de Berry-Esseen, 345
inégalité de Bessel, 227
inégalité de Hardy, 196
inégalité de Hardy, 247
inégalité de Hardy à poids, 315
inégalité de Hardy-Littlewood-Pòlya, 247
inégalité de Hausdorff-Young, 346
inégalité de Heisenberg, 349
inégalité de Hilbert, 250
inégalité de Hölder, 165
inégalité de Jensen, 136, 359
inégalité de Markov, 126
inégalité de Minkowski, 167
inégalité de Minkowski inverse, 168, 198
inégalité de Pòlya-Szego, 248
inégalité de Schur, 249
inégalité de Weyl, 197
inégalité de Young, 165, 197
inégalité de Young pour la convolution, 313
inégalité triangulaire, 130
incommensurable (vecteur), 161
indicatrice (fonction), 69
infini (ensemble), 38
infini dénombrable (ensemble), 39
infini non dénombrable (ensemble), 39
intégrable au sens de Riemann (fonction),

22
intégrale d’une fonction étagée, 120
intégrale d’une fonction mesurable positive,

123

intégrale dépendant d’un paramètre, 29
intégrale de Fresnel, 158, 347
intégrale de Gauss, 33
intégrale de Riemann, 23
intégrale de Riemann-Liouville, 359
intégrales de Wallis), 34
intégration par parties, 241
intégration par parties (élémentaire), 27
inversion de Fourier (formule d’), 328
inversion de Laplace (formule d’), 339
inversion locale (théorème d’), 257
Ionescu-Tulcea-Kolmogorov (théorème de),

243

Jacobien, 257
Jensen (inégalité de), 136, 359

λ-système, 84
Laplace (noyau de), 305
Lebesgue (caractérisation de la mesure de),

251
Lebesgue (fonction de), 283
Lebesgue (mesure de), 80
Lebesgue (tribu de), 280
Lebesgue-Urysohn (théorème de), 310
lemme d’Urysohn, 190, 201
lemme de Borel-Cantelli, 143
lemme de Fatou, 137
lemme de Pratt, 160
lemme de Riemann-Lebesgue, 32
lemme de Riesz-Fisher, 187
lemme de transport, 66
lemme fondamental d’approximation, 75
limite inférieure, 47
limite inférieure ensembliste, 62
limite supérieure, 47
limite supérieure ensembliste, 62
localement compact (espace), 107
localement intégrable (fonction), 298
logarithme népérien, 26
Lusin (théorème de), 190

Marcinkiewicz (espace de), 198
Marcinkiewicz (théorème d’interpolation de),

218
Markov (inégalité de), 126
Mellin (transformée de), 249
mesurable (fonction), 69
mesure σ-finie, 105, 233
mesure (positive), 79
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mesure (support de), 113
mesure complétée, 279
mesure conditionnelle, 80
mesure de Borel, 107
mesure de comptage, 80
mesure de Dirac, 79
mesure de Hausdorff, 113
mesure de Lebesgue, 80
mesure de Radon, 207, 211
mesure de Stieltjes, 100
mesure diffuse, 146, 158
mesure extérieure, 90
mesure extérieurement régulière, 103
mesure finie, 79
mesure grossière, 79
mesure image, 253
mesure intérieurement régulière, 103
mesure nulle, 79
mesure produit, 233
mesure régulière, 103
mesure-trace, 80
mesures absolument continues, 152
Minkowski (inégalité de), 167
Minkowski (inégalité inverse), 168, 198

négligeable (ensemble), 111, 277
norme, 170
norme Lp, 164
norme hilbertienne, 185
norme uniforme, 22
noyau à support compact, 305
noyau de Cauchy, 305
noyau de Fejér, 159
noyau de Gauss, 305
noyau de la chaleur, 355
noyau de Laplace, 305

ouvert (ensemble), 49

parallélogramme (identité du), 186
partition mesurable, 74
pas d’une subdivision, 28
Paul Lévy (théorème de), 345
pavé, 84
π-système, 85
Poincaré (formule de), 43
point fixe (théorème du), 408
points fixes de la convolution, 344
Poisson (formule sommatoire de), 344, 348
polonais (espace), 73, 109

Pòlya-Szego (inégalité de), 248
positive (matrice réelle), 273
Pratt (lemme de), 160
première formule de la moyenne, 27
primitive, 26
probabilité, 79
problème de Bâle, 32, 34, 35, 161, 162, 246,

272, 276, 344
procédé d’extraction diagonale, 403
produit scalaire sur L2, 173
Prohorov (théorème de), 345
projection orthogonale, 185
propriété de semi-groupe, 355

réglée (fonction), 24
régularité d’une mesure, 103
régulière (mesure), 103
réticulée (algèbre), 75
Radon (mesure de), 207, 211
Radon-Nikodym (théorème de), 212, 214
relation de Chasles, 24
Riemann (intégrale de), 23
Riemann (somme de), 28, 32
Riemann intégrable (fonction), 22
Riemann-Lebesgue (lemme de), 32
Riemann-Liouville (intégrale de), 359
Riesz (théorème de représentation de), 199,

207
Riesz-Fisher (lemme de), 187
Riesz-Fisher (théorème de), 171
Riesz-Thorin (théorème de), 219

séparée (topologie), 49
séparabilité de Lp, 224
séparable (espace), 50
série double, 242
séries de fonctions (intégration de), 143
Sard (théorème de), 275
Scheffé (théorème de), 153
Schur (inégalité de), 249
Schwarz (théorème de), 246
seconde formule de la moyenne, 27
sections d’un ensemble, 233
sections d’une fonction, 233
semi-algèbre, 96
semi-continue inférieurement (fonction), 301
semi-norme, 170
sesquilinéaire (forme), 185
Shannon (formule de), 347
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σ-additivité, 79
σ-algèbre, 63
σ-compact (espace), 108
σ-finie (mesure), 105, 233
sinus cardinal (formule intégrale-série du),

347
somme de Riemann, 28, 32
Steinhaus (théorème de), 302
Stieltjes (mesure de), 100
Stirling (formule de), 155
subdivision, 21
suite dense, 50
suite régularisante, 309
suites récurrentes, 353
support compact (fonction à), 293
support d’une fonction, 112
support d’une mesure, 113
support essentiel d’une fonction mesurable,

112

théorème d’Abel, 356
théorème d’Egoroff, 112
théorème d’interpolation de Marcinkiewicz,

218
théorème d’inversion locale, 257
théorème de Banach-Steinhaus, 402
théorème de Bernstein, 38
théorème de Bernstein-Widder, 340
théorème de Carathéodory, 87, 90
théorème de classe monotone, 85
théorème de classe monotone fonctionnelle,

115
théorème de convergence dominée, 140
théorème de convergence monotone, 124
théorème de dualité Lp-Lq , 217
théorème de Fubini-Lebesgue, 238
théorème de Fubini-Tonelli, 237
théorème de Hahn-Banach, 402
théorème de Heine, 306
théorème de Ionescu-Tulcea-Kolmogorov, 243
théorème de Lebesgue-Urysohn, 310
théorème de Lusin, 190
théorème de Paul Lévy, 345
théorème de Prohorov, 345
théorème de Radon-Nikodym, 212, 214
théorème de représentation de Riesz, 199,

207
théorème de Riesz-Fisher, 171
théorème de Riesz-Thorin, 219

théorème de sélection de Helly, 358
théorème de Sard, 275
théorème de Scheffé, 153
théorème de Schwarz, 246
théorème de Steinhaus, 302
théorème de Vitali, 156
théorème de Vitali-Saks, 225
théorème du point fixe, 408
toboggan d’Abel, 356
topologie, 49
topologie induite, 50
topologie produit, 51
topologie séparée, 49
transformée de Fourier, 146, 148, 317, 345
transformée de Fourier (injectivité), 382
transformée de Fourier-Plancherel, 333
transformée de Gauss-Weierstrass, 355
transformée de Laplace bilatérale, 335
transformée de Laplace d’une fonction, 334
transformée de Laplace d’une mesure, 335
transformée de Mellin, 249
transformée de Weierstrass, 354
transformée intégrale d’Abel, 356
translatée d’une fonction, 293
tribu, 63
tribu (engendrée par une famille de fonctions),

77
tribu borélienne, 64
tribu complétée, 279
tribu de Baire, 77
tribu de Lebesgue, 280
tribu grossière, 63
tribu image, 66
tribu produit, 229
tribu triviale, 63
tribu-bande, 66
tribu-trace, 66

ultramétrique (distance), 200
Urysohn (lemme d’), 190, 201

Vitali (théorème de), 156
Vitali-Saks (théorème de), 225

Wallis (intégrales de), 34
Weierstrass (transformée de), 354
Weyl (inégalité de), 197

Young (inégalité de), 165, 197
Young (inégalité pour la convolution de), 313
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Analyse. Théorie de l’intégration
Le livre présente les bases de la théorie de l’intégration au sens de Lebesgue et ses premières 
applications. Il s’adresse aux étudiants en Licence 3 et en Master 1 de mathématiques pures ou 
appliquées, aux candidats à l’agrégation ainsi qu’aux élèves des écoles d’ingénieurs, avec un cours 
complet et plus de 260 exercices corrigés.
Il propose plusieurs niveaux de lecture où l’on distingue clairement les connaissances indispen-
sables à maîtriser lors d’une première initiation et les applications à aborder lors d’une lecture 
plus approfondie.
Cette 8e édition revue et augmentée développe toujours la théorie de l’intégration et ses applications 
et s’enrichit d’un chapitre entièrement refondu consacré aux Transformées de Fourier et de Laplace, 
ainsi que de 30 exercices supplémentaires inédits.
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