L3 - M1
Agrégation

Marc BRIANE Ecoles
Gilles PAGES d’ingénieurs
Analyse ( 8¢ &dition )

Théorie
de l'intégration

Intégrale de Lebesqgue * Convolution
Transformées de Fourier et de Laplace

COURS COMPLET

® Plus de 260 exercices
avec solutions

e (OCM corrigés
e Problemes d’examens







Marc Briane
Gilles Pages

Analyse
Théorie
de I'intégration

Intégrale de Lebesgue « Convolution
Transformées de Fourier et de Laplace

8¢ édition

UUUUUUUUU



Chez le méme éditeur (extrait du catalogue)

BELHAY S., Mathématiques pour I'économie et la gestion

BerHaj S., BEN Atssa A., Mathématiques pour l'informatique

Bura P., Mathématiques. Les fondamentaux en Licence 1

Canon E., Analyse numérique

Carassus L., Pacts G., Finance de marché. Modéles mathématiques a temps discret
CartoN O., Langages formels. Calculabilité et complexiré

CuourLt M., Analyse fonctionnelle

CuourLt M., Analyse complexe

CotteT-EMARD F., 36 problémes corrigés pour le CAPES de mathématiques
CortTeT-EMARD F., Probabilités et tests d’hypothéses

Corttet-EMARD F., Algébre linéaire et bilinéaire

CorttET-EMARD F., Analyse

CotTET-EMARD F., Toutes les maths — Analyse en 40 fiches

CotteT-EMARD F., Toutes les maths — Algébre et probabilités en 62 fiches
DarracQ M.-C. & Romsarpi J.-E., Analyse pour la Licence

DarraCQ M.-C. & RomBaLDI J.-E., Algébre et géométrie pour la Licence
DarracQ M.-C. & RoOMBALDI ].—E., Probabilités pour la Licence

DEerauw ]., Statistiques

GIRARDIN V., LimN10s N., Probabilités et introduction a la statistique

Mansuy R., R. MNEIMNE, Algébre linéaire. Réduction des endomorphismes — 3¢ édition
Pacis G., 101 quizz qui banquent. Mathématiques et finances sont-elles indépendantes ?
Wasser P., Algébre. Arithmétique pour Uinformatique

Pour toute information sur notre fonds et les nouveautés dans votre domaine
de spécialisation, consultez notre site web :
www.deboecksuperieur.com

En couverture : Coupe d'un nautile © Bereta/Getty Images
Maquette et mise en page des auteurs
Conception et réalisation de couverture : Primo&Primo

Dépot légal :
Bibliothéque royale de Belgique : 2023/13647/094
Bibliotheque nationale, Paris : aolt 2023

Tous droits réservés pour tous pays.

Il est interdit, sauf accord préalable et écrit de U'éditeur, de reproduire (notamment par photocopie)
partiellement ou totalement le présent ouvrage, de le stocker dans une banque de données ou de le
communiquer au public, sous quelque forme ou de quelque maniére que ce soit.

© De Boeck Supérieur SA, 2023 - Rue du Bosquet 7, B1348 Louvain-la-Neuve
De Boeck Supérieur - 5 allée de la 2¢ DB, 75015 Paris



Sommaire

Table des matiéeres

Avant-propos

Notations

I Rappels et préliminaires

1 Intégrale au sens de Riemann

2 Eléments de théorie des cardinaux
3  Quelques compléments de topologie

11 Théorie de la mesure

Sur une généralisation de I’intégrale définie (par H. Lebesgue)
4 Tribu de parties d’un ensemble

5 Fonctions mesurables

6 Mesure positive sur un espace mesurable

III  Intégrale de Lebesgue

7 Intégrale par rapport a une mesure positive
8 Théoremes de convergence et applications

9 Espaces L?

10 Théoremes de représentation et applications

11 Mesure produit. Théoremes de Fubini

11

15

19
21
37

45

55
58
61
69

79

117
119
137
163
199

229



12 Mesure image. Changement de variables 253
13 Mesure complétée, tribu de Lebesgue, ensemble de Cantor 279
IV~ Convolution. Transformées de Fourier et de Laplace 293
14 Convolution et applications 295
15 Transformées de Fourier et de Laplace 319
A\ QCM et problemes d’examen 363
16 Questionnaires a choix multiples 365
17 Quelques problemes 373
VI  Solutions des exercices et réponses aux QCM 389
18 Solutions des exercices 391
19 Réponses aux QCM 421
Bibliographie 425

Index 427



Figure

Table des matieres

Avant-propos

Notations

I Rappels et préliminaires

1 Intégrale au sens de Riemann

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

Intégrale des fonctions en escalier . . . . . ... ... ... ...
Fonctions intégrables au sens de Riemann . . . . . ... ... ..
Fonctionsréglées . . . . . ... . ... ... ...
Intégrale de Riemann et calcul de primitive . . . . .. ... ...
Changement de variable et intégration par parties . . . . . . . ..
Formules de lamoyenne . . . . . ... ... ...........
Sommes de Riemann . . . .. ... ... ... ...
L’espace semi-normé .# ([a,b],K) . . . ... ... ... ... ..
Intégrales dépendant d’un parametre . . . . . . . ... ... ...

1.10 Exercices . . . . . . . o o v i i e e

2 Eléments de théorie des cardinaux

2.1
22
23

Cardinaux . . . . . . . . e
Ensembles dénombrables . . . . . . . .. ... ... ... .. ..
Exercices . . . . . . . ..

3  Quelques compléments de topologie

3.1
32
33
34
3.5

3.6

Ladroiteachevée . . . . . ... ... ... ... ...
Limite supérieure et limite inférieure . . . . . . . ... ... ...
Topologie sur un ensemble. Espace métrique . . . . ... .. ..
Base dénombrable d’ouverts, séparabilité¢ . . .. ... ... ...
Exemples de constructions de topologies . . . . . . .. ... ...
3.5.1 Topologieinduite . . . . . . ... .. ... ... ...
3.5.2 Topologie produit . . . . . . ... ... ... .......
Distance d’un pointaunensemble . . . . ... ... ... ... ..

10
11

15

19

21
21
22
24
26
26
27
28
29
29
32

37
37
39
43



II

Table des matiéres

377 EXEercices . . . . . . . . e

Théorie de la mesure
Sur une généralisation de I’intégrale définie (par H. Lebesgue) . . . . .

Tribu de parties d’un ensemble

4.1 Tribu, tribu borélienne . . . . . . . . .. ... .. .. ...

42 Autresexemplesdetribus . . . .. . ... ... ...,
4.2.1 Tribuimage-réciproque . . . . . . . . ... ... ...
422 Tribuimage . . . . . . . . ...

43 Lemmedetransport . . . . . . . ... ...

4.4 EXErCICeS . . . . v v v v it e e

Fonctions mesurables

5.1 Définitions. . . . . . ...
5.2 Opérations sur les fonctions mesurables . . . . . ... ... ...
5.3 Fonctions étagées sur un espace mesurable . . . . . . .. ... ..
54 Exercices . . ... ...

Mesure positive sur un espace mesurable
6.1 Définitionetexemples . . . . . . . ... ...
6.1.1 Propriétés essentielles . . . . ... ... ... ... ...
6.1.2  Application a la mesure de Lebesgue surR . . . . . . ..
6.2 Caractérisation d’une mesure. Unicité . . . . . .. ... ... ..
6.2.1 Un théoreme de classe monotone . . . . . ... ... ..
6.2.2 Application a la caractérisation d’'une mesure . . . . . . .
6.3 Construction de mesures par prolongement (I) . . . . . . . .. ..
6.3.1 Théoréme de prolongement de Carathéodory . . . . . ..
6.3.2  Principes de construction de la mesure de Lebesgue sur R
6.4 Régularité de la mesure de Lebesgue . . . . . . . ... ... ...
6.5 & Construction de mesures par prolongement (II) . . . . . . . ..
6.5.1 Démonstration du théoreme de Carathéodory . . . . . . .
6.5.2 Construction de mesures sur R : Lebesgue, Stieltjes . . . .
6.6 & Régularité d’une mesure sur un espace métrique . . . . . . . . .
6.6.1 Lecasd’une mesure finie ... ..............
6.6.2 Lecasd’une mesure o-finie . ... ... ... ......
6.6.3 Régularité des mesuresde Borel . . . . . ... ... ...
6.6.4 Régularité des mesures finies sur un espace polonais
6.6.5 Application a la caractérisation des mesures . . . . . . . .
6.7 Exercices . . . . . . ...



Table des matiéres

III Intégrale de Lebesgue

7 Intégrale par rapport a une mesure positive
7.1 Intégrale d’une fonction étagée positive . . . . . . ... ... ..
7.2 Intégrale d’une fonction mesurable positive . . . . ... ... ..
7.3 L’espace £ (u) des fonctions intégrables . . . . . ... ... ..
7.4 Intégrales de Riemann et de Lebesgue sur un intervalle compact
7.5 EXErcices . . . . . . ...

8 Théoremes de convergence et applications
8.1 Lemme de Fatou et théoréeme de convergence dominée . . . . . .
8.2 Application aux séries de fonctions . . . . . ... ...
8.3 Intégrales dépendant d’un parametre . . . . . . . ... ... ...
8.4 Mesures a densité : premiere approche . . . . ... ...
8.5 Exercices . . . .. ...

9 Espaces L?
9.1 Espaces Li(u) : définition et premieres propriétés . . . . . . . . .
9.2 Inégalités de Holder et de Minkowski . . . . .. ... ... ...
9.3 Lesespaces de Banach Lig(p), 1<p <+4oco . .. .........
9.3.1 Préliminaires sur les espaces semi-normés . . . . . . . . .
9.3.2 Construction et propriétés . . . . . . ... .. ... ...
9.4 Théorémes de densité dans les Lig(p1), 1<p<-+oo, () . .....
9.5 L’espace LZ(p) (e #0) . . o oo oo oo
9.6 Propriétés hilbertiennes de LZ (1) . . . o o o oo
9.6.1 Lespacede Hilbert LZ (1) . . . . . o oo oottt
9.6.2 Théoréme de projection . . . ... ... .........
9.6.3 Représentation d’une forme linéaire continue . . . . . . .
9.7 & Théorémes de densité dans les Ly (p), p<-+oo, (D) . . . . . . .
9.7.1 Densité des fonctions lipschitziennes dans Lk (p) . . . . .
9.7.2  Densité des fonctions lipschitziennes a support compact .
9.73 ThéoremedeLusin . . . . . ... ... ... ... .. ..
9.8 EXercices . . . . . . ...

10 Théoremes de représentation et applications
10.1 & Théoreme de représentationde Riesz . . . . . . . ... ... ..
10.1.1 Cas des formes linéaires positives . . . . . . . . .. . ..
10.1.2 MesuresdeRadon . . . .. ... ... ... .. ...
10.2 Théoréme de Radon-Nikodym . . ... ... ... ........
10.2.1 Le cas d’une mesure de référence p finie . . . ... ...
10.2.2 Extensionaucadreo-fini . . . . ... ... ... ... ..
10.3 Dualité LP-L9 . . . . . . . . e
10.3.1 Formes linéaires réelles positives . . . . . . . . . .. . ..
10.3.2 Formes linéaires réelles ou complexes . . . . .. ... ..

117

119
119
123
128
131
134

137
137
143
144
151
153

163
163
164
170
170
171
175
180
185
185
186
187
188
188
190
190
194



8 Table des matiéres

10.4 Interpolation sur les espaces LP . . . . . ... ... ...
10.5 Exercices . . . . . . . . .. ... e

11 Mesure produit. Théorémes de Fubini
11.1 Tribuproduit . . . ... ... ... ... ... .....
11.1.1 Définition, premieres propriétés . . . . . . . . .
11.1.2 Le cas des tribus boréliennes . . . . . . . .. ..
11.1.3 Section d’un élément de la tribu produit . . . . .
11.2 Mesure produit de mesures o-finies . . . . .. ... ..
11.2.1 Construction et caractérisation . . . . . . . . . .
11.2.2 Construction de la mesure de Lebesgue \g, d > 2
11.3 Théorémesde Fubini . . . .. ... ... ... .....
11.4 & Produit infini de mesures de probabilité . . . . . . ..
11.5 Exercices . . . . . . . . . o i

12 Mesure image. Changement de variables
12.1 Mesureimage . . . . . . .« . v vt
12.2 Théoreme général de changement de variables . . . . . .
12.3 & Application : le degré topologique de Brouwer . . . .
124 Exercices . . . . . . . . i

13 Mesure complétée, tribu de Lebesgue, ensemble de Cantor
13.1 Complétiond’unemesure . . . . . . . .. .. ... ...
13.2 Tribude Lebesgue . . . . . ... ... ... ......
13.3 Ensemble de Cantor, fonction de Lebesgue, applications
13.4 & Produit de mesures completes. Complétion d’un produit
13.5 & Complétion et fonctions mesurables . . . . . . . . ..

IV  Convolution. Transformées de Fourier et de Laplace

14 Convolution et applications
14.1 Opérateurs de translation sur les fonctions . . . . . . ..
142 ConvolutionsurR% . . . . ... ... ..........
14.2.1 Lecaspositif . . ... ... ... ........
1422 Cadregénéral . . . . . ... ... ... ... ...
14.3 Conditions d’existence et propriétés . . . . . ... ...
14.4 Approximationde l'unité . . . . . . ... ... ... ..
14.5 Régularisation par convolution . . . . . .. .. ... ..
14.6 Autres convolutions . . . . . . . .. ... ...,
14.6.1 ...defonctions . . . . ... ... ... .....
14.6.2 Convolution de mesures positives o-finies . . . .
147 EXercices . . . . . .« o v v i it

253
253
257
267
273

279
279
282
284
289
290

293



Table des matiéres

15 Transformées de Fourier et de Laplace
15.1 Définition et premieres propriétés . . . . . . . .. ... ...
15.2 Injectivité et formule d’inversion . . . . . . . ... ... ... ..
15.3 Transformée de Fourier-Plancherel . . . . . . . .. ... ... ..
15.4 Transformée de Laplace . . . ... ... ... ... .......
15.4.1 Définitions et premiers exemples . . . . . . . . . .. . ..
15.4.2 Propriétés de la transformée de Laplace . . . . ... . ..
15.4.3 Inversionde Laplace . . ... ... ... .........
15.4.4 Exemples issus des probabilités . . . . . ... ... ...
15.5 Exercices . . . . . . ..

V  QCM et problemes d’examens

16 Questionnaires a choix multiples
16.1 QCM 1 . . . . . . e
162 QCM2 . . . e
163 QCM3 . . . . .
164 QCM4 . . . . . e
16.5 QCM S5 . . . .
16,6 QCM 6 . . . . . . . e

17 Quelques problemes
17.1 Probleme 1 . . . . . . .. ... ... ...
17.2 Probleme 2 . . . . . . . . . .. ...
17.3 Probleme 3 . . . . . . . . ... ...
17.4 Probleme 4 . . . . . . . . . . . ...
17.5 Probleme 5 . . . . . . . . . .. ...
17.6 Probleme 6 . . . . . . . . ... .. .. ...
17.7 Probleme 7 . . . . . . . . ... ..
17.8 Probleme 8 . . . . . . .. ... ...
17.9 Probleme9 . . . ... . . . ... ...
17.10 Probleme 10 . . . . . . . . . . .. .. .. ... .
17.11 Probléeme 11 . . . . . . . . . . .. ... ... ... .. ... .

VI Solutions des exercices et réponses aux QCM
18 Solutions des exercices

19 Réponses aux QCM

Bibliographie

319
320
327
335
337
337
338
342
343
344

363

365
366
367
368
369
370
371

373
373
374
375
376
378
379
381
382
384
386
387

389
391
421

425



FIGURE 1 — Sculpture en volume, D. Lorilleux, création 2021
Galerie Laute, Rennes, https://galerielaute.com/



Avant-propos

a la huitieme édition

Ce livre, issu d’un cours d’intégration dispensé durant plusieurs années en Li-
cence de Mathématiques a 1’Université Paris XII Val de Marne puis a Sorbonne
Université (anciennement Université Paris VI Pierre & Marie Curie) ainsi que de-
puis 2014 en troisieme année (niveau L3) a 'INSA Rennes, est prioritairement
destiné aux étudiants achevant leur parcours de Licence (L.3) ou entamant un par-
cours de Master (M1) spécialisé en Mathématiques. A un premier niveau de lec-
ture, nous y exposons les bases indispensables de la théorie de Lebesgue et ses
premieres applications. Les connaissances requises a I’usage de cet ouvrage sont
celles d’un étudiant issu de deuxieéme année (niveau L2). En outre, nous avons sou-
haité que le lecteur puisse y trouver matiere a référence au-dela de la licence, en
maitrise, pour 1’agrégation, voire en troisieme cycle. C’est dans cette optique que
nous avons complété ce premier niveau de lecture par la démonstration détaillée des
grands théoremes classiques de la théorie (construction de la mesure de Lebesgue,
théorémes de Riesz, de Lusin, etc.). Parallelement, nous avons mis 1’accent, a tra-
vers de nombreuses applications, sur la puissance de I’intégrale de Lebesgue dans
tous les problemes mettant en jeu des interversions des symboles d’intégrale et de
limite. Chaque chapitre s’acheve par une section d’exercices, mélant des énoncés
de simple manipulation des définitions et des énoncés plus ambitieux.

Pour la plupart des exercices, le lecteur peut s’appuyer sur des indications re-
groupées en fin de volume, dans le chapitre 18. Nous savons, en effet, par expérience
que des indications plutot que des corrigés détaillés des exercices, permettent au
lecteur — nous pensons particulierement aux étudiants qui doivent étre acteurs de
leur apprentissage des mathématiques et se confronter aux difficultés de la disci-
pline (Figure 1 ci-contre) — de mieux s’approprier les techniques fondamentales
de I'intégrale de Lebesgue (théoreme de convergence dominée, théoremes de Fu-
bini, changement de variables, convolution, transformées de Fourier et de Laplace).
Néanmoins, les nouveaux exercices sur les transformées de Fourier et de Laplace
ainsi que quelques autres plus anciens y font 1’objet de corrections plus détaillées.
Plus généralement, ce chapitre 18 regroupe des indications de résolution fonc-
tion de la difficulté des questions posées. Les exercices dans chaque chapitre ne
suivent pas nécessairement I’ordre du chapitre. Cette configuration devrait per-
mettre aux lecteurs de butiner au gré des difficultés, tels des abeilles ouvrieres.
Ils pourront ainsi démontrer — via neuf approches inspirées en partie de la compila-
tion de R. Chapman ( 1) et déclinées sous forme d’exercices au fil des chapitres (cf.
Bale dans I’index) — la célebre formule suivante, établie pour la premiere fois par

1. R. Chapman, “Evaluating ¢(2)”, Department of Mathematics, University of Exeter, 07-2003.
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le mathématicien suisse Euler en 1735 (?) :
2T
—n 6
ou bien les étonnantes identités suivantes (cf. exercices 15.24 et 15.25) :

sinn sin?n sin? z sinx
T = E = g T = s—dr = dr = m,
n n T T
nezZ R R

neZ

qui illustrent I’intimité entre dénombrabilité, sommation et intégration, trois no-
tions indissociables de la théorie de I’intégrale de Lebesgue.

La théorie de I’intégration peut étre abordée naturellement sous deux angles tres
différents : la présentation fonctionnelle, issue de Bourbaki, qui prolonge I’intégrale
de Riemann via le théoréme de représentation de Riesz, et I’approche abstraite, qui
s’appuie directement sur la notion de mesure positive. Nous avons choisi la seconde
voie, non seulement pour son caractere (paradoxalement) plus concret, mais aussi
parce qu’elle permet I’introduction naturelle des probabilités et de la statistique. La
contrepartie pour les futurs “analystes” est sans doute de longs développements sur
la mesurabilité. Quoi qu’il en soit, il nous semble que la mesure abstraite reste la
plus accessible des deux approches pour les étudiants d’aujourd’hui, sans doute par
son caractere moins topologique.

L’ouvrage se divise en six parties :

—La partie I, rappels et préliminaires, apres un bref retour sur I’intégrale élémentaire
qui permettra de mettre en perspective les atouts décisifs de la théorie de Lebesgue,
est essentiellement consacrée a quelques éléments de théorie des cardinaux et de
topologie. La notion de dénombrabilité, au cceur de 1’approche de Borel et Le-
besgue, est notoirement mal connue des étudiants de premier cycle. L’ occasion
leur est donnée de faire le point sur cette question. Les “rappels” de topologie
mélent quelques développements sur les notions de base déja vues en cours de
structures métriques a des points plus techniques — la séparabilité notamment — qui
se réveleront indispensables a la suite de notre propos.

— La partie II, théorie de la mesure, batit les fondations de la théorie de I’inté-
gration : tribus, fonctions mesurables, mesures positives. Un accent tout particu-
lier est mis sur la mesure de Lebesgue. Plusieurs voies d’approfondissement sont
développées : le théoreme de Carathéodory et la construction des mesures de Le-
besgue et Stieltjes sur la droite réelle; la régularité des mesures sur des espaces
localement compacts ou séparables complets.

— La partie 111, théorie de I’intégration, débute par la construction de 1’intégrale au
sens de Lebesgue. On enchaine par les trois théoremes classiques (Beppo Levi,

2. L. Euler, “De summis serierum reciprocarum”, Commentarii academiae scientiarum Petropo-
litanae, vol. 7 (1740), 123-134. Archivé dans Opera Omnia, Series 1, vol. 14, 73-86 (E41).
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Fatou, Lebesgue) et les outils d’étude des intégrales dépendant d’un parametre
(continuité et dérivation ponctuelle sous le signe somme). Les espaces L et les
théoremes de densité — dont le théoreme de Lusin — sont développés ensuite, puis
viennent la mesure produit, les théorémes de Fubini et le théoreme de changement
de variables ainsi que leurs applications au calcul d’intégrales multiples. Cette par-
tie s’acheve sur la notion de complétion de mesure et sur ses conséquences, en
particulier le théoreme de Fubini-Lebesgue.

— La partie IV, convolution et transformées de Fourier et de Laplace, est consacrée
a des prolongements essentiels de la théorie de 1’intégration : la convolution sur R?
et les transformées de Fourier et de Laplace sur R?, outils de base de I’ Analyse har-
monique mais aussi des Probabilités. Ces notions peuvent étre vues comme des ap-
plications importantes des théoremes de convergences de la partie III. La convolu-
tion avec la notion d’identités approchées est un outil indispensable dans les trans-
formées, notamment pour les théoremes d’inversion de Fourier (dans L'(R%) et
L?(R%)) qui demeurent parmi les plus beaux résultats de I’ Analyse, et qui sont aussi
le point de départ de I’ Analyse harmonique qui a connu ces dernie¢res décennies un
essor considérable avec le traitement d’images. Nous avons introduit dans cette
huitieme édition la transformée de Laplace comme prolongement naturel de la
transformée de Fourier, sans la détailler autant, mais en insistant sur ses appli-
cations avec une vingtaine de nouveaux exercices tres développés (sur 13 pages),
traitant notamment de la résolution de diverses équations (équations différentielles,
équations aux dérivées partielles, équations aux différences finies). Avec en points
d’orgue : le théoreme de Bernstein-Widder dont la démonstration (cf. exercice
15.39) repose sur tous les théoremes fondamentaux de I’intégrale de Lebesgue,
et I’intégrale de Riemann-Liouville (cf. exercice 15.40) étroitement liée a la notion
de dérivée fractionnaire, qui termine cet ouvrage.

— La partie V est constituée d’énoncés de QCM et de problemes d’examen.

— La partie VI propose 30 pages d’indications détaillées (en petits caracteres) des
261 exercices que comporte I’ouvrage, et les réponses aux QCM.

Signalons qu’en guise d’introduction, la partie II débute par la reproduction
intégrale du texte de la Note aux Comptes-rendus de I’Académie des Sciences de
Paris d’Henri Lebesgue parue en 1901 et intitulée :

“Sur une généralisation de I’intégrale définie”.

Il y présente, en quatre feuillets d’une puissance et d’une beauté mathématique
saisissantes, les principes fondateurs et les premiers résultats de sa théorie.

Les parties dont le titre est précédé du symbole &, correspondent a des complé-
ments ou des approfondissements qui peuvent étre passées en premiere lecture.
De méme, certaines applications s’éloignant par trop du cceur de notre propos ou
s’apparentant a des exercices corrigés ont été transcrits en plus petits caracteres.
Une table des maticres détaillée introduit I’ouvrage et un index avec 477 entrées
(dont un certain nombre de doubles entrées) le conclut.
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Pour une large part, notre gotit commun pour I’intégration nous a été transmis
par nos professeurs, le regretté J. Deny et O. Kavian. Cet ouvrage leur doit beau-
coup.

Les judicieux conseils et les encouragements de P.G. Ciarlet nous ont égale-
ment été précieux.

Si toutes les erreurs sont les notres, plusieurs personnes ont contribué a en di-
minuer le nombre depuis la premiere édition : Omer Adelman, Marie-Dominique
de Cayeux, Yannick Baraud, Fabienne Comte, Frangois James, Laurence Marsalle,
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Notations

Ensembles

K=RouC.

P (X) : ensemble des parties de 1’ensemble X.

€A : complémentaire de la partie A de X.

14 : fonction caractéristique de A, i.e. Ly(x) :=1sixz € Aetls(x):=0six € A.

C :inclusion au sens large.

A : différence symétrique.

card X : cardinal de I’ensemble X.

X — Y :injection de X dans Y.

O (X) : ensemble des ouverts de 1’espace métrique X .

A : adhérence de la partie A.

A : intérieur de la partie A.

OA : frontiere de la partie A.

o (%) : tribu engendrée par la partie " de Z(X).

A(%) : A-systeme engendré par la partie ¢ de Z2(X).

o/ X % : ensemble des rectangles A x B a c6tés mesurables.

o/ @2 : produit tensoriel des tribus <7 et A.

(X, o/, Ti) : complété de I’espace mesuré (X, .o/, ).

suppf : support de la fonction f.

H1-p.p. . presque partout.

lirllnT A, = LJT A,, : réunion de la suite d’ensembles (A,,),>0, croissante pour C.
n>0

L 1 . . o L
lim A,, = | | A,, : intersection de la suite d’ensembles (A,,),>0, décroissante pour C.
n -
n>0

Fonctions

f(xzy) : limite a droite de f en x.
f(xz_) : limite a gauche de f en x.
sgn : fonction signe (vaut 0 en 0).
R(f) : partie réelle de f.

() : partie imaginaire de f.

|f| : module de f.
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fT : maximum entre f et 0.

[~ : maximum entre —f et 0.
fV g : maximum entre f et g.
f A g : minimum entre f et g.

sup x; : borne supérieure de la famille de réels (x;);e;-
iel

in§ x; : borne inférieure de la famille de réels (x;);e;.
i€

= : identiquement égal a.

dist (x, A) : distance du point x a la partie A.

Convergence de suites

hfbn fr @ limite de la suite (f,,)n>0-
1171511T fr : limite de la suite croissante (fy,)n>0-
1iTrLH £, : limite de la suite décroissante (f,)n>0.
@ fn @ limite supérieure de la suite (f),)n>0.
lim f,, : limite inférieure de la suite ( fy,)n>0-

n

fn — f :lasuite (f,,)n>0 converge vers f.
fn T f :1asuite (f,,),>0 converge en croissant vers f.

fn 4 f tlasuite (f,)n>0 converge en décroissant vers f.
fn — f :lasuite de fonctions ( f,,),>0 converge simplement vers la fonction f.

fn — [ tlasuite de fonctions ( f;,),>0 converge uniformément vers la fonction f.

(fn)
fn 25 £ : 1a suite de fonctions (fn)n>0 converge presque partout vers la fonction f.
(fn)

fn M f +1a suite de fonctions ( f,,),>0 converge en norme || - || vers la fonction f.

Espaces de fonctions

& (Ja, b], K) : ensemble des fonctions en escalier de [a, b] dans K.

4 (la, b],K) : ensemble des fonctions Riemann-intégrables de [a, b] dans K.

% (X,Y) : ensemble des fonctions continues de X dans Y.

%Kk (X,Y) : ensemble des fonctions continues de X dans Y, a support compact.

%o(£2,K) : ensemble des fonctions continues de 1’ouvert 2 de R? dans K, de limite nulle a
I’infini.

€™ (Q,K) : ensemble des fonctions de I’ouvert 2 de R? dans K, n fois différentiables sur 2.
E (2, K) : ensemble des fonctions de € ™ (£, K), a support compact inclus dans €.

€y (2, K) : ensemble des fonctions de € " (€2, K), a dérivées bornées.

2L (p) - ensemble des fonctions mesurables a valeurs dans K, de puissance p*™®

p-intégrable.
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'Zléc,K()‘d) - ens. des fonctions a valeurs dans K, \4-intégrables sur tout compact de R%.

Z¢ () : ensemble des fonctions mesurables 2 valeurs dans K, p-essentiellement bornées.
Ly () : ensemble des classes de fonctions de % (1) pour 1’égalité p-presque partout.
Lip, (X, K) : ensemble des fonctions de X dans K, lipschitziennes bornées.

Lipx (X, K) : ensemble des fonctions de X dans K, lipschitziennes a support compact.

Normes

|z| : norme de z dans K.

If

|l £l, : (semi-)norme L? de (la fonction) f.

-up - NOrme sup de (la fonction) f.

|1l : (semi-)norme du supremum essentiel de (la fonction) f.






Premiere partie

Rappels et préliminaires






Chapitre 1

Intégrale au sens de Riemann

Ce chapitre est constitué de rappels sur I'intégrale de Riemann et ne com-
porte pas de démonstrations pour lesquelles nous renvoyons, par exemple, a [32]
ou [31]. Il a simplement pour but de mettre en évidence certaines des insuffisances
de cette théorie, élaborée par le mathématicien allemand Riemann dans sa these
de doctorat [5] (soutenue en 1854 et publiée en 1857). Ses travaux généralisaient
de facon décisive ceux du mathématicien francais Cauchy, auteur dans les années
1820 d’une premiere théorie essentiellement rigoureuse de I’intégration des fonc-
tions continues. Les deux grands précurseurs de la théorie de I’intégration au 18°™¢
siecle sont incontestablement Newton — qui développa sous le nom de fluxion une
approche systématique de la réciproque de la dérivation — et Leibniz — pour son
approche géométrique fondée sur le calcul d’aire.

Notations : Dans la suite, on se placera sur un intervalle compact [a, b], non vide et
non réduit a un point (—oo < a < b < +00). La lettre K désignera indifféremment
le corps des réels R ou le corps des complexes C.

1.1 Intégrale des fonctions en escalier

Définition 1.1. (a) On appelle subdivision de ’intervalle [a, b] tout (n + 1)- uplet

o= (ag,...,a,) vérifiant a := ag < -+ < a, = b.
(b) Une fonction f : [a,b] — R esten escalier s’il existe une subdivision (ag, . . . , a,)
de |a,b] et des éléments \1, ..., A, de K tels que

Vie {l,...,n}, Vx €laji—1,a[, f(x)=N\. (1.1)

On note & ([a, b],K) I’ensemble des fonctions en escalier de [a, b] dans K.

(c) L’intégrale de f relativement a une subdivision o, provisoirement notée I(f, o),
est définie par

I(f, J) = Z)\l (ai — ai_l).
i=1
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Remarques : e Une fonction en escalier n’est en fait pas spécifiée aux points a;
de la subdivision et I’intégrale I( f, o) ne dépend donc pas de la valeur de f en ces
points.

e On vérifie d’autre part que I( f, o) ne dépend pas de la subdivision o choisie sous

réserve que celle-ci soit “adaptée” a f, i.e. vérifie la relation (1.1).

Notations : La seconde remarque nous conduit a faire disparaitre o dans la notation
de I’intégrale. En pratique, on note 1’intégrale de f entre a et b indifféremment par

b b b
les symboles / f ou / f(x)dx. La variable x est “muette”, i.e. / flx)dx =
b a a a
/ f(y) dy, etc.
b
Proposition 1.1. (a) / 2 (&([a, 0], K), || - |l.p) — K est une forme linéaire,
b a
LA 0 @y 0151y = st 150 dsine
a re|a,

norme uniforme (le sup est nécessairement fini car f ne prend qu’un nombre fini
de valeurs).

(b) Si f, g€ &([a,b],R), alorsfgg:/bf < /bg.

/abf < /abrf\-

1.2 Fonctions intégrables au sens de Riemann

continue puisque

(c) Si fe &(la,b],K), alors |f| € &([a,b],Ry) et

Définition 1.2. f : [a,b] — K est Riemann intégrable — ou intégrable au sens de
Riemann — si

|f_(1)s‘ § \I"s

et

b
/ U, <e.
a

On note ¥ (|a,b],K) I’ensemble des fonctions Riemann intégrables définies sur
[a, b] a valeurs dans K.

Ve >0, 30.€ &([a,b],K), IV € &([a,b],Ry) telles que

Remarques : e On a en particulier pour e =1, | f| < |®;]| + ¥; donc une fonction
Riemann intégrable est toujours bornée.

e Evidemment & ([a, b],K) C #([a, ], K) [prendre ®. := f et ¥, :=0].

Construction de I’intégrale (esquisse) : Soit f € .#([a, b],K). En prenant suc-

cessivement € = %, n > 1, la définition 1.2 entraine 1’existence de deux suites
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b
~ ~ ~ ~ ~ 1
(®p)n>1 et (¥y,),>1 vérifiant, pour tout n>1, |f — ®,| < ¥, et/ v, < —. Par
= = n
a

suite, ) 3 ) ) ) )
Vp,QEN*, ‘q)p_¢'q|S‘(I)p_f‘+‘q)q_f’§q}p+qlq
et, partant,
b b b ~ b ~ 11
Vp, g€ N, /q)p_/q)q §/®p_(bq‘§/<@p+\pq)§+~
a a a a p q

b
La suite < / <I>n> est donc de Cauchy dans K; par conséquent elle converge
a n>1
vers une limite ¢ finie. On vérifie ensuite immédiatement que ¢ ne dépend pas des

b
suites ®,, et ¥,, sous réserve que |f — ®,| < U, et lim/ v, = 0.
n
a

b b
Définition 1.3. La limite commune aux suites < / (I>n> est notée / f. Cest
a n>1 a
I’intégrale — au sens de Riemann — de la fonction f sur I’intervalle [a, b].

Proposition 1.2. (a) .7 ([a,b],K) est un K-espace vectoriel et

b
/ (2 (a0, K), |- () — K

/a f] < / i

(c) Soit ¢ : C — C une application R-linéaire. Alors, pour toute fonction f dans
A ([a,0],C), ¢(f) € F([a,b],C) er

/:so<f>=so(/:f>.

(d) Si f, g€ I ([a,b],K) alors f g€ I ([a,b],K).

est une forme linéaire continue de norme b — a.

(b) Si fe F([a,b],K) alors |f|€ F([a,b],R+) et

Exercice : Montrer que si f1,..., fn€ #([a,b],R)etsi¢ : R" — R est monotone
“coordonnée par coordonnée”, alors ¢(f1, ..., fn) € #([a,b],R).

Application 1.1. (a) Du point (b) de la proposition précédente, on déduit la positi-
vité et la croissance de I’intégrale au sens ou

b b b
Vf, g€ I(a,b],R) f20:>/f20 et fZg:>/f2/g.

(b) Du point (c), on déduit que si f € .#([a,b],C), alors R(f), S(f) et f sont
Riemann intégrables.
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Proposition 1.3. (Relation de Chasles) Soit c €]a,b[. Si f € 7 ([a,b],K) alors les
restrictions de f a |a, c] et [c, b] sont Riemann intégrables et

b c b
[r=[1+]1
a a C
a
Conventions : e Pour tout a € R, / f=0.
a

b a
e Pour tous réels a > b, on pose / f=- / f.
a b

Il est essentiel de noter que, au vu de ces conventions, la relation de Chasles
s’étend a tout triplet a, b, ¢ de réels dés que la fonction f est Riemann intégrable
sur Uintervalle [min(a, b, ¢), max(a, b, ¢)].

Proposition 1.4 (Intégrale et convergence uniforme). Soit (fy,)n>1 une suite de
fonctions de .7 ([a, b],K) qui converge uniformément vers f,ie. ||fn— f|.., = 0,
alors

b b
fe ([a,b),K) et /f:hTILn/ fa.

Citons encore un critere de Riemann intégrabilité, souvent utile dans les appli-
cations.

Proposition 1.5. Soit f : [a,b] — R une fonction bornée et Riemann intégrable sur
tout intervalle o, ] contenu dans |a, b[. Alors f est Riemann intégrable sur |a, b].

A ce stade, la question naturelle est évidemment de savoir s’il existe des fonc-
tions Riemann intégrables en dehors des fonctions en escalier.

1.3 Fonctions réglées

Définition 1.4. Une fonction f : [a,b] — K est réglée s’il existe une suite ( fy,)n>1
de fonctions en escalier convergeant uniformément vers f.

En d’autres termes, les fonctions réglées constituent I’adhérence des fonctions
en escalier dans I’ensemble des fonctions bornées pour la norme de la convergence
uniforme || . ||

sup *
Proposition 1.6. Si une fonction f : [a,b] — K est réglée, alors f € .7 ([a,b],K).
Ce résultat est un corollaire immédiat de la proposition 1.4.

Théoréme 1.1. Une fonction f : [a,b] — K est réglée si et seulement si elle posseéde
une limite a droite en chaque point de [a, b| et une limite & gauche en chaque point
de |a, b] (ces limites s’entendent dans K).
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Corollaire 1.1. (a) € ([a,b],K) C #([a, b],K).

(b) Si une fonction f : [a,b] — R est monotone, alors f est Riemann intégrable.

Exemples : 1. Soit f la fonction définie sur [0, 1] par f(z) := sin(1/z) si z €]0, 1]
et f(0) := 0. La fonction f n’est pas réglée puisque f n’a pas de limite en 0.
Elle est cependant Riemann intégrable, d’apres la proposition 1.5, puisque f est
continue sur |0, 1] et bornée sur [0, 1].

1
2. La fonction f définie sur [0, 1] par f(z) :=0siz ¢ Qet f(z) := —siz = IZ,
q q
pged(p, q) = 1, est réglée (cf. exercice 1.3).
3. La fonction indicatrice des rationnels sur [0, 1] définie par 1o 1)(2) = 1 si

xe Qn[0,1] et 1Qm[0,1} () := 0 sinon, n’est pas Riemann intégrable.

En effet, soient ¢, € &([0,1],R), ¥ > 0 telles que [1gnjo,1] — ¢| < 2. 11 vient
o — ¥ < lonp,1] < ¢ + 9. Or p & ¢ étant en escalier, on a nécessairement, sauf
éventuellement en un nombre fini de points, p — 1 < 0 < 1 < ¢ + 1 : en effet, Q
et R\ Q étant denses dans R, tout intervalle ouvert non vide contient a la fois des
rationnels et des irrationnels. En particulier, 1 — 1) < ¢ < ¥ et donc v > % sauf

1
sur un ensemble fini. D’olu / P > 5 Ceci contredit la définition de la Riemann
0
intégrabilité des que e <1/2.
On notera cependant que 1gnjg 1) est “tres souvent” nulle et qu’il semblerait

1
raisonnable de poser / 1m0, = 0.
0

Application 1.2. (a) Riemann intégrabilité et convergence simple : Soient (ry,)n>1
une numérotation des rationnels de [0,1] et f,,(z) = 1p, 3 (2), n > 1. Les
fonctions f,, sont clairement en escalier donc Riemann intégrables. D’autre part,
pour tout z € [0, 1], lirrln fn(x) = Lonp,1)() qui n’est pas Riemann intégrable sur

[0, 1]. On en déduit que .#([a, b], K) n’est pas stable pour la convergence simple.

(b) Composition de fonctions Riemann intégrables : Soient f, g deux fonctions
respectivement définies par :

Cf(@) = 0siz £ QN[0,1], f(z) = L six = L pecd(p,) = Lp < g

F(0) =1
—g(x):=1sixze]0,1] et g(0) := 0.

Les fonctions f et g sont Riemann intégrables (cf. exemple 2 pour f, g étant en
escalier), cependant on constate que go f = 1onp,1) ¢ ([0, 1], R) (cf. exemple 1).
La Riemann intégrabilité n’est donc pas stable par composition. Néanmoins, le
résultat est vrai dés que la fonction g est continue.
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1.4 Intégrale de Riemann et calcul de primitive

Proposition 1.7. Soit f € 9 ([a,b],K). Alors f est Riemann intégrable sur tout
x

intervalle [a, x|, x € [a,b] et I'on pose F(x) := / f pour x € [a,b].

a
(a) F est lipschitzienne de rapport | f||,,, (i.e. [F'(z) — F(y)| < [|fll.p |2 — yl)-
(b) Si f est continue a droite en c € [a,b], alors F est dérivable a droite en c et
F)(c) = f(c), idem a gauche sur |a, b].

Corollaire 1.2. Si f est continue sur |a,b|, alors f admet une primitive sur [a, b),
i.e. une application F : [a,b] — K telle que F' = f, et toute primitive F' de f
vérifie :
€T
vzelab), Flz)=Fla) +/ f.
a

Application 1.3. La fonction (z + 1/x) est continue sur R* et admet donc une
Tdt

7.
Contre-exemple : Il existe des fonctions f non Riemann intégrables (et donc a

fortiori non continues) admettant des primitives. Ainsi, la fonction f définie sur
[0, 1] par

Fa) = —\}5 cos (i) + g /7 sin (;) L ze]0,1], £(0) =0,

a pour primitive sur [0, 1] la fonction F' définie par

(unique) primitive nulle en 1 : ¢’est le logarithme népérien In(z) :=

3

1
F(z) =2 sin () size]0,1], F(0):=0.
x
Or, la fonction f n’étant pas bornée — f (ﬁ) = —+/27mn — ne peut étre Riemann
intégrable sur [0, 1].
Proposition 1.8. Si F' : [a,b] — K est dérivable (a droite) de dérivée (a droite) F),

Riemann intégrable sur [a,b], alors

b
F(b) — F(a) = / .

1.5 Changement de variable et intégration par parties

Ce sont les deux principaux outils pratiques du calcul intégral élémentaire.

Théoréme 1.2 (Changement de variable élémentaire). Soit p € ¢ ([, B],R) et
fe€(e(le, 8]),K) C (e, B]),K). Alors :

A (B)
[ st dwan= [* sdn
« o()
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Remarque : Seuls les changements de variable monotones ont un intérét pratique.

Dans ce cas ¢([a, 5]) =[p(a), o(5)] ou [¢(5), p(a)] selon que  est croissante ou
décroissante.

Exemple : Calcul de/ chd(x) On pose = := p(u) := argsh(u) € € ([0, sh(a)]),
0 i

©(0) =0, p(sh(a)) =aety'(u) = , donc

1
V14 u?

¢ dx sh(a) du sh(a) du )
pu— — o t '
/0 ch(x) /0 Ch(argsh(u))m /0 1+ 2 arctan(sh(a))

Théoréme 1.3 (Intégration par parties élémentaire). Soient f,g€ € ¥([a,b],K). La
Sformule d’intégration par parties s’écrit

/abfg’— [fg]Z—/abf’g-

Exemple : Calcul d’une primitive de la fonction arctan :

u

1 2
oo du = zarctan(z) — 5 In(1 + 7).

/owarctan(u) du = [uarctan(u)]g — /Ox

1.6 Formules de la moyenne

Proposition 1.9 (Premiere formule de la moyenne). Soient f € € ([a,b],R) et g €
A ([a,b],Ry). Alors il existe c€ [a, ] tel que

/abfng(C) /abg-

b
Remarques : o Si [ € ¢([a, b],R), il existe ¢ € [a, b] tel que/ f=f(e)(b—a).

2m
e Le résultat n’est pas vrai si K = C. Ainsi, / e“dr =0 # € (2r — 0) pour
0
tout c€ [0, 27].

Proposition 1.10 (Seconde formule de la moyenne). Soient f, g€ .7 ([a,b],R), f
positive et décroissante. Alors il existe c € [a, b] tel que

/abfg = fla4) /acg-

Application 1.4. Soient f et g deux fonctions a valeurs réelles, Riemann intégra-
bles sur tout intervalle compact de [1, +oo] et vérifiant : f est positive, décroissante,
T

xX
lim f(z)=0etG(x) = / g est bornée, alors lim / f g existe dans R.
oo 1 1

x T—+00
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x
DEMONSTRATION : La fonction / f g vérifie le critere de Cauchy au voisinage
1
Y z y
/fg—/fg‘ = /fg'
1 1 T

= [(z4)[G(c) = G(2)|
<2f(@) 1Gloy <& O

de +o0. En effet,

Ve>0,dA. > 1,Vy>x > A,

1
En appliquant ce dernier résultat aux fonctions f(z) := — et g(z) := sin(z),
x

sin(z)

+oo
on établit que I’intégrale / dx est convergente pour « € |0, 1], bien que
1

wa
non absolument convergente (nommée intégrale généralisée semi-convergente).

1.7 Sommes de Riemann

Définition 1.5. Soit [ : [a,b] — Ket o = (ap,...,an) une subdivision de [a,b].

On appelle pas de la subdivision o la quantité ||o| = max (a; — a;—1). Soit
<i<n

& = (&1 -+, &) un n-uplet d’éléments de K vérifiant : &; € [a;—1, a;]. On définit

la somme de Riemann relative a f, o et &, par :

S(f,0,&) =Y (ai —ai1) f(&),
i=1
b

On notera que S(f,0,&{,)= [ ¢ ou ¢ est une fonction en escalier vérifiant
a

o(x) = f(&) pour x €]a;—1, a;|.
Théoreme 1.4. Si f € .7 ([a,b],K), alors

b

f

Ve>0, da>0, Yo subdivision de [a,b], ||o]] < a :‘S(f,mfg) —/ <e.

On peut établir ce résultat a titre d’exercice lorsque f € %([a, b], K) en utilisant
I’uniforme continuité de la fonction f sur le compact [a, b]. Dans le cas général, sa
démonstration est plus délicate.

Application 1.5. Si f € .7([a, b],K), alors

b—a — b— b
na Zf(a—l—k na>n—>_+>oo/af'

k=1

Ainsi, par exemple,
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1.8 L’espace semi-normé .¥ ([a, b], K)

b
Définition 1.6. On pose, pour toute fonction f € Z([a,b],K), Ni(f) := / |f]-

Proposition 1.11. (.7 ([a, b],K), N1) est un espace semi-normé non complet.

La semi-norme N; n’est pas une norme car la fonction f définie sur [0, 1] par
1
f(z):=0siz €]0,1] et f(0) := 1, n’est pas nulle sur [0, 1] bien que / |f] = 0.
0

On admettra que I’on peut exhiber une suite (fy,)n>1 d’éléments de .7 ([a, b], K)
vérifiant :

(i)V5>O, dne > 1, Vp,q > ne, Nl(fp_fq)gga
(4) Pour aucune fonction f € .#([a, b],K) on a lim,, Ny (f, — f) = 0.

Cependant, lorsque la fonction f est continue et positive, on montre aisément
b
que, si / f =0, alors f = 0. On en déduit aussitdt que (¢([a, b],K), N1) est un
a
espace normé. Mais lui non plus n’est pas complet.

Proposition 1.12. (¢ ([a,b],K), N1) est un espace normé non complet.

La non-complétude découle du contre-exemple suivant :

Contre-exemple : Soit ( f;,),>2 la suite de €'(]0, 1], R) affine par morceaux définie
par f, := Lsur [0, 3] et f, := O sur [%—i—%, 1]. On vérifie, d’une part, que la suite
(fn)n>2 est de Cauchy dans (%°([0, 1],R), N1) et, d’autre part, qu’elle converge
simplement et dans (.# ([0, 1],R), N1) vers f._ := 1[0,%} ¢ ¢([0,1],R).

Si f,, convergeait vers une fonction continue f_ au sens de la norme /N1, on
aurait nécessairement Ny (f, — foo) = 0. Or, on vérifie sans peine que, pour toute

fonction continue f, Ni(f—f_)>0.D’ou la non-complétude annoncée.

1.9 Intégrales dépendant d’un parametre

On considere la fonction

ou J est un intervalle ouvert non vide de R.

Proposition 1.13. (a) (Continuité sous le signe intégrale) Si f € € (J X [a,b],K),
b
alors la fonction F définie par F(t) := / f(t,x) dx est continue sur J.
a
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d
(b) (Dérivabilité sous le signe somme) Si f et or sont dans €' (J x [a, b],K), alors

ot
F est dérivable sur J et
b af
Vie J, F'(t)= E(t,x) dr.

a

Remarque : Sige .7 ([a,b],K)et f(t,z) == g(z)siz < tet f(t,x) :=0siz >,
b t

on note que F'(t) = / f(t,z) do = / g ne rentre aucunement dans le cadre de

a a
la proposition précédente.

Ce résultat laisse donc ouvert tous les cas ol f n’est pas continue et, surtout,
celui ot I'intégrale est définie sur un intervalle non compact (R, ]0,1[, ...). En
fait, il existe des théoremes généraux relatifs aux intégrales généralisées dépendant
d’un parameétre mais ceux-ci sont d’un usage compliqué et il est généralement plus
efficace de “couper” les intégrales en morceaux pour faire le travail “a la main”.

sinx

“+oo
Application 1.6. Calcul de I'intégrale impropre F(t) := / e “da, t>0.
0

T

DEMONSTRATION : L’idée est de dériver sous le signe intégral pour faire apparaitre la fonction
x — sinxe” " dont il est facile de calculer une primitive. Mais les théorémes dont on dispose ne
sont valables que sur des intervalles compacts. On considere donc la suite de fonctions (Fn)neN
définie par
n .
sinz  _
F,(t) ::/ = e "™dx, t>0.
0o T
@pﬂ La suite (Fy)nen converge uniformément vers F sur Ry et F est continue sur Ry :

Soient . < m € N* et z € Ry. La fonction = — e '® étant positive, décroissante et

continue, il existe d’apres la seconde formule de la moyenne (proposition 1.10), un réel ¢ € [n, m)|
tel que

m . —nt c —nt
Fr(t) — Fu(t) = / T ety = & / sinzde = & (cosm — cosc).

T

Le critere de Cauchy de convergence uniforme est donc vérifié puisque

2
Vte Ry, |Fn(t)— Fo.(t)] < o
) . Jr sinz  _;, .
D’autre part, la fonction g définie sur R x R par g(¢, ) := ¢ siz #0etg(t,0):=1

est continue sur le pavé [0, n] x R4. La fonction F), est continue sur R4 d’apres la proposition 1.13.
Finalement la fonction F est continue sur R+ comme limite uniforme d’une suite de fonctions conti-
nues. Elle I’est donc en particulier en 0.

, -1
Etape 2 La fonction F est dérivable sur R, et F'(t) = T e :
Comme (:c — %) est continliment dérivable sur R, la fonction g est de classe C' YsurR x R,

T
donc en particulier sur [0,n] x R4. Par suite, d’aprés la proposition 1.13(b), la fonction F,, est

dérivable sur Ry et F), (t) = —/ sinze * du.
0
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Soient a > 0,¢t > aetn€ N*. Il vient, d’apres la relation de Chasles,

+oo . +oo to 1 1
/ sinze " dx §/ e Tdr=— < —
n

n T

+oo N oo elimtz z=+00 1
et / sinze Pdr =S (/ elime dac) =& { ] =——.
0 0 i—t | o 141

La suite (F},)nen converge donc uniformément vers la fonction ¢ +— —

SN
3
Q

—+o0
Fr(t) —|—/ sinze " dr| =
0

1
m sur [a, +OO[
Comme F est limite simple de la suite (F},)nen sur [a, +00], F est dérivable sur [a, +oo[ pour tout

a>0ie surRyet F'(t) = 1 pour tout t > 0.

1+
Etape 3Vt > 0, F(t) = g — arctant :

D’apres I’étape 2, il existe une constante k € R telle que pour tout ¢ > 0, F((t) = k — arctan .
Comme [ est continue en 0, on a lim+ F(t) = F(0) = k. D’autre part, pour tout ¢ > 0,
t—0

Fol< | o

d’ou , ligl Fit)=0=k— g Par conséquent, pour tout ¢ > 0, F'(t) = g —arctant. ¢
—+oco

sinx

+oo 1
e dr < / e "dr = =,
T 0 t

Conclusion

On a pu constater a plusieurs reprises dans ce chapitre que I’intégrale de Rie-
mann souffrait de nombreuses limitations tant sur le plan théorique que pratique :
ainsi, une fonction Riemann intégrable est nécessairement bornée, .7 (|a, b]) I’es-
pace des fonctions Riemann intégrables n’est stable, ni par convergence simple,
ni par composition quand cela est possible. L'espace (.7 ([a,b]), N1) n’est pas
complet. Les intégrales dépendant d’un parametre ne donnent lieu a des résultats
généraux que dans des cadres tres restrictifs (fonctions continues).

En outre, malgré toutes ces limitations, 1’intégrale de Riemann reste un outil
tres technique et d’'un maniement délicat. D’ou I'intérét d’introduire une nouvelle
notion d’intégrale possédant un plus vaste champ d’applications et fournissant des
outils plus puissants dans la résolution des questions pratiques.

Quant a I'intégrale de Riemann, elle conserve néanmoins certains attraits, no-
tamment par son extension immédiate aux fonctions a valeurs dans un espace de
Banach (i.e. un espace vectoriel normé complet). En effet, I’extension de I’intégrale
au sens de Lebesgue a ce type de fonctions, qui ne sera pas abordée dans cet ou-
vrage, se révele, elle, particulierement délicate.
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1.10 Exercices

Les exercices 1.9, 1.11, 1.12, 1.15, 1.16, 1.18 traitent du probléme d’interver-
sion limite-intégrale et pointent les insuffisances de I’intégrale de Riemann liées a
I’emploi restrictif de la convergence uniforme (cf. proposition 1.4), qui nécessite
souvent des découpages d’intégrales assez techniques. Les puissants théoremes de
I’intégrale de Lebesgue du chapitre 8 permettront de surpasser ces difficultés (cf. en
particulier I’exercice 8.0).

1.1 a) Soient f € .#([a,b],K) et ¢ : R — R une fonction lipschitzienne sur un
intervalle borné contenant 1’image de f. Montrer que g o f € .#([a, b], K).

b) Plus généralement, montrer que g o f € .#([a, b], K) si g est continue.

1.2 Lemme de Riemann-Lebesgue et Probleme de Bdle 1

b
a) Soit f € .7([a, b],C). Montrer que lim/ f(z) e dx = 0.

s
b) Déterminer o, € R tels que Vn € N*, / (aac + sz) cos(nz)dr = — .
0

n .
+1/2 1
¢) Montrer que pour tout = ¢ 27Z, ; cos(kz) = Sln2((s7iln(9:§2§ 7) -5

1 72
d) En déduire la formul - liquant 5,7, 8 €]0,7], et
) En déduire la formule ; 3 o ©nappliquan a) sur [d, ] 10, 7], e
en majorant I’intégrale sur [0, ] a I’aide de 'inégalité sin(z/2) > = /7.

1.3 Montrer que la fonction f suivante est réglée :

siz e R\ Q

0

T) = 1

1) - six = B, p,q € N* premiers entre eux.
q q

b
1.4 Soit f € .#([a, b],R" ). Montrer que/ f>0.

- . (2n)1\/"
1.5 Calculer la limite de la suite u,, := pour n > 1.

n!lnn

1 k
1.6 Soit f € .#([0, 1], R). Calculer la limite de Ty, := ~ (—1)’“]’(—) n> 1.
n
k=1
1.7 Somme de Riemann

a) Soit f : [a,b[ — R une fonction monotone telle que 1’intégrale / f(x) dx soit

b—
convergente. Montrer que ~ lim —— Z f ( / [z
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n—1

k
b) Montrer que pour tout n € N*, H sin (%) = 2:—1 :
k=1

™
En déduire, a I’aide du a) la valeur de / In(sinz) dx.
0

1.8 Soient f, g : [0,1] — R continues telles que f soit décroissante et 0 < g < 1.

I
Montrer que /1 f(x)g(x)de < / f(x)dx ou I := /1 g(z) dz.
0 0 0

1.9 Soit (fy,)n>1 la suite de fonctions définies sur [0, 1] par f,(x) := Y —.

k
=1
Montrer que (f,)n>1 est de Cauchy mais ne converge pas dans (%'([0, 1], R), Ny)
N 1
o Ni(f) = Jy IfI-

27’1
1.10 a) Soit ( f)n>0 la suite définie par f,(z) : :c

= m pour x S [07 1]

La suite ( fy,)n>0 converge-t-elle uniformément sur [0, 1]? Sur [a, 1] avec a>07?

1
b) Calculer lim / fn(x)de.
mJo

1
d 1
1.11 a) Montrer que / a_ g — al’aide d’un développelement en série.
o T Amnt

1

Inz 1

b) Montrer que / dr = E —  en développant en série la fonction
o r—1 =n

x sur [0, al, a € [0, 1], et en majorant I’intégrale sur [a, 1].

. HAN
1.12 a) Montrer que pour tout n > 1, la fonction f, : z — e* — (1—}——) est
n
positive et croissante sur R .

n n
b) En déduire la valeur de lim / <1 + f) e 2% dx.
n Jo n

€T
1.13 Etudier la fonction f définie sur R, par f(z) := / sin(1/t) dt pour z > 0,
0

en particulier au point 0.

22

, t
1.14 Etudier la fonction f définie sur R \{1} par f(x) := / — , en particulier

. Int
aux points O et 1.
1.15 Intégrale de Gauss
1 o=z (1+t7)
Soit f la fonction définie sur R par f(x) := / T dt pour z € R.
0

x 2
a) Montrer que Vz € R, f(z)= Z - </ et dt> .
0
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+oo 5
b) En déduire la valeur de [ := / e U dt.
0

—x2(1+1?)

+00
Soit g la fonction définie sur R par g(z) := / ¢ dt pour z € R.
0

142
¢) Montrer que g est continue sur R et dérivable sur R*. Calculer ¢’ et Em g puis g.
(0.]

d) En déduire a nouveau la valeur de /.

1.16 Probléme de Bale 2, seconde résolution d’Euler en 1741 (1)

1 n
x
a) Intégrales de Wallis : Soit I ::/ ————dx pourn € N.
) Intég Ll vl
n+1 s us
Mont N N, Ipnio=——1I,, Iniy1l,=——, I, ~ /—.
ontrerque Vn € N, I,.0 nroim dnstdn = om0 I o0

b) Soit f la fonction définie par f(x) := (1 — a:)*% pour z € [0, 1].

n! 1
Montrer que ¥ &N, Vo € (0,1, () = o (1= )
, . +OO xn
En déduire que Vz € [0,1], f(x) = nZ:;) m
_ oo 220t
¢) Montrer que Vz € [0,1[, arcsin(x) = ;:O m

d) Montrer, a I’aide de la question ¢), que

w2 L arcsin () = 1
T oo
8 0 1— (1}2 (2n + 1)
+00 1
Conclure en séparant les termes pairs et les termes impairs dans Z

n=1

n=0
n?’

1.17 Probléme de Bale 3, tiré de Darticle (2)

™

On reprend ’intégrale de Wallis de I’exercice 1.16 : [,, = / ’ (cos6)™ df, obtenu
0

avec x = cos0, et on définit J,, = /2 62 (cos§)** dh, pourn € N.
0

a) Montrer en intégrant par parties, que ¥n € N*, Iy, = n(2n—1) J,,_1—2n? J,.

1 2J,— 2J,
b) En déduire, a I’aide de 1.16 a), que Vn € N*, — = n-l n
n Io, 2 Iay,

1. L. Euler, “Démonstration de la somme de cette suite 1 + 1/4 + 1/9 + 1/16 + 1/25 + 1/36 +...”,
Journal littéraire d’Allemagne, de Suisse et du Nord, vol. 2 (1743), 115-127. Archivé dans Opera
Omnia, Series. 1, vol. 14, 177-186 (E63).

2. Y. Matsuoka, “An elementary proof of the formula ;‘;iol n% = %2 ”, Amer. Math. Monthly,
68 (1961), 485-487.
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c) Montrer I'inégalité Vn € N*, — <

) en utilisant I'inégalité
9 2n
de convexité sin > —6 pour 0 € [0, T].
T
=1 m
d) En dédui — = —.
) En déduire que nz::l Rl

1.18 Autour du probleme de Bdle 4, tiré de I’article &)
a) Montrer que

Va e]0,1], ln(a:)ln(l—a:)—/owm(lt_t)dt—/llxln(lt_t)dtzo.

b) En déduire que

Vo e]0,1], Z Z (" + (0 -2 )—}—In(a:)ln(l—x).

+00 1 +oo 1
¢) Montrer la formule Z

n= 1

TS P 5 + (In 2)% .

3. L. Euler, “De summatione innumerabilium progressionum”, Commentarii academiae scien-
tiarum Petropolitanae, vol. 5 (1738), 91-105. Archivé dans Opera Omnia, Series 1, vol. 14, 25-41.
(E20).






Chapitre 2

Eléments de théorie des cardinaux

2.1 Cardinaux

Définition 2.1. Soient X etY deux ensembles. On dit que X est équipotent a 'Y, et
l'on note X éq. Y ou card X = cardY, s’il existe une bijection de X surY.

Il est immédiat que tout ensemble X est équipotent a lui-méme car I’ application
identité sur X est une bijection de X sur X. Si une fonction f : X — Y est
bijective, elle admet une réciproque bijective f~! : Y — X, en conséquence, si
X éq. Y, alors Y éq. X. Enfin la composée de deux applications bijectives étant
bijective, il est clair que, si X éq. Y et Y éq. Z, alors X éq. Z.

La relation d’équipotence est donc une relation d’équivalence sur la “collection
de tous les ensembles” dont les “classes” définissent les “cardinaux”. La présence
de “guillemets” est justifiée par le fait que la collection de tous les ensembles
n’est pas un ensemble, sinon cet ensemble serait élément de lui-méme. La notion
de classe d’équivalence associée de facon naive a la relation d’équipotence n’est
donc pas parfaitement satisfaisante du point de vue de la rigueur. Cet obstacle peut
néanmoins étre contourné, et les cardinaux définis rigoureusement ([16], E-1II-3).

Exemples : 1. 2(X) et {0, 1} sont équipotents car I’application définie par

2(X) — {0,1}% 1 size A
A — 1, o Lafz):= 0 siz¢ A

est bijective.

2. N est équipotent a 2 N car n — 2 n est une bijection.

Proposition 2.1. Soit X un ensemble. Les ensembles X et &7 (X)) ne sont pas équi-
potents et, plus précisément, il n’existe pas de surjection de X sur Z(X).

DEMONSTRATION : Supposons 1’existence d’une surjection f de X sur &(X); on
pourrait alors trouver un antécédent a a I'ensemble A := {z € X : = ¢ f(x)},
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i.e. un élément o € X tel que f(a) = A. Maissia € Aalorsa ¢ f(a) = Aetsi
a¢ Aalorsa € f(a)=A. O

Notation-définition :
(a) S’il existe une injection de X dans Y, on notera card X < cardY.

(b) Si card X < cardY et X, Y non équipotents, on notera card X < cardY'.

Théoreme 2.1 (Bernstein).
(a) S’il existe une injection de X dans'Y alors il existe une surjection de Y sur X.

(b) S’il existe une surjection de X sur'Y alors il existe une injection de Y dans X.

(c) S’il existe une injection (resp. surjection) de X dans 'Y et une injection (resp.
surjection) de Y dans X alors X etY sont équipotents, i.e. ont méme cardinal.
(d) Si X et'Y sont deux ensembles, ils se trouvent toujours dans une et une seule
des trois situations suivantes :

card X <cardY ou cardX =cardY ou cardX >cardY.

Ce résultat — difficile — sera admis ici. Pour une démonstration du (¢) on peut
notamment consulter [30], p. 59.

Corollaire 2.1. La relation < est une relation d’ordre total sur les cardinaux.

DEMONSTRATION : La réflexivité est immédiate car, pour tout ensemble X, I’ap-
plication identité Idx est injective. L’antisymétrie découle du point (¢). La com-
posée de deux applications injectives étant injective, la relation < est clairement
transitive. La relation est totale d’apres le point (d). ¢

Illustrations : 1. Si X C Y alors card X < cardY'.

2. D’une part card N < card Z(N) car n — {n} est injective; d’autre part
card N < card Z(N) car il n’existe pas de surjection de N sur &?(N) d’apres la
proposition 2.1.

Définition 2.2. Un ensemble X est infini s’il existe xo € X et une injection de X
dans X \ {xo}. Dans le cas contraire X est dit fini et [’on note card X < +o0.

Exemple : N est infini car (n — n + 1) est une injection de N dans N \ {0}.

Proposition 2.2. S’il existe une injection de X dans 'Y et si X est infini alors Y est
infini. En particulier, dés qu’un ensemble contient une partie infinie, il est lui-méme
infini.

DEMONSTRATION : Soient 7 une injection de X dans Y et ¢ une injection de X
dans X \ {z(} alors I’application 1) définie par

{w(y)zy siy €Y\ i(X)
Y(y) =ilp(z)] siy=i(z)ei(X)

est une injection de Y dans Y\ {i(zo)}. ¢
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Proposition 2.3. Un ensemble X est infini si et seulement si il existe une injection
de N dans X, i.e. card X > card N.

DEMONSTRATION : Soit X un ensemble infini. Montrons par récurrence que pour
toutn € N, il existe (n+1) éléments distincts zg, . . . , z,, de X et une injection ¢,, de
X dans X \ {xo, ..., zy,}. Le résultat est vrai pour n=0 d’aprés la définition d’un
ensemble infini. Supposons le vrai pour n. D apres la proposition 2.2, 1’ensemble
X \ {xo,...,zn} est donc infini ce qui entraine 1’existence d’une injection j de
X\ {xo,...,zn} dans X \ {zo,...,Zpt1} OO xpy1 € X \ {z0,...,2,}. On
vérifie aussitot que 4,41 :=J o iy, est une injection de X dans X \ {xo,...,Znt1}-
Finalement, I’application de N dans X donnée par (n +— x,) estune injection.

Réciproquement, I’existence d’une injection de N dans X entraine que X est
infini d’apres la proposition précédente puisque N est lui-méme infini. ¢

Remarque : La proposition 2.3 se reformule de fagon équivalente en :
un ensemble X est fini si et seulement si card X < card N.

Ceci traduit le fait que les ensembles équipotents a N sont les plus “petits”
ensembles infinis au sens des cardinaux.

Exemples : 1. R est infini car N C R.

2. Z(N) estinfini car (n — {n}) estune injection de N dans %?(N). Cependant
on a vu précédemment que card N < card £ (N). Il y a donc plusieurs — et méme
une infinité — de “classes” d’ensembles infinis dont la plus petite est constituée
par les ensembles équipotents a N. C’est cette classe que nous allons maintenant
étudier plus en détail.

2.2 Ensembles dénombrables

Définition 2.3. (a) L’ensemble X est dit dénombrable s’il existe une injection de
X dans N, i.e. card X < card N.

(b) L’ensemble X est dit infini dénombrable si X est équipotent a N, i.e. card X =
card N. On note R° (1) le cardinal infini dénombrable.

(c) Sicard X > card N, X est dit non dénombrable ou parfois infini non dénombra-
ble.

Ainsi N est-il évidemment infini dénombrable et & (N) est-il infini non dénom-
brable (cf. exemple ci-dessus).

Remarque : D’apres le théoréeme de Bernstein, un ensemble X est infini dénombra-
ble si et seulement si il est infini et dénombrable (ce qui assure la cohérence de la
définition).

On déduit immédiatement de ces définitions les propriétés ci-apres.

1. N (prononcer “aleph”) est la premiere lettre de 1alphabet hébraique.
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Proposition 2.4. (a) L’ensemble X est dénombrable si et seulement si il est fini ou
infini dénombrable.

(b) Toute partie d’un ensemble dénombrable est dénombrable.
(c) Si X est infini, Y dénombrable et X CY alors Y est infini dénombrable.
DEMONSTRATION : (b) Soit X’ C X. La composée de I'injection canonique de

X' dans X par une injection de X dans N est une injection de X’ dans N. Donc X’
est dénombrable.

(c) L’ensemble Y est infini d’aprés la proposition 2.3, dénombrable par définition
donc infini dénombrable. O

Application 2.1. (a) Z est infini dénombrable.

(b) N2 est infini dénombrable.

(c) Q est infini dénombrable.
DEMONSTRATION : (a) L’application ® définie par

dP:N — Z
2n — n
2n—1 +— —n

est une bijection, donc Z est bien équipotent a N.
(b) L’application ® définie par
®:N> — N

(p.q) — @(p,q):= P +a) (];J”Hl) +q

est une bijection. Cette application ® consiste a numéroter les couples de Nx N au
fur et a mesure de leur rencontre le long du parcours indiqué ci-dessous.
(c) D’une part N C Q donc Q est infini. D’autre part, tout rationnel r s’écrit de

facon unique r = 2, (p,q) € Z x N*, pged (p, q) = 1 (Iécriture canonique de 0 est
q
donc 0= %). L’ application définie par

N

— Z X
— (p,q)

< IO

est donc une injection. Or Z x N est équipotent 2 N2, lui-méme équipotent a N,
donc par composition, il existe une injection de Q dans N.

On déduit immédiatement de la proposition précédente

Corollaire 2.2. (a) Pour tout d>1, N est dénombrable,

(b) Pour tout d > 1, si les ensembles X1, ..., Xy sont dénombrables, alors le
produit cartésien X1 X ... X Xy est dénombrable. En outre, si tous les X; sont
non vides, X1 X ... X Xy est infini dénombrable dés que I'un des X; est infini
dénombrable.
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DEMONSTRATION : On établit directement le point (b) via une récurrence sur d > 2.
Supposons d = 2. Les ensembles X; et Xy étant dénombrables, il existe deux
injections ®; de X; dans N, i € {1,2}. On vérifie immédiatement que 1’application
®: X7 x X9 — N x N définie par ®((x1,x2)) := (P1(x1), P2(z2)) est injective.
Le produit X; x X5 est donc dénombrable.

Supposons, par exemple, X infini dénombrable. Alors X3 éq. N et I’on peut
supposer que ®5 est une bijection. Soit ¥ € X un élément fixé de 1’ensemble non
vide X7. L’ensemble N s’injecte dans X1 x X3 via U(n)= (29, (®2)~1(n)).

Le passage de d a d + 1 se fait en notant d’abord que

X1X...XXdXXd_H:(XlX...XXd)XXd_H.

Enfin, quitte a changer I’indexation des ensembles, on peut toujours supposer, si
I’un des ensembles X; est infini dénombrable, qu’il s’agit de Xj41. ¢

Proposition 2.5. Une réunion dénombrable d’ensembles dénombrables est dénom-

brable.

DEMONSTRATION : Soit X = UXi’ I C N ou chaque ensemble X;, ¢ € I,

icl
est dénombrable. Pour tout ¢ € I, on considere une injection ¢; de X; dans N.
Pour chaque € X, on définit I’entier naturel n(z) := min{i € I;z € X;}.

Lapplication ® définie par

d: X — N?
est une injection. En effet, si « # v, soit n(x) # n(y) et ®(z) # P(y), soit

n(x) = n(y) = n auquel cas z, y € X, et p,(x) # pn(y) car @, est injective,
donc ®(z) # ®(y). Par conséquent, X est dénombrable. ¢

I
I
|
. 02 (03

FIGURE 2.1 — Dénombrabibilité de N x N
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Remarque : Si I'un des X; est infini dénombrable alors X 1’est aussi grace a la
proposition 2.4 (c).

Enfin, on montre le théoréme essentiel suivant :

Théoreéme 2.2. L’ensemble R est infini non dénombrable. Plus précisément,
cardR = card Z(N).

DEMONSTRATION : Soit & I’application définie par
®:{0,1}N — [0,1/2]

+oo
z = (Tp)n>0 — Z

n=0

In
3n+1’

® est une injection car, si (2, )n>0 7# (Yn)n>0, £ := min{n; z, # y,} est fini. Or

1 X1 11
[®(z) — 2(y)| = 3041 —n_%;rlgn_ﬂ = 53041 >0,

donc, Z(N), qui est équipotent 2 {0, 1}, s’injecte dans I’intervalle [0, 1/2] par ®.
Comme [0, 1/2] s’injecte a son tour dans R via I’injection canonique, il vient

card N < card Z(N) < cardR.

A ce stade, Z2(N) étant infini non dénombrable, il est immédiat qu’il en est de
méme pour R.
Pour établir 1’égalité card R = card #(N), on s’appuie d’abord sur I’applica-
tion bijective
p:R — ]0,1]
eIE

T —> .
1+e”

11 vient alors
card [0, 1] < card R = card |0, 1[ < card [0, 1]
et partant, card R = card [0, 1[. Soit W I’application définie par

xo:=[21],

W :[0,1] — {0,1}N ol e
x+— U (z) := (Tn)neN T = [2"+1 (m —Z )] ,n>1,

([x] désigne la partie entiere de x). ¥(x) est alors le développement dyadique
+00

propre de x et I’on a I’égalité x = Z

n=0

Tn,
2n+1

qui entraine a son tour I’injectivité



Exercices 43

de ¥. Donc card R = card [0, 1[ < card {0, 1}N = card £2(N). On en conclut que
card R=card Z(N), ce qui acheve la démonstration.

2.3 Exercices

2.1 Soit f : X — Y une application.
a) Montrer I’équivalence des énoncés suivants :

() f surjective,

(ii) pour tout B€ 2(Y), f(f~1(B)) = B,

(731) pour tout Ac Z(X), °f(A) C f(A).
b) Montrer I’équivalence des énoncés suivants :

() f injective,

(ii) pour tout A€ 2(X), f~1(f(4)) = A,

(i7i) pour tout Ac 2(X), f(“A) C f(A),

(iv) pour tous A, Be Z(X), f(ANB) = f(A)N f(B).
2.2 Soient A, B€ Z(X). Exprimer lea, 1anp, 1aus, 14\petlaap alaide des
fonctions indicatrices 1 4 et 1.

2.3 a) Soient Ay,..., A, € Z(X),n > 1. Montrer que

n

Y, a) =220 > Yy

k=1 Ic{1,...,n},card(I)=k

b) En déduire, si X est fini, la formule de Poincaré :

card (L:Jl Ai> - zn: MY cad (ﬂ Ai>.

k=1 Ic{1,...,n},card(I)=k iel
2.4 a) SoitneN* et py,...,p, n nombres premiers distincts. Montrer que N™ est
dénombrable a I’aide de I’application définie par ((kl, ey k) = p’fl e pfl")

b) En déduire que le produit cartésien d’un nombre fini d’ensembles dénombrables
est dénombrable. Que peut-on dire d’un produit cartésien infini dénombrable d’en-
sembles dénombrables ?

2.5 Montrer que R n’est pas dénombrable en considérant le développement décimal
propre de chaque réel (i.e. celui dont la suite des décimales ne stationne pas en 9)
dans [0, 1].

2.6 Montrer que I’ensemble des parties infinies de N, et plus généralement d’un
ensemble infini, n’est pas dénombrable.

2.7 Montrer que I’ensemble A des nombres réels algébriques, i.e. racines d’un po-
lynéme a coefficients entiers, est dénombrable.
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2.8 Montrer que les points de discontinuité d’une fonction f : R — R monotone,
est dénombrable.

2.9 Montrer que tout ouvert {2 de R est réunion dénombrable d’intervalles ouverts
deux a deux disjoints.



Chapitre 3

Quelques compléments de topologie

Ces quelques rappels et compléments ne sauraient en aucun cas se substituer
a un cours de topologie générale ou de structures métriques. Seules les notions
absolument indispensables en théorie de la mesure et en intégration sont abordées :
la droite achevée R, les limites supérieure et inférieure, la séparabilité et les bases
dénombrables d’ouverts et, enfin, les fonctions distance a un ensemble. A I’inverse,
des notions de base comme I’adhérence ou I'intérieur d’un ensemble, la compacité,
dont il sera fait abondamment usage dans la suite, ne sont ni développées, ni méme
redéfinies ici. En cas de doute ou d’absence, le recours a un manuel de topologie
générale ou, plus simplement, de structures métriques (e.g. [18]) s’impose.

3.1 La droite achevée

La droite achevée, généralement désignée par R, est un espace métrique or-
donné répondant a trois exigences essentielles :

— étre un sur-ensemble de R aussi “petit” que possible au sens de 1’inclusion,
— étre compact et totalement ordonné,

— étre compatible avec la droite réelle au sens ou I’ordre et la topologie sur R,
restreints a R, coincident avec I’ordre naturel sur R et la topologie associée a la
métrique de la valeur absolue.

Il existe plusieurs fagons de procéder qui, peu ou prou, se ramenent a fabri-
quer un homéomorphisme entre R et un intervalle ouvert de R que I’on prolonge
convenablement. Considérons, par exemple, I’application

f: R — |-1,1]
x

R e G
2 +1
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La fonction f est clairement un homéomorphisme entre R et |—1, 1] (sa réciproque

) = — Y est bien continue). Or, comme 1’intervalle ouvert | — 1,1] a

V1= 2
pour adhérence dans R intervalle compact [—1, 1], I'idée pour construire R est
d’ajouter deux éléments notés — : et + : a R pour en faire les antécédents de —1 et
1 par un prolongement f de f a R.

On définit donc
ﬁZRU{_‘_ :a_:} et f\R ::fv f(_ :) = _1a f(+ :) =1L (31)

Reste maintenant — et ¢’est le plus important — & définir sur R un ordre total,
noté <, et une distance .

Ordre surR :

(7) Tordre usuel sur Ri.e. z <y siy —x€ Ry lorsque z, y € R,
(i) VzeR — <z < +:.

Distance surR : . .
Va,yeR, 6(x,y) = |f(z) — f(y)l- (3.2)

La proposition suivante montre que le but recherché est atteint.

Proposition 3.1. (a) La relation binaire < est un ordre total sur R, pour lequel
toute partie non vide possede une borne supérieure et une borne inférieure, et § est
une distance sur R.

(b) L’application identité Id : (R, 6r) — (R, | .|) est un homéomorphisme.

(¢) L'espace (R, ) est un compact, homéomorphe & Uintervalle [—1,1] et R est

ouvert dans R. Il existe un tel homéomorphisme compatible avec les ordres sur R
et [—1,1]; c’est le cas de I’application f définie par (3.1).

DEMONSTRATION : (a) Le fait que soit un ordre total est immédiat. De plus, une
partie non vide de R est : soit majorée dans R et posséde donc une borne supérieure
dans R et R, soit non-majorée dans R et admet alors + : comme borne supérieure
dans R; idem pour la borne inférieure. Concernant la distance, il suffit de noter que
f est injective de R dans [—1,1] car f I’est de R dans | — 1, 1[. Ceci assure que
d(z,y)=0si et seulement si z=y.

(b) Vue la définition de ¢ sur R, la bi-continuité de I’identité pour 0 et | . | consiste
simplement 2 montrer que f est un homéomorphisme entre R et ] — 1, 1[. Ceci a été
établi dans I'introduction de la section. La topologie induite par § sur R coincide
donc bien avec celle définie par la valeur absolue.

L’ application f est clairement une bijection (strictement) croissante entre R et
[—1,1]. Enfin, vu que pour tous z, y € R, |f(z) — f(y)] = 0(z,y), f est une
isométrie bijective, c’est donc un homéomorphisme.
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On en déduit immédiatement que R = f7Y([~1,1]) est un intervalle compact
puisque 1’application fj1 est continue. Enfin R, image réciproque de | —1,1] par
I’application continue f est ouvert dans R.

On déduit immédiatement du point (b) le corollaire suivant ou &4(X) désigne
I’ensemble des ouverts de la topologie définie sur X par la distance d (cf- section 3.3
ci-apres)

Corollaire 3.1. 05(R)NR = 0| |(R).

DEMONSTRATION : En effet si i : R < R désigne I’injection canonique, il vient
pour tout O € O(R), i71(0) = O NR € O(R). Réciproquement, R étant ouvert
dans R, tout ouvert O de R est ouvert dans R, il est donc la trace sur R de. .. lui-
méme. <

3.2 Limite supérieure et limite inférieure

Dans la suite, R est muni de la distance § définie par (3.2) qui est compatible
avec ’ordre sur R et qui en fait un espace métrique compact.

Définition 3.1. Soit (x,)neN une suite d’éléments de R. On définit la limite supé-
rieure de la suite (xy,)neN par

limz,, := inf (supzi) € R
n " nzO(kzg k)

et la limite inférieure de la suite (z,,)neN par

lim z,, := sup ( inf zx) € R.
" n;é(kzn t)

Remarque : Comme toute suite monotone de R converge, on a immédiatement

o .4 . AR
lim z,, := lim (sup xk) et limaz, :=lim ( inf xk)
n n k>n n n k>n

Le résultat suivant établit le lien entre limites supérieure et inférieure, monoto-
nie et continuité; il sera utile dans la suite.

Proposition 3.2. Soit (x,,)nen une suite d’éléments de R et soit f : R — R une
fonction monotone et continue. Alors

f(@afn) = lim f(x,) et f(ﬁxn) = @f(mn) si [ est décroissante.

(xn) si f estcroissante,
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DEMONSTRATION : Etudions le cas de la limite supérieure lorsque f est croissante,

les autres cas se traitent de facon similaire. Posons y,, := sup xx, n € N. La crois-
k>n

sance de f implique 'inégalité f(y,) > sup f(xr). De plus, par définition de la

borne supérieure, il existe une sous-suite ( Ty (k) extraite de (2x)r>y convergeant

vers ¥, dans R (n est fixé). D’ol f(y,) = hm fxom) < sup f(z1) par continuité
k>

de f.Donc f(yn) = sup f(zx). De nouveau par la contmulte de f,ona
k>n

hm flzy) = lim sup f(x) = hm flyn) = f(liglrf Un) = f(@mn),

no k>n
d’ou I’égalité cherchée. ¢

L’intérét des limites supérieure et inférieure réside essentiellement dans le ré-
sultat suivant :

Proposition 3.3. Soit (x,,)neN une suite d’éléments de R. hm T, et hm T, Sont res-

pectivement la plus grande et la plus petite valeur d adherence de la suite (Tn)neN
dans R. De plus, on a

(2 )neN converge dans R < limx, = lim x,,.
n n
DEMONSTRATION : Comme (R, §) est compact, la suite (z,,),en posséde une va-
leur d’adhérence (théoreme de Bolzano-Weierstrass). Soit £ une valeur d’adhéren-
ce de (n)nen. Il existe une suite extraite (7,(,))nen qui converge vers ¢ dans
(& d). Etant donné que z,,) < SUPE > (n) Lk qui converge en décroissant vers
lim x,,, on obtient, par compatibilit¢ de la topologie sur R avec I’ordre sur R,
n
< lim x,,.
n PR
Montrons a présent que ¢ := lim x,, est une valeur d’adhérence de la suite
n

(Zn)nens i-e. par la caractérisation d’une valeur d’adhérence dans un espace métri-

que,
Ve>0,VNeN, In> N, (x,,l4)<ce

On pose y, = f(z,) € [~1 1], n € N, ou f est définie par (3.1). D’apres la
proposition 3.2, on a hm Un = f (¢4) car f est croissante et continue sur R. Par

conséquent, la suite de terme général z,, := supy converge en décroissant vers
k>n

]E(EJF). Soient e > 0 et V€ N. Il existe donc ng > N tel que, pour tout n > no,
flly) <z, < f(¢4) + e. En outre, par définition du sup, il existe n > ng tel que
Yn < Zny < Yn + €. On dispose donc d’'unn > N tel que

Flly) —e<zny —e<yn <2, < fly) +e,
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d’ot 0(zn, 1) = |yn — JF(£+)’ <e

On obtient un résultat équivalent pour la limite inférieure en remarquant que

lim x,, = — lim(—x,).
n n

Enfin, (R, §) étant compact, la suite (z,,),en converge si et seulement si elle

posseéde une unique valeur d’adhérence, i.e. limx, = limx,. ¢
n n

Terminons par deux propriétés des limites supérieure et inférieure, relatives aux
opérations + et X.

Proposition 3.4. (a) Soient (x,)neN et (Yn)nen deux suites de R, simultanément
majorées dans [— :, + : [ ou bien minorées dans |— :, + :|. Alors
n n n

lim(zy, + yn) > limx, + lim y,.
n n n

(b) Soient (x,)nen et (Yn)nen deux suites de Ry, simultanément majorées dans
R ou bien minorées dans )0, + :|. Alors

Lim(z, y,) < limz, x limy,,
n n n

n n n

DEMONSTRATION : (a) se déduit des majorations suivantes :
sup(zy, + yx) < Sup x + sup y,
k>n k>n k>n
inf (z + > inf xp + inf yg.
inf (24 +yp) 2 jof 2, + inf y

(b) s’obtient en appliquant (7) aux suites In(x,) et In(y,) — avec la convention
In(0) = — :etln(+ :) = + : — puis en appliquant la proposition 3.2 successive-
ment aux fonctions In et exp. ¢

3.3 Topologie sur un ensemble. Espace métrique
Définition 3.2. (a) On appelle topologie sur un ensemble X la donnée d’une fa-
mille 0(X) de parties de X, vérifiant
(1)Det Xe O(X).
n
(13) Pour toutne€ N*, si O1,...,0,€ O(X) alors m 0;€ 0(X) [stabilité

i=1
par intersection finie].
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(2i1) Soit I un ensemble d’indices quelconque; si O; € O(X) pour tout i € I
alors U 0;€ 0(X) [stabilité par réunion quelconque].
i€l
(b) Les éléments de O(X) sont appelés ouverts de X. Les ensembles complémen-
taires des ouverts sont appelés fermés.

(c) Une topologie est séparée si deux éléments distincts de X appartiennent a deux
ouverts disjoints.

“Exemple” du cas métrique : Si (X, d) est un espace métrique ('), la topologie
de X relative a cette distance d est donnée par la famille d’ouverts

Oq(X) := { U é(xi, i), v; € X, r;€ RY, I ensemble quelconque}
el
ol B(z,r) = {y€ X : d(z,y) < r}.On vérifie qu'une telle famille vérifie les
axiomes d’une topologie séparée. En outre, il est clair que, dans ce cadre,

OcO0yX) < VzeO,Ir,>0 telque B(z,r,) CO.

3.4 Base dénombrable d’ouverts, séparabilité

Définition 3.3. (a) Un espace topologique (X, 0 (X)) est dit a base dénombrable
d’ouverts sil existe une famille dénombrable d’ouverts non vides {w,,, n>1} telle
que
VOe 0(X), 31 CN telque O = an.
nel
(b) Un espace métrique (X, d) est dit séparable s’il contient une suite (,)neN
dense ().

Proposition 3.5. Un espace métrique est séparable si et seulement si il est a base
dénombrable d’ouverts.

DEMONSTRATION : (=) On vérifie qu’une base dénombrable d’ouverts est consti-
tuée par { B(zy, 1), n€ N, r€ Q% }. En effet, pour tout ouvert O de X,

0= U B(zyp, 7).

B(zyn,r)CO
Quant a la dénombrabilité de N x Q% , elle découle des résultats sur les cardinaux
établis dans le chapitre 2.

(<) Soit (wp,)nen une base dénombrable d’ouverts. Il est immédiat que toute
suite (zy, )nen telle que z, € wy, estdense. O

1. Rappelons qu’une distance est une application d : X x X — R4 vérifiant : d(x,y) =0 si et
seulement si x=vy; d(z,y) =d(y, z); d(x,y) <d(z, z)+d(z,y) pour tous z,y,z € X.

2. Rappelons qu’une suite (zn)nen est dense dans X si, pour tout x € X, il existe une suite
extraite (., (n))nen telle que d(z,, (ny, ) — 0.
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3.5 Exemples de constructions de topologies

3.5.1 Topologie induite

Définition 3.4. Soit (X, 0(X)) un espace topologique et Y C X une partie de X.
On définit la topologie induite (par celle de X') sur'Y en posant

oY) ={0nY, Oc 0(X)}.
Il est anoter que sii : Y — X désigne I’injection canonique, alors
oY)={i"'0), 0Oe 0(X)} =i ' (0(X)).
En outre, une topologie induite par une topologie séparée est elle-méme séparée.

— Le cas métrique : Si la topologie sur X est métrique relativement a une dis-
tance d, on vérifie immédiatement que &(Y') = Oy, (Y') ou djy désigne la restric-
tion a Y de la distance d.

— Topologie induite et séparabilité : Si (X, d) est séparable, il est a base dénom-
brable d’ouverts. Or, par définition méme de la topologie induite, si (wy,) nen st
une base dénombrable d’ouverts de X, alors (w, N'Y),cN est une base dénombra-
ble d’ouverts de Y donc (Y, d) est séparable.

3.5.2 Topologie produit

Définition 3.5. Si (X,0(X)) et (Y, O(Y)) sont deux espaces topologiques, 1a to-
pologie produit sur X XY est définie par la famille d’ouverts :

O(X xY) = { J(0ix ), 0;x 2 € 6(X)x O(Y), i € I (ensemble ch)}.
i€l

Remarques : e La topologie produit issue de deux topologies séparées est elle-

méme séparée.

e [a topologie produit sur X x Y est la plus petite topologie sur X XY qui rende
continues les projections canoniques 7, et 7w, de X XY respectivement sur les
espaces topologiques (X, (X)) et (Y, 0(Y)).

Si les topologies sur X et Y sont métriques relativement a des distances d et 4,
on vérifie immédiatement (voir par exemple [18]) que &'(X xY') est également la
topologie associée aux distances usuelles sur X x Y, comme par exemple

Di((w,y), (@ y)) := d(z,2") + 6(y,9/),
Dy((z,y), (',3/)) = ((d(z,2")” + 6(y,y')?)», pourpe [L+: |,
D.((x,y), (2',y)) = max (d(z,2),d(y,y)),

et bien d’autres distances sur X x Y définissent cette topologie produit.
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Proposition 3.6. (a) Si (X,0(X)) et (Y,0(Y)) sont a base dénombrable d’ou-
verts, (X XY, 0(X xY)) est a base dénombrable d’ouverts.

(b) Si (X,d) et (Y, ) sont séparables alors X XY est séparable pour toutes les
distances (topologiquement) équivalentes définissant la topologie produit, e.g. les
D, pe[1,+ ]

DEMONSTRATION : (a) Soient %, = {U,, n > 1} et ¥, :={V,,, n > 1} deux
bases dénombrables d’ouverts, respectivement de X et Y. Alors, la famille dénom-
brable %, x ¥, :={Uy, X Vin, (n,m) € N?} est une base d’ouverts de 0(X xY).
En effet, si O € O(X xY) et z= (z,y) € O =U;c;O; x ), il existe i, € I tel
que (z,y) € O;, xS, ; par définition des bases dénombrables d’ouverts %, et 7,,,
il existe alors deux entiers n, et my, tels que x € Uy, C O;, ety € Vi, C Q..
Finalement, il vient donc

0= U Uny X Vi, = U Up X Vi ol Lo = {(ng,my), (r,y)€ O} C N2
(z,y)€0 (n,m)eZLo

(b) Ce point est un corollaire immédiat de (a) et de la proposition 3.5. On peut
également procéder directement : si {x,,, n>1} et {y,, n>1} sont respectivement
denses dans (X, d) et (Y, 0), il est immédiat de par la définition des distances D,,
que {(zn, Ym), n, m>1} estdense dans (X xY,D,). ¢

3.6 Distance d’un point a un ensemble

Définition 3.6. Soit (X, d) un espace métrique et A une partie non vide de X. Pour
tout v € X, on définit la distance de x a A par
d(xz,A) := inf d(z,a) <+ :.
acA
Ces fonctions interviennent treés souvent en théorie de la mesure car elles four-

nissent un moyen efficace d’approcher des fonctions indicatrices d’ensemble par
des fonctions continues.

Proposition 3.7. (a) Pour tout partie non vide A de X, la fonction x — d(x, A), a
valeurs dans R, est lipschitzienne de rapport 1 pour la distance d, i.e.

V:L",yGX, |d($7A)_d(yaA)‘ Sd(ﬂ?,y)
(b) L’ensemble {x € X : d(x, A)=0} est égal a A (adhérence de A dans X).

DEMONSTRATION : (a) Pour tout z € A, d(z, A) < d(z,z) < d(z,y) + d(y, 2).
Par suite, d(x, A) — d(z,y) est un minorant des d(y, z), z € A.

Partant, d(x, A) — d(z,y) < d(y, A), et finalement, d(z, A) — d(y, A) < d(z,vy).
Les points x et y jouant des roles symétriques, 1’inégalité a bien lieu en valeur
absolue.



Exercices 53

(b) La distance d(x, A) étant toujours positive ou nulle, il découle de la définition

du sup que d(z, A) = 0 si et seulement s’il existe une suite (a,)nen telle que

lim d(z, a,,) =0. D’ou le résultat, par définition de I’adhérence de A dans un espace
n

métrique. ¢

D’autres propriétés de ces fonctions seront établies au fil des besoins, mais
toutes reposent sur la proposition 3.7.

3.7 Exercices

3.1 a) Soit (a,)n>0 une suite réelle vérifiant :

Vp,n,m >0, appyr <pap +ra ol «estunréel fixé.

. ra - . .a
Montrer que la suite (—n> converge dans R vers inf —*.
n />t n>1 n

1, [k
b) Soit f : [0,1] — R une fonction croissante. On pose ST{ = — E f () pour
n n
k=1

tout 7 > 1. Montrer, 2 I'aide de a), que la suite (S5, )n>1 converge dans R vers sa
borne inférieure.

3.2 Soit une fonction f : Ry — Ry telleque Vz,y > 0, f(zy) < f(x) f(y).
Montrer que, pour tout z >0, la suite de terme général ((f (z™)Y/ ")n>1 converge
vers un élément de [0, f(z)]. Appliquera f(x) := (1+z)% ota>0.

3.3 Soit M;(K) I’ensemble des matrices (d x d) a coefficients dans K, muni d’une
norme || - || telle que :

VA, BeMy(K), [[AB| <[[Al[]B]].
Montrer que, pour toute A € My(R), la suite de terme général HA”H% converge
vers un élément de [0, || Al|].

3.4 a) Soient X un ensemble non vide et une suite ( f,,),>1 de fonctions f;, : X —
R bornées, qui converge simplement vers f : X — R bornée. Montrer que

sup f(x) < lim (Sup fn(m))

zeX n reX

Etablir une inégalité analogue pour I’inf.

b) Donner un exemple ou 1’inégalité est stricte. Montrer qu’il y a égalité si la
convergence de la suite ( f),),>0 est uniforme.

3.5 Soit (Ay,)n>0 une suite de (X ). On pose

@An = ﬂ UAk et lLim A, = U ﬂAk.

n>0k>n n>0k>n
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a) Calculer les fonctions indicatrices 1, . A, 1,04, 15w, 4, €t Lim, 4, @
I’aide des 14,,.

b) En déduire les propriétés suivantes :
(i) ¢(lim A,,) = lim “4,, et lim A, C lim A,
n n n n
(“)@An = {Zn>0 1An:+00} et limA, = {Zn>0 1CAn<+OO},
> - >

(i1) Trm (A, U By) = Tim A, UTim B,y et T (A, N By) C Tim Ay, N Tim By,



Deuxieme partie

Théorie de la mesure






De Riemann vers Lebesgue

Le principe fondateur de 1’intégration au sens de Riemann est d’approcher la
surface comprise entre 1’axe des abscisses et la courbe du graphe de f a 1’aide de
“petits” rectangles [a;_1, a;| %[0, ®;] basés sur I’axe des abscisses et dont la hauteur
®, est proche de la hauteur “moyenne” de la fonction f sur [a;_1,a;]. Cest trés
précisément cette idée qu’exprime le théoreme sur les sommes de Riemann (cf.
théoreme 1.4).

fw)
Qi———————

| V]

a Q-1 G4 b
FIGURE 3.1 — Intégrale selon Riemann

L’idée novatrice apportée par la théorie de I’intégrale de Lebesgue est, a I’in-
verse, de commencer par découper en “petits” intervalles [b;_1,b;] I’axe des or-
données, puis d’approximer la surface située sous le graphe de f par

b bj—1+b;
/a f~ Z % x longueur ({z : bj_1 < f(z) < bs}).
j

La principale difficulté réside dans le fait que les ensembles
B = f{a: by < f(x)<bj)

ne sont généralement pas des intervalles et que leur associer une longueur — ou plus
généralement une “mesure” — est délicat voire méme, dans certains cas, impossible.

FIGURE 3.2 — Intégrale selon Lebesgue
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Avant d’aborder la théorie de I’intégration au sens de Lebesgue elle-méme dans
la partie II1, il nous faudra donc d’abord définir ce qu’est un ensemble pouvant étre
“mesuré”, puis une fonction susceptible d’étre intégrée et enfin une mesure elle-

méme. C’est I’objet de cette seconde partie.

Cependant, au cas ol certains s’interrogeraient sur le caractere central de I’in-
terversion du role joué par les abscisses et les ordonnées dans I'intégrale de Le-
besgue par rapport a celle de Riemann, nous avons jugé instructif de reproduire in
extenso le texte fondateur de Lebesque tel qu’il est paru a I’époque aux Comptes-
rendus de I’Académies des Sciences de Paris (cf. [2]), sous forme d’une note de... 4
feuillets. D’autres textes plus étoffés suivront, notamment [4], mais chacun pourra
constater que 1’essentiel y est !

Les deux notes de bas de page ci-apres font partie intégrante du texte original.

Sur une généralisation de I’intégrale définie

Par M. Henri Lebesgue
29 avril 1901

Dans le cas des fonctions continues, il y a identité entre les notions d’intégrales
et de fonctions primitives. Riemann a défini I’intégrale de certaines fonctions dis-
continues, mais toutes les fonctions dérivées ne sont pas intégrables, au sens de
Riemann. Le probleme de la recherche des fonctions primitives n’est donc pas
résolu par I’intégration, et I’on peut désirer une définition de I’intégrale comprenant
comme cas particulier celle de Riemann et permettant de résoudre le probleme des
fonctions primitives 3.

Pour définir I’intégrale d’une fonction continue croissante

yle) (e <z <b),

on divise I'intervalle (a,b) en intervalles partiels et I’on fait la somme des quan-
tités obtenues en multipliant la longueur de chaque intervalle partiel par 1’'une des
valeurs de y quand z est dans cet intervalle. Si x est dans I'intervalle (a;, a;y1),
y varie entre certaines limites m; et m;y1, et réciproquement si y est entre m; et
m;y1, T est entre a; et a; 1. De sorte qu’au lieu de se donner la division de la
variation de z, c’est-a-dire de se donner les nombres a;, on aurait pu se donner la
division de la variation de y, c¢’est-a-dire les nombres m;. De la deux manieres de
généraliser la notion d’intégrale. On sait que la premiere (se donner les a;) conduit

3. Ces deux conditions imposées a priori a toute généralisation de I’intégrale sont évidemment
compatibles, car toute fonction dérivée intégrable, au sens de Riemann, a pour intégrale une de ses
fonctions primitives.
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a la définition donnée par Riemann et aux définitions des intégrales par exces et par
défaut données par M. Darboux. Voyons la seconde.
Soit la fonction y comprise entre m et M. Donnons-nous

m=mg<mg <mg<---<my_1<M=mp;

y = m quand x fait partie d’'un ensemble Fy; m;_1 < y < m; quand z fait partie
d’un ensemble F;.

Nous définirons plus loin les mesures Ao, A; de ces ensembles. Considérons
I’une ou I’autre des deux sommes

moAo + Zmi)\i ; Moo + Z Mi—1 i

si, quand [’écart maximum entre deux m; consécutifs tend vers zéro, ces sommes
tendent vers une méme limite indépendante des m; choisis, cette limite sera par
définition l'intégrale des y qui sera dite intégrable.

Considérons un ensemble de points de (a,b); on peut d’une infinité de ma-
nieres enfermer ces points dans une infinité dénombrable d’intervalles () la limite
inférieure de la somme des longueurs de ces intervalles est la mesure de I’ensemble.
Un ensemble E est dit mesurable si sa mesure augmentée de celle des points ne
faisant pas partie de £ donne la mesure de (a,b) (7). Voici deux propriétés de ces
ensembles : une infinité d’ensembles mesurables F; étant donnée, I’ensemble des
points qui font partie de I’'un au moins d’entre eux est mesurable; si les F; n’ont
deux a deux aucun point commun, la mesure de 1’ensemble obtenu est la somme
des mesures F;. L ensemble des points communs a tous les F; est mesurable.

I est naturel de considérer d’abord les fonctions telles que les ensembles qui
figurent dans la définition de I’intégrale soient mesurables. On trouve : si une fonc-
tion limitée supérieurement en valeur absolue est telle que, quels que soient A et
B, I’ensemble des valeurs de = pour lesquelles on a A < y < B est mesurable,
elle est intégrable par le procédé indiqué. Une telle fonction sera dite sommable.
L’intégrale d’une fonction sommable est comprise entre 1’intégrale par défaut et
I'intégrale par exces. De sorte que, si une fonction intégrable au sens de Riemann
est sommable, l'intégrale est la méme avec les deux définitions. Or, toute fonc-
tion intégrable au sens de Riemann est sommable, car ’ensemble de ses points de
discontinuité est de mesure nulle, et ’on peut démontrer que si, en faisant abs-
traction d’un ensemble de valeurs de x de mesure nulle, il reste un ensemble en
chaque point duquel une fonction est continue, cette fonction est sommable. Cette
propriété permet de former immédiatement des fonctions non intégrables au sens
de Riemann et cependant sommables. Soient f(z) et p(z) deux fonctions conti-
nues, ¢(z) n’étant pas toujours nulle; une fonction qui ne différe de f(z) qu aux

4. Henri Lebesgue pensait sans doute a des intervalles ouverts, comme nous I’a suggéré notre
collegue Patrick Polo.

5. Si I’on ajoute a ces ensembles des ensembles de mesure nulle convenablement choisis, on a
des ensembles mesurables au sens de M. Borel (Legons sur la théorie des fonctions [1]).
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points d’un ensemble de mesure nulle partout dense et qui en ces points est égale a
f(z) + ¢(z) est sommable sans étre intégrable au sens de Riemann. Exemple : la
fonction égale a 0 si z est irrationnel et a 1 si  est rationnel. Le procédé de forma-
tions qui précede montre que 1I’ensemble des fonctions sommables a une puissance
supérieure au continu. Voici deux propriétés des fonctions de cet ensemble.

1- Si f et ¢ sont sommables, f + ¢ et fo le sont et I'intégrale de f +  est la
somme des intégrales de f et de .

2- Si une suite de fonctions sommables a une limite, c’est une fonction som-
mable.

L’ensemble des fonctions sommables contient évidemment y = k ety = x;
donc d’apres 1- il contient tous les polyndémes et comme, d’aprés 2- il contient
toutes ses limites, il contient donc toutes les fonctions continues, c’est-a-dire les
fonctions de premiere classe (voire Baire, Annali di Matematica, 1899), il contient
toutes celles de seconde classe, etc.

En particulier, toute fonction dérivée, limitée supérieurement en valeur absolue,
étant de premiere classe, est sommable, et I’on peut démontrer que son intégrale,
considérée comme fonction de sa limite supérieure, est une de ses fonctions primi-
tives. Voici maintenant une application géométrique : si | f'|, ||, [¢’| sont limitées
supérieurement, la courbe

a pour longueur I'intégrale de / f"2 + ¢’ + ¢"2. Si ¢ = ¢ = 0, on a la variation
totale de la fonction f a variation limitée. Dans le cas ol f/, ¢, ¥’ n’existent pas,
on peut obtenir un théoreme presque identique en remplagant les dérivées par les
nombres de Dini.



Chapitre 4

Tribu de parties d’un ensemble

Préliminaires ensemblistes

Dans ce paragraphe préliminaire ont été regroupés les résultats relatifs au ma-
niement des ensembles et des fonctions qui se révelent absolument indispensables
pour aborder la théorie de la mesure et de I’intégration. Il s’agit pour I’essentiel de
rappels.

(a) Soit X un ensemble, (X ) I’ensemble de ses parties et A, B € Z(X). On
note

AUB = {zx€ X:x€ A ouxe B},

ANB = {re X:xe€ A etxe B},

€A = {re X :z¢ A},

A\B := {zeX:zcAetax¢ B}=AN°B,
AAB = {reX:x€ AUBetx ¢ AN B}

— AUB\ANB=(A\B)U(B\A).

(b)Soit f: X =Y, A; C X, B; CY, i€ I (I ensemble quelconque). On associe
canoniquement a f les fonctions “image directe” fy; et “image réciproque” f,
définies par
fa: 2(X) — 2(Y)
A — fa(A) :={f(z), x€ A}

it 2(Y) — 2(X)
B+ f7YB) :={rec X : f(x)€ B}.

(Par souci de simplicité, et malgré les risques de confusion, on note presque systé-
matiquement f au lieu de fy et f~1 aulieude f,1.)

Ces applications ensemblistes fy et f,~! vérifient les formules de Hausdorff :
soient (A;);cr une famille de parties de X et (B;),cs une famille de parties de Y’
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(I et J étant supposés non vides).

f(Ua) =U k. sa(4) < () fal4)
icl iel icl icl
(avec égalité si f est injective),

(UB)=Us e 51 (NB) =N s,

jedJ jedJ jedJ jeJ

“f71(B) = f71(°B).

Enfin, lorsque la fonction f est bijective, il existe un lien simple entre 1’ap-
plication ensembliste f ! et la réciproque f~! de f : pour toute partie B de Y,

frH(B) ={f"1(b), be B}.
Notation : Si ¢ C Z(Y) est une famille de parties de Y, on note par extension
7€) ={f71(0), Ce ¢} c 2(X).

(¢) Soit (Ay,)pn>1 une suite (dénombrable) de sous-ensembles. On définit la limite
“supérieure” et la limite “inférieure” des A,, par :

lim A, := ﬂ U Ap={re X :¥Yn>1,Fk>ntelque z€ Ay},

n>1k>n

= {ze€ X : v € A infiniment souvent}.

lim A,, := U m Ap={ze X :In>1,Vk>ntelque x € Ay},

n>1k>n

={xe€ X : z€ Ay, apartir d’un certain rang}.

On vérifie immédiatement que lim A,, C lim A,, et ’on parle de lim A,, en cas
n n n

d’égalité entre lim A,, et lim A,,.
n n

En outre, si la suite (A;,),>1 est croissante (resp. décroissante) pour I’inclusion,
alors

lim A, = @An = U A, (resp. ﬂ Ap).

n>1 n>1
(d) Lois de Morgan : ¢ ﬂ A; = U €A; et © U A; = ﬂ CA;.
icl iel icl iel

On en déduit aussitot les relations :

“(lim A4,,) = lim “4,, et “(lim A,) = lim “4,,.

n
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4.1 Tribu, tribu borélienne

Définition 4.1. (a) Soit X un ensemble. On appelle tribu (ou o-algebre) sur X
toute famille <f de parties de X vérifiant :

(i)D e o,

(17) si A € of alors ‘A€ o/  [stabilité par complémentaire],

(idi) si (Ap)nz1 € /N, alors | ] Ap €./ [stabilité par union dénombrable].

n>1

(b) Le doublet (X, /) est appelé un espace mesurable (au sens “susceptible de
recevoir une mesure” ).

Remarque : La condition (i77) entraine la stabilité de la tribu .7 par réunion finie.
11 suffit en effet de poser, ng étant fixé, A,, =@, n>ny.

Exemples de tribus : 1. o7 := {@, X}, tribu dite grossiére.

2. o := P(X), tribu dite triviale.

3.S0it A C X, fixé; & :={0@, X, A, A} : c’est la plus petite tribu contenant le
sous-ensemble A.

4. S1 X = U X, I non vide, fini ou infini dénombrable, X; N X; = @ des que
i#7 (les Xlze,lz € I, forment donc une partition de X) alors

o = { U X, J C I} est une tribu.
JjeJ

5.4 :={Ae P(X), Adénombrable ou “A dénombrable}.
Le seul point a vérifier est I’axiome (7i7). Soit (A, )n>1 une suite d’éléments de o7
S’ils sont tous dénombrables, il en est de méme de leur réunion (cf. proposition 2.5).
Sil’un des A,, disons A,,,, n’est pas dénombrable, son complémentaire 1’est. Par
suite, “(U,, An) =),, An C “Ay, est nécessairement dénombrable.

En outre, on peut montrer que o7 # Z?(X) si et seulement si X a un cardinal
infini non dénombrable (résultat notablement moins trivial qui dépasse le cadre de
cet ouvrage).

6. Si (o );c1, est une famille quelconque de tribus sur X, I #@, alors

o = ﬂ <7, est une tribu.
el
Propriétés 4.1. (a) X € <.

(b) Si A, € o, pour tout n € N, alors m A, € o/ [d’ou la stabilité par inter-

neN
section finie en posant A, :=X, n> ngl.

(¢c)Si A, Be o/ alors A\ B=AN ‘Be .
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(d)Si A, Be o/ alors AAB:= (A\B)U(B\ A)e «.
(€) Si A, € o, pour tout n€ N, alors lim A,, et lim A,, € <7.

n

DEMONSTRATION : (a) X =‘@€ .

(5 () An = C(U CAn) €.

neN neN
Les propriétés (c), (d) et (e) sont immédiates. ¢

Remarque (Contre-exemple) : Si X est un espace topologique (') (ou simple-
ment métrigue), la famille 0(X) := {O € Z(X), O ouvert de X } n’est générale-
ment pas une tribu a cause de ’axiome (ii) : si O est ouvert, alors O n’est en
général pas ouvert. Ainsi R* € ¢/(R) mais ‘R* =R, ¢ O(R).

Proposition 4.1. -Définition (a) Soit & C (X)) une famille de parties de X. 1
existe une plus petite tribu (au sens de I'inclusion) contenant &. On la note o(&) :
¢’est la tribu engendrée par &.

(b) Si T est une tribu, 0(T )= 7.

(¢) Si & C Z, alors 0(&) C o(.F). En particulier, si & C T et T est une tribu,
o(&)C T.

DEMONSTRATION : (@) On considére o(&) := ﬂ Z .Lensemble & (X) est

T tribu D &
bien une tribu qui contient & donc I’ensemble I := {.7, .7 tribu, .7 D&’} est non

vide. o(&’) est donc bien une tribu d’apres I’exemple 6 ci-avant et ¢’est évidemment
la plus petite.

Les points (b) et (¢) découlent immédiatement de la définition d’une tribu en-
gendrée. ¢

Premiers exemples : 1. Soit A€ Z?(X), A # X, non vide fixé. La tribu engendrée
par & := {A}est 4 = {0, X, A, A}.

2. La tribu X engendrée par les singletons i.e. & := {{z}, v € X} n’est autre que
of =={Ae Z(X), Adénombrable ou “A dénombrable}.

Définition 4.2. Soit (X,0(X)) un espace topologique. La tribu borélienne (?)
de X, aussi appelée tribu des boréliens de X, est définie par B(X) := o (0(X)).

Remarques : o Il est immédiat que B(X) = o ({F e Z(X) : F fermé}).
e En régle générale, Z(X) # Z(X), c’est notamment le cas lorsque X = R.
Ce résultat, délicat a établir, peut se montrer par des arguments de cardinalité;

en effet, Z(R) et R sont équipotents (voir [6], exercice 2.6.11 p.286) et, partant,
card #(R) =card R < card Z(R) (cf. proposition 2.1).

1. Voir section 3.3.
2. En hommage au mathématicien francais Emile Borel (1871-1956) qui a mis en évidence I’im-
portance de cette famille de parties pour la théorie de la mesure, alors naissante.
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On peut aussi procéder directement en exhibant, a I’aide de [’axiome du choix,
un ensemble non borélien (voir la démonstration du théoréme 13.2 (b)).

Boréliens d’un espace topologique a base dénombrable d’ouverts : Un espace to-
pologique (ou plus simplement métrique) (X, (X)) est a base dénombrable d’ou-
verts s’il existe une famille (wy, ),en d’ouverts de X vérifiant :

VOe 0(X), ITCN, O=Juw.
el

Ainsi, un espace métrique (X, d) séparable, i.e. contenant une suite (z,,),en dense
(%), est & base dénombrable d’ouverts puisque

{B(xn, r),ne N, re Qi} [N x Q7 est dénombrable]

est une telle base. Pour de plus amples développements on pourra se reporter a la
section 3.3.

On déduit alors immédiatement la proposition suivante de la stabilité d’une
tribu par union dénombrable (axiome (7ii)) et de la définition d’une tribu boré-
lienne.

Proposition 4.2. Soit X est un espace topologique possédant une base dénombra-
ble d’ouverts (wy,)nen. Alors B(X) = o ({wn, n€ N}).

Application 4.1. On se place sur la droite réelle X = R. Il est immédiat que tout
intervalle I de R est un borélien de R puisque 1’on peut toujours 1’écrire la réunion
d’un (intervalle) ouvert et d’au plus deux singletons (fermés). Inversement, cer-
taines familles d’intervalles engendrent la tribu borélienne. Ainsi,

Z(R) =0 ({[a, +oo[, a€ Q}) = 0 ({Ja, +oo, a€ Q})
g ({[_Oo7a[7 ac Q}) =0 ({] - OO,CL], ac Q})

DEMONSTRATION : L’ensemble Q étant dense dans R,
{la, B[, o, e Q, a<By={lp—r,p+ 7], peQ, re Qi }
est une base dénombrable d’ouverts de R. Par suite
AR) =0 ({la,pl, a,fe Q, a<f}).

Or |a, Bl=]a, +oo[ N3, +oo] et o, +00[ = LJT [a 4 1/n,+o00[ donc
n>1

o ({lo, +00[, a€ Q}) D o ({la, B, @, B Q, a<B}) = B(R).

L autre inclusion est immédiate (car les intervalles [cv, +00[ sont des fermés
de R). On procede de facon analogue pour les autres égalités. ¢

3. Au sens ou, pour tout z € X, il existe une suite extraite z,(,) — = quand n — +o0.
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4.2 Autres exemples de tribus

4.2.1 Tribu image-réciproque

Proposition 4.3. Soit f : X — Y et B une tribu sur'Y . Alors
of = {f~YB), Be B} est une tribu sur X.

DEMONSTRATION : Le résultat est évident via les formules de Hausdorff “récipro-
ques” rappelées au début de ce chapitre :

(B =B e | By = (UBa)es 0
B neN neN
74

Définition 4.3. La tribu { f~4(B), B¢ %’} est appelée tribu image-réciproque
(sous-entendu “de % par f”). On la note f~(A) ou o(f).

Exemples : 1. Tribu-trace : Soient Y C X eti : Y — (X, &/). On vérifie que
iTHF)={ANY, Ac &} : c’estla tribu-trace de & sur Y. Si Y € &, alors
iH) C A

2. Tribu-bande : Soitm : X x Y — (X, <) la projection canonique de X x Y
sur X. On appelle tribu-bande 7 '(«/) = {AxY, Ac «}.

4.2.2 Tribu image

La terminologie employée est trompeuse car si f : X — Y est une application
et o7 une tribu sur X, alors { f(A), A€ &7} n’est pas une tribu sur Y en général.

Définition 4.4. Soit f : X — Y et o7 une tribu sur X. On appelle tribu image de
o par f, la tribu surY définie par B = {B c2(Y): fY(B)e szf}

La famille Z est clairement une tribu via les formules de Hausdorff “réciproques”.

4.3 Lemme de transport
La proposition suivante est connue sous le nom de lemme de transport.
Proposition 4.4. Soient f : X — Y et & C P (Y). Alors
o (f_l(c?)) = 1 o(&)) [toutes deux sont des tribus sur X].

DEMONSTRATION : On montre la double inclusion.

e e fHa(#)  done o (F71(8)) € 7 (a(6)).

tribu (cf. proposition 4.3)
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On considere 4 la tribu image de la tribu o (f (&) par f i.e.

B:={Be 2(Y): f1(B)eo(f1&))}. & C Bdonco(&) C A et, partant,
[ (0(&)) C fH(2B). Par définition méme de B, f~(#) C o (f~(&)) donc
fHe(@) co(f (&) ¢

Remarque : L’énoncé est en fait aisé a retenir, la principale difficulté étant de
comprendre la signification de chacun des deux termes.

Proposition 4.5. (a) Si X est un espace métrique (resp. topologique) et Y C X
est muni de la distance (resp. topologie) induite (cf. paragraphe 3.5.1), alors

BY)={ANY, Ac B(X)}.
(b) En outre, B(Y') C B(X) si et seulement siY € ZB(X). Dans ce cas,
BY)={Aec B(X), ACY}.
DEMONSTRATION : (a) En effet, si I’on désigne par i I’inclusion canonique
i:Y =X, 0):={0nY,0€ 0(X)} =i (0(X)),il vient
BY)=0 (i7O(X))) =i 0(0(X))) =i (B(X))={ANY, A€ ZB(X)}. ¢
(b) est immédiat car une tribu est stable par intersection finie.

Application 4.2. (a) Boréliens de quelques parties boréliennes usuelles de R :
BRy)={Aec B(R) : AC Ry} car Ry est fermé dans R donc borélien; par suite
BR*)={Aec B(R):0¢ A}, etc.

(b) Boréliens de R : Si X =R et Y =R, on est exactement dans le cadre d’ap-
plication de la proposition 4.5 comme le montre le corollaire 3.1. On en déduit
que

BR) C {A, AU{+o0}, AU {00}, AU {o0}, Ac B(R)}.

Réciproquement, les ensembles {400}, {—oo}, {£oo} sont finis donc fermés

dans R et sont donc dans #(R). D’autre part, toujours via la proposition 4.5,
A(R) C A(R) puisque Re O(R) C #A(R). On en déduit une premiére caractérisa-
tion des boréliens de R :

B[R) = {A, AU {+00}, AU{—oc}, AU{+o0}, A€ BR)}.  (@4.1)

Comme la tribu borélienne sur R, la tribu %(R) est engendrée par les intervalles
(ici généralisés) [a, +00], a€ R, i.e.

AR) = o({[a, +0], a€ Q}) = o0({]a, +0], a€ Q}). (4.2)

Posons .7 := o ({[a, +oc], a € Q}). Les intervalles généralisés [a, +oc] étant des
fermés de R, donc des boréliens, il est immédiat que .7 C %(R). D’autre part

{+oo} = () [, +00] € T et {—o0} :c( U [—n,+oo]) e 7.

n>1 n>1
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Par suite, R = R\ {£00} € .7, si bien que, si i désigne I’injection canonique de R
dans R, i71(.7) C .7 (cf exemple 1). Le lemme de transport entraine alors que

H(7) = o({i" ([a, +o0)), a€ Q}) = o({[a, +oc[, a€ Q}) = B(R).

En conséquence, #(R) C 7. Le résultat découle alors de la caractérisation (4.1).
L égalité Z(R) = o ({]a, +00], a€ Q}) s’établit de facon analogue.

4.4 Exercices

(X, /) désigne un espace mesurable.

4.1 Quelle est la tribu engendrée par I’ensemble des parties finies de X ? Donner
une condition suffisante pour qu’elle coincide avec & (X).

4.2 a) Soient &7 et # deux tribus sur X. o7 U A est-elle une tribu sur X ?
b) Montrer que

o(dUB)=0({AUB: Ac, BeEB}) =c({ANB: Acd, BEA}).

4.3 Soient pour n € N*, 19 :=0, [, I¥ := [& B[ ke {1,...,2" 1}, et]a

tribu %, définie sur |0, 1[ par %, := o ({IF, 0 <k <2"}). Montrer que la suite
des tribus 4, est croissante mais que leur union n’est pas une tribu.

4.4 Soient (X, «7) et (Y, #) deux espaces mesurables ; on note, pour toutes parties
CCAADCRB,ECRY :=0({AxB, Ac€¢, BEZ}). On considere des parties
¢ de of et 7 de A telles que o =0(€), B=0(Z) et X XY € € x Z. Montrer
QUeERY = A RAB.

La tribu o7 ® A est appelée la tribu produit et sera étudiée en détail dans le cha-
pitre 11.

4.5 On définit [’atome de la tribu 7, engendré par x € X par & := ﬂ A.
€A, Ace/

a) Montrer que, pour tout z € X, I’atome de x est égal a la classe d’équivalence de

modulo la relation d’équivalence ~ définiepar: z ~ ysiVAe o/, € A< yeA.

b) Montrer que si </ est dénombrable alors <7 contient ses atomes et que chaque

élément de o s’écrit comme une réunion au plus dénombrable d’atomes.

¢) En déduire que la tribu .27 est soit finie, soit non dénombrable.



Chapitre 5

Fonctions mesurables

Dans la théorie de I’intégration de Lebesgue, les fonctions mesurables (a va-
leurs réelles ou complexes) joueront en grande partie le rdle dévolu aux fonctions
Riemann intégrables dans la théorie élémentaire.

5.1 Définitions

Définition 5.1. (a) Soient (X, .o/) et (Y, B) deux espaces mesurables. Une fonc-
tion f: (X, o) — (Y, B) est (<7, A)-mesurable (ou plus simplement mesurable)
si VBe B, f~1B)e .
(b) Si X et'Y sont des espaces métriques (ou plus généralement topologiques)
munis de leurs tribus boréliennes respectives o :=B(X ) et B:=RB(Y), on parle
alors de fonction borélienne.

Remarques : e La mesurabilité de f peut s’exprimer a I’aide de la tribu image
réciproque via I'inclusion f~1(%) C /. La tribu f~1(%) est donc la plus petite
tribu sur X rendant la fonction f mesurable; d’ou, par analogie avec la notion de
tribu engendrée, I’ autre notation o ( f).

e Dans les applications courantes, Y :=R, R, C, R ou R? et est muni de sa tribu
borélienne. On omettra alors couramment de faire figurer celle-ci.

e Si A C X, on définit I’indicatrice (ou fonction indicatrice) de A par :
1a: (X, o) — ({0,1}, 2({0,1}))

1 size A

0 siz¢ A

x

On constate que la fonction 1 4 est mesurable si et seulement si A€ o7

Notation : Tres souvent, on adoptera la notation {f € B} en lieu et place de
f~YB):={x€ X : f(x) € B}. Ainsi {f > b} désignera f~1([b, +oo[), {f = b}
désignera f~1({b}), etc, selon les nécessités du probleme.
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Exemple : Toute fonction constante f : (X, /) — (Y, %) est mesurable. En
effet, si f(x) =yo pour tout z € X, il est clair que f~!(B) = X ou @ selon que
Yyo€ Bouyp¢ B.

Proposition 5.1. Soit [ : (X, o) — (Y, %) avec B = o(&) on & désigne une
famille de parties de Y. Alors

f est mesurable si et seulement f~(&) C of
(au sens :¥Be &, f~1(B)e o).

DEMONSTRATION : La fonction f est mesurable ssi f~1(%) C «7.Or f~1(%) =
[ 0(&)) =0 (f71(&)) dapres le lemme de transport (cf. proposition 4.4); f
est donc mesurable si et seulement si o ( Y& )) C &/ ou encore de maniére
équivalente f~1(&) C <7, puisque <7 est une tribu. ¢

Application 5.1. (a) f : (X, o) — (R, %(R)) ou (R, %(R)) est mesurable si et
seulement si

VaeR, {f>a}={zeX: f(z)>a}le .

(b) Plus généralement, si Y est un espace topologique, 1’application
f:(X, o) — (Y,2(Y)) est mesurable si et seulement si

YOe o), f10)e .

(¢) En particulier, si X et Y sont des espaces métriques (voire topologiques), toute
fonction continue de X dans Y est borélienne.

Proposition 5.2. Soit f : (X, o) — (Y, A). Soit Y' € P tel que f(X) C Y.
Alors f est (o7, BB)-mesurable si et seulement si

VBe B, BCY' fY(B)e .

En outre, f vue comme fonction de (X, <) dans Y’ est mesurable pour la tribu-
trace de B surY”.

DEMONSTRATION : L’implication directe est évidente.

Réciproquement, soit B € . 1l est clair que BNY' € 2 puisque Y' € A. Par
suite, f~1(B) = f~Y(BNY') € o par hypothese. L affirmation sur la tribu-trace
est évidente : lorsque Y’ € 2, celle-ci est précisément constituée des éléments de
% contenus dans Y'. ¢

Application 5.2. (a) Si f : (X, %) — (R, %(R)) est mesurable et positive alors
f est mesurable de (X, .7) dans (R4, ZA(R4)). Et inversement si f : (X,.o/) —
(Ry, #(R.)) est mesurable alors f : (X, <) — (R, A(R)) I'est aussi car Z(R.)
est la tribu-trace de A(R) sur R

(b) Si f: (X, o) — (R, Z(R)) est mesurable alors f : (X, o) — (R, B(R)) est
mesurable et, inversement, si f : (X, .27) — (R, 2(R)) est mesurable et f(X) C R
alors f: (X,./) — (R, #(R)) est mesurable.
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Proposition 5.3 (Composition). Soient (X, .o7) N (Y, B) L5 (Z,€).Si fetg
sont mesurables alors g o f est mesurable.
DEMONSTRATION : Soit C'€ €. (gof) " HC) = f g 1 (C))e . ¢

——
€%

En combinant "application 5.1 (¢) et la proposition 5.3, on peut construire de
nouvelles fonctions mesurables a partie d’une fonction mesurable donnée.

Application 5.3. (a) Soient a eRetf:(X,o) — (R,%(R)) mesurable. Alors
max(f,a), min(f,a), | f|, f*:=max(f,0), f~ :=—min(f,0) sont mesurables.
(b) Si f: (X, o) — (R*, B(R*)) est mesurable alors 1/f est mesurable; si f :

(X, o) — Ry est mesurable, alors 1/ f 1’est aussi et si, en outre, f ne s’annule pas,
In(f) Iest, etc.

Proposition 5.4. Soit f = (f1, f2) : (X,27) — (R%, B(R?)). La fonction f est
mesurable si et seulement si fi et fo le sont comme fonctions de (X, <) dans

(R, Z(R)).

DEMONSTRATION : (=) f; = mof o 7 : R?> — R désigne la 1% projection
canonique i.e. m1((x1, x2)):=x1. 7 est continue donc mesurable et partant f I’est
aussi.

(<) B(R?) := o (O(R?)) et, par définition de la topologie produit de deux espaces
métriques séparables,

O(R?) = { \J (Ui x Vi), U3, Vi ouverts de R, T dénombrable} (cf. section 3.4).
i€l
D’ot il vient, clairement, Z(R?) = o ({U x V, U, V ouverts de R}). D’apres la
proposition 5.1, f sera mesurable si f~Y(U x V) € &, U, V ouverts de R. Or,
fTHU V)= f1 HO)nf (Ve 6
~——

64&7 <4

Application 5.4. (a) Sil’on identifie C et R? [i.e. z=x + iy = (x, y)], la proposi-
tion 5.4 se reformule en : 1a fonction f : (X, o) — (C, %(C)) est mesurable si et
seulement si R(f) et I(f) le sont.

(b) Si f : (X, <) — R ou C est mesurable alors |f|P, p > 0, est mesurable car
(u > |u|P) est continue sur R, R ou C, donc borélienne.

5.2 Opérations sur les fonctions mesurables

Proposition 5.5. Soient f,g : (X, ) — (R, B(R)) deux fonctions mesurables.
Alors, pour tout a € R, o f + g et f g sont mesurables.
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DEMONSTRATION : D’apres la proposition 5.4 ci-avant, I’application

(f,9) : (X, o) — (R?, %(R?)) est mesurable puisque ses composantes f et g
le sont; d’autre part, les applications somme : (x1,x2) — ax1 + x2 et produit :
(71, 79) + z172 de (R?, B(R?)) dans (R, Z(R)) sont continues donc boréliennes.
On conclut via la proposition 5.3. ¢

Corollaire 5.1. La proposition 5.5 s’étend aux fonctions a valeurs complexes.

DEMONSTRATION : En effet, si f est mesurable, R(f) et I(f) le sont, donc,
d’apres la proposition 5.5, R(f +¢g) =R(f) +R(g) et S(f +9) =S (f) +(g) sont
mesurables. Partant, f + g I’est aussi grace a I’application 5.4. Le produit, notam-
ment par une constante complexe, se traite de facon analogue a partir des formules
du produit de deux nombres complexes.

Ces propriétés se résument ainsi :

Proposition 5.6. L’ensemble des fonctions mesurables de (X, .o/) dans (K, Z(K))
muni des opérations usuelles +, -, x sur les fonctions est une K-algebre ().

Proposition 5.7. Soit (fy)n>1 une suite de fonctions mesurables de (X, o) a va-
leurs dans (R, Z(R)).

(a) sup fy, et inf f,, sont mesurables,
n n

(b) lim f,, et lim f,, sont mesurables,
n n

(c) Si fn N f (“S” pour “simplement” i.e.Vx € X, f,(z) — f(x)dansR),
alors f est mesurable.

DEMONSTRATION : Comme #(R) = o(Ja, +0], a € R) =0([a, +o0], a€ R), il
suffit, pour établir la mesurabilité d’une fonction g, de vérifier (c¢f. proposition 5.1)
que

Vae R, {g>a}le o ouVacR, {g>a}led.

(a) {sup fn > a} = | J{fu > a}€ et {inf f, > a} = ({fn > a}€ .
n n>1 " n>1
(b) On rappelle que lim f,, := inf(sup fi) et lim f,, := sup(inf f) et I’on ap-
n noE>n n n k>n
plique le point (a).
(c) On sait qu’une suite (z,,)n,en converge dans R si et seulement si lim z,, =

n

I . . I , . S
lim x,, auquel cas lim x,, = lim x,, = lim z,. En conséquence, si f, — f,
n n n n

f=lim f, est donc mesurable. ¢
n

1. i.e. un K-e.v. pour les lois +, - et un anneau pour les lois +, X, ces quatre opérations vérifiant
en outre diverses relations naturelles de compatibilité trivialement vérifiées dans le cas d’espaces
vectoriels de fonctions a valeurs dans K, pour lesquelles nous renvoyons a un ouvrage approprié.
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Exemple : Si f : R — R est dérivable, alors f' = lim n(f(. + 1/n)—f) est

borélienne.

Compléments et raffinements : 1. L’assertion (c) peut étre affinée; en effet, si
I’on ne suppose pas a priori que la suite ( f,,),>1 converge, on sait cependant que

{fn &, J:={ze X :lim f,(z) existe dans R} € ./
puisque  {fu %} = *{Tm f, # lim f.}
= | UWlim f, <} {lim fo > 1)) | € .
reQ " "
En outre, I’ apphcatlon hm fn A fn } — R est toujours mesurable pour

les tribus <7 N { f, R, .} (tribu-trace) et Z(R).

2. L’assertion (c) reste vraie si 1’on remplace R par un espace métrique quelconque
(E,d). En effet, soit f,, : (X, ) — (E,#(E)) une suite de fonctions mesurables
convergeant simplement vers une fonction f. Pour tout fermé F' de F, il vient

FTHF) ={z€ X 1 d(f(2), F)=0} = {z€ X : limd(fu(x), F) = 0}
=N U N {xeX:dun(:c),F)gl}w
p>1 NeNn>N p

car ’application x — d(f,(x), F'), composée de la fonction mesurable f, par la
fonction 1-lipschitzienne e — d(e, F'), est mesurable de (X, &) dans (R4, Z(R4)).

3. Si I’espace métrique (F, d) est en outre complet et séparable ( 2) on peut égale-

. e s E . L. .
ment établir la mesurabilité de { f,, Q) .}. En effet, si (ex)ren désigne une suite
dense dans (E d), on vérifie aisément que

{fa %5 } = {2€ X : (Ju(x))n=1 de Cauchy }

=NuU N U({xeX/dfm()ep)gli}ﬂ...

k>140>1mmn>L peN
1
- {xEX/d(fn(m),ep)gk}> € 4.

Les espaces R, R, C, R%, C? sont des espaces métriques séparables complets.

Exercice : En s’inspirant de la méthode proposée dans le premier complément ci-
dessus, montrer que si les fonctions f,g : (X,.«/) — (R, %(R)) sont mesurables
alors {f=g} € .

2. Un tel espace est parfois appelé un espace polonais, en hommage aux nombreux
mathématiciens polonais qui ont montré I’'importance de tels espaces, notamment en Probabilités.
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5.3 Fonctions étagées sur un espace mesurable

Définition 5.2. Une fonction [ : (X, /) — (K, B(K)) est étagée si elle est mesu-
rable et ne prend qu’un nombre fini de valeurs (K=R ou C).

Il est immédiat que toute fonction étagée f : (X, o) — (K, Z(K)) s’écrit sous
la forme

f=> aila, I'fini, a; €K, (A;)ic; partition «/-mesurable de X (5.1)
icl

ol I’on entend, par partition .<7-mesurable, toute partition de X constituée d’élé-
ments (éventuellement vides) de o7

Réciproquement, toute fonction de la forme (5.1) est étagée. En outre, parmi
toutes les décompositions de type (5.1) d’une fonction étagée f, il en existe une et
une seule dans laquelle les «; sont deux a deux distincts. Dans ce cas il est clair
que {oy, i€ I} =f(X), Ai={f = i}, i€ I, et 'on obtient la forme canonique

de f:
f = Z Ctl{f:a}.

agf(X)

Les fonctions étagées jouent dans la construction de I’intégrale de Lebesgue le
role dévolu aux fonctions en escalier dans la théorie Riemann.

Exemples : 1. Une fonction f : (X, Z(X)) — K est étagée si et seulement si
card(f(X)) est fini.

2. La fonction indicatrice f:=1 4 d’un ensemble mesurable A € &7 est une fonction
étagée dont la forme canonique est évidemment donnée par

f=1x1440x1lcy.

3.Si X = [a,b], (a<b) et o = HB([a,b]), toute fonction en escalier f est étagée.
En effet (cf. définition 1.1) elle prend un nombre fini de valeurs et, pour tout o €
f([a,b]), 'ensemble { f = a} est une réunion finie d’intervalles de [a, b] donc un
borélien de [a, b]. La réciproque est fausse, ce qui illustre le fait que la notion de
fonction étagée est une généralisation de celle fonction en escalier.

D’autres écritures de type (5.1) sont généralement possibles : ainsi, des qu’il
existe A C A, Ae of, A # A, @, lafonction f s’écrit également

f:1>< 1A+1X1A\A+OX1CA‘
Proposition 5.8. L’ensemble
E(X, )= {f : (X, ) — (K, B(K)), | étagée}

est une K-algebre réticulée 3.

3. i.e. stable par max et par min finis.
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DEMONSTRATION : La fonction nulle est évidemment étagée. D’autre part, soient
[i=2crcila, etg:=3" ;B 1p; deux décompositions de type (5.1). Si A€ K,

Af+g = Z (Ai + Bj)1a;nB;
i€l jet
fg = > @pBilans,,
i€l jet
max(f,g) = Z ma.X(OéZ’”Bj)lAimBj,
i€l jet

etc., qui sont a leur tour des décompositions de type (5.1) relatives a la partition
</ -mesurable (A; N Bj)ier, jeJ-

Exercice : Montrer que toute fonction f de la forme f = Zai 14,, oy € K,
el
A; € of,i €1, I fini, est étagée.

Théoréme 5.1 (Lemme fondamental d’approximation). Soit f : (X,./) — R, R
ou C, mesurable. 1l existe une suite (f,)n>1 de fonctions étagées, telle que, pour
tout x€ X, lim f,(z) = f(z). En outre,

n

(a) si f > 0, on peut choisir la suite (fy,)n>1 croissante et positive, au sens o
VNZL ngnéfn—l—l‘
(b) Si f est bornée, on peut choisir la suite (fn)n>1 de facon que f, converge

uniformément vers f (i.e. lim sup | f,(z) — f(z)| = 0).
noxeX

DEMONSTRATION : (a) Supposons f >0 et posons pour tout n€ N,

k+1
E, :—{ o< f< + },kG{O,...,n2"—1}, et By oo :={f>n}.

Les ensembles £, ;. et E, o, appartiennent a la tribu &/ comme images réciproques
d’intervalles de R par la fonction mesurable f. On définit alors pour tout n€ N,

n2"—1 k
fn = Z 2nlEnk+7’LlEnoo
k=0

Les fonctions f,, sont étagées par construction. On vérifie que, si x € E), x,

fusa() = { @) sigEe < f@) < 22,

. (k
fn( ) 2n+1 S1 %I:Li_ll < f(x) 271;’;})’

etsiz€ By o,

; {n+1>fn(x)sif()>n+1,
n+1\T) =

n—+1 . 1 n+1
n22n+1+€ Z n si +/ < f( ) TLQTJ#-H[’ OS ES 2n+1_1
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On a donc bien établi que f,(x) < fu41(x) pour tout z € X.

Il est évident par construction que, siz € {f <n}, 0 < f(x) — fu(x) <27
Par conséquent, pour tout z € { f <ng}, il vient,

Vn>ng, 0< f(z)— folz) <277 —=0.

Par suite f,, — f sur {f <+oo}= U{f<k:}.
k>1
Enfin, size{f=+oo}= ﬂ {f>=n}, fu(x)=n — +cx.
neN

Si f est bornée par M, on constate que {f > n} = @ pour n > M, d’ou la
convergence uniforme dans ce cas, car 0 < f(x) — fu(x) < 27" pour tout z € X
des que n> M.

(b) Cas réel : Si f est a valeurs dans R, on la décompose en f := f*— f~ ou
T :=max(f,0) et f~ :=max(—f,0). Les fonctions f* et f~ vérifient f* >0,
ft+ f~=|f]. Ainsi, f* et f~ sont bornées si et seulement si f 1’est. Enfin, on
note que, en tout point x € X, soit fT(x), soit f~(x) est nul.

On considere alors les suites f, et f, relatives & fT et f~ construites au
point (a) et I'on pose f, := f;F — f, . La fonction f,, est clairement étagée et
fn — f quand n — +o0. Aucune forme indéterminée ne peut survenir lors du
passage a la limite; en effet, 0 < fﬁ—L <f + donc, z € X étant fixé, I’'une des deux
suites (£, (2))n>1 ou (f,, (x))n>1 est identiquement nulle. La convergence est en
outre uniforme si f est bornée puisque les fonctions f le sont.

Cas complexe : Si f est a valeurs complexes, on écrit f =R(f)+:3(f). ¢

Remarque : Le lemme fondamental d’approximation repose effectivement sur
I’'idée développée dans le préliminaire “De Riemann vers Lebesgue” consistant
a approcher une fonction f en découpant régulicrement 1’““axe” des ordonnées, en
lieu et place de I’*axe” des abscisses (comme pour les fonctions en escalier).

5.4 Exercices

(X, o) désigne un espace mesurable.

5.1 a) Soient Y un ensemble et une fonction f : (X, /) — Y. f(<7) est-elle une
tribu ? Décrire la plus grande tribu sur Y rendant f mesurable.

b) Soit (Y, %) un espace mesurable et f : X — (Y, %). Quelle est la plus petite

tribu sur X rendant f mesurable ?

5.2 Soient (Y, #;)icr une famille d’espaces mesurables, Y un ensemble, des fonc-
tions f; : Y — Y; et A la tribu engendrée par la famille de fonctions (f;)ier,
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i.e. la plus petite tribu sur Y rendant les f; mesurables. Montrer que la fonc-
tion f : (X, o) — (Y, %) est mesurable si et seulement si, pour tout i € I,
fiof (X, o) — (Y;, %) est mesurable.

5.3 a) Montrer que &7 := {A € P(R) : A= —A} est une tribu sur R, ol —A est
défini par —A := {—a, a€ A}.

b) Caractériser les fonctions mesurables de (R, .<7) dans (R, <) et les fonctions
mesurables de (R, <) dans (R, Z(R)).

5.4 Soient une fonction f : X — (R, #(R)) et o := f~}(#(R)) la tribu image-
réciproque de Z(R) par f.

a) Soit une fonction h : (R, Z(R)) — (R, &(R)) borélienne. Montrer que la fonc-
tion g := h o f est mesurable de (X, <7y) dans (R, Z(R)).

b) Soit s : (X,.ar) — (R, #(R)) une fonction étagée mesurable. Montrer qu’il
existe une fonction borélienne ¢ telle que s = ¢ o f. En déduire que si la fonction
g (X, ) = (R,%(R)) est mesurable, alors il existe i borélienne telle que

g=hof.

5.5 Soit la fonction f : R — (R, %(R)) définie par f(z) := 22.

a) Montrer que la tribu image-réciproque par f est &7y := {Ac #B(R) : A = —A}.
b) Déterminer les fonctions mesurables de (R, <¢) dans (R, Z(R)).

5.6 a) Montrer que toute fonction réglée de R dans R est borélienne.

b) En déduire que toute fonction monotone de R dans R est borélienne.

¢) Retrouver le résultat du b) en utilisant le fait que I’ensemble des points de dis-

continuité d’une fonction monotone est dénombrable.

5.7 Soit une fonction f : (X, o) — (C, #(C)) mesurable. Montrer qu’il existe
une fonction mesurable 6 : (X, .7) — (R, Z(R)) telle que f = ¢|f|.

5.8 Montrer que la tribu borélienne d’un espace métrique (X, d) coincide avec la
tribu de Baire, i.e. la tribu engendrée par les fonctions a valeurs réelles, continues
et bornées (cf. exercice 5.2).

5.9 Soient (Y, d) un espace métrique muni de sa tribu borélienne et une suite de
fonctions f,, : (X, %) — (Y, %4(Y)) mesurables, convergeant simplement vers f.
a) Montrer que, pour tout Q € O(Y'), il existe A€ o7 tel que f~1(Q) C AC f~1(Q).
b) En déduire que f est mesurable.






Chapitre 6

Mesure positive
sur un espace mesurable

6.1 Définition et exemples

Définition 6.1. (a) Soit (X, o) un espace mesurable. On appelle mesure (positive)
sur (X, o) toute application i : &/ — R vérifiant :

(1) (@) =0,

(13) Si (Ap)n>1 est une suite d’éléments de <7, deux a deux disjoints (éventuelle-
ment vides) :

u( U An> =3 " u(A,)  [propriété de o-additivit].

n>1 n>1

(b) Si u(X) < +o0, la mesure p est dite finie ou bornée, si u(X)=1, p est une
probabilité.

Remarque : Les hypotheses ci-dessus entrainent la “simple additivité” de la me-
sure y : pour toute famille A ,. .., A, de parties de .7, deux a deux disjointes,

(AU U Ayp) = p(Ar) + -+ p(An)
(on pose simplement Ay :=@ pour k >n et on applique conjointement (7) et (ii)).

Exemples : 1. La mesure nulle sur (X, Z(X)):VAe Z(X), u(A):=0.
2. La mesure grossiére : (@) :==0etVAe 2(X), A# D, u(A):=+oc.
3. La mesure de Dirac au point a€ X :

VAe 2(X), M(A)::{ : iiiéﬁ ©.1)

La mesure de Dirac en a est notée J,,.
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4. La mesure de comptage sur (X, (X)) :

vAe 2(X), u(A)::{ card (4) si Aestfini,

+00 sinon.

11 est immédiat que card (@) = 0; d’autre part, si Ay,..., A, sont des parties
de X deux a deux disjointes, card(A; U --- U A,) = card(A4;) + - - - + card(Ay,).
La o-additivité découle de cette relation de facon claire. Ceci fait bien de m une
mesure.

La mesure de comptage est également caractérisée par le fait que, pour tout
ze X,m({z}) =1.

Cet exemple est important car il fait le lien entre intégration et familles som-
mables indexées par X, entre intégration et séries lorsque X =N.

Les exemples ci-avant sont tous définis sur la tribu triviale & (X)) de toutes les
parties de X . Ces mesures existent a fortiori par restriction sur toute tribu <7 sur X.
En revanche, il n’est généralement pas possible de définir une mesure sur Z(X)
tout entiere.

5. Soit ;1 une mesure sur (X, .o/) et B € </. On définit la mesure-trace de p sur B

par pup:=p(. N B). Si u(B) € RY, on définit la mesure conditionnelle sachant B

par

pu(- N B)

wB) -

6. La mesure de Lebesgue sur R? : cet exemple est, de loin, le plus important de

la liste. C’est en effet la mesure de Lebesgue qui est a la base de 1’extension de

I’intégrale de Riemann aux fonctions boréliennes de R dans R, puis de R? dans R.
Quelques préliminaires sont nécessaires pour énoncer le théoreme d’existence

et de caractérisation de la mesure de Lebesgue : soit a € R? et A€ Z(R?), on note

a+A:={a+z, x€ A}. Lapplication 7, : x — z —a étant clairement continue de

R? dans R?, donc borélienne, 1’ensemble a+A=7,1(A) € #(R).

(. /B):=

Théoréme 6.1. I1 existe une unique mesure sur (R?, (R%)) dite mesure de Le-
besgue sur R? et notée \g vérifiant

(i) Aa([0,1]%) = 1,
(i) Vae RL, YAe BRY), Agla+ A) = \a(A).

On notera souvent par la simple lettre A la mesure de Lebesgue sur la droite
réelle R. Nous admettrons provisoirement I’existence de \4. Dans un premier temps,
nous montrerons simplement que, en dimension 1, la mesure de Lebesgue A\([)
d’un intervalle I coincide avec sa longueur (cf. paragraphe 6.1.2). Ceci nous per-
mettra quand méme d’établir la partie unicité du théoreme (cf. Application 6.1).
Une premiere approche de la construction de A sur R comme conséquence du
théoréme de Carathéodory est proposée a la section 6.3. La construction complete

1. Le cardinal d’un ensemble A sera aussi noté # A ou | A| selon les cas.
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est abordée a la section 6.5.2, apres la démonstration détaillée du théoréeme de Ca-
rathéodory. Elle peut étre évitée en premiere lecture.

La mesure de Lebesgue )y sur R? sera construite encore plus loin, au cha-
pitre 11, lorsque nous aborderons la notion de mesure produit. Cette phase fera
I’objet de la section 11.2.2.

6.1.1 Propriétés essentielles
Soit 1 une mesure positive sur (X, <7).
P1 : u est croissante pour l'inclusion :
(a) VA, Be o/, AC B= p(A) < pu(B).
(b) Sien outre p1(A) < 400, alors p(B\A) = u(B) — u(A) < 4o0.
(c) En revanche, si j1(A) = 400, on ne peut rien dire sur p(B\ A).
DEMONSTRATION : Ces résultats découlent du fait que B = AU (B\ A) (union
disjointe) d’ou p(B) = pu(A) +p(B\A) > u(A) [avec A=A, Ay:=B\ Al. ¢
P2 : i est fortement additive :
VA,Be o/, n(AUB)+ u(ANB) = u(A) + u(B).

DEMONSTRATION : Soit j1(A N B) =400 et (c¢f. P1) u(A) =p(B) =+oc.
Soit (A N B) < +oo, auquel cas on décompose A U B de fagon disjointe en
AUB=(A\(ANB))U(ANB)U(B\ (AN B)).
Dou: u(AUB)=u(A\(ANB))+ u(ANB)+ u(B\ (AN B))
=p(A) = p(ANB) + p(ANB) + u(B) — p(AN B)
=wA) = (AN B) +pu(B). O

P3 : 1 est “continue a gauche” : Soit (Ay,)n>1 une suite croissante d’éléments de
o (i.e. A C Apyq pour tout n € N).

,u( UTAn> = liénT,u(An).

n>1
DEMONSTRATION : On pose By :=A; et B,,:=A,, \ A,,—1 pour n>2. On vérifie
n

par récurrence que A,, = U By, pour tout n>1.

k=1
n—1
En effet, supposons que A,,_1 = U By 1l vient alors
k=1

A, = (An\An—l)UAn—l =B,U ( U Bk> = U By.
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D’autre part les By, sont deux a deux disjoints par construction. D’ou finalement

o(U ) =n(U 5) = St = tip S =t U i)

n>1 n>1 k=1 k=1

= liglnTu(An)- %

Remarque : La suite (A,,),>1 étant croissante pour 1’inclusion, il vient
1 . el . . .
U A, =1lim A, ; d’ou I’écriture possible : ,u( lim An) = lim p(Ay)... et la ter-
no1 n n n
minologie.

P4 : 1 est “continue a droite” : Soit (A, ),>1 une suite décroissante d’éléments de
o (i.e. Apy1 C Ay, pour tout ne N), telle qu’il existe ng € N avec (A4, ) < +oc.

Alors
,u< ﬂiAn) = lirlini,u(An).
n>1

DEMONSTRATION : On applique le résultat précédent a A, \ Ay, n>ng. Il vient

iU (An\An)) = i (An\An) avee [ (Ang\An) = An\( () 4n)

n>ng n>ng n>ng

et, de plus, u(An, \An) = u(An,) — u(Ay) car u(A,) < +oo pour n>ng. D’ott

— () An) = Tim ((Ang) = p(An)) = i Ang) = lim u(A,).

n>ng

On conclut en simplifiant par la quantité finie pu(A,,). ¢

Remarques : o La suite (A4,,),,>1 étant décroissante pour I’inclusion, I’identité peut
se lire p(lim A,,) = lim pu(A,,) des que le second membre est fini.
n n

e [’existence d’une partie A,,, de p-mesure finie est indispensable comme 1’illustre
le contre-exemple suivant : on munit (N, &(N)) de la mesure de comptage et I’on
pose pour tout n > 1, A, := {k € N, k > n}. On vérifie immédiatement que

Ap+1 C Ap, ﬂ Ay, = Det u(Ay) =400, pour tout n.>1.
n>1

P5 :  est sous-additive : Soient (A,,),>1 une suite d’éléments de <7, alors

u( U An> <> u(An)

n>1 n>1

DEMONSTRATION : On proceéde par récurrence. Si n=1, I'inégalité est triviale.
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Sin=2:p(A1UA) < u(A1UAg) + u(A1 N As) = p(Ar) + u(Ag) d’apres P2.
Supposons acquis le résultat au rang n ; il vient

([ (s ) 0 2 ) < o

n n
Donc, pour tout n > 1, (U Ak> < ZM(Ak) < ZM(Ak)- Appliquant la pro-
k=1 k=1 k>1

n
priété P3 a la suite croissante U A, n>1, on obtient
k=1

u( U An) = ligbnTu< LnJ An) <> u(An)
n>1 k=1 n>1

6.1.2 Application a la mesure de Lebesgue sur R

Proposition 6.1. Soit A la mesure de Lebesgue sur R. Pour tout intervalle I de R,
A(I) = long(I), oilong(I) désigne la longueur de lintervalle I.

DEMONSTRATION : Etape 1 : Soit o := A\({0}). L’invariance par translation de A
entraine que, pour tout x € R, A\({z}) =a. Donc, pour tout n>1,

1 1
na =\ <{k’ 1§k§n}> < A([0,1]) =1 puisque {k’ 1§k§n} C [0,1].
Doul0<a< % — 0 quand n — +o0. Finalement,
VzeR, A({z}) =0.
Etape 2 : Toujours d’aprés la propriété d’invariance par translation,

=A<[0A1>=A<]0AD=A(L”Jm,ﬂ):iwnl,:ﬂ):m (0.1).

k=1

Il vient alors A (]0, 2]) =2 puis, pour tous k1, ko € Z, k1 <ko,

/\(]%’%D :k_é:jﬂ)‘(]k;lvm) (kz—kl) ! %—%

Par suite : Vr, 7' € Q, » <, A(Jr,7’]) = ' —r. Soient maintenant a, b € R,
a < b. 1l existe deux suites de rationnels r,, | a et v}, 1 b, r, <7/,. Les intervalles
A,, :=]ry, rl] croissent vers ]a, b (i.e. UnTAn =la, b]), donc, d’apres P3,
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On conclut en notant que A([a, b]) = A(Ja, b]) =A(]a, b)) = A[a, b[). Enfin,

[a, +o00[= U[a+n 1,a+n[ donc A([a, +00[) Zl +o00.
n>1 n>1

Les autres types d’intervalles se traitent de facon analogue. ¢

Cette proposition se généralise en dimension supérieure par

Proposition 6.2. Pour tout pavé P := I, x --- x I; de R® (produit cartésien
d’intervalles)
Aa(P) =Vol(P) := ] long(Iy).
1<e<d

(avec la convention 0 x (+00) = 0).

La démonstration directe de cette proposition est possible et suit le méme ca-
nevas que celui du cadre réel, quelques difficultés techniques en plus. Nous verrons
plus loin — au chapitre 11 — une autre démarche permettant a la fois de construire
et de caractériser la mesure de Lebesgue sur R%, fondée sur la notion de produit
de mesures. Néanmoins, cette approche s’appuie sur 1’existence de la mesure de
Lebesgue réelle.

6.2 Caractérisation d’une mesure. Unicité

Les tribus, notamment boréliennes, sont généralement tres “riches” en ensem-
bles au sens ot il est impossible d’en décrire exhaustivement les éléments. Ainsi, si
X estun espace topologique et Z(X) =0 ((X)) la tribu borélienne sur X, Z(X)
contient non seulement les ouverts et les fermés mais également les intersections
dénombrables d’ouverts (dits ensembles de type “Gs”), les réunions dénombrables
de fermés (dits ensembles de type “F, "), les réunions et intersections dénombrables
de tels ensembles, et ainsi de suite.

En particulier, vérifier que deux mesures sont égales sur une tribu .« semble a
priori une tache titanesque et pour tout dire inextricable. Le but du théoréeme de
caractérisation ci-apres, en amont des théorémes dits de classe monotone, est de
proposer un moyen de surmonter ce probleéme ou plus exactement de le contourner.

6.2.1 Un théoreme de classe monotone

Définition 6.2. On appelle \-systéme toute famille A de parties de X vérifiant :
(i) De A,
(13) Si (Apn)n>1 est une suite croissante (A, C Ani1) d’éléments de A alors

U A, € A [stabilité par réunion dénombrable croissante].
n>1

(131) Si A,Be AN et AC Balors B\ A€ A [stabilité par différence propre].
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Proposition 6.3. (a) Si & est une famille de parties de X, il existe un plus petit
A-systeme A(&) contenant &.

(b) Si X € A et A est stable par intersection finie, alors le \-systéme A est une
tribu.

DEMONSTRATION : (a) Une fois noté que &?(X) est un A-systéme contenant &, il

suffit de vérifier que A(&) := ﬂ A estun \-systeme ce qui est immédiat. C’est

AD &
A A-systeme

forcément le plus petit.

(b) Comme X € A, A est donc stable par complémentaire d’apres (iii). Reste la
stabilité par réunion dénombrable. Comme

U%zU(nM>
n>1 n>1 \k=1

il suffit d’établir la stabilité par réunion finie qui se déduit de
AUB=(‘AN“B)e A. ¢

Théoreme 6.2. Soit & une famille de parties de X, stable par intersection finie et
contenant X (une telle famille prend le nom de w-systéme), alors

A&) = o(&).

DEMONSTRATION : 11 suffit, au vu de la proposition 6.3, d’établir que A(&) est
stable par intersection finie (puisque X € A(&)).

Soitdonc E € & fixéet Ap:={Ac A(£) : AN E € A(&)}. On vérifie sans
difficulté que A g est un A-systeéme contenant &, donc A(&) i.e.

VE€ & VA A(&), ANEe€ A&).

Soit maintenant B € A(&) et Ap := {A € A(&) : ANB e A(&)}. Ap est
un A-systeme, contenant & d’aprés ce qui précéde. Donc Ap = A(&) pour tout
Be A(&).

Finalement X € A(&) et A(&) est stable par intersection finie, ¢’est donc une
tribu et, partant, A(&) D o(&). Comme une tribu est clairement un A-systéme,

A&) =a(&). O

6.2.2 Application a la caractérisation d’une mesure

Corollaire 6.1. Soient |1 et v deux mesures finies sur un espace mesurable (X, of')
et & C o/ un w-systeme (X € &, & stable par intersection finie) engendrant </
(i.e. o/ =0 (&)). Si pour tout E€ &, u(E) = v(E), alors j1 = v.
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DEMONSTRATION : Soit A:={A € o : u(A) = v(A)}. A est un A-systeme et
AD & donc, d’apres le théoreme 6.2, AD o (o )=a/. O

Remarque : Le point crucial nécessitant la finitude de yu et v est la stabilité de A
par différence propre; en effet si AC B et u(A) <400,

(B A)=u(B)—pu(A)=v(B)~v(A)=v(B\ A)

si et v coincident sur A et B. On peut cependant partiellement relaxer 1’hypothése
de finitude de p et v.

Corollaire 6.2. Soient y et v deux mesures sur (X, .o7) et & C of vérifiant
(1) & est un m-systeme et 0(&) = o,
(i) VAe &, wu(A) =v(A),

Lo . . . )
(4i7) il existe une suite E, € &, n>1, E, C Ep1, telle que X = U E, et
n>1

w(Ey)=v(E,) <+o0.
Alors p = v.

DEMONSTRATION : On applique le corollaire 6.1 aux mesures finies sur (X, .o/)
définies par uy, == p(. N Ey) ety == (N E,), n>1. Comme E, € & et &
est stable par intersection finie, & N F, C & donc u, et v, coincident sur & et,
partant, ji, = v, pour tout n > 1. Soit alors A € &7; on écrit A= UT(A NE,),

n>1
d’ou, d’apres la propriété P3,

p(A) =limpu(ANE,) =limp,(A) =limy,(A) =limv(ANE,) =v(A). O

Remarque : On peut remplacer dans (ii) la suite croissante (E,),>1 par une
partition de X = J,,~, By avec p(E,)=v(E;,) < +o0.

Application 6.1. (a) Unicité de la mesure de Lebesgue sur R

On vérifie les hypothéses du corollaire 6.2 ci-avant avec E,, := [—n,n| et
& I’ensemble des intervalles de R. Si A\ et A\’ sont deux mesures sur (R, 4(R))
vérifiant les hypothéses du théoréme d’existence et de caractérisation de la mesure
de Lebesgue (théoreme 6.1 dans 1’exemple n° 6), alors, d’aprés la proposition 6.1,
A et X coincident sur & et A([—n,n]) = N ([—n,n]) = 2n < +00. On conclut en
montrant, ce qui est immédiat, que & est un 7w-systeme et que o (&) =%#(R). ¢

(b) Caractérisation d’une mesure sur (R, Z(R))

Si deux mesures p et v vérifient 1 ([0, x]) = ([0, z]) < 400 pour tout z € R
([0, =] désigne ici le segment d’extrémités O et x), alors p=wv.

On pose & :={]0, z|, x € R} U {R}. La famille & est clairement un 7-systeme
vérifiant les conditions du corollaire 6.2. D autre part, il est immédiat que o (&) =
A (R) a partir de la caractérisation de #(R) fournie par 1’application 4.1.
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6.3 Construction de mesures par prolongement (I)

6.3.1 Théoreme de prolongement de Carathéodory

Définition 6.3. Une famille € de parties de X est une algébre de Boole si
(1) Xe€C,
(13) pour tous A, BE ¢, AUBE€ % [stabilité par réunion finie],
(731) pour tout A€ €, A€ ¢  [stabilité par complémentaire].

Théoreme 6.3 (Carathéodory). Soient € une algébre de Boole sur X et une appli-
cation i : € — R vérifiant :

(1) (@) = 0,
(73) pour tous A, B € € tels que AN B =0, n(AUB) = u(A)+u(B)
[additivité finie],
pour toute suite décroissante (Ay,)n>1 d’éléments de €
(491) § i p(A) < o0 et ﬂiAn =@ alors lién w(Ay) =0,
n>1
11 existe une suite croissante (Ey,)n>1 d’éléments de € vérifiant
(o) X = J En,
(iv) n>1
(8) pourtout n>1, u(E,)<+oo
(v) pourtout A€ €, liTILnT,u(A NE,) = u(A).

11 existe alors une unique mesure [i sur la tribu o(€’) coincidant avec . sur 6.

Terminologie : La condition (¢i7) est appelée propriété de Carathéodory ou parfois
aussi continuité de la mesure en Q.

Ce théoreme est a la base de la construction de la mesure de Lebesgue sur R. Sa
démonstration, longue et délicate, fait intervenir la notion de mesure extérieure. Elle
est détaillée dans la section 6.5. Le paragraphe 6.5.2 est, lui, plus particulierement
consacré a la mesure de Lebesgue elle-méme et aux mesures de Stieltjes qui en sont
une généralisation. Enfin, une troisi¢me application, la construction de produits
infinis de mesures, est proposée a la section 11.4.

Notons cependant deés maintenant que 1’unicité de i1 découle directement des
résultats de caractérisation établis a la section 6.2 : en effet, une algebre de Boole
est en particulier un 7-systeme.

Remarques et compléments : o Si ;(X) < 400, 'hypothese (iv) est toujours
vérifiée avec la suite F,,:=X, n>1.
e Dans la formulation du théoréme, la condition de Carathéodory a été privilégiée

T

pour des raisons historiques. Cette condition exprime la continuité “a droite” de u
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le long des suites d’éléments de 6" décroissant vers 1’ensemble vide. Cependant, il
est souvent utile de remarquer que, sous 1’hypothese d’additivité finie de p sur €,
il y a équivalence entre, d’une part, (ii7) et (iv)(~y) et, d’autre part, la propriété de
continuité “a gauche” de p sur € :

Pour toute suite croissante pour I’inclusion (A4;,),>1 de €,
Udnes = p(|JA4n) =1im'u(4,).
n>1 n>1 "

DEMONSTRATION :(<=) : Pour (#ii), on s’appuie sur ’additivité finie de u sur ¢
et I’on raisonne sur la suite décroissante A/, := Ay \ A,. Le reste est évident.

(=) :Si ,u( UTAn> < 400, on pose A 1= ( UTA,O \ Aj. On conclut en

n>1 n>1
. . 4
notant que la suite (A} ),>1 est décroissante et que ﬂ AL =0.
E>1
. T - . .
Si ,u( U An> = +o00, le cas précédent montre néanmoins que, pour tout

n>1
pe N,

lim u(Ay) > lim pu(A, N Ep) = hn{:u(An N Ep) = M( UTAn N Ep)'

n n>1
Or, d’apres (iv)(y) ona
@H( UTAn N Ep> = ,u( UTAn>.
p n>1 n>1
Par suite, il vient lim p1(4,,) = +00. ¢

n

e De la méme fagon, on montre que, sous I’hypothése d’additivité finie de p sur €,
les conditions (ii7) et (iv)(~y) sont équivalentes a la o-additivité de u le long des
suites d’éléments deux a deux disjoints de ¢ dont la réunion est dans %’.
6.3.2 Principes de construction de la mesure de Lebesgue sur R

On considere

b= {Il U---Ul,, n>1, I intervalles de R deux a deux disjoints}.

% est bien une algebre de Boole. On définit alors la fonction long : 4 — R,
définie par

n
long (L U---UI,) = Zlong([k).
k=1

Cette définition est consistante car long (I; U - - - U I,;) ne dépend pas de la dé-
composition en intervalles disjoints choisie. La fonction long vérifie les hypotheses
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(7)-(iv) du théoréme de Carathéodory avec E,, := [—n,n], n > 1. La mesure de
Lebesgue A est alors définie comme 1’'unique prolongement de la fonction long a
0(€)=2%(R). Pour finir, il reste a établir I’invariance de la mesure \ par les transla-
tions de R. Or, si a € R, il est clair que A et A(.+a) sont deux mesures sur (R, Z(R))
coincidant avec la mesure de longueur long sur le 7-systéme générateur €. D’ou
A=A(- +a).

Pour plus de détails, notamment sur la consistance de la définition de la fonction
long et sur ses propriétés, se reporter au chapitre 6.5 ci-apres.

Remarque : On peut, de fagon analogue, construire directement la mesure de Le-
besgue sur (R%, (R?)) en utilisant les hyperpavés en lieu et place des intervalles.
Nous verrons cependant au chapitre 11 une méthode alternative fondée sur la notion
de mesure produit.

6.4 Régularité de la mesure de Lebesgue

La régularité est une propriété importante de la mesure de Lebesgue : c’est le
résultat-clé des théoremes d’approximation et de densité en théorie de 1’intégration.

Théoréme 6.4. Soit \g la mesure de Lebesgue sur (R?, Z(R%)). Alors

sup {  \g(K), K C A, K compact
VA BRY, A(A)= {alK) pacty 62
inf {A4(0), O D A, O ouvert}

La mesure \y est dite (intérieurement et extérieurement) réguliere.

Ce théoreme est en fait un cas particulier du résultat plus général suivant, établi
a la section 6.6.

Théoreme 6.5. Si (X, d) est un espace métrique et p une mesure sur les boréliens
PB(X) vérifiant :
(a) (X, d) est localement compact séparable ef (1 est finie sur les compacts,
ou
(b) (X, d) est complet séparable et p est finie,

alors 1 est réguliere au sens de (6.2).
Remarque : C’est la propriété de régularité extérieure
1(A) = inf {(0), OD A, O ouvert}

qui est a la base des théorémes de densité (cf. sections 9.4 et 9.7). On verra que
celle-ci est vérifiée des qu’il existe une suite d’ouverts (E,,),>1 telle que

Vn>1, ByC Eppr, X =) By et Vo>1, u(E,) < +oo.

n>1
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6.5 & Construction de mesures par prolongement (II)

Le propos de cette section de compléments est d’établir le théoreme de Ca-
rathéodory, énoncé sans démonstration a la section 6.3, et d’en déduire une cons-
truction de la mesure de Lebesgue sur R puis, par extension, de la mesure de
Stieltjes.

6.5.1 Démonstration du théoreme de Carathéodory

Rappel : Une famille & de parties de X est une algébre de Boole (sur X) si
(1) Xe ¥,
(77) pourtous A, Be €, AUBe ¥ [stabilité par réunion finie],
(7i7) pour tout A€ ¢,°Ae€ €  [stabilité par complémentaire].

Une algebre de Boole est stable par intersection finie puisque
ANB = ¢“AU° B); d’autre part, d = X € €.
Théoréme 6.6 (Carathéodory). Soit ¢ une algébre de Boole sur un ensemble X et
une application i : ¢ — Ry vérifiant :
(1) w(@) =0,
(13) pour tous A, B € € tels que AN B =@, u(AU B) = u(A) + pu(B)
[additivité finie],
pour toute suite décroissante (Ay)p>1 d’éléments de €,
(741) § i p(Ay) < +0c et ﬂiAn =@, alors liTILn pn(Ay) =0,
n>1
il existe une suite croissante (Ey,),>1 d’éléments de € vérifiant
0
(iv) = X =Unz1 En,
" — pour tout n>1, u(E,) <+o00
— pour tout A€ €, limT,u(A NE,) = u(A).
n

Alors, il existe une unique mesure [i sur la tribu o(€) engendrée par € et
coincidant avec i sur 6.

Définition 6.4.
(a) Par analogie avec le cadre général, une application | : 6 — R, vérifiant
(1)-(7i7) (resp. (i)-(iv)) est appelée une mesure (resp. mesure o-finie) sur l’algébre
de Boole 6.
(b) Une application m : 2(X) — R est appelée mesure extérieure si elle vérifie
(i) m(@) =0,
(13) pour tous A, B€ P(X) tels que A C B, m(A) < m(B) [croissance],
(i) pour toute suite (Ay,)n>1 de parties de X

m( U An) < Zm(An) [o-sous-additivité].

n>1 n>1



6.5. & Construction de mesures par prolongement (I1I) 91

On notera bien qu’une mesure extérieure est toujours définie sur [’ensemble
P (X) de toutes les parties de X .

Remarque : Il est immédiat qu’une mesure g sur une algebre de Boole % vérifie
les propriétés P1 (croissance) et P2 (additivité “forte”) de la section 6.1.1 i.e.

P1 : pourtous A, B€ € telsque A C Bona B\A= BN ‘A€ ¥ et

1(B) = j(A) + p(B\A) = p(A).

P2 : pourtous A, B€ €, u(AU B) + u(ANB) = pu(A) + u(B).
DEMONSTRATION DE LA PARTIE UNICITE DU THEOREME : L’unicité de i est une

conséquence immédiate du corollaire 6.2 (section 6.2) sur la caractérisation d’une
mesure. En effet, une algébre de Boole est en particulier un w-systeme. ¢

La démonstration de I’existence occupe les deux paragraphes suivants.

Existence de /i lorsque z(X) <+oo

Dans ce cadre, p étant croissante, 1 A) < u(X) < 400, pour toute partie A € €
et I’hypothése (iv) est vide (E,, := X convient). Procédons par étapes.

@pﬂ Propriété d’une mesure définie sur une algeébre de Boole :

Si 1 est une mesure finie sur 1’algebre ¢, alors
(a) p est o-additive sur ¢ au sens oli, pour toute suite (A,,),>1 d’éléments de €
deux a deux disjoints,

Udnes = pu(|JA4n) =3 m4n).

n>1 n>1 n>1

(b) e est “continue a droite” au sens ou, pour toute suite croissante (A, ),>1 d’élé-
ments de ¢,

si UTA,LG %, alors u( UTAn) = ligfu(An).

n>1 n>1

(¢) p est o-sous-additive sur ¢ au sens ou, pour toute suite (A;,),>1 d’éléments

de €,
si U A, €€, alors ,u( U An) < Zu(An).

n>1 n>1 n>1

DEMONSTRATION : (a) Pour tout n>1, on pose

A= | A= (U Ak)\<kLnJ1Ak)e%.

k>n+1 k>1
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Les Ay,..., A, et A}, sont deux a deux disjoints et A; U---UA,, UA! = U Ay,
k>1
donc

p(U Ar) = p(An) + -+ plAn) + p(4)

k>1
par additivité finie. Or A/, | C A}, et N, A}, =@ car les Ay, sont deux a deux dis-
joints, si bien que, d’apres (7ii), (A]) J 0. D’ou le résultat annoncé.

(b) et (c) se démontrent en recopiant les preuves des propriétés P3 et P5 de la
section 6.1.1, une fois vérifié que tous les ensembles considérés sont dans €. ¢

Etape 2 Construction d’une mesure extérieure j1* prolongeant ju :

Pour tout A C X, on pose

,u,*(A)::inf{Zu(Bn), AcC U B, B,¢€ Cg}

n>1 n>1

¥ est une mesure extérieure coincidant avec p sur ¢ (donc p* est finie).

DEMONSTRATION : Commengons par montrer que p* =y sur €. Soit A€ €. En
spécifiant By:=A€ €, By:=0€ €, k>2,il vient pu*(A) <pu(A).
Soient B,, € €, n > 1, vérifiant A C U B,; A= U (AN B,) donc, la
—_——

n>1 n>1 cw

o-sous-additivité de p sur ¢ établie a I’étape 1 entraine

u(A) < Z (AN By) < Z w(Br) (1 est croissante sur €).

n>1 n>1
D’ou p(A) < p*(A). Finalement 4 et p* coincident sur €.
Vérifions maintenant que 1* est bien une mesure extérieure.
- p*(@)=p(@)=0car@c ¢,
— p* est clairement croissante pour I’inclusion,

— o-sous-additivité : Soit (A,),>1 une suite de parties de X . Par définition de

w*, il existe pour tout € >0 et tout n> 1 une suite (BI(C")) i>1 d’éléments de ¥ telle
que
. £
vn>1, A, B et S u(BM) < pt(An) + o
k>1 k>1
D’ou il vient, en sommant en n, Z M(B,in)) <eg+ Z w(Ay).
nk>1 n>1
Or U A, C U B,in) et (N*)? est dénombrable donc, pour tout € >0,
n21 (nk)€(N*)?

,u*( U An> < Z,u*(An) +e.

n>1 n>1
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D’ou le résultat.

@pﬁ Fabrication de [i par restriction de la mesure extérieure |1* :

(a) 7*:={AC X :VBC X, u*(B)=p"(BNA)+p*(BN “A)} est une tribu
contenant ¢ et, par conséquent, o(%).

(b) La restriction de p* a .7 * est une mesure sur (X, .7 *). Par suite i := o)
est une solution au probleme de prolongement.

DEMONSTRATION : Les assertions (a) et (b) s’établissent simultanément.
-@e T* car u*(0)=0,
-SiAe T* ¢Ae T * par un simple argument de symétrie : <(A) = A.
— Stabilité par réunion finie : soient A, A'€¢ T *et BC X.

p(B) = wi(BNA)+u (BN CA),

W (BNA)YNA)+p*(BNA)YN A+ p*((Bn A)n A)
(BN CA) N <A)),

= p"(BNn(ANA))+u (BN(AN A))+p* (BN (AnA"))
+u* (BN (AU A)).

OrAUA =(An AU (A'NncA)U(An cA’"). La mesure extérieure p* étant
sous-additive, il vient en intersectant par B,

p(BN(ANA)) +p*(BN(AN “A"))+p*(BN(CANA") > u*(BN(AUA"))

et partant 1" (B) > p*(BN (AU A")) + pu*(Bn (AU A")).

L’autre inégalité découle directement de la sous-additivité de p*. Il y a donc
égalité et par conséquent A U A’ € .7 *; ceci montre que .7 * est une algebre de
Boole.

— Stabilité par réunion dénombrable et o-additivité de * sur 7 * : On constate
d’abord que si A, A€ T * et AN A'=@, alors pour tout BC X,

i(B) = p*(BAA) +u* (BN °A) > ("(BNA) + (BN A,

I’inégalité découlant de la croissance de ;* et de I'inclusion A’ C €A. Une récurren-
ce immédiate montre alors que, pour tous Ay,..., A, € 7 *, deux a deux disjoints,

VBC X, p'(B)>> p*(BNA). (6.3)
i=1
n—1
Soit (Ay,)n>1 une suite de 7 *. On pose A} := Ay et A} :=A,\ U Aj; pour
k=1

tout n > 2. Les A/, sont deux a deux disjoints. D’autre part, il est immédiat par
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récurrence que A, C A, = U Aj_ et partant U A, = U Al Enfin, 7 * étant
1<k<n n>1 n>1
une algebre de Boole, chacun des Aj est dans .7 *. Pour conclure, il suffit donc de

montrer que A e 7* Soit BC X.Comme A, = Al.e T*, il vient
q n k

n>1 1<k<n
u*(B):u*(Bm U A;)Jru*(BmCU A;C).
1<k<n 1<k<n

OrBnN ( U A%) = U (B N A}). Cette derniére réunion étant disjointe, 1’iné-
1<k<n 1<k<n
galité (6.3) implique donc

n

Yn>1, (B2 B+ (Bac( | AY)

k=1 1<k<n
S e (307 )
k=1 E>1

d’ou, avec n — +oo, p*(B)>Y p (BNAY) +p* (B N ( U Aﬁc)) (6.4)
k>1

>
(Y
—

La o-sous-additivité de la mesure extérieure p* entraine alors
()=t (B (J 4n) + (B0 (U 40)-
n>1 n>1

Finalement, la o-sous-additivité de la mesure extérieure p* assure 1’inégalité op-
posée, d’ou, pour toute partic B de X,

w(B) =t (B (J 4n) +u(Bn (U 4n)- (6.5)

n>1 n>1

En conséquence, A, = Al € T*. T* est donc bien une tribu.
q n

n>1 n>1
Enfin, en posant B := U A dans (6.4), il vient pour toute suite (A/,),>1 d’élé-
n>1

ments deux a deux disjoints de .7 * :

u*( U A;) = ur(A).

n>1 n>1

En conclusion, p* est o-additive sur .7 *, ¢’est donc une mesure sur (X, .7 *).

— La tribu 7 * contient 0(€¢') : Soient A€ ¢ et BC X. Pour tout e >0, il existe
une suite (B¢ ),,>1 de parties de ¢ telles que B C U B; et Z w(By) < p*(B)+e.

n>1 n>1
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L’additivité de o sur 1’algebre de Boole & et I’appartenance a ¢ de B, N A et
B N ©A pour tout n > 1, entrainent

pH(B) =Y pt (BN A) + ) wi (BN CA) e,

n>1 n>1

d’ou par sous-additivité de p*, p*(B) > p*(BNA)+ p* (BN ©A) — . L’inégalité
étant vraie pour tout ¢ >0, il vient

p(B) = p*(BNA)+p (BN “A).

L égalité se déduit de la sous-additivité de p1* ce qui montre que A€ 7 *. {

Le cas général : ;1 o-finie

On réintroduit en lieu et place de u(X) < +oo I’hypothese de “o-finitude”
(iv) :

I existe une suite croissante (E,),>1 d’éléments de € telle que

Vp>1, w(Ey) <+oo, X = | J'Ep, et VA€ E, u(ANE,) 1 p(A).
p>1

Pour tout p > 1, on pose (1, := (. N E}). Ceci définit clairement une suite de
mesures finies sur 1’algébre ¢ qui se prolongent en autant de mesures finies /i, sur
la tribu o(€).

D’autre part fi,11(. N Ep) = fi, puisque, d’apres le théoréme de caractérisation
(section 6.2), ces deux mesures finies coincident sur le 7-systeme générateur % .
Par suite,

VA€ o(?), Vp=1, fip(A) = fipt1(AN Ep) < fip1(A)
i.e. la suite (fi,(A))p>1 est croissante. On pose alors

VAeo(¥), f(A) == lim fi,(A).

Vérifions alors que /i est une mesure sur o (%) :
— (@) = limy, fi,(D) = 0,

— Soit (A,,)n>1 une suite d’éléments de o(%" ) deux a deux disjoints. Pour tout
p=>1,

o (U An) = D fip(A4n) <3 i(An)

n>1 n>1 n>1

d"ou il vient g( U An) - 1151,1,3( U An) <3 ii(An).

n>1 n>1 n>1
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n
D’autre part, pour tout n > 1 et pour tout p > 1, ﬂp< U An) > Z fip (Al
n>1 k=1

donc, pour tout n > 1, g( U An> > Z[L(Ak) d’on g( U An> > Zﬂ(Ak).
n>1 k=1 n>1 k>1
Ceci établit la o-additivité de i sur o(%).

Soit A€ €. 1l vient, grice a (iv) et par construction de /iy,

f(A) = lim fip(A) = lim p(A N Ep) = p(4). O

La propriété de Carathéodory est essentielle pour assurer 1’existence de la me-
sure y comme le montre I’exemple suivant.

Exemple : On se place sur I’ensemble N que 1’on munit de I’algebre de Boole
¢ ={Ac Z(N): Aou“Aest finie}.

On pose p(A) := 0 si A est fini et pu(A) := 1 si “A est fini. On vérifie aussitot
que f est une mesure sur 1’algébre € i.e. u(@) = 0 et p est finiment additive.
Cependant y ne vérifie pas la propriété de Carathéodory : on considere, pour tout
n>1, A, :={n,n+1,...}. Nl est clair que N, 4,, = @ alors que, pour tout n>1,
Ap€ €etu(A,)=1.

Effectivement, 1 ne peut se prolonger en une mesure fi sur Z(N) = o(%);
en effet, si une telle mesure existait tout ensemble infini A aurait pour mesure 0
puisque

fi(A) = liénTy,(A N{1,2,...,n}) =0.

Par suite, on aurait i(N) =0 = p(N) =1

6.5.2 Construction de mesures sur R : Lebesgue, Stieltjes

Pour construire la mesure de Lebesgue sur R — qui est notre but essentiel — nous
allons encore appauvrir la structure d’algebre de Boole.

Semi-algebres et fonctions additives

Définition 6.5. Une famille . de parties de X est une semi-algébre si
(i) De 7,
(13) pour tous A, B€ ., ANB€ . [stabilité par intersection finie],
(7i1) pour tout A € 7, il existe n > 1 et Aq,..., A, € & deux a deux
n
disjoints, tels que ‘A = U A;.

i=1
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Exemple (essentiel) : La famille .7 := {I C R, I intervalle (quelconque) de R}
est clairement une semi-algebre puisque @ € .77, .7 est stable par intersection et,
pour tout intervalle I de R, I =1; U I ou I; et I> sont deux intervalles disjoints
(éventuellement vides).

Remarque : Comme le montre I’exemple ci-dessus, une semi-algebre n’est géné-
ralement pas stable par réunion finie.

Proposition 6.4. Soit . une semi-algébre.

n

(a) €(S) = {U A;, A€ S, deux a deux disjoints, n > 1} est la plus petite
i=1

algébre de Boole contenant ..

(b) Soit pu : . — Ry une application vérifiant ;1(@) =0 et la propriété d’additivité

finie suivante : pour toute famille finie (A;)1<i<pn d’éléments de . deux a deux

disjoints dont I’'union est dans ., on a

I (U Ai) = u(A).
=1 i=1

Alors p admet un unique prolongement i a € (. vérifiant la propriété d’additi-
vité finie (au sens du point (ii) du théoréme de Carathéodory).

DEMONSTRATION : (a) Toute algébre de Boole contenant . contient ¢'(.%) (sta-
bilité par réunion finie). Reste & montrer que (. ) est une algebre.
-Pe S CE(S).

— € () est stable par intersection finie car d’une part

(U Ai> N UB]- =JinBy),

]

et d’autre part, les A; N B; sont deux a deux disjoints dés que les familles A;,
1<t<n,et B;, 1<j<m, sont constitué€es de parties deux a deux disjointes. La
stabilité par réunion finie découlera de la stabilité par passage au complémentaire.
n m(i)
— Soit A:= U A;, Aje 7 ; par hypothese chaque “A; s’écrit ©A; = U B,Ef)
i=1 k=1

) sont des parties de . deux a deux disjointes. Quitte a rajouter des

ou les B,(:
B,Ef) := @, on peut remplacer les m() par leur maximum m := maxj<j<, m(i).
D’ou il vient

A= ()= (U B,g“) _ U <m B,g?) |
i=1 i=1 \k=1 1<k, ken<m \i=1
S5
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n
Par suite A € ¢'(.7 ) puisque les ensembles m B,(ji) , 1<k, ... k,<m, sont
i=1
clairement deux a deux disjoints.
n
(b) Pour tout A:= U A€ €() (A€ 7, deux a deux disjoints), on pose
i=1

A(A) =3 u(4).
=1

m
Cette définition est consistante ; en effet, si A admet une décomposition A:= U A;-

j=1
de méme type, alors A= U(Al N A}) et ’on a bien, par additivité de p sur .57,
2]
> u(A) = p(Ain A)) = u(A)).
i=1 ij j=1

En outre [z est ainsi entierement déterminée par les valeurs de p sur .7, d’ou
I’unicité. L’additivité finie de 7z est évidente au vu de sa définition.

Remarque : De I’additivité finie de 7z, on déduit immédiatement
—sa croissance : AC B = Ti(A) <7i(B) pour tous A, B€ € (.&),
— sa “forte” additivité : pour tous A, B€ € (. ),

A(AU B) + (AN B)=H(A) + (B),
— et enfin, par récurrence, sa sous-additivité finie :

VAL, A€ € (), p(A1U---UA,) <T(Ar) +- -+ 1(An).

Construction de la mesure de Lebesgue sur R
Soit I un intervalle de R; la longueur long(I) de I est définie dans R par :
long(I) :=supl —inf I < 400 sil # @ et long(@) = 0.

On rappelle d’autre part que la semi-algebre .7 :={I, I intervalle deR} vérifie
(cf- application 4.1, section 4.1) : o(-*1) =0 ({[a, +0], a€ R})=Z%A(R).

Théoreme 6.7. Il existe une unique mesure sur (R, Z(R)), notée \, coincidant avec
la mesure de longueur long sur .. A est appelée la mesure de Lebesgue sur R.
Elle vérifie

A[0,1))=1 et VaeR, A=A +a).

Ces deux propriétés caractérisent la mesure de Lebesgue.
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DEMONSTRATION : La mesure de longueur long est clairement finiment additive
sur .7 au sens de la proposition 6.4(b) puisque, plus généralement, si I et J sont
deux intervalles vérifiant I N J =@, long(I U J)=long(I) + long(.J).

D’apres la proposition 6.4 ci-avant, elle admet donc un unique prolongement
long a I'algebre ¢'(.77) = {I; U--- U I,, Ij intervalles 2 a 2 disjoints, n > 1}
qui soit finiment additif au sens de la condition (i7) du théoreme de Carathéodory
(théoreme 6.6). Le point (4) étant évident, reste a établir (i7i) et (iv).

Etape 1 Vérification de (iii) :
Soit (A,)p>1 une suite décroissante pour I’inclusion d’éléments de €'(.77)

L. — " \ . PR

vérifiant long (A;) < 400 et ﬂ A, =@.Lensemble A; est borné comme réunion
n>1

finie d’intervalles de longueur globale finie ; pour tout n > 1, on écrit :

A, =1 fn) U---u I}()’Z) ou les / ,gn) sont des intervalles deux a deux disjoints.

Si pour un certain n, A,, = @, le résultat est évident. Sinon, les p,, sont non
nuls. Soit € >0; on pose

e n e . n n
n2n+1’ﬁ/(€)_pn2n+l} S1 ﬁl(c)_al(c)z

J0 = ol 4 —

(

et.J ,En) =@ sinon, ol « kn) et B,(cn) désignent respectivement les bornes inférieures

et supérieures de / ,(Cn). L’intervalle J. ,5") est un compact (éventuellement vide) conte-
Pn

nu dans / li"). On pose alors, pour tout n > 1, A/ := U Jlin). Il est immédiat que
k=1

Al e 6 (S7), A, C Ay et

Pn
3

long (A,\ A’) <Zp ST = g

Par construction les A’, sont compacts, donc fermés dans le compact A1, et ﬂ Al
n>1

est vide, il existe donc n. > 1 tel que ﬂ Al.=@. Or, d’apres les lois de Morgan
k=1

appliquées a I’espace de référence A, = ﬂ Ay, il vient
k=1

Ay, = ﬁAk: (ﬂ%)\(ﬂflk) = U (ﬁAJ)\A;c
k=1 k=1 k=1

Ne

c |J A\ 4p).
k=1
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e

D’ou long (A,.) < long (Ag \ A}) < . Finalement, pour tout n. > n., il

k=1
vient long (A,) < long (A,,_) < e. Onadonc bien établi que limlong (4,,) = 0.
n

Etape 2 Vérification de (iv) :
On pose E, :=[-n,n].Ona E, C E,;1, UE” =R et long (E,) = 2n.

n
Soit A € €(.#}). Si long (4) < 400, A est borné donc, pour n assez grand,
A C E,et long(ANE,) = long(A). Silong(A)=+oo, I'un des intervalles
constituant A n’est pas borné, il suffit donc de vérifier (7v) pour ceux-ci; or, pour
n assez grand, long ([a, +00[N E,) =long ([a,n]) =n — a, donc

lim long ([a, +oo[N E,) = +00 = long ([a, +00[) ;
n

idem pour les autres intervalles non bornés.

@pﬁ Propriétés de la mesure de Lebesgue :

—

La mesure de Lebesgue ) := long ainsi construite sur Z(R) est unique grice
aux résultats d’unicité du théoreme de prolongement et de la proposition 6.4(b) ci-
avant (on peut également conclure en notant que .7 est un w-systéme contenant
les E,, =[—n, n] et engendrant #(R)).

La mesure (. + a) (¢f section 6.1) coincide avec A sur .#7 puisque I’on a
long(I 4+ a)=long(I) pour tout I € .7. Elles coincident donc sur o(.¥7) = Z(R).
D’autre part A([0, 1]) =long([0,1])=1 — 0=1.

Le fait que I’invariance par translation et la longueur 1 de I’intervalle unité
caractérisent la mesure de Lebesgue parmi toutes les mesures sur (R, Z(R)) a déja
été établi dans I’application 6.1 (section 6.2.2). ¢

Remarque : On aurait tout aussi bien pu construire directement la mesure de Le-
besgue )y sur (R?, 2(R%)) en nous appuyant sur la semi-algébre des hyperpavés

d
Srd = {H I;, I; intervalle de R},

i=1
et la mesure d’hypervolume Vol définie par

d
Vol(Iy x -+ x Ig) = [ [ long(I;) € Ry
=1

(toujours avec la convention 0 x (400) = 0).
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Mesures de Stieltjes sur R

La notion de mesure de Stieltjes est une généralisation naturelle de la mesure
de Lebesgue sur R consistant a attribuer a chaque intervalle a, ], a,b € R, non
plus sa longueur, mais une masse F'(b) — F'(a) ou F' est une application croissante
de R dans R, continue a droite.

On peut également voir la notion de mesure de Stieltjes de la facon suivante :
on définit la “fonction de répartition” d’une mesure y sur (R, (R)) par

[ pQo4)  sit>0
F“(t)'_{ —u(Jt,0]) sit<0

Si 4 est finie sur les compacts, alors F), est une fonction de R dans R croissante,
continue a droite, nulle en 0. Une question naturelle est de savoir si cette propriété
admet une réciproque. Les mesures de Stieltjes apportent une réponse affirmative a
cette question.

Théoreme 6.8. (Stieltjes) Soit F' : R — R une fonction croissante continue a droite.
11 existe une unique mesure i, sur R, 2(R)), appelée mesure de Stieltjes associée
a F, vérifiant :

Va,beR, pr(la, b)) = F(b) — F(a).

La démonstration de ce théoréme est tres proche de la construction de la mesure
de Lebesgue, particulierement lorsque F'(£00) := liim F' = +o0. En particulier, si
oo

F(z) := z, la mesure j,, alors construite n’est autre que la mesure de Lebesgue
elle-méme.

DEMONSTRATION : @pﬂ Construction du “germe” de [, :
Soit .7} := {]a, b], Ja,+o0[, —00 < a < b < 4oo0}. ] est clairement une
semi-algebre sur laquelle I’application long . : ./ — ./ définie par

longy(Ja,b]) :== F(b) — F(a) et longp(]a,+oo[) = F(+00) — F(b)
est clairement finiment additive. En effet,
long -(Ja, b]U]b, ) = longp(Ja. c]) = F(¢) — F(a)
= (F(c) = F(b)) + (F(b) — F(c))
= IOHgF (]a7 b]) + IOHgF (]b7 C]),

idem pour |a, b] et |b, +oo[. D’apres la proposition 6.4 ci-avant, long; admet donc
un unique prolongement long r a I’algebre

C(S)={LU---Ul,, ye S}, n>1}

qui soit finiment additif au sens de la condition (i7) du théoréme de Carathéodory
(théoreme 6.6).
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D’autre part, comme #(R) = o({]a, +o0[, a € R}) (¢f. application 4.1, sec-
tion 4.1), il est immédiat que B(R) C o (7)) i.e. B(R) = o (€ (.7})).

A ce stade, le point (7) étant évident, reste a établir (744) et (iv).
Etape 2 Vérification de (iii) et (iv) lorsque F(+o00) = 400 :

— Assertion (zi7) : Comme F'(+00) = £o0, il est clair que, pour toute partie
A € €(.7]), Aestbornée dans R si et seulement si long - (A) < +oc.

Soitdonc (A,,),>1 une suite décroissante pour I’inclusion d’éléments de €'(.77)
vérifiant long (A4;) < 400 et ﬂLAn:Q L’ensemble A; est borné comme

n>1
réunion finie d’intervalles de longueur globale finie; pour tout n > 1, on écrit en-

suite : A, = Il(n) U---u II(,:L) ou les I,gn) :]oz,(c"),,é’,(cn)], 1 <k <p,, sont deux a
deux disjoints.

Si pour un certain n, A,, =@, le résultat est évident. Sinon, tous les p,, sont non
nuls. Soit € > 0; on construit alors, pour tout n et tout k, J,gn) ::] d,(en), ,(cn)] de

facon que, d’une part, J ,gn) clI ,gn) et, d’autre part,

~(n n 3
P = Flog™) < —.

Chaque intervalle J, ,g") est compact (éventuellement vide). On pose alors, pour tout

Pn
n>1, Al = U J,En). Il est immédiat que A}, € €(.7]), A, C Ay et
k=1

Pn
Par construction les A’,, := U J ,gn) sont compacts, donc fermés dans le compact
k=1

Ne Ne
A, et ﬂ Al =@, il existe donc ne > 1 tel que ﬂ Al C ﬂ A, =@ .Onen
n>1 k=1 k=1

déduit comme dans le théoreme 6.7 que long(A,_) < €. On a donc bien établi
que

lim long r(A4,)=0.

— Assertion (iv) : elle s’établit comme dans le théoréme 6.7 a partir des inter-
valles E,,:=| — n,n].

—~

Le prolongement long - répond alors a la question posée.

Etape 3 Cas général : Supposons par exemple que F'(+00) € R et F/(—00) = —oo.
Soit € > 0. Il existe un réel L. tel que F(+o0) — F(L.) < e. On reprend la
démonstration de I’assertion (7i7) ci-avant en notant que A, N] — oo, L.| est une
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suite décroissante d’éléments de €' (.]) et que A,, N ] — o0, L.| € € (]) est borné
dans R. En outre long p(Ay) = long p(A, N]—o0, Le]) +longp (A, N Le, +00]).
D’apres I’étape 2, lim (long p(A, N] — o0, L.])) <. D’autre part, il est immé-
n
diat via la croissance de I que long (A, N]L., +0]) < F(+00) — F(L.) < e.
D’ou, lim (long 7 (4y)) < 2¢, pour tout >0 i.e. limlong p(Ay)=0.
n n

Les autres cas se traitent de fagon analogue. Quant a 1’assertion (iv) elle est
inchangée. ¢

Notation : On adopte, pour des raisons de maniabilité formelle, la notation dF au
lieu de pt,, dans la plupart des applications courantes.

Remarque : L’existence de la mesure de Stieltjes acquise, il est immédiat que, pour
tous a, b, —o0o < a < b < 400,

pp([a,b]) = F(b)—F(a—) (en particulier u({a}) = AF(a) := F(a) — F(a-)).

6.6 & Régularité d’une mesure sur un espace métrique

Dans cette section, 1’espace ambiant X est un espace métrique dont la distance
sera notée d. Toutes les mesures considérées sont définies sur la tribu borélienne
PB(X)=0(0(X)) relative a la topologie définie par d.

Le but poursuivi ici est de montrer que, a défaut de pouvoir décrire précisément
la tribu borélienne, il est généralement possible d’encadrer avec une précision ar-
bitraire la mesure de tout borélien par celles d’un ouvert plus grand et d’un fermé
(ou d’un compact) plus petit.

Ceci conduit a poser les définitions suivantes
Définition 6.6. (a) Une mesure p sur (X, (X)) est extérieurement réguliere si
VAe B(X), u(A)=inf {u(0), O ouvert, A C O}.
(b) Une mesure p sur (X, (X)) est intérieurement réguliere si
VAe B(X), w(A)=sup {u(K), K compact, A D K}.

(¢) Une mesure o sur (X, A(X)) est réguliere si elle est a la fois extérieurement
et intérieurement réguliere.

6.6.1 Le cas d’une mesure finie

Proposition 6.5. Soit 1. une mesure positive finie sur (X, 2(X)). Alors, pour tout
A€ B(X) et tout € >0, il existe un ouvert O et un fermé F tels que

FCACO et p(O\F)<e. (6.6)
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DEMONSTRATION : Le principe de la démonstration est de montrer que
T :={A e B(X): Avérifie (6.6)}
est une tribu contenant &'( X ), et par conséquent A(X).

— .7 contient 0(X) : Soient A€ 0(X) ete>0;o0n pose O:= A et, pour tout
6>0,
Fs:={z € X :d(z,A) > 6}.

La fonction = +— d(x, “A) est continue (cf. proposition 3.7(a)) donc Fj est fermé
et

J'F1 = {z € X :d(z,%4) > 0} = () = A.
p>1 "

La continuité a gauche d’une mesure (P3, section 6.1.1), entraine

lim j(F1) = p(O).

p
Donc, p(0O) étant finie, lim (O \ F1) = 0; finalement, pour p assez grand, on a
p P
1(O\ F1)<e. On a ainsi montré que (X )C 7.
p

— T est stable par union dénombrable : Soient A,,, n>1, une suite d’éléments
de 7 et € > 0. Par hypothése, il existe pour tout n > 1 des ensembles F,, et O,
respectivement fermés et ouverts tels que

3
Vn>1, FyCAyCOn et p(Op\Fo) < ooy

Or U F,C U A, C U O,, etl’on vérifie d’autre part sans peine que

n>1 n>1 n>1
(U On) \ ( U Fn> c J(Ou\ F).
n>1 n>1 n>1

D’ou il ressort par o-sous additivité (propriété PS, section 6.1.1) que

(U0 (Us)) < Tuonm <555 <5
n>1 n>1 n>1

n>1

n

1 o

D’autre part, comme U F, = U ( U Fk>, il existe ne >1 tel que
n>1 n>1 k=1

(U ) <) 5

n>1
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Ne
On pose alors O := U O, et I':= U F}.. Lensemble O est ouvert, I est
n>1 k=1
fermé et’ona ' C U A, C O. Enfin, (O) étant finie,
n>1

w(O\F) = u(0)=p(F) = p( |J On) =n( U Fu) +1( U Fn) ~(F) <.
n>1 n>1 n>1

— T est stable par complémentaire : Soit A € 7 ete >0, F et O tels que
FC ACOetp(O\F)<e.Ilestclair que °O C “AC °F. O est fermé, °F est
ouvert et “F'\“O=0\F donc pu(“F\“O)=p(O\F)<e. ¢

La proposition précédente aurait pu s’énoncer de facon équivalente sous la
forme suivante

sup {u(F), F fermé, F C A}

VAc B(X), wp(A)= { inf {M(O)7 O ouvert, A C O}-

C’est cette derniere formulation que nous allons maintenant essayer d’étendre
a certaines mesures de masse infinie, sous réserve qu’elles soient cependant finies
sur des boréliens “suffisamment gros”.

6.6.2 Le cas d’une mesure o-finie

Définition 6.7. Une mesure p sur un espace mesurable (X, of) est dite o-finie s’il
existe une suite croissante (Ey,),>1 de boréliens vérifiant

X = UTETL et ((E,) < +oo pourtoutn > 1.
n>1

Par extension, I’espace (X, o/ , u) est dit o-fini.
Théoreme 6.9. (a) Si u est une mesure o-finie sur (X, B(X)), alors

VAe B(X), u(A) =sup{u(F), F fermé, F C A}.

(b) Si, en outre, X = U E,, alors la mesure 1 est extérieurement réguliere i.e.
n>1

VAe B(X), p(A) =inf {u(0), O ouvert, A C O}.

(¢) Enfin, si I’on peut choisir les boréliens E,, compacts, la mesure p est intérieure-
ment réguliere 7.e.

VAe B(X), p(A) =sup {u(K), K compact, A D K}.
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DEMONSTRATION : (a) Cas 1 p(A) <+o0:
Soite >0; A= L_JT (AN E,) donc il existe, toujours par la propriété P3), un
n>1
entier n. > 1 tel que pu(A) < (AN E,.) + § i.e. u(AN “E, ) < 5. On pose
alors fi:=pu(.N Ey,_); i est une mesure finie sur (X, Z(X)) (cf. section 6.1) donc,
d’apres la proposition 6.5 ci-avant, il existe F, fermé, I'C A, tel que i(A\F) <5.
Partant,

H(A\F) = p((A\F) N Ey,) + p((A\F) N “Ep, )

< A(ANF) + p(AN °Ey,)
-2 2

Cas2 pu(A)=+o0:
Toujours d’apres P3, p(A) :limT,u(A N E,);ord apres le cas 1,
n

wW(ANE,) =sup {u(F), F C ANE,, F fermé}
<sup {u(F), F C A, F fermé}.

D ou pu(A)< {sup{u(F), F C A, F fermé}. L autre inégalité est évidente.
(b) On pose, pour tout 7. > 1, i, := p(- N Ey,). Soit A€ AB(X) et € > 0. D’apres
la proposition 6.5, il existe donc, pour tout n > 1, O, € 0(X) tel que AC O,, et
tn(On \ A) < e/2", soit encore

€
ACO, et pwO,NE,) <upulANE,)+ o
Nous allons établir par récurrence sur n la propriété

n
g
27.
k=1

Pn =1 (O (O N Ek)) <u(ANE,) + (6.7)

k=1

2 est immédiate. Supposons &7, vraie. Comme ,u(UZii(O,yf N Ek)) est finie,
la forte additivité de p (propriété P2, section 6.1.1) et ’hypothese de récurrence
entrainent

n+1 n
M(U(OkﬂEk)> = u(Ony1NEny1) +M<U (OxNEy) )

k=1

—p ((On+1 NEpy1) N U (Or N Ey) )
E—1

< /‘(A N En+1) + + (AmEn)

2n+1

n n
13
+ E oF _M<(On+1ﬂEn+1 )N U (OrNEy) )
k=1
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Or, on a simultanément

n

n
ANE,c | J(AnEy)c | J(OxNEL) et ANE,C ANEpi1C Ops1NEnyy
k=1 k=1

d’ou il vient
wANE,) < ﬂ((OnH NE,+1)N < U (O N E, >> < 400,
k=1

si bien que

n+1 n+1
e
H(U (OxN Ek)) < p(AN Epgr) + 227

k=1 k=1

P11 est donc établie. L’ ouvert U (On N Eon) étant contenu dans U (O, N Ey),
n>1 n>1
passer a la limite dans I’inégalité conduit a

p(UJ©nnEn) < J©OnnEn)) < u(4) +e.

n>1 n>1

Reste a montrer que U (O, N E,) contient A. Or, comme X = UTEn par
n>1 n>1
hypotheése, A = | J(A N E,) ¢ | (0, NE,).
n>1 n>1
(c) On remarque simplement que les ensembles F' N E,, sont compacts comme
fermés dans des compacts et que p(F') = liznTu(F NE,). ¢

6.6.3 Régularité des mesures de Borel

Les mesures de Borel sont un premier exemple ot I’ensemble des hypotheses
du théoreme 6.9 sont remplies.

Définition 6.8. Une mesure . sur (X, (X)) est appelée mesure de Borel si, pour
tout compact K de X, u(K) est fini.

Pour I’essentiel, on ne s’intéresse qu’aux mesures de Borel définies sur un es-
pace séparable (i.e. possédant une suite dense, voir section 3.4) et localement com-
pact.

Définition 6.9. Un espace métrique (X, d) est localement compact si tout point
x € X admet un voisinage compact K, i.e. tel que v € K,.

On montre que, dans un tel espace, tout voisinage de x contient un voisinage
compact de x (cf. [18]).
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Exemple fondamental : R?, muni de sa structure d’e.v.n. est un espace localement
compact séparable. En revanche, un e.v.n. de dimension infinie n’est jamais locale-
ment compact. La mesure de Lebesgue )\ sur (R%, 2(R?)) est une mesure de Borel
puisque, tout compact K étant borné, il existe M >0 tel que K C [~ M, M]%, d’ou
MK) < (2M)? < 400.

Le théoreme de régularité des mesures de Borel s’énonce ainsi.

Théoreme 6.10. Toute mesure de Borel sur un espace métrique localement compact
et séparable est réguliere 1.e.

inf {u(0), AC O, O t
vAe BX), p(A) =4 PO ouvert} (6.8)
sup {u(K), K C A, K compact}.

DEMONSTRATION : A ce stade la démonstration est purement topologique. En
effet, au vu du théoreme 6.9, il suffit de montrer I’existence d’une suite de compacts
. T2
(Lp)n>1 vérifiant X = U LyetL,C Lyy.
n>1

Etape 1 (X, d) est o-compact :

Par o-compact, on entend X = UTKn, K, C K41, K,, compact.
n>1
Soit I := {(n,r) € N* x Q% : B(zy,r) compact} ; I étant (au plus) infini
dénombrable, on peut 1’écrire comme réunion dénombrable d’une suite croissante
d’ensembles finis I,,, p>1.
Soit x € X ; x admet un voisinage compact K,. Donc il existe n € N* et
r € Q% tel que x € B(xy,,r) C K. Par suite X = U B(xp, 7). On pose

(n,r)el
) - . 0
K,:= U B(zy,r). Il est clair que X = U K, et que les K, sont compacts
(n,r)elp p>1
comme réunion finie de compacts. D’ou le résultat.
@pﬂ Construction des L,, par récurrence :
On pose L := K7 ; puis I’on suppose construits des compacts Ly, ..., L, tels

que K, C Ly, 1 <k<netl,C Io/k,2<k; < n. L’ensemble K, 1 U L,
est compact et, par locale compacité de X, tout x € Kn+1 U L, a un voisinage
compact V. Or, x € Vs par hypotheése donc la famille (Vx)xe Knt1ULn forme un

recouvrement ouvert dont on peut extraire un recouvrement fini Vx1 U---u pr On
pose alors Ly y1:=V; U--- UV, . Lensemble L, ainsi construit est compact

comme réunion finie de compacts, Kn+1 C Lppetl,C VI1 U---u V% - Ln+1
La suite de compacts ainsi construite vérifie finalement

X=JK.c JLnc JLnnnc JLucx. 0

n>1 n>1 n>1 n>1
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Application 6.2. Toute mesure de Borel  sur (R?, 2(R?)) (i.e. finie sur les com-
pacts) est réguliere; c’est évidemment le cas de la mesure de Lebesgue \; mais
aussi de toutes les mesures a densité de la forme p = f.\; ou f est borélienne
positive et localement Lebesgue intégrable i.e.

VK C RY, K compact, / fdlg < 0.
K

Compléments topologiques : (a) Un espace métrique o-compact est toujours
séparable. En effet un espace métrique compact, notons-le K, est toujours sépara-
ble. Pour tout € Q7 , on peut, par compacité, recouvrir K par un nombre fini de
boules de rayon 7 :

K= U (7')

1<i<n,

Il est alors immédiat que {xgr), 1 <i<ne,r e QL} est dénombrable et
dense dans K. Si maintenant un espace métrique X est réunion dénombrable de
compacts, ceux-ci sont séparables et partant X 1’est car une réunion dénombrable
d’ensembles dénombrables est dénombrable (cf. proposition 2.5).

(b) En combinant I’assertion (a) et I’étape 1 du théoreme 6.10 ci-avant, on obtient
que, dans un espace métrique (X, d) localement compact, il y a équivalence entre
séparabilité et o-compacité :

(¢) En fait, le théoréme de métrisabilité d’Urysohn entraine que, si un espace to-
pologique séparé, non métrisé a priort, est localement compact et admet une base
dénombrable d’ouverts, alors il est métrisable au sens ol sa topologie (voir sec-
tion 3.3) est engendrée par une distance (voir [21], p. 218 (%)).

6.6.4 Régularité des mesures finies sur un espace polonais

La régularité peut également étre obtenue sous des hypotheses de complétude
lorsque p est finie.

Définition 6.10. Un espace métrique (X, d) est appelé polonais s’il est a la fois
séparable et complet.

Théoreme 6.11. Soit (X, d) un espace polonais. Toute mesure p finie sur I’espace
(X, B(X)) vérifie

(a)Ve>0,3K.C X, K. compact tel que n(“K.)<e

(b) w est réguliere au sens de (6.8).

2. Le résultat subsiste si I’on remplace 1’hypothese de locale compacité par celle, plus faible, de
régularité qui stipule que tout voisinage d’un point z € X contient un voisinage fermé.
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DEMONSTRATION : (a) Soit (z,,),>1 une suite dense dans X et € > 0; pour tout
p>1, il existe n, € N* tel que

((Uan,l/P>> 2£ car X= U (ns 1/p) et p(X) < 0.

n>1

On pose alors

K, = ﬂ U B(xp,1/p).
p>1n<n,

K. C U B(zn, 1/p) pour tout p>1, donc K. est un ensemble précompact dans
n<np

I’espace complet (X, d); K. étant fermé, il est donc compact (cf. [25] p. 137).

D’autre part, la o-additivité de p entraine

n(°Ke) < p U ’ (Lj B(xn,l/p)> < 22% =¢

p=>1  \n=1 p=>1

(b) Ce point est une application immédiate de la proposition 6.5 et de 1’assertion
(a) puisque, si F’ est fermé et K compact, F' N K est compact. ¢

6.6.5 Application a la caractérisation des mesures

A partir des théoremes précédents et de la proposition 6.5, on retrouve (ou on
obtient) des résultats utiles de caractérisation des mesures.

Théoréme 6.12. Soient (X, d) un espace métrique et y et |/ deux mesures sur
(X, B(X)). Si et i vérifient l'une des trois propriétés suivantes :

N
(a) X= U En, Eyn ouvert, u(Ey,) = ' (Ey) <400 et po(x) :“Tﬁ(x) (thm. 6.9),
n>1
ou

(b) (X, d) est localement compact, séparable et pour tout compact K de X, u(K) =
W (K) <400 (cf théoréme 6.10),

ou

(¢) (X,d) séparable complet, 1(X) = p/(X) < 400 et pour tout compact K,
w(K) = p/'(K) (cf théoreme 6.11),

alors n=yp'.

6.7 Exercices

(X, o/, ) désigne un espace mesuré.
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Notation : une propriété est vérifiée p-p.p. si elle est vraie sur le complémentaire
d’un ensemble mesurable de p-mesure nulle.

6.1 On considere (Aj,),>0 et (By)n>0 deux suites de o7 telles que, pour tout n €

N, A, C B, et u(4,) < +oo. Majorer N(Unzo Bn\Un20 A,) et N(mnzo B, \
My>0 An) a l'aide des termes de la suite (u(Bp) —1(An))n>0-

6.2 Soient (Y, %) un espace mesurable et f : (X,./) — (Y, %) une fonction me-
surable. Montrer que I’application s : % — R définie par us(B) := u(f~1(B))
est une mesure sur (Y, %).

6.3 Dans chacun des cas suivants, montrer que I’application y définit une mesure
et caractériser les ensembles de mesure nulle :

a) o = P(X)etpour xeX fixé, u(A) := La(x),
b) X =R, & := {Ae€ Z(R) : AouCAdénombrable} et ;1(A) := 0 si A est
dénombrable, ;(A) := 1 sinon,
¢) X :=N, o := P(N) et, (un)n>o €RY étant fixée, u(A) := Z U,
neA
6.4 Soit f : (X,./) — (R, #(R)) une fonction mesurable.

a) Montrer que si (X ) #0 alors il existe A € o7, u(A) #0, tel que f soit bornée
sur A.

b) Montrer que si p({f #0}) #0 alors il existe A € o7, pu(A) #0, tel que |f| soit
minorée sur A par une constante strictement positive.

6.5 Soient x une mesure finie sur Z(R). On lui associe la fonction F' définie sur R
par F(z) := pu([, +oc]).
a) Montrer que la mesure y est uniquement déterminée par la donnée de F'.

b) Montrer que F' est décroissante et continue a gauche sur R, et calculer les limites
en oo de F.

c) Calculer p({z}) pour x €R, puis montrer que F' est continue en x si et seulement
si u({x})=0. Que peut-on en déduire sur I’ensemble D := {z€R : pu({z})#0}?

6.6 Une partie N € & (X) est dite négligeable par rapport a la mesure p, ou p-
négligeable, s’il existe A € o7 tel que N C A et u(A)=0. On note .4/ I’ensemble
des parties p-négligeables et o7 := {AUN : (A, N)eo/ x N }.

a) Montrer que C' € o7 si et seulement si il existe A, B € .o/ tels que ACC C B et
u(B\A)=0.

b) Montrer que .2/ est une tribu.

¢) On pose pour tout C'€ o7, i(C') := u(A) si ACC C B et u(B\A)=0. Montrer
que 7z définit bien une application et une mesure sur < qui coincide avec p sur .o7.
d) Montrer que la mesure fi est compléte, i.e. </ contient toutes les parties fi-
négligeables.

La tribu o est appelée la tribu complétée de la mesure p et sera étudiée en détail
au chapitre 13.
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6.7 On consideére a,b € Ret f : R — R la fonction définie par f(x) := ax+Db.
Montrer que, pour tout A€ A(R), f(A) e B(R) et \(f(A)) = |a] A(A).

6.8 a) Montrer I’existence d’un ouvert dense de R de mesure arbitrairement petite.
b) En déduire que, pour tout € > 0, il existe un fermé F' de R d’intérieur vide tel
que, pour tout A€ AB(R), \(FNA)>\(A)—e.

6.9 Déterminer A, B€ A(R) tels que A+B=Ret A\(A)=\(B)=0.

6.10 Montrer que le graphe d’une fonction f : R? — R continue est une partie
A\g41-négligeable de R4+

6.11 Soient (X, d) un espace métrique et x une mesure finie sur la tribu borélienne
A(X).On dit que Ae B(X) vérifie la propriété de régularité (x) si

p(A) =inf {u(0): AC O, OcO(X)} =sup{u(F): FC A, FeO(X)}.

a) Montrer que tout fermé de X vérifie (x).

b) Montrer que I’ensemble des parties vérifiant () est une tribu.

¢) En déduire que tout borélien de X vérifie (x).

6.12 Soient (X, <7, 1) un espace mesuré de masse totale finie et une suite de fonc-
tions fp, : (X, o) — (R, Z(R)) mesurables.

a) Montrer que I’ensemble de convergence de la suite (fy,)n>1 est défini par

= U N Alf= <1/}

k>1 n>1 ij>n

b) On suppose que la suite (fy,)n>1 converge u-p.p. vers une fonction mesurable
f,au sens ot x(“C') =0. On définit pour k, n € N*,

n

Ab = N {1 = fI < 17k}

p=1i>p

Montrer que, pour tout € > 0 et pour tout k& € N*, il existe nj . € N* tel que
/’L(CAﬁkYS) < 2%
¢) En déduire le théoreme d’Egoroff : pour tout € > 0, il existe A. € o/ tel que

w(CA;) <e et f, converge uniformément vers f sur A..

d) Montrer par un exemple simple (sur (N, &?(N)) muni de la mesure de comp-
tage ou sur (R, Z(R)) muni de la mesure de Lebesgue) que ce résultat est faux en
général si (X)) =+o0.

6.13 Soient une suite de fonctions f, : (X,<) — (R, %(R)) mesurables et f
mesurable. On dit que la suite ( f;,),>1 converge en mesure vers f si

Ve>0, lién w({|fn — f]>c}) =0.
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a) Montrer que si pu(X) < 400 et la suite (fy,)n>1 converge p-p.p. vers f, alors
elle converge en mesure vers f.

b) Montrer que si la suite (f,),>1 converge en mesure vers f alors elle possede
une sous-suite qui converge pu-p.p. vers f.

6.14 Soit X un espace métrique séparable muni de sa tribu borélienne Z(X) et
d’une mesure p. On définit pour chaque fonction f : X — K mesurable, le support
essentiel de f par

S}L = ﬂ F ou CY}“ := {F fermé de X : f=0 p-p.p. sur “F'}.
Fest

a) Montrer que, si f est continue, S ﬁf est contenu dans le support usuel de la fonc-

tion f f (i.e. supp f := {f#0}). Montrer qu’il y a égalité si tous les ouverts non
vides de X ont une mesure non nulle sous fi.

b) Soit f : X — K mesurable. Montrer que f=0 p-p.p. sur CS}‘.

c) Soient f,g : X — K mesurables. Montrer que si | f| <|g| p-p.p. alors S}‘ c Sy,
etque si | f|=|g| p-p.p. alors S =S5y’

d) Soit ( f,,)n>0 une suite de fonctions mesurables positives qui croit vers une fonc-

tion f. Montrer que S}‘ = L_JT S ;fn
n>0

6.15 Soit (X, Z(X)) un espace métrique séparable muni de sa tribu borélienne.
Soit 1 une mesure sur (X, Z(X)).

a) On pose 0, := {O € O(X) : n(O) = 0}. Montrer que & est non vide et
admet un plus grand élément 2, pour I’inclusion. On définit le support de i par
supp p :=¢ €1,

b) Déterminer le support d’une mesure de Dirac J,, de la mesure de Lebesgue A4,
de la mesure de comptage m.

c¢) Soient f : X — R, une fonction mesurable positive et v := f.u. Montrer que
supp v := S}‘ (support p-essentiel de f défini a I’exercice 14.

6.16 Soient (X, d) un espace métrique et «,e > 0. Pour toute partie A de X, on
désigne par Z.(A) I’ensemble des recouvrements dénombrables (By,),>; de A par
des boules By, de diametre <&, et on pose

jE(A) = inf ( 3 (diamBk)"‘>.
Ze(A) M3
a) Montrer que la fonction € — pg,(A) est décroissante sur R*, .
b) Montrer que I’application pf, est une mesure extérieure (cf. définition (6.4)).
¢) En déduire que I’application p, := lir% L, est une mesure extérieure appelée la
E—

mesure de Hausdorff.
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d) Montrer que, pour toute partie A de X, la fonction o — pi,(A) est décroissante
sur R*_ ainsi que la fonction o — ¢~ 7, (A), pour tout € > 0.

6.17 On se place sur I’e.v.n. R%, d € N* et on reprend les notations de 1’exercice
précédent.

a) Soient o> d et £ > 0. Montrer qu’il existe une constante ¢, strictement positive
(qui dépend de la norme choisie sur R?) telle que, pour tout hypercube @ de RY,

15,(Q) < cae® X(Q).
b) En déduire que, pour tout o> d et pour toute partie bornée A de RY, j14,(A) =0.
¢) Soit A une partie bornée de R?. On définit la dimension de Hausdorff de A par

H(A) :=inf{a > 0: u.(A) =0} € [0,d].

Montrer que, pour tout o > S (A), pa(A) = 0 et que, pour tout o < S (A),
fa(A) = +o0.

d) Soit @ un hypercube de R%. Montrer que #(Q) =d.

6.18 On définit sur la tribu < la relation & par : pour tous A, B € &/, AZ B si
uw(AAB) = 0, ou A désigne la différence symétrique.

a) Montrer que Z est une relation d’équivalence sur .o/ et caractériser la classe
d’équivalence de ’ensemble @.

On note par 7 /% 1’ensemble quotient de <7 modulo la relation d’équivalence
Z et par A la classe d’un élément A de 7.

b) Soient A, B € </ /%. Montrer que le nombre u(AAB) ne dépend pas des
représentants A et B dans les classes respectives A et B.

¢) Montrer que I’application d définie sur .o/ /% x </ | % par
d(A, B) := arctan(u(AA B)), A, Bed /%,

est une distance sur </ /Z.

d) Soit v une mesure sur </ telle que
Ve>0, 30>0, p(A)<d = v(A)<e.

Montrer que I’application A — v/(A) est bien définie et continue sur (<7 /2, d).
6.19 Soit Ac #(R),onnote —A :={—a;ac A} et|A|:={|a|; ac A}.

a) Montrer que —A € #(R) et |A| € ZB(R4).

b) Montrer que A\(A) = A(—A) et A(JA]) < A(A).

6.20 Soit espace (X, <7, ;1) un espace mesuré tel que p(X) = 1.

a) Montrer que

-

(AN B) = u(A) p(B)| < /(A (1 — p(A)u(B)(1 — u(B)) <



Exercices 115

b) Montrer les deux inégalités

(AN B) = u(A) pu(B) < min (u(A)(1 — u(B)), u(B)(1 — p(A)))
et ju(A) u(B) — p(AN B) < min (u(A)(1 — u(A)), n(B)(1 — u(B)))-

¢) Montrer que les inégalités obtenues en b) sont plus fines que celle obtenue en a).

d
6.21 a) Soit 41 la mesure définie sur (R? ) par pu(A) := / " Montrer que /i est
AT

invariante par homothétie de rapport > 0.

b) Soit 1/ une mesure sur (R’ ), invariante par homothétie, avec 1/([1,€]) = 1.
Montrer que i/ = p.
c) Montrer que, pour tout A € Z(R% ) et tout o > 0, A* € A(R%) et

p(A%) = apu(A).

6.22 On se place sur un espace X muni d’une tribu <7

a) Montrer qu’une application z1 : &7 — R, vérifiant
(i) (@) =0,
(i) VA, Bed, ANB=0 = pu(AUB)=u(A)+ u(B),

(731) pour toute suite (Ay,),>1 d’éléments de <7, croissante pour ’inclusion,

(UA)-hm,uA)

est une mesure sur (X, 7).

b) On considere une suite (v,,),>1 croissante majorée de mesures positives finies
sur (X, .o7), c’est-a-dire vérifiant

supvp(X) <400 et Vne N, VAe &, vp(A) < vpt1(4).

Montrer que I’application v définie sur o7 par v(A) := lim v, (A) est une mesure
n
finie.

6.23 Théoreme de classe monotone fonctionnelle

Soient (X,.¢/) un espace mesurable, .7 un R-s.e.v. de I’espace des fonctions
bornées de X dans R et ¥ un m-systeme de parties de X. On suppose que .7
vérifie

(1) VCe€¥€, lge X

(ii) Sif=1Hm f,, fo€ S, f, >0, alors fe .

a) Soit 7 :={AC X : 14 € J}. Montrer que .7 est un A-systeéme. En déduire
que . contient toutes les indicatrices d’éléments de o (%).

b) Montrer que .77 contient toutes les fonctions bornées o (% )-mesurables.
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Chapitre 7

Intégrale par rapport
a une mesure positive

Dans de ce chapitre, (X, <7, ;1) désignera un espace mesuré quelconque. L'usa-
ge de {f € B} en lieu et place de f~!(B) pour noter I'image réciproque ensem-
bliste {x € X : f(z) € B} ainsi que ses diverses variantes {f = a}, {f # a},
{f <a},etc., sera généralisé.

On adoptera les conventions suivantes :
0 x pu(A) =0 pourtout A€ o, y compris si u(A) = 400, (7.1)

0 x f(z)=0 pour toute fonction f, y compris si f(x)==+o0. (7.2)

Ainsi, on posera 0 X p({f =0}) =0 méme si u({f =0}) = +00. De méme,
le produit f(z)g(x) vaut 0 des que f(z) ou g(x) vaut 0, méme si 1’autre terme
est infini. Par exemple, la fonction f définie par f = J 1{|f|<+o0) Vaut 0 en tout
point x tel que f(x) = +oo.

On synthétise parfois ces conventions a I’aide du raccourci (dangereux)

“0 x (£00) = 07,

7.1 Intégrale d’une fonction étagée positive

Parmi toutes les écritures possibles d’une fonction étagée f € &k (<), on dis-
tingue sa forme canonique :

f = Z al{f:a}.

acf(X)

C’est sur cette forme canonique que I’on s’appuie pour définir I’intégrale d’une
fonction étagée positive.
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Définition 7.1. Soit f € &g, (/) une fonction étagée positive sur (X, o). L’inté-
grale de f par rapport a la mesure i est définie par

/fdu > ap({f=a})eRy.
aef X)

Proposition 7.1. Soit f une fonction étagée. Pour toute décomposition
=2 icr aila, oit (A;)icr désigne une partition o7 -mesurable finie de X,

/fdu Zezlazu

DEMONSTRATION : On vérifie que

Z%M(Ai): Z Zaiu( Z Z

iel acf(X) o=« acf(X) i/ai=a

U A; = {f = a} pour tout o € f(X) et les A; étant deux a deux dis-
i/o=a
joints par hypothése, il est clair que Z u(A;) = p({f = a}). D’ou le résultat
i/ =«

annoncé.

Notations : On note aussi

/Xf(x) dp(x /f w(dx) laquantité /fd,u

En I’absence d’ambiguité, on omet parfois de mentionner I’espace X.

Remarques : e Si f =0 (fonction nulle), / fdu = 0xpu(X) = 0 (ce point repose
X
sur la convention (7.1) dés que (X)) =+00).

e On constate sur la définition que

/deM<+OO — u({f#0}) < 4o0.

(ce point utilise également la convention (7.1)).

Exemples : 1. Mesure de Dirac : Soient j1:=d, la mesure de Dirac au point a € X
et f : X — R4 une fonction ne prenant qu’un nombre fini de valeurs. Alors

/X fdu = f(a).
En effet, u({f = f(a)}) =1 et u({f —a}) =0 pour tout a € F(X)\ {f(a)}.
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2. Mesure de comptage : Soit m la mesure de comptage sur (X, Z(X)), définie
par m(A) =card(A) pour tout A € Z(X). Alors, si la fonction f : X — Ry ne
prend qu’un nombre fini de valeurs,

/dem:: Z acard {f=a}.

acf(X)

— Soit card { f #0} < +o0 et il est clair que / fdm = Z f(x), cette
X

z€X, f(x)7#0
somme ne comportant qu’un nombre fini de termes. On la note — abusivement —

> ).

zeX
— Soit card { f #0} =400 et / f dm = 4o00. On pose alors, conventionnelle-
X

ment, Z f(zx) :—/ f dm=+o0 de facon que, dans tous les cas, on ait
rzeX X

[ gam =3 sz

zeX

Lorsque X =N,

/N f(n)dm(n) =" f(n)

neN
n’est autre que la somme de la série de terme général f(n) (la fonction n — f(n)

ne prenant qu’un nombre fini de valeurs positives).

Propriétés 7.1. Soient f, g deux fonctions étagées positives définies sur (X, o, ).

(a) / (f+g)du= / fdu+ / gdp  [additivité],
X X X
b)f<g = /fduﬁ/ gdp  [croissance],
X X

(¢) pour tout A > 0, / Afdp =\ / fdup  [positive homogénéité].
X X

DEMONSTRATION : (a) On écrit les fonctions f et g sous la forme f:= Z a;la,
el
et g:= Z Bilp, ol (A;)icr et (Bj);es sont deux partitions o7 -mesurables finies
jed
de X.Onadéavuqualors f+g= Y (c;+ Bj)1anm; odt (AiNB;)(ijerxs
(i,§)€IxJ
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est une partition <7 -mesurable finie de X. D’ou

/X Fraydu= 3 (oi+ Bu(Ain B)

(i)elxJ
S e Y AN B+ Y A YA B
el jeJ jeJ el
=Y aip(A) + ) Bu(B;) = / fdp+ / gdm.
il jeJ X X
(b) Onécrit g = f+ (g — f). Lafonction g — f est positive par hypothese et étagée
car g — f = Z (Bj — a;)1a,nB,. Donc /(g — f)du > 0. D’ou, d’apres
o X
(4,5)EIxJ

’assertion (a),

/ng'u:/xfd'u_'—/x(g_f)d/LZ/deu.

(c) Si A=0, c’est clair.
SiA#0, alors (Af)(X)={ o, a€ f(X)} et {A\f=Xda}={f=a}.Dou
finalement

/XAfdu: > dau((pf=ra)) =2 Y aul{r=ah) =2 [ fdu.

acf(X) a€ f(X) X

Le lemme suivant, bien que constitué de résultats tres simples, est le premier
maillon important de la construction de I’intégrale de Lebesgue.

Lemme 7.1. (a) Si Ac o/ et f€ &R, () alors L5 f € Er, () et I'on pose

/fdu :z/(lAf)dm.
A X
(b) Soient A,Bc o/, ANB =@ et fc &g, (). Alors

e /Afdu+/deu.

(¢) Soit (Ey,)n>1, une suite d’éléments de <, croissante pour linclusion et vérifiant
*
X= U E,,. Alors pour toute f € &r, (),

n>1

/fd;z:limT fdu.
X n E,
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DEMONSTRATION : (a) Si f := Z a;la,, alors 14 f = ZailAimA 40X legy
il iel

est étagée positive car {°A, A; N A, i€ I} forme une partition o7 -mesurable finie

de X.

(b) découle de I’additivité de ’intégrale et de I’égalité Lo pf=1af + 15f.
(c)Sif:= Z a; 14, alors, d’apres le point (a),

i€l

ozl [ fde=Y am(Bana) £ 0xaCE)
FEn N———

el =0 via la convention

d’oulim [ fdu = Z a; W(4;) = / fdu d’apres la propriété P3 (“continuité
n JE - X
n i€l
a gauche” d’une mesure) puisque A; = UT(AZ- N E,)pourtoutic I. ¢
n>1

7.2 Intégrale d’une fonction mesurable positive
On désigne par
M) ={f:(X,)— (R, Z(R)), mesurables}

I’ensemble des fonctions mesurables positives, finies ou non, définies sur (X, .o7).

Définition 1.2. (a) Si f € M4 " (), on pose

/fdM = Sup{/sodu, <[, p€ é"m(ﬂf)}- (7.3)
X X

L’intégrale / fdu € Ry car la fonction nulle est étagée, d’intégrale nulle et
X

minore f.
(b) f est u-intégrable si / fdu<+oo.
X

Propriétés 7.2. (a) Lorsque la fonction f est en fait étagée positive, la définition
(7.3)de | fdu coincide avec celle donnée a la section précédente pour de telles

o Jx
fonctions.

(b)Sif,g€//l+(£%)etf§g,alors/ fduS/gdﬂ-
X X

DEMONSTRATION : (a) D’aprés la propriété de croissance de 'intégrale sur les
fonctions étagées établie a la propriété 7.1 (b), pour toute ¢ € &g (&),

/Xsodu</xfdu-
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(b) Si f < g, alors {p€ r, (&) : o< [} C {p€r (&) :p < g} etpartant,
/fduﬁ/gdm- O
X X

Le théoreme suivant est la clé des propriétés élémentaires de 1’intégrale de Le-
besgue.

Théoréme 7.1 (Théoreme de Beppo Levi ou théoréme de convergence monotone).
Soit (frn)n>1 une suite croissante d’éléments de M+ () (ausens 0 < f, < fri1).
Alors

f=limf,e M () et / fdu = limT/ fodp.
" X noJx
DEMONSTRATION : étape 1 : La mesurabilité de f a été établie dans la proposi-
tion 5.7 (¢). D’autre part, on déduit de la double inégalité f,, < f,+1 < fetdela
propriété 7.2 (b) ci-avant que / cdp < / frnr1dp < / fdpu.
X b's b's

Par suite on obtient lim' / fndu < | fdp.
noJX X

étape 2 : Soit maintenant p € &g, (&), ¢ < f et A €]0,1[. On définit pour tout
n>1, B, :={fn>Ap}. Nlestclairque B, ={f,—Ap>0} € &/ et E,, C E, 41 car

fn < fny1. D autre part, X = UTEn puisque
n>1

N En = () {fn < e} C{F <A} N{f >0} = 6.
n>1 n>1

D’autre part, on vérifie immédiatement que 15, Ap < f,, pour toutn>1, d’ou,
toujours d’apres la propriété 7.2 (b),

vazl A [ pdu= [ edu< [ fudn<iim [ fidp.
n En X ko Jx

D’apres le lemme 7.1 (c¢) ci-dessus, il vient en passant a la limite en 7,

Y Ae€]o,1], )\/@duglim/fkdu et partant /gpduglim/ frdp.
X ko Jx X ko Jx

Finalement /fdu:sup{/god,u, pe bR (), p < f}g lim/fkdﬂ. O
X b'e ko Jx

En fait, le théoreme de Beppo Levi n’est pas seulement une étape technique es-
sentielle dans la construction de I’intégrale de Lebesgue, c¢’est aussi un résultat aux
multiples applications pratiques, notamment pour 1’étude des suites d’intégrales et
des intégrales dépendant d’un parametre. Cet aspect est illustré par I’application 7.1
proposée en fin de chapitre.

On peut maintenant étendre les propriétés élémentaires déja établies sur les
fonctions étagées.
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Propriétés 1.3. Soient f, g€ M ().

(o) f<g = 0< / fdu< / gdm [croissance],
X X
(b) /(f+g) dp = / fd/,L+/gdm [additivité],
X X X
(c) pour tout A > 0, / Afdp = )\/ fdu  [positive homogénéité].
X X

DEMONSTRATION : (a) a fait I’objet de la proposition 7.2 (b) préliminaire au
théoréme de Beppo Levi.

(b) L’égalité est vraie si f, g€ &g, (7). D’apres le lemme fondamental d’approxi-
mation (théoréme 5.1), il existe f,,, g € r. (&), n>1, telles que f,, T f et g, Tg.
On conclut via le théoreme de Beppo Levi, une fois noté que (f,,+g,) T (f+9) :

Jf +9) dp = limy, [{(fn + gn) dpp = lim (/an dp + /Xgndu>

—/deu—i-/xgdm.

(c) Si A=0, le résultat est évident, modulo la convention 7.1 si besoin est. Si A >0,
on proceéde comme ci-dessus via le lemme d’approximation. ¢

Proposition 7.2. Soit f € .4 (). Alors,

Jrau=0 o utis 0o
DEMONSTRATION : Si f est étagée, 1’équivalence est évidente modulo la conven-
tion 0 x (+00) =0.
Si fe A4 (), f= limTfn, fn € ér. (), d’apres le lemme d’approxima-
n

tion. En particulier {f #0} ={f>0}= UT{fn #0} et donc

n>1

u({f #0}) =lim’ u({ £, #0})

par “continuité a gauche” de la mesure (propriété P3, chapitre 6).
(=) Si / fdu =0, alors, d’apres la proposition 7.3 (a) ci-avant, / frndp =20

pour tout n > 1 et partant jo({ £, #0}) = 0. D'oi, ju({f #0}) = lim ji({ £ £0}) =
0.

(<) Sip({f#0})=0,alors pu({ fr #0}) =0 et donc / frn dp=0pourtoutn > 1.
b's

Partant, / fdu= lim' / fndp = 0 d’apres le théoreme de Beppo Levi. ¢
X noJxX
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La notation “y-p.p.” : a la formulation p({ f#0}) =0, on préferera généralement
“f =0 p-p.p.”, abréviation p.p. signifiant “presque partout”. Idem avec f =g
p=p-p- pour p({f #g})=0.

Rapidement, on cedera a la tentation d’étendre le champ d’utilisation de cette
notation. Ainsi, si (f,,)n>1 et f sont des fonctions mesurables définies sur (X, .o7),

ondiraque f, — f u-p.p. pour signifier que u(“{x € X : lim f,, () = f(x)}) = 0.
n

Plus généralement, on dira qu’une proposition &, est vraie p(dx)-p.p. si
{re X : P, fausse} € & et p({reX: P, fausse}) = 0.

Parfois méme, on dira qu’une proposition &, est vraie u(dz)-p.p. s’il existe N €
</ tel que
{re X : P, fausse} C N et u(N)=0.

Corollaire 7.1. Soient f, g€ M (). Si f=g p-p.p. alors / fdu= / gdm.
X X

DEMONSTRATION : D’apres la proposition 5.7 (c), les fonctions max(f,g) et
min( f, g) sont ./ -mesurables donc la fonction i définie par

b= max(f,g) - min(f7 g) sur {mln(fvg) < +OO},
1o sur {f=g=+o0}

I’est aussi( '). En outre, h est positive par construction. Or, h est nulle sur {f =g}

donc, par hypothese, h=0 u-p.p. et partant / hdp = 0. Comme
X
max(f, g) =min(f,g)+,h
/ max(f,g)du = / min( f, g) dm, si bien que, partant de
X X

/deu

/XmaX(f,g) dm > / ] Z/Xmin(f,g) dm,
gdpu
X

onconclutque/fdu:/gd,u. O
X X

Proposition 7.3 (Inégalité de Markov). Soit f € .# " (). Alors,

VA0, u({f = A}) < i/deu-

1. En effet plus généralement si I’on pose h1 = min(f, g) et ha = max(f, g), on vérifie que
pourtouta€ R, {h > a}={h2 > h1 +a}N{h < +oxx}e Fetsia<0,{h>a} =Xe€ .
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DEMONSTRATION : L’inégalité f > Alif> 4y et la propri€té de croissance de
I’intégrale entrainent

/fduZ/Al{f>A}du=Au({f2A})- %
X X

Corollaire 7.2. Si f € M () est p-intégrable alors u({ f =+o0})=0.
DEMONSTRATION : On vérifie que
(F=toch = 20} e ul{r=1) < [ fau<soc,
n>1 X

La propriété de continuité a droite de la mesure (P4, chapitre 6) donne

(s =och) =tind (s =n) <tim [ fdu=0. 0

non

Exemples : 1. Mesure de comptage sur N : Si X =N, o7 = Z(N) et m désigne la
mesure de comptage définie par m(A)=card(A), il est immédiat que

M T (o) :={suites (up)nen 2 valeurs dans R, }.

L’intégrale / updm(n) d’une suite a termes positifs (u, ) en par rapport a m

N
n’est autre que la somme de sa série Z Up.
neN
En effet, si I’on pose, pour tout N € N, ugN) = uy pour n < N et U7(1N) =0

pourn > N, il est clair que (U%N) )neN est une suite a termes positifs pour tout N >
0 et que (u,(IN))neN T (un)nen quand N T +o00. D’autre part, la suite (ugN))neN
est étagée car elle prend au plus N + 1 valeurs donc, d’apres 1’exemple 2 de la

section 7.1,
[ usamn) = - <N>—Zun.
N

neN

Finalement,

updm(n zlim/ugv)d —hm Up = Up,.-
[ wnitm(n) =i [ Z >

neN

2. Mesure de comptage sur X : Plus généralement si m désigne la mesure de

comptage sur un ensemble (X, Z(X)), on obtient la théorie dite “des familles

sommables” a termes positifs qui permet de définir la quantité Z u(x) — ou
zeX

u : z — u(x) désigne une fonction quelconque de X dans R, — comme I’intégrale
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L’inégalité de Markov montre que, si Z u(z) < +oo , alors {u # 0} est au

reX
plus dénombrable. En effet, on a pour tout n>1,

card ({z € X : u(z)>1/n}) <n Z u(r) < +o0.
zeX

ATTENTION ! La réciproque du corollaire 7.2 est fausse. Ainsi, sur ’espace
mesuré (N, 2(N),m), si 'on pose fo:=0, f, =2, n>1, la suite (f,)nen est
m-p.p. finie (en fait f, est finie partout!) et

1
/andm(n) = ;n = +o00.

Des exemples similaires peuvent étre construits sur (R, Z(R), \).

7.3 L’espace % (1) des fonctions intégrables

Comme toujours K=R ou C. On considérera aussi des fonctions a valeurs dans
R et R, voire, exceptionnellement, dans le compactifié d’ Alexandroff C de C ( 2).

Définition 7.3. (a) Une fonction f : (X, o) — (K, B(K)) est p-intégrable si | f|
est p-intégrable (i.e. / | f| dpp < —400).

X
(b) On note

.ZKl(X,;ZZ,u)::{f:(X,;zf)—>(K,<%’(K)), mesurable, /|f|du<+oo},
X

I’ensemble des fonctions u-intégrables définies sur X a valeurs dans K. En [’ab-
sence d’ambiguité on écrira généralement £ (1), voire (). Cette définition
s étend aux ensembles de fonctions intégrables a valeurs dans Ry, R, etc.

Remarques (importantes) : e Si f est a valeurs dans R, il découle de I’identité
|f|l = fT + f~, de la croissance et de 1’additivité de 1’intégrale sur les fonctions
mesurables positives, que

feLp) = [Fe2s (.

e Sife fﬁl(,u) alors p({f=xoc0})=01i.e. f est p-p.p. finie.

En effet, {f = £oo} = {|f| = +o0} donc, d’apres le corollaire 7.2 ci-avant,
p({J = £00}) = p({]f] =20} =0.
e Si f et g sont avaleurs dans R avec f =g u-p.p., alors f € .Zﬁl(,u,) si et seulement
sige .;S%l(u).

2. Voir [25] pour la construction du compactifié d’ Alexandroff d’un espace localement compact.
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En effet, il est immédiat que | f|=|g| sur {f = g}. Alors |f|=|g| p-p.p.. D’oit
/ |fldu= / |g| du d’apres le corollaire 7.1 ci-avant. Ces deux nombres sont donc
X, X

finis simultanément.

e Si f estavaleurs dans C, |[R(f)| et |S(f) < |f| < IR+ [S(f)]-
Donc f € ZZ(p) si et seulement si R(f) et S(f) € La ().

En outre, on montre comme dans le cas réel que, si f et g sont & valeurs dans C
avec [ = g pu-p.p., alors f € ei%l(u) si et seulement si g € ,i%l(u)

Définition 7.4. (a) Si f € fﬁl(u), on pose

/X fp = /X frdu - /X fdu.

(b) Si fe LL(w), on pose

/deui—/X%(f)dqui/X%(f)dm.

Remarques (toujours aussi importantes) :
¢ Si f =g pu-p.p. (2 valeurs dans R), on vient de voir que f € fﬁl(u) si et seulement
sig e .Zﬁl(u). En outre, / fEdp = / g dp car f£ = gF sur {f = g}, donc
X X
u-p-p. (cf. corollaire 7.1). Partant, / fdu:/ gdm.

X X

e Soit f € é%(,u). D’aprés ce qui précede, si I'on pose f := f 1¢tery, il vient
aussitot, f = f p-p.p., f € L3 () et/ fdu:/ fdu. O
X X

Au vu de la derniere remarque ci-dessus, on évitera autant que possible de
considérer dans la suite des fonctions p-intégrables a valeurs dans R et I’on ne fera
plus référence 3 Z2 (1),

Exemples : 1. Sur (N, Z2(N)) muni de la mesure de comptage m, il y a iden-
tité entre fonctions m-intégrables et séries absolument convergentes. En d’autres
termes,

Le(m)=Lk(m) = {(Un)neN : Z lun| < —i—oo}.

neN
2. Sur (X, Z(X)), toujours muni de la mesure de comptage, les fonctions m-
intégrables sont les familles dites “absolument sommables”.

Théoreme 7.2. (K =R ouC) £ () est un K-e.v. et f — /f dyu est une forme
X

linéaire positive (au sens : f > 0 = / fdu > 0). Elle est donc croissante :
X

Vige L), f<g = /deu</ngm-
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DEMONSTRATION : Le cas réel : Si f, g € Zn(u), alors |f+g| < |f|+ |g| €
$§+ (u). D’autre part,

fr9=+9"—(f+9 =ft+gt—-f —g,
d’ot f+oT+f+g =(f+9 +fT+9"

Par additivité de 'intégrale sur .#Z " (<), il vient :

0 S/(f+g)+du+/fd,u+/gd

X X
= /(f+g)_du +/f+d,u +]g+d,u<+oo.
X X X

Toutes les intégrales considérées sont donc finies. On en déduit 1’additivité sur
3 () en revenant a I’ ordre originel des termes.

L’homogénéité se traite a partir de la positive homogénéité :
—Si A>0, (A\f)T=\f*, on conclut par la positive homogénéité sur .#*(.o7).
—SiA<0, (Af)T=—\fT et1’on conclut de méme.

Le cas complexe : La R-linéarité de R et de & assurent 1’additivité. Pour 1’ho-
mogénéité, on commence par A = ¢. On s’appuie ensuite sur le cas réel et sur

le développement (a+ i8)(R(f)+ iS(f)) = (aR(f) — BS(f)) + i(aS(f) +

pR(f)- 0

Remarque (exercice) : || f]|, := / | f| dyu est une semi-norme sur % () dont
X

le noyau est le K-e.v. {f € Li(p) : f =0 p-p.p.} (pour les définitions, voir
chapitre 9.3.1).

Proposition 7.4. (Inégalité triangulaire pour les intégrales)
[ rau < [ 151a
X X
(b) Cas d’égalité :

- Si K=R, I’égalité a lieu si et seulement si, ji-p.p., f est de signe constant.

(a) Pour toute f € £ (1),

- 8Si K= C, I’égalité a lieu si et seulement si il existe o € C, |a| = 1, tel que
f=alf| p-p.p. (en d’autres termes f a un argument p-p.p. constant).

DEMONSTRATION : (a) Soit A € C tel que

/fd,u‘ = )\/ f dp. On peut toujours
X X

choisir [\|=1 et

’/deu‘z/XAfdu:/dequi/X%()\f)dmg/X‘gR(Af),du
L

=0

eR
< / M |dp = / Fldu. (7.4)
X X
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(b) Iy a égalité dans I’inégalité triangulaire si et seulement si il y a égalité dans les
deux inégalités de (7.4) i.e. si

[Roni-ros du=0 e [ pri-[ROH]du
X X

>0 >0

Par conséquent, d’apres la proposition 7.2,
il y a égalité sietseulementsi R(A\f) > 0et S(Af) =0 p-p.p.,
si et seulement si  Af = |\ f| p-p.p.,
si et seulement si  Af = | f| u-p.p.
On conclut en posant a:=1/\. ¢

7.4 Intégrales de Riemann et de Lebesgue sur un inter-
valle compact

Nous allons montrer que les intégrales au sens de Riemann et au sens de Le-
besgue (par rapport a la mesure de Lebesgue) sur un intervalle compact [a, b]
coincident en un certain sens sur I’ensemble des fonctions Riemann intégrables.

Proposition 7.5. (a) résultat général : Pour toute fonction f € F([a,b]), il existe
une fonction g€ £ ([a,b], B([a, b)), \) telle que :
(i) f=g A-p.p., au sens o

JAe€ B([a,b]) tel que \(A)=0 et Yo A, f(x)=g(x),

(74) /abf = /[(Lb]gd/\.

(b) Point de vue pratique : En particulier, si f : [a,b] — R est borélienne et

b
Riemann intégrable, alors f € £ (|a,b], B(|a,b]), ) et/ f= / fdA.
a [a,b]

Remarques : o Si’on s’était placé sur la tribu de Lebesgue % (|a, b])/\ i.e. la tribu

borélienne “complétée” des ensembles “négligeables”, on aurait pu reformuler le
point (a) en :

b
JK([a,b])CZ}%([a,b],%’([a,b])A,/\> et /f: [b}fdA.

La notion de tribu complétée est définie et étudiée en détail au chapitre 13.

e Le point (b) entraine notamment que 1’intégrale par rapport a la mesure de Le-
besgue sur [a, b] et I'intégrale au sens de Riemann sur [a, b] coincident sur les fonc-
tions réglées. En effet, toute fonction réglée est borélienne puisque, par définition,
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elle est limite (uniforme) d’une suite de fonctions en escalier (cf. définition 1.4). Or
toute fonction en escalier sur [a, b] est borélienne car étagée.

On montre d’autre part qu'une fonction définie sur [a, b] est réglée si et seule-
ment si elle admet une limite a droite et a gauche en tout point ou cela a un sens.
Ainsi, toute fonction continue ou monotone (ou a variation finie) est réglée.

DEMONSTRATION : (a) Soit f € #R([a, b]). Par définition de la Riemann intégrabi-
lité, il existe deux suites de fonctions en escalier (®,),>1 et (Uy,)n>1 sur [a, b]

vérifiant
b b b
\@n—flgllln,/\llnao et /(I)n—>/f.
a a a

Si I’on pose, pour tout n> 1, ay, :=®,, — ¥, et 8, : =P, + ¥, il vient

an < f < B, avec /ab(ﬂn—an)—>0 et /aban—>/abf.

Remarquons d’abord — mais ¢’est évident — que si y est une fonction en escalier sur

b
[a, b], v est étagée et/ ’y:/[ ]’yd)\.
a a,b

On pose &, :=max(aq,. .., a,) et By, :=min(f,. .., Bn). Gy et 3, sont étagées
et vérifient : B B
angdng&n—i—lé‘fgﬂn—&-lgﬂngﬂn-
On peut définir a:= limﬁ Qy, et 5 = lim,il Bn Les fonctions avet 5’ sont borélien-
nes (cf. proposition 5.7 (¢)) et'ona: a < f < avec

/an—/andk</and>\§/dd)\§ BdX < | Bnd\ = /5n /5n
[a,b] [a,b] [a,b] [a,b] la b]

b
D’ou, en passant a la limite, / dd)\—/ f.
/[a,b]
On pose maintenant y:= (3 —& € .4 (%([a, b])). Il est loisible de définir -y car
« et 8 sont a valeur finies; en effet a; < a < 8 < 31 et a; et 81 sont bornées en

tant que fonctions en escalier. Comme / ydA=0 ety >0, \({y#0}) = 0.
[a,b]
On conclut avec g := 1r,_gy = &l ,—qy. La fonction g est donc borélienne, g = f

u-p.p. et ,
gdr= | alp_gdr= dd)\:/f.
/[a,b] [a,b] =0} [a,b] a

Si K = C, on raisonne sur R(f) et S(f) € r([a,b]).
(b) Ce point découle immédiatement du (a) et du fait qu’alors f = g A-p.p.. O

b
Notation : On utilisera indifféremment les notations / f(z)dx et fdX
a [a,b]

pour désigner I’intégrale sur [a, b] d’une fonction “raisonnable” (au sens borélienne
et Lebesgue intégrable).
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a partir de la proposition 7.5 et du théoréme de convergence dominée établi au
chapitre suivant (théoréme 8.3), on montre que toute fonction localement Riemann
intégrable sur R (i.e. intégrable sur tout compact) d’intégrale absolument conver-
gente est A-p.p. égale a une fonction borélienne de .ZF%()\) ayant méme intégrale.
Dans ce cas on écrira donc indifféremment

(z) dz, /R Fax, /R (@) A(dz), /R F(@) d\(z), etc.

+oo
f
Remarque : Si f := 1gn(0,1), f ¢ #Rr([0,1]) (¢f. chapitre 1) mais f € LE(N)
et / fdA=0. En effet, Q N [0, 1] est borélien comme réunion dénombrable de

R
fermés (les singletons) donc f est borélienne, d’autre part, si (7, ),en désigne une
numérotation de Q N [0, 1],

JEEEPCRISIES SECHE
n>1

Application 7.1. Un exemple pratique d’utilisation du théoréme de Beppo Levi : étude de la conver-

gence de la suite I, (o) := / (1 - %) " e dx, n€ N*, selon les valeurs du parametre o € R.
0
L’idée de départ consiste a écrire
+oo n
I,(a) = / Jn(z) e da ot fn(x):= 1y (x) (1 — f) , x>0,
0

puis a appliquer le théoreme 7.1 de Beppo Levi a la suite (fr)nen=-

Montrons que la suite (f,,)nen+ est croissante. On remarque d’abord que

n n+1
Vne N, f, < fap1 < VYaze[0,n], (172) S(linil) .

Pour démontrer cette derniere inégalité, il suffit de vérifier que la fonction g, définie sur [0, n|

par
gn(x) = (n+1) 1n<17 nj—l) 7n1n(1,§)

n

est positive. Or gy, est dérivable sur [0, n[ et

n n+1 x

/
= — = >
9n (@) n—x n+l-—=x (n—:c)(n—}—l—x)_o7

donc g, est croissante sur [0, n[ et comme g, (0) = 0, g,, est positive.

11 est clair d’autre part que f,(x) converge simplement vers e~ pour tout € R puisque, dés
quen > x,

n x x
fulz) = (1 - E) = mn0=w) — 7o) 4 67 quand n — 4o0.
n

Finalement, il vient, d’apres le théoréme de Beppo Levi (théoreme 7.1),

1
+oo b .
lim I,(a) = / el e g ) T4 Sta< 1
! o +oo  sia>1.
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7.5 Exercices
(X, o, ) désigne un espace mesuré.

7.1 a) Soit f € 43 (p) telle que pour tout A € o7, / fdp = 0.
A
Montrer que f=0 p-p.p..
b) Soient f € %1 () et F un fermé de R tels que, pour tout A € o7 avec u(A) >0,

/ fdup € F. Montrer que f € F p-p.p..
1(A) Ja

7.2 Montrer que I’espace mesuré (X, o7, uu) est o-fini (i.e. X = Un>0TEn ou pour
tout n >0, E, € & et u(E,) < +0o0) si et seulement s’il existe une fonction f
intégrable et strictement positive.

7.3 Soit f : X — R une fonction mesurable. Montrer 1’équivalence

fEL(p) < > 2" up({2"<|f]<2"}) < +o0.
nezZ

7.4 Soient (X, <7, ;1) un espace mesuré de masse totale finie et f : X — R une
fonction mesurable.

a) Montrer que f € % (1) si et seulement si Z np({n<|fl<n+1}) < +oc.
n>1
b) Montrer que pour tout n € N*,

n

S kp({k<|fl<k+1}) = > n({fI=k}) —np{|f|=n+1}).
k=1

k=1
¢) Soit (uy)n>1 une suite décroissante convergeant vers 0 et telle que la suite de
n

terme général v, := E U — NUp41 Soit bornée. Montrer que Z Uy < +00.
k=1 n>1

d) En déduire que f € %2 (1) si et seulement si Z w{|f|=n}) < +oo.
n>1
e) Les résultats de a) et d) subsistent-ils si p(X)=400?

7.5 a) Soit f € £ (u). Montrer que, pour tout £ > 0, il existe A, € & tel que

w(Az) <400, f soit bornée sur A, et/ |fldu < e.
X\ Ae

b) En déduire la continuité de 1’intégrale par rapport a la mesure :
Ve>0,30>0,VAes, uA<séo = /|f]d,u<5.
A

Une autre démonstration est proposée dans I’application 8.4, chapitre 8.
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7.6 Soit f € Z5(R). On définit la fonction F sur R par

/ fd\ siz>0,
(0,2]

— [ fdx siz<o.
[,0]

F(x) ::/Oxf(t)dt =

Montrer que F' est uniformément continue sur R.

7.7 a) Soit (fy,)n>0 une suite de fonctions mesurables positives. Montrer que

/XandMIZ/andu-

n>0 n>0

b) Soit (ap,q)p,qen une famille de R. Montrer que Z Z apq = Z Z ap q-
p=>0 ¢>0 q>0 p>0

7.8 Soit ( fr)n>0 une suite décroissante de fonctions mesurables positives qui con-
verge vers f sur X.

a) Montrer que s’il existe g >0 tel que f,,, €.Z*(p), alors

liérn/xfndu_/xfdu.

b) Le résultat subsiste-t-il sans I’hypotheése d’intégrabilité du a) ?

7.9 Soit f : [a,b] — R une fonction mesurable bornée. L’oscillation de f au point
x € [a, b] est définie par

w(z) == lim ( sup |f(y)—f(z)|) ot I(z) := [a,b] N [z—h, z+h].
h=0% Ny zel, ()
a) Montrer que f est continue en x si et seulement si w(z)=0.

b) Soient (o, := {a=a) <z), <--- <xﬁzb})n21 une suite croissante de subdi-
visions dont le pas tend vers 0, et les suites de fonctions en escalier définies par

on(x) = ir}cf frthn(x) :=sup fsiz eIl =[xk 2ET1 0 <k <n, et p,(b) =
In Ik

n

¥y (b) := 0. Montrer que les suites (¢, )n>1 €t (¢, )n>1 sont monotones et lim 1, —
- - n
lim ¢, =w A-p.p..
n
¢) En déduire que f est Riemann intégrable ssi f est continue \-p.p..

7.10 Soit (X, <7, (1) un espace de probabilité (1(X) = 1); soient I un intervalle
ouvert non vide de R et une fonction ¢ : I — R positive ou bornée, et convexe, i.e.

Vo,yel, Vie|0,1], o(z+(1-t)y) <te(x)+ (1-1) @(y).
a) Soit zo € I. Montrer que ¢, () existe et que pour tout z €R,

p(z) = p(x0) + ¢y(wo) (z—0).
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b) Montrer que toute fonction f € £} (1) vérifie I’inégalité de Jensen :

¢</deu> S/Xswfdﬂ-

7.11 Soient (X, 1) un espace mesuré et f, g deux fonctions positives intégrables
sur (X, p) telles que f1In f, flng soient intégrables sur (X, p), g > 0 du-p.p.,

fd,u = /gdu = 1. Montrer [’inégalité d’entropie : / fInfdu> /flngd,u.
X

n f(nt)
T2 dt.

7.13 Soit (X, .o7, 1) un espace mesuré tel que u(X) > 0. Dans cet exercice, la
notation f~! désigne la fonction inverse 1/ f de f.

7.12 Soit f:R; — Ry borélienne. Calculer la limite hm /

a) Montrer que, pour tous a,b > 0 et u,v > 0,

1 b
_—+f
U+ v

Va+vVb=1 =

b) Soient f, g € .ZR1+ (1) positives et non nulles y-p.p.. Montrer que

LA 1A+ Nl llg ™

—1
I(f+9)~ Il < (1£1L + llgll,)?

c) En déduire I’inégalité

1+ gl I +9) ™M < ma (111 170 gl Hlg ™).

7.14 Montrer 1’équivalence

400 9 1
Ia::/ [(1+2)* — 2% dz < 400 < —§<a§0-
0

7.15 Soit f : [1, +00[— R la fonction définie par f(z) := UL pour z > 0.
r 2t
a) Montrer que  lim cos ( )dt existe.
r—r+00 1

b) En considérant la fonction (f sin) et en utilisant la question a), montrer que f
n’est pas intégrable sur [1, +o0|.

c) Soit a > 0. Montrer que | f|* est intégrable sur [1, 400 si et seulement si @ > 1.



Chapitre 8

Théoreémes de convergence
et applications

Des la phase de construction de 1’intégrale au sens de Lebesgue, un théoreme
d’un type nouveau a été établi, autorisant sans hypothese de convergence uniforme,
Iinterversion des symboles de limite et d’intégrales : le théoréme de Beppo Levi,
dit aussi théoréme de convergence monotone. Nous rappelons ci-dessous 1’énoncé
de ce théoreme, démontré au chapitre 7.2 :

Théoreme 8.1. (Beppo Levi) Soit (X, 7, 1) un espace mesuré et ( fy,)n>1 une suite
croissante de fonctions mesurables positives. Alors

lim f,, est o/ -mesurable et / lim f,, du = lim/ fadu €Ry.
n X n n X
Le propos de ce chapitre est de constituer, a partir de ce théoreme, un arsenal de
nouveaux outils pour résoudre les problemes de convergence de suites d’intégrales.
Ce sont ces outils qui, pour une large part, fondent la supériorité de la théorie de
Lebesgue, y compris dans les applications les plus courantes : intégrales dépendant
d’un parameétre, fonction définie sous forme intégrale, etc.

Dans la suite du chapitre on se placera, sauf mention contraire, sur un espace
mesurable (X, o7, u).

8.1 Lemme de Fatou et théoreme de convergence dominée

Théoréme 8.2 (Lemme de Fatou). Soit (fy,)n>1 une suite de fonctions <f -mesu-
rables positives, alors :

0</limfndu<lim/fndu<+oo.
X n X

n
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DEMONSTRATION : On pose, pour tout n > 1, ¢, := infy>,, fi. Les fonctions ¢,,
sont positives, <7-mesurables grace a la proposition 5.7 (a), ¢n < @ni1 et @,
converge simplement vers lim f,,. Il vient, d’apres le théoréme de Beppo Levi,

n

/mnfnduz/limsonduzlim/wnd#-
X n X " n X

D’autre part, ¢, < f,, donc / Yn dp < / fn du et, partant,
X X

lim/wndﬂzhrn/¢ndﬂ<hrn/fnd,u-
noJx n JX n JX

La conclusion découle de la combinaison des deux séries d’inégalités. ¢

Exemples d’utilisation : 1. Soit (f,,),,>1 une suite de fonctions intégrables conver-
geant simplement vers f et vérifiant sup [ |fn|dp < +oo. Alors f € Z1(p)
n Jx

puisque
[ 1= [t guldn= [ tim | ol <tim [ £uld <sup [ |foldn <o
X x"n X n n JX n JXx

2. A I'inverse, si une suite de fonctions positives ( f,,)n>1 Vérifie lim f,, = 400, le
- n

lemme de Fatou entraine que lim / frndp = 400 dés que pu(X)>0.
noJxX

3. Lemme de Fatou étendu : Soit (f,,),>1 une suite de fonctions de Z5 (1) pi-
p.p.minorées par une fonction g € Zg (1).
Si lim f,, = 400, alors lim/ frndp =400 des que pu(X)>0.

n n X

Le lemme de Fatou appliqué a la suite de fonctions positives ( f,,—g),>1 montre
que

OS/hm(f d,u<hm/ g) dp < +00.

Or lim(f, — ¢g) = (lim f,,) — g = +00 p-p.p. puisque, g étant intégrable est finie
n n
u-p.p.. Il vient alors

/(+oo)du§hm/ fndu—/gdu
X n X X

par linéarité de I’intégrale. On conclut en notant / g dp est un nombre réel et que

p(X) x (+00) = +o00. *
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Application 8.1. Intégration d’une dérivée : Soit f une fonction croissante sur [0, 1]
(donc en particulier Riemann intégrable sur [0,1]), continue en O et 1 et dérivable
A-presque partout dans [0, 1] (on peut montrer que cette condition est une consé-
quence de la croissance de la fonction f). Alors I’inégalité suivante est toujours
vérifiée

1
| r@as < - 0.
0
DEMONSTRATION : On définit sur [0, 1] la suite (gy,)n>1 par

gn () = { n(flx+1/n) = f(z)) siz<1-1/n

0 siz>1-—1/n.

Les fonctions g,, sont positives et, pour A-presque tout = € [0, 1], g,, () converge
vers f’(z). La fonction f” est positive la ou elle existe et on la fixe égale a 0 ailleurs.
Comme lim g,, = f’ A-p.p., le lemme de Fatou (théoréme 8.2) entraine

n

1 1 1
/Of/(x)d:z:/o lirrlngn(x)dxglirrln/o gn(x) dzx.

D’autre part, on a

—1/n —1/n
/Olgn(m)d;v:n/ol 1 f(a:+1/n)d:c—n/01 1 f(z)dx

—1/n
=n 1 f($)d:c—n/1 1 f(x)dx
0

1/n

x
et en considérant la fonction F'(x) := / f(t)dt, il vient
0

n—-+o0o

1
/0gn(w)dévzn(F(l)—F(l—l/n))—n (F(1/n) = F(0)) — f(1)=£(0)

car la continuité de f en 0 et 1 implique F'(0) = f(0) et F'(1) = f(1),d’ou le
résultat. O

Remarque : L’inégalité précédente peut étre stricte. Ainsi, la fonction f définie sur
[0,1] par f := 1 5 1) est croissante, continue en O et 1 et f'(z) = 0six # 1/2.
Elle vérifie donc les hypotheses précédentes, cependant

1
/0 f(x)de =0 < f(1) — f(0) = 1.

Dans la proposition 13.2, I’exemple d’une fonction continue sur [0,1] et véri-
fiant la méme inégalité stricte sera proposé; il s’agit de la fonction de Lebesgue,
définie a partir de I’ensemble triadique de Cantor.
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Théoréme 8.3 (Théoreme de convergence dominée). Soit (fy,)n>1 une suite d’élé-
ments de £ (1) (K=R ou C) vérifiant :

(2) p(dz)-p.p., fn(x) converge (dans K) quand n — o0,
fu(@)| < g(x) p(dzx)-p.p.

(i) il existe g € Z§1+ (p) telle que, pour tout n >1,
Alors, il existe f € £ () telle que
(1) fn(zx) converge vers f(z) p(dz)-p.p.,
() lim/ fndp = / fdu (et méme lim/ |fro— fldu=0).
nJX X mJX
Remarque : Dans les applications courantes, la fonction f est généralement direc-

tement disponible dans 1’énoncé et I’on prend alors (1) comme hypothése a la place
de (7), I'intégrabilité de f découlant de (ii).

DEMONSTRATION : Si K=R, on pose f :=lim f,. La fonction f est mesurable,
n
R — R
(fn B Y ={lim f,=Tm f, € R} € o et d'apres (i), u(*{fu =5 £})=0.
n n
Si K=C, on raisonne de fagon analogue sur R( f,,) et S(f).

K
Soit A:=( ﬂ {Ifn] < g}) N{g<+oo}N{fn 9, f}. Aestclairement un élé-
n>1
ment de <7, en outre, d’apres (i), (i7) et la o-sous-additivité de la mesure i,

nCA) < u( L L M +ug=+oo)+ 3 n{lfal> g} =0.

n>1

Or, sur A,

fl=limy, | fn| <g donc |f|<g p-p.p. et, partant :

fldu = /fl d,ug/gd,u<+oo.
/X\ | = X! 1L(51<0} .

via le corollaire 7.1

La fonction f est donc bien dans £ ().
Considérons d’autre part la suite de fonctions (29 — 14| fn, — f|)n>1. Ces fonc-
tions sont clairement 7 -mesurables et positives, d’ou, via le lemme de Fatou,

/ lim(2g — L4l — fl)dp < hrn/(zg — Lulfu— f)dp
X n n X

e 2 [ gau— [ TmLalg ~ fldu<2 [ gdu~Tom [ |5, - 7ldu
X x> X noJA

—_——
=0... partout!

doutis 4, = flau=0.0x [ 11~ ldn = [ [~ fldn car ) = 0.

D’ou finalement,

0 <t [ |fu~ fldn <Tm [ 15, ~ Fldu =0,
n JX noJx
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i.e.lim/]fn—ﬂd,uzo. O
noJx

Remarques autour de I’hypothese de domination (7i) :  Dans le cadre élémen-

taire de I’intégrale de Riemann sur un compact [a, b], on requiert la convergence

uniforme de la suite de fonctions (Riemann intégrables) f,, vers f pour assurer la

convergence des intégrales correspondantes (cf. proposition 1.4). Or, dans une telle

situation, il est immédiat qu’il existe une constante réelle positive C':=sup || f, |
n

sup

telle que | f,| < C. Ceci correspond a une hypothése de domination particuliere
puisque la fonction constante égale a C' est évidemment intégrable sur I’intervalle
[a, b].

Enrevanche, I’hypothese de domination peut étre vérifiée en 1’absence de conver-
gence uniforme. On se place sur ([0, 1], %4([0,1]),\) ot X\ désigne la mesure de
Lebesgue restreinte a I’intervalle [0, 1]. On pose, pour tout > 1,

—TL:E2

fn(z) :== min (%,n), xz€ [0,1].

Il est immédiat que les fonctions f,, sont continues, donc boréliennes, et convergent
vers la fonction nulle pour tout x € |0, 1], donc A(dx)-p.p.. D’autre part, comme
sup |fn(z)] = n pour tout n € N*, cette convergence n’est pas uniforme. En

z€[0,1]
fu(@)| = fu(z) < g(x) := 1/y/7 1j0,1]. La fonction

revanche, pour tout z € |0, 1],
g€ Z*(\) donc, par application du théoréme de convergence dominée, on obtient

lién/o1 fn(x)dz=0.

o [1 serait erroné de croire pour autant que I’hypotheése de domination couvre toutes
les situations de convergence d’intégrales. Ainsi, sur (R, Z(R), A) on considére une
fonction f, continue, nulle en dehors de I'intervalle [0, 1], positive et d’intégrale
non nulle. On pose alors, pour tout n>1,
f(x+n)
fulx) = ——2%, z€R.

n

La suite de fonctions f,, parfois appelée “bosse glissante”, converge vers la fonc-
tion nulle lorsque n — +o0. Par ailleurs, il est immédiat via un changement de
variable élémentaire — ces intégrales existent au sens de Riemann! — que la suite

1 [l
d’intégrales / fndh=— / f(x) dx converge vers 0. Cependant la suite f,, n’est
R nJo

dominée par aucune fonction intégrable g puisque la plus petite fonction dominante
possible, g(z) := sup | f,(x)|, a pour intégrale
n

/RgdAZZTlL/Olf(x)dszroo

n>1

(les fonctions f,, sont, en effet, a support deux a deux disjoints).
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Application 8.2. Intégration d’une dérivée (suite) : Soit f une fonction partout
dérivable sur [0, 1], de dérivée f’ bornée. Alors f est I’intégrale de sa dérivée au
sens ou

1
/O f(@)de = f(1) — £(0).

DEMONSTRATION : On reprend la suite (gy,,),>1 définie dans I’application 8.1
illustrant le lemme de Fatou. Pour tout x € [0, 1], la suite g,(z) converge vers
f'(x). Soit M :=sup,c(o 1) |f'(z)|- M est fini par hypothese. D’apres le théoreme
des accroissements finis, |g,(z)| < M pour tout x < 1 — 1/n et I’inégalité est
évidente si + > 1 — 1/n; la relation de domination |g,(z)| < M est vraie pour
tout x € [0, 1]. La fonction constante égale a M est intégrable sur ([0, 1], A(dx))
donc la suite (g, ),>1 Vérifie les hypotheses du théoréme de convergence dominée
(théoreme 8.3). Finalement,

/01 (@) do = lién/olgn(x) d

D’autre part, on a comme dans I’application 8.1,

1
li;Ln/ gn(z) dx = f(1) = £(0)
0
ce qui établit I’égalité cherchée. ¢
Application 8.3. Convergence de la suite I,,(a) := / (1 + f)n e~ dx selon les valeurs du
0
paramétre o € R.

Soit ( fn)nen+ la suite de fonctions positives définies par frn(x) := 1(g,n)(z) (1 + E) ,x > 0.
n
La suite f,, (x) converge vers e” pour tout x > 0 donc, d’apres le lemme de Fatou,
400
/ e 4y <lim I, (o) etdonc lim I, (o) = +oo desque o < 1.
0 n "

Reste a étudier le cas ou o > 1. On peut remarquer que pour tout x > 0,
S S YEE = I U= Y

KICE nn—1)...(n—k+1)

= < 1.
nk nk -

vu que, pour tout k € {0,...,n},
D’ou la relation de domination
V>0, 0< folz)e ® <% e 2Ry si a> 1.

Le théoreme de convergence dominée entraine finalement

oo
lim I, (o) = / e gy =
" 0

sia>1. ¢

o —
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8.2 Application aux séries de fonctions

La puissance et la simplicité d’utilisation des résultats précédents sont parti-
culierement mises en évidence dans les théorémes d’interversion des symboles de
“somme” et d’“intégrale” pour I’intégration des séries de fonctions.

Théoreme 8.4. Soit (¢,,)n>1 une suite de fonctions <7 -mesurables a valeurs dans R
ou C.

(a) Si les fonctions oy, sont positives pour tout n>1, alors
[ (Zen)au= [ eudn
X >t n>17%X

(b) Si Z/ |on|di<+oo alors les fonctions p,, Z|gpn| et la fonction définie
X

n>1 n>1

W-D.p. Z o, sont p-intégrables. En outre
n>1

/X(Zson)d;FZ/Xsondﬂ-

n>1 n>1

DEMONSTRATION : (a) On applique le théoréme 8.1 (Beppo Levi) a la suite crois-
n

sante de fonctions positives f, ::Zgok, n > 1, puis on conclut par linéarité de

k=1
I’intégrale :

L{(;%)du:liﬁn /X;s%duﬂign ;/X@kdﬂ'

(b) Soit g := Z|‘Pn’ D’apres (a), g € X%Jr (1). En particulier, g < 400 p-p.p.
n>1
d’apres le corollaire 7.2 et, par conséquent, j(dx)-p.p. 1a série Ecpn(x) est abso-
n>1
lument convergente (dans R ou C). La fonction ngn est donc bien définie, sauf,

n>1
éventuellement sur un ensemble négligeable, ol on lui attribue, par exemple, la

valeur 0.
D’autre part, la suite de fonctions ( f,,),>1 définie en (a) vérifie simultanément
fo 2 ngn quand n — 400 et |f,| < g. La conclusion découle alors du

n>1
théoréme de convergence dominée (théoreme 8.3). ¢
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Application 8.4. (a) Lemme de Borel-Cantelli : Soit (A,,),>1 une famille de parties
de o7. Alors

(b) Continuité de I'intégrale par rapport & la mesure : Soit f € £¢(u). Alors,
Ve>0,36>0, VA e «, M(A)§5:>/ |fldp < e.
A

Autrement dit, I’intégrale d’une fonction intégrable f sur un ensemble mesu-
rable peut étre rendue arbitrairement petite si I’ensemble a une mesure suffisam-
ment petite.

DEMONSTRATION : (a) D’apres le théoréme 8.4,

/X Cz:lAn) Z” ) < +o0,

d’ot, d’apres le corollaire 7.2, la fonction positive et définie par la série Z 1a,
n>1

est finie y-p.p.. Son terme général, qui vaut 0 ou 1, tend donc p-p.p. vers 0, ce qui

nécessite qu’il stationne en 0. On a donc montré que

p(lim Ay,) (VU A =n({ze X :VneN, Ik >n, z € A}) =0.
n>1k>n

(b) On raisonne par I’absurde en supposant qu’il existe £9 > 0 et une suite (A, )p>1
d’éléments de o7 telle que p(A,) < 1/2" et / |f] dp > e¢. D’apres le lemme

Ap
de Borel-Cantelli ci-avant, p(dx)-p.p. 14, (z)|f|(x) = 0 a partir d’un certain rang.
Comme 0 < 14, |f] < |f] € L (1), le théoreme de convergence dominée en-

traine alors |fldu = 0, ce qui contredit I’hypothese. O
n—-+0oo

n

8.3 Intégrales dépendant d’un parametre

Rappels : Soient (E, d) un espace métrique, g : £ — Ketu_ € E. Alors,

(a) uggl g(u) =1 si et seulement si, pour toute suite (u,),>1 convergeant vers u__
et up, #ZOOO pour tout n>1, li1lflng(un) =/

(b) g est continue en u__ si et seulement si, pour toute suite (uy,),>1 convergeant

vers u__, limg(u,) = g(u_).
n

Dans ce qui suit, on se donne une application f : £ x X — K.
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Théoréme 8.5 (Continuité sous le signe intégrale). Soitu_ € E. Si
(i) pour tout we E, (x> f(u,x)) est mesurable de (X, o) dans (K, (K)),
(ii) p(dx)-p.p., (u— f(u,z)) est continue en u_,
(4i7) il existe g € L”F%Jr (p) telle que Yu € E, |f(u,x)| < g(x) pldz)-p.p.

alors la fonction F(u) := / f(u,x)pu(dx) est définie en tout point u € E et est
X

continue en u__.

Remarques : o I’hypothese (iii) ci-dessus est communément appelée hypothése

de domination.

e On peut proposer un énoncé formellement plus précis — mais aussi plus lourd —
de I’hypothese (i) sous la forme :

dNe o telque pu(N)=0 et Vaé¢ N, ur— f(u,x)estcontinueen u_,.
e On peut, dans I’énoncé précédent, remplacer dans (i) le terme “continue” par “a
pour limite finie ¢(x)”. La conclusion devient alors : £ est u-intégrable et F' a pour

limite (finie) / (z) p(dz)enu,.
X

DEMONSTRATION : On s’appuie sur la caractérisation séquentielle de la continuité
rappelée ci-avant. Soit u,, — u__ ; on pose, pour tout n > 1, f,:= f(uy, ), et f_ =
flug,). F(up) = / fondp — F(uy) = / f..du par simple application du
théoréme de converge)lice dominée. ¢ .

Application 8.5. (a) Fonction d’une variable réelle définie par une intégrale de la

borne supérieure : \ désigne ici la mesure de Lebesgue sur R. Soient f € £¢())
eta€ RU{—o0}. Alors, la fonction F' définie par

fd\ siu>a

Ur— F(u)i_/uf(x) Adzx) := Ja,u]
“ — fd\ siu < a,

[u,al
est continue en tout point de R.

DEMONSTRATION : On se convainc immédiatement que, ainsi définie, ’intégrale
de la borne supérieure vérifie la relation de Chasles. En particulier,

u u a
/ fd)\:/ fd\ — / fdX; il suffit donc d’étudier le cas ot a=—o0, i.e.
a —00 —00

F(u) ::/]_ ] f(x) A(dx).

Onpose p(u,z):=1__  (2)f(z)=1, (u)f(z).Lafonction ¢ vérifie clai-
rement (7) et la relation de domination (ii7) découle de I'inégalité |p(u,x)| <

[f ()]
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Enfin, si u_ € R, I’ensemble des x pour lesquels la fonction u — ¢ (u, x) est
discontinue en u__ est inclus dans {u_ }. Comme \({u_ })=0, (i7) est a son tour
vérifie. Finalement, F' est continue en tout pointu__ € R.

(a') Une généralisation simple : Le résultat ci-dessus n’utilise de la mesure de
Lebesgue A\ que sa propriété de ne charger aucun point. Par suite, si p est une
mesure diffuse sur (R, Z(R)), au sens ou, pour tout z € R, p({z})=0, il vient

Ve L (n), u— / p(dx) est continue sur R.
00,u|

On notera au passage que le théoréeme de “continuité sous le signe d’intégrale”
dans le cadre Riemann n’englobait pas, lui, la continuité des intégrales de la borne
supérieure.

(a") Exercice : Montrer, en s’ appuyant sur la propriété de continuité par rapport
u
a la mesure établie dans I’application 8.4, qu’en fait u — [ f(z) A\(dz) est uni-

a
formément continue sur R.

(b) Transformée de Fourier : Soit f € £ ()), alors la fonction f définie en tout
point » de R par

f(u) = /R e f () N(dax)

est bien définie et continue sur R. La fonction f est appelée la transformée de Fou-
rier de f.L’étude approfondie de cette transformation fait 1’objet du chapitre 15.

La continuité de f découle immédiatement du théoréme 8.5 puisque, pour tout
x € R, (u + ™) est une fonction continue a valeurs complexes de module 1.

Il est possible d’améliorer sensiblement ce résultat et d’établir que f est uni-
formément continue sur R. En effet, I’inégalité des accroissements finis entraine
que, pour tous u, v, ¥ € R, | — %] < |ux — vz| = |u — v||z| (y = €Y
a pour dérivée y — ie”? dont le module est constamment égal & 1). Par suite,
etz — | < min(|u — v||z|,2), "o

() = fv)] < /R|€W — || f(2)] A(de) < p(u—v)
ou o(w) = /Rmin(w|93|, 2)|f(x)| AM(dx).

Le théoreme 8.5 assure la continuité de ¢ et, partant, limo e(w) = ¢(0) = 0.
w—r
Ceci entraine alors 1’uniforme continuité de f via I’inégalité précédente.

Il est a noter que la mesure de Lebesgue ne joue ici aucun rdle particulier et
peut &tre remplacée par n’importe quelle mesure positive u sur (R, Z(R)).
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(¢) Convolution : Soit f € £{(A) et ¢ : R — K, continue et bornée. Alors la
convolée de f et p, définie par

VueR (F+)u)i= [ plu—a)f(a)\da),

est continue bornée.

On pose f(u,x) := ¢(u — ) f(x). La fonction u +— f(u,x) est clairement
continue pour tout x € . La relation de domination découle du fait que

|f (u, 2)| < sup [p(v)|[f(z)]-

vER

On verra au chapitre 14 que cette notion de convolution admet de nombreuses ex-
tensions, notamment au cas ol ¢ est seulement intégrable.

(d) Fonctions définies par une série de fonctions continues : Si X :=N, o/ := Z(N)
et m la mesure de comptage, on retrouve le résultat classique sur la continuité des
séries de fonctions : si les fonctions f,, n > 1, sont continues sur £ (resp. en

up € E) et Z sup | fn(u)| <+oo - on dit que la suite converge normalement —
n>1 uel

alors u +— Z fn(u) est continue sur F (resp. en ug € E).

n>1

Théoreme 8.6 (Dérivation sous le signe intégrale). On suppose ici que =1, ou [
désigne un intervalle ouvert non vide de R. Soit u__ € 1. Si la fonction f vérifie

(i) pour tout u€ 1, f(u, )€ L (p),

(13) p(dz)-p.p., gi(um,x) existe,

(131) il existe g € XF%JF (w) telle que
Vuel, ,U,(dl‘)-pp |f(U,CC) - f(uoo7x)| < g(ﬂj’) |u - uoo|’

alors la fonction F(u)::/ fu,x)p(dx) est définie en tout point u € I,
X
dérivable en u__ de dérivée

= [ U

Fl'(ug) = X%(uoo,x)u(da:).

oo

DEMONSTRATION : Soit (uy, ),>0 une suite de réels de I convergeant vers u__ sans
jamais prendre la valeur u__. On pose, pour tout n >0,

f(un7x> _f(uocﬂw).

Uy — U

Son(x) =

oo
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0
D’apres la condition (i), pu(dz)-p.p., ¢n(x) converge vers 8—f(uoo,az). D’autre
u
part, la condition (7i7) entraine la condition de domination puisque, pour tout n. >0,
wu(dz)-p.p. |on(z)| < g(x). Il vient donc, par convergence dominée,

<F(un) - F(%)) _ [ 9Ff

Up — U, x Ou

lim
n—-4o0o

(U, ) pld). O

Remarques : e En fait ce théoreme est une application directe de la version “limite
finie” du théoreme 8.5 de continuité sous le signe intégrale.
e Si I’on remplace (i) par

(13)g u > f(u,x) est p(dx)-p.p. dérivable a droite en u__,
alors F' est dérivable a droite en u__ et F)j(u_ ):= . 8;5 (u_,x)p(dx);idem pour
la dérivabilité a gauche.

e On établit de facon tout a fait analogue une version “holomorphe” sur un ouvert de
C et une version “différentiable” sur un ouvert {2 de R? du théoréme de dérivation
ci-avant.

On peut déduire de ce résultat un théoreme de dérivabilité global sur I’inter-
valle I, souvent tres utile dans les applications courantes.

Corollaire 8.1 (Dérivation globale sur un intervalle ouvert). Sous les hypothéses
(i) pour tout u€ 1, f(u,.) € L (),
(i) p(dx)-p.p. (uw+ f(u,)) est dérivable sur tout I'intervalle 1,

of

(131) p(dx)-p.p., pour tout u € I, %(u, x)

<g(x) ong e Ly, (1),

alors la fonction F(u) := / f(u, x) p(dx) est définie et dérivable sur tout I’in-
b's

tervalle I, de dérivée

F'(u) = ngZw, ) u(dr),

DEMONSTRATION : Soit u_ € I fixé. Les conditions (ii)" et (iii) alliées au
théoréme des accroissements finis entrainent immédiatement que, pour tout u € I,

[u—u | < g(z) lu=u].

0
Y (v,

pld)-pp. [f(u,2)=f(u, z)] < sup

Ceci assure que I’hypothese (i7i) du théoreme 8.6 est vérifiée. Il ne reste plus qu’a
remarquer que (i7)" implique évidemment (i) enu_. ¢

Les trois premieres des quatre applications ci-apres découlent immédiatement
du corollaire 8.1, la quatrieme ne peut étre résolue qu’a ’aide du théoréme 8.6,
bien que le résultat de dérivation obtenu y soit également global.
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Application 8.6. (a) Transformée de Fourier : Si f et (z — x f(z)) € Za(N),

alors f(u):= / e™® f () \(dzx) est continfiment dérivable sur R et
R

VueR, f(u)= i/ei“xxf(x))\(da:) = izf (2)(u).

R

Cette fonctionnelle fait I’objet d’une étude approfondie dans le chapitre 15.
(b) Convolution : Si f € Zx()) et o est dérivable, bornée a dérivée bornée sur R,

alors f * ¢(u) := /gp(u — ) f(x) A(dx) est dérivable sur R et
R

VueR, (fxo)(u)=(f*¢)(u).

Cette opération fait 1I’objet d’une étude approfondie dans le chapitre 14.

(¢) Fonction définie par une série de fonctions dérivables : On considere la mesure
de comptage m sur (N, Z(N)) et une suite (f,,)n>1 de fonctions dérivables sur un
intervalle . Si pour tout w € I, on a

> Ifa(w)] + sup £ (0)] < +oc.

n>1

alors la fonction u +— Z fn(u) est dérivable sur I de dérivée u Z fh(u).
n>1 n>1

(d) Un calcul de primitive : Soient y une mesure positive sur (R, Z(R)) ne char-

geant pas un réel ¢y donné, i.e. u({to}) =0, et une fonction f € Za(p) telle que

(z— x f(z)) € L3 (). On pose

0 siu<0
u siu > 0.

F(t) = /R(t — )" f(z)u(dz) ouut:=max(u,0) = {

La fonction F est définie sur R et dérivable en tg de dérivée
Pl = [ fonlds)
J=00,t0]

DEMONSTRATION DE (d) : la fonction F est bien définie sur tout R car

(t = 2)FIf ()] < (|t + |z)|f ()] € Lr(n).
D’autre part, pour tout z # to, et donc pu(dx)-p.p., t — (t — x)* f(x) est dérivable

fla) st <ty = f(z)1,__ (). Enfin

to de dérivée t — .
en to de dérivée { 0 siz >t

|(t — )" f(2) = (to — 2)" f(2)| = | max(t — z,0) — max(to — z,0)|| f(2)]
< max(|(t — ) — (to — )|, 0)|f ()|
< [t —to| [f(@)].
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d’ou la condition de domination (iii). Par conséquent, on peut affirmer d’apres le
théoréme de dérivation sous le signe intégrale (théoreme 8.6), que

F(to) = / f(@)uldz) = / f(@)uldr).
] ]

—o0,tg[ —o0,tg]

En particulier, si i est une mesure diffuse, i.e. ne chargeant aucun point de R, on a

établi que F'(t) ::/(t — )" f(x)u(dx) est une primitive de ¢ /t f(z)p(dz).
R —0

Application 8.7. Etude de la fonction F(t / Ve t dz o € Zx([0,1],\).

> Existence et continuité sur Ry : Soit f la fonction définie par f(t,z) := /¢ CA
t fixé, la fonction x — f(¢, ), composée de la fonction mesurable ¢ par la fonctlon contmue

y — \/y2 +t, est donc mesurable. D’autre part, comme \/@?(x) +t < |p(z)] + V1 et @ est
A(dx)-intégrable sur [0, 1] par hypothése, F’ est bien définie sur R
La continuité sur Ry de ¢ — f(t, ) pour tout = € [0, 1] et la relation de domination

Vte[0,a, Ve(@)2+t <lp@)|+vae L' (0,1,

assurent, via le théoréme 8.5, la continuité de F' sur tout intervalle [0, a] et partant sur R

> Dérivabilité sur R’ : Soit to > 0. Pour tout z € [0, 1], ¢ — f(t,x) est dérivable en ¢ et
vérifie en outre
[t — to|

1
62) = (00 0)| = — e T < et

1
La fonction constante égale a = est dz-intégrable sur [0,1]. Donc d’apres le théoreme 8.6 de

dérivation sous le signe intégral, F" est dérivable en to et

1
d
F'(to) = / S —
0 2yp(x)?+to
> Dérivabilité en 0 : Montrons que F' est dérivable (a droite) en O si et seulement si la fonction

1
S 0.1,

1
Supposons que 2 € 2'([0,1], A). Alors, pour A-presque tout z € [0, 1], ¢ (x) # 0; or la fonction

t — f(t,z) est dérivable en O de dérivée en tout point x tel que w(z) # 0. En outre, f

1
2|p(x)]
\tl ||
Vel t+ o) ~ o)

Le théoreme 8.6 de dérivation sous le signe intégral entraine que F' est dérivable en 0 avec

P Lodr
F(O)‘/o EG

Réciproquement, supposons F' dérivable (a droite) en 0. Soit (hy,),>1 la suite de fonctions
positives définies par

() = { n (VE@EF = le@)) silp(a)] < +oc

0 si|o(x)] = +oo.

vérifie la relation de domination suivante

Lipz0y(x) € Z([0,1], du).

A(dz)-p.p., |f(t,z)— f(0,2)] =
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Pour tout z € [0, 1], 1a suite (hy,(x)),>1 converge vers . Or d’aprés le lemme de Fatou,

L
2|(x)|
/1 ;dx < lim/l hn () dz = limn (F(1/n) — F(0)) = F'(0) < 4o0.
o 2le@)| T Jo o

Donc é e 21(0,1)).

On peut aussi procéder de la maniere suivante pour établir la nécessité de cette condition. En
effet, I'expression de F’(t) pour ¢t > 0 montre que F" est décroissante positive sur R Ceci entraine
Iexistence de ¢ := th%l F'(t) € [0,400]. La fonction I étant par ailleurs continue, il s’ensuit,

—04

d’apres le théoreme de prolongement de la dérivée, que

¢ = lim M

t—04 t

La fonction F’ est dérivable en O si et seulement si £ < +oc. Or, d’apres le théoréme de Beppo Levi

(théoreme 7.1) appliqué a la suite croissante de fonctions x —— ——————, il vient

2\/p(x)? +1/n

1

¢=1imF'(1/n) = lim

dx _ L de
nJo 2v/e@?Z+1/n  Jo 2le(x)
d’ou la condition annoncée.

8.4 Mesures a densité : premiere approche

On se place toujours sur 1’espace mesuré (X, o7, ). Rappelons que I’intégrale

/ fdu est définie comme /(1Af)du des qu’elle existe (notamment si f € £ ().
A

Proposition 8.1. (a) Soit f : (X, <) — R4. On pose, pour toute partie A € o,
v(A):= / fdu. Alors v est une mesure sur <, notée v := f.u (ou parfois fdu)
A

vérifiant :
VAe o, u(A)=0 = v(A)=0 [convention 0 x (+00)=0]. (8.1)

( v est une mesure finie si et seulement si la fonction f € .,S”F% (), auquel cas

/ fdu.

(c) Soit g : (X /) — Ry mesurable. Alors

ge L (v) si et seulement si gf € L (w)

/ngV=/ngdu-

En outre I’égalité ci-dessus est toujours vérifiée si g est mesurable positive.

et dans ce cas
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DEMONSTRATION : (a) v est bien une application de <7 dans R . D’autre part,
v(9) =/ fdu:/ 0dp=0. Enfin, soit (A4,),>1 une suite de parties de ./ deux
1] X

a deux disjointes.

n
.1 R B
1Un21An221An:h£n 22114,c d’ou nglu@lAn_ fla,.
n>1 k=1 n>1
Le théoreme de Beppo Levi pour les séries entraine alors v(A) = v(Ay).
n>1

Si u(A) =0 alors v(A) = / fdu=0 car 14 f =0 p-p.p.
A

(b) est évident.

(¢)Sig=1,, Aec o/, I'identité se résume a la définition de . On I’étend alors
aux fonctions étagées positives par linéarité de 1’intégrale, puis aux fonctions me-
surables positives par le théoreme de Beppo Levi. Si g est de signe quelconque,
I’identité est vraie pour les fonctions ¢& (a valeurs dans R.). Or g (resp. ¢ f) est
v-intégrable (resp. p-intégrable) si et seulement si les fonctions g% (resp. (g f)*) le
sont (et (gf)* = g* f car f est positive). Enfin, si les intégrales associées sont fi-
nies alors on peut soustraire ces identités membre 2 membre pour obtenir le résultat
annoncé. <

Définition 8.1. (a) Si deux mesures p et v vérifient la relation (8.1), la mesure v
est dite absolument continue par rapport a et I’on note v << .

(b) Siv = f.u, [ est appelée selon les cas densité de v par rapport a j ou dérivée

de Radon-Nikodym de v par rapport a p. On la note souvent d—y
i

Remarque : Sous certaines hypotheéses supplémentaires sur les mesures p et v,
la proposition 8.1 admet une réciproque, autrement plus délicate a établir, appelée
théoreme de Radon-Nikodym. Ainsi, lorsque p et v sont des mesures finies, ce
théoréme stipule qu’il y a équivalence entre :

(1) et vérifient la propriété (8.1),

(ii) il existe f € "%F%+ () telle que v = f.p.

La démonstration détaillée du théoréeme de Radon-Nikodym et de son extension
a des mesures (raisonnables) de masse infinie est proposée au chapitre 10.

Exemples : 1. Soit D € o/. La restriction pup := p(.N D) est absolument continue
par rapport a g et up = 1p.p.

2. Le théoreme de changement de variables dans les intégrales multiples qui sera
établi au chapitre 12, fait intervenir la mesure |J,|.\g ou J,, désigne le Jacobien du
changement de variables ¢ et \; la mesure de Lebesgue sur R%.

La notion de dérivée de Radon-Nikodym admet d’importantes applications en
probabilités, notamment pour la construction de I’espérance conditionnelle.
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8.5 Exercices

(X, o, ) désigne un espace mesuré.

8.0 Reprendre les exercices 1.9, 1.11, 1.12, 1.15 1.16, 1.18 en utilisant les théoremes
de convergence de I’intégrale de Lebesgue.

8.1 Soit A € 7. Appliquer le lemme de Fatou a ( f;,),>0 définie par fa, := 14 et
font1 := les. Que peut-on en conclure ?

8.2 Soit (fy,)n>1 une suite de £ (11) qui converge uniformément vers f.
a) Montrer que si (X ) <+oo alors lim/ fndp —/ fdpu.
" JX X
b) Si f € L3 (u) etsilim / fn du existe, la conclusion du @) subsiste-t-elle ?
nJX

8.3 Soit (f,,)n>0 une suite de £ (1) qui converge p-p.p. vers f € Za (1) et telle
que lim/ fndu = / fdu.
nJX X
a) Montrer le théoréme de Scheffé : : Si f, > 0 p-p.p. pour tout n > 0, alors
i [ 1fa=ldu=0.
noJx
b) La convergence obtenue en a) est-elle vraie en général ?
8.4 Soit (f,)n>0 une suite de £ (11) qui converge p-p.p. vers f € Za(u).
Montrer que lim/ |fn—fldp=0 < lim/ | frl dp = / |fldu .
mJX nJX X

8.5 a) Soit (f,,)n>0 une suite de Zn (11). Montrer que
Z [faldp) < +o0 = / an d,uzz / Jndp.
n>0 </X > X (n>0 ) n>0 7 X

b) Soit (f,)n>0 la suite de fonctions définies sur R, par f,,(7) := e~ "% —2¢e =212,

Calculer /R (an(m) d:n) et 2 (/R fn(x) daz) puis conclure.
+ p>1 n>1 +

8.6 a) Soit (ay q)p.gen une famille de réels. Montrer que

Z Z lapq| < +o0 = Z Zapﬂ = Z Zapvq.

p=>0 ¢>0 p>0 ¢>0 q>0 p>0

2p+1  p _ pt1
p+q+2 p+qg+1 p+q+3

Calculer Z (Z apvq) et Z (Z ap7q) puis conclure.

p>0  ¢>0 q>0 p>0

b) Soit a4 1=
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T sina 1
8.7 a) Montrer que /0 pr— dr = 7; -

b) Soit f : R — R une fonction borélienne telle que, pour tout a € R, la fonction
(x — e f(z)) soit intégrable. Montrer que, pour tout z € C,

/Re”f(x)dx—nzzom/'?x"f(x)daﬁ

8.8 @) Montrer que le théoréme de convergence dominée s’applique aux sommes

—1)"
partielles de Z(—x)" sur ([0, 1], #([0,1]), A). En déduire la valeur de Z( ) .
n>0 n>1
+OO$Z_1
b) Soit z€C, 0<¥(z) <1. Mont - )"
) Soit z (2) ontrer que /0 7 —1-33 Jrz —n2

n>1
8.9 Soit f € .%4(]0, 1]), positive et monotone. Calculer lim / f(z"
" Jo
8.10 Constante d’Euler-Mascheroni
+oo .
Soit I,(a) := / P pourn € Neta € R;.
0

a) On suppose que a > 0. Calculer en justifiant lim I, (a).

n——+o0o

+oo .
b) Montrer que 1,,(0) := / e "s° % gy En déduire la valeur de 1,,(0).

—Tr

8.11 Montrer les égalités suivantes donnant la constante d’Euler-Mascheroni ~y

" q +oo
hm/ 1——) Inzdr =7~ —hm <lnn Zk) :/ e “lnzdr.
0

k=1

1
8.12 a) Soit f € %1([0,1]). Calculer lim/ 2" f(x)dx.

1
b) On suppose que f posséde en 1 une limite £ €R. Calculer lim / naz" f(z)dx.
nJo

1
c) On suppose que (z — f(z)/(1-xz)) € Z3([0,1]). Calculer h}ln/na:”f(ﬂc) da.

8.13 Soit une suite (b, ),,>1 de R telle que la suite définie par f,(z Zbk sin(kx)

converge A(dx)-p.p. vers fEZl([ m,m|) et liTan ’ | fr(x)—f(z)|dx = 0.

1 T
a) Montrer que, pour tout n>1, b, = - f(x)sin(nz) dz.
—T

b) Montrer, a I’aide d’une transformation d’Abel, que



Exercices 155

" sin(kx)
Vn>1,VxeR, <7+ 1.
k=1

+oo

¢) En déduire que la série Z — est convergente.
n
n=1
" sin(kz)
d) Montrer que la suite de fonctions définies par <a: — Ik ) converge
n

simplement sur R. Converge-t-elle dans £ ([, 7]) ?

8.14 Soit f : R — R une fonction borélienne, bornée et T'-périodique.
a) Montrer que, pour tout borélien borné A de R,

hm/fn:r: (dz) /f

b) Soit E' I’ensemble des x € [0, T'] tels que la suite (f(nz)),>0 converge vers g(x)
AE) (T
réel. Montrer, en justifiant 1’écriture, que / g(z) N(dz) = (T) / ft)dt.
E 0

¢) Montrer que A\(E)=0 lorsque f := cos.

sin?

—tx
€ dz.

+oo
8.15 Soit f la fonction définie sur Ry par f(t) := /
0 €T

a) Montrer que f est continue sur R et deux fois dérivable sur R*..

b) Calculer f” et les limites en +o0o de f et f’. En déduire une expression de f.

+o0 t
8.16 Soit f la fonction définie sur R par f(t) := / arctan ( - ) dx
0 sinh =

a) Montrer que f est continue sur R et dérivable sur R* mais pas dérivable en 0.

b) Donner une expression simple de f’. En déduire des équivalents de f en 0, +oc.

8.17 La transformée de Fourier de f € Z3(R) est f(t) := / fz)e ™ dx
—0o0

pour ¢t € R. a I’aide du théoreme de dérivation sous le signe intégral, calculer f

dans les deux cas suivants :

a) f(z):=e. b) flz):= le_H.

Le calcul se fait en trois étapes :

n —itx

i) Soit (gn)n>1 la suite de fonctions définies sur R par g¢,,(t) := / P dz
> T
Montrer que la suite (g),),>1 converge uniformément sur tout intervalle
[a, +00[, @ > 0. En déduire que la fonction f est dérivable sur R* et que
o0 ;
~ —u .
Vit >0, (f) (t):[w me “du.
i1) Montrer que f est deux fois dérivable sur R* et que () f
i7i) Calculer f(0) et Em f.En déduire que V¢ € R, f(t) Te~
oo

~ o~
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8.18 Fonction T et formule de Stirling
+oo
Soit la fonction I" définie sur R par I'(t) := / 71 e™® dx pourt > 0.
0

a) Montrer que I est indéfiniment dérivable sur R? .

—+00

b) Montrer que, pour tout n € N*, I'(n+1) = n!.
)

t
¢) Montrer que V¢ >0, T(t+1) =Vt e—t/ (1 + i) eV gy,
Vi Vit
d) Montrer que, pour tout y > 0, la fonction (¢ — ¢ In(1 + y/V) — yV/t) est
décroissante sur R*, et pour tout y €] —+/,0[, ¢ In(1 +y/vt) —y vVt < —y?/2.

+o0
e) Déduire des questions précédentes et de 1’égalité / ev?/ 2dy = V21, 1a
0
formule de Stirling T(t +1) ~ V2rtte ™.
(o.9]

t—+
1
8.19 Soient p € £ ([0, 1]) et f définie sur R par f(t) := / |p(x)—t| dz.
a) Montrer que f est continue sur R. ’
b) Soit t € R. Montrer que si A({¢=t})=0 alors f est dérivable en t.
¢) Montrer que, réciproquement, si f est dérivable en ¢ alors A({p=t})=0.

8.20 Soit (X, o7, 1) un espace mesuré de masse finie. Une famille ( f;);c; de fonc-
tions mesurables de X dans K est dite équiintégrable en probabilité si

lim sup/ | dp ) = 0.
H+°°(ief {|fi|zc}|f| M>

a) Montrer que toute famille finie de % (1) est équiintégrable en probabilité.
b) Montrer que la famille ( f;);cs est équiintégrable en probabilité ssi

sup || fill1 < +o0 et
el

Ve>0, 30>0, VAed/, p(A)<d = Viel, / |fildu<e.
A

¢) Montrer que si les familles (f;);cr et (g;)ier sont équiintégrables en probabilité,
il en est de méme de la famille (f;+g;)ics-

d) Soit (fn)n>1 une suite équiintégrable en probabilité qui converge p-p.p. vers
une fonction f. Montrer que f € 4¢(u) etlim || f,,— f|l1 = 0.

n
8.21 Une famille (fi);c; de £ (1) est dite équiintégrable si

Vex>0, JA. €, u(As) <+4oo et Viel, / |fildu<e,

c
£

Ve>0, 30.>0, VAes, pu(A)<dé. = Viel, / |fildu<e.
A

Soit (fn)n>1 une suite de £ (p) qui converge p-p.p. vers f € £¢(u). On va
montrer le théoréme de Vitali : lim || f,— f][1 =0 < (fn)n>1 est équiintégrable.
B >

a) Montrer que toute famille finie de % (11) est équiintégrable.
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b) Montrer I'implication (=) du théoréme de Vitali.
¢) Montrer I'implication (<) du théoréme de Vitali.
d) Montrer que la condition d’équiintégrabilité n’est pas suffisante si on omet 1’hy-

pothese de convergence p-p.p. dans le théoreme de Vitali.

8.22 Soit (X, <7, 1) un espace mesuré de masse finie. On pose, pour toutes fonc-
tions f, g : X — Kmesurables, d(f,g) := / (If —glA1)dp.

X
a) Montrer que d définit une distance sur I’ensemble E des classes d’équivalence
de fonctions mesurables de X dans K, modulo la relation “d’égalité p-p.p.”.

b) Montrer que la convergence en mesure (cf- exercice 6.13) est équivalente a la
convergence définie par la distance d.

¢) On se propose de montrer que (E, d) est un espace complet. Soit (fy,),>1 une
suite de Cauchy de E. On procede en quatre étapes :

i) Construire une sous-suite (f,, )x>1 telle que d(fr, , fn,) < k2, k> 1.

i1) Montrer que ZlAk’fnk—o—l_fnk’ e L2YX), A= U frps = frn] <1}
k>1
iii) Montrer que N(@CAIJ =0.

iv) En déduire que Z | frj1 — fni| < 00 p-p.p., et conclure.
k>1
8.23 Soient (A;)n>0 une suite d’un espace mesuré (X, o, u) et f € Ln(u) tels
que liqun / |14, — f|dp =0, 0u 1y, estlafonction caractéristique de A,,.
a) Montrel)r(que vneN, {|f|>2}c{|1la, — f| >1}.

b) Montrer que /X L p>2y dp < /X 1(aa, —pi>13 dp < /X |14, — fldp.
En déduire que |f| < 2 p-p.p. sur X.

c¢) Montrer a I’aide de la question b) que lim / ‘1An - fQ‘ dp = 0.
n—+0o Jx

d) En déduire f2 = f pu-p.p. sur X, et en conclure que f coincide presque partout
avec une fonction caractéristique d’une partie A de X telle que u(A) < +oc.

e) Montrer que si Z ((Ap A A) <400 alors 1y, WP g
n>0

8.24 On considere 1’espace métrique quotient (o7 /%, d) de I’exercice 6.18. Soient
(Ay)n>0 une suite de .7 et Ae /.

a) Montrer que si lim,, d(A,, A) =0 alors il existe une sous-suite (Agpn))n>0
telle que AZ (lim,, Ayn)) et AZ (limy, Ay)).

b) On suppose que 1(X ) < +oc. Montrer que si A Z (lim,, A,,) et AZ (lim,, A,)
alors lim,, d(A,, A)=0.

8.25 Soit f : R — R une fonction convexe.
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a) Soit ¢ € Ck(R) positive. Montrer que

i) e do <t |n [ 1) (oot ) +plo—1) — 20(0)) o]
R

b) En déduire que f est dérivable A1-p.p. sur R.
8.26 Soit (X, o7, i) un espace mesuré tel que M(X) = letsoit f € LR (p).

a) Montrer que la fonction F' définie sur R par F'(y / |f(z) — y| u(dx) est

1-lipschitzienne et convexe.
b) Montrer que F' est dérivable en tout point y de R tel que pu({f = y}) = 0, et que
F'l(y) = p({f <y}) —nu({f > y}) =2u({f <y}) - L.

¢) En déduire que si la mesure y est diffuse, i.e. f({f = y}) = 0 pour tout y € R,
alors F' atteint son minimum dans I’intervalle fermé {y eR:u({f <y} = 2}

sin(n z™)
n—l—f
+°°1n (1+2™)
1+na?

+oo
o . sin (z
c¢) Calculer la limite  lim (z")
n—+oo Jo x"

8.27 a) Calculer hm / dx , apres avoir justifié I’intégrabilité.

b) Calculer la limite hm / dzx.

dx

8.28 Soit 1 une mesure positive sur (R, Z(R)) telle que / |z|P p(dx) < +o00 ou
R

p € [1,400[. On définit la fonction distorsion par

DRP(z):= [ min |z;—ulP p(du), z € St ={yeR" 1y1 <ya < - <yn}.
R 1<i<n

a) Montrer que la fonction D}, est continue sur ..

b) On fait I’hypothese que la mesure 1 est diffuse (i.e. ({x}) = 0 pour tout z € R).
Montrer que D}"* est continiment différentiable en tout point de .’ T et que pour

. aDﬁJ) zi_"% pfl N

ZE{l?"'an}’ T(xla"'vwn):p Sgn(xi_u) ’IEZ—’LL‘ /’L(du) ou
€I, ji—%

Tii=-—00, ¥, 1:=5ol 9<i<n ¥ o1 =400

1
3 i—3 2 n+3
8.29 Soient z € C\ {0} avec R(z) > Oet f : Ry — C la fonction définie par

Foo 4 (z242)
f(t) = /_OO de, pourt S R+.

a) Montrer que f est continue sur R, dérivable sur R* et lim f(¢) = 0.

t—+o00
+o00 d )
b) Montrer que f(0) = /OO ﬁ = % ol \/z := /|| e 282/2 avec
™

arg z € [—7, 7], est la détermination principale de la racine carré de z.
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c) Déterminer, a I’aide de I’exercice 1.15, la valeur de f'(t) pour t € RY,..

d) En déduire que I’intégrale de Fresnel est donnée par la formule

oo 2 NS
—zt = — >
/_ e U dt Nz pour z € C\ {0}, R(=) > 0,

qui est semi-convergente si ®(z) = 0.

8.30 a) Soit (b,,),en+ une suite de R décroissante et tendant vers 0. Montrer que
+00
la série f(z) := Z by, sin(nx) converge pour tout x € [0, 7], uniformément sur
n=1
[, ] pour tout 0 € ]0, 7].
+oo
b) Montrer, a ’aide de I’exercice 8.13 b), que la série Z — sin(nx) converge
n
n=1
uniformément sur [0, 7].

¢) On suppose que f € Z1([0, 7]). Déduire de la convergence du a) sur [J, 7] et
2 ™

de la convergence du b) sur [0, 77|, que Vn > 1, b, = / f(z) sin(nx) dz.
T Jo

+o00
d) Montrer que la série Z — est convergente.
n
n=1
o= sin(nx)
e) En déduire que la fonction <:c — Z I ) n’appartient pas 4 .1 ([0, 7]).
nn
n=2
f) Montrer qu’il n’existe pas de fonction f € £ ([—n,7]) telle que
1 1 (/7
Vn > 2, on = - 77rf(a:) sin(nz) dz.
8.31 a) Soit (a, ),en une suite de R*,. décroissant vers 0 et telle que pour toutn > 1,
+oo
Gn-1+ apt1 — 2a, > 0. Montrer que Zn (an—1+ ant1 — 2a,) < 400.
n=1

b) Montrer que le noyau de Fejér F,, n > 1, vérifie

F.(z):=1+ 22": (1 - %) cos(kx) = i(ssl?n(zlajg//;))f pour tout = € |0, 7).
k=1

n
En déduire que la suite définie par f,(z) := Z k(ak—1 + ags1 — 2ax) Fi(z)
k=1

pour x €0, 7|, converge dans .Z’* ([0, 7]) vers une fonction positive f € .Z1([0, 7]).
c) En rappelant que pour une fonction 27-périodique réelle f dans £ ([—=,7]),
ses coefficients de Fourier réels sont définis pour k € N, par

1 [7 1 [7

ag = — (t)dt, ap:=— f(t) cos(kt)dt pourk > 1,
27 ), ™)

b = — ' f(t) sin(kt) dt,

s
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calculer pour n > 1 les coefficients de Fourier de F;, et de f,,, puis montrer que

n
Z ar + (n — k)ans1 — (n+ 1 — k)ay] cos(kz) pour tout z €10, 7).
k=0

d) En déduire que f(z Z ay, cos(kx), A(dz)-p.p. sur [0, 7].

X cos(nx)

e) Montrer que la fonction (a: — Z ) appartient a .21 ([0, 7]).

Remarque : Des exercices 8.30 et 8.31 on déduit le résultat assez surprenant :

<= cos(nx) 1 X sin(n x) 1
(2> Je2 o) et (2 ) ¢ 2 (10,7).

Inn Inn
n=2 n=2

8.32 Soient (fy,)n>0 et (gn)n>0 deux suites de fonctions mesurables sur un espace
mesuré (X, .o/, p), vérifiant 0 < f,, < g, pu-p.p., fn — f et gn — g p-p.p-.

a) Montrer le lemme de Pratt :

lim gndu:/gdu<—|—oo = lim /fndu /fd,u
X

n—-+00 X n—-+o0o

b) Etudier le cas oil 11 est la mesure de Lebesgue sur A = R, f,(z) := ﬁ
r+n

et gn(z) := 1 pour z € R. Que peut-on en conclure ?
8.33 Soit f € £ (R?) telle que V¢ € C°(R?), f(x) p(z) Ag(dz) = 0.

Rd
a) Montrer que pour chaque ouvert borné Q de R, il existe une suite (,,) de
C2°(£2) bornée par une constante, qui converge \g(dx)-p.p. vers f /| f[ 1.0y sur §2.
b) En déduire que f = 0 A\g(dz)-p.p. sur R%.

8.34 Asymptotique du flot d’un systéme différentiel
Soit a € C’ﬁl(Rg) et Z2-périodique — i.e. a(x1,x2) est périodique de période 1 par
rapport aux variables x; et xo — et strictement positive sur R2, et soit & un vecteur

non nul de R%. On considére pour € R? fixé, la solution X (-,7) du systeme

différentiel
O te) = a(X(t0) € 120

X(0,z) ==

La fonction vectorielle X est appelée le flot du systeme différentiel.
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a) Justifier le développement en série de Fourier de la fonction 1/a :

1 . a c(z?
Va = (z1,22) € R, = e on (@n)neze € £(27)
a(x) nez? TN :=mnjT|+ N9 xo.
t ds
b) Mont V(t,x) € Ry xR%, X (t,z)=F, (¢ ,Ft::/.
) Monteerque ¥ (1,) € Ry xR, X (t.2) =, (1) 4. Fuft) = [ -8
¢) Montrer que
V(t,x) €Ry xR F(t)= t Z o, €2 (@ m)
nezZ?:£n=0
bY agedinlen gntien sin (¢ (£-n))
n
nezZ?: £n#0 T (5 ' n)
d £ 3uas 2 . Fx(t) _ 2im (x-n)
) En déduire que Vz € R?, 1E_I}eroo e Z Q€ > 0,
neZ?:&n=0
. . X(t,x) , ~1
2 ) _ 2im (z-m)
puis que Vz € R*, tl}gloo " —( Z € ) £.
nezZ2:£n=0

e) On suppose le vecteur ¢ = (&1, &2) incommensurable dans R?, i.e. &1 /&5 ¢ Q.

X(t dy \—1
Montrer que ¥z € R%,  lim (t,2) =af ou a:= (/ 73/) , e
t=otoo 1 0,12 @(y)

a est la moyenne harmonique de a.

8.35 Probléme de Béle 5

+oo )
Soit f,., r € [0, 1], la fonction définie par  f,.(z) := Z r" M pour z € R.
n
=1

d in(2¢
a) Montrer que VteR, f/(t)= = [arctan <1iinéf)s()2t)>] :

* in(2t
b) En déduire que Vz € R, f.(x)= /0 arctan <1iin(1£)s()2t)) dt .

c) Montrer que Vz € R, fi(x):= liql fr(z) = / arctan (cotan(t)) dt .
r—1- 0

o= 1 2 =1 2
d) En déduire que Zm =3 et Z pr R
n=0 n=1
8.36 Constante d’Apéry ((3) (1)
n
2kt
On pose C,(t) := Z cos(k) pourt € Retn € N*.

k=1

1. R. Apéry, “Irrationalité de ((2) et ((3)”, Astérisque, 61 (1979), 11-13.
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a) Montrer, a I’aide de la somme classique des sin(k t), que

279 cos((2n + 1) t) — cos(t
V0 €]o, 5[, <ZA§—9)—ng)zié (« Sm@; ® 5
bl o0
b) Montrer que HETOO i 0 (Cr(Z —0) - _ nz_o (2n =
¢) Montrer, a ’aide de I'inégalité sin(t) > %t pour ¢ € [0, %], qu’il existe une

constante ¢ > 0 telle que

0 2% cos((2n+1)t)
/00< [ e dt) @

d) Montrer, a I’aide du lemme de Riemann-Lebesgue (cf: exercice 1.2 a)) combiné
avec le théoréme de convergence dominée de Lebesgue, que I’on a pour 6 € |0, 7],

V4 €]0, %], < ¢6?|1n(6)].

“+o00 1 jus

e) En déduire que ((3) := 7;) Gntip = /0 0 In(tan(6)) do .

lim
n——+o00

8.37 Reprendre les exercices 8.35 et 8.36 en utilisant la détermination principale du
logarithme complexe log z := In |z| + i arg(z) ol arg(z) €| — 7, 5[, qui vérifie
+00 on

1
log'(z):; et V|z| <1, R(z) >0, log(l—2) Z—

a) Dans Iexercice 8.35, montrer que Vt € R, f/(t) =arg(1—r 62”).
b) Dans I’exercice 8.36, montrer que V¢ €]0,7[, C,(¢ ) R[log (1 —e**)].

8.38 Probleme de Bale 6, tiré de Darticle (%)

+oo n—1 1 2 1
2:—1 In(1 In(1
a) Montrer que [ := L = 2/ M dr = / M dz.
0 0

n? x x
n=1

1 2
In(1 -2 t
b) Montrer que la fonction f définie par f(t) := / n( zeost+a7) dx
0 x
pour ¢ € R, est continue sur R.
¢) Montrer que V¢ €]0,7[, f'(t)=m—t.
2 2

d) Déduire de a) et ¢) que Vit € [0,7], f(t) =21 — % +7t— X puis les

+o0 1 71'2

leur de [ et d — =—.

valeur de [ et de nz::l TG

2. H. Haruki & S. Haruki, Euler’s integrals, Amer. Math. Monthly, 90 (7) (1983), 464-466.



Chapitre 9

Espaces L

Ce chapitre est consacré a I’étude des espaces vectoriels constitués de fonctions
ayant une puissance donnée intégrable. Ces ensembles qui généralisent 1’espace
fé (1) des fonctions pu- intégrables ont des propriétés analogues.

Dans tout ce chapitre, la lettre K désignera indifféremment le corps des réels
ou le corps des complexes. Enfin, le triplet (X, <7, ;1) désignera un espace mesuré
quelconque.

9.1 Espaces Li(x) : définition et premiéres propriétés

Définition 9.1. Pour tout réel p>0, on définit
LX) = {f (X, ) — (K, B(K)) mesurable : / |fIP dp < —|—OO}.
X

Sauf situation ambigué, on privilégiera la notation plus concise $£ ().

Exemple : Si m est la mesure de comptage (i.e. m(A) = card A) sur (N, Z(N)),
alors

LP(m) = ((N) == {(an)nzoe KN 3 JanlP < +oo}.
n>0

Proposition 9.1. Pour tout p>0, £¢ (1) est un K- e.v.

DEMONSTRATION : On vérifie que . (p) est un s.e.v. du K-e.v. Z(X,K) des
fonctions de X dans K. Tout d’abord, il est immédiat la fonction nulle est dans
LY (). Soient Ae Ket f, ge LX ().

A+ gl” < (AFT+19D)P < (2max((A][f], ]g]))”
S2PAPISP+ 27 gl?

d’ou /|)\f+g|pdu<2p|)\|p/ |f]pdu+2p/ lg|Pdp < +00. O
X X X
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Proposition 9.2. (a) Si ;/(X) < 400, alors
0<p<q = Lu) L (w).
(b) Si m est la mesure de comptage sur N, alors
0<p<gq = €(N)CL(N).
DEMONSTRATION : (a) Si0 < p < galors |f[P < [f]7 1 ¢>13 + 1 51<13- Donc,
des que fe L (pn)
Jirdn < [\ nis < 1) < o

(b)Si0<p<gqet Z |an|P < 400 alors lim,, a,, = 0; donc a partir d’un certain
n>0
rang N, |a,| < 1.D’ou

pourn > N, et Z lap|? < +o0. O
n>0

Remarques : e L’assertion (b) s’étend immédiatement au cas de la mesure de
comptage m sur un ensemble (X, (X)) quelconque et aux espaces de familles
de puissance p-¢eme sommable indexées par X, en I’espece

() = { (a)aex € KX - 3 Jagl? < +oo}.

zeX

e Sur (R, (R)) muni de la mesure de Lebesgue A, on observe que

1 1
f}”e%( J\Z30N) et Weeféu)\fém,

donc il n’y a aucune inclusion entre £ () et £ ().

9.2 Inégalités de Holder et de Minkowski

Pour toute fonction f : (X, <) — K et pour tout réel p > 0, on définit la
quantité

D=

:+OO

1
1fllp = </ s d#) ’ < +o0 convention : (+00)
X

appelée “norme £P” de f. Cette terminologie — inappropriée dans bien des situa-
tions — sera justifiée plus loin (c¢f. théoréme 9.2) lorsque p > 1.

Remarque : Il est souvent utile de noter que || . ||, posseéde la propriété de “crois-
sance” suivante : si | f| < |g] alors || f]|, < ||g]lp-
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Théoreme 9.1 (Inégalité de Holder). Soient f, g : X — K mesurables et p,q > 1
1

vérifiant —+—=1.
p q

(a) Si f et g sont réelles et positives alors

0< /X fgdu < 11l lglly < +oo. ©.1)

En outre, lorsque || f ||, + || gllq < 400, il y a égalité dans (9.1) si et seulement
si il existe (v, B) € RL\ {(0,0)} tel que o fP = 3 g7 p-p.p..
(b) Si fe LE(n) et g€ L () alors fge L3 (1) et

1fglle < 1715 llgll- 9.2)

En outre, il y a égalité si et seulement si il existe (o, 3) € R% \ {(0,0)} tel que
alf[P = Blgl* p-pp-

DEMONSTRATION : (a) étape 1 Inégalité de Young : On pose pour tout o€ |0, 1] et
tout € Ry, ¢o(x) : =2 — avx. La fonction ¢, est dérivable sur R*. et ¢/, (z) =
a (21 —1). Par suite, ¢/, (z) < Osur]1, +oo[ et ¢} (x) > 0 sur |0, 1[. Finalement,
pourtout z € Ry, pa(x) < @, (1) avec égalité si et seulement si z = 1. Soit encore,
pour tout x € R4, 2% < ax + 1 — o avec égalité si et seulement si z = 1.

U oo
Par conséquent, en posant x = — lorsque © >0 et v >0, il vient
v

u® v ™ < au+ (1 —a)v avec égalité si et seulement si u = v. 9.3)

L’examen du cas u € R4 et v =0 montre que (9.3) est valide pour tous u, v € R.
Cette inégalité est connue sous le nom d’inégalité de Young.

étape 2 Inégalité de Holder :

—Soit || f||, ou ||g]lg = 0et foug =0 p-p.p.. Dans ce cas fg=0 p-p.p.. etil
y a donc trivialement égalité (f et g sont supposées a valeurs dans K).

— Soit ces deux quantités sont non nulles et, si || f||, ou ||g||; = +o0, I'inégalité
est évidente.

— Soit, enfin, || f||, et ||g||4 sont dans R%.. On pose alors

_ =)

g% (x)
AR €

gl

t v

1
a:=—-(dot l—a=-), u
q

"=

I vient alors, d’apres I'inégalité (9.3),

flx)g(z) 1 fP(x) 1g%x)

Vre X, < - + - ,
Ifllpllglle = 2 If1E  q llgllg
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fPx) _ g'(x)

avec égalité en les points x € X vérifiant . L’intégration par rapport

_ e~ Tall
a u conduit a
1 @) 17 gi(a)
o< [ fodu <Ifly Lol ( u(da) + X u(de)
X P 1 PJx Hf”g q.)x HQHZ
=1

= [Ifllpllgllg < +oo.
@) _ gi)
1A lgllg
tions ¢ et ¢ vérifient 0 < ¢ < ¢ € Za(u), alors / odu = / dp si et

X X
seulement si ¢ = 1 u-p.p..

L’égalité a lieu si et seulement si p(dx)-p.p.. En effet, si les fonc-

Finalement, il n’y a égalité dans I’inégalité (9.1) que dans les deux cas suivants :
- foug=0p-p.p.,
—il existe a, 5 > O tels que o fP = B g? p-p.p..
D’ou la caractérisation de 1’énoncé.
(b) On applique (a) a[f|et|g]. ©
Définition 9.2. Deux réels p, q > 1 tels que l—l—} = 1 sont appelés exposants
conjugués. P

Remarques : e Extension immédiate : Dans le théoréme 9.1 (a), on peut considé-
rer que les fonctions f et g sont a valeurs dans R, sous réserve d’appliquer la
convention 0 X (400) =0 aux produits f(z)g(z).

e Retour sur le cas d’égalité : En revanche, si || f]|, ou ||g|[; = +oo, il peut y
avoir égalité dans I’inégalité (9.1) sans que f? et g? soient proportionnelles. Ainsi

. _3 1
siX=R,p=q=2etpu=\ f(r):=0"11; () etg(z):=2"71; (),
on vérifie que 0 < || f|l2 < 400, ||g]]2 = +oo et / f(x)g(xz) A(dx) = +o0. 11y a

R

donc égalité dans (9.1) bien que f? et g soient clairement non proportionnelles.

/ fgdu’ < 11711y Il
X

(b) Si p=q=2, on retrouve I’inégalité de Cauchy-Schwarz

Corollaire 9.1. (a) Si f € LF(n) et g€ L (1) alors

Vfge LA, f7E L) et ‘/ngdu‘ﬁllfllzllgllz ©.4)

avec égalité si et seulement si f = 0 p-p.p. ou g=c f pu-p.p., c€e C.

DEMONSTRATION : () est une application évidente de 1’inégalité triangulaire pour
les intégrales

\ / fgdu\ < [ sl <1171y gl
X X
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(b) On applique (a) a f et g. Le cas d’égalité s’obtient en combinant les différents
cas d’égalité. Supposons que f(x) ne soit pas p(dx)-p.p. nulle. Alors le cas d’égalité
dans I’inégalité de Holder (9.2) entraine : |g|? = p? |f|? p-p.p., ot p=+/a/B. Par
suite, |g| = p|f| pu-p.p.. Le cas d’égalité dans I’inégalité triangulaire (cf. proposi-
tion 7.4 (b)) entraine & son tour : f g = '’ | fg| p-p.p.. D’ol

fg=p |f>=pe? f [, ppp.

Sur { f#0},onadonc g=c f p-p.p. avec c=pe~? et, sur { f =0}, g = 0, 'égalité
g = c f restant donc valable. Réciproquement, si g = ¢ f, I’égalité dans (9.4) est
évidente. ¢

Remarque : Un traitement direct, fondé€ sur le fait que
vaC, [ Inf+gPduz0,
X

permet évidemment de retrouver plus rapidement le résultat du corollaire 9.1 (), y
compris le cas d’égalité. L’adaptation au cas réel est immédiate.

Corollaire 9.2. Si 1 est une mesure de probabilité i.e. u(X)=1, alors 'application
r — ||f|lr est croissante. En outre, s’il existe r, s € [1,+00], r < s, tels que
| fllr =1 flls <o, alors | f| est u-p.p. constante.

DEMONSTRATION : Soient 7, s € [1,+00[, 7 < s. On applique I'inégalité de
Holder aux fonctions f et 1 avec le couple d’exposants conjugués p:= 7 et q:= =

K . S—r
il vient

s—r

191 = [ 1772 < ( /err’“idﬂ) ( /X Mdu) X =

Le cas d’égalité dans I’inégalité de Holder entraine immédiatement que |f| est p-
p.p. proportionnelle a 1 en cas d’égalité de || f||, et || f||s dans R.. O

L’une des applications essentielles de I'inégalité de Holder est sans nul doute
I’inégalité de Minkowski.
Théoréme 9.2 (Inégalité de Minkowski). (a) Sip€ [1,+o00[, alors (L (1), - |Ip)

est un K- e.v. semi-normé. En particulier

Vi g€ L), If +gllp < 11fllp + llgllp- ©.5)

(b) Cas d’égalité : De plus,

—sip > 1, il y a égalité si et seulement si f =0 p-p.p.ou g = o f p-p.p., pour
un a > 0,

—sip=1,ilya égalité si et seulement si f g > 0 p-p.p.



168 9. Espaces LP

DEMONSTRATION : (a) Le seul point non trivial est I’inégalité triangulaire. Soit
p€ [1,+oc[. En intégrant par rapport a p 1’inégalité

lf+gl” <|flIf+ g|p_1 + gl |f + g|1”_1 (convention 22=1,z> 0), (9.6)

il vient £+l < [ 1911 +aP ™ dut [ Lol 17 + ol d

Sip = 1 I'inégalité (9.5) est établie. Sinon, 1’inégalité de Holder entraine :

1 1
1 +gl2 < 171, ( /. rf+gr<p-1>w) gl ( /. !f+g\(p‘”qdu>

ol les exposants p et g sont conjugués; en particulier, (p — 1) ¢ = p et, partant,

1F + gl < (1F 1l + lgllp) 1 + gl

Comme f+ge £ (1
triviale si || f + ¢, =
(b) Cas d’égalité :

—Si p > 1, il vient par double application du cas d’égalité dans I’inégalité de
Holder, B[f + g[P = v[f[P p-pp.eté|f + 9P = e|g|” p-p.p. ou (8,7) et (,¢)
sont dans R% \ {(0,0)}.

Si foug =0 p-p.p., il y a évidemment égalité.

Supposons maintenant f et g non p-p.p. nulles. Il ne peut y avoir égalité lorsque
f+9=0pp.p.car| f|, et | g|, sont alors strictement positifs. Donc f + g n’est
pas p-p.p. nulle et, partant, les quatre coefficients 3, 7y, 9, € sont strictement positifs.
En particulier, |g|P = g—g |f|P p-p.p., soit encore |g| = o |f| p-p.p., « > 0. On en
déduit en outre que f = g = 0 p-p.p. sur {f + g = 0}.

D’autre part, on doit avoir égalité -p.p. dans 1’inégalité (9.6), c’est-a-dire | f +
gl = |f] + |g| p-p.p. sur {f + g # 0}. En élevant au carré, il vient alors

IFI?+ gl +2R(f9) = |f1> + |gI* + 21 flg] p-p.p.sur {f +g #0}.

étant donné que | f||g| = |f 7| et que R(z) = |z] si et seulement si z€ Ry, on
a donc nécessairement fg = |fg| > 0 p-p.p. sur {f + g # 0}. Par conséquent,
flal? = 1fl1g| g p-p.p. sur {f + g # 0}. On déduit aussi que f#0 et g0 pu-p.p.
sur { f + g#0}; on peut donc écrire que g = % f=af pupp. sur{f+g#0}.
Comme f =g =0 p-p.p.sur {f + g = 0}, on a évidemment g = « f p-p.p. sur
{f + g = 0}. Ceci établit que le cas d’égalité avec p > 1 a lieu si et seulement si

). |.f +9gllp < 400, on peut donc simplifier, I'inégalité étant
0.

f=00ug=0pupp oug=afppp pouruna >0,

i.e. sietseulementsi f =0oug =« f u-p.p. pourun o > 0.
- Sip = 1, le cas d’égalité se réduit a |f + g| = |f| + |g| p-p-p. ce qui,
conformément aux calculs précédents, est équivalenta fg > 0. ¢
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Application 9.1. Inégalités de Holder et Minkowski inverses :

Soit p€ |0, 1[. Pour toutes fonctions mesurables f, g : (X, o7, ) — R%, I'iné-
galité de Holder inverse est vérifiée i.e.

/fgdu></ fpdu> (/ngduf ol ]10+61]—1.

De méme, I’inégalité de Minkowski s’inverse en

(fiesraf (o (f )

DEMONSTRATION :

— Inégalité de Holder inverse : Soient les réels

1
qg:=——<0, p:=-¢€]l, +oo], q’::—gzl—q€]1,+oo[.
p—1 p p

En écrivant f? = g~P (fg)? et en notant que (p’,q’) est un couple d’exposants
conjugués, il vient d’aprés 1’inégalité de Holder (9.2) appliquée a g7 et (fg)?
pour le couple (p',¢') :

| orau= [ o (fg)pdu<(/ = du)
(L) (re)

La racine p-eme de 1’inégalité ci-dessus donne alors

U=

L
I’y

( | o du) ,

(o <) o

a ce stade, on distingue les trois cas habituels :

»Q

_1
- (/ g7 d,u) - 0, auquel cas g=0 p-p.p. car —% > 0. Ceci est impossible
X
par hypothese.

Q=

- ( / g7 d,u) = +o00, auquel cas I'inégalité annoncée est immédiate (le
X

terme de droite est alors nul).

1
- < / g7 d,u) ’ € R, et I'inégalité de Holder inverse apparait en multipliant
X

1
par </ quu>q.
X
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— Inégalité de Minkowski inverse : On décompose (f + g)P comme dans la
démonstration de I'inégalité de Minkowski naturelle 9.5 en

(f+9)=Fff+a9P " +g(f+gP "

L’inégalité de Holder inverse associée au couple d’exposants (p, ¢) conduit a

/X(erg)pdﬂz [(/x fpd“f T (/Xgpduf] </X(f+g)pdu>;

L’inégalité de Minkowski inverse s’en déduit en divisant par le dernier terme a
droite de I’inégalité (cette quantité est non nulle et si elle est infinie, le résultat est
trivial).  {

9.3 Les espaces de Banach L} (1), 1 <p <+o0

9.3.1 Préliminaires sur les espaces semi-normés

Définition 9.3. Soit E¥ un K-espace vectoriel. On appelle semi-norme toute appli-
cation N : E — R vérifiant

(7) N(0g) = 0 ou O désigne le vecteur nul de E,

(ii)VAeK, Ve E, N(Az) = |\|N(x),

(tit) Vo, ye E, N(z+vy) < N(z)+ N(y).

Toute norme est donc une semi-norme et une semi-norme est une norme si,
outre I’axiome (7), elle vérifie: N(z) =0 = z = 0p.

D’autre part, il est utile de noter que I’axiome (7i7) entraine I’inégalité triangu-
laire “complete” i.e. [N (z) — N(y)| < N(z —y).
Définition 9.4. Soit (E, N) un K-e.v. semi-normé. Alors I’ensemble

V:i={x€ E: N(x) =0}

est un K- s.e.v. de E appelé noyau de la semi-norme N (on le note parfois Ker N ).

Le fait que V soit un K-e.v. est immédiat puisque O € Vetsiz, y € V et
A€ Kalors N(Az +y) < [N\ N(x) + N(y) = 0.

a ce stade on souhaite associer canoniquement a cet espace semi-normé un K-
e.v. normé qui soit aussi “proche” que possible de (F, V). Pour ce faire on introduit
la relation binaire sur £ définie par

Ve,ye B, x~y & z—yecV.

On vérifie que ~ est une relation d’équivalence, compatible avec I’addition et la
multiplication par un scalaire (i.e. siz ~ 2’ ety ~ 3/ alors \xz +y ~ A2’ +/). En
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conséquence, 1’ensemble quotient E = {Z : x € E} des classes d’équivalence de
la relation ~ est naturellement muni d’une structure de K-e.v., dite structure d’e.v.
quotient, définie a partir des opérations :

TH+y:=xz+y et A-T: =\ -z

L’ensemble E, généralement noté E/V, est appelé [’ espace quotient de E
par V. On le munit alors de
N(%) := N(x).

Cette définition est cohérente car la valeur de V() est constante lorsque x varie
au sein d’une classe d’équivalence. En effet, si x ~ y, x — y € V et partant,
|N(z) = N(y)| < N(z — y)=0. -

On vérifie alors immédiatement que (E/V, N) est un K-e.v. normé. On a ainsi
construit le K- e.v. normé canoniquement associé au K- e.v. semi-normé (E, N).

En régle générale, on abandonne la notation N pour la norme sur I’e.v. quotient
au profit de la lettre V. Ceci constitue un abus de notation manifeste mais inévitable
en pratique.

9.3.2 Construction et propriétés

Lorsque p > 1, les espaces normés LP () se construisent a partir des espaces
semi-normés (P (), || - ||p) par simple application de la procédure canonique
décrite ci-avant. D’ou la définition suivante.

Définition 9.5. On pose T(n) = Z20) + (Il Ip = O} (Ki(w), | - l) forme
est un K-espace vectoriel normé (avec I’abus de notation usuel concernant || - ||,).

Interprétation : || f||, = O si et seulement si |f|? = O p-p.p., donc [|f]|, = 0
si et seulement si f = 0 p-p.p.. En conséquence, la classe d’équivalence f de
fe L () est de la forme

f={9e L) :9=[ppp}.

ATTENTION! Dans la pratique, on désignera indifféremment par f, la fonction
€ L (u) ousaclasse f € Li(u). Ceci constitue un nouvel abus de notation,
aussi systématique qu’inévitable.

Remarque : Si le seul ensemble mesurable de mesure nulle sur (X, .o/, i) est @,
il est évident que la seule fonction u-p.p. nulle est la fonction identiquement nulle.
En conséquence, le noyau de || .|, sera réduit a {0} et les espaces £y (1) et Lig ()
coincideront puisque f = {f}. Cette situation n’est pas qu’anecdotique puisqu’elle
se rencontre dés que I’on munit un espace X de la mesure de comptage. Ainsi

LP(N, 2(N), m) =.2P(N, 2(N), m) = (N) = {(an)nzg : Zn20|an|p<+oo}.
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Théoréme 9.3 (Riesz-Fisher). (a) Pour tout p€ [1,+o0], I’espace vectoriel normé
(LR (), || - Ip) est complet (i.e. toute suite de Cauchy pour la norme || - ||, converge
pour cette norme).

(b) Soient (fn)n>1 une suite d’éléments de L (1) et f € LF (1) Si fn Il £l
existe une suite extraite (f,(,))neN et une fonction g € L8 () telles que | fomyl <

-p.p.
g 1p.p. et formy 5 f.
Ce théoréme repose sur deux lemmes.

Lemme 9.1 (Inégalité de Minkowski généralisée). Soit f,, : (X, /) — Ry, n > 1,
une suite de fonctions positives. Alors, pour tout p€ [1,+00],

>
n>1

DEMONSTRATION : Pour toutes fonction o7 -mesurables positives f, g,
1f +ally <1 fllp +llglly < 400 Gi [l fllp + llgllp < +oo il s’agit de I'inégalité de
Minkowski classique, sinon c¢’est évident). On en déduit par récurrence que, pour

toutn > 1,
n n
DA RES AT FAMESES
k=1 7 k=1 k>1

On conclut par le théoreme de Beppo Levi apres avoir remarqué que

< 3 fally < +oo.
P>

p

n p
<Z fk) 0 ka quand n — +o00. ¢
k=1

k>1

Lemme 9.2. Soit (E, | - ||) un K-e.v. normé. (E,|| - ||) est un espace de Banach
(i.e. un espace complet) si et seulement si toute série absolument convergente est
convergente.

DEMONSTRATION : (=) Soient (uy),>0 une suite de E et Sy, :=ug + - - - + Up,.
On remarque simplement que

n—+p

1Sntp = Sull < 3 llukll:

k=n-+1
Dong, si la série de terme général ||u, || converge, elle est de Cauchy et, par suite,
(Sn)n>0 est de Cauchy, donc convergente puisque (E, || - ||) est complet.

(<) (le sens utile ici!) On considére une suite de Cauchy (x,,)nen. La suite
(Zn)nen convergera des qu’une suite extraite (,(,))nen convergera. Or, grace a
la propriété de Cauchy, on peut construire de proche en proche ¢(0) := 0 et

o(n) :=min{k > @on—1):VL>k, ||z —zg]| <27}, n> 1.
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Pour tout n > 1, [[Zy(41) — Tpm)ll < 27" On pose alors uy, = Ty(m) —
Tymo1y Sin > 1etug := xo. Il est clair que x,0,) = > _p_uk et que [lugl| <
217, pour tout k > 2. Donc la série 3_, - ||un || est convergente. Partant, la suite

(%;(n))neN converge dans F d’ou le résultat. ¢

DEMONSTRATION DU THEOREME DE RIESZ-FISHER : (a) Soit une série de terme
général u,, n > 0, absolument convergente dans (L (p), || - [|). i.e. vérifiant que
Ym0 lunllp < 4+o00. D’apres le lemme 9.1, || Y-, < |un|||, < +oo donc, en par-
ticulier, pour 1 presque tout , la série ), - |un(z)| est convergente. Le corps K
étant complet, la série de terme général u,, (x) converge alors dans K. On pose donc

Zun(x) sur {xe X : )0 o |un(x)] < 400}

Uz) :=q n>0

0 sur “{ze X : > ns1 [un ()] < +00}.
n
Or, U —Z ug| < Z |ug| p-p.p.. Il vient donc, toujours via le lemme 9.1,

k=0 k>n+t1

n
10 =S wlp =1 3 Juelly < 3 Nuglly —> 0

k=1 k>n+1 k>n+1

n
pp-p-et] ||
doncZuk — U

k=0
On conclut via le lemme 9.2.
(b) En reprenant la démonstration du sens réciproque dans le lemme 9.2 ci-avant,

on constate que, si fj, M [, alors il existe une suite extraite (f,(,))n>0 telle que

Y om0 I fome1) = fomyllp < +o00. La démonstration du point (a) montre alors

a son tour que f,(,) converge u-p.p. et dans LpK(u). L’unicité de la limite dans

LE(w), || - entraine que celle-ci ne peut étre que f. D’ou le résultat, puisque
K \H p q p q puisq

|f<p(n)| < g::|fgo(0)| + Z |f<p(n+1) - fcp(n)‘ € LpK(:u)' O

n>0

Corollaire 9.3. L (1) muni du produit scalaire

(f,9). :Z/ngdu

est un espace de Hilbert sur K (g désigne ici la fonction conjuguée de g lorsque
K=C).

DEMONSTRATION : Il est immédiat que ( -, - ), est bilinéaire (resp. sesquilinéaire),
symétrique (resp. hermitienne), définie positive si K = R (resp. K = C). On a
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évidemment (f, f), = | f||3. La complétude de (Li(p), (-, ), ) résulte du théoréme
de Riesz-Fisher. ¢

L étude plus approfondie de 'espace L (p) fera I’objet de la section 9.6.

Pour conclure ce paragraphe, il est utile d’examiner la nature des liens existants
entre convergence L? et u-p.p..

Liens entre convergence L” et convergence (-p.p. :

Exemple de convergence LP non p-p.p. : Soient X := [0,1], & := £([0,1]) et

p:=A.Onposepourn > 0etke {0,...,2" — 1}, fon g := 1 & i1y On vérifie
271’ 2n

que ceci définit bien une suite (f,),>1. Il est clair que || fanygll, = 27 — 0
quand n — 4o0. a I'inverse si, = étant fixé dans [0, 1], on consideére la suite de

ses approximations dyadiques par défaut : g—fj <z < k%}fl, kre {0,...,2" — 1},
il est clair que fon gz (z) = 1 pour tout n € N. Finalement, il vient pour tout
pe [1,400],

fn w) 0 quand n — +oo et Vz€[0,1[, Vn >0, fonipz(x)=1.

Convergence -p.p. LP-dominée : La convergence pu-p.p. de fonctions de -£P(u)
entraine-t-elle la convergence dans LP () ? La réponse est négative en général : le
résultat est déja faux pour p = 1 (c¢f. seconde remarque apres le théoreme de conver-
gence dominée dans le chapitre 8). La fabrication d’une variante LP est immédiate.
Il reste que, sous une hypothese de domination L?, ce passage devient valide. C’est
I’objet de la proposition ci-dessous, simple variante du théoreme de convergence
dominée de Lebesgue.

Proposition 9.3 (Convergence LP-dominée). Soit (fy,)neN une suite de fonctions
de £ (1) convergeant i-p.p. vers une fonction f.

(a) Sisup || fnllp, < 400, la fonction f appartient a £ ().
n

(b) S’il existe une fonction g € 3&1 (w) telle que |fr| < g p-p.p. pour tout n € N,
LP

alors f, ﬂ) I
DEMONSTRATION : (a) est une conséquence immédiate du lemme de Fatou ap-
pliqué a la suite (| f»|?)nen-
(b) On pose, pour tout n € N, g, := |f — fn|. Par hypothese, la suite g,, converge
w-p.p. vers la fonction nulle. D’autre part, en dehors de I’ensemble de mesure nulle
Unen{|fn| > g}, il est clair que | f] < g.

D’ot, pu-p.p., gh = |f — folP < (29)P = 2PgP € L'(u). Le théoréme de

convergence dominée entraine alors que / |f— fnlPdu — 0 quand n — +oo. O
X
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Application 9.2. Continuité de f — go f :

Soient r, s € [1,400[ et g : R — R une fonction continue. Si la fonction ¢
vérifie la condition

Jee Ry, VyeR, gly)| <cly|"’?, 9.7

est continue.
J — gof

alors I’application @ :

DEMONSTRATION : Soit f € 2% (X, o7, u) ; la fonction go f est mesurable comme
composée d’une fonction continue et d’une fonction mesurable. La condition (9.7)
entraine

2()(@)° = lg(f(2))]° < ¢ |f(2)]" € Lr(n)
donc ®(f) € £5 () et @ est bien définie de £ (1) dans £ (). De plus, ® vérifie

Vie L), [2(H]s < el fIe.

Pour montrer que ® est continue, on s’appuie sur la caractérisation séquentielle
de la continuité. Soit ( f;,)nen une suite de £ (1) convergeant vers f pour la norme
Il - || La suite des normes || ®(f,,) — ®(f)]||s est bornée dans R d’aprés la majo-
ration précédente, elle posseéde donc au moins une valeur d’adhérence, soit £. Or,
d’apres le théoréme 9.3 (b) (Riesz-Fisher), il existe une suite extraite (fy(n))neN
convergeant u-p.p. vers f en restant dominée par une fonction h € £"(u), i.e.
[fom)| < p=p-p., ettelle que £ = i [|D(fo)) — S(f)]]s-

La suite ®( f,(,)) converge ji-p.p. vers ®(f) car g est continue sur R. En outre,
on a la relation de domination

pppe (®(fom) = PO <& (|Fol”" +11177) < 2 b € A

Donc d’apres le théoréme de convergence dominée 8.3, la suite ®( fw(n)) converge
vers ®(f) dans £ (1) et par conséquent £ = 0. La suite bornée de terme général
1P (fr) — D(f)||s possede 0 comme unique valeur d’adhérence, elle converge donc
vers 0. D’ou la continuité de ® en f. ¢

En fait la condition (9.7) est nécessaire lorsque (X, <7, 1) = (R, B(R), ) (cf.
exercice 9.12).

9.4 Théoremes de densité dans les Li (1), 1 <p<-+oo, (I)

Cette section est consacrée a une premicre approche des théoremes de den-
sité. Hormis quelques résultats élémentaires, on s’y cantonnera au cas de la droite
réelle et de la mesure de Lebesgue. Un exposé plus exhaustif est proposé dans la
section 9.7, comprenant notamment le théoréeme de Lusin.
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Nous persévérons dans 1’abus consistant a confondre une fonction et son repré-
sentant dans le quotient LP (). Ainsi, nous nous autoriserons a écrire que tel sous-
ensemble & de £P (1) est dense dans (LP(u), || - ||p), pour exprimer que le sous-
ensemble de LP(u) constitué des classes d’équivalence ayant un représentant dans
& est dense dans (LP(p), || - ||p)-

Rappel : 11 a été établi au chapitre 7 qu’une fonction étagée ¢ — fonction mesurable
ne prenant qu’un nombre fini de valeurs finies — est intégrable si et seulement si
uw({e # 0}) < 4o00. Ce résultat s’appuie sur la convention (7.1) : 0 x u(A) = 0,
pour tout A € 7. En outre, dans ce cas, p € £ (1) pour tout p€ [1, 4+00|.

Proposition 9.4. Pour tout p € [1,400|, I’ensemble des fonctions étagées intégra-
bles est dense dans Li¢(j).

DEMONSTRATION : Toute fonction f € £ (p) s’écrit comme combinaison liné-
aire d’au plus quatre fonctions de fél (1). On peut donc supposer f > 0. Or,
d’apres le lemme fondamental d’approximation 5.1, il existe une suite (¢p)n>1
de fonctions étagées positives croissant vers f. Dol ¢, € £ (p) et, d’apres le

théoreme de convergence dominée, ¢, M fear|f —pulP < fPe L u). ¢

Pour établir les autres théoremes de densité, nous avons besoin du lemme topo-
logique élémentaire suivant, dont la validité ne se limite d’ailleurs pas aux espaces
LP.

Lemme 9.3. Soient € C 2 C ZL(n). Si € est || - ||p- dense dans 2 et D est
| - ||p- dense dans Lig(y) alors € est || - || - dense dans L ().

DEMONSTRATION : Soit f € Li(p) et n € N*. Par densité de & dans Li (), il
existe g, € Z tel que || f — gn|lp < 5. Par densité de % dans 2, il existe h, € ¢
tel que ||g, — hnllp < 5. Finalement, pour tout n > 1, || f — hyll, < % ce qui
assure le résultat. ¢

Théoréeme 9.4. On se place sur (R, B(R), \), X mesure de Lebesgue. Alors :

(a) L’ensemble des fonctions en escalier a support compact est dense dans tous les
espaces Lﬁ(/\), 1<p<+cc.

(b) L’ensemble € (R, K) des fonctions continues a support compact est dense dans
tous les espaces L (X), 1 < p < +o0.

DEMONSTRATION : (a) D’aprés la proposition 9.4 et le lemme 9.3, le probleme
se réduit & approcher en (semi-)norme || - ||, une fonction étagée (positive) par
une suite de fonctions en escalier a support compact. Il suffit méme, par linéarité,
d’approcher I’indicatrice 1 4 d’un borélien A € #(R) de mesure de Lebesgue A(A)
finie.

La mesure de Lebesgue étant extérieurement réguliere (cf. théoreme 6.10, sec-
tion 6.6), on a

A(A) =inf {\(O) : A C O, O ouvert de R}.
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Il existe donc une suite d’ouverts (£2,,),>1 telle que A C ©,, et \(©2,,) — A(A). On
pose alors ,, := €2, N] — n, n|. La fonction indicatrice lﬁn est a support compact
et

Hlﬁn - 1AHp 14—nnt (L, — 1a) + Lanj—nnf — 1AHp

IN

110, = Lall, + [ 2ay-nnill,
< (MQn) = MA)7 + (MA\ —n,n))7 — 0

- n——+oo
car A\] —n,n[ | @et A\(A) < +00. On conclut en notant que tout ouvert borné (2
de R est réunion dénombrable d’intervalles ouverts (bornés) deux a deux disjoints,
ie.

n
.1 . . .
1g = E 1;, =lim E 1;, (I intervalles ouverts, éventuellement vides).
n>1 "=

La convergence a lieu dans . () par convergence dominée.

(b) Au vu de (a) il suffit d’approcher dans .Z¢()) I'indicatrice 1; d’un intervalle
ouvert borné I = ]a, b[ par des fonctions continues a support compact. Par exemple,
pour tout n > ﬁ, on définit ¢, € € (R,R) par ¢, :=1surJa+ +,b— L[, ¢, est
affine sur Ja,a+1]U[b— L, b[ et ¢, est nulle hors de 1. On vérifie immédiatement
que

2 1/p
=gl = ——— 0.
- nlo = (o) oz O 0

Remarques et compléments : e Ce théoreme s’étend a d’autres cadres que la me-
sure de Lebesgue sur R. Ainsi, on généralise 2 R? la notion de fonction en escalier

en:
n

f:R?— K estenescaliersi f = Zak 1p,
k=1

ot les P, sont des pavés de la forme : P, = H?Zl I,’f/,, I,i intervalles de R. On montre
aisément, en adaptant la démonstration précédente, que le théoreme 9.4 (a) s’étend
aux mesures y sur (R?, B(R?)) finies sur les compacts. 1l reste donc en particulier
vrai pour la mesure de Lebesgue \g sur R%.

La difficulté lorsque d > 2 provient du fait qu’un ouvert 2 de R% n’est générale-
ment pas une réunion de pavés ouverts deux a deux disjoints (autrement dit ses
composantes connexes ne sont pas nécessairement des pavés ouverts!). En re-
vanche, c’est une réunion dénombrable de pavés ouverts : ) = U P,. 1l suffit

n>1
alors de remarquer que toute réunion finie de pavés s’écrit comme une réunion
finie de pavés deux a deux disjoints, i.e.

n Pn
Vn>1, U P, = U P’ oules P} sont des pavés deux a deux disjoints.
k=1 k=1
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On obtient donc

Pn
.1 .1
lo=limly p =lim ) 1p.
k=1
Le reste de la démonstration est inchangé.
Le point (b) s’étend également aux mesures p sur (R?, Z(R?)) finies sur les
compacts et apparait comme un cas particulier du théoréme 9.10, section 9.7.

e Plus généralement encore, on peut montrer (cf. exercice 9.18) que si X est un
espace métrique localement compact (') séparable (un tel espace posséde une
base dénombrable d’ouverts d’apres la proposition 3.5) et si x4 est une mesure sur
(X, B(X)) finie sur les compacts de X, alors I’ensemble

Zak 1o, :ap €K, Ore0(X) et p(Of) <400
k=1

est dense dans tous les L (11).

Cette derniere généralisation consiste a remarquer que de telles mesures sont
extérieurement régulieres puis a reproduire le début de la démonstration de I’ asser-
tion (a).

Application 9.3. Soit Y :=[0,1]%, d > 1. Pour tout p > 1, on désigne par £} (Y, Aa) I'ensemble
des fonctions boréliennes f définies sur R® avec | f|P Ag-intégrables sur tout compact de R, et Y-
périodiques, au sens ot f(y + e;) = f(y) Aa-p.p. pour tout vecteur e;, 1 < i < d, de la base
canonique de R?.

Soient p, g deux exposants conjugués finis. Alors, pour toute fonction f € f;(Y, Aq) et toute

fonction g€ #%(RY) nulle hors d’un compact,

lim [ f(na) g(x) da = /Y f() dy / gla)dz.

n Rd

DEMONSTRATION : étape 1 : Soient o > 0, A € B(R%) et h : R? — R une fonction borélienne
positive ou intégrable sur o A. Alors I’égalité suivante est vérifiée

/ h(az)dx = ofd/ h(y)dy ouaA:={ax, zc A}.
A

aA

Ce résultat est un cas particulier du théoréme général de changement de variables (cf. proposi-
tion 12.1) qui sera établi au chapitre 12.
étape 2 Pour tout pavé compact Q=[] -, ,[as, bi] et toute fonction he Ly (Y, Aa),
lim/ h(nx)dr = Ag(Q) / h(y) dy.
n Q v

Pour n > 1121a<xd(bi —a;)”", on considere le pavage disjoint {Y},}, c 4 de R défini par

11
Y= ~r+—[0,1[% weZ’,
n n

1. Est localement compact tout espace topologique dont chaque point admet un voisinage com-
pact.
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et I’on pose
={keZ":V,CcQ} et Juo={keZ':Y.NIQ +# 3B}

On définit ensuite, pour tout n > 1, les pavés de R?
d d
Q =[[lati bi-21cQcQ,=]] la:—2,bi+ 1]
i=1 i=1

11 est facile de vérifier que si k € J,, alors Y, C @n \ Qn En outre, les Y, étant deux a deux
disjoints,

(U Yo =D Ma(Ve) =n"Tcard Jp < Xa(Q,\Q ) =0(n"). 9.8)

KEJn KEJn
De méme,
(@) =X |J Ye) + 2 | Yen@Q) =D Ma(Ve) +0(n™ ") =n Ycard I, + O(n" 1),
KEILR KREJn KEILR

9.9
doit n~%card I,, = A\a(Q) + O(n " "). D autre part, on peut écrire

/h(nx )dx = Z h(nz) dx + Z /KmQh(nx

KEILy, KEJn

L’étape 1, la Y-périodicité de h et le fait que la mesure de Lebesgue A4 ne charge pas les hyperplans
entrainent

[ hn)de =n~ [ nwydy=nt[  way =~ wwdy=n" [nws
e nYy [0,1[9 4k [0,1[¢ Y
(9.10)

< / \h(nz)| dz = n~? / ()] dy. ©.11)
Y

/ h(nz) dx
YiN@Q e

En combinant les résultats obtenus en (9.8), (9.9), (9.10) et (9.11), on obtient

/ h(nz) do = n_dcardln/ h(y) dy + O(n~" card Jy) = Ad(Q)/ h(y) dy + O™,
Q Y Y

De méme

ce qui conduit aussitdt au résultat annoncé.
étape 3 (Cas général) :

Soient g € .ZJ(R%), nulle hors d’un pavé compact @ de R%, et p > 1 tel que 1/p + 1/q = 1.
D’aprés le théoreme de densité 9.4 — adapté & L?(R?) selon la remarque qui suit le théoréme — il
existe, pour tout £ > 0 une fonction , combinaison lindaire de fonctions indicatrices de pavés de R*
aux cotés paralleles aux axes, telle que ||g — ¢||q < . Quitte & changer ¢ en 1 ¢, on peut supposer
que ¢ est nulle hors de Q, puisque ||g — 1o ¢llq < |lg — ¢llq < &

Remarquons d’abord qu’en vertu de I'étape 1, z + f(nx) € L (Y, Aa). Par suite, sa restriction
a @ appartient a .Z?(Q). Comme g € £9(Q), I'inégalité de Holder assure I’intégrabilité de la
fonction z — f(nx) g(z) sur Q. On écrit alors

[ 1) s@ o= [ fo)p@ydo+ | fone) (9(0) - o) da.
Q Q
Soit h := |f|?. La fonction h est dans £ (Y, \q) car la restriction de Aq a Y étant finie,

2} (Y, \a) est inclus dans £ (Y, Aa). On peut donc appliquer I’étape 2 a h et, partant, la suite des
normes || f(n. )| Lr(q) converge vers un réel. L'inégalité de Holder fournit alors les majorations

‘ /Q Jnz) (g(z) — () da

/Qg(x) dac—/Qcp(x)dm

< lf(nz)llze@) llg — ellraq) <cre

et

< / Lo(@)g(z) — p(@)ldz < (Aa(@)” g — ¢lly < e2¢
Rd



180 9. Espaces LP

qui impliquent

Mﬁmmmwflﬂww@mwxsufmwmm—ﬂﬂwwéﬂmm

D’autre part, de nouveau grace a 1’étape 2, on a

+ce.

1?LﬂmmmM=Lﬂw@Awmm

On en déduit donc que, pour tout € >0,

Lﬂmmmmfﬁﬂwwémmm

d’ou la limite cherchée. ¢

lim
n

< ce,

9.5 L’espace L (1) (u #0)

Dans cette section, on suppose que la mesure 4 sur (X, .27) n’est pas nulle.
Définition 9.6. Soit f : (X, .o/) — R.. On définit le supremum essentiel de f par
supess (f):=inf {M >0: p({f>M}) =0} >0,

avec la convention classique inf @ = +o0.

Proposition 9.5. Si supess (f) < +oo, alors

supess (f):=min {M : p({f>M}) =0},

ie.
(@) ¥ M > supess (f), u({f > M}) =0,
(b) VM < supess (f), u({f >M})>0.

DEMONSTRATION : M — {f > M} est décroissante pour I’inclusion donc la
fonction M — p({f > M?}) est décroissante positive. Le seul point a vérifier est la

valeur de p({f>M?}) en M = supess (f). Or

u({F>supess (N}) = (' {F > supess (f)+1/n})

n>1

= lifgnTu({f>supess (f)+1/n})=0. O

Définition 9.7. (a) Soit f : (X, .o/) — K, on pose || f||.., :==supess (| f|).

(b) On note £8°(p) :={f : (X, o) = K : ||f|l.. < +o0} I'ensemble des
fonctions - essentiellement bornées.
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Remarques : o Si f =g u-p.p. alors supess (f)=supess (g).
e Si la fonction f : (X, &) — (K, %(K)) est mesurable bornée alors f € .Z¢°(u)
et |flle <l = sup |f(@)], car p({[f[> [ £l }) = (D) =0.

xT

e Soit (X, A(X), i) un espace topologique muni de sa tribu borélienne et d’une
mesure  chargeant fous les ouverts non vides. Alors, si f : (X, o) — (K, B(K))
est continue, |||, = [[f|..,- En effet, si || fl|., < [|fll..,» I'ensemble {|f] >
|l fIl..} est alors un ouvert non vide, donc nécessairement chargé par . D’ou la
contradiction.

sup?

Les fonctions p-essentiellement bornées se caractérisent a 1’aide des fonctions
bornées usuelles :

Lemme 9.4. Soit f : (X, o) — K une fonction mesurable. f € Z2°(n) si et
seulement si il existe une fonction g : (X, o) — K mesurable bornée telle que

DEMONSTRATION : (=) On pose g:= f 1 ¢<| f[l.}-

Alors f =g p-p.p. et |g| < |[f]l... donc |lgll, < [[fll = llglls- De plus, par la
remarque précédente, ||g||.. < 9]l

sup *

(<) Ce sens est évident vu que f=g u-p.p. entraine | f|=|g| p-p.p.. <

Théoreme 9.5. (a) (£°(n), || - ||.) est un K- e.v. semi-normé et

{Il |l =0={f:f=0ppp.}

(b) L’e.v.n. quotient L2 (1) :=2° (1) = {|| - [|. =0} munide || - ||, est complet,
i.e. est un espace de Banach.

DEMONSTRATION : (a) On vérifie immédiatement a 1’aide du lemme 9.4 que
L () estun K-s.e.v. de .7 (X, K). On procede de méme pour vérifier que || - ||
est une semi-norme, sachant que || - [|,,,, est une norme sur I’ensemble des fonctions

bornées. Soient fi, fo € £°(1) et g1, go mesurables bornées telles que f; = g;

[f1+ follo = llg1+ 92l < llg1+92llap < 191llp T 1920lcp = I f1ll + 11 f2ll -

Soient f € Elzo , AeK et g fonction mesurable bornée vérifiant f =g pu-p.p. et
Ifllc =19llop- T vient A f = Ag p-p.p. donc, d’apres le lemme 9.4,

A lloe = Mgy = [AIIgllup = A f ]l

Enfin ||0]|,, = 0, donc .||, est bien une semi-norme. Déterminons-en le
noyau. Soient f € £°(u), || f]|. = 0 et g mesurable bornée associée a f via
le lemme 9.4. 1l est clair que ||g||.,, =0i.e. g=0dou f=0 p-p.p..

sup
(b) Pour la complétude, on s’appuie a nouveau sur I’espace #( X, K) des fonctions
bornées de X dans K. En effet #(X,K), muni de la norme de la convergence
uniforme || - |, est complet. Soit (f,,)n>1 de Cauchy dans (<4 (u), || - [|..)-

sup ?
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On pose alors
A= (US> 1503 U (U = fnd > 1= Fll )
n>1 n,m

u(A,) = 0 comme réunion dénombrable d’ensembles négligeables. On définit
alors les fonctions bornées g, := fn 1ca__. Ces fonctions vérifient

|gn*gm‘ = |fn*fm‘ :I-CAoo < ||fn*fm||oo d’ou Hgn*gmnsup < an*fmuoo

La suite (gy,)n>1 est donc de Cauchy dans I’espace complet (Z(X,K), || - [|,,,)-

L ”Hsu . . .
Par conséquent, g, —+ g¢. En particulier, g, 5, g (convergence simple) donc g

est mesurable puisque les g,, le sont.

Enfin, 1fn = 3lle <M(gn—9)Leall + I1(fn = gn) Lea |l

0
< ”g’n - g”oo < Hgn - gHsup n—)—+>oo 0. ¢

Poursuivons par deux propriétés classiques.

Proposition 9.6. (a) (Inégalité de Holder) Pour tous p, g€ [1,+00], = + = =1, si

fe Ll (n) et fe L (n), alors

1
q

Sl

f9eLi() et /X Faldi < 111y lgly < +oo.

(b) Pour toute fonction mesurable f : (X, o) — K

fllo < lim £, (3.
p——+00

(¢) La notation || - ||, se justifie notamment par la propriété suivante :
Viel J K li = .
T YR, 171, = 1

DEMONSTRATION : (a) Le seul cas a étudier est p=1 et ¢=+o0. Or,

F9l <11 llgl p-p. done /X Fal di < 111 gl

(b) Si | f]l. = 0, f = 0 pep.p. done |||}, = 0 pour tout p > 0. Si [ f]l. > 0,
pour tout A€ [0, || f[[. [, [ f|P = AP 1{jf>a}- L&, deux cas sont possibles :

— soit il existe Ay €]0, || f||.[tel que u({|f| > Ao}) = +ooet ||f|, = +o0
pour tout p > 0, partant  lim || f||, = 400 > || f]|;
p—+o00

2. Soit F' : R — R. On pose
lim F(z):= lim"(inf F(y)) €R et Tim F(z):= lim*(sup F(y)) € R.

T—+00 r—+o0 y>zx T—+00 =400 y>g
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— soit, pour tout A €10, || f|l [ #({|f] = A}) < +oc. Alors, il vient
1
Ifllp = Ap({lf] = A})?. Comme 0 < u({|f| = A}) < +oo, u({lf]
A})» =1 donc lim || f|l, > A pour tout A €]0, || f]l..[; par suite lim |f],
P P
1/l
() Soit f € L (u). Au vu du point (b), il suffit d’établir que lim || f||, < || f||..-
P

En outre, on peut supposer que 0 < || ||, < +oo. Il vient | f(x)|/|| f]|.. <1 p-p.p.
d’ou, pour tout p > r,

[f@)P _ [f@)]
AU, = A1

Finalement, lim || f||, < | f||... D’ou le résultat.
P

AVARAYS

11\

Remarques : e Sur (R, Z(R), \), f:=1¢ _ZP(\) pour tout p € [1, 0o, ¢’est-a-dire
|| fllp = +oo bien que ||f||., = 1. On a donc lim || f||, > || f]|... Cette situation
P

s’étend a tout espace mesuré (X, .o/, p) ot pu(X)=+oc.

e Si I’on se place maintenant sur (X,./) = (N, Z?(N)) muni de la mesure de
comptage, on vérifie immédiatement que

Vp >0, G(N) C 6 (N)i={@ = (@)nen : sup |zn| < +oo}.

neN
En outre, d’apres la proposition 9.6 (b), on a donc
1
Vfe l(N), lim ( :Ep)p:supx )
Uit (3 fant)” = sup o

e On rappelle que, si 1(X) < oo, £°(p) C ¢ (1) pour tout p>0.

o [l est a noter que les théoremes de densité énoncés a la section 9.4 pour les espaces
LY (1), 1<p<+oo, sont faux dans le cas p=+oo. Ainsi,

GRK) Y = {Fe e 39 ¥RK), f=gn-pp.et lim |g(x)|=0}.

||
On dispose uniquement du résultat de densité ci-apres.
Théoreme 9.6. L’ensemble des fonctions étagées est dense dans Ly ().

DEMONSTRATION : C’est une conséquence immédiate du lemme fondamental
d’approximation : lemme 5.1, chapitre 5. ¢

Terminons par un résultat qui illustre également bien la différence entre les
espaces LP, 1 < p < +o00, d’une part et ’espace L°° d’autre part. Pour simplifier,
on I’énonce sur (R4, Z(R%), \y).
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Proposition 9.7. L’espace normé L{(Aq) est séparable (i.e. contient une partie
dénombrable dense) si 1 <p< 400 et n’est pas séparable si p=-+o0.

DEMONSTRATION : Cas p < +o00 : On considére le sous-espace D de fonctions en
escalier sur R défini par

n
D:= { Zak 1 g:l]ai,bi[ ; Ok, G, biE Qv ne N* } :
k=1

Il est clair que D est une partie dénombrable de LP(R?). De plus, D est dense dans
LE(Aq) en vertu du théoreme 9.4 adapté a R? (cf. la remarque qui suit le théoreme).

Cas p = +o0 : Soit A une partie borélienne bornée de R? de mesure de Le-
besgue non nulle. Montrons que

Va,o e RY a # o/, B(laya,1/4) N B(lasa,1/4) = @,

ou B(f,r) désigne la boule (ouverte) de centre f et de rayon r dans LY (A\g). S’il
existe p€ B(1la44,1/4) N B(14/44,1/4) alors par I’inégalité triangulaire,

Latra = Larralle < llata =@l + e = Lanalle <1/4+1/4 <1,

Or, ||[1ota — 1444l ne pouvant prendre que les valeurs 0 ou 1, vaut donc 0.
D’autre part, on remarque que 1,4 4(z) = 14(x — «). Linvariance de la norme
L par translation entraine alors immédiatement que, pour tout n€ N*,

11n(@—a)ta = Ln—1)@—a)+ Al o= 11a—at+a — Lall=1ar+4 — Latall, =0.

D’ou, pour tout n € N, via I’'inégalité triangulaire

n

1 Lnar—ayia = Lalle €D 1 k@—ayia = Lgp-1)@—a)ialle =0.
k=1

Or, I’ensemble A étant borné, il existe un ng telle que A N [ng(a/ —a)+ A] = @.
L'égalité 1, (a'—a)+4 = 14 n’est donc possible que si les deux indicatrices sont
nulles Ag-p.p.. Ceci est impossible par hypothése (Az(A)#0).

Supposons a présent ’existence d’une partie D:={f, ; n € N} dénombrable
dense dans L’ (Ag). Il existe alors, pour chaque o € RY, un (plus petit) entier
n(a) € N tel que f,) € B(lata,1/4). On définit ainsi une application (a
n(a)) de R? dans N. Cette application est clairement injective d’apres ce qui pré-
ceéde. Ceci est impossible car R? n’est pas dénombrable. ¢

Remarque : On a en fait établi dans la proposition ci-dessus que le R sous-espace
vectoriel de (L (RY), (R%), \;) engendré par la famille de fonctions indicatrices
{1444, @ € R?} n’est pas séparable. Ce sous-espace vectoriel est évidemment
beaucoup plus petit que (LF (R?), Z(R?), \a).
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Application 9.4. Applications linéaires locales continues sur L,IQ(;L) :

Soient (X, 7, 11) un espace mesuré de masse totale finie et ¢ une application linéaire continue
de Li(u) dans Li(p). On suppose qu’en outre, ® est locale, i.e. pour toute fonction f € Li(u) et
toute partie A € .o

1af =0p-p.p. = 149(f) =0 p-p.p..
Alors il existe ¢ € L> (1) tel que pour toute fonction f € Li(p), ®(f) = ¢ f.

DEMONSTRATION : étape 1 : Si A€ o et f € Li(p) alors ®(1a f) = 14 ®(f).
Soient g:=P(1a f) — 14 P(f) et h:=D(1ea f) — Lea @(f). Le caractere local de ® entraine que

1ah=1eag =0 p-p.p. dout gh= (Lag+ leag)h =0 u-p.p.
La linéarité de ® entraine a son tour
g+h=20af+1leaf)—(1a+1lea)®(f)=2(f) —2(f) =0 p-p.p.

Donc g% = —gh = 0 p-p.p. et par conséquent (14 f) =14 ®(f) pu-p.p..
étape 2 : p:=P(1x) € LR (1) et [[oolloc < [|2]].
D’apres I'étape 1, si A€ o7 alors @(14) = P(1alx) =1ap,dol

/A lpldu = [Laglly = [12La)ll, < 12 [I2all, = 191 £(A).

En particulier, pour A:={|p| > ||®||} ona

/ (el - 1®]) dz < 0,
A ———

>0

donc p(A) = 0ie. || < ||| p-p.p., ce qui établit le résultat.

étape 3:V f € Lig(n), ®(f) = f.

D’apres I’étape 1, pour toute partie A € o7 ona ®(14) = pla. L'égalité est vérifiée par toute
fonction étagée intégrable par linéarité. La densité des fonctions étagées intégrables dans 1’espace

Li&(u) (cf. proposition 9.4), combinée avec la continuité de ®, entraine ’égalité pour toute fonction
de Lig(p). 0

9.6 Propriétés hilbertiennes de L3 (1)

Le but de cette section n’est pas de développer la théorie complete des espaces
de Hilbert mais essentiellement de parvenir au théoréme de représentation des
formes linéaires continues sur L? qui nous servira en particulier dans la démonstra-
tion du théoréme de Radon-Nikodym a la section suivante.

9.6.1 L’espace de Hilbert L (1)
L application définie sur LZ (1) x L () par

(f.9)s = /X fgdu

est une forme sesquilinéaire, i.e. elle vérifie les propriétés suivantes :
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(Z) Vflu f27 ge LZK(M)7 Ve K7 (/\fl +f27g)2 = A(flvg)z + (f27g>2’
(”) Vf, ge L?((:u)v (fvg)z = (gvf)2’
(iid) ¥V f € Lg(w), (f, ), 2 0et(f,f), =0« f=0.

L application || f||2 := /(f, f), définit une norme sur LZ(p1), appelée norme
hilbertienne. D’apres le théoréme de Riesz-Fisher, 1’espace LZK(,u) muni de cette

norme forme un K-e.v.n. complet, ¢’est donc un espace de Hilbert.

Remarque : Comme nous I’avons indiqué en préambule, nous n’allons pas étudier
les espaces de Hilbert de maniere générale mais en donner quelques propriétés
fondamentales dans le cadre LQK(,u). Toutefois, ce cadre apparemment particulier
n’est pas une réelle restriction car on peut montrer que tout espace de Hilbert est
isométriquement isomorphe a un espace du type 6,%([ ). En outre I est un ensemble
dénombrable lorsque I’espace de Hilbert est séparable.

9.6.2 Théoreme de projection

Théoréme 9.7 (Projection orthogonale). Soit F un s.e.v. fermé de L (). Alors
toute fonction g de LQK( ) peut se décomposer de maniére unique sous la forme

g=f+hon fEF et (p,h),=0Vpe F; (9.12)
autrement dit, Lﬁ(u) se décompose en somme directe sous la forme
Li(pw)=F & Ft on Fri={ue Li(n):Yoe F, (p,u), =0}.  (9.13)

La fonction f est appelée la projection orthogonale de g sur F'. Elle est aussi
caractérisée par l’égalité

lg = fll2 = min [g — ¢lf2. (9.14)
pel
La démonstration de ce théoréme repose notamment sur 1’identité classique
suivante :

Lemme 9.5 (Identité du parallélogramme). Pour toutes fonctions f, g€ L (i)

1f +gl3 + 1L = gll3 =2 (113 + llg13) - (9.15)

DEMONSTRATION : II suffit de remarquer que
I1f +all3 = IF15+ llgll3 +2R(fg). ¢

DEMONSTRATION DU THEOREME 9.7 : Soit d := ing llg — ¢ll2 € R4. 1l existe
€

une suite asymptotiquement minimisante (), >0 ie. telle que d=lim,, ||g— ¢y ||2.
Montrons que cette suite est de Cauchy dans LQK(M). D’apres I’identité (9.15),

2

+
2

2
Pn — g

2

Som+(;0n_
2

2 —
:2H(pm 9
2

2
—1-2'
2

Pm — Pn
2

2 2
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Pm + Pn

F,
5 ©

d’ou, puisque

lom — @nll3 <2 (lom — gll3 + llon — gll3 —24d%).

La propriété de Cauchy découle alors de la définition de la suite (@5, )n>0-

Le s.e.v. I étant fermé, (£ || . ||2) est donc complet et la suite (¢, )n>0 converge
donc vers une fonction f € F. Il est immédiat par construction que f vérifie
I’égalité (9.14).

Montrons a présent que f vérifie I’égalité (9.12). Soit h:=g — f et o € F. Pour
toutt >0, f +tpe F donc

IRl5 = llg—fII5 < llg—(F+to)l3 = [|lh—toll3 = [R5+t [olls -2t R(R, ¢),

d’ou 0 < t|p||3—2R(h, ¢),. En faisant tendre ¢ vers 0, il vient R(h, ¢), < 0 pour
toute ¢ € F'. En particulier, R(h, ), = —R(h,—p), >0 d’ou R(h,¢), =0.
Lorsque K = R, on obtient directement (9.12). Si K = C, la sesquilinéarité de
(+,-), entraine I(h, @), = R (—i(h,p),) = R(h,ip), =0 d’ou (9.12).
Il reste & montrer 1"unicité du couple (f, h). Supposons que I’identité (9.12) ait
lieu avec un autre couple (f/,h’'). Ona f' — f = h — I/ alors, puisque f/, f € F,
S =L == F0a=0=(f = f.f = f).donc f' = feth'=h. ¢

Terminons cette section par le théoreme de représentation des formes linéaires
: 2
continues sur Li(p).

9.6.3 Représentation d’une forme linéaire continue

Théoreme 9.8 (Lemme de Riesz-Fisher). Soit ® : L (u) — K une forme linéaire
continue. Alors il existe une unique fonction g€ Li(p) telle que

Vfe Li(u / fgdpu. (9.16)

DEMONSTRATION : F:=®~ {0} est un s.e.v. fermé de L (u) car ® est continue.
Si ® = 0 alors la fonction nulle convient. Sinon, il existe d’apres la décomposition
(9.13) du théoréme 9.7, h€ F*\ {0}. On pose alors

o(h)

= he FL.
113
: 5 _2(f)
Soit f € Lg(p). Comme ®(g) # 0, on peut poser A := 3(9) € K. On a alors
g
®(f—Ag) =0d ot f — g€ F etparsuite (f—\g,g), = 0car g€ F+.On
obtient donc \ = (/,9), et partant (f) = 0 )(f, )y = (f,9),. O

9113 lgll3
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9.7 & Théoremes de densité dans les Li (1), p<-+oo, (II)

Avant d’entrer dans le vif du sujet, le lemme préliminaire suivant propose une
méthode d’approximation d’une fonction indicatrice d’ouvert par des fonctions lip-
schitziennes dans un espace métrique. Cette méthode s’appuie sur la notion de dis-
tance a un ensemble développée a la section 3.6 dans la premiere partie et se révele
un outil indispensable dans les théoremes de densité.

Lemme 9.6. Pour tout ouvert O € O(X)\ {X} et pour tout k € N*, on définit
la fonction ¢y, sur X par pp(x) := min (kd(z, “O),1). La fonction ¢y, est k-
lipschitzienne et vérifie

0<pr < Prt1 < 1o et lilgnT(pk =1o.
DEMONSTRATION : La fonction u +— min(ku, 1) est k-lipschitzienne de R dans
[0, 1] et ne s’annule qu’en 0. Si u#0, lilgnT min(ku, 1)=1. La fonction ¢y, est donc

k x 1= Ek-lipschitzienne par composition, et li]]gnT ok =Ld(e,c0)>0y =10- O

9.7.1 Densité des fonctions lipschitziennes dans L (1)
Le théoreme principal ci-apres fait intervenir 1’espace
Lip,(X,K) := {f : X — K, f lipschitzienne bornée}, ot K=RouC.

Théoreme 9.9. Soit (X,d) un espace métrique et i une mesure sur (X, B(X)),
supposée extérieurement réguliere au sens ou

VAe B(X), p(A):=inf {u(0), AC O, O ouvert}.
Alors, pour tout p€[1,400],
Lip,(X,K) N L8 (1) est || - ||p-dense dans L ().
DEMONSTRATION : Rappelons d’abord que
1a€ LL(p) == uA)<+oo = 1lae€ L(p).

Les fonctions étagées -intégrables étant denses dans tous les ¥ () pour tout
p€ [1,+oo[, d’apres la proposition 9.4, il suffit d’approcher de telles fonctions dans
2% (1). Enfin, toute fonction étagée intégrable se décomposant en une combinaison
linéaires d’au plus quatre fonctions étagées intégrables positives, il suffit d’établir
le résultat dans ce dernier cadre.

Etape 1 : Soient f:=14 € .£P(p) et e >0; pu(A) < 400 donc, par hypothése, il
existe O, € O(X) tel que AC O, et (O \ A) < (5)". Les fonctions ¢,,, n>1,
relatives a O, construites au lemme 9.6 vérifient :

1o, —pnlP<lo.€ 2N () et |lo. —@ulf — 0.

n——+00



9.7. & Théorémes de densité dans les Li(p), p<-+oo, (1) 189

Donc, par convergence dominée, il existe n. > 1 tel que ||1o, — ¢n. ||, < 5. Finale-
ment

B =

3
lene = Lallp < llen. = Lo.llp + 1110, = Lallp < 5 + 1(O\A)

Etape 2 : Soit f := Z Aila, une fonction étagée positive de $£+ (1). On peut
1<i<N

supposer les \; tous non nuls et partant tous les u(A;), i= -, N finis. IV etape 1

fournit alors des fonctions f7 € Lip, (X, [0,1]) N ,,SfF}+( ) tq HlAi = filp < 5

D’ou il vient || f — Z Nifillp <esor Z Aifi est a la fois clairement lip-
1<i<N 1<i<N

schitzienne et dans ,,2”& (1+) comme combinaison linéaire positive de fonctions lip-

schitziennes de g, (). O

Remarque : On peut a fortiori remplacer Lip, (X, K) par I’ensemble
¢, (X,K):={f : X — K, lipschitzienne bornée }.

En combinant le résultat ci-dessus avec le théoreme 6.9(b) sur la régularité
extérieure des mesures, on en déduit plusieurs résultats sur les mesures o-finies le
long d’une suite croissante d’ouverts épuisant X .

Corollaire 9.4. Soit 11 une mesure o-finie vérifiant : il existe une suite croissante
d’ouverts (Ey,),>1 telle que

Yn>1, p(E)<+oo et X =|JE.. 9.17)

n>1
Alors, pour tout p€ [1,+o00[, Lip,(X,K) N.ZLL (1) est||.|,-dense dans LE (w).

Application 9.5. (a) L’exemple le plus important est sans nul doute la mesure de
Lebesgue )y sur (R%, 2(R?)) (on considere les hypercubes E,, :=] — n,n[9).

(b) Plus généralement, la démonstration du théoreme 6.10 (consacré a la régularité
des mesures de Borel) montre que toute mesure de Borel sur un espace métrique
(X, d) localement compact, séparable, vérifie la condition (9.17) de o-finitude le
long d’une suite d’ouverts.

Corollaire 9.5. Soient i et i’ deux mesures vérifiant la condition (9.17) de o-
finitude le long d’une suite d’ouverts. Alors

VFeLip(X.R) 020 1 LR, [ Fdn= [ gal = p=i

DEMONSTRATION : Soit O € 0(X) et n > 1. Les fonctions ¢y, k > 1, rela-
tives a ’ouvert O N F,, introduites dans le lemme 9.6 sont bien dans les espace
L (w) et Za(p'). Donc, par densité et par continuité “a gauche” des mesures,
w et p’ coincident sur &'(X). D’apres le corollaire 6.2, elles sont donc égales car
o-finies. ¢
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9.7.2 Densité des fonctions lipschitziennes a support compact

Nous allons maintenant affiner les résultats précédents dans le cas ou I’espace
X est localement compact et séparable. En effet, il est alors possible, si x est une
mesure de Borel, de se restreindre aux fonctions lipschitziennes a support compact.

Théoreme 9.10. Soient (X, d) un espace métrique localement compact séparable
et |1 une mesure de Borel. On pose

Lipg (X, K):= {f : X — K, lipschitzienne a support compact}.
|p-dense dans L (p).

DEMONSTRATION : Si f € Lipy (X, K), f est en particulier continue a support
compact donc

Alors, pour tout p€ [1,400], Lipg (X, K) est || .

t&f@@s!ﬂimwwﬁb<+m,

d’ou Lipg(X,K)C ZZ ().

1l reste maintenant a approcher les fonctions lipschitziennes bornées de £ (1.
On introduit a cette fin (¢f démonstration du théoreme 6.10) une suite de com-
pacts (Ly)n>1 vérifiant X =, <, Ly et L,, C IO/nH. On consideére ensuite les

@k (2) :=min(kd(z, {Ln)),1) ; I'entier n étant fixé, ¢nk T 1; pourk — 4o0.
Or p(Ly) < 400 car p est une mesure de Borel donc 1; € ZP(u) et ppp —
1; dans Z7(p). 1l existe donc, pour tout n € N, ¢, € Lipg (X, K) telle que

17 — @nllp< 1O, pour toute f € Lip,(X,K) N.ZF (1),
If = fenllp < If=f1; llp+ 1115, — f@nllp

1
p ~
S(/JW@)+WMHM—%M
<L N
N— ——

<1/n
—0 quand n—+o0

On conclut en notant que fyy, € Lipy (X, K) puisque (¢5)[cr,, =0. ¢

Application 9.6. 1’application essentielle est évidemment fournie par les espaces
RY, d > 1, (équipés d’une norme quelconque d’e.v.n. et) munis de la mesure de
Lebesgue \; voire, plus généralement, d’une mesure de Borel.

9.7.3 Théoréme de Lusin

Si 11 est une mesure de Borel réguliere sur un espace métrique (X, d), on peut
établir un raffinement du théoréme 9.9 sous la forme du théoreme de Lusin :

Théoreme 9.11 (Lusin). Soit p une mesure de Borel réguliére sur un espace métri-
que (X,d) et p € [1,+00[. Alors, pour toute f € L () et pour tout € > 0, il
existe p. € £ (1) N € (X, K) telle que

[Pellowy < Ml n({f #@e}) <e et ||f—¢:llp <e. (9.18)
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En outre, si f est positive, on peut choisir . positive également.

La démonstration de ce théoreme s’appuie sur un lemme de séparation clas-
sique qui s’établit de faAon élémentaire en topologie métrique a I’aide des fonc-
tions “distance a un ensemble” x — d(x, A).

Lemme 9.7. (Urysohn) Soit O un ouvert et K un compact contenu dans O. La
fonction pk o définie par

d(,“0)
d(z,¢0) + d(z, K)

est définie et continue sur tout X. Elle vérifie en outre 1 < pr.o < lo.

pK.0(x) =

DEMONSTRATION : Remarquons d’abord que la fonction z — d(z, °O) atteint
son minimum sur le compact K en un point x,, € K. Cette distance est forcément
non nulle sinon x4, serait dans 1’adhérence du fermé €O i.e. dans O lui-méme. Or,
K C O par hypothese. D’autre part, pour toute partie A non vide de X, la fonction
x — d(z,A):=inf,c 4 d(x, a) est 1-lipschitzienne. Enfin, pour toutes parties non
vides A et B de X, pour tout x € X,

d(A,B):= inf d(a,b)<d(z,A)+d(z,B).

(AB)=_inf_d(a.b)< d(a, 4) +d(a, B)

La fonction pg o est donc continue comme quotient de deux fonctions continues
dont le dénominateur ne s’annule pas. ¢

Remarque : La fonction pg o est lipschitzienne de rapport (majoré par) d(COl,K)
DEMONSTRATION DU THEOREME DE LUSIN : On procéde en plusieurs étapes.
Etape 1 Fonctions indicatrices de £% (1) :

Soit Ac B(X)et f:=14. f€LP (1) & pu(A)<+oo.

— Soit (A) =0 et I’on pose simplement . :=0.

— Soit pu(A) # 0. La mesure u étant réguliere, pour tout € > 0, il existe un
compact K. C AC O tels que (O \K:) <eP,i.e. ||1o.—1k_||, <e. Onpose alors
¢e:=pK.,0.-Comme . <1lo_, p. € LE(1n); d autre part, |p.—14| <|1lo.—1k.
drou . — Lallp<e.

Drautre part {f # -} C O \ Kc done p({f # ¢c}) < pu(O: \ Ke) < P
Quitte a remplacer € par € A 1, on peut toujours supposer que € < 1 et, partant, que
ef <e. Enfin [|¢c[l,,, <1=1all. = l[fll-

sup —
Etape 2 Fonctions de LE(w) avaleurs dans 10, 1] :

B

Soit f: X —]0, 1] une fonction de £ (1) strictement positive avec || f|| _ =1.
Une variante immédiate du lemme fondamental d’approximation (théoréme 5.1)
montre que la suite (f;,),>1 définie pour tout n> 1, par

21 1
fn = kZ_O o Laretty T lipon = kZ_() o Lk <retily
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converge vers f quand n — 4o0. Par suite, si ’on pose fy := O et, pour toutn > 1,
+00
. P $n
On =2"(fn — fn-1), il vient immédiatement f = o
n=1
D’autre part, on vérifie aisément que (,, ne peut prendre que les valeurs 0 et 1

car, sur { f,—1= 2,1%} ={ 2,[‘“,1 <f< 2"3:[11 }, la fonction f,, ne peut prendre que les

valeurs %—fi et 2’;251. En conséquence, si I’on pose
2 okt 2k +1)
Ap={pn=1}= U on <f§T )

+0o0

on =1y, et f::ZanlAn. Comme f est dans Z¥(p) et 14, <2"f, o, est
n=1

aussi dans Z5 ().

Par conséquent, d’apres 1’étape 1, € > 0 étant fixé, il existe pour tout n > 1,
Pne €L8 (1) NE(X,[0,1]) tel que

€ €
||90n,s - ‘Pn”p < on’ M({‘Pn,s#wn})gﬁ et H‘Pn,eusup < H‘PnHm <L

Yre vérifie ala fois
27’L

+00
Il est immédiat que @, := Z
n=1

+o00 c +o00 1
loe = fllp < & neeAfN <Y r=¢ et locly <D 5 =1=ll-
n=1 n=1

Enfin, la convergence de la série définissant (. étant normale et les ¢, . €tant
continues, il en est de mlme de ..

@pﬂ Fonctions de XFI; (1), positives et essentiellement bornées :
Soient f € £¥(p), positive, de norme L™ (u) finie, non nulle et 6 €]0, || f]| . [,
fixé. On pose f5 := ”fﬂ% .Comme f est positive, f51’est strictement et, en outre,

IIfsll.. = 1. Un réel £ > 0 étant fixé, il existe, d’apres 1’étape 2, une fonction
wse € €(X,[0,1]) telle que

Hgoa,E - f5Hp S 5/7 /’L({SOJ,E#J%}) S 5/ et HQO(S,EI sup S 1

ot &' i= min {&, 7775 }. On pose @ i (£ +0)pse 0 et . = max(, ).
On vérifie que
— {pe# [} C{P# [} = {ws:7# fs} car f est positive,
— lleellop < NIPella < NI fll card€]O, || f] [ et '
— [lpe = fllp = [[ max(pe, 0) —max(f, 0)[|, < [[¢—fllp < & car la fonction
x — max(x,0) est 1-lipschitzienne.
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Etape 4 Fonctions de L8 (1) essentiellement bornées de signe quelconque :

Remarquons d’abord que le résultat de 1’étape 2 s’étend a une fonction f p-p.p.
positive (évident au vu des conditions (9.18)). Si f est u-essentiellement bornée et
positive, il existe donc, pour tout € > 0, une fonction ¢, continue et positive vérifiant
les conditions (9.18) pour la fonction f + || f||_.. On pose alors ¢ : =@ — || f||.. -
Le seul point a vérifier dans (9.18) est I’inégalité sur les normes || . ||_, et ||
respectivement de ¢, et f. Or,

Ml < e = IF e < NG+ F o = 1l < NN

donC |S55 - Hf”sup’ S Hstup Le. HS05Hsup S ”f”oo
Etape 5 Fonctions de £% (u) :
Si f € £ (1), on peut considérer fA .= f1{r/<ay et considérer A. tel que

sup Hoo

| f— f4<)||, < /2, puis on applique 1’étape 4 & f(4<) et £/2 aprés avoir noté que
{r# 149} ={If1> A}
Etape 6 Fonctions de L& (1) :

Soit f € Z&(w). On pose g := |;|l{f¢0} de fagon que f = |f|g. La fonction
g se décompose en g:=g;+1g>.

Nous allons d’abord résoudre le probleme pour g. D’apres I’étape 4, il existe,
pour tout € > 0, des fonctions continues 77 . et yo . relatives a g1 et go vérifiant
(9.18) avec €/2. On pose alors

:Yi € .
Yie 1= —— , 1=1,2.
Y max(37 . +93,, 1)

Comme g7+¢3 = 1, il est immédiat que, pour i=1, 2,

MeFantUi{ne# 9} C{Ne#g} U {2792}

On définit alors la fonction 7: =71 ¢ + 172¢. Etant donné que, pour tous z, 2’ € C,
|2'|=1,0na
, z
Z e —
max{[z]%, 1}

on obtient donc la majoration ||g — Vell, < ||[g — (F1,6 + F2,6)|lp < 2€/2 = e.
L’inégalité en norme L™ (1) est évidente.

’S |2/ — 2|,

€
201+ 11£11)
fonction continue vérifiant (9.18) pour | f| et £’. On vérifie finalement sans difficulté
que la fonction . :=1).s 7. vérifie le bouquet de conditions (9.18). ¢

On pose alors, € > 0 étant fixé, &’ := min (1 ) Il existe 1./ une

Exercice : Reprendre le cas complexe en utilisant la représentation trigonométrique
mesurable de toute fonction complexe f en f(z) = p(z)e2™?®) ot p et # sont des
fonctions mesurables a valeurs respectivement dans R et ]0, 1].
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9.8 Exercices

(X, o, ) désigne un espace mesuré.

9.1 Soit K¢ le K-e.v. canonique de dimension d € N*.

a) Soient p,q € [1,4+o0], p < q. Déterminer les constantes optimales a, b telles
queal-llp <[ -llg < bl [lp-

b) Montrer directement que pgrfoo l-lp=1"lw-

¢) Soit p €]1, +o00[. Montrer que
Ve#yeKd, Jall,=lyl,=1 = letyl, <2

Le résultat subsiste-t-il pour p=1 ou p=+o00?
9.2 a) Soient des fonctions f, g : X — R mesurables positives telles que fg > 1.

Montrerque/ fdu/ gdp > p(X)>2.
s X

b) Que peut-on dire de la mesure p s’il existe f : X — R telle que f et 1/ f soient
p-intégrables ?

9.3 Soient p, g € [1,+o0], p < q.

a) Soit (X, .o/, ) un espace mesuré de masse finie. Montrer que I’injection ca-
nonique ¢ : L (p) < Li (1) est une application linéaire continue et calculer sa
norme. Pour quelles fonctions est-elle atteinte ?

b) Montrer que I'injection canonique i : ¢4 (N) < ¢](N) est une application
linéaire continue, et calculer sa norme.

9.4 On considere les deux énoncés suivants :
(i) Pour tous p,q € [1,+ool, p # ¢, L (1) # LK (1),
(73) Ilexiste une suite (Ay,),>0 d’éléments deux a deux disjoints de .o/ vérifiant
0 < u(A,) < +o0.
a) Montrer que (7) implique (7).
b) Soient p,q € [1,400[, p # q et (an)n>0 une suite de R . Montrer qu’il existe

une suite (b, ),>0 de Ry telle que, parmi les sommes Z b a, et Z blay,, I'une
n>0 n>0

est finie et I’autre infinie.

¢) Déduire du b) que (i) implique (7).

9.5 Soient p, g € [1,+0o0], p # ¢. Déterminer une suite de €% (R, R) qui soit bornée
dans £ (1) mais pas dans £ ().

9.6 Soient p, g € [1, +00] et (f)n>0 une suite de L ()N L (1) qui converge vers 0
dans L () et qui est de Cauchy dans LY (11). Montrer que ( f,,),>0 converge vers 0
dans L (p).
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9.7 On considere p € |1, +o00[ et (fy,)n>0 une suite positive de Lg+ (1) qui converge
vers f dans th (p). Montrer que, pour tout r € [1, p], la suite (f}),>0 converge

vers f7 dans Lgﬁn(u).

9.8 Soient p € [1, 400 et (fy)n>0 une suite de £ (1) qui converge j-p.p. vers
une fonction f de de ¢ (). Montrer I’équivalence suivante :

lim | fo = fllp =0 & T fall, = 1]

9.9 On considere (X, .o/, ) un espace mesuré de masse finie, p €1, +oc], et
(fn)n>0 une suite bornée de £y (1) qui converge £-p.p. vers une fonction f.

a) Montrer que f € £ ().
b) Montrer que ( fy,)n>0 converge vers f dans .2 (u) pour tout r € [1, pl.
¢) Le résultat du b) subsiste-t-il si p(X)=+400?

9.10 On considere (X, o7, pt) un espace mesuré de masse finie, 7, s € [1,

1, 4+00], une
fonction g : R — R continue et ® ’application définie sur L (1) par ®( f)

== gof.
a) On suppose que g vérifie la condition suivante :

3e>0, Yy eR, [gy)| < c(ly[*+1). (x)

Montrer que ¢ est une application continue de L (1) dans L ().

b) On se place sur I’espace mesuré ([0, 1], %([0,1]), \) et on suppose que g ne
vérifie pas la condition (). Montrer qu’il existe une fonction f € 2% () telle que

gofELRN).
9.11 Montrer que la convergence A-p.p. n’est pas métrisable.

9.12 On considere p € [1, +00] et la famille des translations 7,, a € R, définies sur
L (R) par 7a(f) = f(-+a).

a) Montrer que pour tout a € R, 7, est une isométrie de Li (X).

b) Soit f € Lic(\), p<+oo. Montrer que

1
lim [[7a(f) = flp =0 et Tim_[l7a(f) = fllp = 25 | fllp

¢) Le résultat du b) s’étend-il au cas p=—+o0?

9.13 Soit p € [1,+oc]. Pour tout N € N, on définit I’application s, sur I’espace
CL(N) par s ((an)n>0) := (@ntN)n>0 (s, est appelé opérateur de décalage ou
shift).

a) Montrer que pour tout N € N, s, est une application linéaire continue sur £ (N),
et calculer sa norme.

b) Soit a:= (an)n>0 € £ (N), p € [1, +o0|. Calculer lij{jn IIsy (@)]|p- Que vaut cette

limite si p = +00?
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9.14 Soit f : X — R une fonction mesurable et non p-p.p. nulle; soient 6 définie
sur R par 6(p) := / |fIPdp et I:={peR% :0(p)<+oo}.

a) Montrer que I est l)](n intervalle et donner un exemple pour lequel [ est un sin-
gleton.

b) Montrer que In 6 est convexe sur [ et § continue sur /.

¢) Montrer que, pour tous p, g€ I et € [p, q], 0(r)"/" < max {6(p) )P 0(q 1/‘1}
9.15 On considere (X, <7, pu) un espace probabilisé (u(X)=1). Soit f : X — R
une fonction mesurable telle que 6(qp) := /X | f1% dp €]0, +o0[ pour un go € RY..

1
a) Montrer que, pour tout p €]0, +00], #(p)? > exp (/ In |f] d,u) (conventions :
X

exp(—00) := 0 et f(+00) > = || f]|.)-
b) Montrer que 111(131 0(p) = n({f#0}).
p—07F

1
¢) Montrer que lim —(IfP—=1)dp :/ In|fldp € [—o0, 400].
=0t Jx P X

d) En déduire que lim 60(p )% = exp (/Xln]ﬂd,u).

p—0~t
9.16 Inégalité de Hardy
Soit p €]1, +oo[. A toute fonction f € £¥(R.), on associe la fonction F' définie

sur R*. par F'(x / f(t)dt.

a) Justifier la définition de /' et montrer que toute fonction f € €k (R%_ , R4.) vérifie
le cas d’égalité dans

o0 P o0
Flayde < 2 / f(@) Fa)p~Vdw, (HY)
0 p—1Jy

et l’inégalité de Hardy :
p
£ < L5170 @

b) Montrer que I'inégalité de Hardy est vérifiée par toute fonction f € ZF(R).
¢) Montrer que toute fonction positive f € .25, (R4) vérifie 'inégalité (H™).

d) Montrer que la fonction g vérifie I’égalité dans I’inégalité de Hardy si et seule-
ment si g=0 A-p.p..

e) Montrer que la constante Ll est optimale dans I'inégalité de Hardy.
p—

f) Etudier les cas p = 1 et p = +oo.
g) Soit r €] — 0o, p — 1[. Montrer que toute fonction f € €k (R" ,R) vérifie

/O+OO F(x)P 2"dx = p—f—l /0+00 f(z) F(z)P~ 2" d.
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En déduire que toute fonction f : R; — R, Lebesgue-mesurable positive vérifie
I’inégalité

+oo

; F(x)P 2" dx < (p_f_1>p/0+00 f(x)P a" de.

9.17 Inégalité de Weyl
Soient f € Zs(R+) et, pour ¢ € R fixé, F' la fonction définie sur Ry par F(z) :=
€T

/0 F(t)di+c.

a) On suppose, dans cette question, que f € Z2(Ry) et (z — zF(x)) € Z3(Ry).
Montrer que F € .42(R.) et que

b) Montrer que toute fonction f € %3 (Ry.) vérifie l'inégalité de Weyl

+o0 2 400 +00
< F%(z) d:c> < 4/ 2? F?(x) dx fA(z)dx. (W)
0 0 0

¢) Sous les hypotheses du a), montrer que I’inégalité (W) est une égalité si et seule-
ment si il existe une constante b€ R telle que F(z)=ce b7’

1 1
9.18 Soient p, ¢ > 1 tels que — + —=1.
p g

a) Etablir I’inégalité de Young
P

Ya,b>0, abga—+—
p q

et montrer qu’il y a égalité si et seulement si a? =b9.

b) Soient h EZF%+ (1) et f, g 2 fonctions mesurables positives telles que [P, g?<h
1-p.p-. Montrer I’inégalité

[ tn = fodu> ( =g du>1/p < J =g du)l/q

et qu’il y a égalité si et seulement si f?=g? p-p.p..

9.19 a) Soit p€ [1, +oco[. Montrer que ¢&(N) est séparable.

b) Montrer que /g (N) n’est pas séparable.

9.20 Soient X un espace métrique localement compact séparable, 1+ une mesure de
Borel sur Z(X) (i.e. finie sur les compacts) et p €]1, +00|.

a) Montrer qu’il existe une base dénombrable d’ouverts de X d’adhérence com-
pacte % := {U, }»>0 stable par intersection finie.
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On note D le K-e.v. engendré par la famille de fonctions indicatrices {11, } n>0.

b) Montrer que, pour tout Q€ (X ) de mesure finie, 1 € D ot D désigne I’adhé-
rence de D dans L (p).

c) Montrer que, plus généralement, pour tout A€ (X ) de mesure finie, 14 € D.
d) En déduire que D est dense dans L (1) puis que L (u) est séparable.
9.21 Montrer que I’espace métrique (<7 /%, d) de I’exercice 6.18 est complet.

9.22 On se place sur (R, Z(R), \). Pour toute fonction f € .23 (\) ou simplement
borélienne positive et pour tout A > 0, on pose

1 x+h
M@= gp [ s
2h z—h
a) Montrer que, pour toute f € Za(N\), [|Mu(H)ll, < If]l;-
b) Soit f € Lk()\). Montrer que Mp,(f) tend vers f dans LL()) lorsque le pa-
rametre h tend vers 0.
9.23 Espace de Marcinkiewicz

Soit (X, &7, 1) un espace mesuré et soit p > 1. On dit qu’une fonction mesurable f
appartient [’espace de Marcinkiewicz ou £, (1) s’il existe une constante ¢ > 0
telle que, pour tout ¢ > 0, on ait p({|f] > t}) < c/tP.

a) Soient f € L. (1), A € o ett > 0. Soient les parties A,, := AN{|f| > tn}
et B, := A, \ An+1,n € N. Montrer les inégalités

J 1< e 1) (B = (A < t(A) + O

n>0 n>0
ou C' > 0 est une constante réelle.
b) En déduire que f € £, (u) si et seulement si il existe une constante ¢ > 0 telle

que, pour toute partie A € <7, on ait / |fldp < e (AP,
A

¢) On suppose que p(X) < +oo. Montrer que si f € £E,. (1) alors pour tout
g€ [Lpl. feZp).

d) Donner un exemple d’espace mesuré pour lequel ZE, . (1) # LP(1).

9.24 Inégalité de Minkowski inverse

Soit (X, o7, i) un espace mesuré tel que £4(X) > 0. Dans cet exercice, la notation
f~1 désigne la fonction inverse 1/ f de f. Soitp > let f, g € $£+ (14). On suppose
que f et g sont u-p.p. non nulles.

a) Montrer a 1’aide de la question b) que, pour tous a, b > 0 tels que /a + Vb = 1,

ICF+ )7 < ICF+ )~ 2= (all £~ + bllg™ ) -
b) Vérifier que si [|(f + g) ||, = +oo, alors || f7H], = lg7, = +oo.
¢) En déduire ’inégalité de Minkowski inverse :
1 n 1 - 1 .
L= g, G+ 9) Ml




Chapitre 10

Théorémes de représentation
et applications

10.1 & Théoreme de représentation de Riesz

La présentation de la théorie de I'intégrale de Lebesgue et de la construction
de la mesure de Lebesgue développée jusqu’a maintenant n’est pas la seule pos-
sible. Cette présentation — dite par la mesure abstraite — si elle illustre paradoxa-
lement le caractere concret de la notion de mesure semble créer une sorte de fossé
entre intégrale de Lebesgue et intégrale de Riemann, la premiere, plus puissante, se
construisant sans référence a la seconde. Cette situation est relativement singuliere
en Mathématiques ou, le plus souvent, I’amélioration d’un outil ou d’une théorie
se fait par approfondissement de résultats ou de notions existantes, plutdt que par
bifurcation. En fait, il existe une présentation — dite approche fonctionnelle — per-
mettant de faire apparaitre I’intégrale de Lebesgue comme une simple extension de
I’intégrale de Riemann des fonctions continues a support compact a de plus vastes
classes de fonctions. Cette approche est essentiellement constituée par le théoréme
de représentation de Riesz.

10.1.1 Cas des formes linéaires positives

Théoréme 10.1 (Théoréme de représentation de Riesz). Soient (X, d) un espace
métrique localement compact séparable et ® une forme linéaire positive sur [’es-
pace vectoriel i (X, R) des fonctions continues a support compact définies sur X.
Alors, il existe une unique mesure p. définie sur la tribu borélienne B(X ) telle que

Ve @(XR), o) = [ fan (10.1)
X
En outre, |1 est une mesure de Borel caractérisée par

vQe O0(X), p(Q)=sup{®(f), f€ C(X,[0,1])et f <1la}, (10.2)
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ou
VK compact, p(K)=inf{®(f), f€ ek(X,R)et1lg < f}. (10.3)

Remarques : e En fait, ’hypotheése de locale compacité de X est suffisante pour
obtenir [’existence d’une mesure p vérifiant (10.1), (10.2) et (10.3). En revanche,
I’unicité de la mesure nécessite impérieusement 1I’hypothese de séparabilité comme
le montre le contre-exemple ci-apres.

e On a vu (¢f. compléments topologiques, paragraphe 6.6.3) que dans un espace
métrique localement compact, il y a équivalence entre séparabilité et o-compacité.

Exemple de non-unicité sur un espace métrique non séparable : Soit X := R
muni de la distance ultramétrique d,, : d,(z,y) == 0six = yetd(z,y) =1
siz # y. (R,d,) est localement compact car les singletons sont a la fois ouverts
et compacts. En revanche, (R, d,) n’est pas séparable car toute partie de (R, d,,)
est fermée. Seul R lui-méme est donc dense dans (R, d,,) et donc aucune partie
dénombrable ne peut I’étre. D’autre part %,,(R) = O((R,dy)) = Z(R). Les
compacts de (R, d,) sont les parties finies donc €k ((R, dy),R) est constitué par
les fonctions nulles sauf en un nombre fini de points.
Soient p et v les mesures définies par

VAe Z(R), w(A):=card(ANN) et v(A):=pu(A)+m(A\N),

ol m est la mesure définie sur (R, Z(R)) par m(A) := 0 si A est dénombrable
et m(A) := + oo sinon. Les mesures p et v coincident notamment sur les parties
finies de R, i.e. les compacts de (R, d,), mais u(R\ N) =0 # v(R\ N) = + o0
donc u # v et v ne vérifie pas (10.2). Cependant,

Ve G (X,R), (f) :z/Rfduz/Rde= S fn).

neN

La démonstration du Théoreme de représentation de Riesz repose en partie sur
la notion de mesure extérieure développée lors de 1’étape 3 du théoreme de Ca-
rathéodory (cf. section 6.5). Le résultat utile est réénoncé dans la proposition 10.1
ci-apres. Un autre ingrédient important est un lemme d’Urysohn, lemme classique
de séparation des fermés par des fonctions continues. Ce lemme s’appuie lui-méme
sur les propriétés des fonctions distance a un ensemble introduites a la section 3.6.

Proposition 10.1. Soient X un ensemble non vide et * une mesure extérieure
sur X (Y. Alors I’ensemble des parties A de X telles que

VBe P(X), p*(ANB)+u* (AN B) < u*(B). (10.4)

constitue une tribu sur laquelle la restriction de |* définit une mesure (I’'inégalité
ci-dessus se muant en égalité sur cette tribu).

1. p* est une application de 2?(X) dans R croissante et o-sous-additive, telle que p* (@) = 0.
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Lemme 10.1 (Urysohn). Soit (X, d) un espace métrique localement compact.

(a) Soient F et F' deux fermés disjoints de X. Alors il existe U et V deux ouverts
disjoints de X tels que F C U et F' C V. En outre, si F' ou F' est compact, on
peut choisir U et V de facon que U et V soient disjoints.

(b) Soient K un compact de X et 2 un ouvert de X contenant K. Alors il existe
v € Cx(X,[0,1]) telle que 1x < ¢ < 1g, o ¢ < 1q signifie ¢ < 1q et
supp ¢ C €

(¢) Soient K un compact de X et (Q,)1<k<yp une famille d’ouverts de X telle que
K C Up_y Q. 1l existe une famille (¢r)1<k<n de 6k (X, [0,1]) telle que

Vke{l,...,n}, ¢r<1lq,, et lKSngkSl.
k=1

DEMONSTRATION : (a) Les ouverts U := {z € X : d(x,F’) > d(x,F)} et
Vi:={xe X :d(x,F)>d(x, F")} conviennent.

Si, e.g., F' est compact, la fonction continue x — d(z, F”) atteint son minimum
€0, nécessairement strictement positif car F' N F/ = . On considere alors les
ouverts U:= {ze€ X : d($,F’)>%°} etV:={re X: d(x,F’)<%0}.

(b) Comme X est localement compact, tout point x € X admet un voisinage com-
pact K. La partie K étant compacte, il existe n points x1, ..., x, dans K tels que
K C Ulgignf(zi- Soient U et V' les ouverts associés au compact K et au fermé

€Q. 1l est clair que O := U N (Ulgignkm) vérifie O € 0(X), O est compact

comme fermé dans le compact Uy <;<,, K, et contenu dans U donc dans 2. Vu que

K C O,d(z,K) + d(z,°0O) > 0 pour tout z € X et I’on peut donc poser
d(x,°0)

d(z, K) + d(x,cO)’

Vee X, ¢(z):= (10.5)

La fonction ¢ vérifie o < 1q carsuppy = O C Q, et o = 1 sur K.

(c) Soient x € K etke {1...,n} tels que x € . X étant localement compact,
il existe un voisinage ouvert U, d’adhérence compacte vérifiant U, C Q. K
étant compact, il existe m points x1, ..., x,, de K tels que K C Uf;l U,,. Pour
chaque k € {1,...,n}, on définit K}, comme la réunion des U, , inclus dans Q.
D’apres le point (a), il existe pour tout k € {1,...,n} un ouvert Oy d’adhérence
compacte tel que K C Op C Of C Q. Comme K C |J;_; Kr € Uj—; Ok,
il vient d(z, K) + >, d(z,°0;) > 0. On peut donc définir les fonctions ¢y, €
%c(X, [0, 1]) par

d(z,°Oy)
d(z,K) + 22:1 d(z,cOy) ’

i () == 1<k<n.

Les ¢y, vérifient clairement ¢}, < 1, car supp O C Q, et >op_q ok = 1sur
K. ¢
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DEMONSTRATION DU THEOREME DE RIESZ : Pour tout 2 € ¢/(X), on définit
w1*(£2) par la relation suivante — 1égerement différente de (10.2) —

e () = sup {@(f), f € (X, [0,1]) et f < Lo}, (10.6)
puis,
VEe (X)), p"(E)=inf {u"(Q), ECQ, Qe 0(X)}. (10.7)

étape 1 p* est une mesure extérieure :

Il est immédiat par construction que p*(@) = 0 et que p* est croissante pour
I’inclusion. Reste a établir la o-sous-additivité de p*. Commencons par les familles
finies d’ouverts.

V() 1<k<n € O(X)",  u* (U Qk> <> (). (10.8)
k=1 k=1

En fait, il suffit de montrer (10.8) pour n = 2, le cas général découlant d’une
récurrence immédiate sur n. Soit f € ¢x(X,[0,1]) telle que f < 1o ,uq,, on
note K := supp f C € U Qs. On considere, comme dans le lemme 10.1(c), les
fonctions ¢y, € 6 (X, [0, 1]) telles que i, < 1o, k=1, 2,etlg < @1+ < 1.

Soit f € €k (X, [0,1]) vérifiant f < 1g,u0,- De f = flx < ¢o1f + p2f, on
déduit immédiatement

O(f) =@(p1f) + Plpaf) < " () + 1" (Q2).

L’inégalité (10.8) en découle aussitot.

Soit a présent une suite (E),),>1 de parties quelconques de X ; si p*(E)) =
+ oo pour un certain k& > 1, alors

p (U En) <> w(Bn) = + 0.

n>1 n>1

Soite > 0. Pour tout n > 1, il existe un ouvert de X tel que E,, C Q,, et u*(2,,) <
p(Ey,) +¢/2™ On pose Q = |J,~ 2 € O(X); soit f € Cx(X,[0,1]) telle
que f < 1. supp f étant compact, il existe n. > 1 tel que K C Upe Q. d’on,
d’apres (10.8),

Ne

O(f) < ' (L] m) <) < B + o) < S (B e
k=1 1 k=1

k= n>1

D’ou, finalement,

(| Ea) < 07(@) < 3 it (Ba) +e.

n>1 n>1
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pour tout £ > 0. Ceci montre que p* est bien une mesure extérieure.

étape 2 La restriction p de p* a B(X) est une mesure :

Au vu de la proposition 10.1, le probléme se ramene a montrer que I’inégalité
(10.4) est vérifiée pour tout A € 0(X).

- Si u(B) =400, I'inégalité (10.4) est évidente.

-Si Be 0(X) et u(B) < +o0. Pour tout € > 0, il existe f € ¢x (X, [0, 1])
telle que f < 1anp et u*(AN B) < ®(f) + . Or supp f et “A sont deux fermés
disjoints, donc d’aprés le lemme 10.1 (a), il existe deux ouverts U et V' disjoints
tels que supp f C U et “A C V. Soit g € 6x (X, [0,1]) telle que g < lynp et
w* (VN B) <®(g) + e, alors

p(ANB) +p* (‘AN B) < p* (AN B) +p*(V N B) < ®(f) + B(g) + 2¢

)
O(f +g)+2e.

Or, f+g=<1pcar f+g<lanp+ lvnp=Lluauv)np<1lpet
supp (f + g) C supp(f) Usupp(g) C (ANB)U(VNB)C B.
Par conséquent, ®(f + g) < u*(B) et
p(ANB)+ p* (‘AN B) < u*(B) + 2¢,

pour tout € > 0, ce qui donne I’inégalité (10.4).

-Si Be Z(X) avec pu*(B) < +0o0, il existe, € > 0 étant fixé, Q€ O(X) tel
que B C Qet p*(2) < p*(B) + €. Il vient, d’apres le cas précédent,

(AN B) + 1" (AN B) < ' (ANQ) + p*(ANQ) < p*(Q) < u*(B) + <,

pour tout e > 0. D’ou I’inégalité (10.4), cette fois en toute généralité. En conclusion
= (1" )| (x) est une mesure sur (X, #(X)) vérifiant notamment (10.6).

étape 3 La mesure L est finie sur les compacts :

Soit K un compact. Comme X est localement compact, il existe 2 € 0/(X)
d’adhérence compacte telle que K C ). D’apres le lemme 10.1 (b), il existe ¢ €
i (X, R) telle que 1x < ¢ < 1q. Par suite, si f€ G5 (X,[0,1]) et f < 1., alors
[ <1z <1k < . La définition 10.6 de p (et p*) sur &(X) et la croissance de
la forme linéaire ® entrainent

o

p(K) =sup {®(f), f€ b (X,[0,1]), f <1z} < P(p) < +o0.
Ceci est en particulier vérifié par le compact €, or Q C ﬁ donc

H(K) < () < (@) < + oo,
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étape 4 Pour tout Q€ O(X) d’adhérence Q) compacte, il existe une suite croissante
(pn)n>1 de 6 (X, [0, 1]) telle que 0 < pp, T 1 et limTq)(cpn) > u(Q):
n

On pose, pourtoutn>1, K, := {x € X : d(z,Q) > 1/n}. K, estinclus dans
€2, on considere donc la fonction ¢,, de 6x (X, [0, 1]) associée au couple (K, §2) et
fournie par le lemme 10.1(b). Comme 2 = UIL>1 K, on a clairement supp ¢,, C
Q pour toutn>1et0 < ¢, T 1o quand n tend vers +oo.

I reste a présent a étudier la suite (®(p,,))n>1. Q étant compact, 11(£2) est fini;
pour tout € > 0, il existe donc f € 6k (X, [0,1]) telle que f < 1g et u(2) <
O(f)+e.

Définissons 6,, := min { f, o, },n > 1. Les fonctions 6,, sont dans 65 (X, [0, 1])
et, pour tout z € K, pp(z) = 1let 0,(x) = f(x),d o

supp(f—@n)CQﬁQ\Kn:Q\f(nCQ\Kn,l.

car K,_1 C K,. Les fonctions 6, vérifient donc J =0 < 1ok, ., et, par
conséquent,

B(f) = B(6n) + D(f — ) < Do) + p(Q\ Ko).
Or limpu(Q \ K,—1) = 0car K,, C Kyq1, U, Kn = Q et () < + o00. Donc
pour tout € > 0,
p(Q) — e < B(f) < lim' B(pn),
ce qui donne le résultat recherché.

étape 5 Démonstration de la propriété de représentation (10.1) :
Commengons par montrer que O(f) < / fdu pour f € 6 (X,R). Quitte a
X

remplacer f par , on peut supposer que f(X) C [0,1[. Soit n > 1; on

f
T+ fllsup

pose, pour tout k€{0,...,n — 1},
k+1
n

k
Ek:—{§f< }OK ou K :=suppf.
n

Les Ej, € #(X) car f est continue, donc borélienne, et Ej, est de mesure finie car
Ej, C K. Tlexiste donc Q€ 0(X)tel que By, C Qp et () < pu(Ep)+p(K) /2.

De plus, comme
n—1 n—1
K={]JE.c ™,
k=0 k=0

le lemme 10.1(c) fournit des fonctions ¢y € 6x (X, [0, 1]), 0 <k <n—1, telles que

n—1
pr < 1lo, etlg < Z . En conséquence, f = Z i fet
k=0 k=0

E+1
—

Vke {0,...,n—1}, ¢rf <1lg, et orf <ok
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— n—1 n—1

- k1 kol
D’ot Z (orf) <> D(en) =< ) () ——,
—0 k=0 k=0
—1
k+1 K
S M(@:)i*’M-
n n

D’autre part, les Fy étant deux a deux disjoints, il vient
n—1 n—1
k: k+1  plK
[ran=3"] P S uE) =5 )
X k=0 " Fk k=0 k=0

On en déduit (f) S/ fdu+2pu(K)/n pourn > 1,donc ®(f / fdu.

Soit a présent f € 6 (X, R) de signe quelconque. Il existe 2 € /(X)) tel que
compact et /{ := supp f C 2. Considérons la suite (,,),>1 de I’étape 4 attachée
aQ.Pourn > 1,1 < ¢, car K C K,, donc il existe une constante ¢ > 0 telle
que f + cpp > 0 et, d’apres ce qui précede

‘P(f)+6‘1>(90n)§/xfdu+6/xs@ndu-

Or, d’apres 1’étape 4 et le théoreme de Beppo Levi,
limTCI)((pn) > limT/ o dp = (),
n n X

donc @(f) < / f dpui. En changeant f en — f on obtient I’égalité (10.1).
X

étape 6 La propriété (10.1) entraine la caractérisation (10.3); unicité de 1 :

Soit v une mesure définie sur #(X ) vérifiant (10.1). Soient K un compact et
f € 6 (X,R) vérifiant 15 < f < 1. Alors on a

oK)= [ dxiv< [ rav=a(),

donc v(K) < inf {®(f) : 1x < f < 1}. En particulier, v est une mesure de
Borel (i.e. finie sur les compacts).

Passons a I’inégalité contraire. Soient 2 € ¢'(X) d’adhérence compacte et
K CQ.0npose Qy, :={z€ X :d(z,K) < 1/n} NQ n>1.Les Q, décroissent
pour I’inclusion, leur intersection est égalée a K et v(Q,,) < v(Q) < + oo, d’ou
liTanil/(Qn \ K') = 0. Considérons les fonctions ¢,, du lemme 10.1(b) associées aux

couples (€2, K). Pour tout n > 1, supp ¢, C 2, C Q1 ety <, <1g .On
adonc ®(p,) <v(Q,) <v(K)+v(Q,\ K),dou, pourn > 1,

V(K) = @(pn) — v\ K),
> inf {®(p) ¢ € €k (X,[0,1]) et 1x < f} —v(Q \ K).
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En conséquence la mesure v vérifie nécessairement la relation (10.3). C’est en
particulier le cas de la mesure f:= ()| (x) construite dans les étapes antérieures.
D’autre part, si v désigne maintenant une autre mesure ayant la propriété de repré-
sentation (10.1), p et v coincident nécessairement sur les compacts par (10.3) donc
elles sont égales d’apres le théoreme 6.12(b) puisque X est localement compact
séparable.

étape 7 équivalence des définitions (10.2) et (10.6) :
(

11 est clair que pour tout Q€ 0/(X),

:U’(Q) ‘= sup {(I)(f)’fe %K(Xv [O’ 1])f = 1Q}
<sup {®(f), f€ €k (X,[0,1]), f<1lo}.

Réciproquement, si f € ¢x (X, [0,1]) et f < 1q alors, d’apres 1’étape 53,

‘I’(f)Z/deu</Xlndu=u(Q),

donc, en passant au sup, sup {®(f), f€ Gk (X,[0,1]) et f<1la} < u(2),dou
Pégalité. ¢

Comme indiqué dans le chapeau de ce chapitre, on pourrait, a partir de ce
théoreme — présenté de fagon légerement différente — reconstruire I’ensemble de
la théorie de la mesure et de I’'intégration au sens de Lebesgue sur un espace lo-
calement compact et séparable. Nous nous contenterons de montrer qu’il fournit
une construction alternative de la mesure de Lebesgue a partir de 1’intégrale de
Riemann.

Application a une (nouvelle) construction de la mesure de Lebesgue.
On considere sur ¢x (R, R), I"application ® définie par

+oo

(f) = f(z) d

+o0o
ou / ... dx désigne I'intégrale (faussement généralisée) au sens de Riemann
— 0o

telle qu’elle est esquissée dans le chapitre 1. L’application ® est clairement une
application linéaire positive; il existe donc une unique mesure de Borel p sur
(R, A(R)) vérifiant les conditions (10.1), (10.2) et (10.3).

Il est immédiat par un changement de variable élémentaire que, pour toute fonc-
tion f € ik (R,R) et pour tout a € R, (f) = ®(f o 7). Lunicité de la mesure
dans le théoréme de représentation entraine I’invariance de p par translation.

D’autre part, on considere, pour tout n > 2, les fonctions continues a support
compact

fn(z) == [min (nz,1,n(1 — a:))]+ ot u" := max(u,0).
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Celles-ci vérifient 0 < f,, <1jo 1 et ®(f,) = 1 —1/n — 1 quand n tend vers +o0.
On déduit immédiatement de la caractérisation (10.2) que (|0, 1[) >

De méme, on montre que x([0,1]) < 1 en s’appuyant sur la caractérisation
(10.3) et sur les fonctions

gn(x) := [min (n(z + 1/n),1,n(1 —z + 1/71))]+ , n> 2,

qui majorent 1o ;.

En conséquence, p([0,1]) = 1. C’est donc bien la mesure de Lebesgue sur R
(cf- théoreme 6.1) qui est ainsi construite par le théoréme de représentation de
Riesz : en d’autres termes 1= \.

10.1.2 Mesures de Radon

Définition 10.1. Soit X un espace métrique localement compact. On appelle me-
sure de Radon sur X toute forme linéaire continue sur (¢ (X,K), || . ||sup)-

Cette définition n’est pas la plus générale possible puisqu’elle induit la fini-
tude d’une telle mesure des que X est métrique localement compact séparable (cf.
théoréme 10.2). Nous reviendrons brievement sur ce point en fin de section.

Le théoréme de représentation de Riesz s’étend aux mesures de Radon réelles
ou complexes de la maniere suivante :

Théoreme 10.2. (a) Soient X un espace métrique localement compact et ® une
forme linéaire continue sur 6 (X, R). Alors, il existe deux mesures finies ™ et p~
telles que

Vf € %(X,R), /fd,u, /fdu. (10.9)

(b) Soit ® une forme linéaire continue sur 6 (X, C). Alors, il existe quatre mesures
finies yiF et uf telles que

VreG(x.0), ()= [ st~ [ faur i [ paur—i [ rau
(10.10)

Remarque : Dans le cas réel, on peut utiliser la notation

O(f) = /X fdu avec la “mesure signée” 11 = ut — .
Dans le cas complexe,
O(f) = /X fdu avecla “mesure complexe” 1 := i, + i ;.
DEMONSTRATION DU THEOREME 10.2 : (b) Supposons acquis le cas réel (a). Soit

® une forme linéaire continue sur 6x (X, C). Les applications ®,. et ®; définies sur
¢ (X,R) par ©,.(f) := R(P(f)) et D;(f) := I(P(f)) sont clairement des formes
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linéaires sur ¢ (X, R). Alors d’apres le cas (a), il existe quatre mesures de Borel
i et ,uli telles que, pour toute fonction g € 6x (X, R),

<I>r(g)—/ngui—/ngur et <I>i(9)—/ngMT—/ngu[-

Soit f :=u+iv € €k (X, C). Par linéarité de ¢, on a

B(f) = B(u) +iD(v) = @, (u) +i Di(u) + (P, (0) +i Di(v))
=@, (u) + i Dy (v) + i(Pi(u) + i Pi(v))

:/(uﬂv)dﬂj—/(uﬂv)dur+z’/(u+z’v)duj—z‘/(u+z‘v)du;,
X X X X

c’est-a-dire la décomposition (10.10).

(a) Le cas réel est une conséquence du théoreme 10.1 de représentation des formes
linéaires positives et du théoreme 10.3 de décomposition des formes linéaires réelles
continues sur un e.v.n. établi ci-dessous. Plus précisément, on applique ce théoreme
a ® et (i (X,R), || |lsup) pour produire deux formes linéaires positives &+ défi-
nies par (10.12) et vérifiant (10.11). On obtient ainsi, via la remarque suivant le
théoreme de représentation de Riesz (théoréme 10.1), deux mesures de Borel p*
représentant respectivement ®* et vérifiant la propriété de régularité (10.2). En
appliquant celle-ci & ’ouvert X, il vient alors d’apres la définition de ®+

pH(X)
95 < +o0. O
Théoréeme 10.3. Soit Y un ensemble non vide. On considére un R-sous-espace

vectoriel E de F (Y, R), supposé muni d’une norme || - ||. On note E le cone des
fonctions positives appartenant a E. On suppose que E vérifie

(1) E est stable par valeur absolue :

VieE, [fle By et |[[fII=111;

(7i) la norme || - || est croissante :

VigeEy, f<g= |fll<lgll

Soit ® une forme linéaire (réelle) continue sur E. Alors ® se décompose sous
la forme
d=0" — O (10.11)

o ®T et ®~ sont des formes linéaires continues, positives, définies pour toute
fonction positive f de E, par
{ OF(f) = sup {@(p) : p € By et p < f}

(10.12)
O (f):=—inf{®(p): € ELetp< f}.
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Les formes linéaires ® et ®~ sont appelées respectivement partie positive et partie
négative de ®, et sont caractérisées par

{ ®F(f) :==min {®1(f) : ®1 er ®1— P linéaires positives sur E} (10.13)

() := max {®y(f) : P2 er o+ linéaires positives sur E}.

Remarque : Les espaces normés (6 (X, R), [| - [lwp)» (LR(1), || - [Ip). pE€[1, +00],
vérifient les hypotheses du théoreme 10.3.

DEMONSTRATION DU THEOREME 10.3 :
Soit & I’application définie sur F, := {f€ E : f >0} par (10.12).
étape 1 @ est positive et finie sur B :
Soit f € Fy.Comme 0€ E, ®T(f) > 0. Soit maintenant ¢ € F telle que

0 < ¢ < f. Par continuité de la fonction ® et par croissance de la norme, on a
B(p) < @] o]l < 2]l |I71l. 4"0b en passant au sup

0<®F(f) < @[] < +oc. (10.14)

étape 2 O est additive sur E :
Soient f1, fo € Ey et ¢ € E4 telle que ¢ < fi+ f2. On décompose ¢ en

¢ = min(f1, ¢)+max(p—f1,0) ob min(fi,p) < fi et max(p—f1,0) < fo.

Ormin(f1, 0)=5(fi+¢—|fi—¢l) € B4 etmax(p— f1,0)=¢ —min(f1,¢) €
E. .1l vient alors par définition de T, ®(p) < ®T(f1) + 1 (f2), d’ou, finale-

ment,

H(fi+f2)= sup  B(p) <OT(f1) + DT (f2).
0<p<fi+f2

Passons a I’inégalité contraire. Soit € > 0. D’apres la définition de ®, il existe
01,2 € E4 telles que 0 < ¢; < fi et DT (f;) < P(¢;) + € pour i=1,2. Comme
0 < o142 < fi+ fa, il vient

Ve >0, O7(fitfa) > Plpi+pa) = 1) +P(p2) > 7 (f1)+PT(f2) -

et partant, @ (f1+f2) > ®*(f1) + *(f2).
étape 3 Définition et additivité de ®+ sur E :
Soit f € E. 1l est immédiat que f* := (| f| £ f) = max(+f,0) € E;. On
pose donc @ (f) := dF(fT) — dF(f7).
Soient f, g€ E.On décompose classiquement f + g en
frog=(+9) = (f+9)” = [T=f+g" ~9g,
d’ou (f+9)"+fT+g = (F+9 +f +g"

L’ additivité de ®* sur F, entraine alors

ST ((f+9) )+ () + T (g7 ) =2 ((f+9) )+ 2T (fT)+ 27 (f7),
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soit, finalement, en repartant dans I’autre sens, @ (f+g) = &+ (f) + T (g).

étape 4 ®T est continue sur E :

Soit f € E. La positivité de @ entraine ®* (| f|£ f) > 0, d’ou, par additivité
de &, DF(|f]) > + O (f) ice. [0F(f)] < O (| f]). D'autre part, (—f)* = fF
donc ®F(—f) = —®T(f). Soient a présent fi, fo € E. L additivité¢ de T et la
majoration (10.14) de I’étape 1 impliquent alors

1DF(f1) — 2T (f2)| = [@F(fi—fo)l S @F(|fi—fo]) S @I Sf1—fol |l
= || @ lf1— f2ll,

d’ ot la continuité de . étape 5 O est une forme linéaire sur E :

Soit f € E. Ladditivité de ®* et I'égalité ®+(—f) = — &+ (f) entrainent
Ot (nf) = nd*(f) pour tout n € Z. Soit r := EeQavecp, g€ Zetqg#0.11
vient

H(qrf) =q@"(rf) =2 (pf) =p 2T (f),

d’ot @t (rf) = r®*(f). La continuité de ®* sur F et la densité de Q dans R en-
trainent alors que pour tout A € R, &+ (\f) = A®™(f). Compte tenu de I’additivité
de ’étape 4, T est donc une forme linéaire sur E.

étape 6 Vérification des relations (10.12) et (10.13) :
La forme linéaire ®* étant définie par (10.12), on définit &~ par (10.11) i.e.,

VIeE, @ (f)=2%(f)—2(f)
=sup{®(W—f), ¥ € By, ¥ < f}
=sup{—P(¢), p € By, o < f} (poser p 1= f—1)
= —inf {®(p), p € B4, ¢ < f},

d’ou (10.12) pour @ .

Soient ®; et P, deux formes linéaires positives sur E telles que & = &1 — Ps.
Soient f € F et € FE telles que 0 < ¢ < f. Par positivité de ®; et @9, on
a ®1(f) > ®1(p) = ®(p) + P2(p) > (), ol en passant au sup, 1(f) >
*(f). On en déduit que D2(f) = (f) — D1(f) < B(f) — DH(f) = (),
d’ou (10.13). ¢

Remarque : L'énoncé donné ici n’est pas le plus général possible lorsque X est
o-compact. On peut munir 1’espace % (X, R) de la topologie de la convergence
uniforme dans un compact fixe i.e. f, — f s’il existe un compact K de X tel
que {f, # 0} C K pour toutn > let f, x — fix uniformément. Il ne s’agit
plus d’une topologie d’e.v.n. et le théoreme (10.3) ne s’applique plus. Néanmoins,
il s’applique toujours sur chacun des s.e.v. ¢k, (X,R) (la trace de la topologie
ci-dessus est celle de la convergence uniforme) ou K, est une suite de compacts
“épuisant” X (et vérifiant K, C Io(n+1). Si 'on appelle maintenant mesure de
Radon toute forme linéaire ¢ sur 6% (X, R) continue pour la topologie ci-dessus, on
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peut donc la représenter localement sur chaque ¢, (X,R), n > 1, puis “recoller”
les représentations ainsi obtenues en s’appuyant sur I’unicité de la représentation.
On obtient ainsi une représentation de la forme (10.9) pour ® par deux mesures de
Borel p*. 1 s’agit de la forme la plus générale du théoréme de représentation de
Riesz. Le cas complexe s’étend de méme.

10.2 Théoreme de Radon-Nikodym

On a vu au chapitre 8 que si f : (X, /) — R, est une fonction mesurable,
alors I’application v : .7 — R, définie par

VAe o, v(A) ::/Afd,u

est une mesure, finie si et seulement si f € ZR1+ (). f est appelée la densité ou
dv
dérivée de Radon-Nikodym de v par rapport a ;.. On la note souvent f:= s
1

Il est immédiat que v ainsi définie vérifie la propriété suivante, dite d’absolue

continuité et notée v < [ :
VAe o/, un(A)=0 = v(A)=0. (10.15)

La mesure v est souvent notée f.pu.

Le théoréme de Radon-Nikodym a pour objet d’établir une réciproque a cette
construction : si v < u, v a-t-elle nécessairement une densité par rapport a 14 ? En
toute généralité la réponse est négative comme I’illustre le contre-exemple suivant.

Contre-exemple : On considére ’espace mesurable ([0, 1], 2([0, 1])) respective-
ment muni de la mesure de comptage m et de la mesure de Lebesgue . Il est
immédiat que, si m(A)=0, A=0 et partant A(A) =0. En conséquence A < m.

Supposons maintenant 1’existence d’une fonction borélienne f : R — R4
vérifiant

VA € BR), )\(A):/fdm.
A

Comme A([0,1]) =1, f € $F21+ (m). Par suite (cf: exemple 2. a la suite du corol-
laire 7.2), I’ensemble D :={ f >0} est au plus infini dénombrable. “D est donc bien
un borélien de mesure de Lebesgue \(°D)=1; or il est clair que 1cp =0 f.dm-p.p.
ce qui entraine que / fdm=0.

eD
Cet exemple montre qu’il nous faut imposer des restrictions sur la mesure de

référence p. Avant de démontrer le théoreme dans les deux sections qui suivent,
nous allons établir une caractérisation équivalente de 1’absolue continuité.

Proposition 10.2. Soient et v deux mesures sur I’espace mesurable (X, o7 ).
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(a) Si et v vérifient
Ve>0,3n>0 telque VA€ o/, u(A)<n = v(A) <e, (10.16)

alors v < pu.

(b) Réciproquement, si v est une mesure finie et si v < pu, alors la condition (10.16)
est vérifiée.

DEMONSTRATION : (a) Si la condition (10.16) est réalisée, il est immédiat que
v < p. En effet, si p(A) =0, u(A) < n. donc v(A) < ¢ pour tout € > 0 i.e.
v(A)=0.

(b) Pour la réciproque on raisonne par contraposée. Si la condition (10.16) n’est
pas vérifiée, il existe €9 > 0 tel que, pour tout n > 1, il existe A,, € & vérifiant
w(Ay) < # et v(A;,) >eg. On pose alors A := ﬂi U Ap. Pour tout n > 1, on

n>1 k>n
1 1
a u( U Ak> < Z =k Or Z e tend vers 0 quand n — o0, donc pu(A) =0
k>n k>n k>n
car pu( U A,) < +o0. D’autre part, v/( U Ay) > v(Ay) >e0. La mesure v étant
n>0 k>n

finie, ¥(A) > €, ce qui entraine que v € p. O

10.2.1 Le cas d’une mesure de référence 1 finie

Théoreme 10.4 (Radon-Nikodym). Soient i et v deux mesures finies sur un espace
mesurable (X, 7). Il y a équivalence entre

() VAed u(A)=0 = v(A)=0,
(i) 3f€$$—+(/,6) telle que VAe o/, v(A) = / fdu.
A

En outre, la fonction f est unique (dans Lh (w) i.e. a une égalité yi-p.p. pres).

DEMONSTRATION : Seul le sens direct nécessite une démonstration.
étape lv < p:

On suppose dans cette étape que v <y (au sens v(A) < u(A) pour tout A€ o
ou encore / gdv < [ gdu pour toute fonction mesurable positive g). Il est alors

X

X
clair que p et v vérifient la condition (7) ! On considére 1’application linéaire

®: L3(n) — R

f— /dev.

L application @ est clairement continue puisque, pour toute fonction g dans L%( 1),

‘/ngu :‘/Xgldy < (/ngdl/>é1/(X) .

N




10.2. Théoréeme de Radon-Nikodym 213

D’apres le théoreme 9.8 de représentation du dual de LQR( 1), il existe une fonction
feLa(p) telle que

Vge Li(p), /ng—/gfdu-
X X

Comme la mesure 4 est finie, 1 € L%(u), donc f € L%{(,u). On peut évidemment
assimiler f a I'un de ses représentants dans XF:QL(,u). Plus généralement, comme
L) C L3 (), il est immédiat que

VAed, V(A):/Afd,u.

Montrons enfin que f est u-p.p. a valeurs dans I'intervalle [0, 1]. Supposons
que p({f < 0}) > 0; il existe alors un entier ng > 1 tel que p({f < —nio}) >0

puisque { f <0} = UT{f < -1} Don

n>1

o<v({f< N = [ | Faus-u(ir<-) <o

{f<—75}

La contradiction entraine donc que p({f < 0}) = 0 et, quitte a remplacer f
par f1l;s>0y, on peut supposer f positive. De la méme fagon on peut montrer que

u({f>131)=0 (sinon v({f > 14+ £ 1) > (14 1) u({f > 1+ L }) pour un ng > 1,
etc).

étape 2 Cas général :

D’apres I'étape 1 appliquée aux deux mesures finies p et u+ v, il existe une
fonction f € £ (u+v) telle que

VAe o, v(A) :/ fd(p+v) et0 < f <1 p-p.p.
A
D’ou I’on déduit immédiatement I’égalité entre mesures finies
(1—f)w=fp.

Onpose N :={f =1};u(N) = / fdu = /(1 — f)dv = 0 donc, d’apres ’hy-
N N
pothese (i), v(IN) = 0. Partant, si A€ o/

1a
y(A)zu(AﬂN)—l—lNl_f(l—f)du
——

=0
>0

= [ in= [yt
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g N A |
et comme [Nl_fd,u—u(X)<+oo, 1CN1_f€$R+(.U)'

étape 3 Unicité :
Si f et f vérifient (i) alors

1) = dy = fd
(> F}) /{M}f ” /{M}f "

done [ (f = Pydp = 0. parsuite u({f > 7)) = 0. etona u({f # ) = 0
{r>r}

par symétrie. ¢

Remarque : On a en fait établi dans la démonstration ci-dessus le résultat plus
général suivant :

Si et v sont deux mesures finies sur 1’espace mesurable (X, 7 ), alors il existe
fe ,th (1) et N € o7, u-négligeable, tels que

VAed/, v(A) :y(AﬂN)—I-/fdu. (10.17)
A

En outre, si f et N vérifient (10.17) alors
f=fupp. etly =1g p-pp. (i-e. (NAN) = 0).

10.2.2 Extension au cadre o-fini

L’énoncé du théoreme 10.4 s’étend au cas ou les deux mesures p et v sont o-
finies, I’intégrabilité de la dérivée de Radon-Nikodym % ne pouvant évidemment
étre conservée dans ce cadre étendu. Plus précisément, il vient

Théoréeme 10.5 (Radon-Nikodym). Soient i et v deux mesures o-finies sur un es-
pace mesurable (X, of). Il y a équivalence entre

()VAed, n(A)=0 = v(A) =0,

(1) 3 f : (X, /) — Ry mesurable telle que , YV Ac o/, v(A) = / fdu.
A

En outre, la fonction f est unique (a une égalité u-p.p. pres).

DEMONSTRATION : Il s’agit pour I’essentiel de se ramener au cadre fini. Les me-
sures (4 et v étant o-finies, il existe deux partitions .</-mesurables de X, (F},)n>0
et (Gn)n>0, vérifiant, pour tout n >0, p(Fy,)+v(Gy) < 4oc. Il est immédiat que
les By ¢ := F, N Gy, k, £ >0, forment une partition =7-mesurable de X vérifiant
p(Eg o) < p(Fi) <4ooetv(Ey ) <v(Gp) <+4oo. N x N étant équipotent a N, on
peut supposer ces ensembles indexés par N. On les notera donc (Ey, )p>0.

On pose alors, pour tout n > 0, uy, = p(- N Ey,) et v, = v(- N Ey).
D’apres le théoréme 10.4, il existe donc une suite de fonctions ( fy,),>0 Vérifiant
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fn € .,2”R1+ () et vy, = fopin = (fnlg,).p. On définit alors f := an 1g,.
n>0
D’apres le théoreme de Beppo Levi pour les séries (cf. chapitre 7), il est immédiat

que pour tout A € .7,

[ ran= [ a3 15 =Y [ 1asid,

n>0 n>0

=Y V(ANE,) =v(A).

n>0

Par suite v = f.p. L’unicité se traite comme dans le cas fini. ¢

10.3 Dualité /-1

1l est immédiat via I'inégalité de Holder que pour toute fonction g € L (x),
I'application f +— [y fgdu est bien définie, linéaire et continue de norme
(inférieure ou égale a) ||g4. Le but du théoreme de dualité ci-dessous est de mon-
trer que si 1 < p < 400, on obtient ainsi toutes les formes linéaires continues sur

Lic(n).

10.3.1 Formes linéaires réelles positives

Théoréme 10.6. Soient (X, .o/, 1) un espace mesuré o-fini, p € [1,+o0 et q son
exposant conjugué; soit P : Lﬁ(,u) — R une forme linéaire, continue et positive
au sens on, pour tout f € Lng (u), ®(f) > 0. Alors, il existe un unique élément

g€ L&(p) tel que
vre g, o) = [ fodu
En outre, ||g||q = ||®|| ou | ®|| désigne la norme d’opérateur de P.

DEMONSTRATION : On note tout d’abord que, pour tout A€ o7, 14 € LF () siet
seulement si y1(A) < +oo puisque || 14|, =p(A)/P.

Soit (E),),>1 une suite croissante d’éléments de <7 vérifiant X = U TEn et

>

w(Ey,) <+oo pour tout n>1. On pose Fy :=FE; et F,:=E,\ E,_1, nznil
étape 1 Construction de g :

Pour tout n > 1 et pour tout A € 7, on pose vp(A) := ®(1anp, ). Montrons
que v, est une mesure finie, absolument continue par rapport a (.

— U (A) >0 car @ est positive et v, (X)=u(F,) <+oo.

—vp (@) =2(0)=0.

—Soit (Ag)x>1 une suite d’éléments de .o/’ deux a deux disjoints. Il est immédiat

k
que L(y,o, 40)NF, :lilgn Z 14,nF,. En outre, la convergence a lieu dans L (y).
=1
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En effet, d’apres le théoréme de convergence dominée, une série de fonctions po-
sitives dont la limite est dans L (1) converge vers cette limite dans Lg(u). La
continuité de ® entraine alors que

k
k=21 =1
k
=lim @ (Z 1Aan>

(=1

+oo
=Y ®(lann) =D val(Ar).
k=1

k>1

— La forme linéaire ® est continue donc, deés que p(A) =0,
1 1
vn(A) = ®(Lanr,) < [1®[H[1ans, [l = [@p(AN F)r < [[@f|u(A)? = 0.

Le théoreme de Radon-Nikodym 10.4 entraine alors 1’existence, pour n > 1,
d’une fonction g,, € £ (1) vérifiant, pour tout A€ o7, v, (A) = / g dp. De plus,
A

comme v,(A) = v,(A N F,) par définition de v, il est immédiat que, quitte a
remplacer g,, par g,1F,, on peut supposer g,, nulle en dehors de F,,.
étape 2 Propriété de représentation :
Les I}, étant deux a deux disjoints, on peut poser g := Z gn. Soit f € L’F’2+ (1)
n>1
la série a terme positifs Z f1F, converge vers f car X = J,,~; F5 (union dis-

n>1
jointe). I en est de méme des puissances p-¢me et, partant, il y a convergence dans

L% (1) par convergence dominée. En s’appuyant successivement sur la continuité
de ® et le théoreme de Beppo Levi pour les séries de fonctions positives, il vient

o) =3 8(/1n) = 3 [ fondu= [ rad.

n>1 n>1
La propriété de représentation s’étend aux fonctions réelles de L (1) par linéa-
rité 2 partir de la décomposition classique f= f+—f~.
étape 3 g€ Li(p) et @[ = [lgllq -
Supposons d’abord p > 1. On pose f, ,, 1= sgn(g)gq_llEnm{ggm} pour tout
(m,n) € N2 Par construction, f,, , € £ (1). D apres la propriété de représenta-
tion établie a I’étape précédente, il vient, en notant que p(q¢ — 1) =g,

q)(fm,n):/ fn,mgd/'L:/ ’g‘ql{ggm}d:u
X E,

1/p
<10l fanlls = @] </E \glql{ggm}du> < oo
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D’ot I’on déduit que, pour tout (m,n) € N2,

1-1/p
( / rgrq1{g<m}du) < [1@.

On passe alors successivement a la limite, en m, puis en n, a 1’aide du théoreme de
Beppo Levi, pour obtenir que ||g||, < ||®]|.

11 est clair par I'inégalité de Holder, que pour f € L& (), [®(f)| < llgllqll f1lp
et, partant, | @] < ||g||,. D’ou I’égalité.

Sip = 1, on reprend la démonstration du cas précédent en posant p’ := 5,
r > 1etq := r et1’on constate que ||g||, < ||®| pour tout > 1. La proposi-
tion 9.6 (b) entraine alors que ||g||., < ||P]| < 4o00. Lautre inégalité découle de
I’inégalité de Holder.

étape 4 Unicité :
Soit ¢’ une autre fonction de L () assurant la propriété de représentation de
la forme linéaire ®. Pour tout A € o7, v,,(A) = ®(1anp,) = / g'1F, du, donc
A

I’unicité dans le théoréme de Radon-Nikodym assure que, pour tout entier n > 1,
d1p, =glp, p-pp.ieg=g p-pp. O

10.3.2 Formes linéaires réelles ou complexes

On étend sans véritable difficulté le théoreme 10.6 de représentation des formes
linéaires continues positives aux formes linéaires continues réelles ou complexes, a
I’aide du théoreme 10.3 de décomposition abstrait établi a la section 10.1 lors de la
démonstration du théoreme de Riesz. On obtient ainsi le théoréme de dualité LP-L9
ci-apres.

Théoréme 10.7. Soient (X, .o/, 1) un espace mesuré o-fini, p € [1,+0o0] et q son
exposant conjugué. Alors, le dual topologique de Li (1), i.e. [’ensemble des formes
linéaires continues de Lﬁ(,u) dans K=R ou C, est isométriquement isomorphe a

Li (1),

DEMONSTRATION : Soit ® : L5 (1) — K une forme linéaire continue. II suffit de
montrer qu’il existe un unique élément g € L (1) tel que

Ve Ih(n), B(f) = /X fodp et gy =2].

étape 1 Existence :

La représentation de ® par une fonction g € L} (p) est une conséquence di-
recte du théoreme 10.6 précédent et du théoreme 10.3 de décomposition des formes
linéaires continues réelles. D’autre part, I’inégalité de Holder entraine

T p— \ / fgdﬂ]sufupug|rq=uguq.
Ifllp=11JX
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De plus, la fonction fy := 17,20y % |g|9~1 vérifie | f,|P =|g|? € £ () et, partant,

q
lgllg = /nggdu < 1@l 1 £l = 1@ flgllq

d’ou

9lla<[|®[[- Donc [[@[|=]|g[q-
étape 2 Unicité :

Soient ¢’ € L& () représentant la forme @ et f := 1{g/¢g}%|g’—g|q_1. Les
définitions de ¢’ et g entrainent alors

Oz/)(f(g’—g)dMZ/Xg’—glqdu,
doug =g. ¢

Remarques : o En fait, le théoréme de dualité reste valable pour 1 < p <400 méme
si I’espace mesuré n’est pas o-fini. Cette extension fait 1’objet de 1’exercice 10.8
ci-apres.

e En revanche, la propriété de représentation tombe en défaut pour p=1 lorsque
I’espace n’est pas o-fini (cf. exercice 10.6).

e Le cas p=+oo0 est le plus défavorable. En effet, des que la tribu .&7 contient
une suite (A, ),>1 d’éléments deux a deux disjoints vérifiant 0 < pu(A,) < +o0,
il existe des formes linéaires continues positives sur Ly (1) n’admettant aucune
représentation par une fonction intégrable. Dans le cadre abstrait, ce résultat s’ap-
puie sur le théoreme de Hahn-Banach (cf. exercice 10.14).

Ainsi, la propriété de représentation tombe en défaut sur £°K° (N, m) (m mesure
de comptage) ou sur L (R%, \g).

10.4 Interpolation sur les espaces L

Cette section a pour objet les opérateurs qui agissent sur les espaces LP. On a
le résultat suivant.

Théoreme 10.8 (Marcinkiewicz). Soient (X, o7, ) et (Y, B, v) deux espaces me-
surés o-finis et soit T un opérateur (éventuellement non linéaire) de L(l:(X , 1) dans
I’espace des fonctions complexes mesurables sur (Y, B, v) vérifiant

3k €R, Vg€ LE(X, 1), |T(f+9) <k(T(HI+IT(g)]). (10.18)
On suppose qu’il existe p1,p2, q1,q2 € [1,+00] avec
P1L#DP2, @ F G, pi < q pouri=1,2, (10.19)
et My, Mo € Ry tels que, pouri = 1,2,

Ve LB (WNLEW), [Tl < Millflw- (10.20)
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Alors, pour tout 0 €10, 1], il existe une constante C' € Ry ne dépendant que de
97 p1,P2,41,92, telle que

Ve 2w nLEw), ITHllaw) < C MMy fllrgy, — (10.21)

ou les nombres p et q sont définis par

1:ﬁ+(1_9) et l:£+(1_9). (10.22)
P nm D2 qa q a2

Remarque : Lorsque 7 est un opérateur linéaire, on peut prendre C' = 1 dans I’esti-

mation (10.21), pour tous p1, p2, q1, g2 € [1, +00] et pour tout 6 € [0, 1]. Le résultat

est connu sous le nom de théoreme de Riesz-Thorin. La démonstration nécessite

des outils d’analyse complexe (principe du maximum et théoreme de Phragmén-

Lindelof) qui sortent du cadre de cet ouvrage.

DEMONSTRATION : On s’appuie sur la démarche adoptée par Zygmund dans [15]
(Chap. X1II), fondée sur la dualité LP-L9.

étape 1 Une estimation via les fonctions p({|f| > t}) (cf. exercice 9.23) :
Soit f € L& (u) N LE (), alors f € LE(p) car p € [p1, pa] (cf: exercice 9.14).
La fonction f peut se décomposer, pour u € R fixé, sous la forme
f=htfe on fi=1pc [+ Lpsn ey,

de sorte que
|fil = min([fl,u) et |f] = [fi]+ [f]

On suppose que q1, g2 < +o00. Le cas contraire sera étudié lors de la derniere étape.
Sans restriction aucune, on peut aussi supposer que pa < p1. Soient § €10, 1] et les
nombres p, ¢ définis par (10.22). La condition (10.18) donne pour tout t € R,

{T(f) > 2ks} C{T(f1)] > s}U{IT(f2)] > s},

qui combinée avec (10.20) implique
T > 2ks}h) < v{IT(f)l > s}) +v{IT(f2)] > s})
< s TP Lo ) + 5~ 2 1T T ) (10.23)
< M s full Do gy + M3 5™ 1 fill Tz -

D’apres I'identité (cf. exercice 11.4)

+o00
/ gl9dv = g / 1 u({lgl > 1)) dt
Y 0

appliquée a la fonction g = |T'(f)| et via le changement de variable t = 2k s, il
vient

+00
IS,y = a(2k)7 /0 STUW({|T(f)] > 2k s}) ds. (10.24)
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La méme identité appliquée a f; et fo donne

I7(HI%0,

—+o00
R[S, ds

Jr
aRMg [ A, ds

a1
o [ st ([ Mat) d
q(2k)*M{" p; s ; M({’fﬂ > }) S

0
okyngpp [ et ([ 1) dt )"
TaRR)IMERS? | s i p({lf2l > t}) s

Or, par définition de f; et f>, on a

p({Aa] > 1)) <o) p({IF] > 1}) et p({lfl > t}) = p({|f] > t + u}).
On obtient donc I’estimation

q
TG,
a1 ptoo u ;,%
oCmnayf’ [ [ > 0)ar) s

42 +00 +00 L
rargft [ e [ w1 > ) ar) s
0
' (10.25)
étape 2 Une inégalité obtenue par dualité LP-L? :
Notons tout d’abord que, dans un espace mesuré (X, <7, u) o-fini, I’égalité du
théoreme 10.6 de dualité pour r €)1, +oo[etr’ :=r/(r — 1),

11l () = sup {/stodu tp >0, /Xd’ dp = 1} (10.26)

s’étend a toute fonction f mesurable positive (non nulle), élément ou non de L" (u).
La minoration de || f|| .- (,) dans (10.26) est une conséquence immédiate de I’inéga-
lité¢ de Holder. Pour montrer 1’inégalité inverse, on considere une suite croissante
d’ensembles mesurables E,,, n € N, de mesure finie et la suite de fonctions ¢,
définies par

fr 1 lEn

pour tout n. > 0,
||f1En| LT(M)

Pn =

vérifiant
lenllpry =1 et {|f|<n}CE, "X
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Le théoreme de convergence monotone entraine alors, lorsque n — 400,
[ fendn= e [ 77 i = 17 Lkl = 1 < o,
X HflEn LT .U“)

Soient a € R*, a,v €0, +00[, 7 €|1,4+00,etg : Ry xRy = Ry, h: Ry —
R, deux fonctions Lebesgue-mesurables positives vérifiant
10,0t (8) h(2) sia >0

0<g(s1) < ,
Lot 4oo[(8) R(t) sia <O.

D’apres 1’égalité de dualité (10.26) appliquée 2 la mesure ju(ds) := s*~'ds, on a

/0+OO </0+;?S’t) dt>rsa‘1ds
= sup { [/(]JFOO(/J;SJ) dt) o(s) salds]rz o0, /0+;>r/(s) e 1} |

Alors en appliquant le théoréme de Fubini-Tonelli, on a

/0 +oo< /0 - g(s,t) dt) p(s)s* lds = /O +OO< /0 - g(s,t) p(s) sa—lds> dt

1/r

+oo +o0
S/ </ g'(s,t) salds> dt,
0 0

+oo
ol I’on a utilisé a la seconde ligne I’inégalité de Holder et | " (s)s* ds = 1.

0
D’ou, par I’hypothese sur la fonction g et un simple calcul d’intégrales (en distin-
guant les cas o > 0 et o < 0), il vient

Uom (/Om g(s,1) dt) o(s) saldsy < ‘g’ </0+OO h(t) 177 dt>r,

Finalement, on obtient I’inégalité

+oo +oo T a® +o00o T
/ (/ g(s,t) dt> s lds < — (/ h(t) t/T dt) . (10.27)
0 0 ||

L’inégalité reste vraie lorsque r = 1 par simple application du théoreme de Fubini-
Tonelli.
étape 3 Estimation dans le cas q1,qo < +00 :

On suppose par exemple que g2 < ¢1 ce qui implique g2 < ¢ < ¢ d’apres la
définition (10.22) de g; et g2. L’autre cas se traite de facon tres similaire en prenant
alors v < 0. En injectant dans I’estimation (10.25) I’inégalité (10.27) avec

o= q - g, r=r;=

u=u(s) = ()" b = ({11 > 1)),

a

SIS

(10.28)
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(a,v > 0), il vient

17D,
q—q +oo ™
<arar S ([T e aning(g) > 0)ar)
q—q2 +oo r2
q (2k)T ME ph2 ;_ - </0 P2—1+(g—a2)7/r2 ({m > t}) ) ]

En choisissant dans I’inégalité précédente

_ 1/p — 1 _
y=—p AP _P /p1=1/p2 _ | P2—p (dapres (10.22)),  (10.29)
an—q ql/ag—1/g 2 —q
on déduit de la formule (10.24) appliquée a f et p,
1T,
< q(2k) (pl/p) Mq1 q— q1||f”p7"1 (pQ/p) qu q—aq2 Hf”prz
q1 — q—q2
Finalement, en choisissant
p(r2—r1)/(q2—q1) (10.30)

M(h/(th q2) qu/((p a) HfHL )
P(p

et en utilisant les définitions (10.22) de p et ¢, on obtient I’estimation (10.21) avec

la constante C' donnée par

r1 o

O = g (28) (21/27)(1 . (222/12 ‘ (10.31)
1= — 42
+ooou qp = +00:

+o00. La difficulté dans ce cas vient du fait

étape 4 Estimation dans le cas q1 =
(v)- En rappelant

On suppose par exemple que q; =
que I'on ne peut pas majorer v ({|T'(f1)| > s}) par |T'(f1)| 1
que | f1| = max(]f], u), on doit donc trouver un u = u(s) de sorte que

v({IT(f1)] > s}) =0

et qu’ainsi I’estimation (10.23) de départ soit vérifiée sans le terme avec f. A cette

fin, on va distinguer deux sous-cas p; = 400 et p; < +00.
Si p1 = 400, on définit u = u(s) par u(s) := s/Mj de sorte que
IT(f)lleey < Myl fillzeeqy < Miu(s) = s.
Ainsi v({|T(f1)| > s}) = 0. On peut donc reprendre I’étape 3 avec a := M et
~ := 0, pour obtenir I’estimation (10.21) avec la constante C' donnée par

)

C1 = q(2k)* (];2112:
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ou par rapport a (10.31) le terme avec p; a disparu.

Si a présent p; < 00, on doit & nouveau déterminer un v = u(s) de sorte
que 1/({|T(f1)] > s}) = 0. En extrapolant les valeurs u et a de (10.28) et (10.30)
lorsque g1 — +o00, on définit

u = u(s) := (f)pl/(pl‘p)

: et a:= B0 PR, (1032)

ou 3 > 0 sera déterminé ultérieurement. Comme par hypothese

+oo 1/271
1T i) < M il ) Ml(pl [T ({\f1|>t})dt> |

pour obtenir || T°(f1)| oo (,y < s il suffit que
+oo
I M{n/ tplilﬂ({’fl‘ > t}) dt < sP1 = Pt 2P17P,
0

Or, du fait que | fi| = min(|f|,u) et p < p;,ona

—+00
/O ({1 > 8)) dt

U\ P1—DP - 1 -
< [T A > ) de = S

de sorte que || T'(f1)[ oo () < s lorsque
p1 — _ _
M 1y 7 < 0P = M 0

On obtient donc I’égalité v ({|T'(f1)| > s}) = 0 dés que la constante § > 0 de
(10.32) vérifie I'inégalité 5P > p; /p.

10.5 Exercices
(X, o, ) désigne, sauf mention contraire, un espace mesuré o-fini i.e.

X=J'E, ot Eyed et p(E,) <+

n>1

et p et ¢ désignent deux nombres conjugués de [1, 400, i.e. tels que %4— % =1.
10.1 Soient g € L (1) et ® I'application définie sur Li () par ®(f) := /ng dj.
Calculer directement || ®|| et déterminer les fonctions f telles que |®(f)|=||P||.

10.2 Soit (a,)n>0 une suite de K telle que, pour toute suite (b, )n>0 € ((N), la
série ), > anby soit convergente dans K. Montrer que (a5 )5>0 € £ (N).
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10.3 Soient pe [1,+oo[ et f : X — K une fonction mesurable.

a) On suppose que f ¢ Li(u). Montrer qu’il existe une suite (A, ),>1 d’éléments
de <7 telle que, pour tout n>1, a,, := || f14, ||, vérifie n < a, < +o0.

b) On suppose que, pour toute g € L (11), fg € L (). Montrer que f € Lk (p).

10.4 On va établir le résultat de I’exercice 10.3 par une méthode plus savante. Soient
p € [1,+00f, f + X — K une fonction mesurable telle pour toute g € L (1),

fg€ Lk (1). On considere I’application définie sur L (1) par ®(g) := /X fgdu.

a) Soit h : X — K une fonction mesurable telle pour toute fonction g € L (1),
hg € Lk (1) et ®(g)=0. Montrer que h=0 p-p.p..

b) On considére, pour tout n € N*, A,, := E, N {|f| < n} et ®,, 'application
définie sur L (1) par ®,,(g) := ®(g14,). Montrer que (®,,),>1 est une suite de
formes linéaires continues sur L (1) qui converge simplement vers ®. En déduire
que sup,, || ®,,|| <+oc et que P est une forme linéaire continue sur L (1).

¢) Montrer que f € L (11).
10.5 Reprendre I’exercice 10.3 lorsque p=+-00.

10.6 Soit X := {a,b} et soit x la mesure définie sur Z(X) par p({a}) = 1,
p({b}) := 400 (donc p(X) = +oo). Caractériser Ly (u) et le dual de Lj(p).
Conclure.

10.7 En considérant la forme linéaire ® définie sur i (R, K) par ®(¢) := ¢(0),
montrer que le dual de Ly (R) contient strictement L (R).

10.8 On considere (X, o7, 1) un espace mesuré quelconque et ® une forme linéaire
continue sur Li (1), 1 <p < +oo0.

a) Montrer que, pour tout A € 7, de mesure finie, il existe une unique fonction
g, € L{(p), nulle sur “4, telle que

Ve Lb(u), @<f1A>::‘[;ngdu et llgalla < 1]

b) Soient A, B € ¢f tels que A C B. Montrer que

%z%uet/“mww=/mww—/gmw
B\A X X

¢) Montrer qu’il existe une suite croissante (X,,),>1 d’éléments de <7 de mesure
finie telle que lim [|g, [l; = sup{|lg,[l¢; #(A) < +oc} et, qu’en outre, la suite
n

(9, Jn>1 converge dans Ly (1) vers une fonction g.

d) Montrer que, pour tout f € L (1), ®(f) :/X fgdp.

10.9 Séparabilité de LP, p < 400



Exercices 225

. o . 0 N
Soit X un espace métrique localement compact et séparable, X = U X, ou

n>1
(Xn)n>0 est une suite croissante d’ouverts d’adhérence compacte.

a) Montrer I’existence d’une base dénombrable d’ouverts % := {Uy, },>0 conte-
nant X, les X, et stable par intersection finie.

Soient 4 une mesure de Borel sur (X)), 1 <p<-+oo et D le Q-e.v. engendré
par la famille de fonctions indicatrices {1y, }n>0.
b) Soit g € L(p) telle que /fg dp = 0 pour tout f € DN LY (1). Montrer que
X
g=0.
¢) Montrer que D est dense dans L (1)
d) En déduire que L (1) est séparable.

10.10 Convergence faible dans LP, p > 1

Soient p €1, +00], ¢ son exposant conjugué et (X, <7, 1) un espace mesuré tel
que L (y) soit séparable; soit (f,,),>1 une suite bornée de Li () bornée, i.e. la
suite (|| fn||p)n>1 est bornée.

a) Soit D une partie dénombrable dense de Ly (1). Montrer qu’il existe une sous-

suite (fy(n))n>1 telle que pour tout h € D, lim / fo(nyh dp existe dans K.
> W

b) Montrer que pour tout g € L (1), ®(g) := lim/ Jio(n) g di existe dans K.
nJx

¢) En déduire qu’il existe f € Ly (u) vérifiant la convergence faible dans Li (1) de
la suite (f,(n))n>1 vers f au sens ot :

Vo€ L. tim [ fumodn= [ fodn.
noJx X

d) Le résultat précédent subsiste-t-il sip=17?
10.11 Théoreme de Vitali-Saks

Une famille (v;);cr de mesures sur .o est dite absolument équicontinue par rapport
a la mesure p si

Vex>0, JA. €, p(Az) <+oo et Viel, v(“A:) <e,
Ve>0, 30>0, VAes/, pu(d)<d = Viel, vi(A)<e.

On suppose que &7 =0 (%’) ot € est un w-systeme, i.e. X € € et € est stable par
intersection finie. On se propose de montrer le théoréeme de Vitali-Saks :

Soit (Vn)n>1 une suite de mesures finies sur </, absolument équicontinue par
rapport a y et telle que pour tout C € €, lim,, v,(C) existe dans R... Alors, pour
tout A€ of, v(A) = lim,, v, (A) existe dans R, et v définit une mesure absolument
continue par rapport a 1.
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a) Soit B := {A€.o/ : v(A) := lim,, v,(A) existe dans R, }. Montrer que % est
stable par différence propre.
b) Soient (Bj)r>1 une suite d’éléments deux a deux disjoints de # et B leur
réunion. Montrer que lirlgn vn(B) = z ligln Vn(Bg).

k>1
¢) En déduire que # est un \-systéme puis que X =<7 .
d) Montrer que I’application v est une mesure sur .2/, absolument continue par
rapport a la mesure .
10.12 Convergence faible dans L'
On suppose que &7 =0 (% ) ot € est un w-systeme dénombrable.
a) Montrer que c’est le cas lorsque X est un espace métrique séparable muni de sa
tribu borélienne.

Soit (fy)n>1 une suite de LlR(,u) bornée (i.e. la suite (|| fn||1)n>1 est bornée) et
équiintégrable (i.e. la suite des mesures (| f,,|.¢),>1 est absolument équicontinue).
b) Montrer qu’il existe une sous-suite (f,(,))n>1 telle que les deux suites de me-
sures définies par v := fF . vérifient : pour tout C' € ¥, lirrln l/j(n)(C) existent
dans R.

c) Montrer qu’il existe f € Lk (u) vérifiant V A€ o7, liTan/qu,(n)du:/Af dp.

d) En déduire la convergence faible dans L,lq(u) de fon) vers f:

Vg€ Lg (1), lim/ fg;(n)gdu:/ fgdu.
noJx X

e) Une suite (f,)n>1 qui converge faiblement au sens de d) (mais pour la suite
elle-méme) converge-t-elle nécessairement yi-p.p. ou en norme || - |1 vers f?

10.13 On considere une fonction # € ¢’ (R, Ry ) telle que

6([0,1]) c [0,1] et  6(]1,+oc]) CJ1, 400
ou
0([0,1]) C 1,400 et O(]1,4o0) C [0,1];

et F le R-e.v. engendré par la famille {9(%-

"} .

neN, p,geN*

a) Soit ® une forme linéaire continue sur ¢([0, 1], R). D’apres le théoréeme de
représentation de Riesz (cf. théoreme 10.2), on a

Vi e¢(0.1R), (/)= fd;ﬁ—/ fdu
] [0,1]

[071

ou uF sont des mesures de Borel sur [0, 1]. On suppose que P =0. Montrer que

e—n@(%m)"ﬂ_i_(dm) _ / 6—77,9(%:3)"/1/_ (dx)

VneN, Vp,qg e N*, /
[0,1]

(0,1]
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b) En déduire que, pour tout € Q N [0, 1], ([0, 7]) =p~([0,7]), et que pt =p~.
¢) Montrer que E est dense dans (%4'([0, 1],R), || - [/,u,)-

d) En déduire en particulier que, pour tout a > 0, les R-e.v. engendrés par les
familles {z — 2"} en et {@ > @ }nen sontdenses dans (€([0,1],R), || - ||, )-

10.14 Dual de L™

Soit (X, <7, ;1) un espace mesuré quelconque. On suppose qu’il existe une suite
(Ap)n>1 d’éléments deux a deux disjoints de <7 tels que 0 < p1(Ay,) < +o00. Soit
A = Up>14, et M le K-e.v. engendré par la famille {14} U {14, }r>1.

a) Soit fp := 14, /p(Ay), n > 1. Montrer qu’il existe une sous-suite (f,(n))n>1

telle que, pour toute fonction g€ M, ®(g) := lim / fom) 9dp existe dans K.
noJx

b) On suppose que le dual de LiP (12) s’identifie & Lj(11). Déduire du a) ’existence

d’une fonction f € Lk (1) telle que, pour toute fonction g€ M, ®(g / fagdpu.

¢) Montrer que / fdup = 1et, pour tout k> 1, fdu=0.
A Ay,

d) En déduire une contradiction puis conclure quant au dual de L°(p).

10.15 Soient X un espace métrique et p une mesure o-finie sur A(X) telle que,
pour tout ouvert non vide Q2 de X, £4(€2) > 0. Montrer que le dual de Lg°(u) s’iden-
tifie & Lk (1) si et seulement si X est fini.

10.16 Soit T¢ := R?/(27)9Z¢ le tore de dimension d > 1, identifié au cube
[—7, 7[%. Pour p € [1, 400, on note par LP(T%) I’espace des fonctions f boréliennes
complexes et périodiques de période [—, [, telles que

1/p
1
| fll Lo (Tay :== (W /[_7r i |f($)\pdx> < 400.

On désigne les coefficients de Fourier de f € L'(T%) par

1

f(n) ::W

/ f(z)e™ "2z, ne 24,
[—7‘r77r}d

ol (n|x) désigne le produit scalaire de n par 2 € R?.

a) Montrer que

VFeLP(T), || fleeza < IfllLcra)-

b) Montrer [’inégalité de Bessel :

Ve LX), |flley < 1f)2era-
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c) En déduire que, pour chaque p € [1,2], il existe une constante C), € R4 telle

que
p

V f e LP(TY), ||f”13q(zd) <Cplfllperay o0 gq:= T

d) Montrer que pour chaque p € [1, 2], il existe une constante D,, € R telle que
Ve = (cn)neza € (T, [ fllpaczay < Dy llcllowra

oun f:= Z cn €™ e LA(TY).

nezZd

10.17 a) Soient (ay,)nen+ une suite positive, décroissante, tendant vers 0. On pose
n

pourn > 1, A, = Z ar.. Montrer que

k=1
u 1 us
Vn>1,Vp>n, Vo]l — < =
" p>n, Vo elo,l, Z _Sin(:v/Q)_:p
+oo
En déduire que la fonction f(z) := Z a, cos (nx) est bien définie sur |0, 7| et
n=1

wan

vérifie Yn > 1, Vo €l0,7], |[f(z)] <A, +

b) Soit p € ]2, +00[. Montrer qu’il existe une constante ¢ > 0 telle que

™ 400
JRECIE o
0

n=1
+o00
4 ; D ) p—2
On suppose désormais que g an mn < 400
n=1

c) Soient a la fonction définie sur Ry para(z) :=a,siz € [n—1,n[,n>1et A
xX

définie par A(z) := / a(t)dt siz € Ry.
0

Montrer, a I’aide de I’exercice 9.16 g), que
+00 +o0
/ a(z) 2P 2 dr < +oo et / A(z)P 272 dz < +oo.
0 0

En déduire que f € LP([—m,7]).
d) On considere pour n > 1, b, := n~/4In"/?(n + 1) ot ¢ := £ Montrer que

f ¢ £9(Z). Que peut-on en conclure par rapport A I’exercice 10.16?



Chapitre 11

Mesure produit. Théoremes de Fubini

L’objet de ce chapitre est de donner un sens a la notion de “mesure de surface” sur
un espace produit X x Y a partir de “mesures de longueur” définies sur X et Y.
L’intégration par rapport a cette mesure de surface — ou mesure produit — sur X xY
fournira le cadre naturel et rigoureux pour introduire la notion d’intégrale multiple.
Les regles de manipulation et de calcul de telles intégrales sont régies par les deux
théorémes de Fubini.

11.1 Tribu produit

11.1.1 Définition, premieres propriétés

Définition 11.1. Soient (X, /) et (Y, PB) deux espaces mesurables. On appelle
tribu produit de <7 et %, la tribu notée of Q P définie par

I QR = a({AxB, Ae o/, Be %’})
La tribu o/ & P est donc engendrée par les rectangles “a cotés mesurables”.

Notation : Dans la suite de ce chapitre, la notation <7 x 4 désignera 1’ensemble
{AxB: A€ o/, BE A}, i.e I"’ensemble des rectangles a cotés mesurables. Ainsi,
A QB=0(d x B).

Remarque : Il est utile de remarquer pour la suite qu'un rectangle a cotés mesu-
rables A x B s’écrit sous la forme Ax B=(AxY) N (X xB).

La proposition ci-dessous permet de caractériser la tribu produit .o/ ® % com-
me la plus petite tribu rendant les projections canoniques 7, et 7, de X XY sur X
et Y mesurables.
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Proposition 11.1. Soient ,, : X xY — X etn, : XxXY — Y les projections
canoniques sur X et'Y définies par 7, ((x,y)):=z et m, ((x,y)) :=y respective-
ment.

(a) 7w et m, sont respectivement (o , o @A) et (B, o ©AB)-mesurables.

(b) Si une tribu 7 sur X xY rend 7 et 7, respectivement (F,o/) et (T, RB)-
mesurables alors &/ @B C T .

DEMONSTRATION : (a) Par définition de la mesurabilité (cf. chapitre 5) la projec-
tion 7, est mesurable de (X xY, &/ ® %) dans (X, /) si et seulement si pour tout
Acd, n N A)ed @PB.Or,si Ac o, 7w HA) = AxY ed x BC AR B.
(b) Si m, et m, sont respectivement (.7, <) et (7, %)-mesurables alors, pour
tous Ac o et Be€ B, AxB=(AxY)N(XxB)=n_(A)nn ! (B)e 7 ;donc
o X BC T et,partant, ' @ B=0 (A X B)C T.

La proposition suivante montre que la mesurabilité des applications a valeurs
dans (X XY, &7 ® £) se rameéne a celle de leurs composantes.

Proposition 11.2. La fonction f: (Z,¢) — (XXY, 7R AB) est
z = f(2): = (2), /y (2)

(¢, o @ PB)-mesurable si et seulement si f, et f, sont respectivement (€, <)
et (¢, #)-mesurables.

DEMONSTRATION : (=) Si f est mesurable et A€ o7, f 1(A):=f~1(AxY)€ €.
(<) Si f, et f, sont mesurableset Ac o7, Be B, AxB=(AxY)N(XxB).
Donc, d’apres les formules de Hausdorff, f~1(Ax B) = f_1(A)n f1(B) € ¢.
Par suite, comme o (o X B) = o @ B, f est (¢, o/ @ HB)-mesurable d’apres la
proposition 5.1. ¢

Extension : L’extension des définitions et résultats précédents a d espaces mesu-
rables (X1,.9), ..., (X4, %) est immédiate en posant

@@y = ({A X ... x A, Ai€ o, 1<i<d}).

Se pose alors la question de 1’associativité de “I’opération” & sur les tribus.
Elle est résolue par la proposition suivante

Proposition 11.3. Soient (X1, 7)), (X2, 9%), (X3, 9%4) trois espaces mesurables.
(N © o) @ ol = @ (o ® ) = Q@ .

DEMONSTRATION : établissons que (7] ® @) ® o3 = o) R ofs @ o3 par exemple.
Il est immédiat que ’ensemble @7} X o5 X @73 des “parallélépipedes” a coHtés
mesurables est contenu dans (.27] ® o) ® <75. Par conséquent,

o @ oy ® Ay C (D @ k) ® Hs.
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Réciproquement, soit Az € o7, fixé, et
Ty = {BE S @ oty : BX A3€ o @ @ .

4, est une tribu car

-Dx A3 =0€ o ® s @ o3 donc De T,

—si B€ Ty, Bx Az = X1 x Xox A3N ¢(B x A3) € o) ® 9 ® 3 puisque
o) @ oy ® a5 est une tribu. Donc B € .,

— et, enfin, pour toute suite (By,),>1 d’éléments de Z4,,

(U Ba) x A3 = J(Bu x Ay) € 1 @ s @ .

n>1 n>1

D’autre part, .7, contient évidemment les rectangles “a cotés mesurables”
Ay x Ag, Ay € oA, As € gfp, donc T, contient o7) ® . Partant, T4, = 9 @ ot
pour tout A3 € o, i.e. (A ® o) X o5 C o] @ o @ /3. On en conclut aussitdt
I'inclusion annoncée : (] @ o) ® o5 C A @ oty @ .

11.1.2 Le cas des tribus boréliennes

Lorsque X et Y sont des espaces métriques (ou topologiques), on peut donc,
tout aussi naturellement, munir le produit X x Y soit de la tribu B(X) @ A(Y),
produit des tribus boréliennes de X et Y, soit de la tribu borélienne ZA(X xY)
associée a la topologie produit sur X x Y (1).

évidemment la question des relations existant entre ces deux tribus se pose
aussitot de facon cruciale ! Elle est résolue par la proposition ci-dessous.

Proposition 11.4. Soient X etY deux espaces métriques topologiques.
(a) BX)@ B(Y)C B(XXY),
(b) Si X etY sont a base dénombrable d’ouverts (2), alors :

B(X)® BY) = BXXY).

DEMONSTRATION : (a) La projection 7, : X XY — X est continue par défini-
tion de la topologie produit; idem pour 7, . Les projections 7, et m, sont donc
PB(X xY)=0(0(X xY))-mesurables. La proposition11.1(b) entraine alors que
BX)@B(Y)C B(XxY).

(b) Désignons par % :={U,, n>1} et ¥ :={V,,, n>1} les bases dénombrables
d’ouverts respectives de X et Y. L'ensemble % x ¥ :={Uy, x V;,, m, n>1} des
rectangles associés a % et ¥ est alors une base dénombrable d’ouverts de 1’espace
produit X XY (cf. compléments topologiques, section 3.4). Tout ouvert de X xY

1. Topologie relative, par exemple,a la distance d((x,y), (z',y")):=dy (z,2") + d, (y,y").
2. Voir la section 3.4 pour la définition. On y établit également qu’un espace métrique (X, d, )
est & base dénombrable d’ouverts si et seulement si il contient une suite dense (Zn )nen-.
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étant union dénombrable d’éléments de % x ¥/, il est clair que €/(X xY") est inclus
dans o (% x V') et partant

BXXY)=0(OXXY)Co(UxV)C o(B(X)xB(Y))=B(X)2 B(Y)
puisque Z C B(X)etV C B(Y). ¢

Remarques : ¢ Z(X) ® B(Y) est la plus petite tribu sur X x Y rendant les pro-
jections canoniques 7, et 7w, mesurables, alors que A(X xY') est la tribu des

boréliens relatifs a la plus petite topologie — au sens comportant le moins d’ouverts
— rendant ces mémes projections continues.

e [’extension au produit de plus de deux espaces est immédiate (par récurrence ou
directement).

Application 11.1. (K=R ou C)
(a) Produits d’espaces R® : On a les relations essentielles suivantes
BR*) = BR) @ A(R) et BRY)=BR)® - 02(R)=BR)*

d termes

puisque R a pour base dénombrable d’ouverts % ={|a, B[, a <, o, € Q}.

(a") Produits d’espaces métriques : Dans le cadre des espaces métriques, la propo-
sition 11.4 s’énonce généralement sous la forme plus commode : si (X, d) et (Y, 0)
sont des espaces métriques séparables, alors B(X xY)=%A(X) ® B(Y). Ainsi

BRI =BR)2B(RY) et B(CHT)=25(CH2B(CT).

mais aussi %(ﬁd) =2(R)®, etc.
(b) B(K)®2-mesurabilité de la somme et du produit : La fonction

T Kx K= K est continue de K x K dans K donc (#(K x K), Z(K))-
(,y) = x+y
mesurable. Comme Z(K x K) = Z(K) @ #(K), on en déduit la mesurabilité an-

noncée ; idem pour le produit.

(¢) Mesurabilité de la somme et du produit de fonctions mesurables : Si f et g :
(X, .o/) — K sont mesurables alors f + g et fg le sont également.

En effet, d’apres la proposition 11.2, (f, g) : (X, &) — (KxK, Z(K)@ A(K))
est mesurable et, au vu de I’application (b) ci-dessus, 1’addition est mesurable de
(KxK, Z(K)®2(K)) dans (K, 2(K)). On conclut par composition des applications
mesurables ; idem pour le produit.

(d) Extension : Plus généralement si ® : KxK — K est continue (ou méme seule-
ment borélienne) alors ®( f, g) est mesurable dés que f, g : (X, .o/) — Kle sont.

Remarque : Il est souvent techniquement plus facile d’établir la mesurabilité de ®
pour les tribus (A(K x K), 2(K)) que pour les tribus (£(K) ® Z(K), %(K)) bien
qu’en fin de compte ce soit la méme chose.
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11.1.3 Section d’un élément de la tribu produit

La question étudiée dans ce paragraphe est la suivante : si C' € &/ ® A, que
peut-on dire de la mesurabilité de ses sections définies par :

Cp:={yeY : (z,y)eC} )
CY:={zcX:(r,y)eC}

Proposition 11.5. Pour tout x € X, C, € B et pour tout y€Y, CY € o .

DEMONSTRATION : Soient z € X, fixéet 7, :={C € &/ @ B : C, € B}. T,
est une sous-tribu de &/ ® % car (9), =9, (J,,C"). = U,, CF et (°C), =°C,.
D’autre part, si C' = Ax B est un rectangle a cotés mesurables, C,=Be€ ZBsixzc A
etCr=0ecABsix¢g A, donc o/ x BC T, etpartant T, = @ B. O

Corollaire 11.1. Soit f : (X x Y, o/ ® ) — R,R ou C, mesurable. Pour tout
x € X, la section de f d’abscisse v définie par f,(y):= f(x,y) est B-mesurable ;
de méme, pour tout y€Y, la section fY d’ordonnée y est < -mesurable.

DEMONSTRATION : Si f :=1¢, C € o/ ® A, le résultat découle de la propo-

n
sition 11.5 puisque f, = 1¢,. Si f := Z Ailc; est étagée, on note que sa sec-
i=1
n
tion f, = Z Ail(c,), est évidemment Z-mesurable. On conclut en approchant
a l'aide dul llemme fondamental d’approximation (théoréme 5.1) toute fonction
o/ @ 9B-mesurable f par des fonctions étagées f,. Il est en effet immédiat que

11.2 Mesure produit de mesures o-finies

11.2.1 Construction et caractérisation

Définition 11.2. Une mesure . sur un espace mesurable (X, /) est o-finie s’il
existe une suite croissante (Ey,),>1 d’éléments de <f vérifiant

X = UTEn et p(Ey,) < +oo pourtoutn > 1.
n>1

Par extension, I’espace (X, o/ , p) est dit lui-méme o-fini.

Théoréme 11.1 (Mesure produit). Soient (X, .o/, ) et (Y, B, v) deux espaces me-
surés o-finis.

(a) Il existe une unique mesure m sur (X x 'Y, o/ @ B) vérifiant

VAco/ ,VBe B, m(Ax B)=u(A)v(B). (11.1)



234 11. Mesure produit. Théorémes de Fubini

Cette mesure est o-finie. On la note généralement 11 @ v (au lieu de m).

(b) Pour tout C € o/ @B, m(C) :/XI/(Cx) wu(dr) :/Y,u(Cy) v(dy).

DEMONSTRATION : (a) Unicité : Soient m et m’ deux mesures sur ’espace produit
(X x Y, o ®9B) vérifiant la propriété (11.1). Les mesures p et v étant o-finies, il
existe deux suites croissantes (A, )n>1 et (By)n>1 telles que A, € o7 et B, € A,
p(An) <400, v(By) <+ooet X =, An, Y =J,, Bn. On pose alors pour tout
n>1, E,:=A, x B,c.a/ x #.Lasuite (E,),>1 est croissante, X x Y =], Ey,
et, pour tout n>1, m(E,)=m/(E,) <+oo.

D’autre part, <7 X % contient X XY et est stable par intersection finie puisque
(AxB)Nn (A'xB')=(An A")x (B nN B’) donc, d’apres le corollaire 6.2 de
caractérisation des mesures o-finies, la coincidence de m et m’ sur .7 X % entraine
m=m'.

Construction : voir le point (b).

(b) On montre dans un premier temps que la relation m(C) := / v(Cy) p(dx)
X

définit bien une mesure (o-finie) sur la tribu &/ ® 4.
étape 1 Consistance de la définition :
D’apres la proposition 11.5 ci-avant, C; € 4, donc v(C,,) existe pour tout z € X.

— Supposons d’abord v finie; alors

AN:={Ced ® B: x> v(C,) o/-mesurable}

est clairement un A-systéme. A contient le w-systeéme 7 X Z; en effet, comme
(AxB)y=BsizcAet (AxB), =@ sinon, il vient v (Ax B),)=14(z) v(B).
Le corollaire 6.1 entraine alors A=.o/ ® 4.

— Dans le cas général, on remplace v par v, :=v/(. N By,) puis on utilise le fait
que v(Cy) zlimTu(Cx N B,).
n

La quantité / v(C3) u(dz) a donc bien un sens puisque z — v(Cy) est tou-

X
jours &7 -mesurable positive.

étape 2 m est une mesure sur 7 Q B :

m(0) = / V(@z)u(dw):/ v(@) pu(dx)=0. D autre part, si (Cy,),>1 désigne
X X

une suite d’éléments deux a deux disjoints de @&/ ® 4, il est immédiat que les sec-

tions (Cy )z, n > 1, sont deux a deux disjointes et que (U,Ch )z = Un(Ch),. La

o-additivité de v et le théoreme de Beppo Levi pour les séries a termes positifs

entrainent alors

(UnCr) = / v (UnCr)) () = / Y (Un(Cr)e) ()

X

X
- /X v (Cue) pldr) = 3" m(Cp).

n>1 n>1
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étape 3 Caractérisation et interversion :
Soit C=AxBeadxB.Onavuque C,=Bsize A, C,=0@sixz¢ Adou
v(Cy)=14(x)v(B), partant, si v(B) < +o0,

m(C)= /X v(Cy) plde) =v(B) /X 14(2) ju(dz) = u(A) v(B).

Si v(B) = +oo, I’égalité est évidente (avec la convention habituelle). En inter-
vertissant les roles de p et v, on vérifie que la mesure m’ définie par m/(C) :=

/M(C’y) v(dy) coincide avec m sur &/ ®@ 28 d’ou, via 'unicité établie en (a),
Y
m’ =m, ce qui achéve la démonstration. ¢

Remarques sur la o-finitude : e Si 1z ou v n’est pas o-finie, le théoréme tombe
généralement en défaut, méme lorsque I’on peut définir a la fois m et m’. Ainsi,
soit X =Y =R. On munit X de la tribu borélienne et de la mesure de Lebesgue A
(o-finie) et Y de la tribu Z2(Y) de toutes ses parties et de la mesure de comptage
v(B):=card(B). On considére la diagonale de R? : A:={(z, ), z€R}. A estun
fermé de R?, en conséquence, A € B(R?) = #(R) @ #(R) C #A(R) @ Z(R) (on
peut aussi vérifier directement a titre d’exercice que A € Z(R) @ #(R) en notant
que A:={m, =m, }). Il estimmédiat que Ay ={z} et AY={y}.

D’ou : m(A) = /RV(AQC) Adz) = /Rl A(dz) = 400,

alorsque:  m/(A)= /R/\(Ay) v(dy) = /ROI/(dy) =0.

o Il reste que, dans certains cas, la mesure produit peut exister en dehors du cadre
o-fini. Ainsi, considerons deux espaces mesurables quelconques (X, Z(X)) et
(Y, 22(Y)) munis chacun de leur mesure de comptage respective mx et my. Il
est clair que I’'unique mesure m sur (X x,Y, (X x Y)) vérifiant en particulier
m({z} x {y}) = mx({z}) my({y}) = 12 = 1 est la mesure de comptage sur
X X Y qui affecte une masse 1 a tous les couples (z,y) !

évidemment, le théoreme 11.1 établi ci-dessus s’étend directement a un produit
1 ® -+ @ pg de d de mesures o-finies sur des espaces mesurables (X, .o%), 1 <
© <d. En particulier, la mesure 1 ® ... ® pg est entierement caractérisée par le fait
que

P @ @ pa(Ar X x Ag) = pn(Ar) - pa(Aa), A€ o, 1<i<d.

Proposition 11.6. L’opération ® sur les mesures o-finies est associative au sens
ou
(111 @ p2) @ pz = 11 @ (p2 @ pi3) = p1 @ p2 @ fi3. (11.2)

DEMONSTRATION : En effet ces trois mesures sont définies sur la tribu produit
) ® ol @ of3 d’apres la proposition 11.3. En outre, elles coincident clairement
sur les parallélépipedes a cotés mesurables A1 x Ay x As ou toutes trois valent
w1 (A1) po(Az) us(As). Elles sont donc égales. ¢
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Application 11.2. Soit p une mesure o-finie sur (X,.o/) et f : (X, o) — R;.
Alors

/X fdp = /0 > 0t

En effet, posons C:={(t,z) eRL x X : f(x) > t}. Il est clair que

C=J [0 x{fzrtcBR) 2.
=~ N——
r€Q% ca(Ry) ed

D’autre part, C;:={x € X : f(z)>t} et C*:={t€ Ry : f(z)>t}. L’identité (b)
du théoreme de la mesure produit appliqué a A ® p (A désigne ici la mesure de
Lebesgue sur R ) entraine, d’une part,

Ao (€)= [ ( / +1{f<x>>t}A<dt>>u<dx>= /. ( / f(iz)t)u(dx): [ 7@t

et, d’autre part,

2o u@) = [ ([ agumgntan) s = [t > a0

+

11.2.2 Construction de la mesure de Lebesgue )\;, d > 2

Soit d > 2. Désignons par \; la mesure produit \; ® - - - ® A de la mesure de
—_—

d fois
Lebesgue A\ sur (R, Z(R)) par elle-méme. Rappelons une fois encore que A4 ainsi

définie est bien une mesure sur (R?, Z(R%)) car (R?) = %(R)®".
Pour établir que )\, est effectivement la mesure de Lebesgue, on s’appuie sur
un lemme de changement de variable élémentaire.

Lemme 11.1. Soit f : (R, Z(R)) — Ry une fonction borélienne. Alors, pour tout
a€ R,

/Rf(u —a) A1 (du) :/Rf(u) A1 (du).

DEMONSTRATION : Pour tout borélien A et tout réel a ’invariance par transla-
tion A (A+a) =X\ (A) s’écrit /1A(u) A1 (du) = /1A(u — a) A\ (du). Lidentité
R R

s’étend par linéarité aux fonctions étagées puis, via le lemme fondamental d’ap-
proximation, aux fonctions mesurables positives.

Proposition 11.77. La mesure produit \g := )\?d est la mesure de Lebesgue sur
(R%, B(R7)).
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DEMONSTRATION : Il nous faut simplement vérifier les hypotheses (¢)-(i7) du
théoréme d’existence et de caractérisation de la mesure de Lebesgue (théoreme
6.1). D’apres la proposition 11.6, les mesures Ay vérifient la relation de récurrence
Ad = M ®Ag_1, d> 2. Onraisonne alors par récurrence sur d, supposant la mesure
de Lebesgue \; construite.

Supposons donc que Ay est bien la mesure de Lebesgue sur (R4~1, Z(R1))
i.e. A\g—1([0,1]%71) = 1 et Ay_; est invariante par translation. Il vient alors :

= Aa((0,1]%) = Ae([0,1]) A1 ([0, 1] 1) =12 = 1.
— Soient a := (ay,as,...,aq) € RYet C € B(RY) = B(R) @ BRI1); on
vérifie que, pour tout z1 € R, (a+C),, = (ag,...,aq)+Cqy—q, donc

Ai(a+C) = //\dl((ag, cooyaq) + Cyy—ay) A1(dzy) (mesure produit),
R
= / Ad—1(Cry—ay) A1(dz1) (Ag—1 est invariante par translation),
R

:/)\d_l(Cxl))\l(dxl) via le lemme ci-dessus,
R
= \(C).

D’ou le résultat. ¢

11.3 Théoréemes de Fubini

Il y a, selon la terminologie usuelle deux théoremes de Fubini : I'un pour les
fonctions positives, 1’autre pour les fonctions intégrables. Dans les applications, il
est généralement nécessaire de s’appuyer sur le premier pour vérifier les hypotheses
du second.

Théoréme 11.2 (Fubini-Tonelli). Soient f : (X xY, o/ @ B) — R une fonction
mesurable, i et v deux mesures o-finies, respectivement sur (X, .o/) et (Y, A).

(a) Les fonctions partout définies x — /Yf(x, y)v(dy) et y — /Xf(x, y) p(dx)

sont respectivement </ et B-mesurables.

0  gen (] i) = s

(Ces égalités ont lieu dans R y.)

DEMONSTRATION : (a) D’apres le corollaire 11.1 ci-avant, la section de f d’abs-
cisse z, f(y) := f(z,y), est Z-mesurable (positive). Par suite, pour tout z € X,

/f(:v,y) v(dy) existe. Si f :=1¢, C € o/ ® A, on a vu dans ’étape 1 de la
Y

démonstration du théoreme 11.1(b) que x — v(C,) = / 1o(z,y) v(dy) est of -
Y

mesurable.
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Si f est étagée positive (donc finie) le résultat découle de la linéarité de 1’inté-
grale et de la stabilité de la mesurabilité par somme de fonctions mesurables (fi-
nies). On conclut en approchant toute fonction 27 ® Z-mesurable positive par une
suite croissante de fonctions étagées positives via le lemme fondamental d’approxi-
mation et le théoréeme de Beppo Levi.

(b) D’apres le point (a), les intégrales considérées ont un sens; en outre, si f:=1¢,
Ce o/ @2, I'identité annoncée s’écrit

u®u(C):/

X

v(Cy) () = / w(C¥) u(dy).

Y

Ceci a été établi dans le théoreme 11.1. On conclut alors comme en (a) via le
procédé d’approximation standard . ¢

Application 11.3. Soient f € Zg(\,Ry) et F(x) := f(t) dt. Alors, pour tout a >0,
[0,z]

Flar) = F@) g —tna [ f(a) da.

Ry T Ry

DEMONSTRATION : étape 1 : Commengons par un résultat préliminaire — cas particulier du théoréme
de changement de variables qui sera établi au chapitre 12 —

Va >0, VAE B(R), Mad) = ar(A).

Tl est en effet facile de vérifier que 1’application définie sur Z(R) par pu(A) := a~ ' A(«A) est une
mesure sur Z(R), invariante par translation et que ([0, 1]) = 1. Donc par unicité de la mesure de
Lebesgue, ;+ = A. Soit A un borélien de R. On en déduit ensuite que, pour toute fonction étagée
positive, puis, via le théoréme 7.1, pour toute fonction borélienne positive g

/AQ(OZI) dz = é/aA g(z) d.

étape 2 : Revenons au probleme. On se ramene au cas ol f est positive grace a la décomposition
canonique f = fT — f~. On applique alors le théoréme de Fubini-Tonelli (théoréme 11.2) a la
fonction ® définie sur I’espace produit ([1, a] X R4, Z([1,a]) ® B(R+)) par ®(t,x) := f(tz). La
fonction @ est la composée de la fonction continue — donc A([1, a] X R, )-mesurable — (¢,z)
tz par la fonction borélienne f. Comme %([1,a] x Ry) = A([1, a]) ® B(R+), la fonction P est
A([1,a]) ® B(R4)-mesurable. 11 vient alors

tx)dt | de = tx)dx | dt.
/R+ < [1,a]f( ) ) /[l,a] ( R+f( : )

D’apres le résultat préliminaire,

. e [ 1 e [ Flaz) = F@)
/R+ ( Mf(t )dt> d /R+ - (/[m’az]f(t)dt> d . - dz.

D’autre part, par le méme argument

1
dr | dt = dr | =dt=1n dx,
/[1,a] ( R+f(ta:) a:) ! /[1,a] ( R+f(a:) m) t ! a/m fw)de

d’ou I’égalité cherchée. ¢



11.3. Théorémes de Fubini 239

Théoréme 11.3 (Fubini-Lebesgue). On considére a nouveau les espaces mesurés
du théoreme 11.2. Soit f € £¢(u @ v) (K=R ou C). Alors :

(@) { p(dx)-p.p. y— flz,y)€ L),
v(dy)-pp. x— flz,y)€ L(n).

b) x> /Y fx,y)v(dy) € L (n) et y — /X f(x,y) p(dx) € L (v), ces fonctions

étant définies respectivement [1-p.p. et V-p.p.

] Y :/ </ f(f'%y)l/(dy)) p(dz)
/</ffcy d:c) v(dy).

DEMONSTRATION : Cas réel : (a) Si K =R, on applique le théoréme de Fubini-
Tonelli aux fonctions f* et f~. Or, d’apres le corollaire 7.2, si g € .,%F%Jr( m), m

()

mesure positive quelconque, alors {g = +00} est mesurable de m-mesure nulle.
Ainsi, pour le point (a),

/X </yfi(x’ v) ”(dy)) pldo) = | fFdpev)

(11.3)
g/ Ifld(p® v) < 400
XxY

donc {xGX : / fE(x,y) v(dy) = —1-00} est «7-mesurable de p-mesure nulle.

(b) Ce point découle immédiatement de 1’inégalité (11.3) car, pour tout z € X,

/fwy dy‘ /Ifxy (dy)

< /Y 1+ () w(dy) + /Y § () vldy) € L (u(dx)).

La fonction z / f(z,y) v(dy) est donc p-intégrable. On proceéde de facon ana-
Y

logue pour les affirmations symétriques.
(c) Ce point s’établit en faisant la différence terme a terme dans 1’identité (11.3).

Cas complexe : Si K=C, on se ramene au cas réel par les méthodes habituelles
en considérant R(f) et 3(f). ¢

Remarque : L'hypothese d’intégrabilité de la fonction f dans le théoréme de
Fubini-Lebesgue est cruciale. En effet, on peut avoir I'intégrabilité des fonctions
“intermédiaires” de I’assertion (b) du théoreme 11.3 sans que 1’égalité (c) soit
vérifiée pour autant. A fortiori aucune forme de “réciproque” n’est non plus va-
lable : on peut avoir intégrabilité des diverses fonctions “intermédiaires” de 1’as-
sertion (b) du théoreme 11.3 et I’égalité (c) sans que la fonction f soit pour autant
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intégrable par rapport a la mesure produit. Ces situations sont illustrées par les
contre-exemples ci-apres.

Contre-exemples : 1. Soit f la fonction définie sur I’espace produit Ry x [0, 1]
par f(z,y) :=2e 2% — =% La fonction f est continue de R, x [0, 1] dans R,
donc borélienne, donc A(R)® %([0, 1])-mesurable. D’ autre part, pour tout y > 0
(donc a fortiori dy-p.p. sur [0, 1)),

=0

6—21’y e~ Y r=+00
R+ y y =0

et pour tout x > 0 (donc dz-p.p. sur R}),

_ _ =1 _ _
e 2xy e~y Y e T _¢ 2x
X

/ f(x,y)dy = [— +
[0’1} X xXT

Cette derniere fonction, convenablement prolongée en 0, est continue, strictement
positive et intégrable sur R . Finalement,

/ ( f(z,y) dw> dy =0
[071] Ry
+o00 e~ T _ 67296
/R+ ( o fz,y) dy) dx —/0 <x > =1n2,

d’apres 1’application 11.3.

y=0

2. Soit la fonction f définie sur le pavé [—1, 1] par f(z,y) = xy/(z? + y*)? si
(z,y) # (0,0) et £(0,0) = 0. Cette fonction est continue sur [—1, 1]%\ {(0,0)} qui
est un borélien, donc est borélienne sur [—1,1]? et donc %([—1, 1])®2-mesurable.
On vérifie sans peine que pour tout z € [—1,1], la fonction (y — f(z,y)) est
intégrable par rapport a la mesure de Lebesgue sur [—1, 1], d’intégrale nulle. De
méme, pour tout y € [—1, 1], la fonction (z — f(z,y)) est intégrable par rapport
a la mesure de Lebesgue sur [—1, 1] d’intégrale nulle. En conséquence, les deux
intégrales “doubles” de I’assertion (c¢) du théoréme 11.3 existent et sont égales
parce que nulles. Cependant, il est immédiat, via le théoréme de Fubini-Tonelli 11.2,
que

/[ . |f(z,y)| dz dy = +o0.

Ainsi, la fonction f n’est pas intégrable par rapport a la mesure de Lebesgue-
produit sur ([—1,1]%, Z([-1,1])%?).

Conventions courantes d’écriture : e Pour éviter I’introduction excessive de pa-
rentheses, on acolle parfois la mesure au signe d’intégrale. Ainsi, de préférence a
I’écriture originelle des théorémes 11.2(b) ou 11.3(c), on écrira plutdt :

[ etz dp s =[ wao) [ viansen=[ viay [ pan)s.).

xY Y X
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Enfin, lorsque la positivité ou I’intégrabilité de f est acquise, on trouvera sou-
vent la notation p(dz) v(dy) f(xz,y) . Ceci est particulierement courant en
Y

présence d’intégrales multiples. D’autre part, on s’abstiendra d’introduire des sym-
boles d’intégrales multiples (doubles, triples, n-uples) pour intégrer par rapport a
une mesure produit.

e La mesure de Lebesgue \; sur R? étant (cf. 1’application de la section 11.2)
le produit de la mesure de Lebesgue sur R par elle-mé&me, on note souvent cette
mesure dxy. . .dxg et les intégrales associées

f(a:))\d(dx):/ f(wl,...,:cd)dacl...dxd:/ dry...dzg f(x1, ..., 2q),
R? Rd Rd

voire, plus simplement,

[ 1@t = [ r@) e

Application 11.4. Formule d’intégration par parties sur (R, B(R), \) :

Soient f et g deux fonctions localement intégrables sur R, i.e. intégrables sur tout
intervalle borné de R, alors les fonctions définies — avec les conventions habituelles
(cf. application 8.5) — par

VzeR, F(z):= /Ozf(t)dt et G(z):= /Ogcg(t)dt,

vérifient la formule d’intégration par parties généralisée :

/m f(t)G(t)dt = F(z) G(zx) — /x F(t) g(t) dt.
0 0

DEMONSTRATION : Pour simplifier nous allons traiter le cas 2 >0 ol

/0 " o) dt = /[0@] (1) dt.

La preuve consiste a appliquer le théoreme de Fubini-Lebesgue a la fonction

(I)(t7 3) = 1{0§s§t§az} (t7 3) f(t) g(S)

définie sur I’espace produit ([0, z]?, Z([0, 2])®?). ® est mesurable par rapport a la
tribu produit 4([0, x])®? car f et g sont mesurables par rapport a la tribu %([0, z])
et I'ensemble {(s,t) € [0,z]? : 0 < s <t < x} est un fermé de [0, z]? donc un
élément de %([0, x]?) = A([0,z]) ® B([0, x]).

En outre, ® est intégrable sur [0, z]2. En effet, |®(¢,s)| < [£(¢)|]g(s)] et le
théoréme de Fubini-Tonelli (théoréme 11.2) montre que

| pesa< [ oo deds - /[0 @) dex [ lalds < +x.

[0,2]? [0,2]? [0,2]
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La fonction ® étant dt @ ds-intégrable, il est possible d’appliquer le théoreme de
Fubini-Lebesgue (théoréme 11.3) qui conduit a I’identité

/ (/ D(t, ) ds) dt = / </ D(t, s) dt) ds. (11.4)
[0,x] [0,z] [0,x] [0,x]

Or, I’intégrale de gauche dans (11.4) est égale a

/[o,x} </[0,x] (t:5) ds) dt = /[ny] f(t) (/[0@] 10,0 9(s) ds) dt,
= /[O p f(®) ( /M 9(s) ds) dt,

= [ f)G)at.

[0,2]

En notant que {(s,) €[0,z]? : 0<s<t<a} = {(s,t) € [0,2]* : 0<s< z, s<
t < x}, on vérifie que I'intégrale de droite de (11.4) vaut

/[0,1?] </[0,;t] é(t, S) dt) ds = /[U,z} g(S) (/[o’x] 1[8,3}] (t) f(t) dt) dS,
- /[o,z} o (/[o,x] Lsa) (8) £(2) dt) ds.

La seconde égalité s’appuie sur le fait que la mesure de Lebesgue ne charge pas les
points. Enfin, comme pour tout s € [0, z], 1i5.2) = Ljo,0] — 10,4 cette intégrale est
aussi égale a

/[07 g0 ( /[0 (]1 “1y0.4(8) () dt) — F(2) Gz) /[0 9 ds( §C dt)

d’ou la formule d’intégration par parties. ¢

Application 11.5. Séries doubles :

Soit (apq)pgen une suite indexé par N2. Par définition — mais ceci n’est qu’un
cas particulier de la théorie des familles sommables — on dira que la série double
de terme général a,, , est absolument convergente si I’application (p, q) — a4 est
intégrable par rapport a la mesure de décompte ms sur N, Dans ce cas on pose (°),

Z Op,q = /N2 ap,q dma(p, q)-

p,geN

3. Cette définition coincide avec les définitions élémentaires.
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Or, comme cela a été établi dans le seconde remarque qui suit le théoreme 11.1,
la mesure de comptage mso s’écrit mo = mj ® m; ou my désigne la mesure de
comptage sur N. En outre, on a vu (cf. chapitre 7 au fil des remarques) qu’une série
de terme général a,, est absolument convergente si et seulement si la suite (a,)nen

est m1-intégrable et qu’alors Z ap = / an dmi(n).
N
neN
Comme le mesure m; est o-finie puisque N est dénombrable, les deux théo-

rémes de Fubini s’appliquent dans ce cadre et fournissent un procédé efficace de
sommation des séries doubles :

Z |ap,q| = Z (Z ‘apyq’) = Z (Z ’ap,q|> < o0,

p,qeN peN  ¢geN geN peN

et, si E lap,q| < +00, alors
p,geN

Z ap,q:z (Z%,q> :Z (Zap,q)-

p,gEN pEN  ¢€eN geN  peN

11.4 & Produit infini de mesures de probabilité

Théoréme 11.4 (Ionescu-Tulcea-Kolmogorov)). On considere une suite d’espaces
de probabilité (X,,, oy, jin), n € N* (i.e. un(X,)=1) et I’on se place sur I’espace
produit

X = H Xp = {(xn)neN*, Tn € Xpn, n€ N*}'

n>1
On munit X de ’algébre de Boole

¢i={ax]] X Aie s @ @, neN}|.
k>n+1

et I’on pose pour tout n € N* et pour tout A€ o) @ -+ Q Hy,
V(A X ka) = (1 ® @ pn)(A). (11.5)
k>n+1

Ceci définit une mesure de probabilité sur I’algebre de Boole € qui se prolonge de
facon unique en une mesure de probabilité sur la tribu engendrée

o = @ gy =0(F).
neN
Ce théoreme n’est en fait qu’un cas particulier du théoreme général de Ionescu-
Tulcea (e.g. [26], chapitre V-I) dont I’ objet est la construction d’une chaine de Mar-
kov sur son espace canonique.
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DEMONSTRATION : étape 1 : Dans un premier temps on vérifie que la défini-
tion 11.5 est cohérente. En effet, pour tout n€ N* et pour tout A€ 7| @ - - - ® o,

V<A X Xpt1 X H Xk) = (1 ® - ® ppt1)(A X Xpp1)
k>n+2

— (,Ul R ® ,Un)(A) ,UnJrl(XnJrl)

=(u1 @ @ up)(A) = I/<A X HXk>
k>n+1

étape 2 : Le fait que v définisse une mesure sur 1’algebre 4" est immédiat, puisque
I’on peut toujours supposer que deux éléments C' et C’ de ¢ sont de la forme
AX Xpp1 X Xppo X -+, A€ 9 ® - - - ® o, pour un n suffisamment grand.

étape 3 : Le seul point délicat est donc I’obtention de la propriété de Carathéodory.
A cette fin, on introduit des mesures de probabilité auxiliaires sur 4. En I’occur-
rence, on définit, pour tout p € N*, pour tout (z1,...,2p) € X3 X --- x X la
mesure de probabilité v/(#1+») par :

pour tout n € N* et pour tout A€ A @ -+ ® A,

P (@LsTp) (A X H Xk) = / La(xr, ..o xn) tpt1 (dTps1) - - - pn(day,).
E>n41 Xpp1x--xXp
On convient en outre que 9 =y lorsque p = 0. Les probabilités 1/(#1:)

vérifient les deux propriétés essentielles suivantes :

—sip>n, p(F1Tp) (A X H Xk> =1a(x1,...,20),
k>n+1
— pour tout pe N et tout (z1,...,2p) € X1 X -+ X X,

VCe €, VWm0 = / p@r oot (O) 1 (daprr). (11.6)
Xpt1

Cette derniere égalité est une conséquence immédiate du théoréme de Fubini-Tonelli.

Soit (C,)n>0 une suite d’éléments de € décroissante pour I’inclusion. La suite
(v(Cp))nen= est décroissante positive donc converge vers £ > 0. Supposons £ > 0.
D’apres I'identité (11.6)

V(Cy) = /X V) (C) o (day ).

Mais, si, pour tout z1 € X7, y(”“)(Cn) 1 0, alors le théoreme de convergence
dominée entraine v(C,,) =0. Il existe donc z; tel que ian v@)(C,)>0.
ne

De la méme fagon, vV (C,,) = / V®022) (C) g (daa), done il existe zo €
Xo

X tel que ing @) (Cy,) > 0. On construit ainsi de proche en proche une suite
ne
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(xp)pen- telle que

Vpe N*, inf p(@Lm)(C) > 0.
neN*
Soitalors,n€ Nfixéet C,, = Ay, x Xy, 11X Xp, 12X%..., Ay, € AA®--- R, .
Des que p>4,,
La,, (21, 20,) = vE02)(C) > 0

ie (z1,...,x4,) € Ag,. En conséquence, (z,)pen € Cy, pour tout n € N ce qui
entraine que ﬂ Cn#0. ¢
neN

11.5 Exercices
(X, o/, ) désigne un espace mesuré o-fini, i.e.

X=J'E. ot Eped et u(E,)<+x.
n>1

11.1 On considere les deux espaces mesurés (R, Z(R), \) et (R, Z(R), p) ot p est
la mesure définie sur Z(R) par p(A) := 0 si A est dénombrable et p(A) := 400
sinon. Soient K un compact de R non dénombrable et de mesure de Lebesgue nulle
(par exemple [’ensemble de Cantor au chap. 13,et C := {(z,y) €R? : z—y € K }).

a) Montrer que C € Z(R) ® Z(R).
b) Calculer / Adz) /R Lo (o, y)pldy) | /R u(dy) /R 1o(z, y)\(dz) et conclure.

R

d x
11.2 Soit f la fonction défini R = *<7)
oit f la fonction définie sur R par f(x) Zd:c nZ & 22
n>1
“+o00
f

a) Montrer que I’intégrale (z) dx est semi-convergente et calculer sa valeur.

b) Calculer la série Z / T (%) et comparer au résultat du a).
z\n? +x

22—

(1.2 +y2)2

1 1 1 1

a) Calculer / dm/ f(z,y)dy et / dy/ f(z,y)dx .
0 0 0 0

b) En déduire que f ¢ Za(]0,1]?).

11.3 Soit f définie sur [0, 1]? par f(x,y) = et f(0,0) := 0.

11.4 Soient f € XF%JF (1) et g : Ry — R une fonction croissante, de classe ¢!

+oo
sur R, nulle en 0. Montrer que / go fdu= / g ) p({f>t})dt.
b's 0
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11.5 Soient p et v deux mesures o-finies définies sur la tribu borélienne de X := R.
a) Montrer que I’ensemble D := {x € R : u({z}) >0} est dénombrable.

b) Montrer que 4 ® v Z p({x})v({z}) ol A estla diagonale de R?.
z€R

11.6 Soit f : R — R_. une fonction borélienne positive.

a) Montrer que 1’ensemble A := {(z,y) €R? : 0 <y < f(x)} est un borélien
de R? et calculer \o(Ay).

b) Méme question pour le graphe de f défini par G := {(z, f(z)), z€R}.
¢) En déduire que A({z € R : f(z) = y}) = 0 A(dy)-p.p.

11.7 Soit (R, <7, 1) un espace probabilisé (1(R) =1); soient f et g deux fonctions
de Zi () vérifiant fge ‘ZF:QL+ (1) et f, g monotones de méme sens. Montrer que

/ngduz/Rfdu/Rgdu-

11.8 Théoreme de Schwarz

Soient €2 un ouvert de R% et f : O — R une fonction continue ayant des dérivées
32f 0*f
6w8y 8y8:c

11.9 Soient a,b € R, a < bet f € £ ([a,b]?).

b @ b b
a) Montrer que [ := / de | f(z,y)dy = / dy/ f(z,y) da.
a a a Yy

partielles

continues sur {2. Montrer qu’elles sont égales dans (2.

1
b) Si f(x,y)=f(y,x) A2-p.p., montrer que [ = B f(z,y) dz dy.
[a,b]

11.10 Probleme de Bdle 7

dxd
a) Calculer de deux fagons différentes I’intégrale / vy 5 -
r2 (1+y) (1+2%y)
Inx

o dz.

+o0o
En déduire la valeur de /
0

+00
b 24 1
b) Déduire du a) et d’un développement en série 1’égalité ; m 3
+oo
puis en séparant les termes pairs et impairs retrouver la formule Z — =
n
n=1
" In(1 + cos x) 1

11.11 a) Calculer / dxr alaidede (z,y)— ———.
0 cosx 1+ ycosw

1
l+y+vy+1°

cos?(x)

g
b) Montrer que Vy € Ry, / _
) q g o 14y cos?(z)

dr = =
2
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us

¢) En déduire la valeur de / “In (1 + cos®(z)) d.
0

sin x

“+oo
11.12 Soient f, g les fonctions définies sur R par f(t) := / e dr et
0

x

+00 (in2

S

g(t) == / 1n2x e " dr pourt € Ry.
0 T

a) Montrer que f est continue sur R* et g sur R.

b) Calculer f(t) pour tout £ >0, en partant de I’égalité 2

1
’ :/ cos(zy) dy.
0

. 2 .
2
¢) Calculer g(t) pour tout ¢ >0, en partant de 1’égalité e 5 - / sin(2zy) dy.
X 0 X

d) En déduire la valeur de ¢(0).

11.13 On rappelle que pour tout f € %= (R), la transformée de Fourier de f est la
~ +o0 ,
fonction définie sur R par f(t) := / f(x)e ™ dx pourt € R.

—00

a) Calculer, pour a >0, la transformée de Fourier de la fonction x +— e—alel,

too p—itw
b) Soient a >0 et f, la fonction définie sur R par f,(t) := / —alel g,
oo 14a2?
+o0 a ]
Montrer que f,(t)= ——e Widy.
que fa(t) /Oo PR P y
1
¢) En déduire la transformée de Fourier de la fonction (3: — 1_1_72>
x

11.14 Inégalité de Hardy
a) Soient (X, o/, u) et (Y, %, v) deux espaces mesurés o-finis et p € [1,400[;
soient ¢ € Zn(u @ v) et F définie par F(z) := / o(z,y)v(dy) p(dz)-p.p..
Y
Montrer que F’ vérifie I'inégalité [[F|[,, , < / o (sl g, v (dy) -
Y
b) En déduire que pour toute fonction f €45 ()), la fonction F' définie sur R*. par
1 x
F(z) = / F(t)dt vérifie I'inégalité de Hardy | F]|, < Llnfup .
T Jo p—

11.15 Inégalité de Hardy-Littlewood-Polya

Soit ¢ une fonction décroissante sur R telle que hlf o(z)=0.
T—r+00

a) Soient f une fonction borélienne positive sur R et F' la fonction définie sur R
€T

par F(x) := / f(t)dt. Montrer la formule d’intégration par parties
0

A= | Fd(-
R+f<p /R+ (—¢),
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ol d(—¢) désigne la mesure de Stieltjes sur Z(R_.) associée a la fonction crois-
sante — (cf. paragraphe 6.5.2).

b) Soient p, ¢, a,b€R vérifiant p>1, - + L =1, pa+1>0et ¢b+1>0. Déduire
du a) I’inégalité de Hardy-Littlewood-Polya (HLP)

+oo
/ 2 p(z) da
0

1 1 1 1

)7 (gb+1)a [ [* p( [ a

S (pa+ )pb(q 1"' )q (/ SCpaQD(LU) dx>p</ xqbgo(x) dﬂ?)q
a+0b+ 0 0

¢) On suppose que toutes les intégrales sont finies et p a # ¢ b. Montrer que 1’inéga-
lité¢ (HLP) est une égalité si et seulement si il existe ¢,z € R4 tels que ¢ = ¢ sur
10, z[ et ¢ = 0 sur ]z, +o0l.

11.16 Inégalité de Polya-Szego

Soit ¢ une fonction croissante sur [0, 1].

a) On suppose dans cette question que ¢ n’est pas constante sur [0, 1]. Soient f
une fonction borélienne positive sur [0, 1] et F' la fonction définie sur [0, 1] par

xT
F(z) := /0 f(t)dt. Montrer la formule d’intégration par parties

' _[! ~ oo e
/0 fWM_/o (e F1) = F)dp, e = (1) = ¢(0)’

ol dp désigne la mesure de Stieltjes sur ([0, 1]) associée a la fonction crois-
sante ¢ (cf. section 6.5.2).

b) Soient p, g, a, b € R vérifiant p > 1, % + % =1,pa+1>0, gb+1>0. Montrer
l’inégalité de Polya-Szegd (PS)

/0 L) dr > P t:f’b(ibl* s ( /0 () czx)’l’ < /0 () dx>; .

¢) On suppose que pa # qb. Montrer que I’inégalité (PS) est une égalité si et
seulement si ¢ est constante sur |0, 1].

11.17 On se place sur I’espace mesuré ([0, 1], 2([0,1]), A) ou A désigne la mesure
de Lebesgue.

a) Soient f € Z2(\) et / la fonction définie sur [0, 1] par f(t) := fdx,
[0,2]

t € [0, 1]. Montrer que f est continue sur [0, 1] et que I’application f — f de

(LEN), || - |I,) dans (%Rr([0,1]), || - ||..) est continue.

b) Soient f € Z3(\) et 1 une mesure finie sur %([0, 1]). Montrer que fe LA ()

et qu’il existe une fonction & () décroissante sur [0, 1], que I’on déterminera, telle

ae [ Fip= [ jomar.
[0,1] [0,1]
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¢) Soient y et v deux mesures finies sur ([0, 1]). Montrer que

P(u) P(v)d\ = inf (s,t) d(p®v)(s,t).
[0,1] [0,1]2

11.18 Transformée de Mellin

Soit f € Z2(R4, ). On définit la transformée de Fourier en cosinus de la fonc-

tion f par
+oo
\f/ ) cos(xy)dxr poury € Ry.

Soit g : Ry — C borélienne telle que, pour tout s €0, 1], (y — g(y) ys_l) soit
intégrable sur R4 (ou éventuellement y possede une intégrale semi-convergente).
On définit la transformée de Mellin de g par

+o00
M(g)(s) == /O g(y) v dy pours €]0,1],

et la fonction I := M (y — e~ ¥). On considere s €]0, 1].

a) Soit P:={z€C : R(z) > 0}. Montrer que z — z° M (y — e *Y) est continue
sur P\ {0} (z° := e*'"% ou In est la détermination principale du logarithme),
holomorphe sur I’intérieur de P. En déduire qu’elle est constante égale a I'(s) sur P.

b) Soit f € ¢ (R4, /\) avec (y = f(x (y > F(f)( Yyih) e LRy N).
Montrer que M (F(f))(s) = lim / f(z M (1jg,44) cos) dx.

a—+400

¢) En déduire lidentité M (F(f))(s) = \/E cos (g s) M(f)(1—s).

d) On considere la fonction f(x) :=e™* et on rappelle que (F' o F)(f) = f (cf-
exercice 8.17 b)). Montrer la formule des compléments

s

Vsel0,1] T'(s)T'(1—s)=— .
s €]0,1[ T(s)I'(1—-s) Sn(ms)
11.19 Inégalité de Schur et inégalité de Hilbert

On considere une fonction K : R} xR% — R borélienne, homogene de degré
—1, i.e., pour tous t, 7,y € R%, K(tz,ty) =t~ ! K(x,y), et telle que la fonction
(t — K(1,t) + K(t, 1)) soit bornée sur R . Soient p, ¢ > 1 tels que %—&-% =1,
fef,%(R"jr, A) et 9€$F31+(Riv A).

a) Montrer que

/R* e @ IWE @, y) v dy = /;oo K(1,1) < ;oo f(z) g(tz) dac) dt.
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b) En déduire [’inégalité de Schur

| f@ewE @y dedy < 1) 17l gl ©

too
ou I(q) := /0 t e« K(1,t)dt < +o0.
¢) Soient ¢, ¢ € th (R%, \) vérifiant : pour presque tout ¢ € R, il existe a(t) € R
tel que 1) (tx) = a(t) (x) dz-p.p. sur R’ . Montrer que ¢ =0 A-p.p. sur R .
d) Déduire que (S) est une inégalité stricte si f et g ne sont pas nulles p.p. sur R
e) Montrer que la constante I(p) dans (S) est optimale.

)
f) Soient (an)n>1€ LR, et (bn)n>1€ Ly, . Déduire des formules des exercices 11.18
d) et 12.7 b) I’inégalité de Hilbert

S e < s (S ) (S

m,n>1 m>1 n>1

hSA

too o—ar _ o—bz g
11.20 Soit pour a,b € Ry, a < b,etn € N*, I, := / <7) de.
0 X

dty---dt
a) Montrer I’égalité I,, = / T
[apn 1+ +in

b) En déduire les valeurs de I5 et I3.

“+o00 2
11.21 Soit I := / arctan’z
0

22
+oo
a) Montrer que [ = / arctan®(1/z) dx < 4o0.
0

+0o0 2 1
b) En déduire que T — / @ 1),
0 T + 1

tan? Ld bd
¢) Montrer que Vx > 0, LC T / 73/2 5 / ).
o 1+ 2%y o 1+ 2222

dx
d) En déduire que [ —/ / (/ EERI +:c222)> dydz.

e) Montrer que

1
(14 22y?) (1 4 2222)

B 1 y2 22
o222 \ 14222 1+a222)]

1
dt
f) Retrouver la valeur de I en écrivant arctanx = x / 5T

Ve eRy, Yy #2€]0,1],

puis en appli-

quant le théoréeme de Fubini-Tonelli.
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11.22 Soient (X, <7, f1) un espace mesuré fini (i.e. u(X) < +00) et (fn)n>1 une
suite de fonctions p-intégrables positives telle que la suite (u({ fn > t}))n>1 soit
décroissante pour tout ¢ > 0. B

a) Montrer que {(z,t)€ X x R4 : fi(z) >t} € & ® B(R;) ou B(Ry) estla
tribu des boréliens de R .

b) En déduire que la fonction (¢ — p({f1 > t})) est borélienne et que

/O+Oou({f1 >t})dt=/xf1du-

¢) Montrer que les fonctions g,, définies pour tout n > 1 par g, := lrélkaé( fx sont
SKESN

mesurables et que, pour tout ¢ > 0, u({gn >t}) < nu({fi > t}).

+o0
d) Montrer que % / gndp < /0 min (u(X)/n, n({f1 > t})) dt.

X

1
e) En déduire que liTILn - / gndp = 0.

X

11.23 Caractérisation de la mesure de Lebesgue

Soit p une mesure borélienne sur R;. On suppose qu’il existe une constante cg
telle que pour toute boule B(x,r) de centre # € R? et de rayon r > 0, on ait
u(B(w,r)) = car®.

a) Montrer que pour toute fonction ¢ € €% (R% R, ), ona

/ o(z) Aa(dz) = 22 / () ul(dy),
Rd Rd

Cd

ol vg := A\g(B(0,1)) désigne la mesure de Lebesgue de la boule unité de R?.

b) En déduire que p = d Ad-
Ud






Chapitre 12

Mesure image.
Changement de variables

L’ objet principal de ce chapitre est d’établir le théoreme de changement de variables
général dans les intégrales multiples définies sur (R?, (R%), \). L importance pra-
tique de ce théoreme est immense : il est en effet, avec le théoreme de Fubini, a la
base de tous les calculs explicites d’intégrales multiples.

Cependant, dans un premier temps, nous allons développer la notion de mesure
image que I’on peut assimiler a une forme de changement de variables abstrait. En
effet, cette notion permet de transporter une mesure d’un espace mesurable (X, <)
sur un espace mesurable (Y, %) via une application mesurable h de (X, .<7) dans
(Y, #). Cette notion se révélera fondamentale en Probabilités puisqu’elle est a la
base méme de la notion de loi d’une variable aléatoire.

12.1 Mesure image

Définition 12.1. Soient (X, o) et (Y, B) deux espaces mesurables et une fonction
mesurable h : (X, o/) — (Y, A). Si u est une mesure sur (X, o), Uapplication v
définie sur B par
v: B — Ry
B+ v(B) :=pu(h™'(B))
est une mesure sur (Y, B) de méme masse que fu.

Par définition, v est la mesure image de i par h. On la note h(u) ou pp, — voire
poh~t — selon les cas.

Cette définition nécessite une démonstration afin d’établir que la mesure image
est bien une mesure.

DEMONSTRATION : v(@) = pu(h ™1 (@) = p(@) =0. Soit (By,),>1 une suite de par-
ties de # deux a deux disjointes. D’apres les formules de Hausdorff, dés que 7 j,



254 12. Mesure image. Changement de variables

h=Y(B;)Nh~1(B;)=h~1(B;NB;) =h~1(0) =0, h‘1< U Bn) = Jn ' (Ba).

n>1 n>1
D’ou
T (UB) = e(r (U B)) - e( U s)
n>1 n>1 n>1
= Z (M(hil(Bn)) = Z v(Bn)
n>1 n>1

Remarques : e La mesure v peut étre définie sur une tribu a prior? plus grande
que A, en ’espece la tribu image de <7 par h. Cette tribu, introduite au chapitre 4
(section 4.2.2), est définie par {BC Y : h~Y(B) € &/}. C’est la plus grande tribu
sur Y rendant la fonction h mesurable comme fonction définie sur (X, 7).

e La notion de mesure-image est essentielle en Probabilités puisqu’elle est a la base
de la notion de loi d’une variable aléatoire.

Théoréme 12.1 (Théoreme de transfert). Soit uy, la mesure image de p par h et
f (Y, B) — Kune fonction mesurable. Alors f est jup,-intégrable si et seulement
si foh est p-intégrable (i.e. f € L(un) = foh e Li(n)) et dans ce cas,

/deMhZ/Xfohdu-

L’égalité ci-dessus a toujours lieu si f est positive (& valeurs dans R ).

DEMONSTRATION : Supposons que f=1pg, B€ 2. Dans ce cas
/}Vf dpp = pn(B) = p(h™(B)) = /thl(B)dﬂ'

Or 1),-1(p)y=1poh puisque € h™'(B) si et seulement si h(z) € B, d’ou

/fd,uh:/lBohdu:/fohd,u.
Y X X

L’ égalité s’étend par linéarité aux fonctions étagées positives puis, via le lemme
fondamental d’approximation et le théoréme de Beppo Levi, aux fonctions mesu-
rables positives (on remarque que si 0 < f,, 1T falors 0 < f,oh 1T foh).
L’extension aux fonctions mesurables réelles et complexes p-intégrables se fait
via les décompositions ad hoc.

Application 12.1. Soit h : (X, /) — (X, 7). Si p est invariante par h, i.e. ju, =
1, alors

vfe L), /deu=/xfohdu-

Ceci constitue une premiere formule de changement de variables.
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Exemple : Par définition de la mesure de Lebesgue \g sur (R, Z(R?)), celle-ci
est invariante par les translations 7, : = — x —a, a € R%, puisque, pour tout
Be B(RY), \g(a+B)=Xg(B) i.e. \g(t;1(B)) = \g(B). Par suite

Yac RY YV f e L), / f(x:ta)da::/ f(z)dz.
Rd Rd
En fait, cet exemple est un cas particulier d’un résultat plus général détaillé dans la
proposition ci-apres.
Proposition 12.1. Soient A€ GL(d,R) et be R% Alors

1

Y fe L), /Rdf(Ax +b) dx =

L’égalité s’ étend aux fonctions mesurables positives.

La formule (12.1) est une formule de changement de variables affine. Ceci est
évident lorsqu’on la met sous la forme

flx)dx = / f(Au+0b)|det A| du. (12.2)
Rd Rd

D’autre part, la proposition 12.1 se reformule en termes de mesure image de la
facon suivante :

Corollaire 12.1. Soient A€ GL(d,R) etbe R L’image de la mesure de Lebesgue
sur RY par application (x +— Az +b) est la mesure | det A|=1. \g.

DEMONSTRATION : L’exemple ci-dessus appliqué a la fonction (z — f(Az)) et
aa:=A"1(b) entraine que

f(Az 4+ b)dx = / f(A(z+ A7) de = | f(Az)dz.
Rd Rd Rd

On peut donc supposer que b=0.

On s’est ainsi ramené a montrer que la mesure image de Ay par A n’est autre
que | det A|~1. \g. Soit v:= A(\g) cette mesure image.

On constate d’abord que v est invariante par les translations puisque, pour tout
a€ R¥ettout B B(RY),

v(a+ B) = M(A~ (a+B)) = M(A™'(a) + A~ (B)) = \a(A™'(B)) = v(B).

D’autre part ([0, 1]%) #0 puisque ’on a a la fois v/(R?) = A\4(R?) = +o0 et

v(RH <Y v(n+0,1]%) = D v([0,1)9).

nezd nezd
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Enfin, ([0, 1]%) < 400 puisque v ([0, 1]%) =g (A71([0,1]%)) et A71([0, 1]9) est
compact. Ce dernier point découle de la continuité de 1’application linéaire A~ sur
I’e.v. de dimension finie R?.

On pose /" :=v/v([0, 1]d). La mesure ¢/ est alors invariante par translation et
'([0,1]%) = 1 donc, d’aprés le théoréme de caractérisation de la mesure de Le-
besgue (théoreme 6.1), v/ = \;. En d’autres termes, il existe une constante ¢ € R*%
telle que v = c\y. Il reste donc a déterminer ¢ en calculant le rapport v(B)/Aq(B)
pour un borélien B de mesure de Lebesgue non nulle convenablement choisi. Cette
détermination se fait par étapes, selon la nature de la matrice A.

— A est orthogonale : Si A€ O(d,R):={A€ GL(d,R) : "AA=1I;}, il est
clair que A= ({x : 'zz<1})={x: 'z <1} donc (')

v({z: rr <1}) =N({z: 'z <1}) >0

Par suite, dans ce cas, c = 1 = |det A| L.

— A est symétrique positive : Si A € % *(d,R) N GL(d,R), i.e. symétrique
définie positive, A est diagonalisable dans le groupe orthogonal, i.e. A = PD('P)
ol P€ 0(d,R) et D=diag (a1,...,aq), a; € R%. Soit B:=PD([0,1]%) (?). Le
cas précédent et les relations A~! = PD~''P et 'PP = I, entrainent, d’une part,
que

v(B) = \(A7H(B)) = X\ (P([0,1]Y) = \a((P)~1([0,1]%)) = 1.

d
D’autre part, comme D([0, 1 H [0, ),
i=1

d d
Aa(B) = A (P(H[O,aﬂ)) =\ <H 0, ozl> HaZ = det A.
L =1

D’ou I’on tire ¢ = (det A)~! = | det 4|71
— Cas général : On effectue la décomposition polaire de A € GL(d,R), c’est-
a-dire A = PSou P e O(d,R)et S e ¥ %(d,R) (on prend S := VAA et
P:=AS~1) et on applique les résultats précédents :
v(B) =X(A7H(B)) = \a(SH(PTH(B)))
= (det S)"'A\g(P71(B)) = (det ) Aq(B),

donc v(B) = |det A|7*\y(B) car det A = (det P) (detS)etdet P = 4+1. ¢

1o Aa({z : 'z <1}) >Aa([0,1/3/d]Y) >d= Y% >0.
2. B est borélien car PD est linéaire bijective sur R? et B:=((P.D)~')~1([0,1]%).
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12.2 Théoreme général de changement de variables

Le probléme posé est de calculer I’intégrale

/f(xl,. ) Ma(da)
D

ol Ay est la mesure de Lebesgue sur R%, D un ouvert de R% et f: R? — K une
fonction borélienne (positive ou intégrable). Outre le théoréme de Fubini qui a fait
I’objet du chapitre 11, ’autre outil essentiel pour calculer explicitement — lorsque
c’est possible — de telles intégrales multiples est le théoreme de changement de
variables. Celui-ci permet de transporter le domaine d’intégration D sur un autre
ouvert A homéomorphe a D (en fait difféomorphe).

Rappels et notations : e Si D est un ouvert de R,
B(D) = {Be BRI : BC D}

car D est borélien en tant qu’ouvert (cf. proposition 4.5). Par définition on notera
Ap := 1p.)\g la restriction 2 D de la mesure de Lebesgue Ay sur (R?, %(R%)),
appelée mesure de Lebesgue sur D.
e Soit ¢ : A — D une application différentiable d’un ouvert A de R? a valeurs
dans D. En tout point u € A, la dérivée ¢/ (u) est une application linéaire de R?
dans R?. On appelle Jacobien de ¢ au point u la quantité J,(u) :=det ¢’ (u).
e Par définition une application ¢ : A — D est un € -difféomorphisme si ¢ est
bijective, de classe ¢! sur A (i.e. continiment différentiable) et si 0! est de classe
€* sur D.

Rappelons qu’une application est continiment différentiable sur un ouvert de
R< si et seulement si toutes ses dérivées partielles existent et sont continues en tout
point de cet ouvert.

On montre en calcul différentiel les résultats importants suivants (cf. [28]) :

Théoreme 12.2 (Inversion locale). Soient A un ouvert de R et ¢ : A — R?
une application de classe €' sur A. Si x est un élément de A tel que ' (z) soit
inversible, alors il existe un voisinage ouvert V,. de x dans A tel que oy, soit un
difféomorphisme de V,, sur son image (ouverte) (V).

Théoreme 12.3. Soit A un ouvert de R%. La fonction ¢ : A — R est un €*-
difféomorphisme sur son image D :=p(A) si et seulement si elle vérifie

(i) @ est injective sur A,

(i1)  est de classe €' sur A, i.e. les dérivées partielles de o existent et sont
continues sur A\,

(13i) ¢’ (u) est inversible en tout point u de A (i.e. ¢'(u) € GL(d,R), ou encore
Jo(u) = det ¢’ (u) #0, ue A).

D est alors un ouvert de R? et, pour tout € D, (¢~ 1) (x) = (cp’(cpfl(a:)))_l.
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Nous sommes maintenant en mesure d’énoncer le théoréme de changement de
variables.

Théoréme 12.4 (Changement de variables). Soit ¢ un €*-difféomorphisme entre
deux ouverts A et D de RY. Les trois assertions équivalentes suivantes sont vérifiées :

(a) Ap = @(|Jy|.AA) i.e. Ap est la mesure image par ¢ de |J,|.Aa (mesure de
densité |J,| par rapport & Ap).

(b) Pour toute fonction borélienne f : D — Ry,

/fwwx:/fww»Uwau§+w-
D A

(¢) Pour toute fonction borélienne f : D — K (K=R ou C), f est A\p-intégrable
sur D si et seulement si (fop)|J,| est Aa-intégrable sur A et, dans ce cas,

/f@Mw—/waDUMWMw (12.3)
D A

L’équivalence entre (a) et (c¢) découle immédiatement du théoréme 12.1. En
revanche, établir I'une quelconque des assertions du théoreme est difficile et repose
pour 1’essentiel sur un découpage ad hoc de A en hypercubes suffisamment pe-
tits et sur la formule des accroissements finis pour remplacer localement  par sa
différentielle.

La formule de changement de variables proprement dite est ’assertion (c). On
s’attachera dans les applications a ne pas oublier de démontrer que le changement
de variables ¢ est bien un difféomorphisme ce qui suppose de vérifier tres soi-
gneusement les hypotheses du théoreme 12.3 ci-avant, notamment 1’injectivité. En
pratique, ce point est intimement 1ié a la détermination du domaine ouvert A.
ATTENTION! Ie fait que ¢ € €1 (A) et J,(u) #0 en tout point u € A n’implique
pas que ¢ soit un difféomorphisme ().

Tres souvent, les intégrales multiples auxquelles on est confronté, notamment
en Mécanique (moments d’inertie, etc), sont définies sur des ensembles compacts,
ou simplement fermés. Pour appliquer le théoréme de changement de variables, il
faut alors vérifier au préalable que ce fermé F' est I’adhérence d’un ouvert D et
que \g(F\D)=0. Sauf situation canularesque, il en sera toujours ainsi en pratique,
méme s’il est évidemment faux en toute généralité que les fermés ont des frontieres
de mesure de Lebesgue nulle.

Signalons pour finir que, en pratique, on utilise souvent conjointement le théore-
me de Fubini et le théoreme de changement de variables. Ceci est illustré par plu-
sieurs des applications qui suivent la démonstration.

3. Considérer par exemple la fonction ¢(u) := u?® définie de R* dans R’ . Voir également la
remarque qui fait suite a 1’application 12.2 pour un exemple en dimension supérieure.
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En guise de préliminaire a la démonstration rigoureuse du théoreme nous allons
— exceptionnellement — en proposer une approche heuristique. Notre but est d’une
part de faire ressortir le caractere géométrique de ce théoréme et d’autre part de
mettre en évidence que les deux outils essentiels sont la formule de changement de
variable affine établie au corollaire 12.1 et le théoreme des accroissements finis.

APPROCHE HEURISTIQUE : On recouvre de facon minimale 1’ouvert A par une
réunion de “petits” hypercubes “semi-ouverts” C;, deux a deux disjoints et de me-
sure de Lebesgue fixée, arbitrairement petite. On note u; le centre de chaque Cj.
Comme ¢ est bijective et réguliere D = p(A) s’écrit a son tour comme réunion
disjointe des ¢ (C;). Les ¢(C;) restent des mesure petite et se “‘concentrent autour”
de ¢(u;). Il vient alors, pour toute fonction f borélienne positive ou bornée définie
sur D,

[i@a = 3 [ s

u;)) dx
> / o )
Z flp(ui)) Aalp(Ci)).

Le théoreme des accroissements finis appliqué a ¢ entre un point quelconque w de
C; et u; montre que

Q

Q

©(Ci) ~ {p(ui) + &' (ui) (u — i), ue Ci}.

On en déduit que

/Df(:r) dx

%

Zf ) Aa({(ui) + ¢ (ui) (u — ui), ue Ci})
= Zf @(ui) (@' (ui) ({u — ui, ue Gi})),

car la mesure de Lebesgue est invariante par translation. Par commodité, notons
temporairement C; — u; := {u — u;, u € C;}. Comme ¢'(u;) est inversible, on
peut poser, A; = (¢ (u;)) L. 1l vient

A9/ (i) (Ci —wi)) = Xa(A7H(Ci — wy))
= Ai(Ma) (Ci — wy)

par définition de la mesure-image de A\; par A;. Le corollaire 12.1 entralne alors
que

Az()\d) (Cl - ul) ‘ det A; ‘ ( - Uz) ’ det (p/(ui)‘ )\d(CZ‘),
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puisque A4; = (¢'(u;))~! (la seconde égalité utilise 2 nouveau que invariance de la
mesure de Lebesgue sur R? par translation). Il vient alors via la continuité de ¢’

/Df(a:) dz

&

j{:(f ) [dete’ (ui) | [Aa(C3)

> / £ () [dets! ()| Ag(dr)
/ (f 0 @) ()| Jou(w)) du.
A

Q

Q

D’ou le résultat .. .ou presque. La démonstration ci-dessous consiste pour 1’es-
sentiel a mettre en forme rigoureusement le cheminement que nous venons de
décrire.

DEMONSTRATION DU THEOREME 12.4 (a) : Quelques notations propres a la
démonstration pour débuter : pour tout z € RY, on notera ||z := max;<;<4 |zi|
(norme “max”). Qq 5 :={u €R? : ||u—al| <&} désignera I'hypercube associé de
centre a € R% et de coté de longueur 26 > 0. Enfin, si A C R?, on notera A ::Z\/Ql
la frontiére de A.

L’ application ¢! étant en particulier borélienne, on peut définir la mesure

image ¢ '(Ap). Il est clair que si I’on établit que o' (Ap) = |J,|.Aa, Passer-
tion (a) en découlera en prenant I’'image par ¢ de 1’égalité. En effet, on vérifie sans
peine que (v~ (Ap)) = (pop™")(Ap) =Ap. Or, si Ae B(A), o~ (Ap)(A) =
Ap((p~1)71(A)) = Ap(¢(A)). Finalement, on se raméne a4 montrer que, si 1’on
pose 1:=¢"'(Ap),

VAEBA), uA) = Anle(A) = [ Tpw]du.

Etape 1 Pour tout ug € A et tout € >0, il existe § > 0 tel que, pour tout hypercube

M(Qaﬁ])
)\A(Qa,n)
— Supposons d’abord que ug=0€ A, ¢(0)=0 et ¢'(0)=Id. Soit ' >0 tel que
(1+€")% < 1+¢; d’apres le théoréme des accroissements finis appliqué a o et ¢!
en 0, il existe § >0 tel que ||o(u) —ul| < €'/2 ||u et |[¢ ™ (u) —ul| < /2 ||lu|| des
que [[ufl <6 (en effet ' (0) = (1) (0) = Id).
Soit (4, un hypercube vérifiant : 0 € Q,, C A et n < 4. Il vient, pour tout
UE Qap,

Qa,n vérifiant ug € Qqy C A et <0,

— \Jw(uo)\‘ <e:

lo(u)—all < llo(u) — ull + lu—all < &/2ull + |lu— al
<(1+€/2)|lu—al+e/2 [lal| <1+
—_— =~

<n <n
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Par suite ©(Qan) C Qq,(14¢/)y; de méme, comme = < 1 < 0, il Vient

—1(Qa = /) C Qq,y» soit encore Qa o C ©(Qay)- Or, \g(Qap) = (277) d’o
1 1 Ad(QmH ) Male(Qun)
I—e< 1+¢ < (I—Fél)d N )\d(Qa,n) = )\)\d(Qa,n)
< W =(14€)l<1+e.
Soit, finalement : ’m -1l <e.

— Dans le cas général, on pose (1) := ¢’ (ug) ~! (@(u+ug) —@(ug)). ¥ est un
¢! -difféomorphisme de A" := —uo+A sur D' := ' (ug) " (—p(ug) + D). Soit Qu
un hypercube de A contenant ug; d’apres le théoreme de changement de variables
linéaire (proposition 12.1) appliquée a A:=¢'(uyp) :

1(Qan) _ Aa (@' (u0)(=uo+Qan)+¢(uo))
AA(Qa,n) )‘A(Qam)

On déduit du cas précédent 1’existence d’un réel § > 0 tel que,

Ad(Y (=0 +Qan))
)\d(_UO+Qa,n) '

=|Jp(uo)|

)\d(¢(*uo + Qa,n)) 7 ‘ <
v €]0, 4], Ad(—uo + Qayy) i< |J§0(u0)|'
Partant, ( )
Qap) ’
)\A(Qam) |J¢(UO)| < €.

Etape 2 Pour tout hypercube Q, , de A, 1(Qu.) < / | Jo(w)| du

Qan

Posons m(Qa,) = i(Qan) — / |Jo(u)| du. Supposons qu’il existe un hyper-

a,n
cube Q0 C A tel que m(Q(O)) > 0. Cet hypercube Q) se décompose en 2¢
hypercubes de volumes identiques et de coté moitié de celui de Q(©). On note

Qg)), 1<k <24, ces hypercubes.
2d
0
Ja | - [ st du
k=1 QO
2d
(0)y _
SZ(N(Qk ) /Q(O) ]du) Zm
k=1 k

car j est sous-additive et )\d(Q,(CO) N ng)) =0 des que k#/ (la mesure de Lebesgue
sur R? ne charge pas les hyperplans de R?). Par suite, il existe k € {1,...,2%} tel
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(0)
que m(Q,(GO)) > m(;)d)‘ Soit Q) un tel hypercube. On peut ainsi construire de
proche en proche une suite décroissante d’hypercubes (Q(n))nzo, telle que
m(Q™) Aa(Q™)
2d 2d 7

Aa(Q0)

2dn

m(Q" ) > et \g(QY) = (12.4)

En particulier, \y(Q") = tend vers 0 quand n tend vers +oo. Par

. 4 N .y < NP N
suite, ﬂ Q(”) ={u_, } d’apres la propriété des fermés emboités. L’étape 1 entraine
n>0

1(Q™)

aussitot que lim————~> = |J,(u_ )|. D’autre part, J, étant continue en u__, on
vérifie sans difficulté que

. 1
i s /Q Vo)l du = )]

m(Q™)

D’ou, par définition de m, lim ————= = 0. Or, ceci est contradictoire avec la
définition des Q™ car, d’apres (12.4),

m(QUHY) _ m(Q™)
>
A(QU ) T Ag(QM)

m(Q)

m > (. Finale-

(n)
i.e. la suite <(Q) est croissante de premier terme

Aa(Q™)
ment, m(Q) <0 pour tout hypercube ) de A.

@pﬁ W ne charge pas la frontiére des hypercubes :

La frontiere 9(), s est constituée de 2d “hypercarrés” de la forme
Cie, =A{ue R? : w; =a;4€40, max;; [uj — a;| < 6}

ouie{l, - d}ete; {1}

Soit C; ¢, un tel “hypercarré”. Pour tout n>1,
1
Ci,gi C Pzrfgl = {uERd : ]uj — aj\ <6, jFiet ]ui—(ai+ei5)| S%}

P/, est un hyperpavé contenu dans au plus ([dn]+ 1)1 hypercubes ([ - | désigne
la partie entiere) de volumes respectifs # 1l vient, via I’étape 2,

_ 1 1
W(Cic) < p(PR) < (16n] 4 1) sup |Jo(u)] & = 0 ()
ue Py n n

o

donc p(Ci ;) =0 et partant 14(Q,, 5) = p(Qa,s)-
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Etape 4 Pour tout hypercube Q de A, 11(Q) :/ | J o ()| du
Q

On suppose I’existence d’un hypercube Q(¥) tel que m(Q( )) <0 et1’on reprend la
o (0)

construction de 1’étape 2. Comme ()}, ﬂ Qg = si k # ¢, I’étape 3 montre que,

2d
cette fois, m(Q")) > Zm Qk Zm O,
k=1

o T'exi M c QO veri 1y < MQY) 1) =
D’ou I’existence de Q' € Q%) vérifiant m(Q) < —d et \g(QW) =
(0)
)\d(gd) a la fois. On conclut comme dans I’étape 2.

Etape 5 Pour tout ouvert O de A, 1u(O) :/ |Jo(u)] du :
@]

Soit (Q;n)) ren un pavage de R? par des hypercubes de cotés 1/2" : en d’autres

termes, RY = U Qé"), ;n)ﬂ Q én) =@ si k#/. On suppose en outre que

keN
ng”) — U Qém_l) n>0
an+1) CQ](Cn)
On pose alors A,, := U Qénﬂ). Par construction on dispose de A,, C A, 41
Q(n+1)CO
et O= U A,,. D’apres les étapes 3 et 4, il est clair que p(A / |Jo(w)| du

n>0

pour tout n >0 et, partant, u(O)= / |Jo(u)| du. On conclut via le corollaire 6.2
O

sur la caractérisation d’une mesure avec ¢ := O(A) et les E, =] — p,p[fNA
pourp > 1. &

Application 12.2. Passage en coordonnées polaires sur R? :
Passer en coordonnées polaires consiste a considérer le difféomorphisme
¢: Rix]—mn — R*\ (R_x{0})

(12.5)
(r,0) — p(r,0):=(rcosf,rsinb).

La fonction ¢ est bien un difféomorphisme puisque, d’une part, ¢ est bijective de
réciproque donnée par

w0~ ZL‘1,SC2 (\/azl+x2, Arg xl—l—mg))
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oul Arg (z) désigne 1’argument principal (dans [, 7[) de z € C*(*). D’autre part,
 est continilment différentiable,

cos@ —rsinf
sinf rcos6

¢'(r,0) = [ ] et J(r,0) = rcos? 4 rsin?0 =r # 0.

Par suite, comme A2 (R4 x {0}) =0, il vient pour toute f €_%4¢(R?),

r=+oco prl=mu
f(z:)d$:/ f(:p)dx:/ / f(rcosf,rsinf)rdrdd,
R? R2\(R_ x{0}) r=0  Jo——n

le second membre s’intégrant dans un ordre indifférent d’apres le théoréme de
Fubini-Lebesgue.

Remarque : Si I’on étend I’application définie par la formule (12.5) en une appli-
cation ¢ de R x R dans R? \ {(0,0)}, on constate que ¢ est de classe "' avec
Jy(r,0) = r # 0. Cependant, o n’est pas bijective. Ceci montre I’importance des
hypotheses dans le théoreme 12.3.

+o0 5

Application 12.3. (a) Calcul de / e dx:

0
On duplique I'intégrale sous la forme

+0oco 5 +00 5 +o00o 9 1/2
/ e Pdr = (/ e " dxx/ e Y dy)
0 0 0
(U

D’autre part, il vient par passage en coordonnées polaires,

T too +00
/ e_(x2+y2)dxdy = /2/ e rdrdf = 7T/ e rdr
R2 o Jo 2Jo
2]t
e _
2 ] 4

0

1/2
e_(””2+92)d:cdy> via le théoréme de Fubini-Tonelli.

2
+

| —

2o

“+00
2 7T
D’ou, finalement, / e Vdr= \QF
0

“+oo
(a') Généralisation : Pour tout a € C*, R(c) >0, / L A /4L, o /- désigne la
o a

détermination principale de la racine carrée, i.e. \/z := \/|z| €’ Arg(2)/2

avec Arg(z) € [—m,7[.
+oo

Soit f(a) := / e dz, a € C* et R(a) > 0. La fonction f est bien définie car © —
0

e’ ¢ Z2(Ry). En suivant la méme démarche que pour le calcul de f(1) ci-dessus, il vient

4. Tl est nécessaire d’enlever la demi-droite R_x{0} car I’application de passage en coordonnées
polaires ¢! : R?\ {0} — R% x [—m, 7[ n’est pas continue.
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successivement, via le théoreme 11.3 (Fubini-Lebesgue) et la formule de changement de variables en
coordonnées polaires,

fla)? = /R

Le probleme est a présent d’identifier f(«) a la bonne détermination de la racine carrée. On a
Va f(a) = £f(1). Si’on montre que f est continue sur I’ouvert connexe €2 := {z € C : R(z) >
0}, alors o — +/a f(c) est constante sur Q et /a f(a) = /1 (1) = f(1), d ol I’égalité cherchée.

—ax

/2 +o00 2
e Hh) dxdy = / d9/ e rdr = 2~ = 1) .
0 0 4

2 « «
T

Montrons que f est continue sur €2. Soit a > 0; la fonction o +— e est continue sur 1’ouvert
. - 2 . z
Qq :={z€C : R(2) >a} pour tout x € Ry, la fonction = — ¢~ ** est intégrable sur R pour tout
2 2 .
e M| <e ethr (R4), fournit la

condition de domination. Donc, d’apres le théoréeme 8.5 de continuité sous le signe intégrale, f est

a € Q. Enfin, la majoration : pour tout (o, z) € Q4 X R4,

continue sur €2, pour tout a >0 et, par conséquent, sur 2.

(b) Volume de la boule euclidienne unité de R? :
La boule euclidienne unité de R? est définie par By:={r €R? : 2+ +r2<1}
et son volume vy est donc défini par vg:=\y(By).

Pour calculer v, on établit une relation de récurrence. On suppose d > 2.

Vg = /Rd dxq---dxg 1{m§+--~+x3§1}

- /R dradi UR o i 1{x%+~~+a:3_2§1—<z3_1+m3>}] Lag egsty

Calculons I’intégrale entre crochets (qui est une fonction de (z4_1, xq))-
-Sizl_ +a3=1,
Rddxl' ‘ 'dxd—?l{x%+---+x§72§17(x371+w§)} =Ad—2({Oga-2})=0.
- Si 3:371 + 1:3 <1 (fixés), on pose x; ::ui\/l — (1%71 + mfl), 1<i<d-2.
Ceci définit clairement une application linéaire bijective Ay_o de R4~2 dans R?~2
d_
vérifiant dét Ag_o = (1—(22_; + 23))>2 g
D’apres la proposition 12.1 et la formule (12.1) appliquées avec la fonction f
définie par f(z1,...,24-2):= Lio2 4. qa2 ,<1-(a2_ +a2)}» il vient

4
Vg :/ dzqdrg—1 / duy - dug—s (1= (231 +23))° | L2 ja2<y
R2 Bi_» B N

= / dxgdrg_1 (1 — (x?l_l + x%)) 1y v4—2 (convention vg=1),
{1371*‘1351}

ol

™ +o0o d_1q
= Ug_g X / / (1—1%)2 11o<r<1y7drdf (coordonnées polaires),
—7J0
1

2\5-1
:’Ud_QXQTI'X/ (1—7‘)2 rdr
0
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D’autre part, il est immédiat que v, = / 1fjz,1<1y dz1 =2 . 1l vient donc finale-
R

ment

e,

—sidestpair: vy =

T
()
207 (451)!
d!
(c) Volume de D :=p(A), ¢ difféomorphisme :

Soient donc A et D deux ouverts de R%, d>1, et ¢ : A — D un difféomorphisme
de A sur D. Par définition

— si d est impair : vg =

VOI(D) = /1D(£L'1,. ‘e .’L'd) d.’L’l. . .diL'd = /lSO(A) (:Bl,. ‘e I‘d) dxl. . .d:Bd.

On considere le changement de variables x:=¢(u). Il vient

Vol(D) = [ Ly (@l )] dus -+ dua,
/ Aw)|[Jo(u)| duy - - -dug car p(u) € p(A) & ueA

i.e. Vol(y / | Jo(w)| duy - -

(d) Premier théoréme de Guldin :

On se place sur R3. On note A3 la mesure de Lebesgue sur R? et Ay la mesure de
Lebesgue sur le plan P := {(u,v,0), u, v € R}. Soit S un borélien de 1’ensemble
{(u,v,0), u > 0} de surface non nulle et finie au sens ot 0 < A2(.5) < +o0.
On considere V' le borélien de R? obtenu par la rotation de S autour de I’axe des
coordonnées v. Soit G = (ug,vg,0) € P le centre d’inertie de la plaque définie
par S, supposée homogene. Le point G est défini par la valeur moyenne

1
= — d d .
(Ug,vg,(]) )\2(5«) /S(U,U’O) U av

Le volume de V' est alors donné par la formule de Guldin
)\3(V) = 2T ug )\2(5) < +00.

Autrement dit, le volume de V' est le produit de 1’aire de S par la longueur de la
circonférence décrite par G.

Soit ¢ : R?> — R3? la fonction de passage en coordonnées cylindriques définie
par (0, u,v):=(u cos f,u sin f,v). La fonction ¢ est un ¢*-difféomorphisme de
] =, w[xR% x RsurR3\ {(z,0, 2), <0} et J,(6, u,v) = u>0. Par définition,
V =] —m,m]xS) et p({r}xS) C Rx{0} xR est de mesure nulle car la mesure
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de Lebesgue ne charge pas les hyperplans. Il vient alors, d’apreés 1’application (c)
ci-avant

Ag(V):)\g(go(]—ﬂ,ﬂ[xS)):/ |J¢(9,u,v)|d0dudvz/]_ wdf du do.

J—m,mw[xS m,w[XS

Le théoréme de Fubini-Tonelli (théoréme 11.2) entraine enfin

Ag(V):/] [d0 </Sududv> :271'/Sududv:27ruG/\2(S),

ce qui établit I’égalité désirée.

Remarques : e La formule de changement de variable “élémentaire” dans les
intégrales de Riemann sur un intervalle compact (cf. théoreme 1.2) apparait es-
sentiellement comme un cas particulier du théoreme général ci-avant : le fait que,
dans le cadre élémentaire, (o ne soit pas nécessairement un %! -difféomorphisme
est démenti en pratique. En revanche, 1’extension de la formule a des fonctions f
non nécessairement continues est tres utile dans les applications.

Afin de lever toute ambiguité, assurons-nous cependant de la compatibilité
des deux théoremes, notamment lorsque le changement de variable intervertit les
bornes. Soient f : [a,b] — R (continue) et ¢ : [3,a] — [a, b] un difféomorphisme
de classe ¢! vérifiant p() = a et ¢(3) = b. La fonction ¢ est nécessairement mo-
notone comme bijection continue, donc décroissante. Par suite J,,(u) = ¢'(u) < 0.
D’autre part, on vérifie que

b B B
/ f(w)de = / F(p(w)) @' (u) du = — / F(o(w)) | (w)] du
- /ﬁ * fpw) 1§ ()] du.

e Le théoreme 12.4 contient évidemement la proposition 12.1. En effet, par la for-
mule de changement de variables avec le difféomorphisme affine p(u) := Au + b
(p' = Aetdet A#£0!), on obtient

f(x)da::/ f(Au+b)| det A| du,
Rd Rd

qui correspond bien a la formule (12.1).

12.3 & Application : le degré topologique de Brouwer

On a vu avec I’exemple du changement de variables en coordonnées polaires, que le fait que
le Jacobien d’une application ne s’annule pas n’entraine pas 1’injectivité de celle-ci. Toutefois, dans
cet exemple, on obtient un difféomorphisme en enlevant une demi-droite (ensemble de mesure de
Lebesgue nulle). On peut se demander plus généralement quelles sont les implications entre la bijec-
tivité de I’application et la non-nullité de son Jacobien. La notion de degré topologique que 1’on va
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définir a présent permet de répondre a cette question. Le but n’est pas de développer ici la théorie
du degré qui est par ailleurs un outil fondamental de 1’ Analyse, mais de le traiter dans le cadre du
changement de variables. Pour un exposé complet du degré topologique ainsi que de ses applications
en Analyse, on pourra consulter [29].

Dans cette section, | - | désignera toujours la norme euclidienne sur R?. La mesure de Lebesgue
Aa(dx) sera notée simplement dx et, si O est un ouvert de R4,

€2 (O,R) := {pe% "(0,R?) : supp  compact inclus dans O}, neN*.

_ Dans toute la suite, sauf mention contraire, €2 est un ouvert non vide borné de Riet f €
E(Q,RY) N & (Q,RY). On suppose que 0 ¢ f(IQ) et on note e5 := dist(0, f(9Q)) > 0. On a
la proposition-définition suivante :

Proposition 12.2. On définit pour toute fonction p € €k (]0,£5[, R),

do(f, @) = /Qsouf(xm J5(z) dz.

Alors,
da(f.0) = da() [ ollel)ds (126

out le nombre do(f) ne dépend pas de ¢ et est appelé le degré topologique de !’application f par
rapport a l’ouvert ).

Pour démontrer cette proposition on a besoin du résultat suivant qui est un cas particulier de la
formule de Stokes.

Lemme 12.1. Soit ) € €}-(Q,R). Alors,
oY

(z)dz =0, 1<i<n. (12.7)

est clairement intégrable sur R, donc d’apres le théoreme de

, .0
DEMONSTRATION : La fonction L

Ti
Fubini :

A _ [ 9 _/ /W . o de e
s (z)dz = s (z)dz = A (z)dz; | dxy -+ - dvi—1dxiyr - - dag

[¢($)]x,i:+oo dxy -+ dxi_1d$i+1 covdrg=0. O
d—1

T;=—00

DEMONSTRATION DE LA PROPOSITION 12.2 : On se limite pour des raisons techniques au cas
d = 2; la démonstration générale est détaillée dans [29] et s’appuie sur des manipulations d’algebre
multilinéaire qui s’éloignent de notre propos.

11 suffit en fait de montrer I’implication

A2 e(z|)de =0 = da(f,¢) =0,

qui entraine, pour toutes fonctions ¢; € €% (]0,¢[,R), =1, 2, telles que / wi(|z]) de#0,
R2

da(f, ¢1) da(f, ¢2)

= — constante.

Looahas [ oaliahar

Soit donc ¢ € €k (R, R) telle que suppp C [a,b] C]0,ef[,0<a<bet / o(|z]) dz = 0.
R2
Lidée est d’écrire, pour f € € 2(Q,R?), la fonction (po|f|) J; comme une somme de dérivées
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partielles de fonctions de %72 (€, R) puis d’appliquer le lemme 12.1. On procéde en quatre étapes.
Dans 1’étape 3, on suppose que f € % ?(2, R?) et I’étape 4 est consacrée a I’extension au cas f €
€' (Q,R?).
Etape 1 supp (¢o|f|) est un compact inclus dans € :

L’uniforme continuité de f sur ) entraine ’existence de § > 0 tel que pour tout = € £ avec
dist (z, 002) <9, on ait dist (f(x), f(O2)) <ey —b. Alors par I'inégalité triangulaire (cf. section 3.6),

|f ()] = dist (0, f(9€2)) — dist (f (), f(9)) > &5 — (e —b) = b,

d’ ot p(|f(x)]) = 0 et supp (po|f]) C {xeQ : dist (z,00)>5}.

oV, + oVs
83}1 8132

D’apres le changement de variables en coordonnées polaires, on a

/R2 o|2) dz = 27 /: o(r) rdr = 0.

Partant, la fonction 6 définie par

Etape 2 po| - | = div ¥ := oit W€ ¢ (R?* R?) :

1

o(r) == /Orugo(u) du

r2

est une fonction de classe € sur R, 2 support compact dans [a, b]. @ est en outre solution de
I’équation différentielle sur R :

0 (r) +20(r) = p(r).

On considere alors la fonction définie sur R? par ¥(y) := 0(|y|) y. ¥ est de classe € sur R? et
vérifie les égalités

8‘1/7; y, .
0 +6 , =1,2,
o (y) = Wl (IyD) +0yD), i
o ov ov ,
dot divW(y) = ——(y) + =—(v) = |y|0'(ly]) + 20(|y]) = ¢(ly])-
83/1 3y2

Etape 3 do(f, ) =0si f€% *(Q,R)*:

L égalité des dérivées croisées pour une fonction de classe ¢ 2 entraine

s (52 o) = S (waop) = 50 (G2 (wro) - 52 (o)

LG 4
— (Gor+ 52 )Jf:<soo|f|>Jf.
De plus, la fonction définie par
N afz afl 8fl o 8f2
® = (§2 won) - P aop), S aop) - S2 wiop)

appartient 3 € (Q, R?) puisque Wo f = (6 o |f]) f € €k (Q, R?) d’apres les étapes 1 et 2. D’out
(polf]) Jy =div® ou ® € € (R?,R?), et donc d’apres le lemme 12.1,

do(f,0) = / (1 @)]) Ty (@) do = / div () dz = 0.

Etape 4 do(f, ) =0si f €€ (Q,R)?:
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D’aprés I’étape 1, il existe un ouvert w de R? tel que supp (¢o| f|) Cw C@ C Q. La régularisation
par convolution (cf. théoréme 14.8, section 14.5), permet alors d’approcher f par une suite de fonc-
tions (fx)x>1 de €2 (R?, R?) de sorte que

Vk>1, supp (po|fu]) Cw et |Ifs = fllzoo () + I1Dfe — Dfllp> @y — 0.
k—+oo
D’apres I’étape 3, on a da(fx, ¢) =0 et, comme la suite (o] fx|) Jf, converge uniformément vers
(¢o|f]) Js sur w, on obtient donc dq (f, ) =0 en faisant tendre k vers +co.

Sous certaines hypotheses, on peut exprimer simplement le degré topologique de I’application
en fonction de son Jacobien.

Proposition 12.3. (a) On suppose que J; garde un signe constant sur ), ou bien que la fonction
Yio<|f|<e 3y estintégrable sur (). Alors

1

() = iz [ Tocinicen (@) s @) o (128)

ol vy est le volume de la boule unité de R,
(b) Si0¢ f(2), alors da(f)=0.
() Soit S :={x € Q: Jp(x) = 0}. Si 0¢ f(S), alors f~1({0}) est fini et

do(f) = Z sgn (Jy(x)) (convention Z =0), (12.9)
z€f=1({o}) 2

ou sgn (t) désigne le signe du réel t #0.

Remarque : Une conséquence immédiate de (c) est que, si J; ne s’annule pas et garde un signe
constant sur €2, alors

1
(D) = 7,

| Lioctsicep @) s}l ds = card £ ({0},

autrement dit f s’annule exactement |dq (f)| fois sur €2.

DEMONSTRATION DE LA PROPOSITION 12.3 : (a) On suppose par exemple que J; >0 sur Q2. On
considere une suite (¢x)r>0 de Tk (]0,e5[, R4) telle que 0 < o, <1 et @i T 1 sur |0, e5]. Alors,
0 < (¢rolfl) Jr T Lio<|fi<e,y J5 sur €, et d’apres le théoreme de Beppo Levi,

dafio0) = [ @f@D @), = [ Locice @) Js(a) da

o [ onllahde, [ Locerceyy do = M0 <ol <e)) = & va
R R

k—+oo
La formule (12.6) entraine donc (12.8). Si 1{0<‘f|<€f}Jf est intégrable, la relation (12.8) s’obtient
comme précédemment en remplagant le théoreme de Beppo Levi par le théoreme de convergence
dominée.
(b) Si 0 ¢ f(€) alors, par hypothese, 0 ¢ f(€2) compact et 0 < & := dist(0, () < ;. Soit
p €%k (]0,4[,R+) non nulle. Alors, comme | f| > sur €2, on a d’aprés I’égalité (12.6),

do(f,0) = / o1 F(@)]) J5 (@) dz = 0 = da(f) / o(la)) dz,

Rd

d’ot do(f) =0 puisque / »(]z|) dz > 0 (¢ est non nulle et positive).
R4
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(¢) Si f71({0}) = @ alors (b) implique le résultat. Sinon, on considere = € Q tel que f(z) = 0.
Comme J(z) # 0 et que f est de classe €', le théoreme d’inversion locale (cf. théoreme 12.2) en-
traine I’existence d’une boule ouverte B, C €2 de centre z telle que f|p, soit un % -difféomorphisme
sur son image. En particulier, B, N f~'({0}) = {z}. Donc f~"({0}) est constitué de points isolés
dans © compact, et est par conséquent fini. On pose f~*({0}) := {z1, ..., x,} et on définit I’ouvert
w:=JV_, w;ol:

— w; est une boule ouverte de centre z; telle que w; C €2,

—wNw; =Bsiit],

— flw,; estun %1—difféomorphisme de w; sur son image,

= f(Owi) N f(wi)=0
Pour tout ¢ € {1, ..., p}, f(w;) contient une boule ouverte de centre 0 et de rayon &; > 0. On note
§ := min{es,e1,...,e,} et on considere p € € (|0, 6[, R) telle que / o(|z|) de = 1.

Rd
Pour montrer la relation (12.9), on procede en trois étapes.

@pg/ P F (@) 5 () dx = san (Jy (1)) -

i

Soitie{1,...,p}. Le théoréme du changement de variables appliqué & fj,,, donne

/ e(If(@)]) Jy (2) de = Sgn(Jf(m))/ e(lyl) dy

i flwi)

Or, siy ¢ f(wi),
/.

Brape2 | llf(@) Jy(e) do = 0:
Q\w
Comme les w; sont deux a deux disjointes et incluses dans €2, on a
FO\D)) = fF(OQ) U f(Owr) U --- U f(Owp)

d’ou ¢ <dist (0, f(O(Q\w))) car f(Ow;) C{y : |y| >ei}. Donc d’apres la définition (12.6) du degré
topologique,

>e; > 4§ et, partant, p(|y|) =0. D’ou

e(If(@)]) Iy (= )dm—SgH(Jf(sz))/d e(lyl) dy = sgn (Jy(x:))-

R

i

/ (1 F(@)]) T (@) de = dens (/).
OQ\w

Or, do\& (f) =0 d’aprés (b) car 0¢ f(Q\@).
@pﬁ Vérification de la relation (12.9) :

Comme la mesure de Lebesgue ne charge pas les spheres de R%, on a

[ elt@Ds@rde= [ o5 Js(@) do.

De plus, @ est la réunion disjointe des w;, d’ou
da () :/Q\ o7 @) dw+2/s& )Ty (x) do
= Z sgn (Jg(z;)) d’apres les étapes 1 et2. ¢

Nous sommes a présent en mesure d’établir un lien entre la non-nullité du Jacobien d’une appli-
cation et I’injectivité de celle-ci.
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Corollaire 12.2. (a) Soit f € €(Q,R%) N €' (Q,RY) telle que J; ne s’annule pas et garde un
signe constant sur Q. Alors la fonction y — card (f~1({y})) est constante et finie dans chaque
composante connexe de I'ouvert R\ f(9Q).

(b) On suppose, en outre, que f(Q) est inclus dans une composante connexe A de R%\ f(9Q) et
qu’il existe yo € A tel que f~({yo}) soit un singleton. Alors, f est un €*-difféomorphisme de €2 sur
A

DEMONSTRATION : (a) On définit pour chaque y € R\ f(9Q), e5_, := dist (0, f(OQ) —y). 1l
est clair que la fonction y + £¢_,, est continue et strictement positive sur I’ouvert R \ f(992). Soit
yo €RY\ f£(9Q); alors il existe un voisinage compact Vo de o et g9 > 0 tel que pour tout y € Vo,
€f—y > 0. Soit o € € (10, £0[, R) telle que/ vo(|z|) dz = 1.

Rd

Pour tout y € Vp, supp (woo|f —y|) est inclus dans un compact fixé Ko C 2 (cf: 1’étape 1 de la
démonstration de la proposition 12.2). Alors d’apres la relation (12.6),

do(f—y) = /K ol (@) —y]) J; () dz.

La fonction (z,y) — ¢o(|f(z) —yl|) J(z) est continue et bornée sur le compact Ky x Vp, donc
d’apres le théoréme de continuité sous le signe intégral, la fonction do(f — ) est continue en yo.
D’aprés la formule (12.9) (de la proposition 12.3) et le fait que |do (f—y)|=card (f ' ({y})) < +oo
pour tout y €R?\ £(AN). On en déduit que la fonction, a valeurs entigres, y — card (f~*({y})) est
continue, donc constante, sur chaque composante connexe de R% \ f(99).

(b) D’apres (a), on a pour tout y € A, card (f ' ({y})) =card (f ' ({yo})) =1 et f(©2) C A. Donc
f est une bijection de €2 sur A et par suite, un % *-difféomorphisme car .J + ne s’annule pas sur 2. ¢

Terminons ce paragraphe consacré au degré topologique de Brouwer par deux applications di-
rectement liées au changement de variables.

Application 12.4. Soit f € (Q,RY) N ¢ (2, RY) telle que
i = <l1.
mrr61(19%|f(1:)| 1 et VzeQ, 0<Js(z)<1

(@) SiAa(Q) < Aa(Bg) ol By désigne la boule unité de R?, alors pour tout = €, | f(x)| > 1.

(b) Si Ma(Q) = Na(Bg) et 8’il existe zo €  tel que |f(wo)| < 1, alors la fonction f est un €*-
difféomorphisme de 2 sur Bg et Jy =1 sur 2.

DEMONSTRATION : Etant donné que dist (0, £(9Q)) = 1 et 0 < J; <1 sur £, les formules (12.8)
et (12.9) de la proposition 12.3 donnent

da(f) = eard (7 (0) = 5757 [ Laoetsien (@) Js(a) do <

(a) SiXa(€2) <Aq(Bg) alors
card (/7 ({01) = 0 = 5255 | Locsion @) Jr(o) o

donc, puisque Jy > 0 sur Q, Aq({0<[f|<1}) = 0, i.e. f=0o0u [f|>1, Ag-p.p. sur 2. Comme f
est continue sur 2 et ne s’annule pas sur 92, on en déduit que | f| > 1 sur 2.

(b) Supposons a présent que \q(2) = Aa(Bq) et qu’il existe zo € Q tel que | f(x0)| < 1. Comme f
n’est pas identiquement nulle sur €2, on peut méme supposer que 0 < | f(zo)| < 1. Alors I’ensemble

0< <1} est un ouvert non vide de 2 et donc 1 o<|fl<1¥ (@ J+(x) dx >0, ce qui entraine
{0<|fl<1} f q
Q

1< aand (17 {0D) = 5 [ Lo @) i@ de < 3458 <1,
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Comme 0 <1< r<1y Jr <1, 0onendéduitque o< fj<1} Jr =1 Ag-p.p. sur {2 puis, par continuité
de Jy,que Jy=1sur Qet0<|f| <1 Ag-p.p. sur Q. Alors, par continuité de f, il vient f(2) C Bq.
Comme f(£2) est un ouvert (c’est une conséquence du théoréme d’inversion locale 12.2 du fait que

Jy ne s’annule pas), on a également 7 (Q) C B4 = By. Or, By est un ouvert connexe inclus dans
R%\ f(09Q) et 0 € By avec card (f*({0})) = 1. Donc d’apres le résultat (b) du corollaire 12.2, f
est un ¢ '-difféomorphisme de Q sur By. ¢

Application 12.5. Soit € un ouvert non vide, borné, connexe de R? tel que R \ ) soit connexe et

Q= Q. Soit f € €(Q,R*) N€*(Q,R?) telle que f(IN) C N et J; # 0 sur . On suppose, en
outre, qu’il existe yo € R% tel que £~ ({yo}) soit un singleton. Alors f est un ¢ *-difféomorphisme
de Q sur €.

DEMONSTRATION : On a f(99Q) C 99 et J; ne s’annule pas tout en gardant, par continuité, un
signe constant dans 1’ouvert connexe 2. Alors, d’apres le résultat (b) du corollaire 12.2, la fonction
y — card (f*({y})) est constante sur les composantes connexes de R\ & qui sont, par hypothése,
Q et R4\ Q. Comme f(Q) est borné et R? \ Q est non borné, on a f(Q) # R \ Q et donc, pour
tout y €R4\ Q, card (f 1 ({y})) =0. D’olt f(Q) C Qet, partant, £() C Q car f() est ouvert et

Q= Q. Le point yo de I’hypothése appartient donc 2 §2, d’olt pour tout y € Q, card (f~*({y})) =
card (f~*({yo})) = 1. Donc f est une bijection de 2 sur Q et par suite un ¢ -difféomorphisme
de Qsur2. O

12.4 Exercices

A et D désignent deux ouverts de R?, d>1, muni de la mesure de Lebesgue ;.

12.1 Soit ¢ une application continue de A dans R? qui soit un homéomorphisme
de A sur D.

a) Montrer que p(0A) C 9D.
b) Montrer que si A est borné alors p(0A)=0D

12.2 Soit ¢ un ¢ !-difféomorphisme de A sur D de Jacobien J,.
a) Montrer que .J,, est intégrable sur A si et seulement si Ay(D) <+o0.

b) Montrer que J, est borné sur A si et seulement si il existe ¢ > 0 tel que, pour
tout ouvert Q@ C A, Ag(o(Q2)) < cAg(Q).

12.3 Probléme de Bale 8, tiré de Darticle ()
dx d 1
a) Montrer que / s - Z

_ - n2’
[0’1]21 Ty nZln

b) Par le changement de variables (z,y) = (cos 6 — ¢, cos f + t), montrer que

/ dx dy _4/
[0,1]2 l—zy 0

5. T.M. Apostol : “A proof that Euler missed. Evaluating {(2) the easy way”, Math. Intelligencer
5 (1983), 59-60.

WP

sin 6 df.

min(cos 0,1—cos 6) dt
/0 t2 +sin? 6
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1 2
¢) En déduire la formule » 5= T
n>1

12.4 Soient a, b € R et la fonction ¢, j, : R? — R? définie par
@ap(u,v) := (u+asinv,v+bsinu) pour (u,v) € R?.

a) Donner une condition nécessaire et suffisante sur a, b pour que ¢, ; soit un ¢’ L
difféomorphisme de R? sur son image.

b) Montrer que, sous cette condition, ¢, ,(R?) =R?.

c) Soit © un ouvert de R2. Calculer ’ lli)§|n . A2 (Pap(92)).
a,b)|—

12.5 Soient A :=]0,1[>x] —7, 7| et ¢ : R®> — R3 la fonction définie par
o(u,v,w) = (u,uv cosw,vsinw) pour (u,v,w) € R,

a) Montrer que ¢ est un % !-difféomorphisme de A sur son image.

b) Calculer A3 (p(A)).

12.6 a) Déterminer les ouverts connexes maximaux A et D de (R*.)? tels que I’ap-
plication ¢ définie sur R? par ¢ (u, v) := (u>4v?, 2uv) définisse un € -difféomor-
phisme de A sur D.

b) En déduire la valeur de / | —v4\e_(“+”)2 du dv.

2
R+

12.7 Formule des compléments généralisée

Soient les intégrales définies pour a,b > 0 par
+o00 1
Fa) = / ttetdt et B(a,b) = / e 1 -t
0 0

a) Montrer que I'(a)'(b) = 4/ e~ (WP Hv?) g 20=10.20=1 g0y oy,

2
b) En déduire la formule des compléments généralisée
['(a) I'(b)
B(a,b) = ——=.
(a’ ) F(a,"—b)

12.8 A I’aide du changement de variables (x,y,2) = (\/vw, Vuw, \/uv) , calcu-
ler 1a mesure de Lebesgue des domaines suivants :

a) {(u,v,w)€R3 cu,v,w > 0 etuw, uw, vw < 1},
b) {(u,v,w)€R3 cu,v,w >0 etuv + uw +vw < 1}.
12.9 Généralisation de ’application 12.3.

Soit A € R¥*? d € N*, une matrice réelle (d x d) symétrique et positive, i.e. pour
toutz € R, Ax-x>0,ou- désigne le produit scalaire dans R4,
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a) Montrer que
/2
Vdet A

b) Donner une condition nécessaire et suffisante pour que 4 < +o0.

I ::/ exp(—Ax-x)dx = € [0, +00].
Rd

¢) Montrer que si A est définie positive et z € C avec R(z) > 0, alors

La(2) = /Rdexp(—zAx-x)dac: ({g)dﬁiﬂ.

12.10 Soient f une fonction de classe €% sur R%. convexe (i.e. f” > 0)et I la
fonction définie sur R, pour d > 3, par

ey da
“y)"/Rd oyl el

ot | - | désigne ici la norme euclidienne sur R?.

a) Montrer, en justifiant ’existence des limites, que ¢ := lim+ f(t) > —oo et que
t—0
/ s !
=1 —00.
14 Jlim fi(t)>—o0

+o0
b) Soit p>0. Calculer/ (f'(r+p)—f'(|r—pl)) dr en fonctionde ¢, ' et f(p).
0

¢) Montrer que I(y) ne dépend que de |y|.
d) En déduire la valeur de I(y).

12.11 On munit I’espace vectoriel R? de la norme ||z|| := max |z;| et on désigne
K2

par ., la boule de centre a et de rayon r pour cette norme. Soient A un ouvert
borné de RY et € € (A, RY).
a) Montrer que, pour tout ouvert {2 de A, () est un borélien de R?.

b) Soit A € My(R) telle que det(A) =0. Montrer I’existence d’une constante c4 >0
telle que, pour tout compact K de R? et tout 7 > 0, on ait

M(AK+Qo,) < ca (diam(K)+8)?1 4.

c) Soit ug € A. Déduire de I’étape 1 de la démonstration du théoreme 12.4 et du a)
que

)\d (SO(Qa,r))
)‘d (Qa,'r’)

d) En reprenant les étapes 2, 3, 5 de la démonstration du théoreme 12.4 a partir
du ¢), montrer que

Ve>0,36>0,Vrel0,d], up€ Qur = < |Jp(uo)| +e.

vQ e O(A), Aa(p(Q)) </Q|J¢(u)|du.
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e) Montrer que 1’inégalité du d) est aussi vérifiée par tout compact de A.

12.12 Soient A et D deux ouverts de R? avec D borné et ¢ une bijection de A sur
D de classe € ! tel que ¢! soit borélienne (on ne fait aucune hypothése sur le
Jacobien de ¢). Montrer I’équivalence

T0p) = Jpda © Aalp /u )| du.

12.13 Théoréeme de Sard -

Soient €€ 1(ARY) et S:={xeA: Jp(x)=0}. Alors f(S) est un borélien
de R? de mesure de Lebesgue nulle.
Montrer ce résultat a I’aide de I’inégalité d)-e) de I’exercice 12.11.

12.14 Soient B, la boule euclidienne unité de R? et f € € !(Bg, R?). Montrer, 4
I’aide du degré topologique, que, pour tout réel a de valeur absolue suffisamment
petite, la fonction a f posséde un unique point fixe dans By.

o0 In?(2 4 1)

12.15 Soit [ := / - dz
0 T
In? 1
a) Montrer que pout tout x > 0, Lj) _ / ds dt .
x 012 (1+sz)(1+txz)
dx

+o0
b) Calculer pour (s,t) € [0,1]%, s # ¢, / a
0

¢) Montrer que

1:/ lntdsdt_Z/ nt—lIns .
012 t—s {o<s<t<1y t—s

uv v
l—u'1-u
morphisme de {0<v<1—u<1} sur {0<s<t<1}.

+sz)(1+tx)

d) Montrer que I’application ¢ : (u,v) — ( ) est un ¢ !-difféo-

1
1
e) En déduire, a I’aide du changement de variables ¢, que [ = 2 / 1 ul du.
0o u—
+00 +oo
12.16 a) Calculer / ze " dx sachant que / e " dy = \/2%
0 0

b) Calculer la valeur de I'intégrale I := Y o=@ gg dy.
Rz @ +y?

+oo
¢) Montrer que / e "' dx > V21
0

12.17 Soit ) la mesure de Lebesgue sur R?. On définit, pour tout a > 0, I’ensemble
o :{x,y>0:x°‘+y°‘<1}.

a) Calculer la limite lim A(B,).
a—+00
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b) Ecrire A\(B,,) sous la forme d’une intégrale simple.

1 ™
c¢) En déduire la valeur de la limite lim — / (sin 0)%/°~1 dp.
a——+00 (¢ 0

L2 2
12.18 a) Calculer [ := lim sin (27 +y°)

‘ dx dy.

R—+00 J (22442 R2} 2 4+ y?
400 : 2 2
t
b) Avec / ST gt = T calculer J = lim S @4 YT) gy,
0 t 2 Rotoo Jrp22cgey 274y

12.19 Calculer les intégrales suivantes :

dz d
a) I, :—/ B pour a € R.
r2 (

1+ 22 +y2)e
2 o—(2*+y?)
b) I ::/ %dwdy.
Rz T°+y
12.20 Probléme de Bale 9, tiré de I’article (©)

—+00

1
a) Montrer que [ := / / _dvdy Z ey
1 — 22y? n:O(2n—|—1)

1 2 1 2
b) Montrer que I’application ¢ : (u,v) — (z,y) := | u \/1122 , U \/1132 )

est un difféomorphisme de classe 4" de 'ouvert A := {u,v > 0:uv <1} sur
1— :v2y2
(14 u?) (1+0v2)

I'ouvert D :=]0,1[%, dont le jacobien est J,(u,v) =

2
¢) En déduire que [ = —.
8

6. F. Beukers, E. Calabi & J. A. C. Kolk, “Sums of generalized harmonic series and volumes”,
Nieuw Arch. Wisk. (4) 11 (1993), no. 3, 217-224.






Chapitre 13

Mesure complétée, tribu de Lebesgue,
ensemble de Cantor

13.1 Complétion d’une mesure

Soit (X, o7, i) un espace mesuré et R muni de sa tribu borélienne. Par défini-
tion, une fonction f : X — R est (&7, %(R))-mesurable si f~}(#A(R)) C <.
Ainsi, plus la tribu 7 compte d’éléments, plus nombreuses seront les fonctions
mesurables.

D’autre part, parmi les parties de X n’appartenant éventuellement pas a <7, cer-
tains ensembles apparaissent comme des anomalies du point de vue de I’intégration
par rapport a une mesure 4 sur (X, o). Il s’agit des parties NV de X contenues dans
un ensemble A € A de mesure p(A) = 0. De telles parties, bien qu’intuitivement
“u-négligeables” ne sont pas a priori toutes dans la tribu o7 (des exemples de tels
ensembles sont donnés a la section 13.3).

Une question naturelle se pose alors : peut-on élargir <7 en une tribu .7 conte-
nant ces ensembles p-négligeables de fagcon que la mesure o se prolonge en une
mesure 7 sur .27 ? Ainsi, on augmenterait la quantité de fonctions mesurables sans
changer en profondeur la nature de I’espace mesuré initial.

11 existe évidemment une plus petite tribu contenant <7 et ces ensembles ji-
négligeables, mais rien n’assure priori que la structure de cette tribu est simple et
que p s’y prolonge canoniquement. Le but de cette section est d’établir que c’est
cependant ce qui se passe.

Définition 13.1. Soit (X, <7, 1) un espace mesuré.

(a) Une partie N de X est négligeable(ou p-négligeable) s’il existe A € of
vérifiant N C A et u(A) = 0. On définit

N ={N C X : N p-négligeable}
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I’ensemble des parties p-négligeables.

(b) Un espace mesuré est complet si .4, C o (attention aux confusions induites
par cette terminologie! ).

Lorsque I’espace (X, <7, u) n’est pas complet, on peut donc le compléter ca-
noniquement. C’est I’objet du théoréme suivant.

Théoréme 13.1. (a) La tribu engendrée par </ \U N, notée < est de la forme
o ={AUN:Aecd, NeA}.

(b) Pour tout A€ o et pour tout N € N}, on pose i AUN ) := 11(A). La définition
de i est cohérente et définit une mesure sur la tribu </ coincidant avec i sur <.
En outre, I’espace mesuré (X, <7 | i) est complet et By, = 0.

DEMONSTRATION : On procéde en quatre étapes. Les deux premiéres consistent a
montrer que &7 :={AUN ; A€/, N €.4,} estune tribu, alors nécessairement
engendrée par <7 et .4},. Les deux suivantes sont consacrées a établir que 7z est bien
une mesure complete sur (X, .o7) ayant les propriétés attendues.

@pﬂ Encadrement des éléments de < par des éléments de <

On caractérise les éléments de .7 par
Acd = 3FA Alca, AcAc Aletp(A"\A")=0. (13.1)

(=) Soit A € o/ ; par définition A s’écrit A = A’ UN, A’ € o/, N € 4. Soit
Cco/telque N C Cetpu(C)=0.0npose A2 := A et Al .= A UCec. 1l
est clair que A\ A° C C donc u(A'\ AY) = 0.
(<) On pose N := A\ A°. Comme N C A"\ A%€ o et u(A"\ A°) =0, Ne 4.
DouA=A"UNe &.
@pﬂ of est une tribu contenant < et Ny

ﬂg% C E:SoitAEﬂi,@E% donc A = AU@E%.&rconséquent
o/ C &/ ; en particulier, @€ o7 Partantsi N€ .A4,,, N =QUN € .

of est une tribu : Soit A € o7, d’aprés la premiére étape, il existe A°, A' € o7
tels que A° C A C Al et u(A'\ A%) = 0. Or,

cAl C “AcC CAO’ CAl,CAOE,Qf et CAO\CAl :Al\AO
douAde .

Soit (A, ),>1une suite d’éléments de o7 Par définition A,, = A}, UN,,, Al € o/
et IV,, € . Par suite, il existe, pour tout n > 1, C,, € &/ tel que N, C C, et

4(Cp) = 0. D'od
U N, C U C,

n>1 n>1
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et partant

p(UJ Ca) =3 mica) =0,

n>1 n>1
par o-sous-additivité de p. Finalement,
UAn:(UA;)U(UNn)eE
n>1 n>1 n>1

~~

ed ey

On a en outre établi au passage que .4, est stable par réunion dénombrable.
@pﬁ L est une mesure sur o et Py = -
— Cohérence de la définition : Soit A € o auquel on associe A?, Al € o7 comme

dans I’étape 1. Si A=A"UN, A’ c.o/ et N € A, il existe C € .o tel que u(C) =0
et A C A/UCet A C A'.Douil vient

p(A%) < p(A'UC) < p(A') +0 < p(AY) = p(A”)

donc A > Ti(A) := p(A’) est bien définie comme application sur .27 puisque sa
valeur ne dépend pas de la “décomposition” de Aen A = A’ U N, ni d’ailleurs de
AY ou de A! puisque p(A’) = pu(A°%) = u(Ab).
— 11 est une mesure prolongeant i : Soit A€ o/ ; A = AU @ donc i(A) = p(A).
En particulier, (@) = 0.

SiNeA,, N =@ UN donc i(N)=0.

Soit (Ay)n>1 une suite d’éléments de 7 deux a deux disjoints. Par définition,
pour tout n > 1, A, = A}, UN,, A, € &, N, € A, Or, d’apres I’étape 2,
N:=J,,~; Nn €4, La cohérence de la définition de [ entraine alors

A(UJa) =a(UJaulUm) = u(nLZJlA;) = > ul4y) = nzzjlu(An).

n>1 n>1 n>1 n>1

Donc (X, .7, J1) est bien un espace mesuré.

Etape 4 (X, .o/, i) est complet :

11 s”agit de montrer que .47 C /. Soit N € 4. Par définition de .47, il existe
Be o/ telque N C Betf(B) = 0.0r, Bs’écrit B= B'"UN'" avec B' € &/,
N'€ A, Enoutre, fi( B) = u(B’), d’ot pu(B') = 0. Par suite N C B'UN'€ .4,
donc S e, Cal. O

Remarque : Au vu de I’étape 3, on constate que le prolongement 7z est défini de
facon équivalente par

f(A) :==sup{u(B): Be«/, BCA} ou inf{u(B):Bed/, BOA}.
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Définition 13.2. La tribu < est appelée la tribu complétée de <7 relativement a ju
et [t est appelée la mesure complétée de . En cas d’ambiguité sur la mesure de
référence, on notera /" au lieu de < .

Il est souvent commode — mais rarement indispensable — de supposer que 1’es-
pace mesuré (X, .7, ) sur lequel on se place est complet. On prendra cependant
garde aux erreurs que 1’on peut commettre autour de la notion d’espace mesuré
complet, notamment en présence d’espaces produits. La section 13.4 est d’ailleurs
consacrée aux liens entre produit de mesures et complétion.

13.2 Tribu de Lebesgue

Définition 13.3. On appelle tribu de Lebesgue la tribu £ (R) := %(R) complétée

de la la tribu borélienne sur R par la mesure de Lebesgue. On notera \ la mesure
de Lebesgue complétée.

Le fait de compléter la tribu borélienne Z(R) I’élargit considérablement com-
me le montre le résultat suivant.

Théoreme 13.2. (a) A(R) est équipotent a R.
(b) Z(R) est équipotent a P (R) mais £ (R) # Z(R) (£ (R) est donc un sous-
ensemble strict de Z(R)).

Nous admettrons I’assertion (a) du théoréme qui repose sur une méthode de
récurrence transfinie (voir [6], exercice 2.6.11 p.286). Concernant le point (b), 1’as-
sertion .Z(R) # Z(R) repose explicitement sur ’axiome du choix rappelé ci-
dessous.

Axiome 13.1. (Axiome du choix) Soient X et Y deux ensembles non vides et une
application F : X — P (Y)\{@}. 1l existe une application f : X — Y telle que
pour tout t€ X, f(x)€ F(x).

En termes moins formalisés, cela signifie que I’on peut, pour chaque x € X,
“choisir” un “représentant” f(x) dans la partie F'(z).

Remarque : Bien que d’apparence anodine, 1’axiome du choix a des conséquences
fondamentales en Analyse, notamment a travers 1’une de ses formulations équiva-
lentes, le lemme de Zorn (cf. ’appendice de [12], p.377). C’est bien un axiome au
sens ou, des que Y est non dénombrable, il est impossible de le démontrer dans le
cadre de la théorie des ensembles.

DEMONSTRATION DE L’ ASSERTION (b) DU THEOREME : .Z(R) # Z(R) :

Le probleme est ici d’exhiber une partie £ de R qui soit non seulement non
borélienne, mais également non contenue dans .Z(R). On introduit a cette fin la
relation d’équivalence & définie sur [—1,1] par x Z y si et seulement si © — y €
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Q. On note & la classe de = modulo Z et [—1,1]/q I’ensemble quotient de cette
relation d’équivalence. Les classes d’équivalence & sont des sous-ensembles de
[—1,1] donc [—1, 1] /g estinclus dans & ([—1, 1]). En appliquant I’axiome du choix
a I’injection canonique

F: [-1,1]/g = 2([-1,1)\{9}

T — T,

on fabrique une application f : [—1,1]/q — [—1, 1] vérifiant : pour toute classe
te[—-1,1]/q, f(2) €. On pose alors

A= {f(@), ze[-1,1]}, r+ A= {r+a,ac A} et L:= ] (r+A4).
re[—2,2]NQ

Nous allons montrer que A ¢ Z(R).

Soient r, s€ Q. Les translatés de A vérifient (r+A4)N(s+A) = @ des que r#s;
en effet, si z est dans I’intersection, il s’écrit simultanément z = r+f (&) = s+£(9)
d’ou f(z)— f(y) = s—re€Q. Par conséquent, & = ¢, d’ou f(&) = f(7) et partant
r=s.

Soitz€[—1,1] eta := f(&)€[—1,1]. Par construction r:=x—a €QN[-2,2].
En conséquence, © = r+a € r+ A si bien que [—1,1] C L. D’autre part, A étant
inclus dans [—1, 1], L est inclus dans [—1, 1] + [-2,2] = [-3, 3].

Supposons maintenant que A € .Z(R). A s’écrit alors A = BU N avec B €
A (R) et N € ;. Pour tout € Q, on observe que r+A = (r+B)U(r+N) € Z(R) :
en effet r+ B € #(R); d’autre part, N étant A-négligeable, il existe C' € #(R) tel
que N C Cet \(C)=0,orr+NC r+Cet A(r+C)=A(C)=0d ot r+N €.4;.
En outre, \(r+A) = A(r+B) = A\(B) = A(A).

Par suite, [—2,2] N Q étant dénombrable et les parties r+ A, r € [—2,2] N Q,
étant deux a deux disjointes, il vient simultanément

< ~ B ~ [0 siAA)=0
- © Feen- 5 {4
re[—2,2]nQ re[—2,2]NQ
et2 = \([-1,1]) < X(L) < X([-3,3]) =6.
Ceci est contradictoire. En conclusion, A¢ Z(R) et, a fortiori, A ¢ B(R).

Montrons maintenant que .Z(R) et &2 (R) sont équipotents :

L’idée est la suivante : exhiber un borélien A de mesure de Lebesgue nulle
et équipotent a R. En effet, on aura alors d’une part &(R) équipotent a &?(A)
et d’autre part Z(A) C A5 C Z(R) € Z(R), d’ou Z(R) équipotent 2 Z(R).
Reste donc a construire A. Les possibilités sont nombreuses, mais, notamment pour
des raisons historiques, on construit généralement [’ensemble de Cantor K. Cette
construction est détaillée dans la section suivante.
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13.3 Ensemble de Cantor, fonction de Lebesgue, applica-
tions

La construction de I’ensemble de Cantor est récursive et obéit au principe sui-
vant : on pose

1 2 A, 2+ A,
= - = n = ’ g :
A [0, 3} U [3,1} et Apri= FHUT > (13.2)

On vérifie immédiatement par récurrence que, ainsi défini, A,, est la réunion de 2"
intervalles fermés, deux a deux disjoints, de longueur 3~ ayant pour extrémités
les 2"+ points de la forme

n
237 + 37 avec z, €{0,2} ete,, € {0,1}.

k=1
En outre, tous ces points restent des extrémités d’intervalles de tous les A,, pour
m > n (car 3% = 3n2+1 + ﬁ). On a donc simultanément

Apir C A, et 9A, C OApis.

L’ensemble de Cantor est alors défini par

K= () An. (13.3)

n>1

L’ensemble de Cantor K est donc fermé comme intersection de fermés. Il vérifie
AMK) = lim¢)\(An) = 0 car A\(4,,) = (2/3)". D’autre part, pour tous n, p>1,
n

n
Tk
A, = {Z = + S 3n’ z,€40,2}, £, €{0, 1}} C 0Anip C Apip,
donc 04, C K = ﬂiAner. K étant fermé, on en déduit aussitot que

=0

“+00
~ Tk
K = {ng xkE{O,Q}} C UTaAn c K.

k=1 n>1

Montrons que K est équipotent a {0, 2}N" j.e. que la paramétrisation ci-dessus
+00

+

est injective. En effet, si 23—]; = Z g—’;, xr, Y € {0,2}, alors (zp)n>1 =
k=1 k=1

(Yn)n>1. Dans le cas contraire ko := min{k : z} # yi} serait fini. Or, quitte a

intervertir les deux suites, on peut supposer zx, = 0 et y, = 2, d’ou

=y e—1p . 2 X2 1
_ k=T k“ k - :
0= E 3k E = 3ko E 3% T 3k ce qui est absurde.
k=1 k=ko k=ko+1
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Finalement, [0,1] > K D K, K est équipotent 2 {0, 2}N et donc a {0, 1}N. Or, on a
vu (théoréme 2.2) que {0, 1}N est équipotent 2 [0, 1] et 2 R, donc il en est de méme
de K. ¢

Proposition 13.1. L’ensemble de Cantor vérifie (entre autres propriétés)

+o0o
K = {Z g—z, xne{O,Q}} , card K = cardR, A\(K) =0, K compactet K = @.

n=1
En particulier K = 0K.

DEMONSTRATION : Comme A(K) = 0, K ne peut contenir d’intervalle ouvert
non vide donc K = @. Le seul point restant a démontrer est K = K.Soitz € K.
Comme z € A,, pour tout n > 1, = est donc distant d’au plus 37" de I’extrémité

n__(n)

T 2" 10,2}, 1 vient

gauche d’un intervalle de A,,, de la forme 2™ .= TR a;;

k=1
alors

1 1

1
B 3n+1 = (l’ - 3n+1

)—$§az("+1)—x(")§a:+(—x+31n)—Bn.

Or, si ky := min {k :E (n+1) 7& x,&n)} < n, il vient également

2 2 "2 1 1 1
(n+1) _ p(n) s T S
|£L‘ 2 3k0 3n+1 Z 3k - 3ko + gn+1 > 3n’
k=ko+1
n_ (o)
Par suite, k étant fixé, la suite n +— xén) est constante, i.e. () = E S 11

(c0)
. . x
s’ensuit que x = lim (™ = Z E_cK. ¢
" E>1 3

Remarque : L’écriture . x, €{0,2}, définit évidemment certains éléments
3n
n>1
de K a travers leur développement impropre. Ainsi, 1 = Z P

n>1

Proposition 13.2. (Construction de la fonction de Lebesgue) Il existe une fonction
[ continue croissante sur [0, 1] telle que f(0) =0, f(1) =1 et f' =0 \-presque
partout dans [0, 1]. En particulier, on a

1
/0 (o) de=0< f(1) — £(0) = 1.
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DEMONSTRATION : On va construire la fonction f par approximation en reprenant
les étapes (et les notations) de la construction de I’ensemble de Cantor. Soit ( f7,)n>1
la suite de fonction définies sur [0, 1] par

Wn>1, Vee0,1], fu(@) = (3/2)" / 1o () dt. (13.4)
0

Il est clair que f,,(0) = O et f,,(1) = 1 puisque A(A,,) =(2/3)". De méme, la
fonction f,, est continue et croissante sur [0, 1]. Par ailleurs, si I désigne 1’un des 2"
intervalles compacts dont A,, est la réunion, on a, par définition de A,,, A\(I) = 3"
et \(I N Ayy1) =2/3X(I),dou

(3/2)" /[ La (£)dt = (3/2)"+! /I Lo, (6)dt =27,

En outre, d’apres la définition 13.4, la fonction f,, est constante sur chacun des
(2™ —1) intervalles ouverts composant “A,, ; il en est de méme de la fonction f, 1
puisque “A,, C “A,4+1. L'égalité précédente entraine alors que

Voedy fulm)= 3 (3/2)" / 1a. (1) dt
ICA,N[0,2] 4

= > @32 /1 1a,4 (1) dt = fryi(2),

ICA,N[0,z]

out I est I'un des 2" intervalles composant A,,. En particulier, pour un tel inter-
valle I, on a I’égalité f,,+1(min /) = f,(min7), d’ou

Ve I, ‘fn—i—l(JU) - fn($)|

< | far1(2) = fopr(minD)| + | fu(x) — fr(minT)|
< (3/2)m! /I L, ()dt + (3/2)" /I Lo (#) dt = 2L,

1l s’ensuit que | f,11(x)— fn ()] < 27" pour tout x € [0, 1]. La suite de fonctions
continues croissantes (fy)n>1 converge donc uniformément vers une fonction f
nécessairement continue et croissante.

D’autre part, d’apres (13.3), sur chacun des intervalles (ouverts) dont “A,, est la
réunion, fy,11 = fn, pour m>n puisque “4,, C “A,,. Donc, f= f, sur “4,,; or, de
par sa définition méme, la fonction f,, est constante sur chacun de ces intervalles
ouverts. En particulier f y est dérivable de dérivée nulle. Finalement, f est dérivable
de dérivée nulle sur | J,,~, “An = °K; donc f'=0 A\-p.p. puisque A\(K) = 0. ¢

On prendra garde une fois encore a la terminologie qui fait de la fonction de
Lebesgue un objet essentiellement lié a I’ensemble de Cantor (et non a la mesure
de Lebesgue).
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2/3 1

A

FIGURE 13.1 — Trois premicres approximations de la fonction de Lebesgue :
I’escalier du diable
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Terminons par deux applications, fondées sur I’ensemble de Cantor. L’ une précise
la démonstration du théoréme 13.2(b) dans laquelle était exhibée une partie non
Lebesgue-mesurable comme exemple de partie non borélienne. L’ autre exhibe une
fonction intégrable non borélienne.

Exemple de partie Lebesgue-mesurable non borélienne : Soit ¢ la fonction
définie par
© - [O’ 1] — [07 ]-]

1+—1
o0 400
Ty 2z,
x = — — p(z) = —
AL 3"
n=1 n=1

+oo

ou Z g—z désigne le développement dyadique propre de x. La fonction ¢ est stric-
n=1

tement croissante. En effet, soient 2,y € [0, 1, z <y, et ng := {n>1: z, #yn}.

On a
y’no - xno + Z 1 o y’no - xn() 1

PSymrs T 7w o
n>ngo
d’ol Y, —xy, =1 et par suite,
2 2 (yn — xn) 2 2 1
oY) —p@)=go+ ) = 2= ) =50 >0
n>ngo n>ng

La fonction ¢ est donc une bijection de [0, 1] sur son image qui est clairement
incluse dans I’ensemble de Cantor K d’apres la proposition 13.1.
Soit A la partie non Lebesgue-mesurable de [—1, 1] définie dans la démonstra-

tion du théoréme 13.2. On pose A’ = {ZH, z € A} C [0,1] qui est aussi non

Lebesgue-mesurable car x — :”TH est un homéomorphisme. D’une part, p(A") €
Z(R) car p(A") C K est Lebesgue-négligeable. D’autre part, p(A’) ¢ AB(R) car
0 Y (p(A") = A" ¢ ([0, 1]) alors que ¢ est croissante donc borélienne (cf. exer-

cice 5.6). La partie ¢(A’) est donc Lebesgue-mesurable sans étre borélienne.

Exemple de fonctions Riemann-intégrables non boréliennes : Toute fonction
indicatrice d’une partie C' de I’ensemble de Cantor K est Riemann-intégrable sur
[0, 1] d’intégrale nulle. En effet, la fonction 1 vérifie 0 < 1o < 1x < 14, ou 4,
est défini par I’égalité (13.2). Or, la fonction 14, est en escalier et

1 n
2
1 An, = <> — 0.
fe= (3
Cependant, elle n’est borélienne que si C' est lui-méme borélien. Ainsi, au vu de

I’exemple précédent, la fonction 1, 4/) est donc Riemann-intégrable sur [0, 1] sans
étre borélienne.
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En fait, il existe une infinité de telles fonctions car, d’apres le théoreme 13.2 et
I’équipotence de K et R,

card Z(K) < card Z(R) < card Z(K) = card Z(R).

13.4 & Produit de mesures completes. Complétion d’un
produit

Le résultat le plus important de cette section est négatif : en général, un produit
d’espaces complets n’est pas complet.

Proposition 13.3. Soient (X, o7, 1) et (Y, AB,v) deux espaces mesurés o- finis et
complets (ie. M, C o et N, C B).

(a) (P(X) X H) U (S P(Y)) C s

(b) En conséquence, dés que (of # P (X) et N, # {D}) ou (N, #{D} et B #
P(Y)), lespace (X XY, o/ @B, u @ v) n’est pas complet.

En particulier, ceci a lieu méme si les espaces initiaux sont complets.
DEMONSTRATION : (a) Soient A€ Z(X) et B € 4. Le rectangle A x B vérifie

AXxB C XxBed®Bet u@u(XxB) = u(X)v(B) = 0 (ceci découle de la
convention habituelle).

(b) 1l suffit de montrer que si Ae 2 (X )\ o/ et Be A \{D} alors AxB¢ o/ Q2.
Or, dans le cas contraire, y € B étant fixé, le théoréme de section (cf. 11.5) entraine
que A = (Ax B)Y appartienta &7. ¢

Exemple (important) : Comme .2 (R) # Z2(R) et A}, # {@}, il estimmédiat que
I’espace (RQ, Z (R)®2,X®2) n’est pas complet. Plus généralement, par le méme
type d’argument, I’espace (Rd, Z(R)®4, X®d> n’est pas complet.

Le théoreme suivant permet d’élucider les liens précis existant entre produit et

complétion d’espaces mesurés.

Théoreme 13.3. Soient (X, o7, n) et (Y, B, v) deux espaces mesurés o- finis. Alors

A" RAB =dIdRHAB , e/‘/ﬁ@);:%@y et UV =uRU.
DEMONSTRATION : @pﬂ Comparaison tribus, ensembles négligeables :

(D) Tl est immédiat que o/ ® B C F" QB C F"RHB" M®V. D’autre part, soit
Ced @ % avec p@v(C)=0. (I ®V)|ygz = L@V puisque ces deux mesures
o-finies coincident sur I’ensemble &7 x % des rectangles a cotés mesurables ; donc
1 ®7(C) = 0. Ce qui montre que .4,,¢, C A4ep ainsi que I’inclusion annoncée.
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(C) Soient AUM € /" et BUN € &/* (avec des notations évidentes).

(AUM)x(BUN) = AxB U ((AXN)U(MxB)U(MxN)) C 22"
€A XHB EL/KJ,@Vd’aprés la proposition 13.3 (a)
- (13.5)

Donc " @ B C d@2"". 1 reste a €tablir que A5y C gy pour
obtenir I’inclusion recherchée. Soit C' € &* ® %" avec i@ v(C) = 0. Comme
Ce dRHA “®V, la caractérisation d’un ensemble négligeable (13.1) sur ’espace
produit entraine ’existence de C° et C'! dans .7 ® % vérifiant C° ¢ C c C! et
p@v(CN\CY)=0. Par suite t @ 7(C'\C?) = 0; mais 7@ 7(CY) < m@v(C)=0
donc

pv(CH) =ae7(CYH) =1 7(C% =0

et, comme C' C C', C est donc ;1 ® v-négligeable. Ce qu’il fallait démontrer.
&pﬂ Comparaison des mesures :

De la relation (AU M) x (BUN) = (AxB)UL, L € A4,g,, obtenue
en (13.5), on déduit que les deux mesures o-finies 7 ® 7 et u ® v coincident sur
A" x A" et partant sur &7* @%" . Ces deux mesures ont donc méme complétée sur

g QR .0

Ap®Ag

Application 13.1. Pour tous p, ¢eN*, Z(RP)®.Z(R?) = Z(RPH9),

DEMONSTRATION : Au vu du théoréme 13.3 et des identités établies antérieu-
rement Z(RPTY) = B(RP)QAB(RT), \p@Ag = A\ptg. il vient

Ap®Ag Ap®Aq

ZRP)0.Z(R9) — B(RP)@A(RY) — BR) T = 2RI, ¢

13.5 & Complétion et fonctions mesurables

Dans la suite K désigne indifféremment le corps des réels ou des complexes.
Il est clair qu’une fonction f : (X, /) — (K, %(K)) mesurable est (<7, Z(K))-
mesurable puisque .o C 7. La proposition suivante fournit une sorte de récipro-
que.

Proposition 13.4. Soit f : (X, o ,j1) — (K, B(K)) une fonction mesurable. Alors
il existe une fonction f : (X, o) — (K, Z(K)), mesurable, telle que f = f [i-p.p.,
ie. telle que i({ f # f})=0, ou encore {f # f}eN,.

En outre, si la fonction f est réelle positive, on peut choisir f de facon que
0<f<f
DEMONSTRATION : On suit la procédure d’approximation habituelle.

—Si f:=14, A€ &/, on pose f:: 1youA=AUNavec A co/,NeA,.
Si f est étagée, on procede de méme pour chacune des indicatrices. On vérifie que

f<7



13.5. & Complétion et fonctions mesurables 291

— Si f est réelle positive, il existe une suite croissante de fonctions étagées
(fn)n>1 convergeant vers f. Pour tout n > 1, il existe donc f;, étagée, <7 - mesurable,

telle que 7Z({fn # fu}) = Oet f, < fn < f. On pose alors f := lim f,. La fonc-

tion fest clairement .o7- mesurable positive et majorée par f. Enfin {f # ]7} est
de 7-mesure nulle puisque {f # f} C U,>1{fn # 9n}

— Dans le cas réel, la fonction f se décompose en f: =g+ — g~ ou les fonctions
g7 sont associées a f* comme dans le cas positif. Si f est a valeurs complexes, on

la décompose en parties réelle et imaginaire. ¢

Définition 13.4. Toute fonction f : (R, Z(R%)) — (K, B(K)) mesurable est dite
Lebesgue-mesurable.

1l est clair que toute fonction borélienne f : (R, Z(R?%)) — (K, %(K)) est
Lebesgue-mesurable. Plus généralement, la proposition 13.4 caractérise les fonc-
tions Lebesgue-mesurables puisqu’une fonction f : RY — K est Lebesgue-mesu-
rable si et seulement si elle est Ag-p.p. égale a une fonction borélienne.

Remarque : Une autre définition naturelle d’une fonction Lebesgue-mesurable efit
pu étre de munir simultanément 1’espace de départ et I’espace d’arrivée de la tribu
de Lebesgue. L’ objectif d’augmenter le nombre de fonctions mesurables serait alors
perdu. Quoi qu’il en soit, on manquerait cruellement de criteres de mesurabilité !
Un tel choix serait donc irréaliste.

En contrepartie, la définition ci-dessus de la Lebesgue-mesurabilité a des in-
convénients majeurs : ainsi la composée g o f de deux fonctions Lebesgue-mesura-
bles, lorsqu’elle est algébriquement possible, n’est en général pas Lebesgue-mesu-
rable, sauf si f est en fait borélienne (pour un contre-exemple cf. exercice 12 p. 165
de [7]).

Nous allons maintenant revenir aux espaces produits, avec pour finalité d’é-
noncer une généralisation (mineure) du théoreme de Fubini. Nous allons faire 1’ hy-
pothése que chacun des espaces initiaux est (o-fini) complet ce qui, au vu du
théoreme 13.3, n’est pas une vraie restriction (quitte & remplacer .7 par </ et p
par 1z, etc).

Proposition 13.5. Soient (X, o, 1) et (Y, B, v) deux espaces mesurés o- finis et
complets et une fonction h : (X xY, o @%, n@v) — (R, A(R)) nulle p@v-p.p.
Alors, pour - presque tout x € X, la section hy : y — h(x,y) est - mesurable
et nulle v(dy)-p.p. et pour v- presque tout y €Y, la section h¥ : x — h(x,y) est
o/ - mesurable et nulle ji(dx)-p.p.

DEMONSTRATION : Soit N := {h # 0}; u®v(N) = 0 par hypothese, donc
il existe C € F @A tel que N C C et p@v(C) = 0. D’apres le théoreme de
construction de la mesure produit (théoreme 11.1), C,, := {y€Y : (z,y)eC} €A
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pour tout x € X, x — v(C,) est &7- mesurable et

/l%CﬁuW$%:ﬂ®WC)=0
X

Donc, pour p-presque tout x € X, v(C,) = 0. Or, {y : h(z,y)#0} C C, donc,
p(dx)-p.p., {hy #0} € A4, C £ car la tribu & est complete. O

On en déduit immédiatement 1’extension du théoréme de Fubini aux fonctions
qui sont .« ® %- mesurables.

Théoréme 13.4 (Fubini). Soient (X, o/, ) et (Y, B, v) deux espaces mesurés o-
finis complets et | : (X X Y,szf@%’) — (R,%’(R)) ou (§+,%(ﬁ+)), une fonc-
tion mesurable.

(a) Si f > 0, alors p(dx)-p.p. la section f, : y — f(x,y) est B-mesurable et
v(dy)-p.p. la section fY : x — f(x,y) est o - mesurable. En outre, les fonctions

ﬂ@:Lh@WMetww:Aﬂmmm

sont respectivement p(dz) et v(dy)-p.p. définies et <f - et 8- mesurables. Enfin

/ god,u:/ Ydy = fdu®v. (13.6)
X Y XxY

(b) Si f € ZYX XY, u@V), f. € LNY,B,v) uldx)-p.p., [ € LHX, o, p)
v(dy)-p.p. et les fonctions ¢ et 1) sont dans L1 (X, o , i) et L1(X, B, v) respec-
tivement. Enfin, la relation (13.6) est vérifiée.

DEMONSTRATION : (a) D’apreés la proposition 13.4 et la remarque qui la suit, il
existe une fonction &7 ® - mesurable g telle que 0<g < fet f = g uQv-p.p. Le
théoreme de Fubini-Tonelli classique s applique a g et, d’apres la proposition 13.5
appliquée a h := (f—g) 1¢y< oo}, il vient : pour u-presque tout z € X, fr = g,
v-p.p. et pour v-presque tout y € Y, f¥Y = ¢g¥ p-p.p. Donc la relation (13.6), vraie
avec g, est vraie avec f, les fonctions intermédiaires relatives a g et f coincidant
p.p. relativement aux mesures ad hoc.

(b) se déduit du point (a) comme dans le théoréme originel. ¢



Quatrieme partie

Convolution. Transformées de
Fourier et de Laplace






Chapitre 14

Convolution et applications

La convolution est une nouvelle opération sur les fonctions “raisonnablement”
intégrables. Elle joue un role fondamental dans les problemes d’approximation
régularisante, c’est-a-dire lorsque 1I’on souhaite approcher une fonction par des
fonctions plus régulieres qu’elle.

Notations : (a) Pour toutes parties A et B de R?, on pose
A+B:={a+b,ac A,be B}, A-B:={a—b,ac A,be B} eta+B:={a}+B

(b) Le symbole | - | désignera une norme sur R%. Lorsqu’un résultat nécessite le
caractere euclidien de la norme, cela sera clairement précisé.

Rappels : (a) Une fonction g : RY — K est a support compact si elle est nulle en
dehors d’un compact ou si, ce qui revient au méme, son support supp(f):={f#0}
est compact dans R?.

(b) Soit € (R?,K) I’ensemble des fonctions continues a support compact de
R? dans K. On fera largement usage du résultat de densité suivant :

Vpe [1,+oof, ©x(R%K) estdense dans (LE(Aa), | - [|p)-
Ce théoreme a été établi au chapitre 7 dans sa version uni-dimensionnelle et dans

la section 9.7 (théoreme 9.10) dans le cas général.

14.1 Opérateurs de translation sur les fonctions

Définition 14.1. Pour tout a € R? et pour toute fonction f : (R, B(R?)) — K
borélienne, la a-translatée de f est définie par

Tof © RT — K

x — (1of)(x) := f(z—a). (14.1)
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Remarques : o Un autre opérateur de translation, défini lui de R? dans lui-méme
par 7, () =z —a et également noté 7,, a été introduit a la section 6.1. On prendra

garde que (7of)(z) = f(z —a) # f(z) — a = 7a(f(2)).
En revanche, on a bien 7, f = f o 7,. Cette confusion de notation, troublante
pour le non initié, est cependant canonique.

e La fonction 7, f = f o 7, est donc borélienne comme composée d’une fonction
borélienne et d’une fonction continue.

Théoréme 14.1. (a) Soit a € R?. Si deux fonctions boréliennes f et g vérifient f = g
Aq-p-p., alors 7, f = 1,9 Ag-p-p.. On peut donc définir, I’application “quotient”
Tq Sur lespace Lﬁ()\d) par la formule (14.1) pour tout p € [1,400|. En outre, T,
est une isométrie (linéaire) de Lig(\q) dans lui-méme.

(b) Pour tout p€ [1, 400 et pour toute f € L (\g), lir% l7af — fllp = 0.
a—
DEMONSTRATION : (a) On vérifie immédiatement que

{:EERd :7af () # Tag(z) } = {ZL‘ERd : fz—a) # g(z—a)}
=a+{f#g}.

L’invariance de la mesure de Lebesgue par translation entraine donc que

)‘d({Taf?éTag}) = /\d({fség}) =0.

On peut donc définir 7, sur Lk ()\4) puisque la classe de 7, f modulo I’égalité
Ag-p-p- ne dépend que de celle de f. Enfin, si 1 <p<+o0,

Il = [ Fom@PNate) = [ 1£1PAatde) = I£1,
Le cas p=-+o0 se traite en notant simplement que
VueR, {|r.fl>u} =a+{|f|>u}.
L’invariance de la mesure de Lebesgue par translation entraine alors que
1/l = supess (|f[) = inf{M >0 : Ag([f|>M) = 0} = supess |7o.f| = [|7af]|.-

(b) Supposons d’abord que f € € (R? K). La fonction f est donc uniformément
continue d’ou, pour tout € > 0, il existe a >0 tel que

la| <a = VzeRY, |f(z —a) — f(z)] <e.

Par suite, dés que |a| <,

I7af = flI} = / [f(x —a) = f(@)[PAaldz) = [ [f(x—a) — f(z)["Aa(dz)
Re (a-+{FAONU{F£0}

< (Aa(f#0) + Ag(a+{f#0})) e”
<2\ ({f#o}) eb.
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Or, A\q({f#0}) est fini car { f #0} est compact. En conséquence

1

al<a = |ruf - fll, < (22a(F70D)’

Supposons maintenant f € £ (\;). L'ensemble €% (R, K) est | - [|,-dense
dans % (\q) donc il existe une suite (fy,)nen de fonctions continues a support
compact telle que || f,, — f|, = 0 quand n — 4o0. Or

”Taf - f”p < HTaf - Tafﬂ”p + ”Tafn - an’p + an - f”P
§2an_pr+ ”Tafn_anp d’apres le point (a).

Soit £ >0; il existe n. > 1 tel que || f,. — f||, < €/4 et, d’autre part, il existe . >0
tel que ||, frn. — fu.llp < €/2 pour tout |a| <. D’ou, finalement

Taf — fllp < e desque |a] <a.. O
De I’égalité
17af = T fllp = I76(Ta—bf = F)llp = Ta—f = fllp,
on déduit immédiatement le corollaire suivant.

Corollaire 14.1. Sipe [1,+o0[ et f € Lix(A\g), a — 7, f est uniformément continue
de R dans Ll (\g).

Remarques : @ Si p=+o00, ’assertion (b) est fausse car €k (R4, K) e #Lg (Aa)-

e Ce théoreme s’appuie fortement sur I’invariance de la mesure de Lebesgue par
translation. Ainsi, le résultat tombe en défaut avec u = dg : 7, f converge vers f
dans L (p) si et seulement si f est continue en 0!

14.2 Convolution sur R

14.2.1 Le cas positif

Définition 14.2. Soient f, g : (R?, B(R?)) — R, deux fonctions boréliennes
positives. La convolée de f et g, notée f * g, est définie par :

VzeRy, (fxg)( /fx y) 9(y) Ma(dy). (14.2)

Proposition 14.1. (a) La fonction f * g est bien définie. C’est une fonction boré-
lienne positive de R* dans R, vérifiant :

Jrgdha= </Rdfd)\d> (/Rdgd/\d> .
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(b) La convolution entre fonctions boréliennes positives est
— commutative : f x g=g * f,

— associative : (f x g) «x h=f* (g * h).
(¢) Enfin, {f + g7#0} C {f#0} + {g#0}.

DEMONSTRATION : (a) Les fonctions (u,v) — f(u) et (u,v) — g(v) sont clai-
rement (#(R?) ® #(R?), %(R..))-mesurables donc, d’aprés la proposition 5.5,
la fonction (u,v) +— f(u)g(v) I’est aussi. D’autre part, la fonction (x,y)
(z — y,v) est continue de R? x R dans R? x R? donc (#(R% xR%), Z(R% xR?))-
mesurable. Or, Z(R¢xR?) = %(R%)@%(R?) d’apres I’application 11.1, d’ol, par
composition,

(R*xR%, (R @ B(R%)) — (R+, B(Ry))
(2, y) — flz—y) 9(y)

est mesurable. D’apres le théoreme de Fubini-Tonelli (théoréeme 11.2 de la sec-
tion 11.3) appliqué a la mesure produit Ay® Ay, il vient :

—d’une part : (.7} »—>/ fle—y)g(y) )\d(dy)) est partout définie, (R?)-mesurable
Rd

et,

— d’autre part :

/Rd< Rdf(x_y)g(y) )\d(dy)) Ag(dx) :/Rd (/ flz—y)g Ad(d:v)) Aa(dy)
z/Rdg(y) (/Rdf(:v—y) Ad(d$)> Aa(dy)
_ /R ) ( /R dfdAd> Na(dy)
_ (/Rdfd)\d> </Rd9d)\d>-

(b) Commutativité : Le réel x étant fixé, on procede au changement de variables
affine y:=p(u) =z —u. Il vient

(f*g)(x /fx y) 9(y) Aa(dy) = /f g(z—u) Ng(du) = g * f(x).
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Associativité :
fx(gxh)(x ij y) g * h(y) Aa(dy)
o= [ otv = wnw) ata) ) Aatay
Rd
/(/fﬂ? y) g(y—u) )\d(dy)>h(u))\d(du) (Fubini-Tonelli)
Rd
_ / ( Fla—u—z)g(z) /\d(dz)>h(u)/\d(du) (poser y:=u+z)
Rd

R4

= [ (< 0) = whu) Ma(d) = (7 x9) « i)
(¢) Siz¢ {f#0} + {g#0}, alors, pour tout y € R, g(y) =0 ou f(z—y)=0et
partant g(y) f(x—y)=0.D’ou (f x g)(x) =0. O

Remarque : Nous verrons plus loin (cf. corollaire 14.3 et application 14.1 a la
section 14.3) que la régularité de f * g peut étre affinée.

Exemples : 1. f «0 = 0.
2. £ 1e) =14 J(@) = [ Uo=)f@) Maldy) = [ N
3. Dimension 1 : On veut calculer 1 1) * 1o 17().

=Siz ¢ [0,1] +[0,1]=[0,2], 1jg1) * Lo,1)(x) = 0,
_Sizel0,2),

1 1
(1[0,1] * 1[0,1])(95) _/0 1[0,1] (z —y) M(dy) _/0 1[1:71,30](:9) A1(dy)

=zANl—(zx—1)VO0.

14.2.2 Cadre général

Soient f et g deux fonctions boréliennes de R? dans K (K =R ou C). La pro-
position 14.1 (a), trivialement adaptée au cadre complexe, montre que la fonction
(z,y) — f(x—1y) g(y) est borélienne de R x R? dans K. En outre, par définition
de la convolution des fonctions positives, pour tout zz € RY,

(v fla—y) 9v)) € L) & (1] *1g)(z) < +oo.

On peut alors définir la quantité (f * g)( / flz—y) g(y) Aa(dy).

Définition 14.3. La quantité (f = g)(x) est appelée la convolée de f et g en x.



300 14. Convolution et applications

Proposition 14.2. La convolution vérifie les propriétés élémentaires suivantes :

(a) (f % g)(x) = (g9 = f)(x) dés que 'une des deux quantités existe et

[+ gl(z) < (If]+|g])(x).

(b) Si | f| * |g| <400 partout, alors la fonction partout définie v — (f * g)(x) est
borélienne de R? dans R.

() {f xg7#0}yC {f#0} +{g7#0}.

(d) Si f1 = fa et g1 = g2 Na-p-p- [1 % g1 et fa * go existent simultanément et sont
alors égales.

DEMONSTRATION : (a) La commutativité est évidente par changement de va-

[ nu] < [ nla
R4 Rd

(b) Traitons le cas réel a titre d’exemple : on décompose les fonctions f et g en
f:=f"—f etg:=g" — g~. Il est immédiat via la croissance de I’intégrale que
fE % g <|f] * |g| < +oo d’ou, par linéarité cette fois,

riables affine. L’ inégalité découle de I’inégalité triangulaire

Frg=fTxg" + [ g —fTxg = [ xg".
La mesurabilité découle de la proposition 14.1 (a).

(@) {f x g# 0} ={If = gl#0} C {|f] * |g] #0} < {[f]7#0} + {lg| #0}.

(d) Si f1=f2 et g1 =g2 Ag-p-p. alors | f1|=|fo| et |g1|=|g2| Ag-p-p. donc f1 x g1
et fo * gy existent simultanément et sont alors égales. Soit = € R? fixé.

{yeR: fi(x—y) 1) # fa(x—y) 22(9)} C (& — {fr# fo}) U{g1 #g2}.
Or \g ((z — {fi# f2}) U{g1 #92}) < Ma({ i # f2}) + Aa({g1 #£92})=0. O

ATTENTION !Laloi % n’est pas associative dans ce cadre trés général.
Contre-exemple : Considérons les fonctions

f= 1R+7 g = 1[_170} - 1[071] et h:=1.

Il vient | f| * |g|(z) < 1x |g|(:c):/|g|d>\d:2, puis

. 0 siz¢[-11]
(f+g)(x) = /1R+<x—y>g<y>dy= / gy ={ z+1 size[-1,0]
e 11—z sizel0,1]

D’ou: (f xg) *h(z) = /f * g dAg = 1 (cf. exemple 2. ci-avant) d’une part,
R

et fx(gxh)(z)=f*(ur [ggdig)(x) = (f*0)(z) = 0 d’autre part.
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14.3 Conditions d’existence et propriétés

Nous allons passer en revue quelques conditions naturelles assurant I’existence
de la convolée f * g en tout point de R ou A-p.p..

Définition 14.4. On désigne par .,?jfl) c,K(/\d> I’ensemble des fonctions boréliennes
localement intégrables i.e. les fonctions boréliennes f : R® — K telles que

VK c RY, K compact, / |fldA\g < +oo.
K

Lespace (4. k(Aa), +, .) est clairement un K-e.v. stable par min et par max
(finis). D’autre part

Vpe(l, +oo], ZX(Aa) C Liex(Aa)

puisque / |fldha < || fllpra(E)Y9 < 400 (ob %%—% = 1) d’apres I'inégalité de
K
Holder (si p=1, on pose Ag(K)Y/>®° =X g(K)°=|1x| . =1).

Proposition 14.3. Soient f € L} et g € £°(N\a), g a support compact. Alors
(f * g)(x) est définie en tout point x € R?. En outre, I'application (f,g) + f*g
est bilinéaire.

DEMONSTRATION : Il vient
(If = |g])(z) = /Rd\f(fc—y)l l9(y)| Aa(dy)
<[ lglllrta)lratdy)
{g7#0}

< gll. / Ol < oo
z—{g

car (z —{g # 0}) est borné dans R? par hypothese.

La bilinéarité découle immédiatement de la linéarité de I’intégrale (on notera au
passage que I’ensemble des fonctions \;-essentiellement bornées a support com-
pact a valeurs dans K est bien un K-e.v.). ¢

Théoreme 14.2 (Convolution LP-L?).
1 1

Soient f € LE(Ng) et g € L (Na), o —+==1,p,q € [1,+00).
p q

(a) (f * g)(x) est définie en tout point x de R%. En outre, f * g est uniformément
continue et bornée par || f ||| g4 Enfin, I’application (f,g) — [ * g est bilinéaire.

(b) Si, en outre, 1 < p,q < 400, lim (fx*g)(xz)=0.

[[[| =00
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DEMONSTRATION : (a) On établit a I’aide de I’inégalité de Holder et du change-
ment de variables y=¢(u):=z—u que

1 lal(@) = [ |#=pllgt)| atd)
< ([ fa=nrrdan) ol = 1ol

hSAS

Comme p ou q sont finis, on peut supposer p fini. Or
frglz+a)—(fxg)(x)= /Rd(f(fc+a—y) — f@—y)) 9(y) Aa(dy)

_ /R (raf = Dla=y) gy) Aa(dy)

= (1—af — f) * g(x).
Dot |fxg(z+a)— (f*g)(x)| <|r—af — f] *|g|()
< |m—af = flipllgllq-

Le second membre de I’inégalité ne dépend plus de x et, d’apres le théore-
me 14.1 (b), il_r}r(l) |T—af — fllp=0.
La bilinéarité découle trivialement de la linéarité de I’intégrale.

(b) Etape 1 f continue a support compact :

Supposons d’abord que f € €k (R? K). On pose K :={f+#0}. K est compact
et

|(f * 9)(2)] S/Rdlf(x—y)llg(y)\%d(dy) = /K!f(w—y)llg(y)lhd(dy)

1 q
< Ag(x— Kp</ If(z—y )\q)\d(dy))
d’apres I’inégalité de Holder. On vérifie immédiatement que
VaeR?, [flz—y)|gw)” < IF1L191"(y) € 25, (M),
VyeR?,  lim |f(z—y)g(y)|? =0.
|z| =400

Le théoreme de convergence dominée entraine alors que

lim |f(z—y) g(y)|"Aa(dy) = 0.

l[z[| =400 JRd

D’oti le résultat, puisque A\g(z — K)=M\g(K) pour tout z € R?,
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Etape 2 Cas général, f € LF(A\a) :
L’exposant p étant fini, il existe une suite (f,,),>1 de fonctions de € (R%, R)
vérifiant || f,, — f||, = 0 quand n — +o0. Or,

VzeRY |(f*g)(x) = fox g(@)| = |(f = fo) * gl(x),
<|If = fallpllglle,

dov  |Ifxg— faxglle <IF = fallpllglle:

Finalement,

VYo eR:  [(f*9)(@)] < [fa*g(@)]| + [ fn = Fllollglle-

On choisit alors comme d’habitude n. € N tel que || f, — flpl/glq < 5. puis A. tel
que |z| > A, entraine | f,_ x g(z)|<5. O

Remarque : e Grice a la proposition 14.2 (d), on aurait pu énoncer le théoréme
avec les espaces L (\g) et Lk (\g) au lieu de ¢ (Aq) et L (\g).

e On observe déjaici le caractere “régularisant” de 1’opération de convolution ; ceci
sera également illustré par le corollaire 14.3 ci-apres et I’application qui le suit.

Corollaire 14.2. Si f,g € €k (R, K), alors, d’aprés la proposition 14.2 (c) et le
point (a) du théoréme 14.2 ci-dessus, f * g€ €x (R, K).

Corollaire 14.3. Si f et g sont boréliennes positives, alors f x g est semi-continue
inférieurement au sens o (1)

VaeR, {fx*g<a} estfermé.

DEMONSTRATION : Pour tout n > 1, on pose K, :=[—n,n]%, f,:=(f An)lk, et
gn:=(9 An)lg,. Les fonctions f, et g,, sont boréliennes positives et forment des
suites croissant respectivement vers f et g. Pour tout = € R?, la suite de fonctions
y — fu(x—1y) gn(y) croit vers la fonction y — f(x—y)g(y). Donc, d’apres le
théoréme de Beppo Levi,

VzeRy,  foxgn(z) = /Rdfn(x—y) In(y) Aa(dy) 1 (f*g)(z) quand n — +oo.

Or, d’apres le théoreme 14.2 (a), les fonctions f,, * g, sont continues puisque
fr, gn € iﬁ%()\d). Par suite { f,, * g, <a} est fermé d’ou, finalement,

{frxg<a}= ﬂ¢{fn*gn§a} est fermé. O

n>1

1. ouencore x, — x = lim f * g(x,) > (f * g)(z).
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Application 14.1. Théoréme de Steinhaus :

Si A est un borélien de R? de mesure (de Lebesgue) positive, alors
A—A:={a—d, a,d €A}
est un voisinage de 0 dans R.

DEMONSTRATION : D’apres le corollaire 14.3 la fonction p4:=14%1_ 4 ests.c.i.
(a valeurs dans R.), donc {4 # 0} ={p4 >0} est un ouvert; cet ouvert contient
0 car

wA<o>—-/Ql_A<—y>1A<y>xxdy>-Ad@4>>(1

D’autre part, la proposition 14.2 (¢) entraine que
[pa# 0} C{La# 0} + {14 £0) = A+ (—A)=A— A
D’ou le résultat annoncé. O
Théoreme 14.3 (L' algebre (Lj(A\g), +, -, *)). (a) Soient f, g€ L¢(Na). Alors, la

fonction (f * g)(z) est définie pour \g-presque tout x €R et f x g€ Lk (\g) avec

WWWSWMNlab/NmW=/fMM/9Mw
R4 R4 R4

(b) Le K-e.v. (Lk(Aa),+,.), muni en outre de I’opération x, est une K-algebre
commutative (i.e. * est commutative, associative et x est distributive par rapport
a +) ne possédant pas d’unité.

DEMONSTRATION : Au vu de la proposition 14.2 (d) ci-avant, on peut raisonner
sur des représentants, éléments de %y (\4), encore notés f et g.

(a) Les fonctions f et g étant dans %¢ (\4), il vient d’apres la proposition 14.1 (a)

1715 lal@) datdz) =1 £l < +oc.

Par suite, |f| * |g|(x) <+00 A\g(dz)-p.p.. On définit alors

(o)) = | fo, F@ =) 9@ daldy) silf]lgl(x) <o
0 si [ ] |gl(2) = +oo.

Ainsi définie, f * g est borélienne par une adaptation triviale de la proposition 14.2
(b), et intégrable puisque

1f* glly < [I1f1* gl < [ fllllglls-

(b) La distributivité est évidente et la commutativité découle de la proposition
14.2 (a).



14.3. Conditions d’existence et propriétés 305

— Associativité : Soient f, g, h € £ (A\q). D’apres la proposition 14.1 (b) (cas po-
sitif), il vient

(LF1 Agl) (Rl (@) == |F]+ (lg]  [R)(z) < +00  Aa(dz)-p.p.. (14.3)

Pour tout x vérifiant (14.3), il est immédiat d’apres le théoréme de Fubini-Tonelli
que I'application (y, z) — f(z—y) g(y—2)h(z) est A\q® Ag-intégrable. On conclut
via le théoreme de Fubini-Lebesgue en reprenant les calculs formels, maintenant
justifiés, de la proposition 14.1 (b).

— Absence d’unité : Supposons I’existence d’une telle unité u € Lj(A\q) (identifiée
a I'un de ses représentants dans -4 (A\4)). La fonction u vérifie donc en particu-
lier, pour tout p € R, e Pl x oy = e Pl Ng-pop. on |.| désigne ici la norme
euclidienne canonique sur R?. Or, d’apres le théoréme 14.2 (a) appliqué aux expo-
sants conjugués p=1 et ¢ =-+o0, la fonction e~P* % v est continue, donc, eI
I’étant aussi, celles-ci coincident sur tout R? (%). En particulier, il vient en x =0,

/RdemyQu(y) Aa(dy) =1. Or, par convergence dominée,

lim efp‘y|2u(y) Ai(dy) = 0.

p—r—+00 Rd

D’ou la contradiction.
Remarque : Plus généralement, 1’associativité de la convolution est valable en tout
point z vérifiant |f| * |g| * |h|(z) < +occ0. Evidlemment cette condition n’est pas
remplie par le contre-exemple a I’associativité proposé en sous-section 14.2.2.

Le théoréme 14.3 (a) est en fait le cas particulier du :
Théoréme 14.4. Si f € LY (Ng), (1 <p< +00) et g € Lé( M), alors (f * g)(x)
existe pour \g-presque tout x et f x g 63}5()\(1). Plus précisément,

ILF* glly < 1 1lpllglls-

DEMONSTRATION : On applique I’inégalité de Holder avec la mesure i définie par
u(dy) = |g(y)|Aa(dy). Il vient

1 fllsw)rata) < (/ 9N dy> (/ o) Ploty >1Ad<dy>)1

ou ¢ désigne I’exposant conjugué de p. En élevant a la puissance p (supposée finie)
et en intégrant cette inégalité par rapport a la mesure \y(dzx), il vient

P P
LA 1gllp < Mgl ISP dgllle = Nglly A5 gl = A5 lgllf < +oc.

Lorsque p=+o00, le résultat est évident. ¢

2. Soit D€ ZB(RY);si A\g(°D) =0, alors D est dense dans R?. En effet si DR alors <D =D
est un ouvert non vide contenu dans °D. Ceci est impossible car la mesure de Lebesgue sur R? charge
tous les ouverts non vides.
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14.4 Approximation de I’unité

Pour pallier I’absence d’élément neutre pour la convolution sur Lk()\4), on
introduit des unités approchées i.e. des suites de fonctions (o, ),>1 se comportant
asymptotiquement comme une unité. En d’autres termes, on souhaite que

anx f“~” f quandn — +oo (en un sens a préciser).
Définition 14.5. Une suite (o )n>1 d’éléments de Lk (\4) est une approximation
de I'unité si elle vérifie

(i) pour tout n > 1, / apdig =1,
Rd

(i) sup [ |an|dNg < o0,
n>1JRd

(731) pour tout £ > 0, lim lan| dAg = 0.
o0 Jlal e}

On notera que la condition (77) apparait comme une conséquence directe de ()
lorsque les fonctions o, sont positives.

Plutot que des suites, on considere aussi souvent des familles (at)teRj_ d’ap-
proximations de ’unité indexées par R*.. On adapte de facon évidente le point (7i7)
de la définition en faisant tendre ¢ tend vers 0 au lieu de n vers +o0.

Construction générique : La construction la plus courante d’une telle suite se fait
a partir d’un élément quelconque o € % (\;) d’intégrale / adig=1.

Rd
On définit alors simplement les o, par :

an(z) :=n%a(nz), n>1.

En effet, le changement de variables linéaire x = wu/n entraine :

1
/ and/\d:d/ an(u/n))\d(du):/ ad\g =1,
Rd n Rd Rd

/\an]d/\d—/ ] dAg.
Rd R4

Enfin, pour tout € > 0, le méme changement de variables, associé au théoreme de
convergence dominé, montre que

/ o (@)] Malda) = / la(w) Aa(du) — 0.
{lz[>¢} {lul>ne} n—+00

Exemples : Pour des raisons historiques ou liées au domaine d’application (Ana-
lyse, Analyse appliquée, Probabilités, etc.), on privilégie souvent les familles d’ap-
proximations suivantes (ot | - | désigne la norme euclidienne canonique sur R%) :

Vn>1,
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Noyau de Laplace sur R :
1 _ =l . 1 _|x‘
Vt >0, oqg(z) = —e€ ¢ (issude aj(x) == —e '*1).
2t 2
Noyau de Cauchy sur R :
VEs 0, ana) = — ! (issu de o (2) = ———)
() = —5——5< issude ap(x) := ———7).
o 7 (12 + 22) ! 7 (1+22)
Noyau de Gauss sur R :
Vi 0, ) L5 Gssudean(a) L -y
, og(r) = ——e @ issude ay(x) := ———e .
! (Vart)d ' (v/ar)d
+o0 9
(on rappelle — cf. exemple 2, section 12.2 — que / e " dr = /).
—0o0

Noyau a support compact sur R : A toute fonction a € Cx (R R) vérifiant

/ adAg=1, on peut associer le noyau :
Rd

Vt>0, ox):= tldoz (%) :

Théoreme 14.5 (Convergence LP). Soit (ou,)n>1 une suite d’approximations de
I'unité. Soient p € [1,+oco[ et f € Lig(Aq). Alors :

Vn>1, fra,€Ll(Ng) et [xay ”—Hp> I

n—-+o0o

DEMONSTRATION : Pour tout n>1, o, € LlK(/\d), donc, d’apres le théoreme 14.4,
[ * ay, est \g-p.p. définie et appartient a L (A\y). Comme /Rdozn(y) Aa(dy)=1,il

vient, la o f x au, () existe,

(F+ @) = £le) = [ (=) = @) an(s) Nald),
d’ou, en reprenant la démarche du théoreme 14.4,

|fx an(z) — f(z)[P < ||0én\|1g X / [fz—=y) = f(@)Plan(y)| Aa(dy),

Rd
11+ 0u@) = F@)Aatde) < ol x .
L[ 1@ =) = 1@ an()| tdy) Aalde).
Rd JRd



308 14. Convolution et applications

La constante M :=sup,,>1 ||y, |1 étant finie par hypothése, le théoréme de Fubini-
Tonelli entraine alors

I = Sl <0 [ l1f = £ onl)| Aalay).

On se ramene donc a étudier le membre de droite de I'inégalité. Soit € > 0.

/R T f = 1B lon ()] Aafdy) < / Uyl + 17 10)” Jon (9 Aa(d)

{lyl=e}

+ sup ||y f — fI12 / ()] Aa(dy),
{lyl<e}

ly|<e

S 2P(FIG [ lom(y)] Aa(dy) + M sup ||z, f — fl[.
{lyl=e} ly|<e

Par suite, la condition (7i7) de la définition des v, entraine

ves0, Tm / I7of — FI2 lan(@)Aa(dy) < M sup [l7yf — FI2.
n JRd ly|<e

Or, lim sup |7, f — f||,=0 d’apres le théoreme 14.1 (b). D’ou le résultat.
e—0 ly|<e
Nous allons maintenant établir des résultats d’approximation ponctuelle lors-

que la fonction f posseéde, au moins localement, des propriétés de régularité.

Définition 14.6. Soit f : R® — K et B une partie quelconque de R%. On dira que
f est B-uniformément continue si

Ve>0, 3n>0, VzeB, VyeR?, |z—y|<n = |f(z) - fy)| <e.
De fagon plus concise ceci s’exprime en : lim  sup | f(z+h) — f(z)|=0.
10 2eB, |hl<n
Si f est B-uniformément continue, alors f est en particulier continue en tout

point de B et fp est uniformément continue. En revanche, la réciproque est en
général fausse (prendre f:=1g et B:=Q).

Exemples : 1. f est R%-uniformément continue si et seulement si f est uniformément
continue.

2. f est {zo }-uniformément continue si et seulement si f est continue en .
3. Extension du théoreme de Heine : Si f est continue en tout point d’'un compact
K C R% alors f est K -uniformément continue.

En effet, dans le cas contraire, il existe eg > 0 et deux suites (z,)n>1 €t (An)n>1
respectivement 2 valeurs dans K et R? vérifiant

|hn|<1/n et [f(zn + hn) — f(zn)]> 0.

Par compacité de K, on extrait de (z,,),>1 une suite (,(,))n>1 convergeant vers
z € K. Or, la fonction f étant continue en z, les suites (f(2y(n) + hyp(n)))n>1 et
(f(74(n)))n>1 convergent toutes deux vers f(z). D’ou la contradiction.
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Théoréme 14.6 (Convergence ponctuelle). Soient (v, ),>1 une suite d’approxima-
tions de 'unité et f € Z°(\q). Alors

(a) Pour n>1, f*ay, est uniformément continue sur R% et bornée par || f|| _ ||cn /1.

(b) Si f est B-uniformément continue (B C R?), alors
b (sl ot~ 01) =0
SJim ( sup |f*an(@) = f(2)]) =0

DEMONSTRATION : L’assertion (a) découle du théoreme 14.2 (a).

(b) Notons d’abord qu’il est loisible de choisir un représentant dans la classe de
f simultanément B-uniformément continu et borné par || f||_, en remplagant si
nécessaire f par (—| f|l..) vV (f A|lfll.)- On le note toujours f par commodité.
En effet la fonction y — (—||f||..) V (y A || f]|..) est clairement lipschitzienne de
rapport 1. Soit M :=sup,, ||, 1. Il vient, pour tout x €R? et tout n.>1,

|f % an(z) — F(2)] < / F@—y) — F()l|an(y)| Aa(dy),
Rd
< M sup |f(z—y) — F(@)] +20|/]. / o (4)] Aaldy)-

lyl<n {lyl>n}

D’ob lim sup |f * an(x) — f(z)| < M x  sup |f(z—y) — f(z)|—0. O

" 2eB z€B, |y|<n =0

En combinant les exemples ci-avant et le théoréme 14.6, on obtient immédiate-
ment les résultats suivants.

Corollaire 14.4. Soit f € £°(\q). Alors :

(a) Si f est continue en xo €R?, alors Erf (f *an)(z0) = f(x0).

(b) Si f est uniformément continue sur R%, alors lim ||f * a,, — f||. = 0.
n—-+4+oo

(c) Si f est continue en tout point d’un compact K, alors

lim <21€1[1‘;‘(f*an)(x) - f(x)‘) = 0.

n—-+0o

14.5 Régularisation par convolution

Nous avons montré i la section 14.3 I’existence en tout point de R? de la convo-
lution f % ¢ dés que f est localement intégrable et ¢ essentiellement bornée a
support compact. Dans cette section, nous allons établir qu’en outre f * ¢ conser-
ve la régularité de . En combinant ce résultat avec ceux de la section 14.3, nous en
déduirons de puissants théoremes d’approximation par des fonctions tres régulicres.

Définition 14.7. (a) Pour tout n€N U {oo}, on pose

€ (R K) == {f : RY = K a support compact et de classe €"}.
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(b) Pour tout d-uplet d’entiers p:=(p1,. . ., pg) €N, on note ||p|| := Zpi.

i=1
(c) On appellera opérateur différentiel d’ordre p € N*, toute application DP définie
sur 6,2 (R, K) par

ap1+ +pg

= > Mgl WweK
pilpll<p d

Rappel : Une fonction f est de classe € " sur R? si et seulement si toutes ses
dérivées partielles d’ordre p, ||p|| <n, sont continues sur R%.

Théoréme 14.7. Soient ¢ € €,*(R%,K), n€NU {oc} et f € ,2’306 k(Aq). Alors la

fonction f x ¢ est définie en tout point de R® d’aprés la proposition 14.3. En outre,
f* o€ ™R K) et si D désigne un opérateur différentiel d’ordre p<n,

D(f*¢) = f=*D(p).
DEMONSTRATION : On se raméne, via une récurrence immédiate sur n, & montrer
. 0
’assertion (b) pour les opérateurs élémentaires —, 1 <i<d.

ox;’
Comme supp () := {p#0} est compact, K, :=supp() + B(0, 1) I’est aussi

(ceci découle de la propriété de Bolzano-Weierstrass). Soit alors e; le i®me vecteur
de la base canonique de R? et hc[—1, 1]\ {0}.
fxo(x+he;) — f*p(x o(x+hei—y) — p(z—y
R 212 [ g SR =R ),

Si he[—1,1] et u+he; €supp(yp), alors, nécessairement,
u € supp(p)+(~h)e; C supp(p)+B(0;1).

Par suite, 2 € R? étant fixé, I’inégalité des accroissements finis entraine

vyeRd ’f(y)SO(x—y—lrhe;L)—SD(x—y)‘ <1f ()| ng@ lew(x—y).

La fonction (de y) a droite de I’inégalité est intégrable puisque, f étant localement

intégrable, / |f(v)] Aa(dy) < +oc.
T—Be

D’autre part, pour tout y € R%,

p(x—y+he;) —plxz—y)
pm f(y) h -

On conclut par le théoréme de convergence dominée. ¢

Le résultat ci-dessus n’épuise pas les possibilités d’énoncés. Ainsi, on établit
sans peine a partir de 1’application 8.6.2 de la section 8.3, la variante ci-dessous :
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Proposition 14.4. Si [ € £t (\a) et si o est une fonction appartenant a
EM(RY,K) = {f: RY—K de classe €™, bornée, a dérivées partielles bornées},
ne N U {oo}, alors les conclusions du théoréeme 14.7 restent valables.

Si I’on souhaite combiner les résultats de régularité ci-avant avec ceux obte-
nus sur les approximations de 1’unité, le cas n = oo parait évidemment le plus
intéressant .. .sous réserve que I’ensemble €2 (R, K) ne soit pas réduit a la fonc-
tion nulle ! C’est bien le cas puisque la fonction

1

i <1
go::z:r—){ SXp(le—l) z E: _, estdans EX(RE[0,1]),  (14.4)

ol | - | désigne la norme euclidienne. Ceci se déduit immédiatement du fait que la
fonction

1 .
exp (_E) siu >0 0o
u—> { 0 siu<0 estdans ¢ (R, [0, 1]).
Définition 14.8. Une suite (ou,)n>1 est dite régularisante si

(1) la suite (o, )n>1 est une approximation de l'unité,

(i) pour tout n>1, o, € € (R%, K).

Exemple fondamental : Soit o, (z) = na(nz), a € €2 (R%,K), / adig=1.
Rd
On peut par exemple poser o := L Y €62 (RY,R) est définie par (14.4).
fRdQD dAg

Plus généralement, toute fonction ¢ € €2° (R%,R) d’intégrale / © dAg# 0 convient.
Rd

En combinant les résultats de la section 14.4 et du théoreme 14.7 ci-dessus, on
déduit plusieurs résultats réunis dans le théoreme suivant :

Théoreme 14.8 (Densité). (a) €32 (R, K) est || - ||.,,,-dense dans €k (R%, K).

(b) Pour tout p€ [1,+00], €2 (R, K) est || - ||,-dense dans Ll (\g).

(c) L’espace €°(RY,K) est || - ||sup-dense dans €7 (R, K) I’ensemble des fonc-
tions uniformément continues, bornées, a valeurs dans K.

(d) €2°(R4,K) est dense dans €,(RY,K) pour la convergence uniforme sur les
compacts : pour toute fonction f continue bornée, il existe une suite (fy)n>1 de
fonctions de €, (R%,K), telle que, pour tout compact , K C RY,

lim ((sup |fu() ~ f(2)]) =0.

n—-+00 €K
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DEMONSTRATION : On considére une suite régularisante (o, ),>1. Dans tous les
cas, f € i”lcl)c k (Aq), assurant ainsi I’existence des convolées f * a,.

(a) f,an €€x(RY,K) done f * o, € €5 (R, K) ; d’autre part f * o, € €°(RY, K)
d’aprés la proposition 14.7. Donc f * oy, € €°(R%, K). Enfin, le théoreme 14.6 (b)

N . . . . Ut
entraine, f étant uniformément continue, que f * a,, — f.

(b) Soit f € LE(N\g) et fr, définie pour tout m > 1 par fy,(z) = S jz)<my- Mest

clair que || f — fi |/ = /{ - | f(x)|Pdx tend vers O lorsque m tend vers I’infini
x m
par convergence dominée. D’autre part, a m fixé, oy, * f,,, converge pour la norme

|| . |l vers fplorsque n tend vers I'infini. La densité annoncée en découle.

(¢) f * ay, est uniformément continue, bornée d’apres le théoreme 14.2 (a), et dans
%>°(R%, K) d’apres la théoréme 14.7.
(d) Soit n.e N* et £, la fonction définie par

- f(x) si |z] <n
fnl@) = { f <n|§—|) si |z > n.

La fonction fn est uniformément continue et bornée sur R?. En effet, la fonction
T (% A1) est 1-lipschitzienne de R dans B(0,n) et fjp (9 ) est uniformément
continue (et bornée). D’apres le point (c), il existe donc f,, € € (R%, K) telle que
| fro = frllsup < % On vérifie sans peine que f, converge uniformément sur les

compacts de R? vers f. ¢

D’autres usages des propriétés régularisantes de la convolution sont possibles.
A titre d’exemple, voici une version “lisse” du lemme d’Urysohn de séparation des
fermés sur R,

Théoréme 14.9 (Lebesgue-Urysohn). Soit K un compact de R? et w un ouvert de
R? avec K C w. Il existe f € €52 (R4, [0, 1]) telle que

f=1surK et f[f=0 sur‘w.

DEMONSTRATION : La fonction z — d(x,w) est continue, elle atteint donc son
minimum p > 0 sur le compact K. On définit alors, pour tout > 0, le compact
K, :={ueR?: d(u,K) <n} de fagon que K, C w des que 1 < p. Soit alors
a, €67 (RY,R) telle que supp(ay,) C B(0, ) et [|ov, [|1 = 1. On construit une telle
fonction en posant simplement

ap(x):=

ou la fonction ¢ est donnée par (14.4).
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Soit alors la fonction f définie
fi=1k, xa, € 6P RLR) N Zr(\a) o 1k, €48°(Aa) N Lr(Ma).
3 3

Notons d’abord que la fonction f est positive et que d’apres le théoreme 14.2 (a),
I fllewp <1115, [l llvpllt £1x1=1. Donc f est a valeurs dans [0, 1].
3
D’autre part { f A0} C Kg—i—B(O, £) C K2y C w.Parsuite f €€ (R?,[0,1])
3
et f=0 sur ‘w. Enfin,

Lic, * 0pla) = /R i, (r—y)ay(y) Maldy) = / (1) Maldy).

z—Kp
3

Sur cette écriture, on constate que, si z € K, B(0; §) C 2 — Kg ; en effet, si [u| <%,
u=x—(r—u). Parsuite, 1x, xa,=1lsur K. ¢
3

N——

cKp
3

14.6 Autres convolutions

14.6.1 ... de fonctions

On peut définir une opération ayant des propriétés similaires a la convolution
sur R? entre des fonctions définies sur d’autres espaces.
Ainsi, sur KZ:={(up)necz, un €K} , on peut poser (formellement)

VneZ, (uxv),:= Zun,k V.
keZ

L’existence effective de la suite convolée u * v sera notamment assurée lorsque
(un)nEZ et '(Un)nez sont dans

0(Z) = {(un)nezeKZ > |un|<+oo}.
nez

De méme si I’on considere le “tore” ([0, 2r[, ([0, 27[), Ajjo,2x(/(27)). toute
fonction (borélienne) f : [0, 27— K se prolonge naturellement par périodicité en
une fonction, toujours notée f, définie par

VzeR, f(x) = f(ﬂc -2 {%D (ou [-] désigne la partie entiere).

On peut alors définir la convolution par

2
Feg)e)= [ fla—y) o)

0 27T
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Cette quantité existe par exemple des que f,g € LlK(l[OQW[.)\l /2m). L’adaptation
4 ce cadre périodique de I’ensemble des résultats obtenus sur R? est immédiate en
introduisant

Cpor(R,K) := {f : R — K continue, 27-périodique }

muni de la norme || f|| ., ;= sup |[f(z)].
z€[0,27]

En outre, tous ces cadres admettent des extensions multi-dimensionnelles.

Plus généralement, 1’existence d’une convolution ayant des propriétés analo-
gues 2 celle définie sur RY est liée a la présence d’une structure de groupe abélien
sur I’ensemble étudié et a I’invariance de la mesure considérée par les translations
relatives a cette addition. Une théorie globale regroupant toutes ces situations a été
développée : la convolution sur les groupes abéliens (localement) compacts munis
de leur mesure de Haar.

14.6.2 Convolution de mesures positives o-finies

On peut également définir dans ce méme cadre une notion abstraite de convolu-
tion entre mesures positives o-finies définies sur les boréliens d’un groupe abélien
localement compact. Pour simplifier placons-nous sur R%. Soient y et v deux me-
sures sur (R?, 2(R%)). On définit la convolée x * v de y par v comme la mesure
image de la mesure-produit ;1 ® v par I’application addition (z,y) — x + y. Le
théoreme 12.1 (théoreme de transfert de la mesure-image) montre alors que p + v
est caractérisée par

fEpsrlds) = [ fot ) e vids,dy
Rd Rd xRd

le long des fonctions boréliennes bornées ou positives f de R? dans R. On écrit
généralement plus simplement (grace au théoreme de Fubini)

/ F(2) pxw(dz) = / £ + ) plde)(dy).
R4 RIx R4

On vérifie qu’une telle opération entres mesures o-finie est commutative, associa-
tive et possede la masse de Dirac en 0, g, comme élément neutre.

Le lien avec la notion de convolution de fonctions est des plus naturel : si et v
ont respectivement f et g pour densité par rapport a la mesure de Lebesgue A, sur
(R, 2(R%)), alors 1 % v a une densité par rapport 2 Ay donnée par f * g. L exercice
14.15 ci-apres reprend ces affirmations de facon plus précise.

Cette notion est essentielle en Probabilités puisque la convolée des lois de deux
vecteurs aléatoires indépendants n’est autre que la loi de leur somme.
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14.7 Exercices

L espace mesuré est (R?, Z(R%), \y) ot d>1.

14.1 Soient a, b€ R, a<b, x := L, et, pour n>1, xp := x* - - - %X (n fois).
a) Représenter le graphe de 2 et montrer que, pour tout n>2, x,, € €~ *(R).
b) Calculer ||x,|[1 pour n > 1. Calculer ||x2||
[ oy <[ []1-

¢) Soit la fonction ¢ := Z X»- Donner une condition nécessaire et suffisante pour
n>2

que € Za(\). Montrer que, sous cette condition, ¢ € 6 (R) et vérifie I'équation

fonctionnelle ¢ = x * ¢ + x2 . La fonction ¢ est-elle dérivable sur R ?

et montrer que, pour tout n > 3,

sup

14.2 En considérant la convolution par la fonction 1jg 1), montrer que L%Q(R) n’a
pas d’élément neutre pour 1’ opération .

14.3 Soit f € £¢(\g). La transformée de Fourier de f est définie sur R? par
f):= [ fla)e " da,
Rd

ot - désigne le produit scalaire sur R?.

a) Montrer que f € %p(R%).

b) Soient f, g €.4¢(A\g). Montrer que f*\g:f g.

c) En déduire que Lk (\) n’a pas d’élément neutre pour I’opération .
14.4 Inégalité de Young pour la convolution

Soient p, g, € [1,+00] tels que 1% + % =141, f e Zl(\)etg € Ld(Ng). Mon-
trer que f * g est définie Ag-p.p. et vérifie I’inégalité de Young pour la convolution

frge () et [Ifxgllr <[ fllpllgle-

14.5 Soient f € Lk(\g) et g € LE(A\g), 1 < p < +oo. Montrer que, pour tout
a € Ktel que |a| < |f||;*, I'"équation h — af * h = g posséde une unique
solution dans Li (\g).

14.6 Soient p € [1,+oo|, f € L (Aa) et (ay)n>0 une approximation positive de
I’unité. Montrer que lim ||a,xf—f||, = 0 en appliquant I’inégalité de Jensen avec
n

la mesure de probabilité o, (z)(dx) (cf. exercice 7.10).

14.7 Soient f € £ (\g) et g € L°(Na) telles que  lim  g(z) = 0 . Montrer

|z| =400

que f * g € €o(RY). Le résultat subsiste-t-il si I’on omet le contrdle de g a I’infini ?

14.8 Soit (B),)n>0 une suite de boules ouvertes de R centréfs a ’origine et de
rayon r, > 0 tel que lim, r, = 0; soient [ € Zé()\d) et (f,,)n>0 la suite des
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moyennes de f sur les boules B,,, définies sur R par

7 L / S

Montrer qu’il existe une sous-suite (?w(n))nzo qui converge \gz-p.p. vers f.

14.9 Soit f € %} (\4) nulle hors d’un compact, telle que pour toute ¢ € € (R?),
f(z) Ap(z) dr = 0, out A désigne le laplacien dans RY.
Rd
a) Soit a €€ (RY). Montrer que axf €€, (RY) et que, pour toute ¢ €€ (RY),
/ (axf)(z) Ap(x)dx = 0.
Rd
b) En déduire que ax f =0 puis que f =0 Ag-p.p..
14.10 Cet exercice nécessite la notion de support essentiel d’une fonction mesu-
rable étudiée dans I’exercice 6.14.
a) Soient f, g€ %¢(\a) et les ensembles A := S}‘ U{f=0}, B:= Sy U{g=0}
et [ := S +Sg. Montrer que A\g(°A) = \¢(°B) = 0 et que, pour tout z € °F,
{yeR?: flz—y)g(y) # 0} C (x —“A)U °B.
e e
b) En déduire que S, C 5% + Sy
14.11 Soit f € £2(R?), d > 1. On définit la transformée de Fourier de la fonction
f par
~ +w .
f(t) = flx) e ™) dg teRY,
o0

oll - désigne le produit scalaire sur R%. On considére, pour tout n € N*, la fonction
an, définie par ay,(z) := (2m) ™4 e (ol tlzaD) o e R,
a) Calculer la fonction o, := a,, et montrer que c’est un noyau de convolution sur
RY (cf. section 14.4).
b) Soit f € ZA(R?) telle que f € .Z2(R?). Montrer que, pour tout z € R,

+00

(an*f)(z) = / an(t) f(t) €@ dt.

—00

¢) En déduire la formule d’inversion de Fourier

+o00 ~
erf@) = [ FO D dt = f(-a) Naldo)pa.
— 0o

14.12 a) Soient g, h € ZL(R) telles que § € .Z&(R) et ||h]|.. < 1. Résoudre dans
ZLL(R) I'équation f =g+ hx f.

b) Soient a, b deux réels tels que a > b > 0 et g, h les fonctions définies sur R par
g(z) :== e~ et h(z) := (a—b) 1R, (z) e 9%, v € R. Résoudre, a I'aide d’une
équation différentielle, I’équation f = g+ h * f.
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1
(a —ix) (b+ i)
14.13 Soit 1 la mesure définie sur Z(R%) par p(dz) := ' dz. On définit le
produit de convolution sur R* de deux fonctions mesurables f, g : R} — K, par

¢) En déduire la transformée de Fourier de la fonction x

fro(x):= | Flay™) g(y) uldy),
+
lorsque cette intégrale a un sens.

a) Soient f, g : R} — R, deux fonctions boréliennes. Montrer que fxg définit une
fonction borélienne de R* dans R et que

/f*ngZ/ fdu/ gdp.
R% R% T

b) Soient f, g€ .%¢ (1). Montrer que
frgefe(m) et f * gl < 1fllzrgllall -
c) Soient pe [1,+o0] et (f, g) € LF (1) x L (1). Montrer que
frge Ll () et fxgllieny < N llzeqwlgllorgw-
14.14 Inégalité de Hardy a poids

On considere la mesure ¢ définie sur Z(R%.) par pu(dz) := z~! dz et x la convo-
lution associée; soient & € R\ {1}, p € [1,+o0[ et f : R — K une fonction
borélienne vérifiant id® f € £ (1), ot id désigne I'identité sur RY .

1 x
/ f)ydt sia<l
=< TJo,

1
- ft)dt sia>1
€ x

pour tout >0 et qu’il existe g, € L (1) telle que id*F = (id® f)*ga.

a) Montrer que la fonction F'(z) : est bien définie

b) En déduire [’inégalité de Hardy a poids :

+o0 1 +oo
/ :cpa*1|F(x) |Pdx < p/ a?po‘*llf(a?) Pdz  (Hp)
0 la=1]" Jo

et montrer que cette inégalité étend I’inégalité de Hardy de I’exercice 9.16.

¢) Montrer que la constante ﬁ dans I’inégalité (H,) est optimale.

d) Montrer qu’il n’y a pas d’inégalité analogue a (H,)) lorsque av=1.

14.15 Soient y et v deux mesures finies définies sur (R?, Z(R%)). On note pxv la
mesure borélienne image de la mesure produit p ® v par la fonction (u, v) — u+wv.
a) Soit f une fonction borélienne bornée sur R%. Montrer que

Fpsr) = [ ko) pdu) vido).

Rd Rd xRd
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b) Montrer que la loi * ainsi définie est commutative, associative et possede la
mesure de Dirac en 0 comme élément neutre.

c¢) Soient f,g€ ZFL (A\q) et u, v les mesures de densités respectives f, g par rapport
a g, ie p:= fg p:= g.\g. Montrer que pxv= (f*g).\g.

d) Soient g € Z (Aa) et p := g.Aq. Montrer qu’il existe hh € Z5 (Aq) tel que
d(pxv)=h.d)\g.

e) Montrer que supp p*v C supp p+supp v (la notion de support d’une mesure
est définie a I’exercice 6.15).



Chapitre 15

Transformées de Fourier et de Laplace

La transformée de Fourier est un outil fondamental dans de nombreux domaines des
mathématiques, tant pures qu’appliquées. Selon les domaines sa définition varie a la
marge selon que I’on privilégie tel ou tel aspect ou champ d’application, notamment
par I’introduction d’un facteur 27 dans I’argument de I’exponentielle complexe,
voire une normalisation de la mesure dont on considere la transformation par un
facteur (27r)7g . Notre choix s’est arrété sur la convention la plus en cours en théorie
des Probabilités.

Nous étudierons également mais de maniere plus rapide, en lien avec la trans-
formée de Fourier, la transformée de Laplace a la fin de ce chapitre.

Notations complémentaires : e Dans ce chapitre la notation | - | désignera exclu-
sivement la norme euclidienne canonique sur R?. Le produit scalaire canonique de
deux vecteurs x = (x1,...,z4) et 2’ = (2}, ..., /) € R? sera, lui, noté

d
7)) = Z xT;x
=1

e Le conjugué du nombre complexe z sera noté z et son module |z|.

e On note Id la symétrie centrale Id : z r—> I := —x et, pour toute fonction f
définie sur R?, f := f o Id. Ainsi f(x) —z) pour tout € RY. On utilisera
sans restriction que Ido Id = Id (Id est 1nV01utlve)

Rappel : Soit € (R?, K) I’ensemble des fonctions continues & support compact de
R? dans K. On fera largement usage du résultat de densité suivant :

Vpe [1,+oof, @i (R%K) estdense dans (LE(A\a), ]| - [I)-

Ce théoreme a été établi au chapitre 7 dans sa version uni-dimensionnelle et dans
la section 9.7 (théoreme 9.10) dans le cas général.
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15.1 Définition et premieres propriétés

Définition 15.1. (a) Soit 11 une mesure (positive) finie sur R%. La transformée de
Fourier de p est une fonction [i définie en tout point ¢ de R% par

fi(6) = / e 1 (dar) (15.1)
Rd

(b) Soit f € L& (A\g). La transformée de Fourier de f est une fonction f définie en
tout point & de R® par

f& = /R € f() A (dz). (15.2)

L’existence des transformées de Fourier de et de f découle immédiatement
du fait que, pour tout £ € R?, |!¢l)| = 1. En effet, 1 € £ (1) puisque la mesure
1 est finie et

/ 1€860] £ (@) Aalda) < +oo,
Rd

puisque | f| est Ag-intégrable par hypothése.

Notons qu’a toute fonction f positive \g-intégrable définie sur (R?, Z(R?)),
on peut associer la mesure finie p1¢(dz) = f(x) Ag(dx). On vérifie que les deux
définitions de la transformée de Fourier sont consistentes puisque

€)= Fa(e) = | (@) Aa(da) (15.3)

Les propriétés suivantes sont évidentes :

P1 Pour tout £ € RY,
1(=8) = 1 )=/ ¢S fy(d) = f(€),
Rd

ol /i désigne 1’image de p par la symétrie centrale Id : « — & := —z. Ceci se
reformule en

)

fo= 1 =p.
En particulier, si p est symétrique, ji est a valeurs réelles.
P’1 Pour tout £ € R,

ie.
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—~

En particulier, si f est a valeurs réelles, f(—& ) = f(§); sienoutre f est paire, alors
f est a valeurs réelles.

o —

P2 Pour toutes mesures finies j, ' sur (R%, Z(R%)) et tout p > 0, putpu’ =
pii+ ' etpp = pi.

P’2 La transformée de Fourier est une application C-linéaire sur .22 (\;) et R-
linéaire sur Z5 (\g).

Proposition 15.1. (a) Les transformées de Fourier i et [ sont des fonctions uni-
formément continues et bornées. Plus précisément

IN

Hﬁ”sup M(Rd)a

I fllsap < 1715
/Rd min (2, [ — ¢'| |2[) p(da),

I,
N
|
3,
s
A

=
o
|
=)
78"
—
IA

/Rd min (2, |€ — &'| |z]) |f(z)|Aa(dz).

(b) Théoréeme de Riemann-Lebesgue : Pour toute fonction f € £ (\a),

Jm [T =0

En particulier, f € Gy(R%,C) = {g€ €(R%,C): lim g(z) =0}

|z| =400

DEMONSTRATION : (a) Pour tout £ € R?,
A(E) — €)= [ (1) = €)(d),
Rd

Or, pour tout u, v € R, e — €| < |u — v| d’une part d’apres 1'inégalité des
accroissements finis et [e'* — e"| < 2 d’autre part via 1’inégalité triangulaire. Par
conséquent

A - )] < /’mm@m@—gmmuw@
Rd
< [ min ()¢ = €la) u(do)

grace a I’'inégalité de Cauchy-Schwarz.
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(b) Sachant que €™ = —1, il vient

fier = [ @) ra(a
_ / ¢i (e +mE/1612) £ A (da)
Rd

- /Rd e“f'y)f(y — W&/\€I2) Aa(dy)

via le changement de variable affine z = y — 7 £/|¢|%. D’ou

flo = 1OHE©
= ;/Rd ez(ﬂ:ﬂ(f(x) _f(x_ﬂ.g/’é‘Q)) )\d(dl’)
et partant
@l < \f — f(z—m&/IEP) | Aalda)
= §||f menepdll, (o2 O

d’apres le théoreme 14.1 (b). ¢

Remarque : Le théoreme de Riemann-Lebesgue (assertion (b)) n’est pas vérifié
par les transformées de Fourier de mesures finies en général. Ainsi la transformée
de Fourier de la masse de Dirac en a € R?

5a() = / G5, (da) = FED, ceRY,
Rd

est une fonction de module 1.

Corollaire 15.1. La transformée de Fourier de fonctions intégrables est une appli-
cation C-linéaire continue de (ZL(X\a), || - ||,) dans (€6(R%,C), || - |lsup)-

On peut aller beaucoup plus loin dans I’analyse de la régularité de la trans-
formée de Fourier.

Proposition 15.2. (a) Si / |z|pu(dx) < +oo, alors i€ €1(RY) et
Rd

onu )
afgg(ﬁ) =i, e’ u(dr). (15.4)
(b) Si la fonction x — |z||f(x)| € La(\a) alors fe R er
F o= / e €9) £(2) Mylda). (15.5)
O, Rd
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DEMONSTRATION : Ces affirmations sont des applications immédiates des théo-
remes de dérivation et de continuité des intégrales dépendant d’un parametre.

Corollaire 15.2. (a) Si la mesure finie p admet des moments polyndémiaux a tous

les ordres (i.e. / 2| u(dz) < 400 pour tout n€ N), alors i€ € (R?).
Rd
(b) Si, pour tout n€ N, / |l2|"| f (2)| Aa(dz) < +o00, alors f€ € (RY).
R4

Proposition 15.3. Si [ est contintiment différentiable sur R, ‘ ‘hm f(x) =0et
x|——+00
of

fe L (N, 9ar

e LY N), k=1,...,d, alors

er Rd, /Rel(ﬂff)aaxj;(x)dxk = —1 gkf(g)

D’oun, en particulier,

f(&) =o0 (,;) lorsque €| — +o0.

Remarque : Lorsque d = 1, ’hypothése lim  f(x) = 0 est redondante car

|x|—+o0
)
/ ().

Comme [’ est intégrable, x +— / | f/(u)|du converge vers une limite finie lorsque

Va,yeRY, [f(z) — f(y)| <

0
x — +o0o ou x — —oo. On en déduit immédiatement que f vérifie le critere de
Cauchy (fonctionnel) en +00. Donc f admet des limites finies en +oo, limites qui
sont toutes deux nulles eu égard a I’intégrabilité de f.

DEMONSTRATION : Par définition de la transformée de Fourier, on a pour tout

k=1,...,d,
of i(ele) OF
€)= /R 6920 @) ().

On fait disparaitre la dérivée partielle de f via une intégration par parties en la
variable x,

Tp=-+00

/R ei(gmggfk(m)dm = [f@)eee)] — i & f(€)

Tp=—00

- i / i6l9) £ () dy.
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En intégrant cette égalité par rapport aux variables x1, 2, ..., Tk—1, Tkt1,s-- -, Tds
il vient
af ~

&) = —i&f(S)-

oxy,

On procede ainsi pour chacune des d variables, d’ou il ressort que, pour tout rsel
£eRY,

of
a.%'d

af

max (€], -, [€al) | F(6)] < max ( 9 ( '

(5)') . (156

On se rameéne 2 la norme euclidienne, en notant que |¢| < v/d max (|&], - .- |€al)
et I’on conclut via le théoreme de Riemann-Lebesgue (Proposition 15.1(b)). ¢

Corollaire 15.3. Soit f € €"(R?%), n > 1. Si, pour toute paire de multi-indices
a:=(ag,...,a0) €N Ja| :=a1+---+ag<netf = (B,...,58) € N,
Bl <n—1,

8a1+-~~+adf

aq ag
Da - 05

Brt-+Ba
c L' Ng) et lim 0 / =

— " _(2) =0,
jal—-+o0 " - - Dl

alors | f(€)] = o(1/I¢]").

DEMONSTRATION : On procede par récurrence rétrograde. On initialise le proces-
sus en appliquant la proposition 15.3 ci-dessus aux dérivées partielles d’ordre n—1.
Puis I’on remonte de proche en proche en s’appuyant sur I’'inégalité (15.6) établie
dans la démonstration de la proposition 15.3 ci-avant.

Au vu des résultats qui préceédent on constate une forme de dualité entre régula-
rité et comportement a I’infini d’une fonction et de sa transformé de Fourier. D ou
I’'idée d’introduire un ensemble qui possederait les deux types de propriétés et qui
de facto serait globalement stable par la transformée de Fourier.

Définition 15.2. On pose

- . grutna g
S = {fe ¢ (RYR):Vne N VmeN, ——F7757() —0(1/\§|m)}
Oyt -+ Ox,

I’ensemble des fonctions régulieres a décroissance rapide (parfois appelé espace de
Schwartz en référence au mathématicien francais Laurent Schwartz).

En outre, on définit /¢ comme [’ensemble des fonctions a valeurs complexes
dont parties réelles et imaginaires sont éléments de ..

Corollaire 154. Si f € ., alors fe .
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DEMONSTRATION : Soit m € N*. Par hypothése, il existe une constante réelle
C > 0, telle que, pour tout z € R,

2" f ()] <

(Jaf* +1)¢
Or |z| > |zk| pour tout k = 1, ..., d, donc
L+l = [T @+ad).
1<k<d

Il s’ensuit d’apres le théoreme de Fubini-Tonnelli que

d
df]jk d
x| f(x)| Ag(dx) < C / =(Cn% < 400,
[l @) atdo) I [ 155

donc ]?E ¢ (R1) d’apres le Corollaire 15.2. D’autre part, comme f vérifie les
hypotheses du Corollaire 15.3 a tout ordre n, il vient :

Fol=0(zx)-

of —
a5, O =il @)(©)

et que z — x f(x) est clairement dans . si f 1’est, il apparait que

of (L
9%, ‘O<|§\n>

pour tout n € N*. On conclut via une récurrence immédiate.

Enfin, comme

Parmi toutes les fonctions de .7 il en est une qui posséde des propriétés d’in-
variance plus spécifiques dont nous ferons un usage crucial dans la suite. Ceci est
illustré par I’exemple suivant.

Exemple : On définit sur R? la fonction
el

wa(x) =

Il est clair que g € . et que, par conséquent, o4 € .. En fait on peut calculer ex-
plicitement la transformée de Fourier de cette fonction. Dans un premier temps on
se ramene a la dimension 1 en notant que, grice au théoréme de Fubini-Lebesgue,

d
Q/O\d(g) = /d el(glm)eilzP)\d(dl‘) — /d H eigkxkefwi dxl .. dxd
R R k=1

d

d
- ot rtan, ) = ] 7.
[ (feeion) = [T

k=1
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Or, d’apres la Proposition 15.2(b), pour tout { € R,

D’ou, par intégration par parties,

. 2 . 1 2 e . 2
/ elye ™ duy = [e“‘é (—e“ )} +1i&/2 / e e dy,
R 2 o0 R
= 1§/2¢,(8).
Par conséquent @, vérifie I’équation différentielle ordinaire
(@,)(€) +£/28,(§) =0.

Cette équation différentielle admet une solution explicite donnée par

D’autre part @, (0) = / e~ dz = /7 (cf 11). D’oll finalement
R

d le|2

VEeRY,  Gg(6) =m2e 1. (15.7)

Proposition 15.4. (a) Soient u et v deux mesures positives finies. Alors

— o~ o~

*U = V.

=

(b) Soient f et g deux fonctions de L& (\g). Alors

fxg=1f3.

DEMONSTRATION : (a) Par définition de 4 * v, mesure image de p ® v par ’ap-
plication (x,y) — x + y, et grice au théoréeme de Fubini-Lebesgue, on obtient
successivement

) = / ¢ (1% ) (dz) = / D)D) (1 @ ) (da, dy)
Rd Rd x R4

_ /R d [ /R d ei(ﬂx)ﬂ(da:)] Wy (dy) = /R (E) "My (dy)
= A D).

(b) Ceci découle du point (a) lorsque f et g sont positives. On passe au cas général
en s’appuyant sur la bilinéarité du produit de convolution et du produit de deux
nombres complexes. On peut également procéder directement en imitant la preuve
du point (a). ¢
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15.2 Injectivité et formule d’inversion

Le résultat principal de ce paragraphe est d’établir I’injectivité de la transformée
de Fourier. Cette propriété permettra, notamment en Probabilités, de caractériser la
loi d’un vecteur aléatoire a valeurs dans R? 4 1’aide d’une seule fonction.

Théoréme 15.1 (Injectivité de la transformée de Fourier).
(a) L’application (,u — ﬂ) est injective sur I’ensemble M f+ des mesures positives

finies sur (R, Z(R%)).
(b) L’application (f f) est injective sur L*(R?, B(R?), \y). En d’autres termes,
pour toutes fonctions f, g€ L1 (\g),

~

f=9 = f=gXpp

Ce théoreme repose sur une identité essentielle qui sera établie dans le lemme
15.2 ci-apres qui lui-méme nécessite un petit lemme préparatoire.

Lemme 15.1. (a) Soient f € £L(\a) et 0 > 0. Alors la fonction fy(z) := f(z/0)
vérifie R R
fo(€) = £ (05)-

(b) On considere pour tout o > 0, la fonction g, définie par

1 ||
go(r) := ———e 202, A€ER.

(27T)g0'd

La fonction g, est une densité de probabilité (appelée densité gaussienne centrée
de variance o2) ef, pour tout £ € R4,

Gol6) = TP, (15.8)

DEMONSTRATION : (a) Le changement de variables homothétique x := 6y en-
traine

fo(€) = /R L 1 (@/0) Ma(dz) = /R L )0t Na(dy) = 07F(06).

(b) Ce point découle du point (a) appliqué avec f = /2 o et de I'identité (15.7). O

Lemme 15.2. Soit |1 une mesure positive finie. Pour tout o > 0, on définit la convo-
lution de la fonction g, et de la mesure 11 (') par

VECRY  (goxp)(E) = / 9o (€ — 2)pu(de).
Rd

1. La fonction g, * p ainsi définie n’est autre que la densité de la mesure absolument continue
(go-Aa) * p par rapport a la mesure de Lebesgue.
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Alors, pour tout £ € R4,
d ~ . o2 2
(90 * m)(€) = (2m)” / Aly)e " SWem T WA (dy). (15.9)
Rd

L’identité (15.9) reste vraie si I’on remplace formellement la mesure finie y et sa
transformée de Fourier [i par une fonction f € fé()\d) et sa transformée de Fou-
rier f.
DEMONSTRATION : On part du constat que, pour tout £ € RY,

s

Gi(6)=e 5.

al=

Par suite, on a

e [ o e [ )
smen® = | AT

(27)% od 27)% o

d
_ / / ei(f—x\y)e—a2%0_d dy M(dl’)
R JRd (2m)% (27) 20

_ —i(zly) i(ely) —o? 2 _dy
/Rd [/Rde ,u(dm)}e e 2 o)

La derniere égalité découle du théoreme de Fubini-Lebesgue qu’il est loisible d’ap-
pliquer puisque la fonction

e 2l _p2l?
oile—aly) o~ 1Y ‘:ea d

(z,y) —

est clairement i (dx) ® Ag(dy)-intégrable. Finalement, on obtient

_ S0y ilely) —o? S Ay
b€ = [ Alpetine st
s ity —o? Y
/Rdu(y)e S o=y

car la mesure de Lebesgue est invariante par symétrie centrale. La démonstration
dans le cas d’une fonction intégrable est identique. ¢

DEMONSTRATION DU THEOREME 15.1 : (a) Si i = v, il découle de la for-
mule (15.9) du lemme 15.2 que, pour touto > 0,

Jo * U = Ggo * V.

Nous allons établir que, pour toute fonction h : R? — R lipschitzienne bornée,

/Rd hdp = lim h(z)(go * 1) (z) Ng(dx). (15.10)

o0 JRd
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Comme
h(@)go(x = )| < [hllsup 9oz = y) et (2,9) = golz —y) € L (Na @ p),
on peut appliquer le théoreme de Fubini-Lebesgue, d’ou il ressort que
L@@ xatin) = [ ([ arte = inta) atao) ) nta)

Rd
Par le changement de variable affine = := y + z, il vient

/Rd h(z)(go * p)(x) Aa(dz) = / </Rd 9o (2)h(y + 2) )\d(dz)> 1u(dy).

Rd
D’autre part, g, étant une densité de probabilité,

/Rdhdu = /Rd (/Rd hd/j,) 9o (2) Aa(d2),
d’ou

/Rd h(w)(go * 1) (x) Ag(dzx) — /

R

[Rvd/;d ga(z)(h(y + Z) — h(y)) )‘d(dz)u(dy)

< iy n(RY) [ o () Aot

2

hd,u'

z

C sh(d2)
O'd

= W n®) [ ol

|z

W MR

_ 1zl

e 2

= U[h]Lip M(Rd) n |2 2 )g Aa(dz) a—>—>o 0.
)2

Via 1a convergence (15.10), on déduit que 1’égalité 1 = U entraine

/hdu:/ hdv
Rd Rd

pour toute fonction lipschitzienne bornée. Soit alors F un fermé de R? et h,, définie
par hy(x) := (1 — pd(z, F')), . Les fonctions h,, sont lipschitziennes bornées et
décroissent vers 1., donc par convergence dominée, on déduit que p(F') = v(F).
Les mesures finies 4 et v coincident donc sur le 7-systeme des fermés, générateur
des boréliens de R?. Par conséquent ;i = v.

(b) La démarche adoptée dans le point (a) se transpose de fagon immédiate en
remplacant formellement u(dz) par f(z) Ag(dx), puis par la mesure positive finie
| f(x)|X\q(dx). On obtient alors que, pour tout fermé F' de R,

/F £(2) Ma(dz) = /F o) Ma(d).
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Or, on vérifie aisément (2 1’aide du théoreme de convergence dominée) que
A {Ae BRY, / F(2) A(de) = / o(x) /\d(dx)}
A A

est un A-systeme sur R?. Il contient le 7-systéme des fermés de R?, générateur
des boréliens donc A = Z(R%). On en conclut que f = g Ag-p.p. en considérant
successivement les boréliens {f > g} et {g > f} et en utilisant que si [z, hd\g =
0 et h est borélienne positive alors h = 0 Ag-p.p. O

On déduit de ce théoreme le corollaire immédiat suivant.

Corollaire 15.5. (a) Une mesure finie  est symétrique si et seulement si sa trans-
formée de Fourier [i est a valeurs réelles.

(b) Une fonction a valeurs réelles f est “Nq(dx)-p.p.” paire (f(x) = f(—x)
Aa(dx)-p.p.) si et seulement si [ est a valeurs réelles (on peut supprimer le \j(dx)-
p.p. si f est apriori continue).

Le théoreme d’inversion (globale) de la transformée de Fourier s’appuie sur les
mémes ingrédients.

Théoreme 15.2 (Inversion de Fourier).

(a) Soit 1 une mesure positive finie telle que fi € £*(\q). Alors p est absolument
continue par rapport a la mesure de Lebesgue et admet une densité (positive) @,
uniformément continue et bornée sur R%, donnée en tout point x par

o(z) = (2m) / A(E)e 10 X (de) = (2m)~ Fi(—a).

Rd

(b) Si f et f sont dans ZLE(\a), alors

~

f@) = @0~ | FOe O n(de) = (2m) " fl=a) Aalde)pp. (151D

En particulier, ceci entraine que ’égalité (15.11) est vérifiée ponctuellement en
tout réel x en lequel la fonction f est continue a droite ou a gauche.

Remarque : On déduit du point (b) que si f a une transformée de Fourier intégra-
ble, alors f est Ag-p.p. égale a une fonction continue bornée tendant vers 0 a I’infini
(propriétés vérifiées par toute transformée de Fourier de fonction intégrable).

DEMONSTRATION : (a) Comme i € £*(\y), le théoreme de convergence do-
minée permet de passer a la limite lorsque o — 0 dans I’identité (15.9) du lemme
15.2 de facon a obtenir

lim g, # u(z) = (2m) / A(E) 0 X (de), (15.12)
Rd

o—0
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en utilisant que

AE)e @O TIEP | < |a(e)] € 2 (Aalde)).

Notons ¢ la fonction en la variable = € R? définie par 1égalité (15.12). Tout d’abord
il est clair que p(z) = (27)~% fi(—x). La fonction ¢ est donc bornée et (uni-
formément) continue en tant que transformée de Fourier d’une fonction intégrable

(la fonction (27)~97i). Enfin ¢ est & valeurs réelles car

o) = o [ RO i) = 2y [ =) aa(de)

Rd

~ (2n) / AE) e N (de) (€= —¢)
Rd

= o(z).

D’autre part, par application du théoreme de convergence dominée, on déduit que
pour toute fonction h continue a support compact

lim [ B()(go * 1)() Aaldz) = /R () (g« ) () M)

c—0 JRd
_ / h(z)p(x) Aa(dz).
Rd

Combinant ceci avec la convergence (15.10) obtenue lors de la démonstration du
théoreme 15.1 (injectivité) on obtient que pour toute fonction 4 : R — R lipschit-
zienne a support compact

/hdu:/ hep d)g, (15.13)
Rd Rd

/hdu+/ hgo-d/\d:/ he, - dAg (15.14)
Rd Rd Rd

ol p1r = max(+¢y,0) désignent respectivement les parties positive et négative
de la fonction ¢ (ce sont toutes deux, par construction, des fonctions continues
positives, bornées par ||¢||sup)-

Nous allons établir que ¢ _ = 0 et que it = ¢ - Ag. Chacun des deux membres
de I’équation (15.14) définit une forme linéaire positive (en la variable h) sur
(€ (R, R), || [|sup)- Ces deux formes linéaires coincident donc sur le sous-espace
Lip, (R% R) qui est dense dans (¢ (R, R), || - |lsup) d’apres le théoréme 9.10,
elles sont donc en fait identiques. D’apres le théoréme de Riesz (théoreme 10.1) la
mesure de représentation d’une forme linéaire positive continue est unique donc

soit encore

B+ @ Ag =, A
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En particulier, sachant ¢_ x ¢, = 0, il vient

1, sopp=—¢_ A

ce qui entraine a son tour que la mesure ¢_.)\, est a la fois positive et négative
donc identiquement nulle; soit encore que ¢ = 0 Ag-p.p. La fonction ¢ _ étant
continue, elle est donc identiquement nulle.

Enfin, comme les fonctions (ZW)_df(—.) et f sont égales sur une partie partout
dense de R, il existe pour chaque x € R, une suite x,, convergeant vers x, soit
par valeurs strictement supérieures, soit par valeurs strictement inférieures, selon
les besoins, ou les deux fonctions coincident. La premiere fonction étant continue
(partout) et la seconde I’étant (a droite ou a gauche) en z, elles sont égales en x. Le
méme raisonnement s’applique pour les limites a droite et a gauche. ¢

Exemple : Soit f(z) := 1/(1 4 x2). Pour tout £ € R?,
Fle) = me

Pour établir cette formule, on prend le probleme a I’envers : on part de la trans-
formée de Fourier de I’exponentielle symétrisée qui, elle, se calcule aisément :

0 +00
/ S / e+ gy 4 / el gy
R —0o0 0

1 1 =2

iE+1 iE—1 —22-1
2

24+ 1

La fonction z ~ 2/(z? + 1) est intégrable donc par la formule d’inversion, on
trouve que

i e—ix£ 2
27T R 1 + f 2
1 2

- = iz

— d€.
27 R 1‘1‘52 5

—la|

dg

D’ou le résultat annoncé.
Le corollaire suivant se déduit 1mmed1atement du théoréme précédent, du Co-
rollaire 15.4 (et de la propriété P’1 f f)
Corollaire 15.6. Pour toute fonction f € .¥, fe S et
(2m)?f.

f=
En particulier si I’on désigne par ¥ 1’opérateur de transformée de Fourier | +— f

il vient 7 (/) = . et, sur .,
F1= (27r)’dﬁ oul ﬁ(f) = ﬁ(f)
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Il existe également un résultat local d’inversion de la transformée de Fourier,
énoncé ici pour les fonctions de la variable réelle. On note f(x) et f(z7) les
limites a droite et a gauche de la fonction f lorsqu’elles existent.

Théoréme 15.3. Soient f € L1 ()\g) et x € R. Si la fonction f admet une limite a
droite et a gauche en x, notées respectivement f(x") et f(x™) et si la fonction

fla+t) + flz—t) = (f@") + fz7))
t

t—

(15.15)

est intégrable au voisinage de 0, alors

e
e o [ Foeae s

Remarque : Ce résultat est a rapprocher de son analogue plus classique sur les
séries de Fourier.

Remarque : La condition (15.15) est notamment vérifiée si f est localement lip-
schitzienne (voire holdérienne) a droite et a gauche de x. En outre, aucune hy-
pothese d’intégrabilité n’est requise sur f.

Lemme 15.3. Soit F ¢ " (R+, BR4), )\) a valeurs dans R une fonction vérifiant

) — +
pes PO Z Oy o) 2 Ry BRL)N)

T

pour un réel 1 > 0. Alors

o0 ;
lim F(z) SRM2)

m
de = —F(07).
M—+o0 0 X v 2 ( )

DEMONSTRATION : On sait (¢f. par exemple Application 1.6, 1) que

/+°° sin(Mz) dr — /*OO sin(y) dy = m
0 x 0 Yy 2’

donc

- F(x) sin(Mz) dx — gF(OJr) = /+OO Fla) - F(O07) sin(Mx)dx
0 T 0 X

Soit alors € > 0 et a €0, 7).

+oo sin(Mxz T
/' F@)gy)dx—QF@ﬂ
0

< [IEEore,
Jom (@n)

T siny
+F(01)] '/ dy’
Ma Yy
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o Go(r) := F(x)/2 14 400)(x) pour x € Ry. Les fonctions G, sont dans
Z(\) pour tout @ > 0 car |Gq(z)| < L|F(z)] et F € £1()\) par hypothese. On
choisit alors a = a. de facon que

/aa |F(z) = FOT)] <¢e/3
0

X

par continuité de I’intégrale de la borne supérieure d’une fonction intégrable. Puis
I’on choisit M. suffisamment grand pour que I’on ait, pour tout M > M., d’une
part |@aE (M)] < &/3 (ceci est loisible au vu du théoreme de Riemann-Lebesgue
(proposition 15.1(b)) et, d’autre part,

T siny

FO4I] o <3

Ma.

. o T siny .
(compte tenu de la (semi-)convergence de I'intégrale —dy). En combi-
0 Y
nant ces trois inégalités, on conclut que pour tout M > M.,

+o0 in(M
F(z) sin(Mz) do — gF(O+)
0 x

<e. O

DEMONSTRATION DU THEOREME 15.3 : Pour tout M > 0,

/ Y fleyae = / A; /R eI f (u) dudg

—-M

/ ei(u—m)M _ e—i(u—m)M
R i(u—x)

f(u)du

d’apres le théoreme de Fubini-Lebesgue. D’ou

M ~ sin((u — x
[ i = 2 [ =Dy,
R

M u—x

u—2

Ly /;OO sin((u — z)M)

u—

B 0 sin(Mw) - — o)do
=2 [0

v

+ 2/0+00 7Sin(Mv)f(u)dv

v

_ 4/0+°° Sin(i\h) (f(fEJrv)-;f(ﬂ?—v))dv'

flx+v)+ flz—v)
5 .

O

On applique alors le lemme précédent & F'(v) :=
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15.3 Transformée de Fourier-Plancherel

Le but de ce paragraphe est de “prolonger” la transformée de Fourier des fonc-
tions intégrables a I’espace -£2(\y) des fonctions de carré intégrable. Le terme
“prolonger” est abusif puisque -Z2 (\4) n’est pas inclus dans -ZZ(\g).

Lemme 15.4. Soient f, g € £L(\a). Alors f. G €% (R C) et

/fgdAdz/ Fdr.
Rd R4

DEMONSTRATION : D’apres le théoreme de Fubini (qu’il est clairement loisible
d’appliquer)

L L e saas] at@rag = [ | [ 00 de] swas,

F()g6) de = / fOF© . o
R4 R4

ie.

Soient ¢, ¥ € Y. D’apres la propriété P’1, le lemme précédent et le Corol-
laire 15.6 on a

[gvar= [ ebin=n [ oTan
Rd Rd Rd

Comme .#¢ est dense dans LE(R?, \4), puisqu’il contient I’espace ¢’>°(R?, C)
d’apres le théoreme 14.8 (b), et p — @ est une isométrie (linéaire) de . dans
LZ(R?, \y), cette application se prolonge donc en une isométrie ® de LZ(R?, \y)
dans lui-méme.

Définition 15.3. L’isométrie @ est appelée transformée de Fourier-Plancherel.

Théoreme 15.4 (Plancherel).
La transformée de Fourier-Plancherel vérifie les propriétés suivantes :

(a) ®o® = (2r)? Id.
(b) Pour tous f,g € LE(A\a),

/(I)(f) D(g)dhg = 2m)L [ fgdrg
Rd Rd

(c) P|LL(RI N )NLL(R,N,) €1 F coincident sur LERA, N)NLE(RE, Ny). En d’autres
termes , si f € LE(RY, A\g) N LE(RY, \y), alors

~

f=2(f) Xipp
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DEMONSTRATION : (a) Les deux applications coincident sur .#¢ qui est dense
dans LZ(R%, \y).

(b) L’identité est une conséquence évidente de la polarisation de la norme || - ||, sur
LE(X\a).

() Soit f € LY (R4, A\g)NL2(R?, \y) et soit (p,,)n>1 une suite régularisante construi-
te a partir d’une fonction a € 67° (R4, R) au sens de la définition 14.8. Nous allons
montrer que f, = py * ( f 1[_n7n]d) ,m > 1, est une suite de fonctions ¢°° a support
compact convergeant vers f dans L' et dans L.

Les fonctions f;, sont a support compact car chacune est la convolée de deux
fonctions a support compact. Leur différentiabilité "> est une conséquence immé-
diate du théoreme 14.8.

D’apres le théoreme 14.5, p,, * f LL‘“? f lorsque n — oo. D’autre part,
d’apres le théoreme 14.4, on a pour p€ {1, 2},

= o £, = low * (F Lepnmo) ], < lonll, 15 Lepnmall,.

Or ||pn||, = 1 et on conclut par convergence dominée.
Comme et .# coincident sur .7¢, le résultat découle de la continuité respec-
tive de .% et ® pour les convergences dans L' et L2, {

Proposition 15.5. Pour tous f,g € L&(\g)
o(f) * D(g) = (2m)? fg.
DEMONSTRATION : Si f, g € .7, f, g€ & etlarelation
O(f)x®(g)=f*g=(2m)"fg

est vraie car

—
o~

Feg=13=0@m%fs=20)2fg) = (2m) fg.

La || - [|2-densité de .7 dans LE(Ag) N LA(Ag) et la L?-continuité de la transformée
de Plancherel donnent la formule annoncée dans son cadre général. ¢

NOTATION : On note souvent fla transformée de Plancherel d’une fonction de
L%()\4) au détriment de la notation .

Remarque : On peut donner une expression asymptotique semi-explicite de la
transformée de Plancherel en notant que pour toute f € L%()\d), la suite f 1 s
n > 1, est constituée d’éléments de LE(Ag) N LE(\4) et converge dans L? vers f.
Par suite

O(f)(€) = L*-lim 1) f(2) Aa(dz).

n J[-n,n)d



15.4. Transformée de Laplace 337

15.4 Transformée de Laplace

Dans cette partie nous allons étudier la transformée de Laplace, de maniere
plus succincte que la transformée de Fourier, en faisant un minimum appel aux
résultats d’analyse complexe (le théoreme de Cauchy notamment) et en restant plus
dans I’esprit de I’intégrale de Lebesgue. Nous mettrons 1’accent sur les applications
au niveau des exercices 15.28 a 15.40 qui sont assez développés et s’apparentent
d’ailleurs plutdt a des problemes. Pour un traité consacré spécifiquement a la trans-
formée de Laplace, nous renvoyons a I’ouvrage [13] qui nous parait tres complet.

15.4.1 Définitions et premiers exemples

Définition 15.4. (a) Soit f : Ry — C une fonction localement intégrable sur R,
i.e. intégrable sur tout intervalle borné de R... La transformée de Laplace notée
Z(f) de la fonction f est définie par

+o00
Z(f)(z) = /0 f(t) et

pour z € Dypy:={C€C: t— f(t) e Ste XI(RJF)}.

(15.17)

L’ensemble D oy est appelé le domaine de la transformée de Laplace -Z(f).

(b) Soit p une mesure borélienne positive sur R.y. De facon similaire a (15.17), la
transformée de Laplace de 1 est définie par

+oo
L)) = [ e

pour z € Dy, := {C €eC:tm ft)e tte fl(R+,u)}.

(15.18)

(c) Soit f : R — C une fonction localement intégrable sur R. La transformée de
Laplace bilatérale notée 21,(f) de la fonction f est définie par

—+00

L —zt
(NG = [ fHedt (15.19)

pour z € Dy ) :={C€C: f(t) e tte LYR)}.

Remarque : Soit zo = xg + iyo € D o(y). Alors pour tout z = x + 1y € C tel que
x>z, |f(t)e 2 = |f(t)| e ¥t < |f(t)|e 0! est intégrable sur Ry. On en
déduit que le nombre réel x; défini par

zp=inf{zeR: t— f(t)e "' € L'(R})}, (15.20)
(qui appartient ou non a D () vérifie

Dy ={x+iy : v € (xy,+o0[ ety €R}. (15.21)
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NOTATION : Dans la suite, on désignera une fonction f par sa valeur f(¢). Ainsi, par
un abus de notation pratique, la transformée de Laplace de f sera notée .Z(f(t))
au lieu de L(f), le domaine D ;) au lieu de Dy et le nombre xf(;) au lieu de ;.

Exemples : 1. La fonction f : ¢ +— e’ n'a pas de transformée de Laplace car
d’apres (15.17) D () = .
2. Soit n € N. En intégrant n fois par parties on a xy» = 0 et

n!
on+l

Z(t")(2) =

pour tout 2 € D g(4n) = {¢eC: R >0}

La transformée de Laplace .Z'(t") peut s’étendre a C*.
3. Soita € C. Alors z.at = R(a) et
1
L) (z) = pour tout 2 € D g (eaty = {¢eC: R > Ra)}.

zZ—aQa

La transformée de Laplace .Z(e?) peut s’étendre a C \ {a}.

4. Formules d’Euler. Partant des identités

1 . ) 1 . )
VteR, sin(t) = % (e —e ™) et cos(t) = B (e +e7™),
i
on déduit les transformées de Laplace des fonctions sin et cos
1
ZL(sin)(z) = — 1
V4
pour z € Dgjp = Deos = {C eC: R > O}.
Z(cos)(z) = s
22+1

15.4.2 Propriétés de la transformée de Laplace

Proposition 15.6. Soient f, g deux fonctions localement intégrables sur R.. Alors
on a les propriétés suivantes :

(a) Z(f) est une fonction holomorphe dans I’intérieur D 2(1) de Dy (), et

vneN, (L))" =L((~t)"f(1) dans Dyy). (15.22)
(b) Si Dy(yy # @ alors R l)im+ Z(f)z) =

(c) Pour touta € R, on a

V2€Dgy), e “L(f)(z) =L (ft—a)lpo(t))(2)-

(d) Par restriction a Ry la convolée f x g est définie par

(f=g)( / f(t—s)g(s)ds pourt € R4, (15.23)

etona
L(fxg)=2Z(f) x ZL(g) dans Dy N Dg(g)- (15.24)
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DEMONSTRATION : Les propriétés (a) et (c¢) découlent du théoréme de dérivation
sous le signe intégrale. L’implication (b) découle du théoréme de convergence do-
minée, car d’apres (15.21) il existe 2y > x5 tel que pour tout z, (z) > xp, onala
condition de domination

VteRy, |f(H)e | < [f(B)]e " e £(RY).

Enfin, la propriété (d) se déduit du théoréme de Fubini comme pour la transformée
de Fourier (cf. Proposition 15.4).

Exemple : D’aprés (15.22) on a Z(t)(z) = —£(1)'(z) = z~2. On obtient donc

via la définition (15.23), que pour tout z € C tel que R(z) > 1,

1

X(et -t - 1)(2) = Z(t * et)(z) =Z(t)(z) f(et)(z) = ﬁ

2% (z —

Contrairement a la transformée de Fourier, le fait d’intégrer sur R, impose de

tenir compte des conditions limites en 0 lorsque que I’on calcule la transformée

de Laplace des dérivées successives d’une fonction. On dispose ainsi de la for-

mule d’intégration par parties suivante, tres utile pour la résolution des équations

différentielles linéaires a 1’aide de la transformée de Laplace.

Proposition 15.7. Soientn € N* et f : R — C une fonction n fois dérivable sur R,
tels que f () soit localement intégrable sur R,.. On suppose que

F= ﬂ Zo)z(f(k)) 7 0.
k=0

Alors la transformée de Laplace de f™ se déduit de celle de f par la formule

i
L

Vze Al Z(f™) () ="2(f)z) - Y R R). 1525
0

b
Il

DEMONSTRATION : On proceéde par récurrence. Supposons que la formule (15.22)
soit vérifiée par f(™). En intégrant par parties on obtient pour z € A?H,

L(FD) () = [f (1) )57 + 2.2 (F™) (2).
Comme

ViR, 2 (f0(1)e ) = frHD @) et — o f0) (1) et = B (1)

ot

est intégrable sur Ry (z € A’}H), le critere de Cauchy appliqué en +oo a la fonc-
tion (g, : t — F (1) e ), ie.

+oo
< / () du —s 0,

§—00

t
Vs<teRs, |gn(t) - gn(s) = \/ gl () du
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est vérifié, ce qui combiné avec I’intégrabilité de la fonction g,, sur R4, implique

lim f™(t) e = 0.

t—+o00

D’ou par I’hypothese de récurrence a I’ordre n, il vient

L(f")(2) = 22 (™M) (2) - f<”>< 0)

_ oty ZzH"l’“f (0) - £7(0)
()~

— ntl Z (n4+1)—1— kf(k()
k=0

qui est la formule (15.22) al’ordren + 1. ¢
Les exemples ci-dessous illustrent la résolution des équations différentielles
linéaires par la transformée de Laplace.

Exemples : On admet pour le moment I’injectivité de la transformée de Laplace
qui sera obtenue par le corollaire 15.7 ci-apres.

1. Soit f : Ry — R la solution du probleme de Cauchy

fre)+ft)=e™, teRy
f0)=a, f(0) =5

La formule (15.22) implique que pour R(z) assez grande,

_ 1
2 L)) —az— B+ Z()E) = LeE) = 5
D’ou, en décomposant en éléments simples, il vient
1 az 153
£ = .
(1)) (z+1)(2241) +z2—|—1 +22+1
1 1 1 1 1 1 oz B

:§z+1+2i—22—i_2i+2z—i z2+1+22+1'

On en déduit, a partir de la transformée de Laplace de I’exponentielle et de I’injec-
tivité de la transformée de Laplace, que

.1 it _ .1 ot Z'Oé‘i.'ﬁeitJria—.ﬁe—it
21— 2 2142 21 21

_t 1 1y .
e "+ (a - 5) cost + (ﬁ—l— 5) sin t.

On peut aussi traiter des équations différentielles linéaires a coefficients non
constants.
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2. Soit f : R4 — R la solution du probléme de Cauchy

PO+t () —2f(t) =4, teRs
F(0) = —1, f/(0) =

Puisque d’apres les formules (15.22) et (15.25) avecn = 1,ona
L(tf'1))(=) = (L) (2) = - (L))"

la transformée de Laplace I de f est solution de 1’équation différentielle

ZPF(2)+2— (2F'(2) + F(z)) —2F(2) = g

m.ﬁ@ﬂ(§—aﬂ@=—§+1

z

Cette équation linéaire du premier ordre s’inteégre, pour z = = > 0, en

2 ]. C 2 2 2 C 2 2
F@:E—;+;&/:gu—m@+§&ﬁ
En supposant que D (5 # @, on a nécessairement ¢ = 0 d’apres le point (b) de
la proposition 15.6. Donc la solution de 1’équation différentielle est f(t) = ¢> — 1

par injectivité de la transformée de Laplace.

On conclut cette section par un résultat asymptotique liant une fonction et sa
transformée de Laplace.

Proposition 15.8. Soit f : Ry — C une fonction localement intégrable sur R
possédant une limite finie ¢ € C en 4+o00. Si le domaine de la transformée de Fourier
de f est non vide alors

lim = Z(f)(z) =¢= lim f(¢). (15.26)

z—0t t——+00

DEMONSTRATION : Comme f est localement intégrable sur R, et bornée au voi-
sinage de +00,ona zy < 0. Soit a € R’ Alors d’apres I’inégalité triangulaire, on
obtient pour tout = € R,

’x.,?f(f)(az)—ﬂ} §x/0a|f(t)_£| _‘mdt—l—sup|f €|/ 7 et g

éx/lﬂﬂ—ﬂdHﬂmﬂﬂﬂ—ﬂ-
0 t>a
N————
<+00

L’avant dernier terme est un O(x) pour a > 0 fixé, alors que le dernier terme
est arbitrairement petit, uniformément par rapport a x, pour a assez grand, d’ou le
résultat.
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15.4.3 Inversion de Laplace

On dispose d’un résultat d’inversion analogue a celui du théoréeme d’inversion de
Fourier et qui d’ailleurs s’en déduit.

Théoreme 15.5 (Inversion de Laplace). Soit f une fonction localement intégrable
sur Ry valant 0 dans R*, de transformée de Laplace F. Soit x > x (cf. (15.20))
tel que (y — F(x+ 2z'7ry)) soit intégrable sur R. Alors on a la formule d’inversion
de Bromwich-Mellin

LU t) = f(t) = ! / F(z)edz Mpp.teRy, (15.27)
{3(

2w z):x}
et en tout point t € R ont f est continue.

DEMONSTRATION : La fonction (y — F(z+2imy) = fae\*xt(y)) est intégrable
sur R par hypothese. Le théoreme d’inversion de Fourier (c¢f. Théoreme 15.2) ap-
pliqué a la fonction (t — f(t) e‘”) entraine alors, en posant z = x + 2i7y,

ft) = / F(z42imy) e @2t gy — % F(z)e*dz A\pp.t €Ry,
R I J{R(z)=c}

et en tout point ¢ € Ry ou f est continue. ¢

Corollaire 15.7 (Injectivité de la transformée de Laplace). Soit f une fonction lo-
calement intégrable sur R, étendue par la valeur O sur R*. Si £(f) = 0 sur un
segment de C de longueur > 0, alors f = 0 \-p.p. dans R.

DEMONSTRATION : On se ramene au cas ou le segment noté [a, b] est inclus dans R
(le cas usuel en pratique). La transformée de Laplace de f est holomorphe sur
I’intérieur de son domaine ﬁg( -

Soit ¢ €]a,b[. Alors, d’aprés le théoreme d’analyticité de Cauchy (cf. [12,
Chap. 10]), la fonction Z’(f) est développable en série entiere dans un disque ou-
vert D(c,r) de centre c et de rayon r > 0 assez petit. Comme par hypothése .Z( f)
est nulle sur [a, b], il vient

R (D)
Ve ele—r,e+r[, 0= Z f n'(c) (x — )",
n=0 )

d’ou en calculant par cette série les dérivées successives de -Z(f) au point ¢, on a
ceA:={z€Dyy :VneN, Z(f)"(z) =0}

Donc A est une partie non vide (¢ € A), fermée (par continuité des dérivées suc-
cessives de .Z(f)) et ouverte (par le développement en série de .Z( f) au voisinage
de chaque point de D & (y)) du demi-plan ouvert D &y de C. Comme le demi-plan
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ouvert D 2(y) est connexe, on en déduit que A = D 2(f)» et par suite Z(f) =0
dans D 2()- On conclut en appliquant le Théoreme 15.5 d’inversion. ¢

Un autre résultat important relatif a I’inversion de Laplace est le théoréme de
Bernstein-Widder dont la démonstration, tirée de I’article (?), fait I’objet de I’exer-
cice 15.39.

Théoreme 15.6 (Bernstein-Widder). Soit f : Ry — R une fonction complétement
monotone, i.e. vérifiant

FeCR)NET(RY) et YxeRL, (—1)"f™(x)>0. (15.28)

Alors f est la transformée de Laplace d’une mesure de Stieljes (cf. & 6.5.2) s’écrivant
comme la dérivée d’une fonction o : Ry — R croissante, bornée et nulle dans R*
telle que

lim_a(t) = £(0),

t——+oo
ou, par convention, la transformée de Laplace de da, qui étend la formule (15.22)
pourn = 1, est définie par (3)

ZL(da)(z) :==22Z(a)(z) —a(07) pourz € ﬁg(a). (15.29)

15.4.4 Exemples issus des probabilités

1. Loi gamma. La densité f, ;, sur R, de la loi de probabilité v(a, b) pour a, b > 0,
est définie par

1 a—1 _—t/b N oo a—1 —=x
fap(t) = b (a) e t>0, ou I(a):= ; e dr.
Alors la transformée de Laplace de f, ; est donnée par
1
v C, R(z) >—-1/b, Z =—
zel, (Z) / ) (fll,b)(z) (bz+ 1>a

Soit z > —1/b. Par le changement de variable s = (x 4+ 1/b) t on obtient

1 +o0 o
L(fap)(x) = m F(a)/o pa—1 o~ (a+1/b)t gy

_(e+1/b)7 /*“’ a—1 —s

= () Ta) ; s e “ds
1 + 1

(bx+1)2T(a) Jy (bx + 1)@

2. H. Pollard, “The Bernstein-Widder theorem on completely monotonic functions”, Duke
Math. J., 11 (1944), 427-430.

3. Avec cette convention, la dérivée de la fonction de Heaviside 1r_ , qui coincide avec la mesure
de Dirac dp en 0 (cf. (6.1)), vérifie £ (d1r,) = .Z(do) = 1 car 1r, (07) = 0, de sorte que do est
I’élément neutre de la convolution (15.23) dans R
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On conclut par un argument d’analyticité (cf. la preuve du Corollaire 15.7).
2. Loi gaussienne. La densité g,, , sur R de la loi de probabilité gaussienne .4 (m, o)

pour m € R, o > 0, est définie par

R N (C Y

Im,o (t) = \/ﬂ -

Alors la transformée de Laplace bilatérale (15.19) de g, » est donnée par
VzeC, L(gmo)(z)=¢"T" 7212,

Soit € R. En mettant en forme I’argument de 1’exponentielle, on obtient

1 2 2
j(gm,a)(l’) :\/%J/Re t—(t )2/(2 )dt

1 2.2 2 2 2

_ —mx o°x?/2 —(t+o2z—m)? /(20 )d

= e e e t
Vamo /R

2.2 1 2 2
(s =t+o%x —m) —e Tz o2 _— [ o=57/(207) g
V2rmo Jr

_ 2,2
—e mxeom/Q.

On conclut a nouveau par un argument d’analyticité.

15.5 Exercices

15.1 Soit f€ L1 (RY), f > 0 Ag(2)-p.p.. Ona V&€ R\ {0}, |F(&)] < F(O).

15.2 Soit 1 une mesure positive finie sur (R, Z(R)). Montrer I’équivalence entre
(1) IEE R, A(€) = p(R), (i) A€ R, u(*{(21/€)Z}) =0.

Voir également I’exercice 15.18 pour un développement plus approfondi.

15.3 Soit £ un borélien de R? de mesure de Lebesgue finie tel que
Vne N*, / e dy = 0.
E

Montrer que E est de mesure nulle.

15.4 Montrer qu’il existe une unique fonction f € .#!(R) deux fois dérivable sur
R telle que

f'(x) = f(z) = (a* = 3/4) e, zeR.

Déterminer f en prenant la transformée de Fourier de 1’équation différentielle.
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1
15.5 Soit f : R — R définie par f(x) ] 152y (7), = €R.

~ 2% log(Jx]
a) Montrer que / |z| f(z)dr = +o0.

R
b) Montrer que la transformée de Fourier de f est dérivable en 0.

15.6 Donner un exemple d’une fonction de .#%(R%) \ .#!(R?) dont la transformée
de Fourier-Plancherel appartient 2 .Z* (R%).

15.7 Soit f,, a > 0, la fonction définie par f,(t) := ﬁ. Montrer que pour
tous a,b > 0, fu % fo = far
15.8 On considere les limites lorsqu’elles existent
. "osint .,
f(x) = nll}r_{loo e dt, zeR.

a) Montrer que f est bien définie sur R, que f = f(0) 1;_; ;y dans R\ {#:1} et que
f(£1) = f(0)/2.

b) A I’aide du théoréme de Plancherel montrer que f = 7 1y 11 A-p.p- dans R. En
déduire la valeur de f en chaque point de R.

15.9 On définit les intégrales
it
I, ::/Slndt, neN, n>2.
R 1"

a) Montrer que 0 < I,, < Iy = 7. On pourra considérer la transformée de Fourier
n . .
de f,, := (1[_1 /2,1 /2]*) au sens du produit de convolution.

b) Montrer que pour tous 1, p, g€ N* tels que n = p + ¢, I? < Iy Io.

15.10 Soit f€ ¥ }((R) Montrer, par le théoreme de Plancherel, que ]?et la fonction
(t — tf(t)) sont dans Z*(R), puis que f € Z*(R). En déduire que f est la
transformée de Fourier d’une fonction de .1 (R).

15.11 a) Montrer que f € .Z'(RY) ssi f = gh A-p.p. avec g, h € L%(RY).

b) En déduire que ¢ est la transformée de Fourier d’une fonction de .Z!(R?) si et
seulement si p = ¢ * 9 p.p. avec ¢, € ZL?(RY).

¢) Montrer que I’ensemble des fonctions f € .Z'(R?) telles que festa support
compact est dense dans 2! (R?).

15.12 (*) Soient ¢ la fonction définie par ¢ () 1= e~121*/2 2 € R4, ¢ une fonction
paire de %?(Rd), et f:=p* ()%

a) Calculer fexplicitement al’aide de @ et ¢.

4. Exercice aimablement communiqué par notre collegue D. Guibourg a 'INSA de Rennes.
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b) En déduire I’existence d’une fonction strictement positive sur R? dont la trans-
formée de Fourier est dans ¢, (R%).

15.13 Soit f € %, (R,R). Montrer que sa transformée de Fourier f se prolonge
naturellement en une fonction entiere sur C. En déduire que f et f ne peuvent étre
simultanément a support compact que si f est identiquement nulle.

15.14 a) Montrer que dans LZ([—1, 1], A), muni de la norme hilbertienne L? usuelle,
la famille (em7T ) / \/i) nez est orthonormale.

b) Montrer, a ’aide par exemple du théoreme de Stone-Weierstrass, que c’est en
fait une base orthonormée hilbertienne de L& ([—1, 1], \).

¢) Soit f € Z1(R, \). Montrer que, si supp(f) C [~1,1] et f(n7) = 0 pour tout
ne Z,alors f =0 A-p.p..

d) Montrer un résultat analogue pour la transformée de Fourier d’une mesure posi-
tive finie sur (R, Z(R), A) portée par [—1, 1].

e) Etendre les résultats précédents a un cadre multi-dimensionnel (fonctions et me-
sures sur RY).

15.15 (°) Soit ¢ : R — R définie par o(t) := (1 — [t]) 1 <13(£), t € R.

a) Montrer que la transformée de Fourier de ¢ est donnée par

. . 2(1 —cos& .
VEER, (8 = (52) et »(0)=1.
L 1 —cosé L .
b) En déduire que la formule p(d§) = s d¢ définit — avec la convention
Vs

d’usage — une mesure de probabilité dont on déterminera la transformée de Fourier.

¢) On définit maintenant une mesure v sur (R, Z(R)) par
v(*{0} U{(2n — 1), ne Z})) =0,
1 2 . .
v({0}) = > v({nr}) = 33 NE Z, n impair.

Calculer la transformée de Fourier de 7 sous forme d’une série.

d) Calculer la transformée de Fourier de ¢ — ¥(t) 1}, <1}. En déduire que ji et ¥
coincident sur [—1, 1] (on pourra s’appuyer sur le résultat de I’exercice 15.14).
15.16 Formule sommatoire de Poisson

Soit f € Z!(R) vérifiant pour une constante C' > 1, les inégalités

2 |1‘—y|
VeeR, 2°|f(x)| < C, Va,yeR,|z—y| <1, [f(z)—f(y)| < Cm~

5. D’apres la section 8.2 de I’ouvrage Counterexamples in Probability, J. Stoyanov, Wiley series
in Probability and Mathematical Statistics, Wiley and Sons, Chichester, 1987, 313p.
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a) Montrer que la fonction F' définie pour tout z € R par

= Zf(:n+27r/~c),

kez
est continue et 2m-périodique sur R.
b) Calculer les coefficients de Fourier F', définis par
1 ™

7 F(x)e "™ dr, necZ. (15.30)

Cp 1=

c) En déduire la formule sommatoire de Poisson,

> fn) =21 f(2rk).

nezZ keZ

d) Probléme de Bdle 10
Appliquer le résultat de la question ¢) avec f(z) := e~ 2 € Ret R(a) > 0.
En déduire les formules sommatoires

VGEC, §R(a)>07 Z m:%<00th(ﬂa)—ﬁ) et Z ﬁzg
n=1 n=1
Mont YaeR\Z, t — .
e) Montrer que VYV« \ 7 cotan(ma) +nz:1 a2—n2

15.17 Points fixes de la convolution

a) Déterminer les éléments f de Z*(R, \) tels que f  f = f.

b) Résoudre I'équation f  f = f lorsque f € (L (R,\)N.Z%(R,\)).
15.18 On considére une mesure (positive) finie p sur (R, (R)) et sa transformée
de Fourier 1, fonction de R dans C définie pour tout u € R par

) = [ e ulde).

a) On suppose qu’il existe ug € R* tel que j1(up) = p(R). Montrer que

/R (1 — cos(uox)) u(dz) = /Rsin(uox) p(dz) =

En déduire d’une part I’existence d’un ensemble dénombrable D que I’on détermi-
nera, tel que (R \ D) = 0 et, d’autre part, que /i est une fonction périodique.

b) Montrer que la fonction i est continue. En déduire que si v # u(R) do, & admet
une plus petite période 7' > 0.

¢) On suppose maintenant qu’il existe ug € R* tel que |fi(ug)| = p(R). Montrer
I’existence d’un ensemble dénombrable D a déterminer tel que (R \ D) = 0.
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d) Soit f € ZF%+(/\) (A mesure de Lebesgue sur R) telle que / fdX\ # 0. Montrer
R

que
/ fdA.

15.19 Inégalité de Berry-Esseen et théoreme de Paul Lévy.
Soit 41 une mesure positive finie sur (R, Z(R)).

Vu € R*, ”“”f A(dx)

a) Montrer que pour tout & > 0,
p({lel > 2/e}) < - /[ [n® - 0G)] de

b) On considere maintenant une suite (y,),>1 de mesures positives finies sur

(R, #(R)) vérifiant 11y, 5, X- Montrer que

)

lim g, ({[2] > 2/e}) < 2 sup [x(€) — x(0)
" |€]<e
puis en déduire que, si y est continue en 0, la suite (u,,),>1 est tendue, i.e.

Ahr-{loo (hm fin (| > A))
On admettra dans la suite de 1’exercice le théoréme de Prohorov : si (jiy)n>1 est
une suite tendue, alors elle est séquentiellement relativement compacte pour la
topologie de la convergence faible (dite aussi “étroite”).

En d’autres termes, de toute suite extraite (/i (n))n>1 de (f1n)n>1, ON peut extraire
une sous-suite Vp, = flpoyp(n), M = 1, convergeant faiblement vers une mesure
positive finie v dans le sens

[{s

vV fe % (R,R), lim /fdun:/fdz/.
R

n—-+0o R

¢) Montrer que, si x est continue en 0, x est la transformée de Fourier d’une mesure
positive finie.

15.20 Non-surjectivité de la transformée de Fourier, tirée de (©)

Soient p € ¢">°(R) a support inclus dans | — &, 2[ avec p(0) = 2 et g la fonction

définie pour x € R par

. sign(n)
=Y cnplz+n) ob cp= % In ] T2}
neZ

a) Montrer que g€ C*°(R,R) et lim g(x)=0.

|x| =400

6. Exemple 1.26 de 1’ouvrage Counterexamples in Analysis de B.R. Gelbaum et M.H. Olmsted,
Holden-Day Inc., 1964.
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b) On suppose qu’il existe f € Z1(R) telle que g = J? Montrer que la série

F(x):= Z f(z + 27k)
keZ
est définie dz-p.p., que F(x +27) = F(x) dz-p.p. surRetque F € L ([~m, 7).
¢) Calculer les coefficients de Fourier de F' (¢f- les formules de I’exercice 8.31) et,
pour tout n € N*,

T n b
by, == / F(z) sin(nx)dx et ?k
o k=1

d) Déduire des questions précédentes, de la majoration de 1’exercice 8.30 b) et du
théoréme de convergence dominée une contradiction. Conclure quant a I’image de
2£1(R) par la transformée de Fourier.

15.21 Inégalité de Hausdorff-Young
a) Montrer que pour chaque p € [1, 2], il existe une constante C), € R telle que

7 N b
VfeLERYNLERY), fllq < Cpllflly ov q:= P

b) Une inégalité tirée de (7). Soient z € C avec R(z) > 0, f, la fonction définie sur
R par f,(z) := e~#**, 2 € R%, et p, ¢ € [1, +00]. Montrer, & I'aide de la formule
(15.7) et de la valeur de I’intégrale de Fresnel (cf. exercice 8.29), que

N d

11 1 1.1 2 1_1N72

H;Z”q = <4Ep5q757r1+575 Ela (R(z))7 ‘1>2 (convention : (+oo)+%>° =1).
zllp

¢) En déduire que la transformée de Fourier sur .7 (R?) s’étend en une application

linéaire continue de L% (R?) dans LE(R?) si et seulement si 1 < p < 2etq = -L-.

p—1
15.22 Formule de Shannon

a) Soit f € Z2(R) continue telle que supp f C [—m, 7] et Z |f(n)] < 4o0.

neZ
1 (7 ,
Montrer que Vz € R, f(z) = / Z cn €PEAE o les ¢, sont les
27 J—x €z
coefficients de Fourier (15.30) de f .

b) En déduire la formule de Shannon Vz € R, f(x) = Z f(n) M

= m(n —x)

15.23 Une formule d’inversion (%

7. D. Serre, Interpolation d’opérateurs ; applications, Le journal de maths des éléves de I’ENS de
Lyon, Vol. 1, No. 4 (1998), 174-181.
8. En collaboration avec L. Hervé professeur a I'INSA Rennes.
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a) Montrer I’extension du lemme 15.4 a LZ(R?) :
V.9 € LERY), /Rd ®(f)(@) gw) Aaldw) = | f(x) 2(9)(@) Aalde).

b) Soient f € LE(RY) et g € LE(RY) telles que f= ®(g) Ag(dz)-p.p.. Montrer
que

Vee e [ F@) @) hilda) = [ gla) ple) M)

En déduire, a I’aide de I’exercice 8.33, que f = g A\qg(dz)-p.p..
c) Soit f € LZ(RY) telle que ®(f) € LL(RY). Montrer que

Voe e, [ WD) ¢ Malde) = @ [ fa) oo dali).

En déduire la formule d’inversion f(z) = (27)~¢ <I>/(f\)(—x) Ag(dx)-p.p.

15.24 Une formule intégrale-série vérifiée par la fonction sinus cardinal

Soient a, « > 0 tels que aa < 1. Soit ¢ : R — C une fonction C'' par morceaux et
continue en 0 telle que ¢ = 0 dans R\ [—%, §,]. Soient ¢ la fonction 27-périodique
définie par ¢(t) := 1/a¢(t/(2ma)) pour t € [—m, 7], et f : R — C la fonction
définie par f(x) := ¢(2max) pour z € R.

a) Montrer que pour tout n € Z, ¢, () := % ' Y(t)e " dt = f(n).
b) Montrer que Z f(n) = écp(()).

nez
¢) Montrer que ; 1f(n)* = ;/R|g0(t)|2 dt = /R |f ()| de.

d) On considere lecasotia = 1, a := 1/met p := 1[_1 919
2

. sin“ x sinx
i) Montrer que / 5—dr = / dzx.
R T R 7

i7) En déduire que

sinn sinZn sin x sin?
E = g 5 = dr = 5 dr = .
n n R xr R T

neZ nezZ

15.25 Généralisation de la formule intégrale-série de [’exercice 15.24
Soit ¢ : R — R une fonction Lebesgue mesurable continue en chaque point de Z,
vérifiant I’estimation

C

Ja>1,3C>0,VteR, 0<¢pt)< —,
(1+ [t)>
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telle que ¢ := ¢, @ * @ vérifie
200, (10 20200 ¢ 91,0,

et telle que la fonction 1-périodique F' définie par

= Z o(t+2mk) pourt € R,
keZ

soit C'! par morceaux sur R. On suppose en outre que la fonction f : R — R définie
par f(x) := 1/27w @p(x/(27)) pour x € R, vérifie
Z |lf(n)] <400 et / f(z)dx est convergente.
neZ
a) Retrouver avec ces conditions la formule sommatoire de Poisson (exercice 15.16) :
> f(n) =) p(2mn).
nez nez

b) Montrer que

/Rf(x) dr = lim ' o(x)dr = lim o(t) sin(2mnt) dt = (0).

n—+oo [_ n—+oo Jp 7t

¢) Montrer I’équivalence entre les deux assertions suivantes :

i) S ) =Y ) /f d:c—/ﬂ

ne”Z neZ
i1)9(0) = 2= (P 9)(0), Vn €Z*, p(2mn) =0, @(2mn —-)p(-) =0 A-pp.

d) Retrouver le résultat d) i) de I’exercice 15.16. avec ¢ := 7 1_q yj.
e) Montrer que si ¢ vérifie 7) ou, de maniere équivalente, i7) et si ¢ > 0 A\-p.p.
dans [—7, 7], alors ¢ = 0 A-p.p. dans R \ [—7, 7], i.e. © est & support compact.

15.26 Inégalité de Heisenberg

On définit les trois opérateurs C-linéaires A, B,C : . (R) — %(R) (espace de
Schwartz) suivants :

A(f)=if', B(f)(z):=af(z), z€R, C(f)=f pourfeR),

a) Montrer que Ao B — Bo A =1iC, et que A, B sont symétriques, i.e.
Vf.ge ZR), (A(f).g)=(f Alg)) et (B(f),g9) = {f.B(9))

b (fg):= /R f(x) 9(x) da
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b) En déduire I'inégalité V f € .Z(R), |f|13 <2llzf(@)|2[f |2 -

¢) Montrer I’inégalité de Heisenberg

vfesR), |IfII3 < \/zllwf(-’ﬂ)\lz lf ()]l2,

impliquant qu’une fonction de . (R) et sa transformée de Fourier ne peuvent pas
avoir simultanément leur support concentré a 1’origine.

Cette inégalité illustre le principe d’indétermination de Heisenberg stipulant
I’existence d’une limite fondamentale de la précision a laquelle il est possible de
connaitre simultanément deux propriétés physiques, par exemple la position d’une
particule et sa quantité de mouvement.

15.27 Soit f € £2(R) N Z2(R) une fonction continue en 0 et telle que le support
de f soit inclus dans [—a, a] pour un certain réel a > 0.

a) Montrer que

2
1£(0)] < mllfl!z ol f::/sm L da.
R

T x?
b) Montrer qu’il y a égalité dans I’inégalité de la question a) si et seulement si il

existe o € Ry tel que

|f(2)] =« A(dx)-p.p. ¢ € R.

¢) En déduire que I = .

15.28 Equations différentielles & coefficients constants par transformée de Laplace

Soit un polyndme réel de degré n € N*, et soit D I’opérateur différentiel associé :

n—1 n—1
P(X):=X"+Y ap X" et D(z):=2"+> ap2®.
k=0 k=0

Pour chaque fonction f € ¢°(R.) nulle dans R* , soit z € ¥™(R) la solution du
probleme de Cauchy

D(z) =0 dansRy et z(0)=---=z""20)=0,z"V0)=aecR. (C)

a) On suppose pour le moment qu’il existe @ > maxo<x<p |ax| etb > 0 tels que
pour tout k = 0,...,n et pour tout t € R, [f(t)| + |2¥)(t)] < be. Montrer que

L(xW)(2) = 2F L (2)(2) sik=0,...,n—1

VzeC, R(z) >q, { ZL(2M)(z) = 2" L(x)(2) — .

On suppose désormais que P a n racines distinctes «q, ..., a, € C.
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b) Montrer que la solution =, du probleme (C) avec second membre f = 0, est
donnée par

ot N ﬁj
VtER, Z'g(t)—ajglﬁjej ou 7( )— E j.

j=1

¢) Montrer que la solution y du probleme (C) avec o« = 0 et second membre f est
donnée par

VteR, y(t) = /Otf(t— s) <zn:ﬂj eafs) ds.
j=1

d) En déduire I’expression de la solution générale de (C) et montrer a posteriori
que I’hypothese initiale sur les z(F) est vérifiée.

e) Résoudre le probléme (C) pour toute fonction f € ¢°(R ) nulle dans R* .

15.29 Une famille d’équations différentielles linéaires a coefficients non constants

Soient @ € R. Soit « une solution du probleme de “type” Cauchy (car il y a une
singularité en 0),

ta"(t)+ a2’ (t)+tz(t) =0, t>0, z(0)=0,2'(0)=0 (Cy),

dont la fonction nulle est clairement solution.
a) On suppose que x posseéde une transformée de Laplace avec un domaine non
vide. Montrer que

Vz €Dy, (2 +1) L) (2) + (2 —a)2Z(2)(2) = 0.

En déduire une expression simple de ().
b) Casa > 2.
i) En déduire que si une solution non nulle z € 4?(R.) de (C,) existe avec
a > 2, alors le domaine de .Z'(x) est vide.
i1) Pour a = 2, déterminer a 1’aide d’un développement en série entiere, une
base de solutions dans R” de I’équation différentielle associée a (Cz), puis
conclure par rapport a 7).
¢) On suppose que a := — 2.
i) A partir de I’égalité
1 _1d ( z ) 1 1
(2241)2  2dz\z24+1/ 22241’
déterminer, en prenant la transformée de Laplace inverse de I’égalité de ii),
une solution ¢ _, simple du probleme (C_2).
i1) En déduire que ’ensemble des solutions du probleme (C_5) possédant une

transformée de Laplace avec un domaine non vide, est la droite vectorielle
engendrée par ¢ _,,.



354 15. Transformées de Fourier et de Laplace

ii7) Montrer, en utilisant la méthode de la variation de la constante, que I’en-
semble des solutions du probleme (C_2) est aussi la droite vectorielle en-
gendrée par ¢ _,.

d) On suppose que a = 1.

i) Déterminer 'unique solution ¢, de 1’équation différentielle associée au
probleme (Cp) dans R, développable en série enti¢re dans R et telle que
¥ (O) =1

i1) Montrer que la fonction

(1) =, (0) [ s

pourt € R*
1 $¢2(s) -

est une solution de I’équation différentielle associée a (Cy) dans R% . En
déduire que la fonction nulle est I’unique solution du probleme (Cy).

iii) En déduire qu’il n’existe pas de fonction f € ¢’ (R)N%?(R,) dont la trans-
formée de Laplace a un domaine non vide, et qui vérifie I’égalité f* f = sin
dans R (au sens de la convolution dans dans R, ¢f. Proposition 15.6 (¢)).

15.30 Equation des ondes
a) Soit f € #1(R), nulle dans R*, et soit @ € R,.. Montrer que

VzeC, R(z) >0, f(f)(z):/[+ [f(tfa:c)e_“dt.

b) Déterminer, a 1’aide de la transformée de Fourier en ¢, les fonctions u € €2(R)
vérifiant la condition : pour tout a > 0, il existe h, € Z(R) telle que

0 02
Voelad VieR futa)+| Ghea)| +| Ghwa) | < haio)
0? 0?
et solutions de I’équation des ondes pour ¢ > 0, gy _22%_ 0 dans R x R.

ot? Ox?
c) Soit f, g € €%(Ry) N 21 (R,), nulles dans R*, et soient a, 3 € R. Déterminer,
a I’aide de la transformée de Laplace en ¢, la fonction sous-linéaire v € ¢?(R?)
solution de 1’équation des ondes avec conditions aux limites

u(0,z) = « x>0,

2 du _
?);;_6222:0 dans Ry x Ry et E(O’x)_ﬁ z 20,
! u(t,0)=f(t)  t>0,

u(t, +00) = g(t) t> 0.

15.31 Equation aux différences finies
n—1

Soient n € N* et le polynéme réel P(X) := X" + Z ar X* , ag,...a, €R.
k=0
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On considere une fonction f localement intégrable sur R, possédant une trans-
formée de Laplace de domaine non vide et solution de I’équation aux différences
finies

n—1

f(t—i—n)—i-z ag f(t+k) =1 p.p.t € Ry, f =0 A(dt)-p.p. dans |—oo,n]. (D)
k=0

a) Montrer que

Vk=0,....,n,Vz €Dy, ZL(f(-+Fk))(z)=e"2(f)(2).

On suppose désormais que P a n racines distinctes «;,...,«, € C, et on pose
a = max |ojl.
7j=1,...,n

1 g -
b) Montrer qu’avec P(X) = ; Xﬁ—jaj’ ona

V2 €Dy, R(z) >na, L(f)(z) = Z(f;e_)
j=1

¢) Montrer que

+oo “+oo k

— a’—1

VaeC, g okl Yoo = E ( o > L pt1] A(dE)-p.p.surRy.
k=1 k=1

d) En déduire qu’il existe une unique solution de (D) donnée \(dt)-p.p. sur R, par

n Ol[t] -1 . 7& 1
si
f@&) =) _Bjha,(t) ob ha(t):=4 a-1
J=1 [t] sia=1.
15.32 Une caractérisation de la partie entiére [-]
1
a) Montrer que Vz € C, R(z) >0, Z([t])(z) = =1

b) Soit f : Ry — C une fonction localement intégrable sur R, dont la transformée
de Laplace a un domaine non vide et qui vérifie f(t+ 1) — f(t) =1 \(dt)-p.p.
t € Ry,avec f(t) =0 A(dt)-p.p.t € [0,1]. Montrer que f coincide \(dt)-p.p.
avec la partie entiere dans R...

15.33 Encore la partie entiére
Soit f : R — C une fonction localement intégrable sur R dont la transformée de
Laplace a un domaine non vide.

t 1
a) Montrer que j(/o f(s) ds) = ;Z(f)(z) pour z € D g(p).
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¢

b) Montrer que V¢ € Ry, / [s]ds = = [t] (2t — [t] — 1).
0

¢) On suppose que f estsolutionde f(t+2)—2f(t+ 1)+ f(t) =1 A(dt)-p.p.

t € Ry,avec f(t) =0 A(dt)-p.p.t € [0,2]. Montrer que

[N

d 1 1 1

Vz € Dy, R(z) >0, & = ——( )- - .

2 € Doy, Wiz) > (1)) dz\z(e* = 1)) z2%2(e#—1) z(e* —1)

t)|t—1

En déduire de I’exercice 15.32 a) et des questions précédentes que f(t) = A1 5 )
A(dt)-p.p.t € Ry.
15.34 Suites récurrentes linéaires sur deux termes
Soient a, b,y € C,b # 0, et o, 3 les racines dans C de I’équation 2> —ax—b = 0.

On considere la suite (uy, ),en définie par la récurrence
Upto = A Upt1 + buy +9", n €N, avec ug, u; donnés dans C,

et on définit la fonction f : Ry — Cpar f() := up, t € Ry

a) Soient o, 7,v € C deux a deux distincts. Montrer, a I’aide du théoreme de
convergence dominée combiné avec 1’inégalité des accroissements finis, que pour
tout z € C tel que R(z) > max (In|o|,In|7|,In|v|) (convention : 0° = 1),

L) = e
2(70= )6 =
21 (2) = tim 2 (T ) e
g((a - T(;[(L - v)1+ (r— aT)[(]T —0) Tz ;;[(]U - T)>(Z)

z(e* —o)(e* —7) (e —v)
7

[t] o= 7l — 5l . e —1
{ g( o—T (O’—T)2> z(efr—0)2 (e — 1)’
1) gl-2 ot 4 (o Y _ 9ol
g([t]([t] 21) )(z):g%z(( +e) +(2(€2 -2 >(Z)
et -1
 z(er —0)3

b) Montrer que pour tout z € C tel que R(z) > max (In|a|,In ||, In|v|),

L[+ 1)) = L) +uo( )

z

L(10+2)(2) = =20 +uo(E=) 4w (25,
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En déduire que
e —1 . 1
Z(f)z)= & —a) (=P <u1 —auy+upe” + = _7).

¢) On suppose que «, (3, sont deux a deux distincts. Montrer que

(anJrl _ BnJrl)

VneN, u, = a4t (a”—ﬁ")%-&
o —

a—f B
Ta—BAa- B-aB- -—a(0-8"

d) On suppose que o = [3 # . Montrer que

no
VneN, u, =uga™ + (u; —aug+ aug)na '+

e) On suppose que « = 7y # 3. Montrer que

VneN, u, = (ul—au0+auo)an+(ul—auo—kﬁuo)/Bn

a—pf 08—«
nan—l Bn —am”
+ + .
a-B  (B-ap
f) On suppose que @ = 3 = ~y. Montrer que
-1
VneN, wu,=upa"+ (ug —aug+ auo)na”_l + n(nQ)an_?
15.35 Transformée de Weierstrass
On définit la transformée de Weierstrass d’une fonction f : R — C par
1 .2
W (f)(z):=(f*G)(z), z€R, o Gy):=—=c T, yeR,

Var

lorsque que (y — f(z —y)G(y)) € L (R).
a) Calculer la transformée de Weierstrass de la fonction (y — e‘“yQ) pour a ap-
partenant a un intervalle de R a déterminer.

b) Montrer que pour tout p € [1,4o00], V f € LP(R),

¢) Montrer que

7 (Dllp < 1/ 1lp-

V(1)) = Vi G(z) L (GF) (- 2/2),
ou %, est la transformée de Laplace bilatérale de f (cf. définition 15.4 (¢)), lorsque
I’une des deux expressions existent.
d)Si S(xz) =), ~panx™ estune série entiere de rayon de convergence infini
et si D est I’opérateur dérivée, on note S(D) := > -,a, D™ ou D" est est
I’ opérateur dérivée n-ieme. Soit f une fonction de € (F\_’) dont la série de Taylor
en 0 converge dans R.
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i) Montrer que Y,y € R, f(z —y) = (e *"(f))(x).
17 4 oo 2n (QTL)'
i1) Montrer, par récurrence sur n € N, que y " G(y)dy = —*+.

o n!

iii) En déduire que #(f) = eP*(f) dans R.
15.36 Transformée de Gauss-Weierstrass et équation de la chaleur

On définit pour ¢ > 0, la transformée de Gauss-Weierstrass #; de f : R — C par
1 u?
e 4%, yeR,
VAant Y
et la fonction (t,y) — Gi(y) est appelée le noyau de la chaleur.

a) Montrer que #;(f)(x) = # (f(-Vt)) (x/V/t), lorsque I'expression est définie.

b) Soit f € %~ (R) dont la série de Taylor en 0 converge dans R. Montrer, en utili-
sant I'exercice 15.35 d) iii), que V¢ >0, #;(f) = ¢'P*(f) dansR.

¢) Montrer la propriété de semi-groupe

Hi(f)(x):=(fxGy)(z), z€R, ou Giy):=

Vpell,+oo], Vs, t >0, WsoWy=Wsi dans LP(R).

d) Montrer, en utilisant I'inégalité y 1r,~5 > 1g~5) , que

(3;)2 Gi(6) siqge[l,4+o00|

G(0) si g = +o0.

Vt,0 >0, [|Glla(fy>s}) <

En déduire que pour toute ¢ € £P(R) NE°(R)( D 4% (R)). p € [1,400], ona
VzeR, lm #i(p)(z) = lim (¢ *G)(x) = p(z).
t—0t t—0t

Autrement dit, la famille (G})¢~o converge au sens des distributions, lorsque ¢ tend
vers 0, vers dg la mesure de Dirac en 0, qui est I’é1ément neutre pour la convolution.

e) Soit une fonction f € €~ (R) dont la série de Taylor en 0 converge dans R.
Montrer, en utilisant les notations de 1’exercice 15.35, que

(gt - D2) (#:(f)) =0 dans R% x R.

Donc la fonction #;( f) est solution de I’équation de la chaleur unidimensionnelle,
avec la condition initiale #4+ (f) = f, side plus f € £P(R), p € [1, +0o0] par d).

15.37 Probléme du toboggan d’Abel, tiré de I’article (°).

9. Y. C. de Verdiere, J. P. Truc, “Du probleme du toboggan d’Abel au probleme inverse semi-
classique”, Hal-00400153, 2009, 18 p.
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Soit &7 I’opérateur intégral, appelé la transformée intégrale d’Abel, défini pour
u : R — R localement intégrable sur R, par

t
o (u)(t) ::/0 l;(i)sdy pour ¢ € R (15.31)

a) Calculer la transformée de Laplace de la fonction a(t) := 1g, (t)/V/t.
b) Calculer la transformée de Laplace de o7 (u) et celle de o7 (o7 (u)) sur R..

¢) En déduire que Vz € Ry, o (/(u))(z) = 77/ u(t) dt.
0

Soit ¢ € R* et soit f : [¢,0] — R, une fonction de classe ¢! telle que £(0) = 0.
Une particule pesante se déplace sans frottement sur le graphe de f, matérialisé par
un toboggan, et est soumise a un potentiel gravitationnel V. Elle est repérée par son
abscisse curviligne z(t), t > 0, le long de ce graphe, et est lachée a I’abscisse x =c¢
avec une vitesse initial nulle. D’apres le principe fondamental de la dynamique
(ici la masse est prise égale a 2 par souci de simplification), x est la solution du
probleme de Cauchy

ou V e C*([c,0];Ry) vérifie V! < 0, V(0) = 0, et E > 0 représente 1’énergie
totale de la particule. On désigne par 7(F) le temps d’arrivée de la particule au bas
du toboggan repéré par 1’abscisse curviligne z(7(E)) = 0.

On va démontrer le
Théoreme d’Abel : La fonction T détermine de facon unique le potentiel V.
Autrement dit, le temps d’arrivée de la trajectoire détermine la forme du toboggan
donnée par son abscisse curviligne x.

d) En utilisant la conservation de 1’énergie totale, montrer que

0
d
VE>0, 7(E) :/ N
e VE—-V(x)

e) En notant W := V!, montrer que 7 = — o/ (W’).

1
f) En déduire que W = — — /(7).

™

15.38 Point fixe de I’opérateur d’Abel

Soit .o/ 1I’opérateur d’ Abel défini par (15.31). Soit pour a € Ret k € R*, I’équation
f=a+k(f) dans Ry, ou f : Ry — Restlocalement intégrable sur R .

a) Montrer, a I’aide de la question 15.35 ¢), que si f est solution de 1’équation,

alors Vo € RY, f’(m):f/;—l—ﬂka(:v) et f(0) = a.
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b) En déduire que Yz € Ry, f(z) =ae™ % +ak Jzi(e”k%)(x).
¢) Montrer que, réciproquement, la fonction f obtenue a la question b) est solution
de I’équation f =a+ k A(f) dans R;.

15.39 Démonstration du théoreme 15.6 (Bernstein-Widder)

Soit f une fonction f : Ry — R une fonction complétement monotone au sens de
la définition (15.28).

a) Montrer par récurrence 1’existence pour tout n € N de

Ly, := lim {(_nl') " fM(z)| € Ry,

T—00

en dérivant la fonction F}, définie par

no ok
Fy(x) = Z (k;ll) 2 f®)(z) pourz € RY.
k=0

b) Soit n € N*.
i) Montrer par récurrence a I’aide de a), que

Yz eRY, flz)— M, = (7(1—_1)1’“;! /O+oo w4 1 1) du,

i7) Montrer en prenant x = 1/k, k € N*, dans 7), et en utilisant le théoreme
de Beppo Levi par rapport a k, que

_1\n +o0
f(0) =M, = (7(1 _1)1)! /O w1 (u) du

ii1) Montrer en prenant z = k, k € N*, dans 7), et en utilisant le théoréme de
convergence dominée par rapport a k avec ii), que ¢ := lim f(x) = M,.
Tr—00

¢) Soit n € N*, n > 2. Montrer que

1
n—1

gl - <

en étudiant la fonction g, () := e "% — (1 — z)"' pour z €]0,1].
d) Soit z € R* .
i) Montrer que

flx)—L= ((_1):' /+OO (1 - §>n—1 ) (0) du

)
i1) Montrer, a I’aide de ©), b) i) et de ¢), que
(

f(x)— €= lim [(n_l)l)'/+ooe_"x/“u”_1f(”)(u)du .




Exercices 361

i71) Montrer par une majoration et a 1’aide de b) i) et b) 7i7), que

lim [(_1)71' /096 e /Uyt F) () du} = 0.

n—-+00 (n — 1)

iv) En déduire que

f@)— 0= lim [(i__l);;' /0 +Ooe_”x/“u”_1f(”)(u)du}

e) Soit n € N*.

i) Montrer, a I’aide du changement de variable u — n/u, que la fonction
(discontinue en 0) «,, définie par

an(t): =4 O (_nl!)n /Ot (%)nﬂ f (%) du siteRy
0

siteR_,

est continue a droite en 0, positive, croissante et , liin an(t) = f(0).
—+00

i1) Montrer, a I’aide de d) iv), que

VeeR,, f(z)=lim z.2(a,)(z). (15.32)

n—oo

A ce point de I’exercice, on admettra le :
Théoreme de sélection de Helly : Toute suite uniformément bornée de fonctions
définies sur un intervalle de R a variations uniformément bornées, posséde une
sous-suite qui converge simplement dans cet intervalle vers une fonction bornée a
variation bornée.
Il implique en particulier le passage a la limite sous I'intégrale de Stieltjes. Ainsi,
a une sous-suite pres, la suite de fonctions décroissantes (v, ),>1 converge simple-
ment vers une fonction positive décroissante o dans R’ . On déduit de la définition
de a,, de la limite (15.32) et de la convention (15.29), I’expression

Ve eRY, f(z)= lim (L(do)(z)+ an(07)) = ZL(da)(z).

n—oo
Ceci conclut la démonstration du théoreme de Bernstein-Widder.

15.40 L’intégrale fractionnaire de Riemann-Liouville

Soient & € R%, et a,b € R tels que a < b. Pour toute fonction f : [a,b] — C
borélienne sur [a, b], on définit I’intégrale de Riemann-Liouville .#“(f) de f en un
point z € [a, b, par

I () = F(la) / " F) (e — et

lorsque f est positive ou (¢ — f(t) (x — ¢t)*~1) est intégrable sur [a, z].
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a) Soit p € [1, +oo[. Montrer, a I’aide de ’inégalité de Jensen (cf. exercice 7.10) et
du théoréme de Fubini-Tonelli, que pour tout o € R*_, .# est un opérateur linéaire
continu de (LP([a,b]), ]| - [|p) sur lui-méme, vérifiant

(b—a)®
P~ al'(a)

vfeL(ab]), [ 1f[lp-

b) Soit p € [1, +o0].
i) Soit pj pour o > 0 ety € [a, b], définie par pf(z) := (z —y)*/(aT(a))
pour x € [y, b]. Montrer que pour tout y € [a, b,

Vo ely bl lim p%(z) =1,

a—0t
1

Vael01], llpallr> (e < 5 max(l,b—a).

ii) Soit p € €°([a, b]). Montrer que pour tous = € [a,b] ety € [a, ],

(£ () — @) (x)] <p*(b) [ax lo(t) — ()]

+2 [l ellsup |08 (@) — o ()] + lo(@)] |5 (2) — 1
et [ ()(2)] < llllsup oG (2)-
En déduire que ali%lJr |7%(p) — ngp =0.
i11) Montrer que Y f € £P([a, b)), 11I51+ |7(f) - pr = 0.
a—
c) Soient @ € R* et f € €°([a, b]). Montrer que (,ﬂ““(f))/ =7%f).
d) Montrer que pour tous o, 3 € R%, .#% o .7 = 798 dans £ ([a,b]).
e) Dans cette question a = 0. Soient o €]0, 1[ et f € £*(R,). Montrer que
VreRy, ' Z(77f)(x) = 2> Z(f)(z).

Interprétation : Si o €]0,1[ et f € €°(Ry) N. LY (Ry), alors d’apres la Proposi-
tion 15.7ona

Vo eRy, Z(57) (2) =2 2(S7F)) (@) — 772(£)(0)
=2 () (x),

D’ou

Vo eRy, Z(57f) (2) = 2 L(f)().
Donc la dérivée classique de la fonction .#1~%(f) peut étre considérée comme la
dérivée fractionnaire d’ordre « de la fonction f.
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Chapitre 16

Questionnaires a choix multiples

Avertissement

Les questionnaires a choix multiples (QCM) qui suivent sont, pour la plupart d’entre
eux, tirés de sujets d’examens du cours de tronc commun 3¢me année intitulé : Ana-
lyse pour l'ingénieur, dispensé a 'INSA de Rennes depuis 2010. Les réponses sont
données dans le chapitre 19.

Dans les énoncés de ces QCM, les espaces L2 (Rg, Ag) sont notés LP(R?) et la
transformée de Fourier est notée .% est définie par

VieI'RY), F(1)E) = / e~ 2m) gy

Rd

avec le facteur —2m par rapport a la définition du chapitre 15. Ainsi, la transformée
de Fourier dans L?(R,), notée aussi .7, vérifie

VfgeL’RY), (F o) f)x)=f(-x), F(f)*F(9)=T(fg),

avec la formule de Plancherel

Vhee PR), [ F(NF@di= [ o

sans le facteur (27)? présent au chapitre 15.
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161 QCM 1
1.0na
71.2 .
e T sinx
L'(R —~ e LYR L'(R
DﬁG(HszJrle()Dxe()
—332 .
e T sinx
— e IL?*R ——— e L*R L*(R
0 er®r) O pbyer® 0% erwm
2.0na
1 1 1 n
D lim nfre ™ dr =0 D lim < —|—x> dr =
n—+oo Jq n—+oo Jq 2
. 400 e ) +o00 —(wtn)?
D nll}lloo ; N dr =0 D ngrfoo » e dr =0

3. L'intégrale double / e~z @) gy dy est égale a

2
R+

O+ 0% 03 O3 05 0%

2 —x : >
4. La transformée de Fourier de la fonction (z — { * € Se 0 ené €
0 stz <0
R, est égale a
1 2 1 2
D (14 2im&)? D (14 2im&)? D (14 2ir&)3 D (14 2ir )3
A Paide de 7 (e—2rl] dg
5. Al'aide de .7 (e~ ?7*1), le calcul de | ——= donne
rR(1+&%)

6. A I'aide de .77 (1

1
D§ Dl DQ Dg DTF D27r
_121]),lecalculde/

<$n§>2
d¢ donne
2m R\ ¢
1
Os; Oy 02 O3 O Do

7. Soit f(x) := e~™’ x € R. La transformée de Fourier de fxfen& e€R,est
égale a

2 1

e Oz Qe [ e L (1+¢2)2
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162 QCM 2

1.0na
D arctz;n\f Ll (R,) D \/m c Ll(R+) D co;x e Ll(R)
D arctz;nf I2(R,) D \/7 € I2(R,) D co;x € I2(R)

2. L’intégrale double / / e (@ 2oy +3y%) g dy est égale a
T i 7r i T
T 2 z T z T
U Uzx Us Uss Uz U
“+00 p+oo 5
3. L’intégrale double / / e 047 da dy est égale 2

O+ OF O Vj/ome—t?dt uE (/O+Ooe_t2dt)2 B \/7?/(]+006\;de

—7'('5[72

4. La transformée de Fourier .% (f) de la fonction f(x) :=xe , est égale a

s ) -7 s L) —if [J2f [ -2f

5. La transformée de Fourier .7 (f) de la fonction f : (az — — 4n2g? 1[_; 1 (m))
272
en & =1, est égale a

(] -~ [Jo [J1 [J2 [~ [Jor

et siz>0

2
. : x
6. Soit la fonction f : <m — { 0 Giz<0

+o0
> . Alors I’intégrale f2(z) da
0
est égale a

2
R /1+§2 Lz /1+§2 Hp= /1+§2
- /1+§2 /1+£2 /1+£2
5, pour z € Reta > 0. La convolée fi x fi

7. Soit la fonction f,(x) := R
22 +a

coincide, a une constante multiplicative pres, avec

(A [ [ [w? [1EwW? [ (&0
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16.3 QCM3
1.0na
1. (1 ) 1 ) sinfz
D$81n<x>€L(R+) D\/ﬁeL(m) [ ] — € L'(R)
in?
D;Q&n(;)ELIR_,_ DmeLQ(R+) szxeLQ(R)

L’intégrale / / 22 +y2) e ) gy dy est égale a

Dlmﬁmgmgmgﬂy

oo dz oo dzx
3. Soient [ := lim — et J:= lim _—
n—+too J_ o 1+ (x+n)? n—+o Jo 1+ (z+n)?
Alors

[(JI=+0 [JI=x [JI=0 [JJ=0 [JJ=5 [JJ=x
4. La transformée de Fourier .Z (f) de la fonction f(x) := 22 e~ ™", est

(] =14f [ reelle [ =if []>14f [|]>=f [] <—f

i _11
5. Soit f : <J; — { 3 SLrE 2:2] >.L’intégrale /47r f2(x) dz est égale a
R

simon

sint 2 1—cost\? tcost —sint 2
— | dt — | dt —_— | dt
. 2 . 2
tcost —sint 1 —cost+tsint

—axr 3 >
6. Soit f, : [z +— € S? z20 , a > 0. Partant de la transformée de
0 siz <0

oo dt

Fourier de f, * f,, I'intégrale / est égale a

o (a2 +4Am2¢2)?
+o0o +oo +oo
D / e—2aw dx D / 1’2 e—Qaw dx D / .1'4 €—2ax dr
—00 —00 —00
—+00 “+o00 “+o00
D / e—2ax dx D / .’IJ2 e—2a1’ dx D / $4 e—2az dr
0 0 0

g2
7. Partant de /
R

e z N
—5—dx estégalea
R X

1—
e~ dx = /7, I'intégrale /

01 O O0y3 Ov Over Oove
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164 QCM 4
1.0n a
1—e Ve 1 1 sinx 1
DTEL ([0, 1]) D\/iEL(RJF) DmeL(R)
N :
D%GLQ([OJ[) [] \/x;?eﬁ(m) (] \/Z%GLZ(R)

oo ,—t(1+x)
2. Soit f(t) := / dx ,t > 0. Alors f'(1) est égale a
0 1 +x

1

J-¢ O-« O-- 0o 0O Oe O¢

3. L’intégrale double / / e VI gy dy est égale a

1

0% Ot 02 0% Or O

4. La transformée de Fourier .Z (f) de la fonction f(z) := e~ ™, vérifie

L] 7o =0 []Z20N0O)=vr []#()=-f
LJ7zn=f [zW0=-if [JF=if

2

+o0o +o0o .
/ e 2™ @) 4y | dy est égale a
0

5. L’intégrale /

000 0% 0¥ O

sin(7mx)

6. Soit f(z) =
dans L?(R), f * f est égale a

(172 [0r [1zn [JEwm? [zudh oo 7

too p+00 e_(x""y) —_ 6—2(x+y)
7. L’intégrale / / dx dy est égale a
o Jo Tty

, x # 0. Alors, .# désignant la transformée de Fourier

In2

D Di DIHQ Dl D21n2 D1+ln2
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16.5 QCM S5

1.0na

[] \/W e L'(]0,1[) [ ] \/;lnx e L'(]0,1))
[] \/W e L*(]0,1|) [ ] flm € L*(]2,+o0|)

1

2 o0
) U Tt vy < F 0D

€ L'(]1, +o0|)

D Vinz(1 +LE\/111733)

400 —t2 (22 +4)
2. Soit f(t) := / T—H dx ,t > 0. Alors f'(\/m) est égale a
0

J-2F O-2 0-v O-1 0O Ov 02
3. L'intégrale double / / : +d;2 Y
05 O O D% O« O
4. La transformée de Fourier .Z (f) de la fonction f(z) := (4n2a? — 7)e ™,
N Osn=—r D=2 O50=-

LlZzh=r [zWH=2f []Z(=

+OO . . b
5. l’intégrale / w dz , pour a,b > 0, est égale a
oo x

est égale a

D m(a +b) D 2m(a +b) D mmin(a, b)
D 27 min(a, b) D mmax(a,b) D 27 max(a, b)

6. Soit f € L'(R). Alors (f * f)(z) = xf(x) pour (presque tout) x € R, si f(x)
est égale a

D el D Ir, (z)e™" D —1g (z)e™™

D 1FL($)€m D —1R D 1RJr

7.Enposant g(y) := In (1+2y+2+/y2 + ).y > 0. l'intégrale / . 1+4C-L — )
0 T

pour a > 0, est égale a
1

(139 [Je@ [J29) []359@ [Jrgl@ []2rg(

dx
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16.6 QCM6

1.0na

a

1 .
D /\/:Eln (e% —e%)dfc:+oo D lim Lx:d$:+oo
0

a—+oo |1 /r —sinz

1 2 1 a sin x
z In’(er — e ) dr = +00 lim ————dx = +0
(] [ wme(ef o) LN v
a 1 : a 1 :
M g RIS [ [ RIS o

a—+oo J, x(Inz + sinx) a—+oo J, x(Inz —sinz)

2. Soit p € .Z(R). Alors  lim sin(nrz)

n—-+4o0o R

o D/Rso(:r)d:c Dw/Rsom)dx (] 00) [ ne(0)

o(z) dx estégale a

3. L’intégrale doubl // x+y2)n_1 ddy est égale 3
mtegrale adouple X est egalc a
¢ T4 (n+ 1202 1 g2y | S0 %

2
™ s
L U U2 Ur Uz U+
4. ’équation suivante a au moins une solution réelle non nulle dans L' (R)

D f*f:1+f D f*f:f D f*f:Z{L‘f D f*f:e_ﬂ—xz D f*f:_e—wacQ

oo dx
5. L’intégrale / , pour a,b > 0, est égale a

oo (@ +ix)(b+ ix)
Do O ijb () 2@+ [Jna+b) []2na+b)

6. Soit F' : R — R. Alors pour toute fonction paire f € L'(R), F(Z(f)) €
Z (LY(R)) lorsque F est égale a

1

D 11 400 () D e’ D xe” D cos T D sin x D 522

T arctan(a sin x)
—————=dx , pour

7. En utilisant le théoréme de Fubini I’intégrale / -
0 SIinxr

a € R, est égale a

D ma D \/% D msina D marctana D msinha D margsinh a






Chapitre 17

Quelques problemes

Avertissement

Les problemes qui suivent ont fait 1’objet de sujets d’examens du cours d’inté-
gration de licence de mathématiques des Universités Paris-Est Créteil (UPEC) et
Pierre & Marie Curie (UPMC). Ils sont donc normalement accessibles a un étudiant
sans indications préalables autres que celles parfois proposées dans les énoncés
eux-mémes. Leur seconde caractéristique est d’étre généralement transversaux, d’ ol
leur regroupement en fin d’ouvrage : les répartir au fil des chapitres aurait nécessité
un saucissonnage préjudiciable a leur cohérence.

17.1 Probleme 1

Soit f:R; — R, borélienne. On suppose que f € .Za(Ry, Z(Ry), \) (i.e. que
/ | f(x)|dx < +00). Pour tout t € R4, on pose :
R+

+oo
LI (t) == / e f(z)dx.
0
1.a. Vérifier que la fonction ¢ — L7 (t) est bien définie en tout point t € R, et que

L7 (0) = /0 " ).

1.b. Montrer que L7 est continue sur R_..

l.c. Montrer que lim L/ (t) = 0.
t——+o0

2. On définit la fonction g sur Ry par g(z):=z f(x). On suppose que g€ L (N).

2.a. Montrer que L/ est dérivable sur R de dérivée continue donnée par

VieRy  (L))(t)=—-L91).
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+o0o +oo
2.b. En déduire que / LI(t)dt = f(z)dx.
0 0
+o0 400 +o0
2.c. Montrer que si/ de < 400, alors/ Lf(t)dt = / 7@) dex.
0 x 0 0 T

3.a. Pour tout n>1 on définit f,, () := sin(x)1g ) (z). Montrer que

1 — e ™(cos(n) + tsin(n)).

VteR,  Li"(t)= e

n

[Indication : remarquer que L/" () = Sm (/ ex(i_t)d:c> oie Ceti2=—1.]
0

3.b. Etablir rapidement que, pour tout z € R, e* > 1 4 z. En déduire que

VneN, VteRy, le™™ (cos(n) + tsin(n))| < e~ (Dt <,
3.c. Etablir la majoration : V¢ € Ry, |L/"(t)] < i
’ T 142
+o0 too gt
3.d. Montrer que lim LI (t)dt = 5 = T
n—-+00 0 0 1 =+ t 2

3.e. Montrer a I’aide de la question 2.c. que

+o0o n o
/ LI (t)dt = / RUICI
0 0 z

" sin(x)

et en conclure que lim dr = —.

n—-+oo 0 X

o

4. On suppose dans cette question que f est positive et que L/ est dérivable en 0.
—Uu

est décroissante.

4.a. Montrer que la fonction définie sur R*. par ¢(u) :=

4.b. Montrer que la suite de fonctions ¢,, définies par
Vn>1, Vo € Ry on(z) :=n(l —e )

est croissante positive.

+oo
4.c. Montrer que / af (z)dx = —(L)(0).
0

17.2 Probleme 2

1. Montrer a I’aide du théoréme de Fubini et d’un changement de variables que

too 2 I
I:= / e zdr = \/; (introduire 1?).
0
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2. On pose pour tout n € N et pour tout z € R,

n+1

fu(x) = <1+fj>_ - an ::/an(:v)dac.

2.a. Montrer que, pour tout u € Ry ettout pe N, (1 +u)? > 1 + pu.

2.b. En déduire que : Vz € R, f,(x) < 522
2.c. Calculer lim ay,.
n

3. Montrer qu’il existe une fonction intégrable f : R — R que ’on déterminera
telle que
" JR

— - f(x)‘ dx = 0.
4. Montrer que, pour tout A>1/2, lim/ e)‘fon(a:)dx = +o0.
" JR

an

17.3 Probléeme 3

On se place sur un espace mesurable (X, <7, u) vérifiant ©(X) = 1 (i.e. un
espace de probabilités).

On rappelle qu'une fonction dérivable ¢ : I — R (I intervalle de R) est
convexe sil’une des deux conditions équivalentes suivantes est vérifiée :

(i) VO €[0,1], Vu, ve I, p(0u+ (1 —0)v) < bp(u)+ (1 —8)p(v),

(i) Vu, ve I, p(u) > ¢(v) + ¢'(v)(u —v).
l.a. Soient f : X — [ et : I — R deux vérifiant respectivement ¢ est convexe et
f, o(f) € Za (). Etablir I'inégalité dite de Jensen :

<p</deu> S/ch(f)du

(on pourra utiliser (i7) avec v:= / fdu et des valeurs de u convenablement choi-
X
sies).

1.b. Montrer que ¢(z) := x®, définie sur I := R, est convexe si et seulement si
a> 1.

2. On considere une fonction positive g€ Zg, ().

2.a. Montrer a I’aide de ’inégalité de Jensen que sip>2et g€ $£+ (w), alors

p_ p—1
g€ L5 (n) et (/ gﬁdu) S/g”dw
X X

2.b. Retrouver le résultat obtenu en 2.a. directement a 1’aide de I’inégalité de Holder.
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2.c. En conclure que si f et g sont positives et dans $£+ (u) (toujours avec p>2),

alors ,
(/ fgdu) S/f”duX/gpdu-
X X X

3. On considere maintenant une fonction ¢ : Ry — R, continue, croissante, telle
que ¥(0) = 0 et ¢»(1) >0 et vérifiant en outre

Va,y >0, (ry) <¢(z)Y(y) et o,/ estconvexe surR;.

3.a. Montrer que pour tout réel = > 1, () > z21(1).
3.b. Soit f : (X, o7, u) — Ry. Montrer que si ¢(f) € ZR1+ (w) alors fe ZI§+ ().

3.c. Montrer que pour toutes fonctions boréliennes positives f et g vérifiant ¢ ( f)
ety (g) € .,?R1+ (1), ona

w( / fgdu> < 9(l7 )% lgll,):

En déduire que

1/’</Xf9dﬂ) S/X@D(f)dﬂ/xw(g)du-

3.d. Montrer que le résultat ci-dessus admet 1’inégalité établie en 2.c. comme cas
particulier.

17.4 Probleme 4

Dans tout ce probleme on se place sur I’espace mesurable (R* , Z(R? )) muni
de la mesure de Lebesgue A (Ia notation R” désigne ici I’ensemble des réels stricte-
ment positifs). On notera indifféremment [ f d\ ou [ f(z) dx pour désigner I'intégrale
d’une fonction f par rapport a la mesure de Lebesgue (lorsque celle-ci a un sens).

1.a. Montrer que I’application de (R% )? dans lui-méme (u, v) — (%, v) est borélien-
ne.

1.b. Montrer que si f et g sont deux applications boréliennes de R dans R, alors

(u,v) = f(u/v) g(v)
est mesurable de ((R%)?, Z(R*)%?) dans (R, Z(R)).
2.a. Soient f, g : R% — R deux fonctions boréliennes positives. Montrer que

[ s ™ = [ [ g
R% xR R

v
RY T
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2.b. En déduire que si f, g : R} — Rsontintégrables sur R” par rapport a la mesure

d
de Lebesgue, on peut définir A(du)-p.p. sur R*. I’intégrale / f(u/v)g(v)—v. On
R v

+
notera cette intégrale f ® g(u) la ou elle existe (on prolonge f ® g a toute la droite

réelle en posant f © g(u) = 0 en les points u € R ol I'intégrale n’est pas définie).
Justifier le fait que la fonction f ® g ainsi définie est borélienne.
2.c. Montrer que si f, g € L1 (R%, ), alors f ©g =g ® f.

AVERTISSEMENT : Dans toute la suite f ® g(u) désignera ’intégrale définie en
2.b. lorsqu’elle existe.

3.a. Montrer que si f est continue et nulle en dehors d’un intervalle compact [a, b]
contenu dans R et si g est intégrable sur tout intervalle compact de R , alors f © g
existe et est continue sur RY .

d
3.b. Soient f : R — R une fonction borélienne vérifiant / |f (a:)|—x < 400
x

R*
n
et (fn)n>0 une suite de fonctions continues a support compact (dans R* ) vérifiant

d
/ |f(x) — fn(:v)]—x — 0 quand n — +oo (il n’est pas demandé d’établir I’ exis-
R* €T

tence d’une telle suite). Soit g une fonction borélienne, bornée par un réel M. Mon-
trer que, pour tout x € R*_, f ® g(x) est défini et que

£ 0.9@) = Frog@] <M [ 170~ fuln)| L

En déduire que f,, ® g converge uniformément vers f © g, puis que f © g est
continue.

4.a. On pose g := 1[5 ot 0 < a < b. Montrer que, pour toute f € LUREN),
[ © g existe et est continue sur R’ (on pourra exprimer f © g comme une intégrale
dépendant de ses bornes).

4.b. Déduire de ce qui préceéde qu’il n’existe pas de fonction e € .Z( R, \) telle
que, pour toute g€ L1(R%,\), e ® g = g A-p.p..

5.Soit f : R — R une fonction borélienne. On suppose que f vérifie la condition

() Ja >0 telque f(x)e*dx < +oc.
R*

+

On pose alors, pour tout ¢t > 0, L¢(t) := f(z) ztde.
RY

5.a. Montrer que L ¢(t) < 400 pour tout ¢ € R4 (on pourra établir par exemple que
pour tout ue Ry, u"™ < nle*).

5.b. Montrer que, deés que deux fonctions boréliennes positives f et g vérifient la
condition (C'), Loy = Ly¢Lg.

5.c. Donner une exemple de fonction borélienne positive f ne vérifiant pas (C) et
pour laquelle L () est cependant fini pour tout ¢ > 0.
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17.5 Probléeme 5

On se place sur un espace mesuré abstrait (X, <7, u) vérifiant p(X) < +oo. Le
but du probléme est d’établir, dans ce cadre, des conditions plus faibles que celles
du théoreme de convergence dominée pour passer de la convergence p-p.p. a la
convergence dans L' (1).

Une suite ( fy,)n>1 de fonctions .<7-mesurables de X dans R est dite équiintégrable
si

lim Sup/ | fnldp = 0.
c=+oo n>1 {|f7L|ZC}

QUESTION PRELIMINAIRE : Soit g € .,5,”R1+ (). On pose, pour tout A € o7,

p?(A) = /A gdp.

Montrer que p¢ est une mesure finie sur (X, 7).

1. On suppose dans cette question que la suite (f,,),>1 est équiintégrable.

1.a. Montrer que, pour tout n > 1, pour tout A € o/ et tout réel ¢ >0,

/|fn|dM§/ | fnldp + cp(A).
A {lfnl=c}

1.b. En déduire que sup || f»]|, < +o0.
n>1
1.c. Déduire également de la question 1.a. que, pour tout € > 0, il existe - > 0 tel

que, pour toute suite (A, ),>1 d’éléments de <7,

sup (i(Ap) < . = sup/ | faldp < e.
n>1 n>1JA,

2. On suppose danc cette question que la suite de fonctions (f,),>1 est équi-
intégrable et converge -p.p. vers une fonction f.

2.a. Montrer que f€ Za(p) et | fll, <sup|full,-
n>1

2.b. Montrer que, pour tout A € <7, / |fldu < sup/ | fru|dpa.
A n>1JA

2.c. Pour tout n>1, on pose A, :={|f — fn| > c}. Montrer que

su
n>1

2.d. Montrer que, pour tout n>1 et pour tout réel ¢ >0,

/\f — faldp < /min(lf - fnl,C)du+2§in/ | fnldps.

Ac,n
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2.e. Déduire de ce qui précede que / |f — fn|du tend vers 0 quand n — +o0.

3.a. Montrer que s’il existe une fonction positive g € .XF% (w) telle que, pour tout
n>1,|fn] < g p-p.p., alors la suite (f,,),>1 est équiintégrable.

3.b. En déduire que la suite constante f,,:=f € .,?F% (1) est équiintégrable.

4. Montrer que si deux suites de fonctions (fy,)n>1 €t (gn)n>1 sont équiintégrables,
il en est de méme de leur somme (f,, + gn)n>1. On établira a titre préliminaire
I’inégalité

/ ot guld < / Fuldp+ / guldi
{|fn+gn|>e} {|fnl>e/2} {lgn|>e/2}

+/ Ignldu+/ | fnldp
{|fnl>e/2} {lgn|>c/2}

et I’on s’appuiera sur la question 1.c.

5. On suppose dans cette question que f,, converge vers f dans L ().

5.a. Montrer que sup || f ||, < +oc.
n>1

5.b. Montrer que, pour tous réel € > 0, il existe un entier n. > 1 tel que, pour tout
réel ¢>0,

SUP/ | fn—fldp < max (6/ \fl—f\du,---,/ \fng—f!du)
neN J{|fu—f|zc} {If1-f12c} {Ifn—fl2¢}

5.c. En déduire que la suite (f,, — f),>1 est équiintégrable, puis, a partir de la
question 4., que la suite (f;,),>1 elle-méme est équiintégrable.

6. On se place dans cette seule question sur (R4, Z(R4), A). Montre que la fonc-

tion f(xz) := 1/y/x vérifie lim f(x)dx = 0 alors que f n’est pas méme
CFH0 {1 2e}
intégrable.

17.6 Probleme 6

+00
On pose, pour tout t€ R, I'(¢) := / 2 le ™ da.
0

PARTIE A : 1.a. Montrer que la fonction I'(¢) est bien définie en tout point ¢ de R* ,
a valeurs dans R ..

1.b. Montrer que, pour tout ¢t > 0, I'(t + 1) = ¢tI'(¢) et en déduire que I'(n) =
(n — 1)! pour tout n.€ N*.

2

+00
2.a. Montrer que I'(3) = \/5/ e 2 du.
0
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+o0 w2
2.b. Montrer que que e 2 du= \/> (on pourra, en élevant 1’expression au

carré, transformer art1ﬁ01ellement I’intégrale simple ci-dessus en intégrale double,
puis mettre en ceuvre un changement de variables ad hoc, le tout soigneusement
justifié).

3.a. Montrer, en considérant notamment le changement de variable élémentaire

v = plu) i= 2 ~ Vi que

+0o0 t
I't+1) = ttﬂe_t/ (1 + U) eVt dy.
ey —Vi Vit

3.b. En déduire que, pour toute suite de réels ¢,, tendant vers +oo,

t
lim | — —_ > e 2 du= V2.
n <n> Vin R

%) —vVt)

0 v t \/i w t
4.a. Montrer que/ <1 + > e "VEdy = / (1 _ > eVt o
—Vi Vi 0 Vit

2
4.b. Montrer que pour tout €] — 1,0}, In(1 + z) <z — %-.

(On pourra calculer, pour tout v€ R, lim ¢In(1+
t—+oo

t
P w Vi _w?
4.c. En déduire que pour tout w, t€ R4, (1 — ﬁ) e’ 1[0’\/2] (w)<e 7.
0 v\’ T
4.d. En conclure que lim <1 + > eVt gy = \/7
t—+o0 J_ /7 \/i 2
2
5.a. Etudier les variations de la fonction 2 — In(1 + z) — z + 2(1377_” sur R4
x

5.b. En déduire que, pour tout v € R et pour tout ¢ >1,

w ! Vi _u?
L+ —= ) e ™V < e 20F0,
( \/i>

+o00 u t p
5.c. En conclure que lim (1 + > e WVidy = /=,
t—=+o0 J ﬁ 2

t

t
6. Etablir la formule de Stirling étendue : T'(¢ + 1) e <> 2rrt.
e

PARTIE B : 1.a. Montrer que, pour tous s, t > 0,

F(s)F(t)—/ 2yt e @) g dy.
R2
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1.b. On pose, pour tous u, v € R, ¢(u,v):=(u(l — v),uv). Montrer que ¢ est un
¢*-difféomorphisme d’un pavé ouvert de R? que I’on précisera sur (Ri)Q.

1.c. Montrer que , pour tous s, ¢t > 0,
1
L(s)I'(t) =T (s+ t)/ (1 —v)* Lot~ du.
0

2. Montrer que .

Sk

Remarque : On pourra éventuellement consulter les indications associées a I’exer-
cice 8.18.

17.7 Probléeme 7

Les trois parties du probleme sont indépendantes.
PARTIE A : Soit f la fonction définie par

—t (zt+y*)
t) = — dxd t > 0.
f(> Azl+x4+y4 v o

2
1. Montrer que f(0) < / 2 dz dy et calculer cette derniére intégrale
2

al’aide d’un changemen? de Variaku)IE—:i_s 2(/:iezszsique.

2. Montrer que f est continue sur R et tiigrnoo f(t) = 0 (Indication : remarquer
que f(0) < 400).

3. Montrer que f est dérivable sur R’ et que f est solution de I’équation différen-

: _ I? NT oo —ut
tielle f/(t) = f(t) — 7 oul = /Re du.

+00
4. En déduire que pour tout t € Ry, f(t) = 212 / ' du (montrer que la
Vi

t
derniere fonction est une solution particulicre de 1I’équation différentielle de 3. et
utiliser la limite obtenue a la question 2.).

PARTIE B : On considere I’espace mesuré ([0, 1], ([0, 1]), A) ou X est la mesure
de Lebesgue. On se propose de montrer I’implication
A(ANT0,e])

A(d
(x><+oo — lim —= =0
xT e—0 15

VA e B(0,1]), /
A

Ald Ald
1. Soit A € #([0, 1)) tel que/ Aldz) < +00. Montrer que lim (dz) =
A T

e—0 AN[0,¢] X

0 (utiliser la caractérisation séquentielle de la limite).
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2. Montrer que (A(A N [0,¢]))* < / Ada) / x A(dz).
Anfo,e] X AN[0,e]

3. En déduire I’'implication cherchée.

4. Facultatif : Montrer que la réciproque est fausse a 1’aide de 1’ensemble A défini
par A := U [+, + 4 ak] ol ay, = kh}(k) — (k+1)11n(k+1)' (Indication : majorer
E>2

A(d
AMAN0,1]) al’aide d’une série et minorer/ (dz)
Anfta T

N

a 1’aide d’une somme

puis conclure en notant que ay ~ m)-

PARTIE C : On se place sur un espace mesuré (X, .o, u). Soit ® : Ry — R une
fonction continue et strictement croissante telle que

Ja,b>0,VteRy, at<P(t) <bt.

Soient ( f,,)n>1 et f des fonctions positives de $R2+ (X, p) telles que

lim [ (®(fn) = @(f)) (fn — f) dp = 0.
n—+oo Jx
1. Montrer que 1’on peut extraire de chaque sous-suite de (fy,),>1 une sous-suite

(fi, )n>1 telle que (O( fr, ) —P(f)) (fi, —f) converge vers 0 p-p.p. et soit dominée
1-p.p. par une fonction fixe de ,,2”R1+ ().

2. Montrer qu’il existe g € $R2+ (n)eth e ZF}+ () telles que (fx,)? < g fr, +h
w-p.p. puis que fx, est dominée u-p.p. par une fonction fixe de .i”,—i ().

3. Montrer que fi, converge vers f p-p.p. (montrer que fi, (z) possede f(z)
comme unique valeur d’adhérence u(dz)-p.p., a I'aide de 1., de la continuité et
de la stricte croissance de P).

4. En déduire que fj, converge vers f dans L2R+ (1) (appliquer le théoreme de
convergence dominée) ainsi que toute la suite f;,.

17.8 Probleme 8

La lettre A désigne la mesure de Lebesgue sur I'intervalle unité [0, 1]. On se
donne une fonction fj : [0,1] — R fixée et un paramétre o € R On associe, dés
que cela a un sens, a une fonction borélienne f : [0,1] — R, la fonction ®( f) par

f(t)

x—t

O(f)(z) = oz/ox dt + fo(z), z€ [0, 1].

PARTIE A : 1. Montrer que si la fonction f est bornée ou positive, alors la fonction
®(f)(x) est bien définie en tout point = € [0, 1].
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2. Montrer que, si la fonction f est positive, alors

/01 ([ Fa)ae=s /0 VI=if(t)dr

3.a. Montrer que si la fonction f est dans .Z1([0,1], \), alors ®(f)(z) est défini
pour A-presque tout = € [0, 1]. Montrer que tout prolongement de ®(f) a I’inter-
valle [0, 1] est dans .#1([0, 1], A). En déduire que, si fy est dans £1([0,1],\), ®
définit une transformation de L' ([0, 1], \) a valeurs dans L'([0, 1], \).

3.b. Montrer que, pour toutes f, g€ .£1([0, 1], ),

12(f) = @(g)ll, <2al[f = gll,-

En déduire que si, a €]0, 1/2], il une fonction f; € Z1([0, 1], \) telle que ®(f;) =
J1 A-p.p. (on pourra temporairement considérer l’espace~L1([0, 1], A)). Montrer
que si ®(f1) = f1 Ap.p., (fre £([0,1],)), alors fi = f1 A-p.p..

4.a. Unréel x € [0, 1] étant fixé, vérifier que la formule

dt
Va:(A) a /Am[o,z] \/m’ Ae ‘%)([07 1])7

définit bien une mesure positive finie sur I’espace ([0, 1], %4([0, 1])). Exprimer la
masse totale de v, en fonction de .

4.b. Montrer que si ;1 désigne une mesure positive finie sur un espace (X, <), alors,
pour toute fonction mesurable positive f définie sur X

/deMS\/H(X)/XdeM-

En déduire que (X, o/, u) C LHX, o, ).
4.c. Montrer que, pour toute fonction mesurable positive f définie sur [0, 1] et pour

tout z € [0, 1],

4.d. En déduire que, si fo € L?([0,1], \), la transformation ® envoie L?(]0, 1], \)
dans lui-méme et vérifie pour la norme || . ||, une inégalité analogue a celle établie
en 3.b.

5. Que peut-on dire alors du point fixe f; de ® en termes d’intégrabilité ?

PARTIE B : On suppose dans tout ce qui suit que fy =0eta = 1.

l.a. Montrer que @ est linéaire de L'(]0,1], ) dans L!([0, 1], \)et que sa norme
verifie | ]| < 2 ot par définition, || = sup {|(f)],. [I/], < 1}
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L.b. On pose, pour tout n > 1, f, := nl, . Montrer que |[f,|, = 1 et que

[0,1/n

4
|P(fn)]|, estégal a gn(l - (1- 1/n)%) En déduire que ||| = 2.

2.a. Soit f € £*([0,1],\). Montrer que, pour tout x € [0, 1],

1 U
@m@:ﬁﬂfilm

2.b. En déduire que, si la fonction f est bornée et continue en 0, alors

i 2D@)
z—0 \/E

2.c. Déduire également de la question 2.a que, si f est décroissante positive,

L @)

z—0 T

= 2£(0).

— 2£(0).

2.d. Que subsiste-t-il du résultat de la question 2.c. si la fonction f est seulement

positive et admet une limite (a droite) en zéro ?

3. On suppose que f est bornée sur I’intervalle [0, 1] et dérivable en 0.
3.a. Montrer I’existence d’un réel ¢ > 0 tel que, pour tout ¢ € [0, 1],

£ () = FO)] < ct.

3.b. On note ¥(f) la fonction définie par W(f)(z) := q)(\J}IEx) si x €]0,1] et

U(f)(0) :==2f(0). Montrer que ¥( f) est dérivable en 0 et que

3.c. En déduire un développement asymptotique de ®( f) au voisinage de 0.

17.9 Probleme 9

On se place sur (R, Z(R)). Pour toute mesure finie p sur (R, Z(R)), on définit
la fonction fz en tout point u € R par

i) = [ (o)

La fonction i est appelée transformée de Fourier de ji. Le but du probleme est
d’étudier quelques propriétés de 1I’application . +— fi.

PARTIE A : l.a. Justifier I’existence de la fonction fz en tout point de R et montrer
que 71 est continue partout, a valeurs dans C.



17.9. Probléme 9 385

1.b. Montrer que si / |z|p(dx) < 400, alors 1 est continiment dérivable sur R et
R

donner une expression de sa dérivée.

1.c. En déduire par récurrence que si / |z|" p(dx) < +oo pour un entier n > 1,
R

alors p est n fois continuement dérivable et proposer une expression simple de ses

dérivées successives.

1.d. Montrer que si la mesure y est invariante par symétrie centrale i.e. par 1’appli-

cation x — —x, alors [z est paire et ne prend que des valeurs réelles.

2.a. Montrer que, pour tous u,v € R,
i) = )] < [ min(2,u vlel)n(da).

2.b. En déduire que I’application f est en fait uniformément continue sur R.

PARTIE B : On suppose dans cette seule partie que p(dz) = f(xz)A(dz) ot A
désigne la mesure de Lebesgue sur R et f € .L”,%JF(R, A). En d’autres termes  est
la mesure de densité f par rapport a la mesure de Lebesgue.

1.a. On suppose que f est en escalier. Montrer que  lim  7i(u) = 0.
|u]—+o00

1.b. Montrer que, dés que f € $§+ (R,A\), lim fi(u) = 0 (on pourra s’appuyer
——+00

|ul
sur un théoreme de densité approprié).

2. On considere la fonction f définie sur R par f(z) := e~%"/2.
2.a. Calculer 1i(0) par la méthode de votre choix.

2.b. Etablir a I’aide d’une intégration par parties une relation simple entre la fonc-
L e o~ Py —~ —u?
tion /i et sa dérivée fi’. En déduire que 7i(u) = /2w e~*"/2 pour tout u € R.

PARTIE C : 1.a. Montrer a I’aide du théoréeme de Fubini et d’un changement de
variable élémentaire que, pour tout u € R et tout € > 0,

(zfu)2 R _ ﬁ\@dv
e 2 p(dx) = / e "h(v)e 2 .
/R R V2
1.b. Soient p et v deux mesures finies sur (R, Z(R)). En déduire que si 1 = 7,
alors pour toute fonction ¢ : R — R a support compact et tout € > 0,

/R (1) ( /R o p(d:x)) du = /R (1) < /R e—(”aé"2u(dx)> du €R

2. En déduire a I’aide du théoreme de Fubini (approprié) et d’un changement de
variable élémentaire que

/R/R‘P(CB — v)e‘g \/C%M(dx) = /R/Rw(a: - v)e_% \/C% v(de)
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3.a. On suppose en outre que la fonction ¢ est lipschitzienne. Montrer que

2 d
lim/ lp(z —v) — p(x)le” 2= v —o.
R

e—0 2me

3.b. En déduire que, pour toute fonction ¢ lipschitzienne a support compact et pour
tout z€ R,

/ (:c—v)e_??2 dv =9 (z)
Rgp \V2Te ).

4. En conclure a I’aide de la question 2. que 1 = v.

17.10 Probléeme 10

Soit (X, o7, ) et (Y, B, v) deux espaces mesurés o-finis et p € [1, +o00[ (on
notera ¢ son exposant conjugué). Soit ¢ : X x Y — Ry une fonction &/ ® %-
mesurable, positive et ;1 ® v-intégrable.

1. On pose pour tout z € X,
o) = [ (o) v(d).
Y

Justifier (sans calculs) le fait que ® ainsi définie est une fonction .<7-mesurable,
u-p.p. a valeurs dans R.

2. Soit (Ay,)n>1une suite d’éléments de la tribu o7, croissante pour 1’inclusion et
vérifiant Up,>1 Ay, = X et u(A,) < 400 pour tout n > 1.

2.a. Montrer que pour toutn > 1,

[ oz )@@ atie)

X

— [ tomna @) @@ ple. ) pov(de, i),
XXY
2.b. Montrer que pour tout n > 1,

/ Lo <nyna,(2)(2(2))" p(dz)

;< / 1{<I>§n}mAn(93)(<I’($))pM(dff))l/q / ( / <so<m,y>>m<dm>)1/pu<dy>.

2.c. En déduire que pour tout n > 1,

Loy, Bl 1o < / 0yl (dy)-
Y
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ol () := ¢(x,y) désigne la “section de ¢ au-dessus de y”.
2.d. Etablir I’inégalité

10 g < / oyl oy ().

Y
2.e. Justifier pourquoi on a introduit les A,, N {® < n} ala question 2.a..

2.f. Montrer que si p € ZP(u®v) et si v est une mesure finie, alors
[ Ieullisgrin) < +o.
Y

La question suivante peut étre traitée a partir du résultat de la seule question 2.d..

3. Soit f € $£+(R+, A(R1),A) ot A désigne la mesure de Lebesgue. Pour tout
A >0, 0npose p(z,y) := f(xy)ljpa)(x) Lo (y), b =X v = 1.

3.a. Montrer que ¢ est positive et A @ g 1)-intégrable, puis calculer ®(x) en tout
point z € Ret ||, ||»(x) en tout point y €]0, 1].

3.c. En déduire I’inégalité de Hardy : pour tout p €]1, +-00[ et pour toute fonction
e ZPR., AR,

p N L[ .
17, < 2500, o P = [ fwdu, weRs.

17.11 Probléeme 11

Dans ce probléme, on se place sur I’espace semi-normé .Z% (R4, Z(R4), \) o
p > 1 désigne un parametre réel fixé et A la mesure de Lebesgue sur R.;. On notera
| - |I, la semi-norme usuelle sur cet espace.

1. Montrer que si f € 4% (Ry, B(Ry),\), alors la fonction u + f(u)/u est
intégrable sur tout intervalle de la forme [a, +ocl, a > 0.
Dans la suite on considerera la fonction /' définie sur Ry par

F0)=0 et F(x)::/%of(uu)du,x>0.

[La valeur de F' en O est donnée par pure commodité et n’intervient pas dans la
suite. ]

2. On suppose dans toute cette question que la fonction f est continue nulle en
dehors d’un intervalle compact [a, b] contenu dans |0, +oo.

2.a. Montrer que la fonction F' est continiment dérivable sur R* , constante au
voisinage de O et nulle au voisinage de +o0.
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2.b. En déduire a I’aide d’une intégration par parties que

/ (F(x)Pd = p / (F (@) f(z)de.
R+

Ry
3. On suppose encore dans toute cette question que f est continue nulle en dehors

d’un intervalle compact [a, b] contenu dans |0, 4-o00].

3.a. On suppose en outre que la fonction f est positive. Montrer qu’il existe une
constante C), (indépendante de f!) que I’on déterminera telle que

1E1l, < Cpll f1],-

(On pourra appliquer I’inégalité de Holder au second membre de 1’identité obtenue
dans la question 2.b. et vérifier que F € Z% (R4, B(Ry), \)).

3.b. Montrer que I’inégalité précédente reste valide méme si f n’est pas positive.
4. Soit f € ZE(Ry, B(R4), \). On admettra I'existence d’une suite (fy,)n>1 de

fonctions continues, chacune nulle en dehors d’un intervalle compact I,, contenu
dans |0, +ool, telle que || f — fy||, tende vers 0 lorsque n — +o0.

4.a. Montrer a I’aide d’un théoréeme du cours 1’existence d’une suite, que par abus
de notation on notera encore ( f,,),,>1, vérifiant, outre les propriétés ci-dessus, fy,(x)
converge A(dx)-p.p. vers f(x).

C’est cette suite qui est utilisée dans la suite.

4.b. Montrer que, pour tout x € R* ,

e | fo(u)]

u

du.

|F(z)] < liminf/

xX
4.c. En conclure que F e £ (R4, B(Ry), \) et que
£, < Coll £1l,-
5. Soit p > 1/p, on pose f,(x) := 7 P1,>13. Calculer le rapport

IE1L, /1AL

Qu’en déduit-on ?
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Chapitre 18

Solutions des exercices

Exercices du chapitre 1

1.1 b) Se ramener, par approximation uniforme, au cas ol g est continfiment dérivable sur
un intervalle compact et donc lipschitzienne.

1.2 a) Commencer par supposer f en escalier puis utiliser la définition de I’intégrabilité au

sens de Riemann. )
b) Onobtient v = —1 et § = —.
2

c) Calculer la somme avec e,

d) D’apreés a) on a lim/ (az+ Bz?) (Zcos(nz)) de = — % / (az+ B2?)dx
noJs 1 5

0 in ((n+1/2
et on a I’estimation /0 (aa + BxQ) (W — 1) dz | =0() — 0.
| f(z) siz=k/n!pourke{0,... ,n!}
13 o) = { 1) S vérifie £~ pull.., <

1.4 Raisonner par I’absurde et construire une suite (I,,),>1 de segments emboités tels que
sup f(z)<1/n.

xel,

1.5 In(u,) = Zln(1+ ) . /1111(1+x)dx:21n2—1.

n—-+oo 0

1.6 Soit S,, la somme de Riemann de f sur [0, 1] associée a la subdivision (k/n)1<k<n.

Alors on a
[n/2]

sorti= 30 (5) o [ s

a ’aide de la subdivision (2k/n)1§k§[n/2] de pas n/2, sur [0, 1]. Donc T;, — 0.
1.7 a) Remarquer que, si f est croissante et 2y :=a+ k/n (b —a), 1<k<n-—2,alors

< [ < b‘T“fmm.

k

n—1 —
X ikm ik
k_ _ S X —en
b) On prend la valeur en 1 de kE . X 1 = U X —e )
¢) On applique la limite de a) avec la fonction ln(sm) sur |0, 7r[ et monotone sur chacun
des intervalles |0, 7] et [T, m[, puis on prend le logarithme de 1’égalité du b).

1.8 Montrer que la fonction H — (F o GG), out F, G, H sont respectivement les primitives
nulles en 0 de f, g, fg, est décroissante sur [0, 1].
1.9 On It e N*, ¢ > N(f—f)<zq:i—>0
. a pour tous p, q »q > P, N1l Jq p) S +1n2 o
n=p
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Les suites ( f5)nen= et (f},)nen+ convergent normalement donc uniformément vers f et f’
respectivement, sur tout intervalle [0, a] avec a € [0,1[. Ona f'(z) = 1/(1 —z) d’ou
f(z) = —In(1 — x) pour z € [0, a]. Par conséquent, si (fy,)nen= converge vers g dans
(4([0,1],R), Ny), il vient

Vael0,1] /Oa lg(z) +In(1 — 2)|dz = lim /Oa l9(x) = fu(z)| dx

n—-+oo
< I — = 0.
= ngl;{loo Ny (g fn) 0
Donc g(z) = —In(1 — z) pour z € [0, 1], en contradiction avec la continuité de g en 1.

1.10 @) 1l y a convergence uniforme sur [0, a] pour a €]0, 1], car on a pour n assez grand,

n = Jn 0.
%i?f fnla) —

Elle n’est pas uniforme pas sur [0, 1] car max fo = fa(1/Vn20) = /2772 /n — +oc.
0,1

1 n
0

1.11 a) On utilise le développement en série entiére de e =% ™% qui converge uniformément
sur [0, 1], ce qui permet d’intervertir la série et I'intégrale sur [0, 1].

2n n—+oo 2

b) Le développement en série entiere de sur [0, a] converge uniformément sur [0, a],

ce qui donne

“ lnz X gt X gt
dr = —1Ina +
/0 x—1 Zn+1 Z(n+1)2
n=0 n=0
+00 n+1 +00 1

a
—lnaln(l—a)-l-z:m C:i Zﬁ’
n=0 =

a nouveau par convergence uniforme de la série.

1.12 a) On développe e en série entiere et utiliser le bindme de Newton. Les coefficients
du développement en série de f,, sont

{ l(l_n(n—l)'(nfk+1)>zo sik<n

k! nk
0 sik > n.

b) D’apres a) on obtient pour a > 0 fixé,

0< /” fo(z) e de = /a fo(z)e " dx + /" fon(z) e " dx
0 0 a

Vn > a,

—+o0
Sof@+ [ etdi—afi@ret e

n——+oo
n T n
qui est arbitrairement petit @ > 0 assez grand. Donc lim / (1+ 7> e 2 dr = 1.
n 0 n

1.13 Pour la dérivabilité en 0, effectuer une intégration par parties en introduisant la fonc-
tion (t+ 1/t*sin(1/t)) surdes intervalles [¢, 1], > 0.
1 1
1.14 Pour le prolongement par continuité en 1, estimer la différence Wi =T
n _
1.15 a) En dérivant la différence des deux expressions de f, on trouve 0.

b) Comme f(0) = Z et 1+imf =0, on en déduit que 1% = Z
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n 67x2(1+t2)
¢) On considerer la suite (g, )n>1 définie par g, (x) := / T e dt.
—n
La suite g,, converge uniformément sur R et la suite g/, converge uniformément sur tout
compact de R car on a pour tout a > 0,

+oo / 2 Foo 2t2 Foo 2
/ g (z)dx | = 2.%679:/ e P hdt < 2/ e dt.

n
On peut donc dériver g sous le signe intégrale.

d) On a pour z > 0, g’(a:):—2]e_“”2, g(x):—QI/ et et g(O):g:212.
0

Vo el0,al,

1.16 a) La premiére égalité s’obtient en intégrant par parties I,, par rapport a la fonction
(x —a/v1— 1’2> qui est une dérivée simple. La seconde égalité s’ obtient facilement par
récurrence en utilisant la premiere. Pour I’équivalent, par décroissance de la suite /,, on a
I, I,41 <12 <1, 11, eton conclutavec laseconde égalité.

b) On fait une récurrence et on utilise la premiere égalité de a). Alors d’apres la formule de
Taylor-Lagrange en 0 et I’équivalent du a), on obtient

n

1 zn: x a2 (1 —g) 3
Vi—z (2n+1) Ispt1

P (2n + 3) Ionts

¢) Pour x € [0, 1], la série du b) converge uniformément sur [0, 2]. On peut donc intervertir
cette série et I'intégrale sur [0, x], ce qui donne le développement en série entiere de arcsin.
d) Pour @ € [0, 1], on a par convergence uniforme sur [0, a] de la série,

+oo

“ arcsin (z) 1
—Fdr = dz.
o Vi-2 2 (2n+1)? Lpy1 Jo V1—22

<1

VYneN, Vx e [0,1],

1 a x2n+1

n=0

! aresin (z)
o V1—2z2
+oo 1

et par convergence uniforme sur [0, 1] la série de droite converge vers Z —.
v (2n+1)

1.17 @) On intégre deux fois par parties Io,, par rapport a 1 puis par rapport a 6.
b) On divise I’égalité du a) par n? I, et 1.16 a) donne 2n I, = (2n — 1) I3, .
2

¢) On obtient J,, < %(Ign — Ippio).

1
Lorsque a — 17, I'intégrale de gauche tend vers dr = 5 [arcsin2 (x)][l) ,

"™ 5 0. Une sommation

d) De I’équivalent de 1.16 a) et de la question ¢), on déduit que
2n

X1 25 w2
télescopique des égalités de b) implique alors Z = —

n=1

1.18 a) La dérivée de la fonction est nulle sur |0, 1] et sa limite en 07 est 0.

In(1 —t) gl
S

n2 I, 6

b) On inteégre la développement en série

(qui converge norma-
n=1

lement donc uniformément) sur [0, z] et [1 — z, 1] pour x € ]0, 1[.

¢) On prend = = 1/2 dans la formule de b).

Exercices du chapitre 2
2.3 a) Faire une récurrence sur n.

b) Remarquer que card A = Z 14(z).
reX
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2.5 Si (n + x, := 0,dLd>%...) est une bijection de N* sur [0, 1], considérer un réel

y'n'n

x:=0,d'd?... tel que, pour tout n>1, d" ¢ {d",9}.
2.6 Considérer I’ensemble des parties finies de N.

2.7 Montrer que A peut s’écrire comme une réunion d’ensembles finis indexés par I’en-
semble dénombrable Z[X].

2.8 Considérer les ensembles {z €] —k, k[: | f(zT)— f(z7)|>1/n} pour k,n € N*.
2.9 Partitionner € en classes d’équivalence modulo la relation d’équivalence ~ définie sur
Q par: x ~ y six ety appartiennent & un méme intervalle inclus dans €.

Exercices du chapitre 3

o - . —a a
3.1 a) Effectuer la division euclidienne de n par p fixé et montrer que lim — < -2,
n n p
3.2 S’inspirer de I’exercice 3.1.

3.3 Adapter I’exercice 3.2.

Exercices du chapitre 4
4.3 Caractériser 4,, et montrer que {%} n’appartient pas a I’union des %,,.
4.4 Montrer que {A€ Z(X) : Ax BEX QP } est une tribu.

4.5 ) Utiliser la stabilité par intersection dénombrable et remarquer que, pour tout A € o7,

A= .

c) Slg;)(e)?er &/ dénombrable et montrer qu’alors, ’application ® : & (I) — <7 définie par
®(J) :=Ujes&; ou X =J;cr ¥ , estune bijection.

Exercices du chapitre 5

5.3 b) Considérer dans le premier cas f~!({y, —y}) et dans le second cas f~'({y}), y€R.

5.4 b) Considérer une approximation de g par une suite de fonctions étagées (s, )n>0;
écrire s,, := t,,0 f et définir h sur I’ensemble de convergence de la suite (¢, ),>0.

5.5 b) Utiliser la caractérisation b) de ’exercice 5.4.
5.6 a) Utiliser la définition 1.4.

5.7 Montrer que, pour tout z€ C \ R_, z = ¢*?|z| avec 0 = 2 arctan (

5.8 Considérer 1’application distance d’un point a un ensemble.

5.9 a) Considérer A := lim f, *(Q).

b) Considérer la réunion (;Les ouverts €, := {z€Q:d(z,°Q) >1/k}, keN*.
Exercices du chapitre 6

6.4 a) Considérer les ensembles {|f|<n}, n€N.

6.5 a) Calculer p([z, y[) pour z<y.
b) Utiliser la continuité a gauche et a droite de la mesure (.
¢) D est dénombrable.

6.6 b) Pour la stabilité par complémentaire, utiliser a).
6.8 a) Considérer une réunion d’intervalles ouverts centrés aux points rationnels.

6.9 Considérer I’ensemble des 2 € [0, 1] dont le développement dyadique a tous ses co-
efficients d’indice pair nuls et I’ensemble des x € [0, 1[ dont le développement a tous ses
coefficients d’indice impair nuls.
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6.10 Ecrire 1’uniforme continuité de f sur un cube fermé de R? et considérer un pavage de
ce cube en cubes de cOtés assez petits.

6.11 b) Adapter la démonstration de la proposition 6.5, section 6.6.
6.12 a) Appliquer le critere de Cauchy.
b) Montrer que, pour tout k€ N*, C' C lim' AF

n

¢) Considérer I'ensemble A. := (5, A% .

6.13 a) Appliquer le théoreme d’Egoroff de I’exercice 6.12.
b) Construire une sous-suite ( f,, )x>1 telle que, pour tout k> 1, u({| fn, — f| > 1}) < =
et considérer I'ensemble A := lim {| f,, — f| < }.

k

6.14 a) Pour établir 1’égalité, montrer que si f est u-p.p. nulle sur un ouvert 2 alors f est
partout nulle sur €.

b) Soit (Uy)n>0 une base dénombrable d’ouverts de X ; écrire ©S = UIGCS}L U,, ou,
pour chaque x € CS}L, il existe F),_ € <7}“ etn, >0telsque €U, etU,, C°F,, .

¢) Appliquer b).

6.15 a) Considérer ceux des éléments d’une base dénombrable d’ouverts qui sont dans 0,
et utiliser la o-sous-additivité de la mesure .

¢) Utiliser que,/ fdu = 0sietseulementsi f = 0 p-p.p. sur A (i.e. u({f#0}NA) = 0).
A

6.16 b) Soit (A,,),>1 une famille dénombrable de &(X). Considérer, pour ¢ > 0, un

)

recouvrement (B}}),>1 de Z.(A) tel que Z (diam By )* — on < e, (Ay).

k>1
¢) Noter que puo, <5,
6.17 a) Considérer un pavage de () en petits hypercubes de diametre <e.
¢) Utiliser I’exercice 6.16 d).
d) Utiliser a) et montrer qu’il existe une constante by > 0 telle que 114(Q) > bg Aa(Q).
6.18 b) Montrer que, pour tous A, A’, B, B’ € &/, AAB C (AAA")U(BAB')U(A’AB').
¢) Montrer que, pour tous A, B,C € /, AAB C (AAC) U (BAC), et que pour tous
z,y €Ry, arctan(z+y) < arctan(z)+arctan(y). .
d) Soit (A,,)n>0 une suite de <7 /% qui converge vers A. Montrer que 1’on a, pour tout
n>0, v(A,) <v(A)+v(A,AA), et passer a la limite supérieure ; raisonner de méme avec
la limite inférieure.
6.19 a) Exprimer |A| en fonction Ay := ANRL et A_ :=(—A) NR,.
b) Utiliser une caractérisation de A et remarquer que A_ = —(ANR_).

6.20 o) Commencer par montrer que

(AN B) — u(A) u(B) = /;((1A — 1w(A))(1p — u(B)) dp.

b) Pour la seconde, utiliser 1’égalité 1(B) = u(AU B) + p(AN B) — u(A).

¢) Utiliser I'inégalité min(a,b) < vabsia,b € Ry.

6.21 b) Montrer que I’application \’ définie sur Z(R) par \'(B) := u/(e?), est invariante
par translation et coincide avec la mesure de Lebesgue .

¢) Utiliser la représentation du b).

6.22 a) Etablir par récurrence 1’additivité de . pour n éléments de .o/ deux a deux disjoints
puis conclure via la condition (i4i).
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b) Utiliser que toute suite croissante majorée de réels converge vers sa borne supérieure
pour remplacer “lim,,” par “sup,,”.

6.23 a) Utiliser la proposition 6.3.

b) Utiliser le lemme fondamental d’approximation par des fonctions étagées.

Exercices du chapitre 7

7.10) Ecrire °F comme une réunion dénombrable d’intervalles ouverts I et montrer, par
1’absurde, que pu(f~1(1))=0.

7.2 Considérer la fonction f := Z anlg, pour la condition nécessaire et la suite d’en-
n>0
sembles E,, := {f > 1} pour la condition suffisante.

7.4 a) Montrer que la partie entiere [| f|] de | f| vérifie [|f]] = Z n 1<) flanti}-

n>1
n

¢) Montrer que, pour tous p>n>1, Z U — NUpp1 < Up.
k=1
7.5 a) Appliquer le théoréme de Beppo Levi  la suite de fonctions (| f| 14, )n>0 ot les A,
sont définis par A,, := {27 " <|f|<2"}.
7.6 Appliquer le résultat de 1’exercice 7.5.

7.7 b) Appliquer ) a la suite de fonctions ( f,,),>0 définies sur N par f,(q) := a, 4 avec
la mesure de comptage.

7.8 b) Considérer la suite de fonctions définies sur N par f,, (k) : Lp>n)-

1
T kt1
7.9 b) Soit x ¢ D := |J,,~, 0 ; montrer que, pour tout > 1, il existe k tel que, pour tout &
assez petit, I, (z) C I¥, et montrer que, pour tout ~ > 0 et pour tout n assez grand, il existe
k tel que z € I¥ C Iy, ().

¢) Appliquer le théoréme de Beppo Levi et le théoréme 1.4, chapitre 1, sur les sommes de
Riemann aux suites (¢, )n>1 et (¢, )n>1, puis conclure avec a).

7.10 b) Montrer que z( := / fdp e 1.
b's

7.11 Appliquer a la fonction f/g I'inégalité de Jensen avec la mesure g dy et la fonction
convexe (z — x Inz).

7.12 Poser x := n t et appliquer le théoréme de Beppo Levi avec la suite (gy,)n>1 définie

n
par g,(z) == \/; Lion(z), z € Ry.

a+b> = (Va+ Vb)2.

t 11—t

7.13 a) Montrer que inf (
t€]0,1]

il ’
b) Appli =\ + 1)
) Appliquer @) avec a ((||f||1 T “9“1))

7140naly=0,etsia>0ona lim [(142)* —2°]" = 400, dod I, = +00.
T——+00
D’autre part, si a < 0 on obtient les équivalents suivants :

[(14z)*— x“f L 220
2

[(142)* - xa]2 =22 [1—(1+1/2)"] ~ a?z?%72 ol 2a-—-2< —2.

T—r—+00
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La convergence des intégrales de type Riemann permet de conclure que I, < 400 si et
seulement si 2a > —1.

Exercices du chapitre 8

8.1 L’inégalité du lemme de Fatou donne 0 < min (p(A), p1(°4)).

8.2 b) Considérer la suite de fonctions définies sur R par f,,(z) := e % 1, oof(a).

8.3 a) Appliquer le lemme de Fatou & la suite définie p-p.p. par g, := fn+f—|fn—f].
b) Considérer la suite de fonctions définies sur N par f,, := 1o =1ty

8.4 a) Appliquer le lemme de Fatou 2 la suite de terme général g, := | fn|+|f|—|fn—f]-
8.5 a) Appliquer le théoreme 8.4 (b).

d
b) Lintégrale est égale a / I
Ry er 4 1

> 0 et la somme est égale a 0. Donc I’hypothese
de a) n’est pas vérifiée.
8.6 a) Appliquer le théoreme 8.4 (b) avec pour 1 la mesure de comptage.

b) Part simplification télescopique la premiere somme est égale — >0
: LG 0eTD

et la seconde est égale a 0. Donc I’hypothése de a) n’est pas vérifiée.

8.7 a) Développer en série 1 pour z > 0.

— e*[L’

8.8 b) Séparer en intégrale sur [0, 1] et sur [1, +oo[, faire le changement de variable y=1/z
dans la seconde intégrale puis appliquer a).

8.9 Appliquer le théoréme de convergence dominée ou le théoreme de Beppo Levi selon la
monotonie de f.

8.10 @) On a pour tout z ¢ «N, lim e s (@) = et A1(mN) = 0. On conclut avec

n—-+oo
le théoreme de convergence dominée.

0
b) Avec la translation x — x — m, il vient I,,(0) = I,(0) + / e~ (@) gy Comme

I,,(0) et la derniere intégrale sont > 0, on en déduit que I,,(0) = +oc.

8.11 Pour la premiere égalité, effectuer le changement de variable x = n (1—t) et utiliser

1
1égalité / ((1—¢"*1)In(1—¢))" dt = 0. Pour la seconde, adapter I'application 7.1.
0

1
8.12 b) Estimer lim/ na” f(x)dx pour a proche de 1.
n a

1
¢) Soit la suite u,, = / z" | f(x)| dz. Montrer que la suite (u,,),>0 est décroissante et
0

vérifie » " u,, <00, puis en déduire lim nu,,.
n
n>0
1 [ 1 (7
813a4)Ona b, = lim — Jr(z) sin(nz) de = — f(x) sin(nz) dz.
k——+oco T _x Ly
b) Par périodicité et parité on se ramene a « € [0, w]. Si nz < m, alors la valeur absolue de
la somme est majorée par nz < 7 car | sinu| < |u| pour v € R. Sinon, on considere le plus
petitpe {1,...,n — 1} tel que px < 7, et on fait la décomposition
n . p . n .
sin(kx) sin(kx) sin(kx)
Z E Z e T Z L

k=1 k=1 k=p+1
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La premiere somme est majorée par w en valeur absolue d’aprés ce qui précede. Pour
k

la seconde, on effectue une transformation d’Abel avec Sy (z) := Z sin(jz) pour
Jj=p+1
x € [0,7] etk > p+ 1, qui vérifie |Si(z)| <1/sin(x/2) < 7/x.

so sl | (S0, g IS0l

Mt k - n+1 Mt k(k+1) — (p+ 1)z

d’ou la majoration voulue.
¢) Appliquer, a I’aide de la majoration du b), le théoréme de convergence dominée a

On obtient alors <1,

1 (7 " sin(kx " by,
- k=1 k=1
d) Par le critére d’ Abel la série converge simplement sur R. D’apres ¢) elle ne peut conver-
+oo
ger dans .1 ([—, 7]) car la série Z
n=2

est divergente.
nlnn
8.14 a) Montrer que, pour tout intervalle borné I de R, cette relation est vérifiée et que
I’ensemble des boréliens de I la vérifiant est une tribu sur /.

¢) Calculer, a I’aide du a), les limites

lim cos(nx)dx, lim/ cos(nzx)dz, lim/ cos(2nx)dx.
" JEn{g>0} " JEn{g<0} " JE

8.16 a) Calculer la limite de f” en 0" a I’aide d’un théoréme de convergence.
b) Effectuer le changement de variable u=chx dans I’expression de f(¢).

+o00o
8.17 a) Utiliser I’égalité / e dr= V.

b) i) Faire une intégration par parties dans 1’expression de ¢/, et effectuer le changement de
variable u =tx dans celle de ]/”\’

b) ii) Faire une intégration par parties dans 1’expression de (f) " et effectuer le changement
de variable v =tx dans celle de f .

b) i) Utiliser 1’expression de fcomme une intégrale en u.

8.18 ¢) Effectuer le changement de variable y := ¢ + /t .

d) Pour I'inégalité, appliquer la formule de Taylor-Lagrange a I’ordre 3 en 0 & la fonction
In(1+ ).

e) Appliquer le théoréme de convergence dominée dans I’intégrale du ¢) en distinguant, a
I’aide du d), les intervalles Ry et R_.

8.19 b) Adapter I’application 8.6 d).
c) Se ramener a t =0, établir 2 (1 —n||) Linjp<1y < [0+ 1|+ |np — 1| — 2n|e|, puis
appliquer le théoréme de convergence dominée au membre de gauche.

8.201b) Si Ac o/, i€ et >0, alors/ il dp < / il di + e u(A).
A {Ifil=c}
¢) Appliquer par exemple b).
d) Montrer, a I’aide de a) et ¢), que la suite (f, — f),>1 est équiintégrable en probabilité
et utiliser la majoration / |frn—fldp < / |[frn—FI N cdp+ / [ fn—Fldp.
X X {lfn—Ff1=c}
8.21 a) Utiliser les résultats de I’exercice 7.5.
b) Appliquer a) & un nombre fini de f,, eta f.
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¢) Remarquer que la suite (f, — f),>1 est aussi équiintégrable et appliquer le théoréme
d’Egoroff (¢f. exercice 6.12) a la suite (f, — f),>1 dans A..

d) Considérer la suite définie sur [0, 1] par f,(x) := sin(nz).

8.22 b) Utiliser I’exercice 6.13 b) et le théoreme de convergence dominée.

¢) iv) Utiliser I’exercice 6.13 b) et la question b).

8.23 a) Montrer que {|f|>2} C {|f—14,|>1} etappliquer Iinégalité de Markov.
b) Montrer que lim/ |14, —f?|dp = 0.
noJx

¢) Considérer lim “(A,, AA) et montrer que son complémentaire est de mesure nulle.
n

8.24 a) Utiliser I’exercice 8.23 ¢).
b) Appliquer le théoreme de convergence dominée.

8.25 a) Appliquer le lemme de Fatou avec la suite n (f(-+2)+ f(-—1) —2f), puis
I’invariance de la mesure de Lebesgue par translation.
b) Appliquer le théoréme de convergence dominée pour montrer que la limite du a) est 0.

8.27 a) Appliquer le théoréme de convergence dominée avec la majoration |sin x| < |z
pour z € [0, 1].

a) Appliquer le théoreme de convergence dominée en utilisant In(1 + 2™) < In(22")
pour z € [1,+o0].

¢) Appliquer le théoréme de convergence dominée sur les intervalles |0, 1] et [1, +oo].
8.28 b) Appliquer le théoreme de continuité sous le signe intégral.

b) Appliquer le théoreme de dérivation sous le signe intégral “local” (en un point donné).

8.29 a) Appliquer le théoréme de continuité sous I’intégrale, le théoréme de dérivation sous
I’intégrale et le théoreme de convergence dominée.
b) Faire un calcul direct (assez long) en posant z = a + b, ou appliquer le théoréme des
résidus a I’aide du contour formé par le segment [— R, R] et le demi-cercle de centre 0 et de
rayon R > 1. On peut aussi remarquer que I’identité est vérifi€e pour z € R et appliquer
le théoreme du prolongement analytique.

5 N s : e —t222 \/77— s N £/ t2
¢) D’apres I’exercice 1.15 e dx = e pourt > 0,d’ob f/(t) = —2/me *"".

— 00

d) La convergence et la valeur de I’intégrale sont données par

“+o0 “+o0
f(0) — lim f(t):—/0 f’(t)dt:ﬁ[ e 2t dt.

t——+oo

8.30 a) Appliquer une transformation d’ Abel.

b) D’apres le critere d’ Abel, la majoration de 1’exercice 8.13 b) et la décroissance vers 0 de
la suite (by,),>1 impliquent la convergence uniforme de la série sur [0, 7].

¢) On découpe I'intégrale sur [0, d] et [0, 7]. Sur [d, 7] la convergence uniforme du @) permet
d’intervertir la série et I’intégrale, d’ou

2/ f(z) sin(nz) de =2 bn/ sin?(nx) do + Z by,
6 s k#n
qui tend vers 7b,, lorsque 6 — 0, par continuité en 0 de la série donnée par b).
d) En utilisant les questions a), b), ¢) et I'intégrabilité de f, appliquer le théoréme de
2 (7  sin(k b
convergence dominée a — / f(z) Z sin(kz) dx = iy
T Jo i il
+oo
e) Appliquer la contraposée de d) sachant que la série Z
=2

k+n k—n

(m(k +n)  sin(k — n)a)

est divergente.
nlnn
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1 L [" - sin(k
f) Si f existe alors Z TTE f/ f(x) (Z Sm(kx)> dz posséde une limite par
0

T
k=1
le théoreme de convergence dominée, ce qui conduit a une contradiction.

8.31 a) Soit b,, := a,, — an+1,n € N. La suite (b, )nen est positive, décroissante et la série
de terme général b,, est convergente, d’ou la suite (nb, ),en converge vers 0 et
n

Zk(bk,l —by) =ag —a, —nb, — ag.

n—-+o00
k=1
b) Changer le produit des cosinus en somme des cosinus dans (1 —cos x) F}, (x). Appliquer
1 ™
le théoreme de Beppo Levi a (f,,),>1 en notant que — / F,(x)dr =1 etenutilisant a).
= 7r

0
¢) On a pour tous n, k > 1,

2 [T 0 sik > n,
;/0 Fn(:c)cos(kx)dx{ | —k/n sik<n,

2 [ 0 sik >mn,
;/0 Jn(@) cos(kz)dx _{ ar + (n—K)ap1 — (n+1—Fk)a, sik<n,

1 s
;/ fo(x)dz =ag + nany1 — (n+ 1)ay,.
0
Conclure en notant que f,, est une combinaison linéaire de 1, cos(z), . cos(m:)

‘ ZkCOb (k) ‘ = Isin(z/2)| x/2)|

et llI_P Na, = O le critere d’ Abel apphquee al expressmn du ¢) entraine que
n——+0o0o

n
d) En utilisant ‘ Z cos(kx)

YV €]0,], lim f,(x Zak cos(kx),

n—-+4oo

limite qui coincide dz-p.p. sur [0, ] avec la limite f de la suite (f)n>1 dans £1([0, 7).
e) Appliquer d) avec la suite (a,)nen définie par ag := 4/In2, a; := 2/In2 et a, :=
1/Inn sin > 2, en notant que la fonction 1/ In est convexe sur |1, +-00[.

8.32 a) Appliquer le lemme de Fatou aux suites f,, et g, — f,.
b) f=0et / fn(x) dz = 7. Le lemme de Pratt ne s’applique pas car 1gr ¢ Z*(R).
R

8.33 a) Considérer T' € C2°(R?) telle que T'(t) = t pour t € [—1, 1] et une suite (1/,,) de
C2°(R%) qui converge vers f/|f| 170y dans £ (Q) et Ag(dx)-p.p. sur . Montrer que
on = T(1y,) convient.

b) Appliquer le théoréme de convergence dominée dans / f(x) on(z) Aa(dx).
Q

8.34 a) On applique le théoreme de Dirichlet dans R? qui donne le développement en
efﬂw(yn)

série demandé avec les coefficients de Fourier a,, = / dy pourn € Z2.

[0,1]2 a(y)
D’apreés I’identité de Parseval appliquée a la fonction matricielle (hessienne) Z2-périodique
V2(1/a), il existe ¢ > 0 telle que Z In|* |anl? < clIV2(1/a)lF2 (0172 < +oc.

nez?
L’inégalité de Cauchy-Schwarz implique alors

S odels( X |n1|4)1/2( S )’ < 4o,

neZ?\{0g2} n€Z?\{0g2} ne€Z?\{0gz2}



Solutions des exercices 401

b) Par unicité de la solution X (-, z) du systeme différentiel, il suffit de dériver et d’utiliser
la formule de la dérivée de la fonction réciproque de F,.

¢) Remplacer dans I’expression intégrale de F}, la fonction a =1 (s £ +x) par son développe-
ment en série de Fourier de la question a), puis intervertir Iintégrale sur [0, t] et la série de
Fourier. en utilisant le théoréme de convergence dominée et le fait que (v, )pcz2 € £1(Z2).
d) On a pour tout x € R? et pour tout n € Z2 tel que & - n # 0,

2 (o) it (e S (T (€ 1))
R E )

Donc d’apres le théoreme de convergence dominée pour les séries (cf. exercice 8.5 a)) on a

Jim ( T 2T gin (€m) M) 0
freo nezZ2:&n#0 . mt (g ) 77,) '

0 +— < || € £1(2%).

t——+oo

a, e

L’expression de F,(t) de la question ¢) donne immédiatement lim o, F,(t)/t. D’apres la
question a) on a aussi lim, o F%(t)/t > minp 1j2(1/a) > 0. Finalement, la croissance

—1
im 228y 8
+oo

im .
t oo Fy(s)

e) Lincommensurabilité de € se lit: £ -n = 0 < n = Ogz. D’ou la limite de d) se réduit
N 1 =

a oy {=aét.

8.35 a) Par convergence normale (0 < r < 1) des séries on peut dériver deux fois sous le
Z o gzint | _ 2r (cos(2t) — )

— 1472 —2r cos(2t)

On vérifie que cette expression est aussi la dérivée de la fonction en arctan sur R.

b) On integre deux fois I’expression du a) remarquant que f/.(0) = f,.(0) = 0.

¢) On fait tendre  vers 1 dans I’expression de b) et on applique le théoréme de convergence
dominée de Lebesgue (arctan est bornée).

stricte de la fonction F, implique que Vz € R?,

signe somme, ce qui donne f/(x) := 2R l

dona S0 u I Na—T
)Ona ngo 2n+1) f1(2) /0 (2
—+o0
On conclut en séparant les termes pairs et impairs dans Z —
n=1

2 1)t) — t
8.36 a) On integre sur [0, 5 — 6] la dérivée C (t) = cos((2n +1)1) — cos( )

sin(t)
- | : RN
b) Une intégration par parties donne 0 (Cn(5—6)—Cy(0)) dQ—Z 7
0 k=1

1 U 1
() = E qui s’intégre en In(t).
d) D’apres le lemme de Riemann-Lebesgue, la suite de fonctions intégrandes en 6 converge
vers 0 pour tout 6 € [J, 7]. De plus, elle est bornée par une constante sur [d, 7] car la fonc-
tion 1/ sin est continue sur [4, 7]. Donc, le théoréme de convergence dominée de Lebesgue
s’applique sur [4, T].
d) On déduit de a) et ¢), d) que

¢) La majoration se déduit de I’inégalité

™

lim [ 0(Cu(E —0)— Cu(0)) db = — /05 0 ({m (sin(t))r_g_e),

n—-+o0o 0

qui combinée avec b) permet de conclure a la formule intégrale de ((3).
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8.38 a) Développer en série In(1 + ) sur [0, 1] et appliquer le théoreme de convergence

dominée a I’aide de la majoration Vx € [0, 1], Z(—l)
k=1

b) On applique le théoreme de continuité sous 1’intégrale a I’aide de la majoration

In(1 — 2z cost + 2?

k—1$k
— | <21In(1+2a).

In(1 £
Va e [0,1[, sup >‘§2max‘u‘e,$1([0,l]).
teR T + x
N S e , x —costy ]!
¢) Par le théoreme de dérivabilité sous I'intégrale f'(t) = 2 | arctan (7t> .
sin -

t
d)D’aprésa)ona f(n/2)=1/2 et f(n)=2Ietdapréesc)ona f(t)=c+nt— —,

2
2 I 3n? 2 1&
dot c=27 - = =2 _ i.Onendéduitdoncque == = 72 —.
2 2 8 12 2 = n?
Exercices du chapitre 9
9.1 a) Appliquer I’inégalité de Holder.
b) Remarquer que si ||z||, =1 alors ||z|| <1et, pourtoutic{1,... ,d}, |a;|7<|]z;|P.

¢) Appliquer le cas d’égalité de I’inégalité de Minkowski.
9.3 a) Appliquer I'inégalité de Holder et son cas d’égalité.
b) Utiliser la seconde inégalité de ’exercice 9.1 a).

9.4 a) Soit f € LX ()AL (). Soit B, := {2" < |f] < 2""'} pour n € Z. Montrer
qu’il existe une infinité d’ensembles B, tels que 0 < p(B,,) < +oo.

n

_ +
(o)™ i S
n=0

b) Considérer b,, := ’fog oo
-1/a
(Zak) S1 Zan<+oo.
k=n n=0
¢) Considérer f := Z bnl4, oulasuite (b,),>0 Vvérifie b) avec a,, 1= p(A4,).
n>0

9.7 Montrer que Vr > 1, Va,y > 0, 2" —y"| < rlz —y|(z+y)"" ' et utiliser
I’inégalité de Holder avec r.

9.8 Appliquer le lemme de Fatou a la suite g, := 2P (| f[P+|f|P) — | fu— f|P-

9.9 a) Appliquer le lemme de Fatou si p < +o0.

b) On pourra appliquer, soit le théoreme d’Egoroff a la suite (f,,)»>0 (ex. 6.12) et I'inégalité
de Holder avec la fonction indicatrice d’'un ensemble de mesure petite, soit s’appuyer sur
I’exercice 8.20 sur 1’équiintégrabilité probabiliste.

9.10 a) Adapter la démonstration de ’application 9.2.
b) Montrer qu’il existe une suite (y,,),>1 de R* telle que lim |y,,| =+o0 et, pour tout n > 1,
- n

|g(4)| > n|yn| =, puis considérer la fonction f := Z ynly, olles I, sont des intervalles
n>N

deux a deux disjoints de [0, 1] de longueur (n**t|y,,|") 1.

9.11 Raisonner par I’absurde; considérer une suite de fonctions (f,,)n>0 sur [0,1] qui

converge vers 0 dans % ([0, 1]) mais qui ne converge simplement en aucun point de [0, 1]

(c¢f: 'exemple qui suit le théoreme 9.3) et montrer qu’alors, I’ensemble { f,,, n>0} U {0}

est un compact pour I’éventuelle métrique de la convergence \-p.p., puis conclure.

9.12 a) Utiliser I'invariance de la mesure de Lebesgue par translation.
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b) Commencer par le cas ot f € €k (R, K) puis utiliser la densité de €k (R, K) dans Ly ()).
c) Considérer f := 1g, sia — Oet f := 1rsia — +o0.

9.14 a) Montrer que, pour tous p, g € I, p<gq, ettoutr € [p, q], | f|" <|f|P+]|f]9; considérer
la fonction f définie sur R par f(z) := (z(lnz)?)~* (Lj0,1/2)(®) + L2 oof(2)).

b) Soient p,q € I,p < qettp+ (1—t)g €]lp,q[ ot t €]0,1], utiliser I'inégalité de
Holder avec I’exposant % ; pour la continuité de  aux bornes de I, utiliser la caractérisation
séquentielle de la continuité avec des suites monotones et appliquer les théorémes de
convergence sur les ensembles {|f| <1} et {|f|>1}.

9.15 a) Appliquer I'inégalité de Jensen (cf. exercice 7.10) avec la fonction —In.

b) Appliquer le théoréme de convergence dominée en notant que si 0 <p<gq, | f|? <|f|%+1.
¢) Utiliser la caractérisation séquentielle de la limite avec des suites décroissant vers 0,
puis appliquer le théoreme de Beppo Levi sur I’ensemble {|f| < 1} et le théoreme de
convergence dominée sur I’ensemble {|f|>1}.

d) Utiliser le résultat du a) et si u({f=0}) =0, appliquer la limite du ¢).

9.16 a) Intégrer F? par parties et appliquer I’inégalité de Holder dans (H™).

b) Approcher | f| aI’aide du théoréme 9.4 de densité par une suite (¢, )n>0 de €x (R, Ry)
et passer a la limite dans I’inégalité (H) vérifiée par ,,, en utilisant le lemme de Fatou.

c) Considérer une suite (¢, )n>0 de €k (R, Ry) ((®r)n>0 est la suite associée) conver-
geant vers f dans .Z% (R,.) et dominée par une fonction g € 2%, (R.) (G est la fonction
associée) ; montrer, en appliquant le lemme de Fatou a la suite (®,,),>0 dans (H), que
F 6.32”&’+ (Ry) (et donc G), puis passer a la limite dans 1’inégalité (HT) vérifiée par ©,,, en

appliquant le théoréme de convergence dominée aux suites (®,,),>0 et (0, P271),,>0.

d) Montrer que si g vérifie I’égalité, alors la fonction f := |g| également, puis montrer
que les fonctions f et FP~1 vérifient le cas d’égalité dans 1’inégalité de Holder appliquée
a (H"); montrer enfin que f est A\-p.p. égale a la solution d’une équation différentielle
élémentaire.

e) Considérer les fonctions f,(z) := x_%l[l,a] (x).

g) Pour 1’égalité faire une intégration par parties. Appliquer I’inégalité de Holder dans
le second membre pour obtenir 1’inégalité cherchée. Si la fonction (x — " f (x)p) est
intégrable sur R, considérer pour 0 < a < b < 400, une suite (f,, )nen dans €x (Ja, b[, Ry)
qui converge A(dx)-p.p. sur [a, b] et dans Z?([a, b]) vers f. Appliquer le lemme de Fatou
dans I'inégalité vérifiée par f,, puis faire a — 0 et b — oo a ’aide du théoreme de
Beppo-Levi.

9.17 a) Commencer par supposer f continue; montrer qu’alors lirf rF%(z)=0 et
Tr—r 400

faire une intégration par parties. Pour passer au cas général, utiliser un argument de densité
comme dans 1’exercice 9.16 ¢).
c¢) Appliquer le cas d’égalité de I'inégalité de Cauchy-Schwarz.

9.18 b) Appliquer I'inégalité de Young avec f, g, intégrer, puis utiliser la concavité de la
fonction In.

9.19 a) Considérer les suites de rationnels nulles a partir d’un certain rang.
b) Montrer que les boules ouvertes de rayon 1 centrées sur un élément de {0, 1} sont deux
a deux disjointes.

920 a) X = U TXn ol (X, ),>0 est une suite croissante d’ouverts d’adhérence compacte ;
n>0

si ¥ := {V,, }n>0 est une base dénombrable d’ouverts, considérer les intersections finies

des parties V;,, N X,, pour m,n € N.
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b) Commencer par le cas d’une réunion finie d’éléments de % en utilisant I’identité a) de
I’exercice 2.3, puis écrire {2 comme la limite croissante de telles réunions et appliquer le
théoreme de convergence dominée.

¢) Utiliser la régularité extérieure de 1 (c¢f: théoreme 6.10) et appliquer b).

d) Utiliser la densité des fonctions étagées de Lk (i) et appliquer c).

9.21 Utiliser I’exercice 8.23.

9.22 a) Montrer d’abord que si f est positive alors | My (f)|l, = ||,
b) Montrer le résultat lorsque f € %k (R) en appliquant le théoréme de convergence do-
minée puis, dans le cas général, utiliser la densité de € (R) dans Ls(\) et a).

9.23 o) Utiliser une transformation d’ Abel pour I’égalité.

b) Pour la condition nécessaire appliquer a) avec ¢t = p1(A)~P. Pour la condition suffisante
considérer A := {|f| > t}.

¢) Appliquer a | ]9 le caractérisation d) de ’exercice 7.4.

d) (z+— x=1/P) € ZP .\ ZP dans [0, 1] muni de la mesure de Lebesgue.

9.24 @) S’inspirer de 1’exercice 7.13 a) et de I'usage de 1’inégalité de Holder dans la
démonstration de I’inégalité de Minkowski.

Exercices du chapitre 10

10.1 Appliquer le cas d’égalité de I'inégalité de Holder.

10.2 Raisonner par 1’absurde :
" -1
—sip < 400, considérer b, := |an|p*10n E |ax|? ol ¢, vérifie a,, = a, |,
k=0

—si p = 400, considérer une sous-suite (a,(,))n>1 telle que, pour tout n > 1, |ag )| >n

PP . %e(n)
et la suite définie par by (,) 1= | |
NGy (n)

10.3 a) Considérer A,, := E,, N {|f| <n} et appliquer le théoreme de Beppo Levi.

et b, := 0 sinon.

b) Raisonner par I’absurde et considérer la fonction g := h|f[P~* Z —5 14, 00 Ay, ap
n>1

sont définis en a) et f=|f|h.

10.4 a) Considérer pour chaque n€N*, g,, := klp ot h=|h|ket B, := E, N{|h|<n}.

b) Appliquer le théoréme de Banach-Steinhaus : : si (T),)n>1 est une suite d’applications

linéaires continues d’un espace de Banach F dans un e.v.n. F telle que pour tout x € E,

sup,, |75 (x)|| < +oo, alors sup,, || T, || <—+oo (cf: [22]).

¢) Appliquer le théoréme sur la dualité LP-L? et conclure a I’aide du a).

10.5 Supposer que f ¢ Ly (1) puis considérer, en en justifiant ’existence, la fonction
1 _
définie par g :=h ———— 14, ou A, :={|f|=n}et f=]|f]|h
nz>:1 n?p(An)

10.7 Appliquer a ® le théoreme de Hahn-Banach : : toute forme linéaire continue sur un
s.e.v F' d’'un K-e.v. E se prolonge sur E/ en une forme linéaire continue de méme norme
(cf. [22)).

10.8 a) Appliquer le théoréme de dualité LP-L? a la forme linéaire ®(-1,) définie par
restriction sur L (f4(4)-

b) Utiliser "unicité de g, .

c) Considérer une suite (A, ),,>1 telle que limy, [|g, [lq=5UpP,(a)<to0 |9, |4 , et montrer,
alaide du b), que la suite (g, )n>1,00 X, := (J,_; Ak, estde Cauchy dans Ly ().
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d) Considérer, pour chaque n > 1, Y,, := X,, U {|f| > 1/n}, et passer a la limite dans la
représentation intégrale de ®(f1y, ) en montrant, a I’aide du b) et de la définition de X,,,
que lim/ Iy, du=0.

" JYu\Xn
10.9 @) Commencer par considérer les intersections finies des X, avec les éléments d’une
base dénombrable d’ouverts contenant X.
b) Montrer que, pour tout > 0, les mesures a densité 177, = . coincident sur le 7-systéme
U tel que B(X)=0o(% ), puis appliquer le corollaire 6.2, section 6.2.
¢) Montrer que E := D N L&(u) est un R-s.e.v. de L& (u) ; raisonner alors par 1’absurde et
considérer, pour fo € LE(u)\ E, la forme linéaire @ définie sur R fo® E par Do (fo) :=
1 et ®g g = 0, puis appliquer successivement a ®( le théoreme de Hahn-Banach (cf.
exercice 10.7), le théoréme de dualité et b).

10.10 a) Remarquer que, pour chaque h € D, la suite de terme général / fon) hdp est

bornée et lui appliquer le procédé d’extraction diagonale (cf. [23] p. 11), en utilisant la
dénombrabilité de D, pour obtenir une sous-suite convergente commune a tous les h € D.

b) Montrer que, pour chaque g € L (1), la suite de terme général /X fom) gdp est de

Cauchy en utilisant la densité de D et le résultat du a).
¢) Montrer que I’application ® définie au b) est une forme linéaire continue sur Ly (1).
d) Considérer la suite définie sur R par f, := nly, 1) et calculer, pour toute fonction

gG%K(R,K),1171}1/an(:r)g(x)dx.

10.11 b) Montrer en utilisant le lemme de Fatou pour la mesure de comptage que ’on a

limv,(B) > Zlim v (By;), puis que
" 1

k

Ve 0, Vnk>1, va(B) <> va(B)) + s (AE N Bj) +un (A N B),

Jj=1 i>k
et remarquer que lilgnu<A8 N ﬂ Bj) =0.
i>k

¢) Appliquer le théoreme 6.2.
10.12 @) Soit % := {U,}n>0 une base dénombrable d’ouverts de X avec Uy := X ;
considérer la partie 4 composée par les intersections finies d’éléments de % .
b) Remarquer que, pour chaque C € %, les suites (v;5(C)),>1 sont bornées et leur appli-
quer le procédé d’extraction diagonale en utilisant la dénombrabilité de %
¢) Appliquer le théoréme de Vitali-Saks (exercice 10.11) aux suites de mesures (ij(n) Jn>1
puis le théoreme de Radon-Nikodym a leur limite.
e) Considérer la suite définie sur [0, 1] par f,(x) := sin(nz).
10.13 a) Développer en série I’exponentielle.
b) Faire tendre n vers oo dans I’égalité du a).
¢) Appliquer le théoreme de Hahn-Banach a une forme linéaire nulle sur E.

10.14 a) Appliquer le procédé d’extraction diagonale en utilisant la dénombrabilité de la
famille {14} U {14, }rn>1.
b) Appliquer le théoréme de Hahn-Banach a la forme linéaire ® définie sur M.

d) Calculer lim / Z f 1y, du alaide du théoréme de convergence dominée.
"X
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10.15 Si X est infini, montrer que, pour tout ouvert infini {2 de X, il existe une boule fermée
By de rayon >0 telle que By C Q et 2\ By infini; en déduire qu’il existe une suite (By)>1
de boules ouvertes non vides et deux a deux disjointes, puis appliquer I’exercice 10.14 avec
la suite (B N By, )k>1 0O (ng)k>1 est une suite convenable d’entiers.

10.16 ) En utilisant I’orthogonalité montrer que I’on a pour tout N € N,

1F@) = > Fm) ™ [Gaay = 1oy = Y. 1F),
[n|oc <N [n|ec <N

ou \n|oc = IMaXj<k<d |7Lk
¢) En tenant compte des questions a) et b), appliquer le théoreme 10.8 de Marcinkiewicz
avec les espaces LPi (T%) et £9:(Z%), et les exposants p; = ¢ = 2, pa = 1l et go = +o0.
On obtient ainsi I’estimation pour f € L(T4) N L2(T4). Pour f € LP(T%) considérer une
suite (f)nen de L(T4) N L2(T4) qui converge vers f dans LP(T<) et appliquer le lemme
de Fatou 2 la suite (ﬁ)n oy dans ' (z%.
d) Appliquer le théoréme 10.8 de Marcinkiewicz avec les espaces (i (Z%) et L% (T%), et
les exposants p; = q1 = 2, p2 = let go = +00.
10.17 @) Pour montrer la lere inégalité multiplier par sin(x/2). Pour la 2éme inégalité
effectuer une transformation d’Abel de Z;rofl 41 ax cos(kz) etutiliser la lere inégalité.

b) Ecrire I'intégrale sur [0, 7] comme une série d’intégrales sur | et montrer que

+1”}

f(z)| < 34, 51x€[n+1,2}
c) Remarquer que
+o0o +oo
/ a(z)rP2dr < +o0 & Z al nP~? < +oo,
0 n 1

+oo
/ A(x)P x7%dx < +oo & Z AP 7% < o0,
0

et que la derniére condition implique f € LP ([—7 ]) d’apres b).

d)Ona f e LP(T!) et 7 ¢ (%(Z). Donc l’estlmatlon de I’exercice 10.16 c) est fausse en
général sip > 2.

Exercices du chapitre 11

11.1 a) Montrer que C est un fermé de R?.

a ™ Hoo
11.2 a) Va > 0, arctan(a / f(z §§ et/ flx)de =
0

T
a2+n2 2°

+o0 d
b)Vn > 1, / — (%) = 0. Donc le théoréme de Fubini ne s’applique pas.
o dr\n?+a?

+oo

11.4 On applique Fubini-Tonelli en partant de g(f(z)) = / g (t) Lit< p(ayy dt.
0

11.5 a) Considérer les ensembles Df := {x € X,, : p({x})> 1}, n,keN*.

11.6 a) Montrer que la fonction (z,y) — f(x)—y est borélienne.
¢) Appliquer le théoréme de Fubini-Tonelli a I’expression intégrale de Ao (G ).

11.7 Considérer la fonction (z,y) — (f(z) — f(v)) (g9(x) — g(y)).
11.8 Appliquer le théoreme de Fubini a ces dérivées sur tout pavé compact inclus dans €.
11.10 a) Par le théoréme de Fubini-Tonelli on a

2/+°° Inx dx_/ dz dy L .
o w21 re o) (T+a2?y) 2y I+l 2

3
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oo ] bl 1
b) On a /0 x2n_xl dx =2 /0 x;l_xl dx et on développe 1=, o série sur [0, 1].
11.11 a) Appliquer le théoréme de Fubini sur le produit [0, 7] x [0, 1].

b) Faire le changement de variables s = tanx dans la premiére intégrale, puis appliquer

le théoréme de Fubini sur le produit [0, 7] x [0, 1] et faire le changement de variables

t=+vy+1
¢) On obtient /2 In (1 + cos?(z)) dz =7 In (
0

V2+1
)
11.13 b) Utiliser le résultat du a) dans la définition de f,(¢) et appliquer le théoreme de
Fubini.

c) Effectuer le changement de variable az = y + ¢ dans la seconde expression de f, ()
et faire tendre a vers 0.

11.14 a) Appliquer le théoréme de Fubini dans / Fogndp ot Fy := [F|1i1cpj<py et

majorer I’intégrale obtenue a I’aide de I’inégalité d)e(Hblder, pour une fonction g,, € £ (1)
convenable.

b) Appliquer I'inégalité du a) a la fonction ¢, (z,y) := 1y q(2)f(zy) ,a > 0.

11.15 a) Commencer par f := 14, A€ B(R), et appliquer le théoreme de Fubini-Tonelli.
Etendre le résultat a toute fonction étagée par linéarité et a toute fonction borélienne par
convergence monotone.

b) Utiliser a) avec la fonction f(z) := z%*® et appliquer Iinégalité de Holder avec la
mesure d(—), puis utiliser 2 nouveau a).

c¢) Appliquer le cas d’égalité de I’inégalité de Holder et en déduire qu’il existe = €R tel que
d(=¢)(Ry\{z})=0.

11.16 @) Procéder comme dans I’exercice 11.15 a).

b) Utiliser a) avec la fonction f(z) := x%? et appliquer I’inégalité de 1’exercice 9.18 b).
¢) Appliquer le cas d’égalité de 1’exercice 9.18 b) et en déduire d(¢)(]0, 1[) =0.

11.17 a) Appliquer I'inégalité de Cauchy-Schwarz.
b) Appliquer le théoréme de Fubini.

¢) Commencer par calculer & (1) a I’aide du théoréme de Fubini, puis utiliser b).

11.18 a) Montrer que, pour tout z € R%, 2° M (y — e *¥) =T'(s) et en déduire, par un
argument d’analyticité, que I’égalité est aussi vérifiée pour R(z) > 0. Pour la continuité en
un point z € R*, faire une intégration par parties sur [1, +00].

b) Appliquer le théoreme de Fubini sur R, x [0, a] et poser u=wxy.

¢) Montrer a I’aide d’une intégration par parties sur [1, az] (si ax < 1) que la fonction (z
M (110,q2) cos)) est une fonction bornée sur R, indépendamment de a, puis appliquer le
théoréme de convergence dominée dans b). Calculer la fonction M (cos) avec 1’égalité du a)
pour z = =4.

d) Appliquer ¢) avec M (F'(f))(s) et M(FoF(f))(1—s).

11.19 a) Appliquer le théoreme de Fubini-Tonelli et poser y=tx.

b) Appliquer I’inégalité de Holder dans I’égalité du a).

¢) Montrer que les fonctions F(z) := [ ¢(u)du et G(z) := [ ¢(u)du vérifient la méme
propriét€. Montrer que si /' n’est pas nulle sur R” alors F'> 0 sur R” puis que, pour tous
x,y€R:, F(1)F(xy)=F(x)F(y). En déduire, en considérant la fonction 2 — In F'(e”),
qu’il existe 3 €R’ et v €R tels que, pour tout z € R, F'(x) = 327. Conclure.

d) Appliquer le cas d’égalité de I’inégalité de Holder et utiliser d) avec p = fP et ¢ =¢g9.
e) Considérer, pour a > 1, les fonctions f,(z) =11 4)() z7 et Ga(r) =11 4)() .
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f) Appliquer (S) avec les fonctions f:=>", <o @m+11pmmy1[ € 9:=>", 50 bnt1dpmni1]-
b
11.20 o) Ecrire e %% — ¢ 7% = ¢ / e~ " dt et appliquer deux fois le théoréme de Fubini.

11.21 a) Faire le changement de variable y = 1/x.
b) Montrer, & I’aide d’intégrations par parties, que

/ (arctan (1/x))® dz = = (arctan (1/z))* + In(z>+1) arctan (1/x) + /
11.22 a) Utiliser I'inégalité triangulaire.
b) Utiliser 'égalité 1% =14, .
11.23 a) Appliquer le théoréme de Fubini-Tonelli pour obtenir 1’égalité
1 Vg 1
cqrd /Rd o() p(B(z, 7)) Aa(dr) = P /Rd <)\d(B(y,r)) /B(%r) o(z) )\d(dm)> w(dy),

puis faire tendre r vers 0 a I’aide du théoreme de convergence dominée.
b) Appliquer I’unicité du théoréme de représentation de Riesz.

In(z%+41)

dx.
241 v

Exercices du chapitre 12
12.1 a) Montrer que ¢(dA) N p(A) =@ par I’absurde, avec la continuité de ¢! sur D.

b) Partir de 0D =0(p(A)) et montrer que ¢(A) C ¢(A) par un argument de compacité.

12.3 a) Développer en série (1 — xy)~! et intervertir la série et I'intégrale en utilisant le
théoréme de Beppo Levi.

b) Montrer que la fonction ¢ : (6,t) — (cos@ — t,cos @ + t) est un ¢ -difféomorphisme
de 'ouvert A := {(0,t) €R? : 0< 6 <m/2et |t| <min (cos, 1—cos )} sur D :=]0, 1[?,
de Jacobien J,(6,t) = 2 sin 6. Appliquer le théoreme du changement de variables avec ¢
puis le théoreme de Fubini-Tonelli.

¢) Séparer I'intégrale en 6 sur [0, /3] et [r/3, 7/2]. Dans la seconde intégrale utiliser que
arctan(cotan ) = 7/2 — 0.

12.4 b) Montrer que ¢, ,(R?) est ouvert et fermé dans R?.

12.7 a) Poser u=+/t dans I'(a) et appliquer le théoréme de Fubini-Tonelli.
b) Passer en coordonnées polaires.

12.9 a) Utiliser la réduction de A dans une base orthonormale de vecteurs propres, rappelée
dans démonstration du corollaire 12.1,i.e. A = P D'P ot P = (*P)~! est une matrice or-
thogonale et D = diag (aq, . .., aq) est la matrice diagonale des valeurs propres de A, puis

effectuer le changement de variables linéaire orthogonal = = 'Py. On a par le théoréme de
d

ini- (A = (a1 yi+toayd) g, — —oiyi ) /2
Fubini-Tonelli [ 4 : /Rd e dy 21;[1 (/R e ) Jid
b) I4 < oo ssipourtouti =1,...,d, a; > 0ssi A est définie positive.
¢) Procéder comme dans @) en appliquant le théoréme de Fubini-Lebesgue et en utilisant
I’application 12.3 (a’).

12.10 ¢) Effectuer un changement de variables linéaire orthogonal.
d) Effectuer le changement de variables en coordonnées sphériques
xr1 =rsind;
Lo = rcosfsinby

Tg—1 =1rcosby---cosfy_osinly_q
g =1rcosly---cosbly_ocosby_q
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dans I'intégrale I(z) ou z := (0, ...,0,|y|,0,0), et montrer, par récurrence sur d, que son
Jacobien vérifie |Jy| = 1?1 (cos01)?72 - - (cosfg_3)% cosOy_o.
12.11 a) Ecrire 2 comme une limite croissante de compacts de A.
b) Par un changement de variables affine, se ramener au cas oit 0 € K et AK est inclus dans

un hypercarré de {4 =0} de c6té < diam(AK), puis en déduire que AK +Q . est inclus
d—1
dans le pavé H [—diam(AK)—0, diam(AK) + 0] x [, d].
i=1
¢) Si Jy(up) # 0, appliquer directement I’étape 1. Si J,(uo) = 0, montrer, a I’aide de la
formule de Taylor, que ¢(Qq.r) C @(uo)+¢' (10)Qa—uy,r +Qo,re’» puis utiliser a).
e) Montrer que tout compact de A s’écrit comme une limite décroissante d’ouverts de A
et appliquer le théoréme de convergence dominée dans I’inégalité du d).

12.12 Soient €2 un ouvert de A et (K,,),>0 une suite croissante de compacts d’union §2.
Montrer que Ag(¢(2)) > Aa(@(A))=Aa(p(A\ K,,)) et utiliser I'exercice 12.11 d).

12.13 Montrer que S s’écrit comme une suite croissante de compacts de A et appliquer le
théoréme de convergence monotone dans I’inégalité de I’exercice 12.11 e).

12.14 Montrer que pour |a| assez petit, dp,(Id — af) €]0,2[ et appliquer la proposi-
tion 12.3 ¢).

) 1 1 !
1215 ) Ferire 2D _ /
T o tz+1
1

1 S t
b) On fait la dé it - —( - )
) On fait la décomposition (I+sz)(14+tx) s—t\l4+sz 1+tx

¢) On integre I’égalité de a) sur R, on applique Fubini-Tonelli sur Ry x [0,1] et on
utilise b).

et appliquer le théoréme de Fubini-Tonelli.

VA —1)

12.16 b) Avec le changement de variables (r,6) — (rv/cos60,rv/sin6), I = <

1
T < et appliquer Fubini.

Remarquer que
c) querque 5= 5 <5

12.17 a) Montrer que liIJIrl (z* + yo‘)é = max (z,y) eten déduire que 15, converge
a—r+00

simplement vers 1) ;2 lorsque @ — +oo. La limite est égale a 1 d’apres le théoreéme de
convergence dominée.
b) Effectuer le changement de variables (r,8) — (r (cos )%/ r (sin 9)2/0‘).

12.18 a) Effectuer le changement de variables (z,y) = /r (cos6,sin ) puis utiliser que
la fonction sinus cardinal n’est pas intégrable sur R, (cf. exercice 7.15).

b) Procéder comme dans a) et utiliser la semi-convergence de I’intégrale de sinus cardinal.
On obtient J = 72 /2.

12.19a) Ona I, = T

sia>1et I, =400 sia<1.

1 (22 + y?) e~ +07) 7r
b)P tri I=- drdy = —.
) Par symétrie on a 2/R2 217 zdy =3
12.20 @) On fait un développement en série de 122 et on utilise le théoreme de
— 22y
Fubini-Tonelli pour I’inversion intégrale-série.

b)Ennotantque 0 < 1y =uv < 1 ol (w,y) Ly Lo
nnotant que x uv ona X x
y b 7y 1 27y 1 2

Le calcul de J, est un peu long mais sans difficulté.
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c) Par le théoréme de changement de variables combiné avec Fubini-Tonelli, I est égal a

/Amjlfzh) - /om(l Tu?) (/ (1 i)) B H petan” (i)]:m'

Exercices du chapitre 14

14.1 b) Faire une récurrence sur n.
¢) Soit , 1= >_7_, Xk Montrer que, pour tout n>3, ¢, =X* @p_1+X2.
~ 1 .
14.3 a) Montrer que V¢ € RN\{0}, f(t) := 5/ [f(z)— f(z+mE/1€%)] e €2 g,
Rd

et utiliser la continuité de 1’opérateur de translation dans L} (\4) (cf. théoreme 14.1).
b) Appliquer le théoreme de Fubini.

¢) Si h est un élément neutre pour *, appliquer b) avec h et f(z) := e~ ([#1l++lzal)

1

14.4 Partir de [f(x—y) g(y)| = (If (z=y)"lg@)|") " ([f (@=y)[")>" (g()|*) "
appliquer I’inégalité de Holder.

3=

et

14.5 Appliquer le théoréme du point fixe : : toute application k-contractante d’un espace
métrique complet dans lui-méme possede un unique point fixe (cf. [18]).

14.8 Montrer que f,, = a,*f ol (0tn)n>0 est une approximation (non réguliere) de 1’unité.

14.9 Utiliser I'égalité div (p V) = » Ap+|Vp|? , et la formule d’intégration par parties
du lemme 12.1 avec ¢ := axf.

14.10 b) Utiliser I’exercice 6.14 b).

14.11 b) Appliquer le théoreme de Fubini.

¢) Montrer, a partir du b), que, pour tout z € R%, oy, % f () — (27)~% f(—z), et montrer,
a ’aide du théoréme 9.3, qu’il existe une sous-suite (ky,),>o telle que oy, * f(z) — f(z)
Aa(dz)-p.p..

14.12 a) Utiliser I’exercice 14.3 b) et la formule d’inversion de ’exercice 14.11 c¢).

14.13 o) Appliquer le théoreme de Fubini-Tonelli & (z,y) — f(zy~1)g(y).
¢) S’inspirer de I’exercice 14.4.

14.14 a) Considérer g, := id® 1; avec I :=]0, 1] ou I :=]0, +oc] selon la position de o
par rapport a 1.

b) Appliquer I'inégalité de convolution de I’exercice 14.13.

c) Considérer les fonctions f,(x) := 271} 4 ().

d) Considérer la fonction f(z) := z (In x)_l_% 1j3,4)(z) pour a assez grand.

14.15 d) Utiliser I’invariance par translation de \;.

e) S’inspirer de 1’exercice 14.10.

Exercices du chapitre 15

15.1 Appliquer le cas d’égalité dans I’inégalité triangulaire pour les intégrales.

15.2 a) Pour £ € R, p(R) — (&) = /R (1 — cos(&x)) p(d€) — z'/Rsin(fa:) wu(d€) =0
si et seulement si cos(§z) =1 p(d§)-p.p. si et seulement si z € Q%Z w(d€)-p.p..
15.3 Par continuité de 15 en 0, on obtient 15 (0) = A(E) = 0.

1540na f(t) = /a/de /4 dob f(z) = 1/4e~*". Lintégrabilité assure I’ unicité.

15.5 La transformée de Fourier s’écrit
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~ ets cos(z€)
& = / ———dr = 2/ ——dx
©) || >2 x2 log(|=|) z>2 x2 log(x)
On vérifie alors que pour tout £ €]0, 1/2],
f(0) = f() :2/+°o 1—coS(x§)dx:2/+°° 1 — cos(y) dy
£ o §a?log(x) o¢  (logy —log&)y?
(la derniere expression découle du changement de variable = = y/£). On note enfin que
1 — cos(y) 1 — cos(y)

Vy 2 257 é ’

y*(logy —log &) ~ y*(log2 —log &)

puis on conclut par convergence dominée car (y — % Z(Qy )) € L'(]0, +ocf).

15.6 On considere la fonction f := 1/};, ot B est la boule unité de R?. Comme 13 ne peut
coincider presque partout avec une fonction continue, la fonction f n’est pas dans .Z*(R%)
en vertu du théoréme d’inversion. En revanche, on a ®(f) = 1z € £ (R%).

15.7 On applique la multiplicativité de la transformée de Fourier pour la convolution en
remarquant que f,(t) = s=e—el*l(¢).

15.8 a) On découpe I’intégrale sur les intervalles [a, n], [-n, —a] et [—-a,a],0 < a < n, on
écrit sin ¢ sous forme d’exponentielle, et on fait les changement de variables s = (1 4+ z) ¢
dans les intégrales sur [a, n] et [—n, —a]. On fait alors tendre n vers 'infini puis a vers 0.
b) Soit x := 1 1;_y 4]. La suite ®(1(_,,,) X) converge dans £?(R) vers ®(Y) = 27w x =
7 1{_1,1], €t donc presque partout dans R a une sous-suite pres, d’ou I’égalité cherchée.

15.9 a) Le calcul de la transformée de Fourier de 1{_; /2,1 /) donne I,, = % Jr ﬁ(t) dt
Onal, =3 [5 ﬁ_\l(t) f.(t) dt, &’ ou par Plancherel I,, = T [ fa—1(2) f, (z) dz. Une
récurrence donne 0 < f,, < 1, ce qui permet de conclure.

b) Comme précédemment on a I, = 7 [; fp(x) fo(x) dx et I, = 7 [5(fp(x))* dz. On
conclut avec I’inégalité de Cauchy-Schwarz

15.10 On a [tf(1)| = |f/(t)] = |®(f' (t)| € Z(R). Par I'inégalité de Cauchy-Schwarz
appliquée a 1/t et t f ( ), on obtient que f € Z*(R). Le théoreme d’inversion permet de
conclure.

15.11 a) On choisit g := 10y f/\/|f et h = /If].

b) On applique a) avec ¢ = [, ¢ := (27) % B(g) et = (27)~ % B(h).

¢) f = ghe LY (R?) est lalimite dans £ (R?) de F,, := (2m)2 @ (¢,,) @1 (¢0n), 011
les suites ¢y, U, € €52 (RY) convergent dans £2(R%) vers (21)~2 ®(g), (27)~ % (k)
respectivement. On a alors E, = 2m)E D (D (dn) D1 (n)) = b * by € EF(RY).

1512a)Onaf=3¢+d = (2732 (¢ + ¢) € €X(RY).
15 13 Il faut vérifier que si f est continue a support dans un intervalle compact I, la fonction
f définie sur C par f fR e'@* f () dx est holomorphe. Ceci se vérifie directement par
le théoreme de derlvatlon sous le signe mtégral (ponctuel) étendu au cas complexe, en effet,
pour tous z, h€ C, |h| < 1,

|f(@)e' T — f(2)e'="| < [halel 1D f )| < |f ()]l FHD € LY(R)

(car f est a support dans I), ce qui assure la condition de domination. La fonction fest

donc holomorphe sur tout C. Elle est alors soit constante, soit | |lim £(2)| = 400. Donc,
z|—+oo

si f‘R est a support compact sur R, fest identiquement nulle.
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15.14 b) La fonction x +— €™ sépare les points de [—1, 1] et ne s’annule jamais, donc,
d’apres le théorme de Stone-Weierstrass (cf. [18], Corollaire 12.5, p.139), I’algebre stable
par conjugaison engendrée par cette fonction, ¢.e. I’ensemble des polyndomes trigonomé-
triques de la forme Ziifn crpe*™ ¢ € C,ne N, est dense dans I’ensemble des fonctions
continues 2-périodiques a valeurs complexes pour la norme uniforme, lui-méme classique-
ment dense dans L2 ([—1,1], A) pour la norme hilbertienne usuelle.

1
Q) ona flnm) = [ pa)dn = [ @) de = (™) g Do,
1

(e"™) ez étant une base (orthonormée) hilbertienne, f = 0 dans L&([—1,1]).

d) Si fi(nm) = 0 pour tout n € Z, on montre que | f du = 0 pour tout polyndéme trigo-
nométrique puis on conclut comme a la question b).

15.15 a) Par une double intégration par parties, on trouve

P& = 2/0 (1 —1t) cos(t&) dt = %/0 sin(t€) dt 53(1 —cos¢).

b) La fonction @ est positive et clairement dans L'(R) donc @ ga = 27p = 27 par parité,
d’ou p(d§) = % d€est une mesure de probabilité sur R et j1 = (.
¢) En appariant les entiers impairs opposés 2n+let —(2n+ 1), n > 0, on trouve

o cos((2n 4+ 1)¢)

ve + Z 2n+1)2
d) Pour montrer que /i et 7 coincident sur [ 1, 1] on évalue les transformées de Fourier de
m 1[_171] etv 1[_171] en les points n7 (en fait les coefficients de Fourier) puis on s’appuie
sur ’exercice 14. Dans les deux cas, le calcul est essentiellement immédiat au vue des
questions précédentes.
15.16 ) La série est normalement convergente d’apres la seconde inégalité vérifiée par f.
Donc la continuité de F' se déduit de celle de f qui est localement Lipschitzienne.
b) En intervertissant I'intégrale et la somme on obtient ¢, = 5 f(n)
¢) Lhypothese de type Lipschitz sur f implique que
/1 F(x) — F(0) ’ dr <Y /1 f(x + 27k) — f(2rk) ‘ dr <Y 20

—1 1 (

x _ x 2km)? +
keZ kez

Donc, d’apres le théoréme de Dirichlet pour les séries de Fourier (cf. [31]), F' coincide avec
sa série de Fourier en 0, ce qui, compte tenu de b), donne la formule annoncée.

d) La série de gauche se déduit de f(n) =

a .. L
ot La série de terme général f(27k),
k € Z, se dédouble et donne une série géométrique de raison e =27, On fait tendre a > 0

. . . 1 3
vers 0 dans I’égalité obtenue, en utilisant I’équivalent (coth(x) -2 v 3
e) On considere a =ec+ia,oue > 0eta € R\ Z, dans la premiere formule de d) et on

fait tendre € vers 0" en utilisant le théoréme de convergence dominée pour les séries.
1517 a) f = f = (f)2, donc I'équation se lit en Fourier (f)2 = f, i.e. f est a valeurs dans
{0, 1}. Par continuité de f celle-ci est donc la fonction nulle ou la fonction 1. Or, d’apres
le théoréme de Riemann-Lebesgue, lim¢|_, 4 f(f ) = 0, donc f est identiquement nulle.
b) On utilise I’identité de convolution relative a la transformée de Fourier-Plancherel afin de
montrer que f = 5=®(p) ol p? = pet p€ L'(R) N L3(R). D’oll ¢ = 14, A(4) < +00.
15.18 a) Décomposer e'“* en parties réelle et imaginaire. Remarquer que 1 — cos est une
fonction positive, nulle sur D = 727’;2 = %Z. La fonction [z s”écrit alors (théoreme 8.4(b)
dit de convergence dominée pour les séries de fonctions)
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flw) = [ e u(da) = Y ({2 ) 24/
D kez

Elle est donc clairement périodique de période (non nécessairement minimale) |ug|.

b) La continuité de jz s’établit en s’inspirant de 1’ Application 8.5(b). L’ensemble des périodes
de 1 — en incluant O et les périodes négatives — forme un sous-groupe additif de R. Un tel
sous-groupe (cf. [18]) est soit dense, soit de la forme T'Z ou T est la plus petite période
(strictement positive) de fi. S’il est dense, on montre que ji(u) = [(0) = u(R), donc tout
u > 0 est période. En particulier 1 et I’irrationnel v/2 le sont. Donc 1 est portée par 27Z et

27%2 donc par leur intersection i.e. {0}. Donc = p(R)dp.

¢) On établit I’existence d’un réel « tel que e~ *fi(ug) = u(R) et on montre de fagon

analogue que D = 2257 Do fi(u) = €'/ Y " p({(v + 2k) fug}) e>*70/ Mo,
kez

d) On applique ce qui précéde a la mesure positive finie p(dx) = f(x) A(dz). Celle-ci ne

peut clairement pas étre portée par un ensemble dénombrable D car, nécessairement,

n(D) = [ ) = [ @of)@nidn) =0
En effet 1 f est A-p.p. nulle donc il en est de méme de son intégrale. Or ceci est impossible
car u(R) = [5 fdX # 0 par hypothese.
15.19 @) En utilisant le théoréme de Fubini-Tonelli, il vient pour tout £ > 0

/ " (u(R) — Re(A(©))) de = [ ntao) [ " de(1— cos(en)

—€

= /R,u(dx) {g - Smfx)K:_ = QE/R <1 - mﬂf?) p(dz)

=% /{z|>2/e} (1 - ¥D plde) = 25/{z|>2/s} (1 - @) plde)
> su(m > 2/5).

€ €

b) Par convergence dominée lim | (1, (0) — i (€))d€ = / (x(0) = x(&))d¢. D ou la

nJ—e —€
conclusion en combinant avec a).
c) On extrait y,(,) convergeant vers y. Comme z +— e’ est continue bornée pour tout
£ € R, il est clair que /i,(,,) converge simplement vers /z; donc i = x.
15.20 a) Les supports des fonctions p(- — n), n € Z, sont deux a deux disjoints. Donc en
chaque z € R, la somme qui définit g(z) se réduit & un terme unique et g hérite donc de la
régularité de p. De méme, pour tout |x| > p€ N*, |g(x)| < 511, d’ot la limite annoncée.

) [ 1F@las < [ If@)as

¢) Le coefficient de Fourier d’ordre n € Z de F est

I Cine . L2 1 B
7 _ﬂF(x)e dﬁ—%f(—n)—%chp(k—n)—cn.
kez
Donc by =0etsin > 2,
1 " by, 1 1 [ [ sin(ka)
b, =— et — = == F(x)dx.
TR IR D Dy wrys ﬁ/_,r<kz_2 2 (z) dz
erniere intégrale converge pour tout x € [—m, 7| en

Q..M

Notons que la somme partielle dans la
vertu du critere d’ Abel.
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d) Par la majoration de I’exercice 8.30 b) et I'intégrabilité de F, le théoréme de convergence
dominée s’applique a la derniere intégrale du ¢). On en déduit que le série de terme général
1/(n1nn) est convergente, ce qui fournit la contradiction.
Donc g€ €5°(R,R) \ ®(£(R)) et par conséquent @ (L1 (R)) € %,(R,R).
15.21 @) En tenant compte du théoréme de Plancherel et de la continuité de la transformée
de Fourier dans L' (R?), appliquer le théoréme 10.8 de Marcinkiewicz avec les espaces
LPi(R?) et L% (RY) et les exposants p; = q; = 2, pa = 1 et gz = +00.
b) D’apres la formule (15.7) et la valeur de I’intégrale de Fresnel de ’exercice 8.29, on
obtient f (&) = (m/2)%2 e~ 1€1"/(42) pour ¢ € RY.
c¢) Comme f, € .(R%), si le résultat de continuité est vrai alors le rapport || f. ||,/ || £+ || » est
borné uniformément par rapport a z. En prenant z € Z7%, 2 — 400, on a nécessairement
1/p+ 1/q = 1. Puis en faisant I(z) — 400, il vient p < 2.
15.22 a) Appliquer la formule d’inversion au point 2 en utilisant la continuité de f.
b) Noter que ¢,, = f(n) par la formule d’inversion, puis intervertir I’intégrale et la série
sachant que Z |f(n)| < +oo.
neZ

15.23 a) Appliquer le lemme 15.4 dans .%¢ puis utiliser la densité de .%¢ dans LZ(R?).
b) Appliquer successivement le lemme 15.4 et a), puis conclure en appliquant 1’exer-
cice 8.33 a la fonction f — g € L (R?).

¢) Appliquer successivement le lemme 15.4 et le théoréme 15.4, puis de nouveau conclure
avec I’exercice 8.33.
15.24 b) Appliquer le théoréme de Dirichlet & ).
¢) Appliquer I’identité de Parseval a 1) puis le théoréme de Plancherel a (.
d) i) Intégrer par parties.
i1) Montrer que f(z) = sinx/x, puis utiliser les égalités des questions b) et ).
15.25 b) Utiliser le théoréme de Fubini-Lebesgue dans | fn ¢ pour la 2eme inégalité, puis
utiliser le lemme de Borel-Lebesgue avec (¢ +— £ dans {[t| > a} et (t > £0-2(0)
dans [—a, a] combiné avec le résultat de la question d) de I’exercice 15.16, pour la troisieme
égalité.
c) Appliquer la formule de Poisson avec les deux paires (¢, f) et (5= * @, f?).
d) Appliquer la derniere condition de 7).
15.26 a) La symétrie de I’opérateur A se déduite d’une intégration par parties.
b) Montrer a I’aide la question a) que

Ve SR) 13 =i (A, B()) —i(B(f), A)).
puis appliquer aux deux termes de droite I’'inégalité de Cauchy-Schwarz.
¢) Déduire de la proposition 15.3 et du théoréme de Plancherel que ||z f(z)[|2 = v 27 || f/||2.

15.27 @) En appliquant successivement le théoréme d’inversion a f (noter que f € Z1(R)
par la condition de support) en 0, le lemme 15.4, I’'inégalité de Cauchy-Schwarz (i.e. Holder
pour p = 2) puis le théoréme de Plancherel, on obtient

|f(0)| 1/1[_,1@()() ‘ o

21
Hl “aallly 1712 = Hfllz

b) Le cas d’egahte dans I’inégalité de Holder (cf: théoreme 9.1 (b)) implique I’existence de
o € Ry telle que | f| = o |1[_q q)| AM(dz)-p.p. sur R.

/ T o (t) £(2) dt
R
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c¢) D’apres b) pour o = 1 et le théoréme de Plancherel, on a

va 2al

™

20 =1 0a0) =

aa]“z

15.28 a) Effectuer n des intégrations par partles.
b) D’apres a) ona Z(x4)(z) = a/P(z) et ZL(e")(z) =1/(z — e;). On conclut avec
le théoreme d’inversion de Laplace.

¢) Soit h est la combinaison linéaire des exponentielles.
D’apres la décomposition en éléments simples de 1/P, on pour tout z € C, R(z) > a,
P(z) Z(h)(z) = 1. dou P(2) Z(h+ f)(z) = P(z) Z(h)(2) Z(f)(2) = Z(])(2).
Or, d’aprés a) on a aussi P(z) Z(y)(z) = ZL(D(y))(z) = Z(f)(2).
Donc par inversion de Laplace il vient y = h * f = f %« h qui est I’expression cherchée.
d) Par linéarité on obtient z = =, + y.
e) On peut vérifier par le calcul que I’expression du d) est solution du probleme (C) pour
toute fonction f € € (R.) nulle dans R* .

15.29 ) Prendre la transformée de Fourier de (C,) et utiliser les propriétés de la trans-
formée avec la dérivation. Une solution générale de 1’équation différentielle dans R est
donnée par .Z(x)(z) = A(22 +1)27 pour z € Ry, ot A € R*. Par injectivité de la
transformée de Laplace, cette expression s’étend au domaine de .Z(z), d’ol le résultat.

b) Cas a > 2.

i) Si a > 2, alors on ne peut avoir ZEIJPOO F(z) = 0. Donc F n’est pas la transformée de

Laplace a domaine non vide d’une solution non nulle du probleme (C,).
i) Pour a = 2, une base de solutions dans R* est donnée par (sint/t,cost/t). Aucune de
ces deux fonctions ne vérifie la condition initiale z(0) = 0 de (Cs).

¢)Casa = —2.

1) Les solutions du probleme (C_5) ayant une transformé de Laplace avec un domaine non
vide est la droite vectorielle engendrée par la fonction ¢_,(t) := 1 (sint — ¢ cost) pour
t € Ry, obtenue en prenant la transformée inverse de 1’égalité proposée et en utilisant
I’expression de .Z(z) de a) pour a = — 2.

i1) L’ensemble des solutions de 1’équation différentielle linéaire du deuxieme ordre as-
sociée au probleme (C_2) dans R”., est un espace vectoriel de dimension 2 dont une base
est (p_,,%_,) ot lafonction ¢_, est donnée par la méthode de variation de la constante :

2

t
Y_,(t) = <,072(t)/1 @ ds pourt e RY.

On vérifie que ©»_, € ¢*(R*) en étudiant ¢)_, en chaque point t, € [nm, nr + I,
n € N*, points fixe de la fonction tan, en lesquels s’annule ¢ _,. De plus, compte tenu de

3 . . . s .
Yoo, t°/6 , on obtient tlgr(l) ¥(t) = —2 # 0. Donc v_, n’est pas une solution du

probleme (C_»). Par conséquent, I’ensemble des solutions du probleme (C_2) est aussi la
droite vectorielle engendrée par ¢_,.

d)Casa = 1.

+oo T
/) On obti _ <_1) ' 2n
i) On obtient ¢, (t) = g SSTNEIT) (n')Qt .
n=0 ’

i1) La fonction 1, se déduit de o, a I’aide de la méthode de variation de la constante par
la formule proposée. On a ¥, € ¢%(R.) en vérifiant que d’une part, la limite de ¢, en 0
est 0, et que d’autre part, qu’en chaque racine (éventuelle) 7 > 0 de ¢, les limites de 9,
et ¢/ en 7 existent dans R. Pour cela, on effectue des développements asymptotiques des
deux expressions intégrales au voisinage de 7.
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De plus, on a tliH(l) 1, (t) = +oo. Donc 9, n’est pas une solution de (C).
—

Supposons, par I’absurde, qu’il existe une solution f € %?(Ry) du probleme (Cy).
Sachant que (¢, , 1, ) est une base de solutions de 1I’équation différentielle associée a (Cy)
dans R7, il existe A, u € R telles que f = A, + pp, dans R* . Comme f et ¢, sont
continues en 0 alors que ¢, n’y a pas de limite, ona g = 0.D’ou 0 = f(0) = A, (0) = A
i.e. f estla fonction nulle.
14¢) Si une telle fonction f existe, alors on a

1

o 2 .
Vze Dy, ZL(f*[f)z)= (L) (2)= o & (sin)(2).
D’ou par injectivité de la transformée de Laplace et par le théoréeme des valeurs intermé-
diaires, on obtient (au signe prés) Vz € Dy (s, Z(f)(z) = (z>+1)"2
Il vient donc V z € Bg(f), (Z2+1D)2(f)(2) +22(f)(2) = 0.
En prenant la transformée de Laplace de cette égalité (en remontant les calculs fait en a)),

on obtient finalement que f est solution du probleme (C;), ce qui contredit i) car f ne peut
étre la fonction nulle.

15.30 b) Prendre la transformée de Fourier de I’équation des ondes et en utilisant le théoréme
de dérivation sous I’intégrale par rapport au paramétre x, montrer que pour z € C, (z) >

0, la fonction Uf(s,x) = M(s) est solution de I’équation différentielle linéaire du
02U
2&me ordre W(s,x) —c*U(s,x) =0 pour (s,2) € RxR.
x

En déduire qu’il existe deux fonctions f, g € €*(R) telles que

V(t,z) eRxR, wu(t,x)=f({t—z/c)+glt+x/c).
¢) Prendre la transformée de Fourier de I’équation des ondes et en utilisant le théoreme de
dérivation sous I’intégrale par rapport au parameétre x, montrer que pour z € C, i*(z) > 0,
U(z,x) := 2 (u(-,z))(z) vérifie I'équation différentielle linéaire du 2me ordre
82
o2
Compte tenu des conditions aux limites vérifiées par u et en utilisant la question a), montrer
alors qu’il existe A(2), u(z) € C tels que
V(z,2) €ERy x {2 € C:R(2) >0}, Ulz,z) = L(g)(2) + A\(2) €™/ + p(z) e *2/°.
En déduire que pour tout ¢ € R+, (t)y=a+ [t et

e R TR S

15.31 a) On effectue le changement de variables s = ¢ + k.
b) En prenant la transformée de Laplace de I’équation (D) et en utilisant a), on obtient
P(e*) Z(f)(z) = 1/z. On conclut avec la décomposition en éléments simples de 1/P.
¢) Comparer les deux fonctions aux points ¢ € [p,p + 1] avec p € N* fixé.

(z,2) = 2* /P U(z,2) = — (az + B) /¢ pour (z,2) ERy x {z€C:R(z) >0}

d) Pour chaque j = 1,...,n, on utilise le développement en série
— +oo
e k: pe k-1 / —tz
— = = o e dt,
z(1—aje?) Pt Z [k, 400l

puis l'interversion série-intégrale, licite par le theoreme de convergence dominée grace a
la condition (%) > In . On conclut en utilisant I’égalité de ¢) et finalement le théoréme
d’inversion de Laplace.

15.32 @) Utiliser le développement en série | Z n 1inne1((t) pourt € Ry.
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b) Ona Z(f)(z) = Z([t])(2) et on conclut par I'injectivité de la transformée de Laplace.

15.33 a) Appliquer le théoreme de Fubini-Lebesgue.

t [4] t [t]-1 _

b)/o [S]ds:/l [s]ds—l—/m[s]ds: Zn—i—[t](t—[t})zwﬁ—[t](t—[t}).
1 =

z(e# — 1) o z(e# — 1) - z(e* — 1)

Ilvient Z(f)(z) =% (t [t] —/0 [s] ds— [t]) qui permet de conclure avec [t]—1 = [t—1].

¢)Ona Z(f)(z) =

qui donne bien I’égalité.

15.34 ) Pour la 1ere égalité utiliser la théoréme de convergence dominée avec le développe-

+oo
ment en série oY = Z 0" L pyr(t) pourt € Ry
n=0

Pour la 2éme égalité décomposer en éléments simples W et appliquer la lere

égalité.
Pour la 3éme égalité utiliser la 2eme égalité avec 7 = o + € ou

<R3 o] silo] >1

—1-1jo| silo| <1, (18.1)

0<€§60{

et déduire de I'inégalité des accroissements finis la majoration : pour tout ¢t > 1,
(0‘ + 5)[t] — O'[t]
€

e—zt < t(‘0| +Eo)t—1 e—%(z)t e fl(R+),

puis conclure avec le théoreme de convergence dominée.

Pour la 5éme égalité décomposer en éléments simples =) (le‘r) x—0) ©t appliquer la

lere égalité.

Pour la 6eme égalité décomposer en éléments simples W et utiliser les lere et

3eme égalités.

Pour la 7éme égalité utiliser la Seme égalité avec 7 = o +¢ et v = 0 — ¢ ou ¢ vérifie (18.1),

déduire de I’inégalité des accroissements finis a I’ordre 2 la majoration : pour tout £ > 2,
(c+e)t 4 (0 —e)l —25M _

e
e2

<ttt =1) (o] +e0) eI € LRy,

puis conclure a nouveau avec le théoreme de convergence dominée.
b) En faisant le changement de variable s = t + 1, on obtient

L(ft+1)(2) =€ Z(f)(2) —UOGZ/O e **ds.

On procede de méme pour .2 ( f(t + 2))(z) avec le changement de variable s = ¢ + 2.

¢) On prend la transformée de Laplace de I’équation vérifiée par f, i.e.
ft+2)=af(t+1)+bf(t)+~" pour t € Ry, eton applique b).

Pour les questions d) a f) on prend la transformation de Laplace inverse de 1’expression
de Z(f) dans c¢) en utilisant les différentes égalités de a). On en déduit f(t) pour \(dt)
presque tout ¢t € R, puis u,, pour tout n € N.

15.35a) On a V/(e_ayz)(:v) =(1+ 4a)_% e~ T pour x € R, définie uniquement
poura > —1/4.

b) On applique I’inégalité de Jensen avec la fonction convexe (t eRy — 1P ) et la mesure
de probabilité G(y) dy, puis le théoréme de Fubini-Tonelli.
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2 22
¢) On écrit dans I'intégrale du membre de droite et

changement de variable y — x — y.
+00 +oo (n)
N D" fl@—1))70)
D) (PO = Y Ly pogy = 3 TEZD) O
n=0 ’ n=0 :
i7) On integre par parties par rapporta y G(y) = —2 G’ (y).
iii) Dans # (f)(x) on remplace f(x — y) par I’expression de 7), et on fait une interversion
intégrale-série (licite car el¥! G(y) € & 1( ), puis on utilise #4) (les intégrales “impaires”

sont nulles), d’ou #/(f)(x) = 3,50 1 (D*"(f)) (2).

15.36 a) On fait le changement de variable z = v/t y dans I’intégrale de droite.

b) A I’aide de a) on se raméne & # et on applique le résultat de 1’exercice 15.35 d) iii)
avec la fonction f(-v/%), puis on conclut en notant que (f(-v/%)) @) _ ym FEM (A1),

¢) D’aprés b) on a pour ¢ € Gy (R),

(W5 0 W) () = Wa(e'P(9) = e*P (P () = e TP () = Hiru (o).

L’avant-derniere égalité se déduit du théoreme de Fubini-Lebesgue pour les séries doubles
et de la formule du bindme de Newton : .
gmn gh—nyn 1
V S N, _— = JE— t P.

P m;:p m!n! 7;) (p—n)n!  pl (s+1)
Alternativement, on peut faire le changement de variable v = y + z dans I’intégrale double
Ws(#:()) () en (y, z) € RXR, etappliquer le théoréme de Fubini-Lebesgue pour obtenir
une intégrale avec la fonction f(x — u) Gsi¢(u).

On conclut en utilisant la densité de ¢, (R) dans (LP(R), || - ||,) pour 1 < p < +o0
(¢f. théoreme 14.8), et I’estimation L de I’exercice 15.35 b) combinée avec 1’égalité de a).
d) L’inégalité est claire pour ¢ = +00. Si g € [1,+o0[, on a pour § > 0 fixé,

1 2 t+oo qy2 q 4t
a < — | = i — )
GellLacry1>sy) < T (5/5 ye dy) (q5) Gi(6) — 0

Soient p € [1,+o0[, x € Rett,d > 0. On a par I’inégalité de Holder avec ¢ := 1%’

22 (z—y)? .
=ete 1 et on fait le

8
o

+oo
IW*@Xm—w@HS/: lo(z — y) — ()| Gely) dy
)
< z—y)—px) Giy)d z—1y)—plx)| Gy)d
_[Jw y)wU!(wy+AwJﬂ y) — ola)| Goly) dy
< max_|p(z —y) —o@)| + ollLe®) Gl Lacqiyi>sr) + 0@ 1GellLr (111551

ye[—4,0]
Le premier terme de la ligne précédente est arbitrairement petit pour § assez petit, par conti-
nuité de ¢ en x. D’apres ’estimation de GG, précédente, les deux derniers termes tendent
vers 0 lorsque ¢ — 07 a § > 0 fixé.

Si p = 400, on applique le théoreme 14.6 avec la famille d’approximations de 1’unité
(cf. définition 14.5) (G})¢~0 lorsque t — 0.
¢) D’apres I'égalité de b) ona 8, (#4(f)) = D*(eP°(f)) = D*(#(f)) dans R% x R.

15.37 a) En faisant le changement de Variable s = /t et en utilisant la formule de
I’intégrale gaussienne, on obtient .#(a = \/m/x pour tout x > 0.

b) En prenant la transformée de Laplace du produit de convolution <7 (u) = a * u et de
v:= o (Fu) =ax (a*u),onobtient Z(v)=_%(a)?L(u).
¢) D’aprés a) et b) on a

Ve>0, ZLw)(x)=r/cL(u)(x)=71L1r,)(x) L(u)(z) =L (1r, *u)(z).
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On conclut avec I'inversion de Laplace et la continuité des fonctions v et 1r, * v dans R,..
d) Remarquer que x’ > 0.

e) Effectuer le changement de variable @ = W (y) dans I'intégrale de d) puis V(c) = E.
f) Composer par <7 1’égalité de e) puis utiliser c¢).

15.38 a) Remarquer que f est continue sur R, composer 1’équation par </ ce qui donne
x

pourtoutz € Ry, f(z)=a+2akx+ 1k? / f(t)dt, puis enfin dériver.
0

b) Résoudre I’équation différentielle d’ordre 1 avec la méthode de la variation de la constante
et retrouver 1’expression de </ (e”th).

¢) Remplacer I’expression de f dans a+k <7 (f) etutiliser a nouveau la question 15.35 ¢)
avec la fonction (¢ — e"kzt).
1539 a)Ona F,(z) > 0 et F.(z) = %x” FOH () < 0, d’ ot Iexistence de
lim F,(x). En supposant alors par récurrence I’existence des £ pour k = 0,...,n — 1,
on en déduit celle de £,,.
b) i) Pour passer de n 2 n + 1 on fait une intégration par parties de 1’expression intégrale
de f(x) — M,.

1

1
i))Ona Yk €N', Yu Ry, 0<(~1)" £ (u+ E) < (=1 f (ut le) ce
qui permet d’appliquer le théoreme de convergence monotone.
i) Ve N, YVueR:, 0< (—1)"u"  fO(u+k) < (=1)" w1 ™ (u) =: fo(u),
et fo est intégrable sur R d’apres 1’égalité de ).
¢)Si g, (z) =0 pourz €]0,1[,alors [g,(z)| =|1/(n—1)e ™ (nz—1)| <1/(n—1).

d) i) Effectuer le changement de variable u + = — u dans I’intégrale de b) 7).
ii) A I’aide de c) et de b) 44), on obtient
lim ﬂ /+oo (efnm/u —(1- J,‘/’U,)nil) unflf(n)(u) dul = 0.

n—-+4o0o

ii1) Par b) i1) et b) 4i) on a pour tout n € N*,
(-1

~ (n—1)!

(="
(n—1)!

/ e—nx/u un—lf(n) (u) du
0

<

e*n/ u L (u) du < e (F(0) — £).
0
iv) Le résultat s’obtient en sommant les limites de i4) et iii).

—_1)" +oo
e) ) La fonction v, s’écrit Vi € R,  «,(t) = + (7)'/ w7 () du,
(n - 1) n/t
et est donc positive et croissante. Par I'intégrabilité de fo(u) = (—1)" u" £ (u)
conséquence de b) i) et b) ii), on a }in(l) ap(t) = £, d’olt au, est continue en 0. De méme,
—
on a ligl an(t) =L+ f(0) — £ = f(0).
—+00

t

i1) Soit x € R’ . Partant de I’expression de 7) et en utilisant le théoréme de Fubini, on a
pour tout n € N*,
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z a T _ (_1)7’/ e e—xt e un—l (n) w) du
Lowa) =+ o—r | (// / <>d>dt

(_1)77. e n— n e —xt
:€+(n—1)!/0 w1 )(u)<x/n/ue dt)du

(_1)n o —nz/u , n—1 ¢(n)
={+ =1 e u" " Y (u) du,
-y

d’ot par la formule de d) iv), on déduit limz Z(ay,)(x) =L+ f(x) — € = f(x).

15.40 @) En appliquant I'inégalité de Jensen avec o (z — a)~%(z —t)*~1dt qui est une
mesure de probabilité sur [a, x], on a

el < ESE [Cal s - o
aP ()

d’ou par le théoreme de Fubini-Tonelli, il vient

—q)opr—a b b —a)
e < Somes [ iror V ala - 1) ﬂ O [lswpar

b) i) Par continuité de la fonction I" sur R}, ona aI'(a) = F(a+1) v ra) =1
et (z—y)* — 1, d’ol la limite de p; sur Jy,b]. Avec I'(a+1) > F(2) = 2eten
a—0

distinguant les cas b —a < 1letb — a > 1, on obtient la majoration de p% sur [a, b] pour

a €]0,1].
i) (70 = 2) @) = g [ () = 0(@) (0= 0 e+ pla) (@) 1),

o
qui implique la premiére inégalité en séparant I’intégrale sur [z, y] et [a, y], puis en majorant
«@ H<)0H5U ‘ a—

par [[¢]lsup- De plus, ona [.7%(¢)(z)| < F(a)p (x = )71 dt = ||@llsup P2 (). Ces
deux inégalités combinées avec celles de i) vérifiées par p2 et la continuité de ¢, permettent
d’appliquer le théoréme de convergence dominée a |7 (p) — ¢|P.

iii) On utilise la densité de € ([a, b]) dans (LP([a,b]),] - ||,) (¢f. théoréme 9.10) et les
deux inégalités de ii).

¢) Comme f est continue sur [a,b] et ((t,z) — |t — 2|*) est continue sur [a,b]?, on a
d’apres le théoreme de continuité sous I’intégrale (cf. théoréme 8.5)

vaelat, (£ @) = oy [0 @0 = ()

d) Soient f € £([a,b]) et x € [a,b]. Dans I'expression de .7 (.#7(f))(x) on applique
le théoreme de Fubini, ce qui conduit a I’intégrale de la fonction intégrale
1 /a -1 5-1

s€la,z] — ——— z—0)"""(t—s dt ,
dans laquelle on effectue le changement de variable affine ¢t = s+ (z —s)u ouu € [0,1].
D’oti par la formule des compléments (cf. exercice 12.7 b)) cette fonction est égale a

(z — 5)a+ﬁ71 /1 —1, 8-1 (z — 5)a+671
s€fa,a] — —F——— [ 1—-w)*" v’ du=—"——.
[(a)T(B)  Jo I(a+p)

e) Soitz € R*.. Dans I'expression de £ (.1~ (f)) () on applique le théoreme de Fubini.

+oo
On a pour s € [0, ], la seconde intégrale / (t—s)'m>e "t at oy e " I(1 — ).



Chapitre 19

Réponses aux QCM

QCM 1

71‘2 N r
1. 3 bonnes réponses : % € L'(Ry), poa € L*(R), % € L*(R).

2. 2 bonnes réponses, conséquences du théoréme de convergence dominée :

1 n +oo —nz
1
lim R dr = lim ¢ dr = 0.
n—-+o0o 0 2 n—-+4oo 0 ﬁ

3. Par un changement de variables en coordonnées polaires on a

—+o0
/ e_%(”uyz)dxdy:z/ e_é rdr =2,
R2 2 0 2
it
4. En intégrant deux fois par parties, ona f(£) = 2
' g par parties, " (L t2iné)p
d€ T
5. Par le calcul on a —_— =
Jirver =

sin & 2 B
6.Parlecalculona/R< ¢ ) dé =m.
7. Soit f(z) := e~ ™. Ona.Z(f)(£) = f(£), d’ob

F(f* )(€) = (F(NH©)* = e?¢".

1
1. Une bonne réponse : ——— € L'(Ry).

0
2. La réponse est —.

V2
“+o0
” ™ 42
3. 2 bonnes réponses : 5= ( / e dt)
0

4. La réponse est Z (f)
Fourier.
5. La réponse est 2.

2 d
6. La réponse est f/ 7523
T Jr (1+€%)

7. La réponse est fo.

2

— 1 f en utilisant la relation entre la dérivée et la transformée de
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QCM 3

sin? x

1. 2 bonnes réponses : x > € L'(Ry) et € L*(R).

1
2. La réponse est 7 en faisant un changement de variables en coordonnées polaires.
3. 2 bonnes réponses : I = 7 en utilisant le principe de la bosse glissante, et J = 0 par le
théoreme de convergence dominée.
4. 2 bonnes réponses : .7 (f) est réelle et .7 (f) > —f en utilisant la relation entre la
dérivée et la transformée de Fourier.

tcost —sint)?
5. La réponse est / M

" dt par le théoreme de Plancherel.
R

+oo
6. La réponse est / z? e 29 g
0

7. La réponse est 2./7.
QCM 4

1—e VZ sin z

1. 2 bonnes réponses : ———— € L'([0,1]) et € L*(R).
x

2 +1
1

. La réponse est — —.
e

. La réponse est 27 en passant en coordonnées polaires.

. 2 bonnes réponses : .Z(f)(0) = 0et F(f) = —if.

. On reconnait dans le module la transformée de Fourier de x — 1gr +6’27””2 d’ou, par le
théoreme de Plancherel,

+oo —+o0 )
/ ‘ / 67271'1 (z+iy) dx
—o0 —o0

6.0n a f = g(l[_1/271/21), d’ou f * f = f

7. On part de
—(z+y) _ o—2(z+y) 2
e e _ / efz(ery) dZ,
T+ y 1

wn AW N

2 +oo
1
dy = —4me® gy = =
Y /0 e T 1

1
puis on obtient, en appliquant le théoreme de Fubini-Tonelli, 1a valeur ok

QCM 5

1

L'(jo,1
€ L0, 1)) et zlnx

1. 2 bonnes réponses : € L([2, +o0) .

1
V| Inz|
—+oo
2. En dérivant sous I'intégrale avec e dy = ? ,ona f'(y/m) = /7.

0
3. En passant en coordonnées polaires on obtient 7.
4. Une seule bonne réponse f = — f, en utilisant les relations entre dérivée et transformée

de Fourier et le fait que e~ estun point fixe de la transformée de Fourier .%.

in(2
5. En appliquant le théoréme de Plancherel avec % (1 [_%a]) (z) = M , on obtient

e
wmin(a,b).
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6. Trois bonnes réponses f(z) = 1g, (z) e, f(z) = —1g_(z) " et f(z) = 1r, (z) e 27,
en prenant la transformée de Fourier de 1’égalité (f = f)(z) = = f(z).
7. Par le théoréme de Fubini-Tonelli on a

/+°° In(1 + a+ ax?)
0

A el
= — _ — — a
1422 1+y—|—yaj2 2 Jo Vy2+y 29

~—

QCM 6

1 a :

2 2 1 . SN T

1. 3 bonnes réponses : [ x In’(ez —e7)dz = +o0o, lim ——dr =40
0 a—too J; /r —sinx

¢ Inzsinx

et lim —————dx = +oc.
a—+oo [, x(Inz —sinz)

Pour la derniere intégrale on utilise le développement

Inzsinz _ sinx sin? x 1
x (Inx — sinx) x xlnz x1n’(z)
1 sinz  cos(2x) 1
= - 0 .
2xlnx+ x 2zxlnx i <x1n2(q:)>
sin(2n7§)

2. La limite est 7w ¢(0) en notant que = I (l—nn)(§) ;00w = 21, et en

€

utilisant 1’identité

[FUmm©@e©de = [ F@Ode > (50 2))0) =0

R -n

par le théoreme d’inversion.

3. En utilisant le théoreme de Fubini et en passant en coordonnées polaires, on obtient g

4. Une seule bonne réponse : f * f = =™ en prenant la transformée de Fourier de
1’égalité et du fait que la transformée de Fourier d’une fonction de L*(R) est continue et
tend vers 0 a Iinfini. 1

5. Du fait que ﬂ(lRJre*”)(f) = o 2ine et ﬂ(lR_ebz)(ﬁ) =

1
b— 2iw€
théoreme de Plancherel donne 0.
6. 2 bonnes réponses x e” et sinz du fait que .7 (f) est continue et tend vers 0 a I’infini.
Pour x €%, 1a fonction définie par la série convergente dans L' (R)

+oo f(n+1)*

9=

n!
n=0

;oo fTi= ek f,
—
n fois
vérifie I"égalité .7 (f) e f) = Z(g) du fait de la multiplicativité de la transformée de

Fourier dans L' (R) par rapport a la convolution.
7. Via le théoréme Fubini-Tonelli et le changement de variables ¢ = tan x, on obtient

/Tr arctan(asin ) d
0

Q/Gd / dx / dy -
- Xr = —_— =T — — T argsinna.
sin 0 Y o 1+y’sin’z 0 Vyr+1 &
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Abel (théoreme d’), 356

Abel (toboggan d’), 356

Abel (transformée intégrale d’), 356
absolue continuité, 152

algebre, 75

algebre commutative, 302

algebre de Boole, 87

algebre réticulée, 75

Apéry (¢(3) constante d’), 161
approximation de I’unité, 304
associativité (convolution), 303
associativité (mesure produit), 235
associativité (tribu produit), 230
atome (d’une tribu), 68

axiome du choix, 280

Bale (probleme de), 32, 34, 35, 161, 162,
246,272, 276, 344

Baire (tribu de), 77

Banach-Steinhaus (théoreme de), 402

base dénombrable d’ouverts, 50

Beppo Levi (théoreme de), 124

Bernstein (théoreme de), 38

Bernstein-Widder (théoreme de), 340

Berry-Esseen (inégalité de), 345

Bessel (inégalité de), 227

Borel (mesure de), 107

Borel-Cantelli (lemme de), 143

boule unité (volume de la), 264

Bromwich-Mellin (formule d’inversion de),
339

Brouwer (degré topologique de), 267

¢! -difféomorphisme, 257
Cantor (ensemble de), 282

caractérisation de la mesure de Lebesgue,
251

Carathéodory (théoreme de), 87, 90

Cauchy (noyau de), 305

changement de variable (élémentaire), 26

changement de variables, 257

Chasles (relation de), 24

classe monotone (théoréme de), 85

classe monotone fonctionnelle (théoreme de),
115

coefficients de Fourier complexes, 344

coefficients de Fourier dans R, 227

coefficients de Fourier réels, 159

compactifié d’ Alexandroff, 128

completement monotone (fonction), 340

complet (espace mesuré), 278

constante d’Apéry ((3), 161

constante d’Euler-Mascheroni, 154

continuité (par rapport a la mesure), 134

continuité sous le signe intégrale (Lebesgue),
144

continuité sous le signe intégrale (Riemann),
29

continuité uniforme, 306

convention, 119

convergence LP-dominée, 174

convergence au sens des distributions, 356

convergence dominée (théoreme de), 140

convergence en mesure, 112

convergence faible dans L, 226

convergence faible dans L, 225

convergence uniforme, 24

convexe (fonction), 135

convolée, 295
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convolution, 149

convolution (élémentaire), 146
convolution sur R%, 295
coordonnées polaires, 263

décomposition polaire (matrice), 256

définie positive (matrice), 256, 406

dénombrable (ensemble), 39

dérivée de Radon-Nikodym, 152

dérivée fractionnaire, 360

dérivabilité sous le signe somme (Riemann),
30

degré topologique de Brouwer, 267

densité, 152

diagonalisation (matrice symétrique réelle),
256

dimension de Hausdorff, 113

Dirac (mesure de), 79

distance a un ensemble, 52

distance ultramétrique, 200

distorsion, 158

droite achevée, 45

dual de L*°, 227

dual topologique, 217

dualité LP-L4 (théoreme de), 217

Egoroff (théoreme d’), 112
ensemble de Cantor, 282

ensemble négligeable, 111

entropie (inégalité d’), 136
équation aux différences finies, 352
équation de la chaleur (solution de 1’), 356
équation des ondes, 351
equicontinuité absolue, 225
équiintégrabilité, 156
équiintégrabilité probabiliste, 156
equipotents (ensembles), 37

espace .ZP, 163

espace £ faible, 198

espace o-compact, 108

espace LP, 171

espace de Hilbert, 185

espace de Marcinkiewicz, 198
espace métrique, 50

espace mesurable, 63

espace polonais, 73, 109

espace séparable, 50

etagée (fonction), 74
Euler-Mascheroni (constante d’), 154

Index

Fatou (lemme de), 137

Fejér (noyau de), 159

fermé (ensemble), 49

fini (ensemble), 38

flot d’un systeme différentiel, 160

fonction I', 155

fonction étagée, 74

fonction a support compact, 293

fonction borélienne, 69

fonction complétement monotone, 340

fonction de Heaviside, 340

fonction de Lebesgue, 283

fonction en escalier, 21

fonction image directe, 61

fonction image réciproque, 61

fonction indicatrice, 69

fonction indicatrice des rationnels, 25

fonction Lebesgue-mesurable, 288

fonction localement intégrable, 298

fonction mesurable, 69

fonction réglée, 24

fonction Riemann intégrable, 22

forme sesquilinéaire, 185

formes linéaires (représentation des), 187

formule d’inversion de Bromwich-Mellin, 339

formule d’inversion de Fourier, 314, 328

formule d’inversion de Laplace, 339

formule de Poincaré, 43

formule de Shannon, 347

formule de Stirling, 155

formule des compléments, 249

formule des compléments généralisée, 273,
419

formule intégrale-série du sinus cardinal, 347

formule sommatoire de Poisson, 344, 348

Fourier (coefficients complexes de), 344

Fourier (coefficients dans R? de), 227

Fourier (coefficients réels de), 159

Fourier (formule d’inversion de), 314

Fourier (transformée de), 146, 345

Fourier-Plancherel (transformée de), 333

Fresnel (intégrale de), 158, 347

Fubini-Lebesgue (théoreme de), 238

Fubini-Tonelli (théoréeme de), 237

Gauss (intégrale de), 33

Gauss (noyau de), 305
Gauss-Weierstrass (transformée de), 355
Guldin (premier théoreme de), 265
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Hahn-Banach (théoreme de), 402
Hardy (inégalité de), 247

Hardy (inégalité a poids), 315

Hardy (inégalité de), 196
Hardy-Littlewood-Polya (inégalité de), 247
Hausdorff (dimension de), 113
Hausdorff (formules de), 61
Hausdorff (mesure de), 113
Hausdorff-Young (inégalité de), 346
Heaviside (fonction de), 340

Heine (théoreme de), 306

Heisenberg (inégalité de), 349

Helly (théoreme de sélection de), 358
Hilbert (espace de), 185

Hilbert (inégalité de), 250
hilbertienne (norme), 185

Holder (inégalité de), 165

inégalité d’entropie, 136

inégalité de Berry-Esseen, 345

inégalité de Bessel, 227

inégalité de Hardy, 196

inégalité de Hardy, 247

inégalité de Hardy a poids, 315

inégalité de Hardy-Littlewood-Polya, 247

inégalité de Hausdorff-Young, 346

inégalité de Heisenberg, 349

inégalité de Hilbert, 250

inégalité de Holder, 165

inégalité de Jensen, 136, 359

inégalité de Markov, 126

inégalité de Minkowski, 167

inégalité de Minkowski inverse, 168, 198

inégalité de Polya-Szego, 248

inégalité de Schur, 249

inégalité de Weyl, 197

inégalité de Young, 165, 197

inégalité de Young pour la convolution, 313

inégalité triangulaire, 130

incommensurable (vecteur), 161

indicatrice (fonction), 69

infini (ensemble), 38

infini dénombrable (ensemble), 39

infini non dénombrable (ensemble), 39

intégrable au sens de Riemann (fonction),
22

intégrale d’une fonction étagée, 120

intégrale d’une fonction mesurable positive,
123
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intégrale dépendant d’un parametre, 29

intégrale de Fresnel, 158, 347

intégrale de Gauss, 33

intégrale de Riemann, 23

intégrale de Riemann-Liouville, 359

intégrales de Wallis), 34

intégration par parties, 241

intégration par parties (élémentaire), 27
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